ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.278 by root, Tue Jan 6 19:46:56 2009 UTC vs.
Revision 1.286 by root, Wed Apr 15 19:37:15 2009 UTC

64# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
67# endif 67# endif
68# ifndef EV_USE_REALTIME 68# ifndef EV_USE_REALTIME
69# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 0
70# endif 70# endif
71# else 71# else
72# ifndef EV_USE_MONOTONIC 72# ifndef EV_USE_MONOTONIC
73# define EV_USE_MONOTONIC 0 73# define EV_USE_MONOTONIC 0
74# endif 74# endif
193# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif 194# endif
195#endif 195#endif
196 196
197#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
198# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif 199#endif
200 200
201#ifndef EV_USE_NANOSLEEP 201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L 202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1 203# define EV_USE_NANOSLEEP 1
397typedef ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
398 398
399#define ev_active(w) ((W)(w))->active 399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at 400#define ev_at(w) ((WT)(w))->at
401 401
402#if EV_USE_MONOTONIC 402#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */ 404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
405static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
406#endif 410#endif
407 411
408#ifdef _WIN32 412#ifdef _WIN32
409# include "ev_win32.c" 413# include "ev_win32.c"
553 557
554ev_tstamp 558ev_tstamp
555ev_time (void) 559ev_time (void)
556{ 560{
557#if EV_USE_REALTIME 561#if EV_USE_REALTIME
562 if (expect_true (have_realtime))
563 {
558 struct timespec ts; 564 struct timespec ts;
559 clock_gettime (CLOCK_REALTIME, &ts); 565 clock_gettime (CLOCK_REALTIME, &ts);
560 return ts.tv_sec + ts.tv_nsec * 1e-9; 566 return ts.tv_sec + ts.tv_nsec * 1e-9;
561#else 567 }
568#endif
569
562 struct timeval tv; 570 struct timeval tv;
563 gettimeofday (&tv, 0); 571 gettimeofday (&tv, 0);
564 return tv.tv_sec + tv.tv_usec * 1e-6; 572 return tv.tv_sec + tv.tv_usec * 1e-6;
565#endif
566} 573}
567 574
568ev_tstamp inline_size 575inline_size ev_tstamp
569get_clock (void) 576get_clock (void)
570{ 577{
571#if EV_USE_MONOTONIC 578#if EV_USE_MONOTONIC
572 if (expect_true (have_monotonic)) 579 if (expect_true (have_monotonic))
573 { 580 {
618 625
619/*****************************************************************************/ 626/*****************************************************************************/
620 627
621#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
622 629
623int inline_size 630inline_size int
624array_nextsize (int elem, int cur, int cnt) 631array_nextsize (int elem, int cur, int cnt)
625{ 632{
626 int ncur = cur + 1; 633 int ncur = cur + 1;
627 634
628 do 635 do
669 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 676 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
670 } 677 }
671#endif 678#endif
672 679
673#define array_free(stem, idx) \ 680#define array_free(stem, idx) \
674 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
675 682
676/*****************************************************************************/ 683/*****************************************************************************/
677 684
678void noinline 685void noinline
679ev_feed_event (EV_P_ void *w, int revents) 686ev_feed_event (EV_P_ void *w, int revents)
690 pendings [pri][w_->pending - 1].w = w_; 697 pendings [pri][w_->pending - 1].w = w_;
691 pendings [pri][w_->pending - 1].events = revents; 698 pendings [pri][w_->pending - 1].events = revents;
692 } 699 }
693} 700}
694 701
695void inline_speed 702inline_speed void
703feed_reverse (EV_P_ W w)
704{
705 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
706 rfeeds [rfeedcnt++] = w;
707}
708
709inline_size void
710feed_reverse_done (EV_P_ int revents)
711{
712 do
713 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
714 while (rfeedcnt);
715}
716
717inline_speed void
696queue_events (EV_P_ W *events, int eventcnt, int type) 718queue_events (EV_P_ W *events, int eventcnt, int type)
697{ 719{
698 int i; 720 int i;
699 721
700 for (i = 0; i < eventcnt; ++i) 722 for (i = 0; i < eventcnt; ++i)
701 ev_feed_event (EV_A_ events [i], type); 723 ev_feed_event (EV_A_ events [i], type);
702} 724}
703 725
704/*****************************************************************************/ 726/*****************************************************************************/
705 727
706void inline_speed 728inline_speed void
707fd_event (EV_P_ int fd, int revents) 729fd_event (EV_P_ int fd, int revents)
708{ 730{
709 ANFD *anfd = anfds + fd; 731 ANFD *anfd = anfds + fd;
710 ev_io *w; 732 ev_io *w;
711 733
723{ 745{
724 if (fd >= 0 && fd < anfdmax) 746 if (fd >= 0 && fd < anfdmax)
725 fd_event (EV_A_ fd, revents); 747 fd_event (EV_A_ fd, revents);
726} 748}
727 749
728void inline_size 750inline_size void
729fd_reify (EV_P) 751fd_reify (EV_P)
730{ 752{
731 int i; 753 int i;
732 754
733 for (i = 0; i < fdchangecnt; ++i) 755 for (i = 0; i < fdchangecnt; ++i)
759 unsigned char o_reify = anfd->reify; 781 unsigned char o_reify = anfd->reify;
760 782
761 anfd->reify = 0; 783 anfd->reify = 0;
762 anfd->events = events; 784 anfd->events = events;
763 785
764 if (o_events != events || o_reify & EV_IOFDSET) 786 if (o_events != events || o_reify & EV__IOFDSET)
765 backend_modify (EV_A_ fd, o_events, events); 787 backend_modify (EV_A_ fd, o_events, events);
766 } 788 }
767 } 789 }
768 790
769 fdchangecnt = 0; 791 fdchangecnt = 0;
770} 792}
771 793
772void inline_size 794inline_size void
773fd_change (EV_P_ int fd, int flags) 795fd_change (EV_P_ int fd, int flags)
774{ 796{
775 unsigned char reify = anfds [fd].reify; 797 unsigned char reify = anfds [fd].reify;
776 anfds [fd].reify |= flags; 798 anfds [fd].reify |= flags;
777 799
781 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 803 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
782 fdchanges [fdchangecnt - 1] = fd; 804 fdchanges [fdchangecnt - 1] = fd;
783 } 805 }
784} 806}
785 807
786void inline_speed 808inline_speed void
787fd_kill (EV_P_ int fd) 809fd_kill (EV_P_ int fd)
788{ 810{
789 ev_io *w; 811 ev_io *w;
790 812
791 while ((w = (ev_io *)anfds [fd].head)) 813 while ((w = (ev_io *)anfds [fd].head))
793 ev_io_stop (EV_A_ w); 815 ev_io_stop (EV_A_ w);
794 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 816 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
795 } 817 }
796} 818}
797 819
798int inline_size 820inline_size int
799fd_valid (int fd) 821fd_valid (int fd)
800{ 822{
801#ifdef _WIN32 823#ifdef _WIN32
802 return _get_osfhandle (fd) != -1; 824 return _get_osfhandle (fd) != -1;
803#else 825#else
840 for (fd = 0; fd < anfdmax; ++fd) 862 for (fd = 0; fd < anfdmax; ++fd)
841 if (anfds [fd].events) 863 if (anfds [fd].events)
842 { 864 {
843 anfds [fd].events = 0; 865 anfds [fd].events = 0;
844 anfds [fd].emask = 0; 866 anfds [fd].emask = 0;
845 fd_change (EV_A_ fd, EV_IOFDSET | 1); 867 fd_change (EV_A_ fd, EV__IOFDSET | 1);
846 } 868 }
847} 869}
848 870
849/*****************************************************************************/ 871/*****************************************************************************/
850 872
866#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 888#define HEAP0 (DHEAP - 1) /* index of first element in heap */
867#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 889#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
868#define UPHEAP_DONE(p,k) ((p) == (k)) 890#define UPHEAP_DONE(p,k) ((p) == (k))
869 891
870/* away from the root */ 892/* away from the root */
871void inline_speed 893inline_speed void
872downheap (ANHE *heap, int N, int k) 894downheap (ANHE *heap, int N, int k)
873{ 895{
874 ANHE he = heap [k]; 896 ANHE he = heap [k];
875 ANHE *E = heap + N + HEAP0; 897 ANHE *E = heap + N + HEAP0;
876 898
916#define HEAP0 1 938#define HEAP0 1
917#define HPARENT(k) ((k) >> 1) 939#define HPARENT(k) ((k) >> 1)
918#define UPHEAP_DONE(p,k) (!(p)) 940#define UPHEAP_DONE(p,k) (!(p))
919 941
920/* away from the root */ 942/* away from the root */
921void inline_speed 943inline_speed void
922downheap (ANHE *heap, int N, int k) 944downheap (ANHE *heap, int N, int k)
923{ 945{
924 ANHE he = heap [k]; 946 ANHE he = heap [k];
925 947
926 for (;;) 948 for (;;)
946 ev_active (ANHE_w (he)) = k; 968 ev_active (ANHE_w (he)) = k;
947} 969}
948#endif 970#endif
949 971
950/* towards the root */ 972/* towards the root */
951void inline_speed 973inline_speed void
952upheap (ANHE *heap, int k) 974upheap (ANHE *heap, int k)
953{ 975{
954 ANHE he = heap [k]; 976 ANHE he = heap [k];
955 977
956 for (;;) 978 for (;;)
967 989
968 heap [k] = he; 990 heap [k] = he;
969 ev_active (ANHE_w (he)) = k; 991 ev_active (ANHE_w (he)) = k;
970} 992}
971 993
972void inline_size 994inline_size void
973adjustheap (ANHE *heap, int N, int k) 995adjustheap (ANHE *heap, int N, int k)
974{ 996{
975 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 997 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
976 upheap (heap, k); 998 upheap (heap, k);
977 else 999 else
978 downheap (heap, N, k); 1000 downheap (heap, N, k);
979} 1001}
980 1002
981/* rebuild the heap: this function is used only once and executed rarely */ 1003/* rebuild the heap: this function is used only once and executed rarely */
982void inline_size 1004inline_size void
983reheap (ANHE *heap, int N) 1005reheap (ANHE *heap, int N)
984{ 1006{
985 int i; 1007 int i;
986 1008
987 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1009 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1003 1025
1004static EV_ATOMIC_T gotsig; 1026static EV_ATOMIC_T gotsig;
1005 1027
1006/*****************************************************************************/ 1028/*****************************************************************************/
1007 1029
1008void inline_speed 1030inline_speed void
1009fd_intern (int fd) 1031fd_intern (int fd)
1010{ 1032{
1011#ifdef _WIN32 1033#ifdef _WIN32
1012 unsigned long arg = 1; 1034 unsigned long arg = 1;
1013 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1035 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1043 ev_io_start (EV_A_ &pipeev); 1065 ev_io_start (EV_A_ &pipeev);
1044 ev_unref (EV_A); /* watcher should not keep loop alive */ 1066 ev_unref (EV_A); /* watcher should not keep loop alive */
1045 } 1067 }
1046} 1068}
1047 1069
1048void inline_size 1070inline_size void
1049evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1071evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1050{ 1072{
1051 if (!*flag) 1073 if (!*flag)
1052 { 1074 {
1053 int old_errno = errno; /* save errno because write might clobber it */ 1075 int old_errno = errno; /* save errno because write might clobber it */
1157 1179
1158#ifndef WIFCONTINUED 1180#ifndef WIFCONTINUED
1159# define WIFCONTINUED(status) 0 1181# define WIFCONTINUED(status) 0
1160#endif 1182#endif
1161 1183
1162void inline_speed 1184inline_speed void
1163child_reap (EV_P_ int chain, int pid, int status) 1185child_reap (EV_P_ int chain, int pid, int status)
1164{ 1186{
1165 ev_child *w; 1187 ev_child *w;
1166 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1188 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1167 1189
1319static void noinline 1341static void noinline
1320loop_init (EV_P_ unsigned int flags) 1342loop_init (EV_P_ unsigned int flags)
1321{ 1343{
1322 if (!backend) 1344 if (!backend)
1323 { 1345 {
1346#if EV_USE_REALTIME
1347 if (!have_realtime)
1348 {
1349 struct timespec ts;
1350
1351 if (!clock_gettime (CLOCK_REALTIME, &ts))
1352 have_realtime = 1;
1353 }
1354#endif
1355
1324#if EV_USE_MONOTONIC 1356#if EV_USE_MONOTONIC
1357 if (!have_monotonic)
1325 { 1358 {
1326 struct timespec ts; 1359 struct timespec ts;
1360
1327 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1361 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1328 have_monotonic = 1; 1362 have_monotonic = 1;
1329 } 1363 }
1330#endif 1364#endif
1331 1365
1332 ev_rt_now = ev_time (); 1366 ev_rt_now = ev_time ();
1333 mn_now = get_clock (); 1367 mn_now = get_clock ();
1334 now_floor = mn_now; 1368 now_floor = mn_now;
1433 } 1467 }
1434 1468
1435 ev_free (anfds); anfdmax = 0; 1469 ev_free (anfds); anfdmax = 0;
1436 1470
1437 /* have to use the microsoft-never-gets-it-right macro */ 1471 /* have to use the microsoft-never-gets-it-right macro */
1472 array_free (rfeed, EMPTY);
1438 array_free (fdchange, EMPTY); 1473 array_free (fdchange, EMPTY);
1439 array_free (timer, EMPTY); 1474 array_free (timer, EMPTY);
1440#if EV_PERIODIC_ENABLE 1475#if EV_PERIODIC_ENABLE
1441 array_free (periodic, EMPTY); 1476 array_free (periodic, EMPTY);
1442#endif 1477#endif
1451 1486
1452 backend = 0; 1487 backend = 0;
1453} 1488}
1454 1489
1455#if EV_USE_INOTIFY 1490#if EV_USE_INOTIFY
1456void inline_size infy_fork (EV_P); 1491inline_size void infy_fork (EV_P);
1457#endif 1492#endif
1458 1493
1459void inline_size 1494inline_size void
1460loop_fork (EV_P) 1495loop_fork (EV_P)
1461{ 1496{
1462#if EV_USE_PORT 1497#if EV_USE_PORT
1463 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1498 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1464#endif 1499#endif
1701ev_invoke (EV_P_ void *w, int revents) 1736ev_invoke (EV_P_ void *w, int revents)
1702{ 1737{
1703 EV_CB_INVOKE ((W)w, revents); 1738 EV_CB_INVOKE ((W)w, revents);
1704} 1739}
1705 1740
1706void inline_speed 1741inline_speed void
1707call_pending (EV_P) 1742call_pending (EV_P)
1708{ 1743{
1709 int pri; 1744 int pri;
1710 1745
1711 for (pri = NUMPRI; pri--; ) 1746 for (pri = NUMPRI; pri--; )
1723 } 1758 }
1724 } 1759 }
1725} 1760}
1726 1761
1727#if EV_IDLE_ENABLE 1762#if EV_IDLE_ENABLE
1728void inline_size 1763inline_size void
1729idle_reify (EV_P) 1764idle_reify (EV_P)
1730{ 1765{
1731 if (expect_false (idleall)) 1766 if (expect_false (idleall))
1732 { 1767 {
1733 int pri; 1768 int pri;
1745 } 1780 }
1746 } 1781 }
1747} 1782}
1748#endif 1783#endif
1749 1784
1750void inline_size 1785inline_size void
1751timers_reify (EV_P) 1786timers_reify (EV_P)
1752{ 1787{
1753 EV_FREQUENT_CHECK; 1788 EV_FREQUENT_CHECK;
1754 1789
1755 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 1790 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1756 { 1791 {
1757 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 1792 do
1758
1759 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1760
1761 /* first reschedule or stop timer */
1762 if (w->repeat)
1763 { 1793 {
1794 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1795
1796 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1797
1798 /* first reschedule or stop timer */
1799 if (w->repeat)
1800 {
1764 ev_at (w) += w->repeat; 1801 ev_at (w) += w->repeat;
1765 if (ev_at (w) < mn_now) 1802 if (ev_at (w) < mn_now)
1766 ev_at (w) = mn_now; 1803 ev_at (w) = mn_now;
1767 1804
1768 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1805 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1769 1806
1770 ANHE_at_cache (timers [HEAP0]); 1807 ANHE_at_cache (timers [HEAP0]);
1771 downheap (timers, timercnt, HEAP0); 1808 downheap (timers, timercnt, HEAP0);
1809 }
1810 else
1811 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1812
1813 EV_FREQUENT_CHECK;
1814 feed_reverse (EV_A_ (W)w);
1772 } 1815 }
1773 else 1816 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1774 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1775 1817
1776 EV_FREQUENT_CHECK;
1777 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1818 feed_reverse_done (EV_A_ EV_TIMEOUT);
1778 } 1819 }
1779} 1820}
1780 1821
1781#if EV_PERIODIC_ENABLE 1822#if EV_PERIODIC_ENABLE
1782void inline_size 1823inline_size void
1783periodics_reify (EV_P) 1824periodics_reify (EV_P)
1784{ 1825{
1785 EV_FREQUENT_CHECK; 1826 EV_FREQUENT_CHECK;
1786 1827
1787 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 1828 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1788 { 1829 {
1789 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 1830 int feed_count = 0;
1790 1831
1791 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/ 1832 do
1792
1793 /* first reschedule or stop timer */
1794 if (w->reschedule_cb)
1795 { 1833 {
1834 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1835
1836 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1837
1838 /* first reschedule or stop timer */
1839 if (w->reschedule_cb)
1840 {
1796 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1841 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1797 1842
1798 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 1843 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1799 1844
1800 ANHE_at_cache (periodics [HEAP0]); 1845 ANHE_at_cache (periodics [HEAP0]);
1801 downheap (periodics, periodiccnt, HEAP0); 1846 downheap (periodics, periodiccnt, HEAP0);
1847 }
1848 else if (w->interval)
1849 {
1850 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1851 /* if next trigger time is not sufficiently in the future, put it there */
1852 /* this might happen because of floating point inexactness */
1853 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1854 {
1855 ev_at (w) += w->interval;
1856
1857 /* if interval is unreasonably low we might still have a time in the past */
1858 /* so correct this. this will make the periodic very inexact, but the user */
1859 /* has effectively asked to get triggered more often than possible */
1860 if (ev_at (w) < ev_rt_now)
1861 ev_at (w) = ev_rt_now;
1862 }
1863
1864 ANHE_at_cache (periodics [HEAP0]);
1865 downheap (periodics, periodiccnt, HEAP0);
1866 }
1867 else
1868 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1869
1870 EV_FREQUENT_CHECK;
1871 feed_reverse (EV_A_ (W)w);
1802 } 1872 }
1803 else if (w->interval) 1873 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1804 {
1805 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1806 /* if next trigger time is not sufficiently in the future, put it there */
1807 /* this might happen because of floating point inexactness */
1808 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1809 {
1810 ev_at (w) += w->interval;
1811 1874
1812 /* if interval is unreasonably low we might still have a time in the past */
1813 /* so correct this. this will make the periodic very inexact, but the user */
1814 /* has effectively asked to get triggered more often than possible */
1815 if (ev_at (w) < ev_rt_now)
1816 ev_at (w) = ev_rt_now;
1817 }
1818
1819 ANHE_at_cache (periodics [HEAP0]);
1820 downheap (periodics, periodiccnt, HEAP0);
1821 }
1822 else
1823 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1824
1825 EV_FREQUENT_CHECK;
1826 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1875 feed_reverse_done (EV_A_ EV_PERIODIC);
1827 } 1876 }
1828} 1877}
1829 1878
1830static void noinline 1879static void noinline
1831periodics_reschedule (EV_P) 1880periodics_reschedule (EV_P)
1847 1896
1848 reheap (periodics, periodiccnt); 1897 reheap (periodics, periodiccnt);
1849} 1898}
1850#endif 1899#endif
1851 1900
1852void inline_speed 1901static void noinline
1902timers_reschedule (EV_P_ ev_tstamp adjust)
1903{
1904 int i;
1905
1906 for (i = 0; i < timercnt; ++i)
1907 {
1908 ANHE *he = timers + i + HEAP0;
1909 ANHE_w (*he)->at += adjust;
1910 ANHE_at_cache (*he);
1911 }
1912}
1913
1914inline_speed void
1853time_update (EV_P_ ev_tstamp max_block) 1915time_update (EV_P_ ev_tstamp max_block)
1854{ 1916{
1855 int i; 1917 int i;
1856 1918
1857#if EV_USE_MONOTONIC 1919#if EV_USE_MONOTONIC
1890 ev_rt_now = ev_time (); 1952 ev_rt_now = ev_time ();
1891 mn_now = get_clock (); 1953 mn_now = get_clock ();
1892 now_floor = mn_now; 1954 now_floor = mn_now;
1893 } 1955 }
1894 1956
1957 /* no timer adjustment, as the monotonic clock doesn't jump */
1958 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1895# if EV_PERIODIC_ENABLE 1959# if EV_PERIODIC_ENABLE
1896 periodics_reschedule (EV_A); 1960 periodics_reschedule (EV_A);
1897# endif 1961# endif
1898 /* no timer adjustment, as the monotonic clock doesn't jump */
1899 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1900 } 1962 }
1901 else 1963 else
1902#endif 1964#endif
1903 { 1965 {
1904 ev_rt_now = ev_time (); 1966 ev_rt_now = ev_time ();
1905 1967
1906 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 1968 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1907 { 1969 {
1970 /* adjust timers. this is easy, as the offset is the same for all of them */
1971 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1908#if EV_PERIODIC_ENABLE 1972#if EV_PERIODIC_ENABLE
1909 periodics_reschedule (EV_A); 1973 periodics_reschedule (EV_A);
1910#endif 1974#endif
1911 /* adjust timers. this is easy, as the offset is the same for all of them */
1912 for (i = 0; i < timercnt; ++i)
1913 {
1914 ANHE *he = timers + i + HEAP0;
1915 ANHE_w (*he)->at += ev_rt_now - mn_now;
1916 ANHE_at_cache (*he);
1917 }
1918 } 1975 }
1919 1976
1920 mn_now = ev_rt_now; 1977 mn_now = ev_rt_now;
1921 } 1978 }
1922}
1923
1924void
1925ev_ref (EV_P)
1926{
1927 ++activecnt;
1928}
1929
1930void
1931ev_unref (EV_P)
1932{
1933 --activecnt;
1934}
1935
1936void
1937ev_now_update (EV_P)
1938{
1939 time_update (EV_A_ 1e100);
1940} 1979}
1941 1980
1942static int loop_done; 1981static int loop_done;
1943 1982
1944void 1983void
1978 { 2017 {
1979 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2018 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1980 call_pending (EV_A); 2019 call_pending (EV_A);
1981 } 2020 }
1982 2021
1983 if (expect_false (!activecnt))
1984 break;
1985
1986 /* we might have forked, so reify kernel state if necessary */ 2022 /* we might have forked, so reify kernel state if necessary */
1987 if (expect_false (postfork)) 2023 if (expect_false (postfork))
1988 loop_fork (EV_A); 2024 loop_fork (EV_A);
1989 2025
1990 /* update fd-related kernel structures */ 2026 /* update fd-related kernel structures */
1997 2033
1998 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2034 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1999 { 2035 {
2000 /* update time to cancel out callback processing overhead */ 2036 /* update time to cancel out callback processing overhead */
2001 time_update (EV_A_ 1e100); 2037 time_update (EV_A_ 1e100);
2002
2003 waittime = MAX_BLOCKTIME;
2004 2038
2005 if (timercnt) 2039 if (timercnt)
2006 { 2040 {
2007 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 2041 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2008 if (waittime > to) waittime = to; 2042 if (waittime > to) waittime = to;
2069ev_unloop (EV_P_ int how) 2103ev_unloop (EV_P_ int how)
2070{ 2104{
2071 loop_done = how; 2105 loop_done = how;
2072} 2106}
2073 2107
2108void
2109ev_ref (EV_P)
2110{
2111 ++activecnt;
2112}
2113
2114void
2115ev_unref (EV_P)
2116{
2117 --activecnt;
2118}
2119
2120void
2121ev_now_update (EV_P)
2122{
2123 time_update (EV_A_ 1e100);
2124}
2125
2126void
2127ev_suspend (EV_P)
2128{
2129 ev_now_update (EV_A);
2130}
2131
2132void
2133ev_resume (EV_P)
2134{
2135 ev_tstamp mn_prev = mn_now;
2136
2137 ev_now_update (EV_A);
2138 timers_reschedule (EV_A_ mn_now - mn_prev);
2139#if EV_PERIODIC_ENABLE
2140 periodics_reschedule (EV_A);
2141#endif
2142}
2143
2074/*****************************************************************************/ 2144/*****************************************************************************/
2075 2145
2076void inline_size 2146inline_size void
2077wlist_add (WL *head, WL elem) 2147wlist_add (WL *head, WL elem)
2078{ 2148{
2079 elem->next = *head; 2149 elem->next = *head;
2080 *head = elem; 2150 *head = elem;
2081} 2151}
2082 2152
2083void inline_size 2153inline_size void
2084wlist_del (WL *head, WL elem) 2154wlist_del (WL *head, WL elem)
2085{ 2155{
2086 while (*head) 2156 while (*head)
2087 { 2157 {
2088 if (*head == elem) 2158 if (*head == elem)
2093 2163
2094 head = &(*head)->next; 2164 head = &(*head)->next;
2095 } 2165 }
2096} 2166}
2097 2167
2098void inline_speed 2168inline_speed void
2099clear_pending (EV_P_ W w) 2169clear_pending (EV_P_ W w)
2100{ 2170{
2101 if (w->pending) 2171 if (w->pending)
2102 { 2172 {
2103 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2173 pendings [ABSPRI (w)][w->pending - 1].w = 0;
2120 } 2190 }
2121 else 2191 else
2122 return 0; 2192 return 0;
2123} 2193}
2124 2194
2125void inline_size 2195inline_size void
2126pri_adjust (EV_P_ W w) 2196pri_adjust (EV_P_ W w)
2127{ 2197{
2128 int pri = w->priority; 2198 int pri = w->priority;
2129 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2199 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2130 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2200 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2131 w->priority = pri; 2201 w->priority = pri;
2132} 2202}
2133 2203
2134void inline_speed 2204inline_speed void
2135ev_start (EV_P_ W w, int active) 2205ev_start (EV_P_ W w, int active)
2136{ 2206{
2137 pri_adjust (EV_A_ w); 2207 pri_adjust (EV_A_ w);
2138 w->active = active; 2208 w->active = active;
2139 ev_ref (EV_A); 2209 ev_ref (EV_A);
2140} 2210}
2141 2211
2142void inline_size 2212inline_size void
2143ev_stop (EV_P_ W w) 2213ev_stop (EV_P_ W w)
2144{ 2214{
2145 ev_unref (EV_A); 2215 ev_unref (EV_A);
2146 w->active = 0; 2216 w->active = 0;
2147} 2217}
2155 2225
2156 if (expect_false (ev_is_active (w))) 2226 if (expect_false (ev_is_active (w)))
2157 return; 2227 return;
2158 2228
2159 assert (("libev: ev_io_start called with negative fd", fd >= 0)); 2229 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2160 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE)))); 2230 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2161 2231
2162 EV_FREQUENT_CHECK; 2232 EV_FREQUENT_CHECK;
2163 2233
2164 ev_start (EV_A_ (W)w, 1); 2234 ev_start (EV_A_ (W)w, 1);
2165 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 2235 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2166 wlist_add (&anfds[fd].head, (WL)w); 2236 wlist_add (&anfds[fd].head, (WL)w);
2167 2237
2168 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2238 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
2169 w->events &= ~EV_IOFDSET; 2239 w->events &= ~EV__IOFDSET;
2170 2240
2171 EV_FREQUENT_CHECK; 2241 EV_FREQUENT_CHECK;
2172} 2242}
2173 2243
2174void noinline 2244void noinline
2572 2642
2573 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2643 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2574 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2644 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2575} 2645}
2576 2646
2577void inline_size 2647inline_size void
2578check_2625 (EV_P) 2648check_2625 (EV_P)
2579{ 2649{
2580 /* kernels < 2.6.25 are borked 2650 /* kernels < 2.6.25 are borked
2581 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 2651 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2582 */ 2652 */
2595 return; 2665 return;
2596 2666
2597 fs_2625 = 1; 2667 fs_2625 = 1;
2598} 2668}
2599 2669
2600void inline_size 2670inline_size void
2601infy_init (EV_P) 2671infy_init (EV_P)
2602{ 2672{
2603 if (fs_fd != -2) 2673 if (fs_fd != -2)
2604 return; 2674 return;
2605 2675
2615 ev_set_priority (&fs_w, EV_MAXPRI); 2685 ev_set_priority (&fs_w, EV_MAXPRI);
2616 ev_io_start (EV_A_ &fs_w); 2686 ev_io_start (EV_A_ &fs_w);
2617 } 2687 }
2618} 2688}
2619 2689
2620void inline_size 2690inline_size void
2621infy_fork (EV_P) 2691infy_fork (EV_P)
2622{ 2692{
2623 int slot; 2693 int slot;
2624 2694
2625 if (fs_fd < 0) 2695 if (fs_fd < 0)
3127 ev_timer_set (&once->to, timeout, 0.); 3197 ev_timer_set (&once->to, timeout, 0.);
3128 ev_timer_start (EV_A_ &once->to); 3198 ev_timer_start (EV_A_ &once->to);
3129 } 3199 }
3130} 3200}
3131 3201
3202/*****************************************************************************/
3203
3204#if 0
3205void
3206ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3207{
3208 int i, j;
3209 ev_watcher_list *wl, *wn;
3210
3211 if (types & (EV_IO | EV_EMBED))
3212 for (i = 0; i < anfdmax; ++i)
3213 for (wl = anfds [i].head; wl; )
3214 {
3215 wn = wl->next;
3216
3217#if EV_EMBED_ENABLE
3218 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3219 {
3220 if (types & EV_EMBED)
3221 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3222 }
3223 else
3224#endif
3225#if EV_USE_INOTIFY
3226 if (ev_cb ((ev_io *)wl) == infy_cb)
3227 ;
3228 else
3229#endif
3230 if ((ev_io *)wl != &pipeev)
3231 if (types & EV_IO)
3232 cb (EV_A_ EV_IO, wl);
3233
3234 wl = wn;
3235 }
3236
3237 if (types & (EV_TIMER | EV_STAT))
3238 for (i = timercnt + HEAP0; i-- > HEAP0; )
3239#if EV_STAT_ENABLE
3240 /*TODO: timer is not always active*/
3241 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3242 {
3243 if (types & EV_STAT)
3244 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3245 }
3246 else
3247#endif
3248 if (types & EV_TIMER)
3249 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3250
3251#if EV_PERIODIC_ENABLE
3252 if (types & EV_PERIODIC)
3253 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3254 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3255#endif
3256
3257#if EV_IDLE_ENABLE
3258 if (types & EV_IDLE)
3259 for (j = NUMPRI; i--; )
3260 for (i = idlecnt [j]; i--; )
3261 cb (EV_A_ EV_IDLE, idles [j][i]);
3262#endif
3263
3264#if EV_FORK_ENABLE
3265 if (types & EV_FORK)
3266 for (i = forkcnt; i--; )
3267 if (ev_cb (forks [i]) != embed_fork_cb)
3268 cb (EV_A_ EV_FORK, forks [i]);
3269#endif
3270
3271#if EV_ASYNC_ENABLE
3272 if (types & EV_ASYNC)
3273 for (i = asynccnt; i--; )
3274 cb (EV_A_ EV_ASYNC, asyncs [i]);
3275#endif
3276
3277 if (types & EV_PREPARE)
3278 for (i = preparecnt; i--; )
3279#if EV_EMBED_ENABLE
3280 if (ev_cb (prepares [i]) != embed_prepare_cb)
3281#endif
3282 cb (EV_A_ EV_PREPARE, prepares [i]);
3283
3284 if (types & EV_CHECK)
3285 for (i = checkcnt; i--; )
3286 cb (EV_A_ EV_CHECK, checks [i]);
3287
3288 if (types & EV_SIGNAL)
3289 for (i = 0; i < signalmax; ++i)
3290 for (wl = signals [i].head; wl; )
3291 {
3292 wn = wl->next;
3293 cb (EV_A_ EV_SIGNAL, wl);
3294 wl = wn;
3295 }
3296
3297 if (types & EV_CHILD)
3298 for (i = EV_PID_HASHSIZE; i--; )
3299 for (wl = childs [i]; wl; )
3300 {
3301 wn = wl->next;
3302 cb (EV_A_ EV_CHILD, wl);
3303 wl = wn;
3304 }
3305/* EV_STAT 0x00001000 /* stat data changed */
3306/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3307}
3308#endif
3309
3132#if EV_MULTIPLICITY 3310#if EV_MULTIPLICITY
3133 #include "ev_wrap.h" 3311 #include "ev_wrap.h"
3134#endif 3312#endif
3135 3313
3136#ifdef __cplusplus 3314#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines