ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.286 by root, Wed Apr 15 19:37:15 2009 UTC vs.
Revision 1.449 by root, Sun Sep 23 21:21:58 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
51 53
52# if HAVE_CLOCK_SYSCALL 54# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL 55# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1 56# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME 57# ifndef EV_USE_REALTIME
57# endif 59# endif
58# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1 61# define EV_USE_MONOTONIC 1
60# endif 62# endif
61# endif 63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
62# endif 66# endif
63 67
64# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
75# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
77# endif 81# endif
78# endif 82# endif
79 83
84# if HAVE_NANOSLEEP
80# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
83# else 88# else
89# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
85# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
86# endif 100# endif
87 101
102# if HAVE_POLL && HAVE_POLL_H
88# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
89# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
90# define EV_USE_SELECT 1
91# else
92# define EV_USE_SELECT 0
93# endif 105# endif
94# endif
95
96# ifndef EV_USE_POLL
97# if HAVE_POLL && HAVE_POLL_H
98# define EV_USE_POLL 1
99# else 106# else
107# undef EV_USE_POLL
100# define EV_USE_POLL 0 108# define EV_USE_POLL 0
101# endif
102# endif 109# endif
103 110
104# ifndef EV_USE_EPOLL
105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
107# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
108# define EV_USE_EPOLL 0
109# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
110# endif 118# endif
111 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
112# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
113# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
114# define EV_USE_KQUEUE 1
115# else
116# define EV_USE_KQUEUE 0
117# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
118# endif 127# endif
119 128
120# ifndef EV_USE_PORT
121# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
122# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
123# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
124# define EV_USE_PORT 0
125# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
126# endif 136# endif
127 137
128# ifndef EV_USE_INOTIFY
129# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
131# else
132# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
133# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
134# endif 145# endif
135 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
136# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
137# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
142# endif 163# endif
143 164
144#endif 165#endif
145 166
146#include <math.h>
147#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
148#include <fcntl.h> 169#include <fcntl.h>
149#include <stddef.h> 170#include <stddef.h>
150 171
151#include <stdio.h> 172#include <stdio.h>
152 173
153#include <assert.h> 174#include <assert.h>
154#include <errno.h> 175#include <errno.h>
155#include <sys/types.h> 176#include <sys/types.h>
156#include <time.h> 177#include <time.h>
178#include <limits.h>
157 179
158#include <signal.h> 180#include <signal.h>
159 181
160#ifdef EV_H 182#ifdef EV_H
161# include EV_H 183# include EV_H
162#else 184#else
163# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
164#endif 197#endif
165 198
166#ifndef _WIN32 199#ifndef _WIN32
167# include <sys/time.h> 200# include <sys/time.h>
168# include <sys/wait.h> 201# include <sys/wait.h>
169# include <unistd.h> 202# include <unistd.h>
170#else 203#else
171# include <io.h> 204# include <io.h>
172# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
173# include <windows.h> 207# include <windows.h>
174# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
175# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
176# endif 210# endif
211# undef EV_AVOID_STDIO
177#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
178 221
179/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
180 255
181#ifndef EV_USE_CLOCK_SYSCALL 256#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2 257# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1 258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
184# else 259# else
185# define EV_USE_CLOCK_SYSCALL 0 260# define EV_USE_CLOCK_SYSCALL 0
186# endif 261# endif
187#endif 262#endif
188 263
189#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1 266# define EV_USE_MONOTONIC EV_FEATURE_OS
192# else 267# else
193# define EV_USE_MONOTONIC 0 268# define EV_USE_MONOTONIC 0
194# endif 269# endif
195#endif 270#endif
196 271
198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif 274#endif
200 275
201#ifndef EV_USE_NANOSLEEP 276#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L 277# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1 278# define EV_USE_NANOSLEEP EV_FEATURE_OS
204# else 279# else
205# define EV_USE_NANOSLEEP 0 280# define EV_USE_NANOSLEEP 0
206# endif 281# endif
207#endif 282#endif
208 283
209#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
210# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
211#endif 286#endif
212 287
213#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
214# ifdef _WIN32 289# ifdef _WIN32
215# define EV_USE_POLL 0 290# define EV_USE_POLL 0
216# else 291# else
217# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
218# endif 293# endif
219#endif 294#endif
220 295
221#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1 298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
224# else 299# else
225# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
226# endif 301# endif
227#endif 302#endif
228 303
234# define EV_USE_PORT 0 309# define EV_USE_PORT 0
235#endif 310#endif
236 311
237#ifndef EV_USE_INOTIFY 312#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1 314# define EV_USE_INOTIFY EV_FEATURE_OS
240# else 315# else
241# define EV_USE_INOTIFY 0 316# define EV_USE_INOTIFY 0
242# endif 317# endif
243#endif 318#endif
244 319
245#ifndef EV_PID_HASHSIZE 320#ifndef EV_PID_HASHSIZE
246# if EV_MINIMAL 321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
247# define EV_PID_HASHSIZE 1
248# else
249# define EV_PID_HASHSIZE 16
250# endif
251#endif 322#endif
252 323
253#ifndef EV_INOTIFY_HASHSIZE 324#ifndef EV_INOTIFY_HASHSIZE
254# if EV_MINIMAL 325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
255# define EV_INOTIFY_HASHSIZE 1
256# else
257# define EV_INOTIFY_HASHSIZE 16
258# endif
259#endif 326#endif
260 327
261#ifndef EV_USE_EVENTFD 328#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1 330# define EV_USE_EVENTFD EV_FEATURE_OS
264# else 331# else
265# define EV_USE_EVENTFD 0 332# define EV_USE_EVENTFD 0
333# endif
334#endif
335
336#ifndef EV_USE_SIGNALFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_SIGNALFD EV_FEATURE_OS
339# else
340# define EV_USE_SIGNALFD 0
266# endif 341# endif
267#endif 342#endif
268 343
269#if 0 /* debugging */ 344#if 0 /* debugging */
270# define EV_VERIFY 3 345# define EV_VERIFY 3
271# define EV_USE_4HEAP 1 346# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1 347# define EV_HEAP_CACHE_AT 1
273#endif 348#endif
274 349
275#ifndef EV_VERIFY 350#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL 351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
277#endif 352#endif
278 353
279#ifndef EV_USE_4HEAP 354#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL 355# define EV_USE_4HEAP EV_FEATURE_DATA
281#endif 356#endif
282 357
283#ifndef EV_HEAP_CACHE_AT 358#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL 359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363/* which makes programs even slower. might work on other unices, too. */
364#if EV_USE_CLOCK_SYSCALL
365# include <sys/syscall.h>
366# ifdef SYS_clock_gettime
367# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368# undef EV_USE_MONOTONIC
369# define EV_USE_MONOTONIC 1
370# else
371# undef EV_USE_CLOCK_SYSCALL
372# define EV_USE_CLOCK_SYSCALL 0
373# endif
285#endif 374#endif
286 375
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 376/* this block fixes any misconfiguration where we know we run into trouble otherwise */
377
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
288 383
289#ifndef CLOCK_MONOTONIC 384#ifndef CLOCK_MONOTONIC
290# undef EV_USE_MONOTONIC 385# undef EV_USE_MONOTONIC
291# define EV_USE_MONOTONIC 0 386# define EV_USE_MONOTONIC 0
292#endif 387#endif
300# undef EV_USE_INOTIFY 395# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0 396# define EV_USE_INOTIFY 0
302#endif 397#endif
303 398
304#if !EV_USE_NANOSLEEP 399#if !EV_USE_NANOSLEEP
305# ifndef _WIN32 400/* hp-ux has it in sys/time.h, which we unconditionally include above */
401# if !defined _WIN32 && !defined __hpux
306# include <sys/select.h> 402# include <sys/select.h>
307# endif 403# endif
308#endif 404#endif
309 405
310#if EV_USE_INOTIFY 406#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h> 407# include <sys/statfs.h>
313# include <sys/inotify.h> 408# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 409/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW 410# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY 411# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0 412# define EV_USE_INOTIFY 0
318# endif 413# endif
319#endif 414#endif
320 415
321#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h>
323#endif
324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD 416#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h> 418# include <stdint.h>
337# ifdef __cplusplus 419# ifndef EFD_NONBLOCK
338extern "C" { 420# define EFD_NONBLOCK O_NONBLOCK
339# endif 421# endif
340int eventfd (unsigned int initval, int flags); 422# ifndef EFD_CLOEXEC
341# ifdef __cplusplus 423# ifdef O_CLOEXEC
342} 424# define EFD_CLOEXEC O_CLOEXEC
425# else
426# define EFD_CLOEXEC 02000000
427# endif
343# endif 428# endif
429EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
430#endif
431
432#if EV_USE_SIGNALFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434# include <stdint.h>
435# ifndef SFD_NONBLOCK
436# define SFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef SFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define SFD_CLOEXEC O_CLOEXEC
441# else
442# define SFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
446
447struct signalfd_siginfo
448{
449 uint32_t ssi_signo;
450 char pad[128 - sizeof (uint32_t)];
451};
344#endif 452#endif
345 453
346/**/ 454/**/
347 455
348#if EV_VERIFY >= 3 456#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 457# define EV_FREQUENT_CHECK ev_verify (EV_A)
350#else 458#else
351# define EV_FREQUENT_CHECK do { } while (0) 459# define EV_FREQUENT_CHECK do { } while (0)
352#endif 460#endif
353 461
354/* 462/*
355 * This is used to avoid floating point rounding problems. 463 * This is used to work around floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000. 464 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */ 465 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 466#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
467/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
363 468
364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 469#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 470#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
367 471
472#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
473#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
474
475/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
476/* ECB.H BEGIN */
477/*
478 * libecb - http://software.schmorp.de/pkg/libecb
479 *
480 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
481 * Copyright (©) 2011 Emanuele Giaquinta
482 * All rights reserved.
483 *
484 * Redistribution and use in source and binary forms, with or without modifica-
485 * tion, are permitted provided that the following conditions are met:
486 *
487 * 1. Redistributions of source code must retain the above copyright notice,
488 * this list of conditions and the following disclaimer.
489 *
490 * 2. Redistributions in binary form must reproduce the above copyright
491 * notice, this list of conditions and the following disclaimer in the
492 * documentation and/or other materials provided with the distribution.
493 *
494 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
495 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
496 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
497 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
498 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
499 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
500 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
501 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
502 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
503 * OF THE POSSIBILITY OF SUCH DAMAGE.
504 */
505
506#ifndef ECB_H
507#define ECB_H
508
509/* 16 bits major, 16 bits minor */
510#define ECB_VERSION 0x00010001
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
368#if __GNUC__ >= 4 519 #if __GNUC__
369# define expect(expr,value) __builtin_expect ((expr),(value)) 520 typedef signed long long int64_t;
370# define noinline __attribute__ ((noinline)) 521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
526 #ifdef _WIN64
527 #define ECB_PTRSIZE 8
528 typedef uint64_t uintptr_t;
529 typedef int64_t intptr_t;
530 #else
531 #define ECB_PTRSIZE 4
532 typedef uint32_t uintptr_t;
533 typedef int32_t intptr_t;
534 #endif
535 typedef intptr_t ptrdiff_t;
371#else 536#else
372# define expect(expr,value) (expr) 537 #include <inttypes.h>
373# define noinline 538 #if UINTMAX_MAX > 0xffffffffU
374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 539 #define ECB_PTRSIZE 8
375# define inline 540 #else
541 #define ECB_PTRSIZE 4
542 #endif
376# endif 543#endif
544
545/* many compilers define _GNUC_ to some versions but then only implement
546 * what their idiot authors think are the "more important" extensions,
547 * causing enormous grief in return for some better fake benchmark numbers.
548 * or so.
549 * we try to detect these and simply assume they are not gcc - if they have
550 * an issue with that they should have done it right in the first place.
551 */
552#ifndef ECB_GCC_VERSION
553 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
554 #define ECB_GCC_VERSION(major,minor) 0
555 #else
556 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
377#endif 557 #endif
558#endif
378 559
560#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
561#define ECB_C99 (__STDC_VERSION__ >= 199901L)
562#define ECB_C11 (__STDC_VERSION__ >= 201112L)
563#define ECB_CPP (__cplusplus+0)
564#define ECB_CPP11 (__cplusplus >= 201103L)
565
566/*****************************************************************************/
567
568/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
569/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
570
571#if ECB_NO_THREADS
572 #define ECB_NO_SMP 1
573#endif
574
575#if ECB_NO_SMP
576 #define ECB_MEMORY_FENCE do { } while (0)
577#endif
578
579#ifndef ECB_MEMORY_FENCE
580 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
581 #if __i386 || __i386__
582 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
583 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
584 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
585 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
586 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
587 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
588 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
589 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
590 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
591 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
592 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
593 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
594 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
595 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
596 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
597 #elif __sparc || __sparc__
598 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
599 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
600 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
601 #elif defined __s390__ || defined __s390x__
602 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
603 #elif defined __mips__
604 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
605 #elif defined __alpha__
606 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
607 #elif defined __hppa__
608 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
609 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
610 #elif defined __ia64__
611 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
612 #endif
613 #endif
614#endif
615
616#ifndef ECB_MEMORY_FENCE
617 #if ECB_GCC_VERSION(4,7)
618 /* see comment below (stdatomic.h) about the C11 memory model. */
619 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
620 #elif defined __clang && __has_feature (cxx_atomic)
621 /* see comment below (stdatomic.h) about the C11 memory model. */
622 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
623 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
624 #define ECB_MEMORY_FENCE __sync_synchronize ()
625 #elif _MSC_VER >= 1400 /* VC++ 2005 */
626 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
627 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
628 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
629 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
630 #elif defined _WIN32
631 #include <WinNT.h>
632 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
633 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
634 #include <mbarrier.h>
635 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
636 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
637 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
638 #elif __xlC__
639 #define ECB_MEMORY_FENCE __sync ()
640 #endif
641#endif
642
643#ifndef ECB_MEMORY_FENCE
644 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
645 /* we assume that these memory fences work on all variables/all memory accesses, */
646 /* not just C11 atomics and atomic accesses */
647 #include <stdatomic.h>
648 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
649 /* any fence other than seq_cst, which isn't very efficient for us. */
650 /* Why that is, we don't know - either the C11 memory model is quite useless */
651 /* for most usages, or gcc and clang have a bug */
652 /* I *currently* lean towards the latter, and inefficiently implement */
653 /* all three of ecb's fences as a seq_cst fence */
654 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
655 #endif
656#endif
657
658#ifndef ECB_MEMORY_FENCE
659 #if !ECB_AVOID_PTHREADS
660 /*
661 * if you get undefined symbol references to pthread_mutex_lock,
662 * or failure to find pthread.h, then you should implement
663 * the ECB_MEMORY_FENCE operations for your cpu/compiler
664 * OR provide pthread.h and link against the posix thread library
665 * of your system.
666 */
667 #include <pthread.h>
668 #define ECB_NEEDS_PTHREADS 1
669 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
670
671 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
672 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
673 #endif
674#endif
675
676#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
677 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
678#endif
679
680#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
681 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
682#endif
683
684/*****************************************************************************/
685
686#if __cplusplus
687 #define ecb_inline static inline
688#elif ECB_GCC_VERSION(2,5)
689 #define ecb_inline static __inline__
690#elif ECB_C99
691 #define ecb_inline static inline
692#else
693 #define ecb_inline static
694#endif
695
696#if ECB_GCC_VERSION(3,3)
697 #define ecb_restrict __restrict__
698#elif ECB_C99
699 #define ecb_restrict restrict
700#else
701 #define ecb_restrict
702#endif
703
704typedef int ecb_bool;
705
706#define ECB_CONCAT_(a, b) a ## b
707#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
708#define ECB_STRINGIFY_(a) # a
709#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
710
711#define ecb_function_ ecb_inline
712
713#if ECB_GCC_VERSION(3,1)
714 #define ecb_attribute(attrlist) __attribute__(attrlist)
715 #define ecb_is_constant(expr) __builtin_constant_p (expr)
716 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
717 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
718#else
719 #define ecb_attribute(attrlist)
720 #define ecb_is_constant(expr) 0
721 #define ecb_expect(expr,value) (expr)
722 #define ecb_prefetch(addr,rw,locality)
723#endif
724
725/* no emulation for ecb_decltype */
726#if ECB_GCC_VERSION(4,5)
727 #define ecb_decltype(x) __decltype(x)
728#elif ECB_GCC_VERSION(3,0)
729 #define ecb_decltype(x) __typeof(x)
730#endif
731
732#define ecb_noinline ecb_attribute ((__noinline__))
733#define ecb_unused ecb_attribute ((__unused__))
734#define ecb_const ecb_attribute ((__const__))
735#define ecb_pure ecb_attribute ((__pure__))
736
737#if ECB_C11
738 #define ecb_noreturn _Noreturn
739#else
740 #define ecb_noreturn ecb_attribute ((__noreturn__))
741#endif
742
743#if ECB_GCC_VERSION(4,3)
744 #define ecb_artificial ecb_attribute ((__artificial__))
745 #define ecb_hot ecb_attribute ((__hot__))
746 #define ecb_cold ecb_attribute ((__cold__))
747#else
748 #define ecb_artificial
749 #define ecb_hot
750 #define ecb_cold
751#endif
752
753/* put around conditional expressions if you are very sure that the */
754/* expression is mostly true or mostly false. note that these return */
755/* booleans, not the expression. */
379#define expect_false(expr) expect ((expr) != 0, 0) 756#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
380#define expect_true(expr) expect ((expr) != 0, 1) 757#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
758/* for compatibility to the rest of the world */
759#define ecb_likely(expr) ecb_expect_true (expr)
760#define ecb_unlikely(expr) ecb_expect_false (expr)
761
762/* count trailing zero bits and count # of one bits */
763#if ECB_GCC_VERSION(3,4)
764 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
765 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
766 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
767 #define ecb_ctz32(x) __builtin_ctz (x)
768 #define ecb_ctz64(x) __builtin_ctzll (x)
769 #define ecb_popcount32(x) __builtin_popcount (x)
770 /* no popcountll */
771#else
772 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
773 ecb_function_ int
774 ecb_ctz32 (uint32_t x)
775 {
776 int r = 0;
777
778 x &= ~x + 1; /* this isolates the lowest bit */
779
780#if ECB_branchless_on_i386
781 r += !!(x & 0xaaaaaaaa) << 0;
782 r += !!(x & 0xcccccccc) << 1;
783 r += !!(x & 0xf0f0f0f0) << 2;
784 r += !!(x & 0xff00ff00) << 3;
785 r += !!(x & 0xffff0000) << 4;
786#else
787 if (x & 0xaaaaaaaa) r += 1;
788 if (x & 0xcccccccc) r += 2;
789 if (x & 0xf0f0f0f0) r += 4;
790 if (x & 0xff00ff00) r += 8;
791 if (x & 0xffff0000) r += 16;
792#endif
793
794 return r;
795 }
796
797 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
798 ecb_function_ int
799 ecb_ctz64 (uint64_t x)
800 {
801 int shift = x & 0xffffffffU ? 0 : 32;
802 return ecb_ctz32 (x >> shift) + shift;
803 }
804
805 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
806 ecb_function_ int
807 ecb_popcount32 (uint32_t x)
808 {
809 x -= (x >> 1) & 0x55555555;
810 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
811 x = ((x >> 4) + x) & 0x0f0f0f0f;
812 x *= 0x01010101;
813
814 return x >> 24;
815 }
816
817 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
818 ecb_function_ int ecb_ld32 (uint32_t x)
819 {
820 int r = 0;
821
822 if (x >> 16) { x >>= 16; r += 16; }
823 if (x >> 8) { x >>= 8; r += 8; }
824 if (x >> 4) { x >>= 4; r += 4; }
825 if (x >> 2) { x >>= 2; r += 2; }
826 if (x >> 1) { r += 1; }
827
828 return r;
829 }
830
831 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
832 ecb_function_ int ecb_ld64 (uint64_t x)
833 {
834 int r = 0;
835
836 if (x >> 32) { x >>= 32; r += 32; }
837
838 return r + ecb_ld32 (x);
839 }
840#endif
841
842ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
843ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
844ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
845ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
846
847ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
848ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
849{
850 return ( (x * 0x0802U & 0x22110U)
851 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
852}
853
854ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
855ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
856{
857 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
858 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
859 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
860 x = ( x >> 8 ) | ( x << 8);
861
862 return x;
863}
864
865ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
866ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
867{
868 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
869 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
870 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
871 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
872 x = ( x >> 16 ) | ( x << 16);
873
874 return x;
875}
876
877/* popcount64 is only available on 64 bit cpus as gcc builtin */
878/* so for this version we are lazy */
879ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
880ecb_function_ int
881ecb_popcount64 (uint64_t x)
882{
883 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
884}
885
886ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
887ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
888ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
889ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
890ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
891ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
892ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
893ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
894
895ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
896ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
897ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
898ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
899ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
900ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
901ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
902ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
903
904#if ECB_GCC_VERSION(4,3)
905 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
906 #define ecb_bswap32(x) __builtin_bswap32 (x)
907 #define ecb_bswap64(x) __builtin_bswap64 (x)
908#else
909 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
910 ecb_function_ uint16_t
911 ecb_bswap16 (uint16_t x)
912 {
913 return ecb_rotl16 (x, 8);
914 }
915
916 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
917 ecb_function_ uint32_t
918 ecb_bswap32 (uint32_t x)
919 {
920 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
921 }
922
923 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
924 ecb_function_ uint64_t
925 ecb_bswap64 (uint64_t x)
926 {
927 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
928 }
929#endif
930
931#if ECB_GCC_VERSION(4,5)
932 #define ecb_unreachable() __builtin_unreachable ()
933#else
934 /* this seems to work fine, but gcc always emits a warning for it :/ */
935 ecb_inline void ecb_unreachable (void) ecb_noreturn;
936 ecb_inline void ecb_unreachable (void) { }
937#endif
938
939/* try to tell the compiler that some condition is definitely true */
940#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
941
942ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
943ecb_inline unsigned char
944ecb_byteorder_helper (void)
945{
946 const uint32_t u = 0x11223344;
947 return *(unsigned char *)&u;
948}
949
950ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
951ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
952ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
953ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
954
955#if ECB_GCC_VERSION(3,0) || ECB_C99
956 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
957#else
958 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
959#endif
960
961#if __cplusplus
962 template<typename T>
963 static inline T ecb_div_rd (T val, T div)
964 {
965 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
966 }
967 template<typename T>
968 static inline T ecb_div_ru (T val, T div)
969 {
970 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
971 }
972#else
973 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
974 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
975#endif
976
977#if ecb_cplusplus_does_not_suck
978 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
979 template<typename T, int N>
980 static inline int ecb_array_length (const T (&arr)[N])
981 {
982 return N;
983 }
984#else
985 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
986#endif
987
988#endif
989
990/* ECB.H END */
991
992#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
993/* if your architecture doesn't need memory fences, e.g. because it is
994 * single-cpu/core, or if you use libev in a project that doesn't use libev
995 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
996 * libev, in which cases the memory fences become nops.
997 * alternatively, you can remove this #error and link against libpthread,
998 * which will then provide the memory fences.
999 */
1000# error "memory fences not defined for your architecture, please report"
1001#endif
1002
1003#ifndef ECB_MEMORY_FENCE
1004# define ECB_MEMORY_FENCE do { } while (0)
1005# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1006# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1007#endif
1008
1009#define expect_false(cond) ecb_expect_false (cond)
1010#define expect_true(cond) ecb_expect_true (cond)
1011#define noinline ecb_noinline
1012
381#define inline_size static inline 1013#define inline_size ecb_inline
382 1014
383#if EV_MINIMAL 1015#if EV_FEATURE_CODE
1016# define inline_speed ecb_inline
1017#else
384# define inline_speed static noinline 1018# define inline_speed static noinline
1019#endif
1020
1021#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1022
1023#if EV_MINPRI == EV_MAXPRI
1024# define ABSPRI(w) (((W)w), 0)
385#else 1025#else
386# define inline_speed static inline
387#endif
388
389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1026# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1027#endif
391 1028
392#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1029#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */ 1030#define EMPTY2(a,b) /* used to suppress some warnings */
394 1031
395typedef ev_watcher *W; 1032typedef ev_watcher *W;
399#define ev_active(w) ((W)(w))->active 1036#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at 1037#define ev_at(w) ((WT)(w))->at
401 1038
402#if EV_USE_REALTIME 1039#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 1040/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */ 1041/* giving it a reasonably high chance of working on typical architectures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */ 1042static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif 1043#endif
407 1044
408#if EV_USE_MONOTONIC 1045#if EV_USE_MONOTONIC
409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1046static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif 1047#endif
411 1048
1049#ifndef EV_FD_TO_WIN32_HANDLE
1050# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1051#endif
1052#ifndef EV_WIN32_HANDLE_TO_FD
1053# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1054#endif
1055#ifndef EV_WIN32_CLOSE_FD
1056# define EV_WIN32_CLOSE_FD(fd) close (fd)
1057#endif
1058
412#ifdef _WIN32 1059#ifdef _WIN32
413# include "ev_win32.c" 1060# include "ev_win32.c"
414#endif 1061#endif
415 1062
416/*****************************************************************************/ 1063/*****************************************************************************/
417 1064
1065/* define a suitable floor function (only used by periodics atm) */
1066
1067#if EV_USE_FLOOR
1068# include <math.h>
1069# define ev_floor(v) floor (v)
1070#else
1071
1072#include <float.h>
1073
1074/* a floor() replacement function, should be independent of ev_tstamp type */
1075static ev_tstamp noinline
1076ev_floor (ev_tstamp v)
1077{
1078 /* the choice of shift factor is not terribly important */
1079#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1080 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1081#else
1082 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1083#endif
1084
1085 /* argument too large for an unsigned long? */
1086 if (expect_false (v >= shift))
1087 {
1088 ev_tstamp f;
1089
1090 if (v == v - 1.)
1091 return v; /* very large number */
1092
1093 f = shift * ev_floor (v * (1. / shift));
1094 return f + ev_floor (v - f);
1095 }
1096
1097 /* special treatment for negative args? */
1098 if (expect_false (v < 0.))
1099 {
1100 ev_tstamp f = -ev_floor (-v);
1101
1102 return f - (f == v ? 0 : 1);
1103 }
1104
1105 /* fits into an unsigned long */
1106 return (unsigned long)v;
1107}
1108
1109#endif
1110
1111/*****************************************************************************/
1112
1113#ifdef __linux
1114# include <sys/utsname.h>
1115#endif
1116
1117static unsigned int noinline ecb_cold
1118ev_linux_version (void)
1119{
1120#ifdef __linux
1121 unsigned int v = 0;
1122 struct utsname buf;
1123 int i;
1124 char *p = buf.release;
1125
1126 if (uname (&buf))
1127 return 0;
1128
1129 for (i = 3+1; --i; )
1130 {
1131 unsigned int c = 0;
1132
1133 for (;;)
1134 {
1135 if (*p >= '0' && *p <= '9')
1136 c = c * 10 + *p++ - '0';
1137 else
1138 {
1139 p += *p == '.';
1140 break;
1141 }
1142 }
1143
1144 v = (v << 8) | c;
1145 }
1146
1147 return v;
1148#else
1149 return 0;
1150#endif
1151}
1152
1153/*****************************************************************************/
1154
1155#if EV_AVOID_STDIO
1156static void noinline ecb_cold
1157ev_printerr (const char *msg)
1158{
1159 write (STDERR_FILENO, msg, strlen (msg));
1160}
1161#endif
1162
418static void (*syserr_cb)(const char *msg); 1163static void (*syserr_cb)(const char *msg) EV_THROW;
419 1164
420void 1165void ecb_cold
421ev_set_syserr_cb (void (*cb)(const char *msg)) 1166ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
422{ 1167{
423 syserr_cb = cb; 1168 syserr_cb = cb;
424} 1169}
425 1170
426static void noinline 1171static void noinline ecb_cold
427ev_syserr (const char *msg) 1172ev_syserr (const char *msg)
428{ 1173{
429 if (!msg) 1174 if (!msg)
430 msg = "(libev) system error"; 1175 msg = "(libev) system error";
431 1176
432 if (syserr_cb) 1177 if (syserr_cb)
433 syserr_cb (msg); 1178 syserr_cb (msg);
434 else 1179 else
435 { 1180 {
1181#if EV_AVOID_STDIO
1182 ev_printerr (msg);
1183 ev_printerr (": ");
1184 ev_printerr (strerror (errno));
1185 ev_printerr ("\n");
1186#else
436 perror (msg); 1187 perror (msg);
1188#endif
437 abort (); 1189 abort ();
438 } 1190 }
439} 1191}
440 1192
441static void * 1193static void *
442ev_realloc_emul (void *ptr, long size) 1194ev_realloc_emul (void *ptr, long size) EV_THROW
443{ 1195{
444 /* some systems, notably openbsd and darwin, fail to properly 1196 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and 1197 * implement realloc (x, 0) (as required by both ansi c-89 and
446 * the single unix specification, so work around them here. 1198 * the single unix specification, so work around them here.
1199 * recently, also (at least) fedora and debian started breaking it,
1200 * despite documenting it otherwise.
447 */ 1201 */
448 1202
449 if (size) 1203 if (size)
450 return realloc (ptr, size); 1204 return realloc (ptr, size);
451 1205
452 free (ptr); 1206 free (ptr);
453 return 0; 1207 return 0;
454} 1208}
455 1209
456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1210static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
457 1211
458void 1212void ecb_cold
459ev_set_allocator (void *(*cb)(void *ptr, long size)) 1213ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
460{ 1214{
461 alloc = cb; 1215 alloc = cb;
462} 1216}
463 1217
464inline_speed void * 1218inline_speed void *
466{ 1220{
467 ptr = alloc (ptr, size); 1221 ptr = alloc (ptr, size);
468 1222
469 if (!ptr && size) 1223 if (!ptr && size)
470 { 1224 {
1225#if EV_AVOID_STDIO
1226 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1227#else
471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1228 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1229#endif
472 abort (); 1230 abort ();
473 } 1231 }
474 1232
475 return ptr; 1233 return ptr;
476} 1234}
478#define ev_malloc(size) ev_realloc (0, (size)) 1236#define ev_malloc(size) ev_realloc (0, (size))
479#define ev_free(ptr) ev_realloc ((ptr), 0) 1237#define ev_free(ptr) ev_realloc ((ptr), 0)
480 1238
481/*****************************************************************************/ 1239/*****************************************************************************/
482 1240
1241/* set in reify when reification needed */
1242#define EV_ANFD_REIFY 1
1243
1244/* file descriptor info structure */
483typedef struct 1245typedef struct
484{ 1246{
485 WL head; 1247 WL head;
486 unsigned char events; 1248 unsigned char events; /* the events watched for */
487 unsigned char reify; 1249 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 1250 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused; 1251 unsigned char unused;
490#if EV_USE_EPOLL 1252#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */ 1253 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif 1254#endif
493#if EV_SELECT_IS_WINSOCKET 1255#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
494 SOCKET handle; 1256 SOCKET handle;
495#endif 1257#endif
1258#if EV_USE_IOCP
1259 OVERLAPPED or, ow;
1260#endif
496} ANFD; 1261} ANFD;
497 1262
1263/* stores the pending event set for a given watcher */
498typedef struct 1264typedef struct
499{ 1265{
500 W w; 1266 W w;
501 int events; 1267 int events; /* the pending event set for the given watcher */
502} ANPENDING; 1268} ANPENDING;
503 1269
504#if EV_USE_INOTIFY 1270#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */ 1271/* hash table entry per inotify-id */
506typedef struct 1272typedef struct
509} ANFS; 1275} ANFS;
510#endif 1276#endif
511 1277
512/* Heap Entry */ 1278/* Heap Entry */
513#if EV_HEAP_CACHE_AT 1279#if EV_HEAP_CACHE_AT
1280 /* a heap element */
514 typedef struct { 1281 typedef struct {
515 ev_tstamp at; 1282 ev_tstamp at;
516 WT w; 1283 WT w;
517 } ANHE; 1284 } ANHE;
518 1285
519 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1286 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1287 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1288 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else 1289#else
1290 /* a heap element */
523 typedef WT ANHE; 1291 typedef WT ANHE;
524 1292
525 #define ANHE_w(he) (he) 1293 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at 1294 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he) 1295 #define ANHE_at_cache(he)
538 #undef VAR 1306 #undef VAR
539 }; 1307 };
540 #include "ev_wrap.h" 1308 #include "ev_wrap.h"
541 1309
542 static struct ev_loop default_loop_struct; 1310 static struct ev_loop default_loop_struct;
543 struct ev_loop *ev_default_loop_ptr; 1311 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
544 1312
545#else 1313#else
546 1314
547 ev_tstamp ev_rt_now; 1315 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
548 #define VAR(name,decl) static decl; 1316 #define VAR(name,decl) static decl;
549 #include "ev_vars.h" 1317 #include "ev_vars.h"
550 #undef VAR 1318 #undef VAR
551 1319
552 static int ev_default_loop_ptr; 1320 static int ev_default_loop_ptr;
553 1321
554#endif 1322#endif
555 1323
1324#if EV_FEATURE_API
1325# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1326# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1327# define EV_INVOKE_PENDING invoke_cb (EV_A)
1328#else
1329# define EV_RELEASE_CB (void)0
1330# define EV_ACQUIRE_CB (void)0
1331# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1332#endif
1333
1334#define EVBREAK_RECURSE 0x80
1335
556/*****************************************************************************/ 1336/*****************************************************************************/
557 1337
1338#ifndef EV_HAVE_EV_TIME
558ev_tstamp 1339ev_tstamp
559ev_time (void) 1340ev_time (void) EV_THROW
560{ 1341{
561#if EV_USE_REALTIME 1342#if EV_USE_REALTIME
562 if (expect_true (have_realtime)) 1343 if (expect_true (have_realtime))
563 { 1344 {
564 struct timespec ts; 1345 struct timespec ts;
569 1350
570 struct timeval tv; 1351 struct timeval tv;
571 gettimeofday (&tv, 0); 1352 gettimeofday (&tv, 0);
572 return tv.tv_sec + tv.tv_usec * 1e-6; 1353 return tv.tv_sec + tv.tv_usec * 1e-6;
573} 1354}
1355#endif
574 1356
575inline_size ev_tstamp 1357inline_size ev_tstamp
576get_clock (void) 1358get_clock (void)
577{ 1359{
578#if EV_USE_MONOTONIC 1360#if EV_USE_MONOTONIC
587 return ev_time (); 1369 return ev_time ();
588} 1370}
589 1371
590#if EV_MULTIPLICITY 1372#if EV_MULTIPLICITY
591ev_tstamp 1373ev_tstamp
592ev_now (EV_P) 1374ev_now (EV_P) EV_THROW
593{ 1375{
594 return ev_rt_now; 1376 return ev_rt_now;
595} 1377}
596#endif 1378#endif
597 1379
598void 1380void
599ev_sleep (ev_tstamp delay) 1381ev_sleep (ev_tstamp delay) EV_THROW
600{ 1382{
601 if (delay > 0.) 1383 if (delay > 0.)
602 { 1384 {
603#if EV_USE_NANOSLEEP 1385#if EV_USE_NANOSLEEP
604 struct timespec ts; 1386 struct timespec ts;
605 1387
606 ts.tv_sec = (time_t)delay; 1388 EV_TS_SET (ts, delay);
607 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
608
609 nanosleep (&ts, 0); 1389 nanosleep (&ts, 0);
610#elif defined(_WIN32) 1390#elif defined _WIN32
611 Sleep ((unsigned long)(delay * 1e3)); 1391 Sleep ((unsigned long)(delay * 1e3));
612#else 1392#else
613 struct timeval tv; 1393 struct timeval tv;
614 1394
615 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 1395 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 1396 /* something not guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */ 1397 /* by older ones */
1398 EV_TV_SET (tv, delay);
621 select (0, 0, 0, 0, &tv); 1399 select (0, 0, 0, 0, &tv);
622#endif 1400#endif
623 } 1401 }
624} 1402}
625 1403
626/*****************************************************************************/ 1404/*****************************************************************************/
627 1405
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1406#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629 1407
1408/* find a suitable new size for the given array, */
1409/* hopefully by rounding to a nice-to-malloc size */
630inline_size int 1410inline_size int
631array_nextsize (int elem, int cur, int cnt) 1411array_nextsize (int elem, int cur, int cnt)
632{ 1412{
633 int ncur = cur + 1; 1413 int ncur = cur + 1;
634 1414
635 do 1415 do
636 ncur <<= 1; 1416 ncur <<= 1;
637 while (cnt > ncur); 1417 while (cnt > ncur);
638 1418
639 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1419 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
640 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1420 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
641 { 1421 {
642 ncur *= elem; 1422 ncur *= elem;
643 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1423 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
644 ncur = ncur - sizeof (void *) * 4; 1424 ncur = ncur - sizeof (void *) * 4;
646 } 1426 }
647 1427
648 return ncur; 1428 return ncur;
649} 1429}
650 1430
651static noinline void * 1431static void * noinline ecb_cold
652array_realloc (int elem, void *base, int *cur, int cnt) 1432array_realloc (int elem, void *base, int *cur, int cnt)
653{ 1433{
654 *cur = array_nextsize (elem, *cur, cnt); 1434 *cur = array_nextsize (elem, *cur, cnt);
655 return ev_realloc (base, elem * *cur); 1435 return ev_realloc (base, elem * *cur);
656} 1436}
659 memset ((void *)(base), 0, sizeof (*(base)) * (count)) 1439 memset ((void *)(base), 0, sizeof (*(base)) * (count))
660 1440
661#define array_needsize(type,base,cur,cnt,init) \ 1441#define array_needsize(type,base,cur,cnt,init) \
662 if (expect_false ((cnt) > (cur))) \ 1442 if (expect_false ((cnt) > (cur))) \
663 { \ 1443 { \
664 int ocur_ = (cur); \ 1444 int ecb_unused ocur_ = (cur); \
665 (base) = (type *)array_realloc \ 1445 (base) = (type *)array_realloc \
666 (sizeof (type), (base), &(cur), (cnt)); \ 1446 (sizeof (type), (base), &(cur), (cnt)); \
667 init ((base) + (ocur_), (cur) - ocur_); \ 1447 init ((base) + (ocur_), (cur) - ocur_); \
668 } 1448 }
669 1449
680#define array_free(stem, idx) \ 1460#define array_free(stem, idx) \
681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0 1461 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
682 1462
683/*****************************************************************************/ 1463/*****************************************************************************/
684 1464
1465/* dummy callback for pending events */
1466static void noinline
1467pendingcb (EV_P_ ev_prepare *w, int revents)
1468{
1469}
1470
685void noinline 1471void noinline
686ev_feed_event (EV_P_ void *w, int revents) 1472ev_feed_event (EV_P_ void *w, int revents) EV_THROW
687{ 1473{
688 W w_ = (W)w; 1474 W w_ = (W)w;
689 int pri = ABSPRI (w_); 1475 int pri = ABSPRI (w_);
690 1476
691 if (expect_false (w_->pending)) 1477 if (expect_false (w_->pending))
695 w_->pending = ++pendingcnt [pri]; 1481 w_->pending = ++pendingcnt [pri];
696 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1482 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
697 pendings [pri][w_->pending - 1].w = w_; 1483 pendings [pri][w_->pending - 1].w = w_;
698 pendings [pri][w_->pending - 1].events = revents; 1484 pendings [pri][w_->pending - 1].events = revents;
699 } 1485 }
1486
1487 pendingpri = NUMPRI - 1;
700} 1488}
701 1489
702inline_speed void 1490inline_speed void
703feed_reverse (EV_P_ W w) 1491feed_reverse (EV_P_ W w)
704{ 1492{
724} 1512}
725 1513
726/*****************************************************************************/ 1514/*****************************************************************************/
727 1515
728inline_speed void 1516inline_speed void
729fd_event (EV_P_ int fd, int revents) 1517fd_event_nocheck (EV_P_ int fd, int revents)
730{ 1518{
731 ANFD *anfd = anfds + fd; 1519 ANFD *anfd = anfds + fd;
732 ev_io *w; 1520 ev_io *w;
733 1521
734 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1522 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
738 if (ev) 1526 if (ev)
739 ev_feed_event (EV_A_ (W)w, ev); 1527 ev_feed_event (EV_A_ (W)w, ev);
740 } 1528 }
741} 1529}
742 1530
1531/* do not submit kernel events for fds that have reify set */
1532/* because that means they changed while we were polling for new events */
1533inline_speed void
1534fd_event (EV_P_ int fd, int revents)
1535{
1536 ANFD *anfd = anfds + fd;
1537
1538 if (expect_true (!anfd->reify))
1539 fd_event_nocheck (EV_A_ fd, revents);
1540}
1541
743void 1542void
744ev_feed_fd_event (EV_P_ int fd, int revents) 1543ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
745{ 1544{
746 if (fd >= 0 && fd < anfdmax) 1545 if (fd >= 0 && fd < anfdmax)
747 fd_event (EV_A_ fd, revents); 1546 fd_event_nocheck (EV_A_ fd, revents);
748} 1547}
749 1548
1549/* make sure the external fd watch events are in-sync */
1550/* with the kernel/libev internal state */
750inline_size void 1551inline_size void
751fd_reify (EV_P) 1552fd_reify (EV_P)
752{ 1553{
753 int i; 1554 int i;
1555
1556#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1557 for (i = 0; i < fdchangecnt; ++i)
1558 {
1559 int fd = fdchanges [i];
1560 ANFD *anfd = anfds + fd;
1561
1562 if (anfd->reify & EV__IOFDSET && anfd->head)
1563 {
1564 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1565
1566 if (handle != anfd->handle)
1567 {
1568 unsigned long arg;
1569
1570 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1571
1572 /* handle changed, but fd didn't - we need to do it in two steps */
1573 backend_modify (EV_A_ fd, anfd->events, 0);
1574 anfd->events = 0;
1575 anfd->handle = handle;
1576 }
1577 }
1578 }
1579#endif
754 1580
755 for (i = 0; i < fdchangecnt; ++i) 1581 for (i = 0; i < fdchangecnt; ++i)
756 { 1582 {
757 int fd = fdchanges [i]; 1583 int fd = fdchanges [i];
758 ANFD *anfd = anfds + fd; 1584 ANFD *anfd = anfds + fd;
759 ev_io *w; 1585 ev_io *w;
760 1586
761 unsigned char events = 0; 1587 unsigned char o_events = anfd->events;
1588 unsigned char o_reify = anfd->reify;
762 1589
763 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1590 anfd->reify = 0;
764 events |= (unsigned char)w->events;
765 1591
766#if EV_SELECT_IS_WINSOCKET 1592 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
767 if (events)
768 { 1593 {
769 unsigned long arg; 1594 anfd->events = 0;
770 #ifdef EV_FD_TO_WIN32_HANDLE 1595
771 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1596 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
772 #else 1597 anfd->events |= (unsigned char)w->events;
773 anfd->handle = _get_osfhandle (fd); 1598
774 #endif 1599 if (o_events != anfd->events)
775 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 1600 o_reify = EV__IOFDSET; /* actually |= */
776 } 1601 }
777#endif
778 1602
779 { 1603 if (o_reify & EV__IOFDSET)
780 unsigned char o_events = anfd->events;
781 unsigned char o_reify = anfd->reify;
782
783 anfd->reify = 0;
784 anfd->events = events;
785
786 if (o_events != events || o_reify & EV__IOFDSET)
787 backend_modify (EV_A_ fd, o_events, events); 1604 backend_modify (EV_A_ fd, o_events, anfd->events);
788 }
789 } 1605 }
790 1606
791 fdchangecnt = 0; 1607 fdchangecnt = 0;
792} 1608}
793 1609
1610/* something about the given fd changed */
794inline_size void 1611inline_size void
795fd_change (EV_P_ int fd, int flags) 1612fd_change (EV_P_ int fd, int flags)
796{ 1613{
797 unsigned char reify = anfds [fd].reify; 1614 unsigned char reify = anfds [fd].reify;
798 anfds [fd].reify |= flags; 1615 anfds [fd].reify |= flags;
803 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1620 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
804 fdchanges [fdchangecnt - 1] = fd; 1621 fdchanges [fdchangecnt - 1] = fd;
805 } 1622 }
806} 1623}
807 1624
1625/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
808inline_speed void 1626inline_speed void ecb_cold
809fd_kill (EV_P_ int fd) 1627fd_kill (EV_P_ int fd)
810{ 1628{
811 ev_io *w; 1629 ev_io *w;
812 1630
813 while ((w = (ev_io *)anfds [fd].head)) 1631 while ((w = (ev_io *)anfds [fd].head))
815 ev_io_stop (EV_A_ w); 1633 ev_io_stop (EV_A_ w);
816 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1634 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
817 } 1635 }
818} 1636}
819 1637
1638/* check whether the given fd is actually valid, for error recovery */
820inline_size int 1639inline_size int ecb_cold
821fd_valid (int fd) 1640fd_valid (int fd)
822{ 1641{
823#ifdef _WIN32 1642#ifdef _WIN32
824 return _get_osfhandle (fd) != -1; 1643 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
825#else 1644#else
826 return fcntl (fd, F_GETFD) != -1; 1645 return fcntl (fd, F_GETFD) != -1;
827#endif 1646#endif
828} 1647}
829 1648
830/* called on EBADF to verify fds */ 1649/* called on EBADF to verify fds */
831static void noinline 1650static void noinline ecb_cold
832fd_ebadf (EV_P) 1651fd_ebadf (EV_P)
833{ 1652{
834 int fd; 1653 int fd;
835 1654
836 for (fd = 0; fd < anfdmax; ++fd) 1655 for (fd = 0; fd < anfdmax; ++fd)
838 if (!fd_valid (fd) && errno == EBADF) 1657 if (!fd_valid (fd) && errno == EBADF)
839 fd_kill (EV_A_ fd); 1658 fd_kill (EV_A_ fd);
840} 1659}
841 1660
842/* called on ENOMEM in select/poll to kill some fds and retry */ 1661/* called on ENOMEM in select/poll to kill some fds and retry */
843static void noinline 1662static void noinline ecb_cold
844fd_enomem (EV_P) 1663fd_enomem (EV_P)
845{ 1664{
846 int fd; 1665 int fd;
847 1666
848 for (fd = anfdmax; fd--; ) 1667 for (fd = anfdmax; fd--; )
849 if (anfds [fd].events) 1668 if (anfds [fd].events)
850 { 1669 {
851 fd_kill (EV_A_ fd); 1670 fd_kill (EV_A_ fd);
852 return; 1671 break;
853 } 1672 }
854} 1673}
855 1674
856/* usually called after fork if backend needs to re-arm all fds from scratch */ 1675/* usually called after fork if backend needs to re-arm all fds from scratch */
857static void noinline 1676static void noinline
862 for (fd = 0; fd < anfdmax; ++fd) 1681 for (fd = 0; fd < anfdmax; ++fd)
863 if (anfds [fd].events) 1682 if (anfds [fd].events)
864 { 1683 {
865 anfds [fd].events = 0; 1684 anfds [fd].events = 0;
866 anfds [fd].emask = 0; 1685 anfds [fd].emask = 0;
867 fd_change (EV_A_ fd, EV__IOFDSET | 1); 1686 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
868 } 1687 }
869} 1688}
870 1689
1690/* used to prepare libev internal fd's */
1691/* this is not fork-safe */
1692inline_speed void
1693fd_intern (int fd)
1694{
1695#ifdef _WIN32
1696 unsigned long arg = 1;
1697 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1698#else
1699 fcntl (fd, F_SETFD, FD_CLOEXEC);
1700 fcntl (fd, F_SETFL, O_NONBLOCK);
1701#endif
1702}
1703
871/*****************************************************************************/ 1704/*****************************************************************************/
872 1705
873/* 1706/*
874 * the heap functions want a real array index. array index 0 uis guaranteed to not 1707 * the heap functions want a real array index. array index 0 is guaranteed to not
875 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1708 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
876 * the branching factor of the d-tree. 1709 * the branching factor of the d-tree.
877 */ 1710 */
878 1711
879/* 1712/*
947 1780
948 for (;;) 1781 for (;;)
949 { 1782 {
950 int c = k << 1; 1783 int c = k << 1;
951 1784
952 if (c > N + HEAP0 - 1) 1785 if (c >= N + HEAP0)
953 break; 1786 break;
954 1787
955 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1788 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
956 ? 1 : 0; 1789 ? 1 : 0;
957 1790
989 1822
990 heap [k] = he; 1823 heap [k] = he;
991 ev_active (ANHE_w (he)) = k; 1824 ev_active (ANHE_w (he)) = k;
992} 1825}
993 1826
1827/* move an element suitably so it is in a correct place */
994inline_size void 1828inline_size void
995adjustheap (ANHE *heap, int N, int k) 1829adjustheap (ANHE *heap, int N, int k)
996{ 1830{
997 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1831 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
998 upheap (heap, k); 1832 upheap (heap, k);
999 else 1833 else
1000 downheap (heap, N, k); 1834 downheap (heap, N, k);
1001} 1835}
1002 1836
1012 upheap (heap, i + HEAP0); 1846 upheap (heap, i + HEAP0);
1013} 1847}
1014 1848
1015/*****************************************************************************/ 1849/*****************************************************************************/
1016 1850
1851/* associate signal watchers to a signal signal */
1017typedef struct 1852typedef struct
1018{ 1853{
1854 EV_ATOMIC_T pending;
1855#if EV_MULTIPLICITY
1856 EV_P;
1857#endif
1019 WL head; 1858 WL head;
1020 EV_ATOMIC_T gotsig;
1021} ANSIG; 1859} ANSIG;
1022 1860
1023static ANSIG *signals; 1861static ANSIG signals [EV_NSIG - 1];
1024static int signalmax;
1025
1026static EV_ATOMIC_T gotsig;
1027 1862
1028/*****************************************************************************/ 1863/*****************************************************************************/
1029 1864
1865#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1866
1867static void noinline ecb_cold
1868evpipe_init (EV_P)
1869{
1870 if (!ev_is_active (&pipe_w))
1871 {
1872 int fds [2];
1873
1874# if EV_USE_EVENTFD
1875 fds [0] = -1;
1876 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1877 if (fds [1] < 0 && errno == EINVAL)
1878 fds [1] = eventfd (0, 0);
1879
1880 if (fds [1] < 0)
1881# endif
1882 {
1883 while (pipe (fds))
1884 ev_syserr ("(libev) error creating signal/async pipe");
1885
1886 fd_intern (fds [0]);
1887 }
1888
1889 fd_intern (fds [1]);
1890
1891 evpipe [0] = fds [0];
1892
1893 if (evpipe [1] < 0)
1894 evpipe [1] = fds [1]; /* first call, set write fd */
1895 else
1896 {
1897 /* on subsequent calls, do not change evpipe [1] */
1898 /* so that evpipe_write can always rely on its value. */
1899 /* this branch does not do anything sensible on windows, */
1900 /* so must not be executed on windows */
1901
1902 dup2 (fds [1], evpipe [1]);
1903 close (fds [1]);
1904 }
1905
1906 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
1907 ev_io_start (EV_A_ &pipe_w);
1908 ev_unref (EV_A); /* watcher should not keep loop alive */
1909 }
1910}
1911
1030inline_speed void 1912inline_speed void
1031fd_intern (int fd) 1913evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1032{ 1914{
1033#ifdef _WIN32 1915 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1034 unsigned long arg = 1;
1035 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1036#else
1037 fcntl (fd, F_SETFD, FD_CLOEXEC);
1038 fcntl (fd, F_SETFL, O_NONBLOCK);
1039#endif
1040}
1041 1916
1042static void noinline 1917 if (expect_true (*flag))
1043evpipe_init (EV_P) 1918 return;
1044{ 1919
1045 if (!ev_is_active (&pipeev)) 1920 *flag = 1;
1921 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1922
1923 pipe_write_skipped = 1;
1924
1925 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1926
1927 if (pipe_write_wanted)
1046 { 1928 {
1929 int old_errno;
1930
1931 pipe_write_skipped = 0;
1932 ECB_MEMORY_FENCE_RELEASE;
1933
1934 old_errno = errno; /* save errno because write will clobber it */
1935
1047#if EV_USE_EVENTFD 1936#if EV_USE_EVENTFD
1048 if ((evfd = eventfd (0, 0)) >= 0) 1937 if (evpipe [0] < 0)
1049 { 1938 {
1050 evpipe [0] = -1; 1939 uint64_t counter = 1;
1051 fd_intern (evfd); 1940 write (evpipe [1], &counter, sizeof (uint64_t));
1052 ev_io_set (&pipeev, evfd, EV_READ);
1053 } 1941 }
1054 else 1942 else
1055#endif 1943#endif
1056 { 1944 {
1057 while (pipe (evpipe)) 1945#ifdef _WIN32
1058 ev_syserr ("(libev) error creating signal/async pipe"); 1946 WSABUF buf;
1059 1947 DWORD sent;
1060 fd_intern (evpipe [0]); 1948 buf.buf = &buf;
1061 fd_intern (evpipe [1]); 1949 buf.len = 1;
1062 ev_io_set (&pipeev, evpipe [0], EV_READ); 1950 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1951#else
1952 write (evpipe [1], &(evpipe [1]), 1);
1953#endif
1063 } 1954 }
1064 1955
1065 ev_io_start (EV_A_ &pipeev); 1956 errno = old_errno;
1066 ev_unref (EV_A); /* watcher should not keep loop alive */
1067 }
1068}
1069
1070inline_size void
1071evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1072{
1073 if (!*flag)
1074 { 1957 }
1075 int old_errno = errno; /* save errno because write might clobber it */ 1958}
1076 1959
1077 *flag = 1; 1960/* called whenever the libev signal pipe */
1961/* got some events (signal, async) */
1962static void
1963pipecb (EV_P_ ev_io *iow, int revents)
1964{
1965 int i;
1078 1966
1967 if (revents & EV_READ)
1968 {
1079#if EV_USE_EVENTFD 1969#if EV_USE_EVENTFD
1080 if (evfd >= 0) 1970 if (evpipe [0] < 0)
1081 { 1971 {
1082 uint64_t counter = 1; 1972 uint64_t counter;
1083 write (evfd, &counter, sizeof (uint64_t)); 1973 read (evpipe [1], &counter, sizeof (uint64_t));
1084 } 1974 }
1085 else 1975 else
1086#endif 1976#endif
1087 write (evpipe [1], &old_errno, 1); 1977 {
1088
1089 errno = old_errno;
1090 }
1091}
1092
1093static void
1094pipecb (EV_P_ ev_io *iow, int revents)
1095{
1096#if EV_USE_EVENTFD
1097 if (evfd >= 0)
1098 {
1099 uint64_t counter;
1100 read (evfd, &counter, sizeof (uint64_t));
1101 }
1102 else
1103#endif
1104 {
1105 char dummy; 1978 char dummy[4];
1979#ifdef _WIN32
1980 WSABUF buf;
1981 DWORD recvd;
1982 DWORD flags = 0;
1983 buf.buf = dummy;
1984 buf.len = sizeof (dummy);
1985 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
1986#else
1106 read (evpipe [0], &dummy, 1); 1987 read (evpipe [0], &dummy, sizeof (dummy));
1988#endif
1989 }
1990 }
1991
1992 pipe_write_skipped = 0;
1993
1994 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1995
1996#if EV_SIGNAL_ENABLE
1997 if (sig_pending)
1107 } 1998 {
1999 sig_pending = 0;
1108 2000
1109 if (gotsig && ev_is_default_loop (EV_A)) 2001 ECB_MEMORY_FENCE;
1110 {
1111 int signum;
1112 gotsig = 0;
1113 2002
1114 for (signum = signalmax; signum--; ) 2003 for (i = EV_NSIG - 1; i--; )
1115 if (signals [signum].gotsig) 2004 if (expect_false (signals [i].pending))
1116 ev_feed_signal_event (EV_A_ signum + 1); 2005 ev_feed_signal_event (EV_A_ i + 1);
1117 } 2006 }
2007#endif
1118 2008
1119#if EV_ASYNC_ENABLE 2009#if EV_ASYNC_ENABLE
1120 if (gotasync) 2010 if (async_pending)
1121 { 2011 {
1122 int i; 2012 async_pending = 0;
1123 gotasync = 0; 2013
2014 ECB_MEMORY_FENCE;
1124 2015
1125 for (i = asynccnt; i--; ) 2016 for (i = asynccnt; i--; )
1126 if (asyncs [i]->sent) 2017 if (asyncs [i]->sent)
1127 { 2018 {
1128 asyncs [i]->sent = 0; 2019 asyncs [i]->sent = 0;
2020 ECB_MEMORY_FENCE_RELEASE;
1129 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2021 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1130 } 2022 }
1131 } 2023 }
1132#endif 2024#endif
1133} 2025}
1134 2026
1135/*****************************************************************************/ 2027/*****************************************************************************/
1136 2028
2029void
2030ev_feed_signal (int signum) EV_THROW
2031{
2032#if EV_MULTIPLICITY
2033 ECB_MEMORY_FENCE_ACQUIRE;
2034 EV_P = signals [signum - 1].loop;
2035
2036 if (!EV_A)
2037 return;
2038#endif
2039
2040 signals [signum - 1].pending = 1;
2041 evpipe_write (EV_A_ &sig_pending);
2042}
2043
1137static void 2044static void
1138ev_sighandler (int signum) 2045ev_sighandler (int signum)
1139{ 2046{
2047#ifdef _WIN32
2048 signal (signum, ev_sighandler);
2049#endif
2050
2051 ev_feed_signal (signum);
2052}
2053
2054void noinline
2055ev_feed_signal_event (EV_P_ int signum) EV_THROW
2056{
2057 WL w;
2058
2059 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2060 return;
2061
2062 --signum;
2063
1140#if EV_MULTIPLICITY 2064#if EV_MULTIPLICITY
1141 struct ev_loop *loop = &default_loop_struct; 2065 /* it is permissible to try to feed a signal to the wrong loop */
1142#endif 2066 /* or, likely more useful, feeding a signal nobody is waiting for */
1143 2067
1144#if _WIN32 2068 if (expect_false (signals [signum].loop != EV_A))
1145 signal (signum, ev_sighandler);
1146#endif
1147
1148 signals [signum - 1].gotsig = 1;
1149 evpipe_write (EV_A_ &gotsig);
1150}
1151
1152void noinline
1153ev_feed_signal_event (EV_P_ int signum)
1154{
1155 WL w;
1156
1157#if EV_MULTIPLICITY
1158 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1159#endif
1160
1161 --signum;
1162
1163 if (signum < 0 || signum >= signalmax)
1164 return; 2069 return;
2070#endif
1165 2071
1166 signals [signum].gotsig = 0; 2072 signals [signum].pending = 0;
2073 ECB_MEMORY_FENCE_RELEASE;
1167 2074
1168 for (w = signals [signum].head; w; w = w->next) 2075 for (w = signals [signum].head; w; w = w->next)
1169 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2076 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1170} 2077}
1171 2078
2079#if EV_USE_SIGNALFD
2080static void
2081sigfdcb (EV_P_ ev_io *iow, int revents)
2082{
2083 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2084
2085 for (;;)
2086 {
2087 ssize_t res = read (sigfd, si, sizeof (si));
2088
2089 /* not ISO-C, as res might be -1, but works with SuS */
2090 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2091 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2092
2093 if (res < (ssize_t)sizeof (si))
2094 break;
2095 }
2096}
2097#endif
2098
2099#endif
2100
1172/*****************************************************************************/ 2101/*****************************************************************************/
1173 2102
2103#if EV_CHILD_ENABLE
1174static WL childs [EV_PID_HASHSIZE]; 2104static WL childs [EV_PID_HASHSIZE];
1175
1176#ifndef _WIN32
1177 2105
1178static ev_signal childev; 2106static ev_signal childev;
1179 2107
1180#ifndef WIFCONTINUED 2108#ifndef WIFCONTINUED
1181# define WIFCONTINUED(status) 0 2109# define WIFCONTINUED(status) 0
1182#endif 2110#endif
1183 2111
2112/* handle a single child status event */
1184inline_speed void 2113inline_speed void
1185child_reap (EV_P_ int chain, int pid, int status) 2114child_reap (EV_P_ int chain, int pid, int status)
1186{ 2115{
1187 ev_child *w; 2116 ev_child *w;
1188 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2117 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1189 2118
1190 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2119 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1191 { 2120 {
1192 if ((w->pid == pid || !w->pid) 2121 if ((w->pid == pid || !w->pid)
1193 && (!traced || (w->flags & 1))) 2122 && (!traced || (w->flags & 1)))
1194 { 2123 {
1195 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2124 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1202 2131
1203#ifndef WCONTINUED 2132#ifndef WCONTINUED
1204# define WCONTINUED 0 2133# define WCONTINUED 0
1205#endif 2134#endif
1206 2135
2136/* called on sigchld etc., calls waitpid */
1207static void 2137static void
1208childcb (EV_P_ ev_signal *sw, int revents) 2138childcb (EV_P_ ev_signal *sw, int revents)
1209{ 2139{
1210 int pid, status; 2140 int pid, status;
1211 2141
1219 /* make sure we are called again until all children have been reaped */ 2149 /* make sure we are called again until all children have been reaped */
1220 /* we need to do it this way so that the callback gets called before we continue */ 2150 /* we need to do it this way so that the callback gets called before we continue */
1221 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2151 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1222 2152
1223 child_reap (EV_A_ pid, pid, status); 2153 child_reap (EV_A_ pid, pid, status);
1224 if (EV_PID_HASHSIZE > 1) 2154 if ((EV_PID_HASHSIZE) > 1)
1225 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2155 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1226} 2156}
1227 2157
1228#endif 2158#endif
1229 2159
1230/*****************************************************************************/ 2160/*****************************************************************************/
1231 2161
2162#if EV_USE_IOCP
2163# include "ev_iocp.c"
2164#endif
1232#if EV_USE_PORT 2165#if EV_USE_PORT
1233# include "ev_port.c" 2166# include "ev_port.c"
1234#endif 2167#endif
1235#if EV_USE_KQUEUE 2168#if EV_USE_KQUEUE
1236# include "ev_kqueue.c" 2169# include "ev_kqueue.c"
1243#endif 2176#endif
1244#if EV_USE_SELECT 2177#if EV_USE_SELECT
1245# include "ev_select.c" 2178# include "ev_select.c"
1246#endif 2179#endif
1247 2180
1248int 2181int ecb_cold
1249ev_version_major (void) 2182ev_version_major (void) EV_THROW
1250{ 2183{
1251 return EV_VERSION_MAJOR; 2184 return EV_VERSION_MAJOR;
1252} 2185}
1253 2186
1254int 2187int ecb_cold
1255ev_version_minor (void) 2188ev_version_minor (void) EV_THROW
1256{ 2189{
1257 return EV_VERSION_MINOR; 2190 return EV_VERSION_MINOR;
1258} 2191}
1259 2192
1260/* return true if we are running with elevated privileges and should ignore env variables */ 2193/* return true if we are running with elevated privileges and should ignore env variables */
1261int inline_size 2194int inline_size ecb_cold
1262enable_secure (void) 2195enable_secure (void)
1263{ 2196{
1264#ifdef _WIN32 2197#ifdef _WIN32
1265 return 0; 2198 return 0;
1266#else 2199#else
1267 return getuid () != geteuid () 2200 return getuid () != geteuid ()
1268 || getgid () != getegid (); 2201 || getgid () != getegid ();
1269#endif 2202#endif
1270} 2203}
1271 2204
1272unsigned int 2205unsigned int ecb_cold
1273ev_supported_backends (void) 2206ev_supported_backends (void) EV_THROW
1274{ 2207{
1275 unsigned int flags = 0; 2208 unsigned int flags = 0;
1276 2209
1277 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2210 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1278 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2211 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1281 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2214 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1282 2215
1283 return flags; 2216 return flags;
1284} 2217}
1285 2218
1286unsigned int 2219unsigned int ecb_cold
1287ev_recommended_backends (void) 2220ev_recommended_backends (void) EV_THROW
1288{ 2221{
1289 unsigned int flags = ev_supported_backends (); 2222 unsigned int flags = ev_supported_backends ();
1290 2223
1291#ifndef __NetBSD__ 2224#ifndef __NetBSD__
1292 /* kqueue is borked on everything but netbsd apparently */ 2225 /* kqueue is borked on everything but netbsd apparently */
1296#ifdef __APPLE__ 2229#ifdef __APPLE__
1297 /* only select works correctly on that "unix-certified" platform */ 2230 /* only select works correctly on that "unix-certified" platform */
1298 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */ 2231 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1299 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */ 2232 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1300#endif 2233#endif
2234#ifdef __FreeBSD__
2235 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2236#endif
1301 2237
1302 return flags; 2238 return flags;
1303} 2239}
1304 2240
2241unsigned int ecb_cold
2242ev_embeddable_backends (void) EV_THROW
2243{
2244 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2245
2246 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2247 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2248 flags &= ~EVBACKEND_EPOLL;
2249
2250 return flags;
2251}
2252
1305unsigned int 2253unsigned int
1306ev_embeddable_backends (void) 2254ev_backend (EV_P) EV_THROW
1307{ 2255{
1308 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2256 return backend;
1309
1310 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1311 /* please fix it and tell me how to detect the fix */
1312 flags &= ~EVBACKEND_EPOLL;
1313
1314 return flags;
1315} 2257}
1316 2258
2259#if EV_FEATURE_API
1317unsigned int 2260unsigned int
1318ev_backend (EV_P) 2261ev_iteration (EV_P) EV_THROW
1319{ 2262{
1320 return backend; 2263 return loop_count;
1321} 2264}
1322 2265
1323unsigned int 2266unsigned int
1324ev_loop_count (EV_P) 2267ev_depth (EV_P) EV_THROW
1325{ 2268{
1326 return loop_count; 2269 return loop_depth;
1327} 2270}
1328 2271
1329void 2272void
1330ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2273ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1331{ 2274{
1332 io_blocktime = interval; 2275 io_blocktime = interval;
1333} 2276}
1334 2277
1335void 2278void
1336ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2279ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1337{ 2280{
1338 timeout_blocktime = interval; 2281 timeout_blocktime = interval;
1339} 2282}
1340 2283
2284void
2285ev_set_userdata (EV_P_ void *data) EV_THROW
2286{
2287 userdata = data;
2288}
2289
2290void *
2291ev_userdata (EV_P) EV_THROW
2292{
2293 return userdata;
2294}
2295
2296void
2297ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2298{
2299 invoke_cb = invoke_pending_cb;
2300}
2301
2302void
2303ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2304{
2305 release_cb = release;
2306 acquire_cb = acquire;
2307}
2308#endif
2309
2310/* initialise a loop structure, must be zero-initialised */
1341static void noinline 2311static void noinline ecb_cold
1342loop_init (EV_P_ unsigned int flags) 2312loop_init (EV_P_ unsigned int flags) EV_THROW
1343{ 2313{
1344 if (!backend) 2314 if (!backend)
1345 { 2315 {
2316 origflags = flags;
2317
1346#if EV_USE_REALTIME 2318#if EV_USE_REALTIME
1347 if (!have_realtime) 2319 if (!have_realtime)
1348 { 2320 {
1349 struct timespec ts; 2321 struct timespec ts;
1350 2322
1361 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2333 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1362 have_monotonic = 1; 2334 have_monotonic = 1;
1363 } 2335 }
1364#endif 2336#endif
1365 2337
1366 ev_rt_now = ev_time ();
1367 mn_now = get_clock ();
1368 now_floor = mn_now;
1369 rtmn_diff = ev_rt_now - mn_now;
1370
1371 io_blocktime = 0.;
1372 timeout_blocktime = 0.;
1373 backend = 0;
1374 backend_fd = -1;
1375 gotasync = 0;
1376#if EV_USE_INOTIFY
1377 fs_fd = -2;
1378#endif
1379
1380 /* pid check not overridable via env */ 2338 /* pid check not overridable via env */
1381#ifndef _WIN32 2339#ifndef _WIN32
1382 if (flags & EVFLAG_FORKCHECK) 2340 if (flags & EVFLAG_FORKCHECK)
1383 curpid = getpid (); 2341 curpid = getpid ();
1384#endif 2342#endif
1386 if (!(flags & EVFLAG_NOENV) 2344 if (!(flags & EVFLAG_NOENV)
1387 && !enable_secure () 2345 && !enable_secure ()
1388 && getenv ("LIBEV_FLAGS")) 2346 && getenv ("LIBEV_FLAGS"))
1389 flags = atoi (getenv ("LIBEV_FLAGS")); 2347 flags = atoi (getenv ("LIBEV_FLAGS"));
1390 2348
1391 if (!(flags & 0x0000ffffU)) 2349 ev_rt_now = ev_time ();
2350 mn_now = get_clock ();
2351 now_floor = mn_now;
2352 rtmn_diff = ev_rt_now - mn_now;
2353#if EV_FEATURE_API
2354 invoke_cb = ev_invoke_pending;
2355#endif
2356
2357 io_blocktime = 0.;
2358 timeout_blocktime = 0.;
2359 backend = 0;
2360 backend_fd = -1;
2361 sig_pending = 0;
2362#if EV_ASYNC_ENABLE
2363 async_pending = 0;
2364#endif
2365 pipe_write_skipped = 0;
2366 pipe_write_wanted = 0;
2367 evpipe [0] = -1;
2368 evpipe [1] = -1;
2369#if EV_USE_INOTIFY
2370 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2371#endif
2372#if EV_USE_SIGNALFD
2373 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2374#endif
2375
2376 if (!(flags & EVBACKEND_MASK))
1392 flags |= ev_recommended_backends (); 2377 flags |= ev_recommended_backends ();
1393 2378
2379#if EV_USE_IOCP
2380 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2381#endif
1394#if EV_USE_PORT 2382#if EV_USE_PORT
1395 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2383 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1396#endif 2384#endif
1397#if EV_USE_KQUEUE 2385#if EV_USE_KQUEUE
1398 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2386 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1405#endif 2393#endif
1406#if EV_USE_SELECT 2394#if EV_USE_SELECT
1407 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2395 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1408#endif 2396#endif
1409 2397
2398 ev_prepare_init (&pending_w, pendingcb);
2399
2400#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1410 ev_init (&pipeev, pipecb); 2401 ev_init (&pipe_w, pipecb);
1411 ev_set_priority (&pipeev, EV_MAXPRI); 2402 ev_set_priority (&pipe_w, EV_MAXPRI);
2403#endif
1412 } 2404 }
1413} 2405}
1414 2406
1415static void noinline 2407/* free up a loop structure */
2408void ecb_cold
1416loop_destroy (EV_P) 2409ev_loop_destroy (EV_P)
1417{ 2410{
1418 int i; 2411 int i;
1419 2412
2413#if EV_MULTIPLICITY
2414 /* mimic free (0) */
2415 if (!EV_A)
2416 return;
2417#endif
2418
2419#if EV_CLEANUP_ENABLE
2420 /* queue cleanup watchers (and execute them) */
2421 if (expect_false (cleanupcnt))
2422 {
2423 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2424 EV_INVOKE_PENDING;
2425 }
2426#endif
2427
2428#if EV_CHILD_ENABLE
2429 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2430 {
2431 ev_ref (EV_A); /* child watcher */
2432 ev_signal_stop (EV_A_ &childev);
2433 }
2434#endif
2435
1420 if (ev_is_active (&pipeev)) 2436 if (ev_is_active (&pipe_w))
1421 { 2437 {
1422 ev_ref (EV_A); /* signal watcher */ 2438 /*ev_ref (EV_A);*/
1423 ev_io_stop (EV_A_ &pipeev); 2439 /*ev_io_stop (EV_A_ &pipe_w);*/
1424 2440
2441 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2442 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2443 }
2444
1425#if EV_USE_EVENTFD 2445#if EV_USE_SIGNALFD
1426 if (evfd >= 0) 2446 if (ev_is_active (&sigfd_w))
1427 close (evfd); 2447 close (sigfd);
1428#endif 2448#endif
1429
1430 if (evpipe [0] >= 0)
1431 {
1432 close (evpipe [0]);
1433 close (evpipe [1]);
1434 }
1435 }
1436 2449
1437#if EV_USE_INOTIFY 2450#if EV_USE_INOTIFY
1438 if (fs_fd >= 0) 2451 if (fs_fd >= 0)
1439 close (fs_fd); 2452 close (fs_fd);
1440#endif 2453#endif
1441 2454
1442 if (backend_fd >= 0) 2455 if (backend_fd >= 0)
1443 close (backend_fd); 2456 close (backend_fd);
1444 2457
2458#if EV_USE_IOCP
2459 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2460#endif
1445#if EV_USE_PORT 2461#if EV_USE_PORT
1446 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2462 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1447#endif 2463#endif
1448#if EV_USE_KQUEUE 2464#if EV_USE_KQUEUE
1449 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2465 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1464#if EV_IDLE_ENABLE 2480#if EV_IDLE_ENABLE
1465 array_free (idle, [i]); 2481 array_free (idle, [i]);
1466#endif 2482#endif
1467 } 2483 }
1468 2484
1469 ev_free (anfds); anfdmax = 0; 2485 ev_free (anfds); anfds = 0; anfdmax = 0;
1470 2486
1471 /* have to use the microsoft-never-gets-it-right macro */ 2487 /* have to use the microsoft-never-gets-it-right macro */
1472 array_free (rfeed, EMPTY); 2488 array_free (rfeed, EMPTY);
1473 array_free (fdchange, EMPTY); 2489 array_free (fdchange, EMPTY);
1474 array_free (timer, EMPTY); 2490 array_free (timer, EMPTY);
1476 array_free (periodic, EMPTY); 2492 array_free (periodic, EMPTY);
1477#endif 2493#endif
1478#if EV_FORK_ENABLE 2494#if EV_FORK_ENABLE
1479 array_free (fork, EMPTY); 2495 array_free (fork, EMPTY);
1480#endif 2496#endif
2497#if EV_CLEANUP_ENABLE
2498 array_free (cleanup, EMPTY);
2499#endif
1481 array_free (prepare, EMPTY); 2500 array_free (prepare, EMPTY);
1482 array_free (check, EMPTY); 2501 array_free (check, EMPTY);
1483#if EV_ASYNC_ENABLE 2502#if EV_ASYNC_ENABLE
1484 array_free (async, EMPTY); 2503 array_free (async, EMPTY);
1485#endif 2504#endif
1486 2505
1487 backend = 0; 2506 backend = 0;
2507
2508#if EV_MULTIPLICITY
2509 if (ev_is_default_loop (EV_A))
2510#endif
2511 ev_default_loop_ptr = 0;
2512#if EV_MULTIPLICITY
2513 else
2514 ev_free (EV_A);
2515#endif
1488} 2516}
1489 2517
1490#if EV_USE_INOTIFY 2518#if EV_USE_INOTIFY
1491inline_size void infy_fork (EV_P); 2519inline_size void infy_fork (EV_P);
1492#endif 2520#endif
1505#endif 2533#endif
1506#if EV_USE_INOTIFY 2534#if EV_USE_INOTIFY
1507 infy_fork (EV_A); 2535 infy_fork (EV_A);
1508#endif 2536#endif
1509 2537
2538#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1510 if (ev_is_active (&pipeev)) 2539 if (ev_is_active (&pipe_w))
1511 { 2540 {
1512 /* this "locks" the handlers against writing to the pipe */ 2541 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1513 /* while we modify the fd vars */
1514 gotsig = 1;
1515#if EV_ASYNC_ENABLE
1516 gotasync = 1;
1517#endif
1518 2542
1519 ev_ref (EV_A); 2543 ev_ref (EV_A);
1520 ev_io_stop (EV_A_ &pipeev); 2544 ev_io_stop (EV_A_ &pipe_w);
1521
1522#if EV_USE_EVENTFD
1523 if (evfd >= 0)
1524 close (evfd);
1525#endif
1526 2545
1527 if (evpipe [0] >= 0) 2546 if (evpipe [0] >= 0)
1528 { 2547 EV_WIN32_CLOSE_FD (evpipe [0]);
1529 close (evpipe [0]);
1530 close (evpipe [1]);
1531 }
1532 2548
1533 evpipe_init (EV_A); 2549 evpipe_init (EV_A);
1534 /* now iterate over everything, in case we missed something */ 2550 /* iterate over everything, in case we missed something before */
1535 pipecb (EV_A_ &pipeev, EV_READ); 2551 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1536 } 2552 }
2553#endif
1537 2554
1538 postfork = 0; 2555 postfork = 0;
1539} 2556}
1540 2557
1541#if EV_MULTIPLICITY 2558#if EV_MULTIPLICITY
1542 2559
1543struct ev_loop * 2560struct ev_loop * ecb_cold
1544ev_loop_new (unsigned int flags) 2561ev_loop_new (unsigned int flags) EV_THROW
1545{ 2562{
1546 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2563 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1547 2564
1548 memset (loop, 0, sizeof (struct ev_loop)); 2565 memset (EV_A, 0, sizeof (struct ev_loop));
1549
1550 loop_init (EV_A_ flags); 2566 loop_init (EV_A_ flags);
1551 2567
1552 if (ev_backend (EV_A)) 2568 if (ev_backend (EV_A))
1553 return loop; 2569 return EV_A;
1554 2570
2571 ev_free (EV_A);
1555 return 0; 2572 return 0;
1556} 2573}
1557 2574
1558void 2575#endif /* multiplicity */
1559ev_loop_destroy (EV_P)
1560{
1561 loop_destroy (EV_A);
1562 ev_free (loop);
1563}
1564
1565void
1566ev_loop_fork (EV_P)
1567{
1568 postfork = 1; /* must be in line with ev_default_fork */
1569}
1570 2576
1571#if EV_VERIFY 2577#if EV_VERIFY
1572static void noinline 2578static void noinline ecb_cold
1573verify_watcher (EV_P_ W w) 2579verify_watcher (EV_P_ W w)
1574{ 2580{
1575 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 2581 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1576 2582
1577 if (w->pending) 2583 if (w->pending)
1578 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 2584 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1579} 2585}
1580 2586
1581static void noinline 2587static void noinline ecb_cold
1582verify_heap (EV_P_ ANHE *heap, int N) 2588verify_heap (EV_P_ ANHE *heap, int N)
1583{ 2589{
1584 int i; 2590 int i;
1585 2591
1586 for (i = HEAP0; i < N + HEAP0; ++i) 2592 for (i = HEAP0; i < N + HEAP0; ++i)
1591 2597
1592 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 2598 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1593 } 2599 }
1594} 2600}
1595 2601
1596static void noinline 2602static void noinline ecb_cold
1597array_verify (EV_P_ W *ws, int cnt) 2603array_verify (EV_P_ W *ws, int cnt)
1598{ 2604{
1599 while (cnt--) 2605 while (cnt--)
1600 { 2606 {
1601 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 2607 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1602 verify_watcher (EV_A_ ws [cnt]); 2608 verify_watcher (EV_A_ ws [cnt]);
1603 } 2609 }
1604} 2610}
1605#endif 2611#endif
1606 2612
1607void 2613#if EV_FEATURE_API
1608ev_loop_verify (EV_P) 2614void ecb_cold
2615ev_verify (EV_P) EV_THROW
1609{ 2616{
1610#if EV_VERIFY 2617#if EV_VERIFY
1611 int i; 2618 int i;
1612 WL w; 2619 WL w, w2;
1613 2620
1614 assert (activecnt >= -1); 2621 assert (activecnt >= -1);
1615 2622
1616 assert (fdchangemax >= fdchangecnt); 2623 assert (fdchangemax >= fdchangecnt);
1617 for (i = 0; i < fdchangecnt; ++i) 2624 for (i = 0; i < fdchangecnt; ++i)
1618 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0)); 2625 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1619 2626
1620 assert (anfdmax >= 0); 2627 assert (anfdmax >= 0);
1621 for (i = 0; i < anfdmax; ++i) 2628 for (i = 0; i < anfdmax; ++i)
2629 {
2630 int j = 0;
2631
1622 for (w = anfds [i].head; w; w = w->next) 2632 for (w = w2 = anfds [i].head; w; w = w->next)
1623 { 2633 {
1624 verify_watcher (EV_A_ (W)w); 2634 verify_watcher (EV_A_ (W)w);
2635
2636 if (j++ & 1)
2637 {
2638 assert (("libev: io watcher list contains a loop", w != w2));
2639 w2 = w2->next;
2640 }
2641
1625 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1)); 2642 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1626 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 2643 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1627 } 2644 }
2645 }
1628 2646
1629 assert (timermax >= timercnt); 2647 assert (timermax >= timercnt);
1630 verify_heap (EV_A_ timers, timercnt); 2648 verify_heap (EV_A_ timers, timercnt);
1631 2649
1632#if EV_PERIODIC_ENABLE 2650#if EV_PERIODIC_ENABLE
1647#if EV_FORK_ENABLE 2665#if EV_FORK_ENABLE
1648 assert (forkmax >= forkcnt); 2666 assert (forkmax >= forkcnt);
1649 array_verify (EV_A_ (W *)forks, forkcnt); 2667 array_verify (EV_A_ (W *)forks, forkcnt);
1650#endif 2668#endif
1651 2669
2670#if EV_CLEANUP_ENABLE
2671 assert (cleanupmax >= cleanupcnt);
2672 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2673#endif
2674
1652#if EV_ASYNC_ENABLE 2675#if EV_ASYNC_ENABLE
1653 assert (asyncmax >= asynccnt); 2676 assert (asyncmax >= asynccnt);
1654 array_verify (EV_A_ (W *)asyncs, asynccnt); 2677 array_verify (EV_A_ (W *)asyncs, asynccnt);
1655#endif 2678#endif
1656 2679
2680#if EV_PREPARE_ENABLE
1657 assert (preparemax >= preparecnt); 2681 assert (preparemax >= preparecnt);
1658 array_verify (EV_A_ (W *)prepares, preparecnt); 2682 array_verify (EV_A_ (W *)prepares, preparecnt);
2683#endif
1659 2684
2685#if EV_CHECK_ENABLE
1660 assert (checkmax >= checkcnt); 2686 assert (checkmax >= checkcnt);
1661 array_verify (EV_A_ (W *)checks, checkcnt); 2687 array_verify (EV_A_ (W *)checks, checkcnt);
2688#endif
1662 2689
1663# if 0 2690# if 0
2691#if EV_CHILD_ENABLE
1664 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2692 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1665 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 2693 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2694#endif
1666# endif 2695# endif
1667#endif 2696#endif
1668} 2697}
1669 2698#endif
1670#endif /* multiplicity */
1671 2699
1672#if EV_MULTIPLICITY 2700#if EV_MULTIPLICITY
1673struct ev_loop * 2701struct ev_loop * ecb_cold
1674ev_default_loop_init (unsigned int flags)
1675#else 2702#else
1676int 2703int
2704#endif
1677ev_default_loop (unsigned int flags) 2705ev_default_loop (unsigned int flags) EV_THROW
1678#endif
1679{ 2706{
1680 if (!ev_default_loop_ptr) 2707 if (!ev_default_loop_ptr)
1681 { 2708 {
1682#if EV_MULTIPLICITY 2709#if EV_MULTIPLICITY
1683 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2710 EV_P = ev_default_loop_ptr = &default_loop_struct;
1684#else 2711#else
1685 ev_default_loop_ptr = 1; 2712 ev_default_loop_ptr = 1;
1686#endif 2713#endif
1687 2714
1688 loop_init (EV_A_ flags); 2715 loop_init (EV_A_ flags);
1689 2716
1690 if (ev_backend (EV_A)) 2717 if (ev_backend (EV_A))
1691 { 2718 {
1692#ifndef _WIN32 2719#if EV_CHILD_ENABLE
1693 ev_signal_init (&childev, childcb, SIGCHLD); 2720 ev_signal_init (&childev, childcb, SIGCHLD);
1694 ev_set_priority (&childev, EV_MAXPRI); 2721 ev_set_priority (&childev, EV_MAXPRI);
1695 ev_signal_start (EV_A_ &childev); 2722 ev_signal_start (EV_A_ &childev);
1696 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2723 ev_unref (EV_A); /* child watcher should not keep loop alive */
1697#endif 2724#endif
1702 2729
1703 return ev_default_loop_ptr; 2730 return ev_default_loop_ptr;
1704} 2731}
1705 2732
1706void 2733void
1707ev_default_destroy (void) 2734ev_loop_fork (EV_P) EV_THROW
1708{ 2735{
1709#if EV_MULTIPLICITY 2736 postfork = 1;
1710 struct ev_loop *loop = ev_default_loop_ptr;
1711#endif
1712
1713 ev_default_loop_ptr = 0;
1714
1715#ifndef _WIN32
1716 ev_ref (EV_A); /* child watcher */
1717 ev_signal_stop (EV_A_ &childev);
1718#endif
1719
1720 loop_destroy (EV_A);
1721}
1722
1723void
1724ev_default_fork (void)
1725{
1726#if EV_MULTIPLICITY
1727 struct ev_loop *loop = ev_default_loop_ptr;
1728#endif
1729
1730 postfork = 1; /* must be in line with ev_loop_fork */
1731} 2737}
1732 2738
1733/*****************************************************************************/ 2739/*****************************************************************************/
1734 2740
1735void 2741void
1736ev_invoke (EV_P_ void *w, int revents) 2742ev_invoke (EV_P_ void *w, int revents)
1737{ 2743{
1738 EV_CB_INVOKE ((W)w, revents); 2744 EV_CB_INVOKE ((W)w, revents);
1739} 2745}
1740 2746
1741inline_speed void 2747unsigned int
1742call_pending (EV_P) 2748ev_pending_count (EV_P) EV_THROW
1743{ 2749{
1744 int pri; 2750 int pri;
2751 unsigned int count = 0;
1745 2752
1746 for (pri = NUMPRI; pri--; ) 2753 for (pri = NUMPRI; pri--; )
2754 count += pendingcnt [pri];
2755
2756 return count;
2757}
2758
2759void noinline
2760ev_invoke_pending (EV_P)
2761{
2762 pendingpri = NUMPRI;
2763
2764 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
2765 {
2766 --pendingpri;
2767
1747 while (pendingcnt [pri]) 2768 while (pendingcnt [pendingpri])
1748 {
1749 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1750
1751 if (expect_true (p->w))
1752 { 2769 {
1753 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/ 2770 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1754 2771
1755 p->w->pending = 0; 2772 p->w->pending = 0;
1756 EV_CB_INVOKE (p->w, p->events); 2773 EV_CB_INVOKE (p->w, p->events);
1757 EV_FREQUENT_CHECK; 2774 EV_FREQUENT_CHECK;
1758 } 2775 }
1759 } 2776 }
1760} 2777}
1761 2778
1762#if EV_IDLE_ENABLE 2779#if EV_IDLE_ENABLE
2780/* make idle watchers pending. this handles the "call-idle */
2781/* only when higher priorities are idle" logic */
1763inline_size void 2782inline_size void
1764idle_reify (EV_P) 2783idle_reify (EV_P)
1765{ 2784{
1766 if (expect_false (idleall)) 2785 if (expect_false (idleall))
1767 { 2786 {
1780 } 2799 }
1781 } 2800 }
1782} 2801}
1783#endif 2802#endif
1784 2803
2804/* make timers pending */
1785inline_size void 2805inline_size void
1786timers_reify (EV_P) 2806timers_reify (EV_P)
1787{ 2807{
1788 EV_FREQUENT_CHECK; 2808 EV_FREQUENT_CHECK;
1789 2809
1813 EV_FREQUENT_CHECK; 2833 EV_FREQUENT_CHECK;
1814 feed_reverse (EV_A_ (W)w); 2834 feed_reverse (EV_A_ (W)w);
1815 } 2835 }
1816 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now); 2836 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1817 2837
1818 feed_reverse_done (EV_A_ EV_TIMEOUT); 2838 feed_reverse_done (EV_A_ EV_TIMER);
1819 } 2839 }
1820} 2840}
1821 2841
1822#if EV_PERIODIC_ENABLE 2842#if EV_PERIODIC_ENABLE
2843
2844static void noinline
2845periodic_recalc (EV_P_ ev_periodic *w)
2846{
2847 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2848 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2849
2850 /* the above almost always errs on the low side */
2851 while (at <= ev_rt_now)
2852 {
2853 ev_tstamp nat = at + w->interval;
2854
2855 /* when resolution fails us, we use ev_rt_now */
2856 if (expect_false (nat == at))
2857 {
2858 at = ev_rt_now;
2859 break;
2860 }
2861
2862 at = nat;
2863 }
2864
2865 ev_at (w) = at;
2866}
2867
2868/* make periodics pending */
1823inline_size void 2869inline_size void
1824periodics_reify (EV_P) 2870periodics_reify (EV_P)
1825{ 2871{
1826 EV_FREQUENT_CHECK; 2872 EV_FREQUENT_CHECK;
1827 2873
1828 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2874 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1829 { 2875 {
1830 int feed_count = 0;
1831
1832 do 2876 do
1833 { 2877 {
1834 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2878 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1835 2879
1836 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/ 2880 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1845 ANHE_at_cache (periodics [HEAP0]); 2889 ANHE_at_cache (periodics [HEAP0]);
1846 downheap (periodics, periodiccnt, HEAP0); 2890 downheap (periodics, periodiccnt, HEAP0);
1847 } 2891 }
1848 else if (w->interval) 2892 else if (w->interval)
1849 { 2893 {
1850 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2894 periodic_recalc (EV_A_ w);
1851 /* if next trigger time is not sufficiently in the future, put it there */
1852 /* this might happen because of floating point inexactness */
1853 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1854 {
1855 ev_at (w) += w->interval;
1856
1857 /* if interval is unreasonably low we might still have a time in the past */
1858 /* so correct this. this will make the periodic very inexact, but the user */
1859 /* has effectively asked to get triggered more often than possible */
1860 if (ev_at (w) < ev_rt_now)
1861 ev_at (w) = ev_rt_now;
1862 }
1863
1864 ANHE_at_cache (periodics [HEAP0]); 2895 ANHE_at_cache (periodics [HEAP0]);
1865 downheap (periodics, periodiccnt, HEAP0); 2896 downheap (periodics, periodiccnt, HEAP0);
1866 } 2897 }
1867 else 2898 else
1868 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 2899 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1874 2905
1875 feed_reverse_done (EV_A_ EV_PERIODIC); 2906 feed_reverse_done (EV_A_ EV_PERIODIC);
1876 } 2907 }
1877} 2908}
1878 2909
2910/* simply recalculate all periodics */
2911/* TODO: maybe ensure that at least one event happens when jumping forward? */
1879static void noinline 2912static void noinline ecb_cold
1880periodics_reschedule (EV_P) 2913periodics_reschedule (EV_P)
1881{ 2914{
1882 int i; 2915 int i;
1883 2916
1884 /* adjust periodics after time jump */ 2917 /* adjust periodics after time jump */
1887 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 2920 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1888 2921
1889 if (w->reschedule_cb) 2922 if (w->reschedule_cb)
1890 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2923 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1891 else if (w->interval) 2924 else if (w->interval)
1892 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2925 periodic_recalc (EV_A_ w);
1893 2926
1894 ANHE_at_cache (periodics [i]); 2927 ANHE_at_cache (periodics [i]);
1895 } 2928 }
1896 2929
1897 reheap (periodics, periodiccnt); 2930 reheap (periodics, periodiccnt);
1898} 2931}
1899#endif 2932#endif
1900 2933
2934/* adjust all timers by a given offset */
1901static void noinline 2935static void noinline ecb_cold
1902timers_reschedule (EV_P_ ev_tstamp adjust) 2936timers_reschedule (EV_P_ ev_tstamp adjust)
1903{ 2937{
1904 int i; 2938 int i;
1905 2939
1906 for (i = 0; i < timercnt; ++i) 2940 for (i = 0; i < timercnt; ++i)
1909 ANHE_w (*he)->at += adjust; 2943 ANHE_w (*he)->at += adjust;
1910 ANHE_at_cache (*he); 2944 ANHE_at_cache (*he);
1911 } 2945 }
1912} 2946}
1913 2947
2948/* fetch new monotonic and realtime times from the kernel */
2949/* also detect if there was a timejump, and act accordingly */
1914inline_speed void 2950inline_speed void
1915time_update (EV_P_ ev_tstamp max_block) 2951time_update (EV_P_ ev_tstamp max_block)
1916{ 2952{
1917 int i;
1918
1919#if EV_USE_MONOTONIC 2953#if EV_USE_MONOTONIC
1920 if (expect_true (have_monotonic)) 2954 if (expect_true (have_monotonic))
1921 { 2955 {
2956 int i;
1922 ev_tstamp odiff = rtmn_diff; 2957 ev_tstamp odiff = rtmn_diff;
1923 2958
1924 mn_now = get_clock (); 2959 mn_now = get_clock ();
1925 2960
1926 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2961 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1942 * doesn't hurt either as we only do this on time-jumps or 2977 * doesn't hurt either as we only do this on time-jumps or
1943 * in the unlikely event of having been preempted here. 2978 * in the unlikely event of having been preempted here.
1944 */ 2979 */
1945 for (i = 4; --i; ) 2980 for (i = 4; --i; )
1946 { 2981 {
2982 ev_tstamp diff;
1947 rtmn_diff = ev_rt_now - mn_now; 2983 rtmn_diff = ev_rt_now - mn_now;
1948 2984
2985 diff = odiff - rtmn_diff;
2986
1949 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 2987 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1950 return; /* all is well */ 2988 return; /* all is well */
1951 2989
1952 ev_rt_now = ev_time (); 2990 ev_rt_now = ev_time ();
1953 mn_now = get_clock (); 2991 mn_now = get_clock ();
1954 now_floor = mn_now; 2992 now_floor = mn_now;
1976 3014
1977 mn_now = ev_rt_now; 3015 mn_now = ev_rt_now;
1978 } 3016 }
1979} 3017}
1980 3018
1981static int loop_done; 3019int
1982
1983void
1984ev_loop (EV_P_ int flags) 3020ev_run (EV_P_ int flags)
1985{ 3021{
3022#if EV_FEATURE_API
3023 ++loop_depth;
3024#endif
3025
3026 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3027
1986 loop_done = EVUNLOOP_CANCEL; 3028 loop_done = EVBREAK_CANCEL;
1987 3029
1988 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3030 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1989 3031
1990 do 3032 do
1991 { 3033 {
1992#if EV_VERIFY >= 2 3034#if EV_VERIFY >= 2
1993 ev_loop_verify (EV_A); 3035 ev_verify (EV_A);
1994#endif 3036#endif
1995 3037
1996#ifndef _WIN32 3038#ifndef _WIN32
1997 if (expect_false (curpid)) /* penalise the forking check even more */ 3039 if (expect_false (curpid)) /* penalise the forking check even more */
1998 if (expect_false (getpid () != curpid)) 3040 if (expect_false (getpid () != curpid))
2006 /* we might have forked, so queue fork handlers */ 3048 /* we might have forked, so queue fork handlers */
2007 if (expect_false (postfork)) 3049 if (expect_false (postfork))
2008 if (forkcnt) 3050 if (forkcnt)
2009 { 3051 {
2010 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3052 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2011 call_pending (EV_A); 3053 EV_INVOKE_PENDING;
2012 } 3054 }
2013#endif 3055#endif
2014 3056
3057#if EV_PREPARE_ENABLE
2015 /* queue prepare watchers (and execute them) */ 3058 /* queue prepare watchers (and execute them) */
2016 if (expect_false (preparecnt)) 3059 if (expect_false (preparecnt))
2017 { 3060 {
2018 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3061 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2019 call_pending (EV_A); 3062 EV_INVOKE_PENDING;
2020 } 3063 }
3064#endif
3065
3066 if (expect_false (loop_done))
3067 break;
2021 3068
2022 /* we might have forked, so reify kernel state if necessary */ 3069 /* we might have forked, so reify kernel state if necessary */
2023 if (expect_false (postfork)) 3070 if (expect_false (postfork))
2024 loop_fork (EV_A); 3071 loop_fork (EV_A);
2025 3072
2029 /* calculate blocking time */ 3076 /* calculate blocking time */
2030 { 3077 {
2031 ev_tstamp waittime = 0.; 3078 ev_tstamp waittime = 0.;
2032 ev_tstamp sleeptime = 0.; 3079 ev_tstamp sleeptime = 0.;
2033 3080
3081 /* remember old timestamp for io_blocktime calculation */
3082 ev_tstamp prev_mn_now = mn_now;
3083
3084 /* update time to cancel out callback processing overhead */
3085 time_update (EV_A_ 1e100);
3086
3087 /* from now on, we want a pipe-wake-up */
3088 pipe_write_wanted = 1;
3089
3090 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3091
2034 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3092 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
2035 { 3093 {
2036 /* update time to cancel out callback processing overhead */ 3094 waittime = MAX_BLOCKTIME;
2037 time_update (EV_A_ 1e100);
2038 3095
2039 if (timercnt) 3096 if (timercnt)
2040 { 3097 {
2041 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3098 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
2042 if (waittime > to) waittime = to; 3099 if (waittime > to) waittime = to;
2043 } 3100 }
2044 3101
2045#if EV_PERIODIC_ENABLE 3102#if EV_PERIODIC_ENABLE
2046 if (periodiccnt) 3103 if (periodiccnt)
2047 { 3104 {
2048 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3105 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
2049 if (waittime > to) waittime = to; 3106 if (waittime > to) waittime = to;
2050 } 3107 }
2051#endif 3108#endif
2052 3109
3110 /* don't let timeouts decrease the waittime below timeout_blocktime */
2053 if (expect_false (waittime < timeout_blocktime)) 3111 if (expect_false (waittime < timeout_blocktime))
2054 waittime = timeout_blocktime; 3112 waittime = timeout_blocktime;
2055 3113
2056 sleeptime = waittime - backend_fudge; 3114 /* at this point, we NEED to wait, so we have to ensure */
3115 /* to pass a minimum nonzero value to the backend */
3116 if (expect_false (waittime < backend_mintime))
3117 waittime = backend_mintime;
2057 3118
3119 /* extra check because io_blocktime is commonly 0 */
2058 if (expect_true (sleeptime > io_blocktime)) 3120 if (expect_false (io_blocktime))
2059 sleeptime = io_blocktime;
2060
2061 if (sleeptime)
2062 { 3121 {
3122 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3123
3124 if (sleeptime > waittime - backend_mintime)
3125 sleeptime = waittime - backend_mintime;
3126
3127 if (expect_true (sleeptime > 0.))
3128 {
2063 ev_sleep (sleeptime); 3129 ev_sleep (sleeptime);
2064 waittime -= sleeptime; 3130 waittime -= sleeptime;
3131 }
2065 } 3132 }
2066 } 3133 }
2067 3134
3135#if EV_FEATURE_API
2068 ++loop_count; 3136 ++loop_count;
3137#endif
3138 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2069 backend_poll (EV_A_ waittime); 3139 backend_poll (EV_A_ waittime);
3140 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3141
3142 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3143
3144 ECB_MEMORY_FENCE_ACQUIRE;
3145 if (pipe_write_skipped)
3146 {
3147 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3148 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3149 }
3150
2070 3151
2071 /* update ev_rt_now, do magic */ 3152 /* update ev_rt_now, do magic */
2072 time_update (EV_A_ waittime + sleeptime); 3153 time_update (EV_A_ waittime + sleeptime);
2073 } 3154 }
2074 3155
2081#if EV_IDLE_ENABLE 3162#if EV_IDLE_ENABLE
2082 /* queue idle watchers unless other events are pending */ 3163 /* queue idle watchers unless other events are pending */
2083 idle_reify (EV_A); 3164 idle_reify (EV_A);
2084#endif 3165#endif
2085 3166
3167#if EV_CHECK_ENABLE
2086 /* queue check watchers, to be executed first */ 3168 /* queue check watchers, to be executed first */
2087 if (expect_false (checkcnt)) 3169 if (expect_false (checkcnt))
2088 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3170 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3171#endif
2089 3172
2090 call_pending (EV_A); 3173 EV_INVOKE_PENDING;
2091 } 3174 }
2092 while (expect_true ( 3175 while (expect_true (
2093 activecnt 3176 activecnt
2094 && !loop_done 3177 && !loop_done
2095 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3178 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2096 )); 3179 ));
2097 3180
2098 if (loop_done == EVUNLOOP_ONE) 3181 if (loop_done == EVBREAK_ONE)
2099 loop_done = EVUNLOOP_CANCEL; 3182 loop_done = EVBREAK_CANCEL;
3183
3184#if EV_FEATURE_API
3185 --loop_depth;
3186#endif
3187
3188 return activecnt;
2100} 3189}
2101 3190
2102void 3191void
2103ev_unloop (EV_P_ int how) 3192ev_break (EV_P_ int how) EV_THROW
2104{ 3193{
2105 loop_done = how; 3194 loop_done = how;
2106} 3195}
2107 3196
2108void 3197void
2109ev_ref (EV_P) 3198ev_ref (EV_P) EV_THROW
2110{ 3199{
2111 ++activecnt; 3200 ++activecnt;
2112} 3201}
2113 3202
2114void 3203void
2115ev_unref (EV_P) 3204ev_unref (EV_P) EV_THROW
2116{ 3205{
2117 --activecnt; 3206 --activecnt;
2118} 3207}
2119 3208
2120void 3209void
2121ev_now_update (EV_P) 3210ev_now_update (EV_P) EV_THROW
2122{ 3211{
2123 time_update (EV_A_ 1e100); 3212 time_update (EV_A_ 1e100);
2124} 3213}
2125 3214
2126void 3215void
2127ev_suspend (EV_P) 3216ev_suspend (EV_P) EV_THROW
2128{ 3217{
2129 ev_now_update (EV_A); 3218 ev_now_update (EV_A);
2130} 3219}
2131 3220
2132void 3221void
2133ev_resume (EV_P) 3222ev_resume (EV_P) EV_THROW
2134{ 3223{
2135 ev_tstamp mn_prev = mn_now; 3224 ev_tstamp mn_prev = mn_now;
2136 3225
2137 ev_now_update (EV_A); 3226 ev_now_update (EV_A);
2138 timers_reschedule (EV_A_ mn_now - mn_prev); 3227 timers_reschedule (EV_A_ mn_now - mn_prev);
2139#if EV_PERIODIC_ENABLE 3228#if EV_PERIODIC_ENABLE
3229 /* TODO: really do this? */
2140 periodics_reschedule (EV_A); 3230 periodics_reschedule (EV_A);
2141#endif 3231#endif
2142} 3232}
2143 3233
2144/*****************************************************************************/ 3234/*****************************************************************************/
3235/* singly-linked list management, used when the expected list length is short */
2145 3236
2146inline_size void 3237inline_size void
2147wlist_add (WL *head, WL elem) 3238wlist_add (WL *head, WL elem)
2148{ 3239{
2149 elem->next = *head; 3240 elem->next = *head;
2153inline_size void 3244inline_size void
2154wlist_del (WL *head, WL elem) 3245wlist_del (WL *head, WL elem)
2155{ 3246{
2156 while (*head) 3247 while (*head)
2157 { 3248 {
2158 if (*head == elem) 3249 if (expect_true (*head == elem))
2159 { 3250 {
2160 *head = elem->next; 3251 *head = elem->next;
2161 return; 3252 break;
2162 } 3253 }
2163 3254
2164 head = &(*head)->next; 3255 head = &(*head)->next;
2165 } 3256 }
2166} 3257}
2167 3258
3259/* internal, faster, version of ev_clear_pending */
2168inline_speed void 3260inline_speed void
2169clear_pending (EV_P_ W w) 3261clear_pending (EV_P_ W w)
2170{ 3262{
2171 if (w->pending) 3263 if (w->pending)
2172 { 3264 {
2173 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3265 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2174 w->pending = 0; 3266 w->pending = 0;
2175 } 3267 }
2176} 3268}
2177 3269
2178int 3270int
2179ev_clear_pending (EV_P_ void *w) 3271ev_clear_pending (EV_P_ void *w) EV_THROW
2180{ 3272{
2181 W w_ = (W)w; 3273 W w_ = (W)w;
2182 int pending = w_->pending; 3274 int pending = w_->pending;
2183 3275
2184 if (expect_true (pending)) 3276 if (expect_true (pending))
2185 { 3277 {
2186 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3278 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3279 p->w = (W)&pending_w;
2187 w_->pending = 0; 3280 w_->pending = 0;
2188 p->w = 0;
2189 return p->events; 3281 return p->events;
2190 } 3282 }
2191 else 3283 else
2192 return 0; 3284 return 0;
2193} 3285}
2194 3286
2195inline_size void 3287inline_size void
2196pri_adjust (EV_P_ W w) 3288pri_adjust (EV_P_ W w)
2197{ 3289{
2198 int pri = w->priority; 3290 int pri = ev_priority (w);
2199 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3291 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2200 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3292 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2201 w->priority = pri; 3293 ev_set_priority (w, pri);
2202} 3294}
2203 3295
2204inline_speed void 3296inline_speed void
2205ev_start (EV_P_ W w, int active) 3297ev_start (EV_P_ W w, int active)
2206{ 3298{
2217} 3309}
2218 3310
2219/*****************************************************************************/ 3311/*****************************************************************************/
2220 3312
2221void noinline 3313void noinline
2222ev_io_start (EV_P_ ev_io *w) 3314ev_io_start (EV_P_ ev_io *w) EV_THROW
2223{ 3315{
2224 int fd = w->fd; 3316 int fd = w->fd;
2225 3317
2226 if (expect_false (ev_is_active (w))) 3318 if (expect_false (ev_is_active (w)))
2227 return; 3319 return;
2228 3320
2229 assert (("libev: ev_io_start called with negative fd", fd >= 0)); 3321 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2230 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE)))); 3322 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2231 3323
2232 EV_FREQUENT_CHECK; 3324 EV_FREQUENT_CHECK;
2233 3325
2234 ev_start (EV_A_ (W)w, 1); 3326 ev_start (EV_A_ (W)w, 1);
2235 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 3327 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2236 wlist_add (&anfds[fd].head, (WL)w); 3328 wlist_add (&anfds[fd].head, (WL)w);
2237 3329
3330 /* common bug, apparently */
3331 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3332
2238 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1); 3333 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2239 w->events &= ~EV__IOFDSET; 3334 w->events &= ~EV__IOFDSET;
2240 3335
2241 EV_FREQUENT_CHECK; 3336 EV_FREQUENT_CHECK;
2242} 3337}
2243 3338
2244void noinline 3339void noinline
2245ev_io_stop (EV_P_ ev_io *w) 3340ev_io_stop (EV_P_ ev_io *w) EV_THROW
2246{ 3341{
2247 clear_pending (EV_A_ (W)w); 3342 clear_pending (EV_A_ (W)w);
2248 if (expect_false (!ev_is_active (w))) 3343 if (expect_false (!ev_is_active (w)))
2249 return; 3344 return;
2250 3345
2253 EV_FREQUENT_CHECK; 3348 EV_FREQUENT_CHECK;
2254 3349
2255 wlist_del (&anfds[w->fd].head, (WL)w); 3350 wlist_del (&anfds[w->fd].head, (WL)w);
2256 ev_stop (EV_A_ (W)w); 3351 ev_stop (EV_A_ (W)w);
2257 3352
2258 fd_change (EV_A_ w->fd, 1); 3353 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2259 3354
2260 EV_FREQUENT_CHECK; 3355 EV_FREQUENT_CHECK;
2261} 3356}
2262 3357
2263void noinline 3358void noinline
2264ev_timer_start (EV_P_ ev_timer *w) 3359ev_timer_start (EV_P_ ev_timer *w) EV_THROW
2265{ 3360{
2266 if (expect_false (ev_is_active (w))) 3361 if (expect_false (ev_is_active (w)))
2267 return; 3362 return;
2268 3363
2269 ev_at (w) += mn_now; 3364 ev_at (w) += mn_now;
2283 3378
2284 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3379 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2285} 3380}
2286 3381
2287void noinline 3382void noinline
2288ev_timer_stop (EV_P_ ev_timer *w) 3383ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
2289{ 3384{
2290 clear_pending (EV_A_ (W)w); 3385 clear_pending (EV_A_ (W)w);
2291 if (expect_false (!ev_is_active (w))) 3386 if (expect_false (!ev_is_active (w)))
2292 return; 3387 return;
2293 3388
2305 timers [active] = timers [timercnt + HEAP0]; 3400 timers [active] = timers [timercnt + HEAP0];
2306 adjustheap (timers, timercnt, active); 3401 adjustheap (timers, timercnt, active);
2307 } 3402 }
2308 } 3403 }
2309 3404
2310 EV_FREQUENT_CHECK;
2311
2312 ev_at (w) -= mn_now; 3405 ev_at (w) -= mn_now;
2313 3406
2314 ev_stop (EV_A_ (W)w); 3407 ev_stop (EV_A_ (W)w);
3408
3409 EV_FREQUENT_CHECK;
2315} 3410}
2316 3411
2317void noinline 3412void noinline
2318ev_timer_again (EV_P_ ev_timer *w) 3413ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2319{ 3414{
2320 EV_FREQUENT_CHECK; 3415 EV_FREQUENT_CHECK;
3416
3417 clear_pending (EV_A_ (W)w);
2321 3418
2322 if (ev_is_active (w)) 3419 if (ev_is_active (w))
2323 { 3420 {
2324 if (w->repeat) 3421 if (w->repeat)
2325 { 3422 {
2337 } 3434 }
2338 3435
2339 EV_FREQUENT_CHECK; 3436 EV_FREQUENT_CHECK;
2340} 3437}
2341 3438
3439ev_tstamp
3440ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3441{
3442 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3443}
3444
2342#if EV_PERIODIC_ENABLE 3445#if EV_PERIODIC_ENABLE
2343void noinline 3446void noinline
2344ev_periodic_start (EV_P_ ev_periodic *w) 3447ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2345{ 3448{
2346 if (expect_false (ev_is_active (w))) 3449 if (expect_false (ev_is_active (w)))
2347 return; 3450 return;
2348 3451
2349 if (w->reschedule_cb) 3452 if (w->reschedule_cb)
2350 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3453 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2351 else if (w->interval) 3454 else if (w->interval)
2352 { 3455 {
2353 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.)); 3456 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2354 /* this formula differs from the one in periodic_reify because we do not always round up */ 3457 periodic_recalc (EV_A_ w);
2355 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2356 } 3458 }
2357 else 3459 else
2358 ev_at (w) = w->offset; 3460 ev_at (w) = w->offset;
2359 3461
2360 EV_FREQUENT_CHECK; 3462 EV_FREQUENT_CHECK;
2370 3472
2371 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3473 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2372} 3474}
2373 3475
2374void noinline 3476void noinline
2375ev_periodic_stop (EV_P_ ev_periodic *w) 3477ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2376{ 3478{
2377 clear_pending (EV_A_ (W)w); 3479 clear_pending (EV_A_ (W)w);
2378 if (expect_false (!ev_is_active (w))) 3480 if (expect_false (!ev_is_active (w)))
2379 return; 3481 return;
2380 3482
2392 periodics [active] = periodics [periodiccnt + HEAP0]; 3494 periodics [active] = periodics [periodiccnt + HEAP0];
2393 adjustheap (periodics, periodiccnt, active); 3495 adjustheap (periodics, periodiccnt, active);
2394 } 3496 }
2395 } 3497 }
2396 3498
2397 EV_FREQUENT_CHECK;
2398
2399 ev_stop (EV_A_ (W)w); 3499 ev_stop (EV_A_ (W)w);
3500
3501 EV_FREQUENT_CHECK;
2400} 3502}
2401 3503
2402void noinline 3504void noinline
2403ev_periodic_again (EV_P_ ev_periodic *w) 3505ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2404{ 3506{
2405 /* TODO: use adjustheap and recalculation */ 3507 /* TODO: use adjustheap and recalculation */
2406 ev_periodic_stop (EV_A_ w); 3508 ev_periodic_stop (EV_A_ w);
2407 ev_periodic_start (EV_A_ w); 3509 ev_periodic_start (EV_A_ w);
2408} 3510}
2410 3512
2411#ifndef SA_RESTART 3513#ifndef SA_RESTART
2412# define SA_RESTART 0 3514# define SA_RESTART 0
2413#endif 3515#endif
2414 3516
3517#if EV_SIGNAL_ENABLE
3518
2415void noinline 3519void noinline
2416ev_signal_start (EV_P_ ev_signal *w) 3520ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2417{ 3521{
2418#if EV_MULTIPLICITY
2419 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2420#endif
2421 if (expect_false (ev_is_active (w))) 3522 if (expect_false (ev_is_active (w)))
2422 return; 3523 return;
2423 3524
2424 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0)); 3525 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2425 3526
2426 evpipe_init (EV_A); 3527#if EV_MULTIPLICITY
3528 assert (("libev: a signal must not be attached to two different loops",
3529 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2427 3530
2428 EV_FREQUENT_CHECK; 3531 signals [w->signum - 1].loop = EV_A;
3532 ECB_MEMORY_FENCE_RELEASE;
3533#endif
2429 3534
3535 EV_FREQUENT_CHECK;
3536
3537#if EV_USE_SIGNALFD
3538 if (sigfd == -2)
2430 { 3539 {
2431#ifndef _WIN32 3540 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2432 sigset_t full, prev; 3541 if (sigfd < 0 && errno == EINVAL)
2433 sigfillset (&full); 3542 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2434 sigprocmask (SIG_SETMASK, &full, &prev);
2435#endif
2436 3543
2437 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero); 3544 if (sigfd >= 0)
3545 {
3546 fd_intern (sigfd); /* doing it twice will not hurt */
2438 3547
2439#ifndef _WIN32 3548 sigemptyset (&sigfd_set);
2440 sigprocmask (SIG_SETMASK, &prev, 0); 3549
2441#endif 3550 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3551 ev_set_priority (&sigfd_w, EV_MAXPRI);
3552 ev_io_start (EV_A_ &sigfd_w);
3553 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3554 }
2442 } 3555 }
3556
3557 if (sigfd >= 0)
3558 {
3559 /* TODO: check .head */
3560 sigaddset (&sigfd_set, w->signum);
3561 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3562
3563 signalfd (sigfd, &sigfd_set, 0);
3564 }
3565#endif
2443 3566
2444 ev_start (EV_A_ (W)w, 1); 3567 ev_start (EV_A_ (W)w, 1);
2445 wlist_add (&signals [w->signum - 1].head, (WL)w); 3568 wlist_add (&signals [w->signum - 1].head, (WL)w);
2446 3569
2447 if (!((WL)w)->next) 3570 if (!((WL)w)->next)
3571# if EV_USE_SIGNALFD
3572 if (sigfd < 0) /*TODO*/
3573# endif
2448 { 3574 {
2449#if _WIN32 3575# ifdef _WIN32
3576 evpipe_init (EV_A);
3577
2450 signal (w->signum, ev_sighandler); 3578 signal (w->signum, ev_sighandler);
2451#else 3579# else
2452 struct sigaction sa; 3580 struct sigaction sa;
3581
3582 evpipe_init (EV_A);
3583
2453 sa.sa_handler = ev_sighandler; 3584 sa.sa_handler = ev_sighandler;
2454 sigfillset (&sa.sa_mask); 3585 sigfillset (&sa.sa_mask);
2455 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3586 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2456 sigaction (w->signum, &sa, 0); 3587 sigaction (w->signum, &sa, 0);
3588
3589 if (origflags & EVFLAG_NOSIGMASK)
3590 {
3591 sigemptyset (&sa.sa_mask);
3592 sigaddset (&sa.sa_mask, w->signum);
3593 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3594 }
2457#endif 3595#endif
2458 } 3596 }
2459 3597
2460 EV_FREQUENT_CHECK; 3598 EV_FREQUENT_CHECK;
2461} 3599}
2462 3600
2463void noinline 3601void noinline
2464ev_signal_stop (EV_P_ ev_signal *w) 3602ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2465{ 3603{
2466 clear_pending (EV_A_ (W)w); 3604 clear_pending (EV_A_ (W)w);
2467 if (expect_false (!ev_is_active (w))) 3605 if (expect_false (!ev_is_active (w)))
2468 return; 3606 return;
2469 3607
2471 3609
2472 wlist_del (&signals [w->signum - 1].head, (WL)w); 3610 wlist_del (&signals [w->signum - 1].head, (WL)w);
2473 ev_stop (EV_A_ (W)w); 3611 ev_stop (EV_A_ (W)w);
2474 3612
2475 if (!signals [w->signum - 1].head) 3613 if (!signals [w->signum - 1].head)
3614 {
3615#if EV_MULTIPLICITY
3616 signals [w->signum - 1].loop = 0; /* unattach from signal */
3617#endif
3618#if EV_USE_SIGNALFD
3619 if (sigfd >= 0)
3620 {
3621 sigset_t ss;
3622
3623 sigemptyset (&ss);
3624 sigaddset (&ss, w->signum);
3625 sigdelset (&sigfd_set, w->signum);
3626
3627 signalfd (sigfd, &sigfd_set, 0);
3628 sigprocmask (SIG_UNBLOCK, &ss, 0);
3629 }
3630 else
3631#endif
2476 signal (w->signum, SIG_DFL); 3632 signal (w->signum, SIG_DFL);
3633 }
2477 3634
2478 EV_FREQUENT_CHECK; 3635 EV_FREQUENT_CHECK;
2479} 3636}
3637
3638#endif
3639
3640#if EV_CHILD_ENABLE
2480 3641
2481void 3642void
2482ev_child_start (EV_P_ ev_child *w) 3643ev_child_start (EV_P_ ev_child *w) EV_THROW
2483{ 3644{
2484#if EV_MULTIPLICITY 3645#if EV_MULTIPLICITY
2485 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3646 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2486#endif 3647#endif
2487 if (expect_false (ev_is_active (w))) 3648 if (expect_false (ev_is_active (w)))
2488 return; 3649 return;
2489 3650
2490 EV_FREQUENT_CHECK; 3651 EV_FREQUENT_CHECK;
2491 3652
2492 ev_start (EV_A_ (W)w, 1); 3653 ev_start (EV_A_ (W)w, 1);
2493 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3654 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2494 3655
2495 EV_FREQUENT_CHECK; 3656 EV_FREQUENT_CHECK;
2496} 3657}
2497 3658
2498void 3659void
2499ev_child_stop (EV_P_ ev_child *w) 3660ev_child_stop (EV_P_ ev_child *w) EV_THROW
2500{ 3661{
2501 clear_pending (EV_A_ (W)w); 3662 clear_pending (EV_A_ (W)w);
2502 if (expect_false (!ev_is_active (w))) 3663 if (expect_false (!ev_is_active (w)))
2503 return; 3664 return;
2504 3665
2505 EV_FREQUENT_CHECK; 3666 EV_FREQUENT_CHECK;
2506 3667
2507 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3668 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2508 ev_stop (EV_A_ (W)w); 3669 ev_stop (EV_A_ (W)w);
2509 3670
2510 EV_FREQUENT_CHECK; 3671 EV_FREQUENT_CHECK;
2511} 3672}
3673
3674#endif
2512 3675
2513#if EV_STAT_ENABLE 3676#if EV_STAT_ENABLE
2514 3677
2515# ifdef _WIN32 3678# ifdef _WIN32
2516# undef lstat 3679# undef lstat
2522#define MIN_STAT_INTERVAL 0.1074891 3685#define MIN_STAT_INTERVAL 0.1074891
2523 3686
2524static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3687static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2525 3688
2526#if EV_USE_INOTIFY 3689#if EV_USE_INOTIFY
2527# define EV_INOTIFY_BUFSIZE 8192 3690
3691/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3692# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2528 3693
2529static void noinline 3694static void noinline
2530infy_add (EV_P_ ev_stat *w) 3695infy_add (EV_P_ ev_stat *w)
2531{ 3696{
2532 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3697 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2533 3698
2534 if (w->wd < 0) 3699 if (w->wd >= 0)
3700 {
3701 struct statfs sfs;
3702
3703 /* now local changes will be tracked by inotify, but remote changes won't */
3704 /* unless the filesystem is known to be local, we therefore still poll */
3705 /* also do poll on <2.6.25, but with normal frequency */
3706
3707 if (!fs_2625)
3708 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3709 else if (!statfs (w->path, &sfs)
3710 && (sfs.f_type == 0x1373 /* devfs */
3711 || sfs.f_type == 0xEF53 /* ext2/3 */
3712 || sfs.f_type == 0x3153464a /* jfs */
3713 || sfs.f_type == 0x52654973 /* reiser3 */
3714 || sfs.f_type == 0x01021994 /* tempfs */
3715 || sfs.f_type == 0x58465342 /* xfs */))
3716 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3717 else
3718 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2535 { 3719 }
3720 else
3721 {
3722 /* can't use inotify, continue to stat */
2536 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL; 3723 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2537 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2538 3724
2539 /* monitor some parent directory for speedup hints */ 3725 /* if path is not there, monitor some parent directory for speedup hints */
2540 /* note that exceeding the hardcoded path limit is not a correctness issue, */ 3726 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2541 /* but an efficiency issue only */ 3727 /* but an efficiency issue only */
2542 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3728 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2543 { 3729 {
2544 char path [4096]; 3730 char path [4096];
2554 if (!pend || pend == path) 3740 if (!pend || pend == path)
2555 break; 3741 break;
2556 3742
2557 *pend = 0; 3743 *pend = 0;
2558 w->wd = inotify_add_watch (fs_fd, path, mask); 3744 w->wd = inotify_add_watch (fs_fd, path, mask);
2559 } 3745 }
2560 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3746 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2561 } 3747 }
2562 } 3748 }
2563 3749
2564 if (w->wd >= 0) 3750 if (w->wd >= 0)
2565 {
2566 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3751 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2567 3752
2568 /* now local changes will be tracked by inotify, but remote changes won't */ 3753 /* now re-arm timer, if required */
2569 /* unless the filesystem it known to be local, we therefore still poll */ 3754 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2570 /* also do poll on <2.6.25, but with normal frequency */
2571 struct statfs sfs;
2572
2573 if (fs_2625 && !statfs (w->path, &sfs))
2574 if (sfs.f_type == 0x1373 /* devfs */
2575 || sfs.f_type == 0xEF53 /* ext2/3 */
2576 || sfs.f_type == 0x3153464a /* jfs */
2577 || sfs.f_type == 0x52654973 /* reiser3 */
2578 || sfs.f_type == 0x01021994 /* tempfs */
2579 || sfs.f_type == 0x58465342 /* xfs */)
2580 return;
2581
2582 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2583 ev_timer_again (EV_A_ &w->timer); 3755 ev_timer_again (EV_A_ &w->timer);
2584 } 3756 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2585} 3757}
2586 3758
2587static void noinline 3759static void noinline
2588infy_del (EV_P_ ev_stat *w) 3760infy_del (EV_P_ ev_stat *w)
2589{ 3761{
2592 3764
2593 if (wd < 0) 3765 if (wd < 0)
2594 return; 3766 return;
2595 3767
2596 w->wd = -2; 3768 w->wd = -2;
2597 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3769 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2598 wlist_del (&fs_hash [slot].head, (WL)w); 3770 wlist_del (&fs_hash [slot].head, (WL)w);
2599 3771
2600 /* remove this watcher, if others are watching it, they will rearm */ 3772 /* remove this watcher, if others are watching it, they will rearm */
2601 inotify_rm_watch (fs_fd, wd); 3773 inotify_rm_watch (fs_fd, wd);
2602} 3774}
2604static void noinline 3776static void noinline
2605infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3777infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2606{ 3778{
2607 if (slot < 0) 3779 if (slot < 0)
2608 /* overflow, need to check for all hash slots */ 3780 /* overflow, need to check for all hash slots */
2609 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3781 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2610 infy_wd (EV_A_ slot, wd, ev); 3782 infy_wd (EV_A_ slot, wd, ev);
2611 else 3783 else
2612 { 3784 {
2613 WL w_; 3785 WL w_;
2614 3786
2615 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3787 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2616 { 3788 {
2617 ev_stat *w = (ev_stat *)w_; 3789 ev_stat *w = (ev_stat *)w_;
2618 w_ = w_->next; /* lets us remove this watcher and all before it */ 3790 w_ = w_->next; /* lets us remove this watcher and all before it */
2619 3791
2620 if (w->wd == wd || wd == -1) 3792 if (w->wd == wd || wd == -1)
2621 { 3793 {
2622 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3794 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2623 { 3795 {
2624 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3796 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2625 w->wd = -1; 3797 w->wd = -1;
2626 infy_add (EV_A_ w); /* re-add, no matter what */ 3798 infy_add (EV_A_ w); /* re-add, no matter what */
2627 } 3799 }
2628 3800
2629 stat_timer_cb (EV_A_ &w->timer, 0); 3801 stat_timer_cb (EV_A_ &w->timer, 0);
2634 3806
2635static void 3807static void
2636infy_cb (EV_P_ ev_io *w, int revents) 3808infy_cb (EV_P_ ev_io *w, int revents)
2637{ 3809{
2638 char buf [EV_INOTIFY_BUFSIZE]; 3810 char buf [EV_INOTIFY_BUFSIZE];
2639 struct inotify_event *ev = (struct inotify_event *)buf;
2640 int ofs; 3811 int ofs;
2641 int len = read (fs_fd, buf, sizeof (buf)); 3812 int len = read (fs_fd, buf, sizeof (buf));
2642 3813
2643 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3814 for (ofs = 0; ofs < len; )
3815 {
3816 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2644 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3817 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3818 ofs += sizeof (struct inotify_event) + ev->len;
3819 }
2645} 3820}
2646 3821
2647inline_size void 3822inline_size void ecb_cold
2648check_2625 (EV_P) 3823ev_check_2625 (EV_P)
2649{ 3824{
2650 /* kernels < 2.6.25 are borked 3825 /* kernels < 2.6.25 are borked
2651 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 3826 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2652 */ 3827 */
2653 struct utsname buf; 3828 if (ev_linux_version () < 0x020619)
2654 int major, minor, micro;
2655
2656 if (uname (&buf))
2657 return; 3829 return;
2658 3830
2659 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2660 return;
2661
2662 if (major < 2
2663 || (major == 2 && minor < 6)
2664 || (major == 2 && minor == 6 && micro < 25))
2665 return;
2666
2667 fs_2625 = 1; 3831 fs_2625 = 1;
3832}
3833
3834inline_size int
3835infy_newfd (void)
3836{
3837#if defined IN_CLOEXEC && defined IN_NONBLOCK
3838 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3839 if (fd >= 0)
3840 return fd;
3841#endif
3842 return inotify_init ();
2668} 3843}
2669 3844
2670inline_size void 3845inline_size void
2671infy_init (EV_P) 3846infy_init (EV_P)
2672{ 3847{
2673 if (fs_fd != -2) 3848 if (fs_fd != -2)
2674 return; 3849 return;
2675 3850
2676 fs_fd = -1; 3851 fs_fd = -1;
2677 3852
2678 check_2625 (EV_A); 3853 ev_check_2625 (EV_A);
2679 3854
2680 fs_fd = inotify_init (); 3855 fs_fd = infy_newfd ();
2681 3856
2682 if (fs_fd >= 0) 3857 if (fs_fd >= 0)
2683 { 3858 {
3859 fd_intern (fs_fd);
2684 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3860 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2685 ev_set_priority (&fs_w, EV_MAXPRI); 3861 ev_set_priority (&fs_w, EV_MAXPRI);
2686 ev_io_start (EV_A_ &fs_w); 3862 ev_io_start (EV_A_ &fs_w);
3863 ev_unref (EV_A);
2687 } 3864 }
2688} 3865}
2689 3866
2690inline_size void 3867inline_size void
2691infy_fork (EV_P) 3868infy_fork (EV_P)
2693 int slot; 3870 int slot;
2694 3871
2695 if (fs_fd < 0) 3872 if (fs_fd < 0)
2696 return; 3873 return;
2697 3874
3875 ev_ref (EV_A);
3876 ev_io_stop (EV_A_ &fs_w);
2698 close (fs_fd); 3877 close (fs_fd);
2699 fs_fd = inotify_init (); 3878 fs_fd = infy_newfd ();
2700 3879
3880 if (fs_fd >= 0)
3881 {
3882 fd_intern (fs_fd);
3883 ev_io_set (&fs_w, fs_fd, EV_READ);
3884 ev_io_start (EV_A_ &fs_w);
3885 ev_unref (EV_A);
3886 }
3887
2701 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3888 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2702 { 3889 {
2703 WL w_ = fs_hash [slot].head; 3890 WL w_ = fs_hash [slot].head;
2704 fs_hash [slot].head = 0; 3891 fs_hash [slot].head = 0;
2705 3892
2706 while (w_) 3893 while (w_)
2711 w->wd = -1; 3898 w->wd = -1;
2712 3899
2713 if (fs_fd >= 0) 3900 if (fs_fd >= 0)
2714 infy_add (EV_A_ w); /* re-add, no matter what */ 3901 infy_add (EV_A_ w); /* re-add, no matter what */
2715 else 3902 else
3903 {
3904 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3905 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2716 ev_timer_again (EV_A_ &w->timer); 3906 ev_timer_again (EV_A_ &w->timer);
3907 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3908 }
2717 } 3909 }
2718 } 3910 }
2719} 3911}
2720 3912
2721#endif 3913#endif
2725#else 3917#else
2726# define EV_LSTAT(p,b) lstat (p, b) 3918# define EV_LSTAT(p,b) lstat (p, b)
2727#endif 3919#endif
2728 3920
2729void 3921void
2730ev_stat_stat (EV_P_ ev_stat *w) 3922ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2731{ 3923{
2732 if (lstat (w->path, &w->attr) < 0) 3924 if (lstat (w->path, &w->attr) < 0)
2733 w->attr.st_nlink = 0; 3925 w->attr.st_nlink = 0;
2734 else if (!w->attr.st_nlink) 3926 else if (!w->attr.st_nlink)
2735 w->attr.st_nlink = 1; 3927 w->attr.st_nlink = 1;
2738static void noinline 3930static void noinline
2739stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3931stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2740{ 3932{
2741 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3933 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2742 3934
2743 /* we copy this here each the time so that */ 3935 ev_statdata prev = w->attr;
2744 /* prev has the old value when the callback gets invoked */
2745 w->prev = w->attr;
2746 ev_stat_stat (EV_A_ w); 3936 ev_stat_stat (EV_A_ w);
2747 3937
2748 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3938 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2749 if ( 3939 if (
2750 w->prev.st_dev != w->attr.st_dev 3940 prev.st_dev != w->attr.st_dev
2751 || w->prev.st_ino != w->attr.st_ino 3941 || prev.st_ino != w->attr.st_ino
2752 || w->prev.st_mode != w->attr.st_mode 3942 || prev.st_mode != w->attr.st_mode
2753 || w->prev.st_nlink != w->attr.st_nlink 3943 || prev.st_nlink != w->attr.st_nlink
2754 || w->prev.st_uid != w->attr.st_uid 3944 || prev.st_uid != w->attr.st_uid
2755 || w->prev.st_gid != w->attr.st_gid 3945 || prev.st_gid != w->attr.st_gid
2756 || w->prev.st_rdev != w->attr.st_rdev 3946 || prev.st_rdev != w->attr.st_rdev
2757 || w->prev.st_size != w->attr.st_size 3947 || prev.st_size != w->attr.st_size
2758 || w->prev.st_atime != w->attr.st_atime 3948 || prev.st_atime != w->attr.st_atime
2759 || w->prev.st_mtime != w->attr.st_mtime 3949 || prev.st_mtime != w->attr.st_mtime
2760 || w->prev.st_ctime != w->attr.st_ctime 3950 || prev.st_ctime != w->attr.st_ctime
2761 ) { 3951 ) {
3952 /* we only update w->prev on actual differences */
3953 /* in case we test more often than invoke the callback, */
3954 /* to ensure that prev is always different to attr */
3955 w->prev = prev;
3956
2762 #if EV_USE_INOTIFY 3957 #if EV_USE_INOTIFY
2763 if (fs_fd >= 0) 3958 if (fs_fd >= 0)
2764 { 3959 {
2765 infy_del (EV_A_ w); 3960 infy_del (EV_A_ w);
2766 infy_add (EV_A_ w); 3961 infy_add (EV_A_ w);
2771 ev_feed_event (EV_A_ w, EV_STAT); 3966 ev_feed_event (EV_A_ w, EV_STAT);
2772 } 3967 }
2773} 3968}
2774 3969
2775void 3970void
2776ev_stat_start (EV_P_ ev_stat *w) 3971ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2777{ 3972{
2778 if (expect_false (ev_is_active (w))) 3973 if (expect_false (ev_is_active (w)))
2779 return; 3974 return;
2780 3975
2781 ev_stat_stat (EV_A_ w); 3976 ev_stat_stat (EV_A_ w);
2791 3986
2792 if (fs_fd >= 0) 3987 if (fs_fd >= 0)
2793 infy_add (EV_A_ w); 3988 infy_add (EV_A_ w);
2794 else 3989 else
2795#endif 3990#endif
3991 {
2796 ev_timer_again (EV_A_ &w->timer); 3992 ev_timer_again (EV_A_ &w->timer);
3993 ev_unref (EV_A);
3994 }
2797 3995
2798 ev_start (EV_A_ (W)w, 1); 3996 ev_start (EV_A_ (W)w, 1);
2799 3997
2800 EV_FREQUENT_CHECK; 3998 EV_FREQUENT_CHECK;
2801} 3999}
2802 4000
2803void 4001void
2804ev_stat_stop (EV_P_ ev_stat *w) 4002ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2805{ 4003{
2806 clear_pending (EV_A_ (W)w); 4004 clear_pending (EV_A_ (W)w);
2807 if (expect_false (!ev_is_active (w))) 4005 if (expect_false (!ev_is_active (w)))
2808 return; 4006 return;
2809 4007
2810 EV_FREQUENT_CHECK; 4008 EV_FREQUENT_CHECK;
2811 4009
2812#if EV_USE_INOTIFY 4010#if EV_USE_INOTIFY
2813 infy_del (EV_A_ w); 4011 infy_del (EV_A_ w);
2814#endif 4012#endif
4013
4014 if (ev_is_active (&w->timer))
4015 {
4016 ev_ref (EV_A);
2815 ev_timer_stop (EV_A_ &w->timer); 4017 ev_timer_stop (EV_A_ &w->timer);
4018 }
2816 4019
2817 ev_stop (EV_A_ (W)w); 4020 ev_stop (EV_A_ (W)w);
2818 4021
2819 EV_FREQUENT_CHECK; 4022 EV_FREQUENT_CHECK;
2820} 4023}
2821#endif 4024#endif
2822 4025
2823#if EV_IDLE_ENABLE 4026#if EV_IDLE_ENABLE
2824void 4027void
2825ev_idle_start (EV_P_ ev_idle *w) 4028ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2826{ 4029{
2827 if (expect_false (ev_is_active (w))) 4030 if (expect_false (ev_is_active (w)))
2828 return; 4031 return;
2829 4032
2830 pri_adjust (EV_A_ (W)w); 4033 pri_adjust (EV_A_ (W)w);
2843 4046
2844 EV_FREQUENT_CHECK; 4047 EV_FREQUENT_CHECK;
2845} 4048}
2846 4049
2847void 4050void
2848ev_idle_stop (EV_P_ ev_idle *w) 4051ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2849{ 4052{
2850 clear_pending (EV_A_ (W)w); 4053 clear_pending (EV_A_ (W)w);
2851 if (expect_false (!ev_is_active (w))) 4054 if (expect_false (!ev_is_active (w)))
2852 return; 4055 return;
2853 4056
2865 4068
2866 EV_FREQUENT_CHECK; 4069 EV_FREQUENT_CHECK;
2867} 4070}
2868#endif 4071#endif
2869 4072
4073#if EV_PREPARE_ENABLE
2870void 4074void
2871ev_prepare_start (EV_P_ ev_prepare *w) 4075ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2872{ 4076{
2873 if (expect_false (ev_is_active (w))) 4077 if (expect_false (ev_is_active (w)))
2874 return; 4078 return;
2875 4079
2876 EV_FREQUENT_CHECK; 4080 EV_FREQUENT_CHECK;
2881 4085
2882 EV_FREQUENT_CHECK; 4086 EV_FREQUENT_CHECK;
2883} 4087}
2884 4088
2885void 4089void
2886ev_prepare_stop (EV_P_ ev_prepare *w) 4090ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2887{ 4091{
2888 clear_pending (EV_A_ (W)w); 4092 clear_pending (EV_A_ (W)w);
2889 if (expect_false (!ev_is_active (w))) 4093 if (expect_false (!ev_is_active (w)))
2890 return; 4094 return;
2891 4095
2900 4104
2901 ev_stop (EV_A_ (W)w); 4105 ev_stop (EV_A_ (W)w);
2902 4106
2903 EV_FREQUENT_CHECK; 4107 EV_FREQUENT_CHECK;
2904} 4108}
4109#endif
2905 4110
4111#if EV_CHECK_ENABLE
2906void 4112void
2907ev_check_start (EV_P_ ev_check *w) 4113ev_check_start (EV_P_ ev_check *w) EV_THROW
2908{ 4114{
2909 if (expect_false (ev_is_active (w))) 4115 if (expect_false (ev_is_active (w)))
2910 return; 4116 return;
2911 4117
2912 EV_FREQUENT_CHECK; 4118 EV_FREQUENT_CHECK;
2917 4123
2918 EV_FREQUENT_CHECK; 4124 EV_FREQUENT_CHECK;
2919} 4125}
2920 4126
2921void 4127void
2922ev_check_stop (EV_P_ ev_check *w) 4128ev_check_stop (EV_P_ ev_check *w) EV_THROW
2923{ 4129{
2924 clear_pending (EV_A_ (W)w); 4130 clear_pending (EV_A_ (W)w);
2925 if (expect_false (!ev_is_active (w))) 4131 if (expect_false (!ev_is_active (w)))
2926 return; 4132 return;
2927 4133
2936 4142
2937 ev_stop (EV_A_ (W)w); 4143 ev_stop (EV_A_ (W)w);
2938 4144
2939 EV_FREQUENT_CHECK; 4145 EV_FREQUENT_CHECK;
2940} 4146}
4147#endif
2941 4148
2942#if EV_EMBED_ENABLE 4149#if EV_EMBED_ENABLE
2943void noinline 4150void noinline
2944ev_embed_sweep (EV_P_ ev_embed *w) 4151ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2945{ 4152{
2946 ev_loop (w->other, EVLOOP_NONBLOCK); 4153 ev_run (w->other, EVRUN_NOWAIT);
2947} 4154}
2948 4155
2949static void 4156static void
2950embed_io_cb (EV_P_ ev_io *io, int revents) 4157embed_io_cb (EV_P_ ev_io *io, int revents)
2951{ 4158{
2952 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4159 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2953 4160
2954 if (ev_cb (w)) 4161 if (ev_cb (w))
2955 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4162 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2956 else 4163 else
2957 ev_loop (w->other, EVLOOP_NONBLOCK); 4164 ev_run (w->other, EVRUN_NOWAIT);
2958} 4165}
2959 4166
2960static void 4167static void
2961embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4168embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2962{ 4169{
2963 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4170 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2964 4171
2965 { 4172 {
2966 struct ev_loop *loop = w->other; 4173 EV_P = w->other;
2967 4174
2968 while (fdchangecnt) 4175 while (fdchangecnt)
2969 { 4176 {
2970 fd_reify (EV_A); 4177 fd_reify (EV_A);
2971 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4178 ev_run (EV_A_ EVRUN_NOWAIT);
2972 } 4179 }
2973 } 4180 }
2974} 4181}
2975 4182
2976static void 4183static void
2979 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 4186 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2980 4187
2981 ev_embed_stop (EV_A_ w); 4188 ev_embed_stop (EV_A_ w);
2982 4189
2983 { 4190 {
2984 struct ev_loop *loop = w->other; 4191 EV_P = w->other;
2985 4192
2986 ev_loop_fork (EV_A); 4193 ev_loop_fork (EV_A);
2987 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4194 ev_run (EV_A_ EVRUN_NOWAIT);
2988 } 4195 }
2989 4196
2990 ev_embed_start (EV_A_ w); 4197 ev_embed_start (EV_A_ w);
2991} 4198}
2992 4199
2997 ev_idle_stop (EV_A_ idle); 4204 ev_idle_stop (EV_A_ idle);
2998} 4205}
2999#endif 4206#endif
3000 4207
3001void 4208void
3002ev_embed_start (EV_P_ ev_embed *w) 4209ev_embed_start (EV_P_ ev_embed *w) EV_THROW
3003{ 4210{
3004 if (expect_false (ev_is_active (w))) 4211 if (expect_false (ev_is_active (w)))
3005 return; 4212 return;
3006 4213
3007 { 4214 {
3008 struct ev_loop *loop = w->other; 4215 EV_P = w->other;
3009 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4216 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3010 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4217 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3011 } 4218 }
3012 4219
3013 EV_FREQUENT_CHECK; 4220 EV_FREQUENT_CHECK;
3028 4235
3029 EV_FREQUENT_CHECK; 4236 EV_FREQUENT_CHECK;
3030} 4237}
3031 4238
3032void 4239void
3033ev_embed_stop (EV_P_ ev_embed *w) 4240ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
3034{ 4241{
3035 clear_pending (EV_A_ (W)w); 4242 clear_pending (EV_A_ (W)w);
3036 if (expect_false (!ev_is_active (w))) 4243 if (expect_false (!ev_is_active (w)))
3037 return; 4244 return;
3038 4245
3040 4247
3041 ev_io_stop (EV_A_ &w->io); 4248 ev_io_stop (EV_A_ &w->io);
3042 ev_prepare_stop (EV_A_ &w->prepare); 4249 ev_prepare_stop (EV_A_ &w->prepare);
3043 ev_fork_stop (EV_A_ &w->fork); 4250 ev_fork_stop (EV_A_ &w->fork);
3044 4251
4252 ev_stop (EV_A_ (W)w);
4253
3045 EV_FREQUENT_CHECK; 4254 EV_FREQUENT_CHECK;
3046} 4255}
3047#endif 4256#endif
3048 4257
3049#if EV_FORK_ENABLE 4258#if EV_FORK_ENABLE
3050void 4259void
3051ev_fork_start (EV_P_ ev_fork *w) 4260ev_fork_start (EV_P_ ev_fork *w) EV_THROW
3052{ 4261{
3053 if (expect_false (ev_is_active (w))) 4262 if (expect_false (ev_is_active (w)))
3054 return; 4263 return;
3055 4264
3056 EV_FREQUENT_CHECK; 4265 EV_FREQUENT_CHECK;
3061 4270
3062 EV_FREQUENT_CHECK; 4271 EV_FREQUENT_CHECK;
3063} 4272}
3064 4273
3065void 4274void
3066ev_fork_stop (EV_P_ ev_fork *w) 4275ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
3067{ 4276{
3068 clear_pending (EV_A_ (W)w); 4277 clear_pending (EV_A_ (W)w);
3069 if (expect_false (!ev_is_active (w))) 4278 if (expect_false (!ev_is_active (w)))
3070 return; 4279 return;
3071 4280
3082 4291
3083 EV_FREQUENT_CHECK; 4292 EV_FREQUENT_CHECK;
3084} 4293}
3085#endif 4294#endif
3086 4295
4296#if EV_CLEANUP_ENABLE
4297void
4298ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4299{
4300 if (expect_false (ev_is_active (w)))
4301 return;
4302
4303 EV_FREQUENT_CHECK;
4304
4305 ev_start (EV_A_ (W)w, ++cleanupcnt);
4306 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4307 cleanups [cleanupcnt - 1] = w;
4308
4309 /* cleanup watchers should never keep a refcount on the loop */
4310 ev_unref (EV_A);
4311 EV_FREQUENT_CHECK;
4312}
4313
4314void
4315ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4316{
4317 clear_pending (EV_A_ (W)w);
4318 if (expect_false (!ev_is_active (w)))
4319 return;
4320
4321 EV_FREQUENT_CHECK;
4322 ev_ref (EV_A);
4323
4324 {
4325 int active = ev_active (w);
4326
4327 cleanups [active - 1] = cleanups [--cleanupcnt];
4328 ev_active (cleanups [active - 1]) = active;
4329 }
4330
4331 ev_stop (EV_A_ (W)w);
4332
4333 EV_FREQUENT_CHECK;
4334}
4335#endif
4336
3087#if EV_ASYNC_ENABLE 4337#if EV_ASYNC_ENABLE
3088void 4338void
3089ev_async_start (EV_P_ ev_async *w) 4339ev_async_start (EV_P_ ev_async *w) EV_THROW
3090{ 4340{
3091 if (expect_false (ev_is_active (w))) 4341 if (expect_false (ev_is_active (w)))
3092 return; 4342 return;
4343
4344 w->sent = 0;
3093 4345
3094 evpipe_init (EV_A); 4346 evpipe_init (EV_A);
3095 4347
3096 EV_FREQUENT_CHECK; 4348 EV_FREQUENT_CHECK;
3097 4349
3101 4353
3102 EV_FREQUENT_CHECK; 4354 EV_FREQUENT_CHECK;
3103} 4355}
3104 4356
3105void 4357void
3106ev_async_stop (EV_P_ ev_async *w) 4358ev_async_stop (EV_P_ ev_async *w) EV_THROW
3107{ 4359{
3108 clear_pending (EV_A_ (W)w); 4360 clear_pending (EV_A_ (W)w);
3109 if (expect_false (!ev_is_active (w))) 4361 if (expect_false (!ev_is_active (w)))
3110 return; 4362 return;
3111 4363
3122 4374
3123 EV_FREQUENT_CHECK; 4375 EV_FREQUENT_CHECK;
3124} 4376}
3125 4377
3126void 4378void
3127ev_async_send (EV_P_ ev_async *w) 4379ev_async_send (EV_P_ ev_async *w) EV_THROW
3128{ 4380{
3129 w->sent = 1; 4381 w->sent = 1;
3130 evpipe_write (EV_A_ &gotasync); 4382 evpipe_write (EV_A_ &async_pending);
3131} 4383}
3132#endif 4384#endif
3133 4385
3134/*****************************************************************************/ 4386/*****************************************************************************/
3135 4387
3169 4421
3170 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io)); 4422 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3171} 4423}
3172 4424
3173void 4425void
3174ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4426ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
3175{ 4427{
3176 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4428 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3177 4429
3178 if (expect_false (!once)) 4430 if (expect_false (!once))
3179 { 4431 {
3180 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4432 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3181 return; 4433 return;
3182 } 4434 }
3183 4435
3184 once->cb = cb; 4436 once->cb = cb;
3185 once->arg = arg; 4437 once->arg = arg;
3199 } 4451 }
3200} 4452}
3201 4453
3202/*****************************************************************************/ 4454/*****************************************************************************/
3203 4455
3204#if 0 4456#if EV_WALK_ENABLE
3205void 4457void ecb_cold
3206ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) 4458ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
3207{ 4459{
3208 int i, j; 4460 int i, j;
3209 ev_watcher_list *wl, *wn; 4461 ev_watcher_list *wl, *wn;
3210 4462
3211 if (types & (EV_IO | EV_EMBED)) 4463 if (types & (EV_IO | EV_EMBED))
3225#if EV_USE_INOTIFY 4477#if EV_USE_INOTIFY
3226 if (ev_cb ((ev_io *)wl) == infy_cb) 4478 if (ev_cb ((ev_io *)wl) == infy_cb)
3227 ; 4479 ;
3228 else 4480 else
3229#endif 4481#endif
3230 if ((ev_io *)wl != &pipeev) 4482 if ((ev_io *)wl != &pipe_w)
3231 if (types & EV_IO) 4483 if (types & EV_IO)
3232 cb (EV_A_ EV_IO, wl); 4484 cb (EV_A_ EV_IO, wl);
3233 4485
3234 wl = wn; 4486 wl = wn;
3235 } 4487 }
3254 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i])); 4506 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3255#endif 4507#endif
3256 4508
3257#if EV_IDLE_ENABLE 4509#if EV_IDLE_ENABLE
3258 if (types & EV_IDLE) 4510 if (types & EV_IDLE)
3259 for (j = NUMPRI; i--; ) 4511 for (j = NUMPRI; j--; )
3260 for (i = idlecnt [j]; i--; ) 4512 for (i = idlecnt [j]; i--; )
3261 cb (EV_A_ EV_IDLE, idles [j][i]); 4513 cb (EV_A_ EV_IDLE, idles [j][i]);
3262#endif 4514#endif
3263 4515
3264#if EV_FORK_ENABLE 4516#if EV_FORK_ENABLE
3272 if (types & EV_ASYNC) 4524 if (types & EV_ASYNC)
3273 for (i = asynccnt; i--; ) 4525 for (i = asynccnt; i--; )
3274 cb (EV_A_ EV_ASYNC, asyncs [i]); 4526 cb (EV_A_ EV_ASYNC, asyncs [i]);
3275#endif 4527#endif
3276 4528
4529#if EV_PREPARE_ENABLE
3277 if (types & EV_PREPARE) 4530 if (types & EV_PREPARE)
3278 for (i = preparecnt; i--; ) 4531 for (i = preparecnt; i--; )
3279#if EV_EMBED_ENABLE 4532# if EV_EMBED_ENABLE
3280 if (ev_cb (prepares [i]) != embed_prepare_cb) 4533 if (ev_cb (prepares [i]) != embed_prepare_cb)
3281#endif 4534# endif
3282 cb (EV_A_ EV_PREPARE, prepares [i]); 4535 cb (EV_A_ EV_PREPARE, prepares [i]);
4536#endif
3283 4537
4538#if EV_CHECK_ENABLE
3284 if (types & EV_CHECK) 4539 if (types & EV_CHECK)
3285 for (i = checkcnt; i--; ) 4540 for (i = checkcnt; i--; )
3286 cb (EV_A_ EV_CHECK, checks [i]); 4541 cb (EV_A_ EV_CHECK, checks [i]);
4542#endif
3287 4543
4544#if EV_SIGNAL_ENABLE
3288 if (types & EV_SIGNAL) 4545 if (types & EV_SIGNAL)
3289 for (i = 0; i < signalmax; ++i) 4546 for (i = 0; i < EV_NSIG - 1; ++i)
3290 for (wl = signals [i].head; wl; ) 4547 for (wl = signals [i].head; wl; )
3291 { 4548 {
3292 wn = wl->next; 4549 wn = wl->next;
3293 cb (EV_A_ EV_SIGNAL, wl); 4550 cb (EV_A_ EV_SIGNAL, wl);
3294 wl = wn; 4551 wl = wn;
3295 } 4552 }
4553#endif
3296 4554
4555#if EV_CHILD_ENABLE
3297 if (types & EV_CHILD) 4556 if (types & EV_CHILD)
3298 for (i = EV_PID_HASHSIZE; i--; ) 4557 for (i = (EV_PID_HASHSIZE); i--; )
3299 for (wl = childs [i]; wl; ) 4558 for (wl = childs [i]; wl; )
3300 { 4559 {
3301 wn = wl->next; 4560 wn = wl->next;
3302 cb (EV_A_ EV_CHILD, wl); 4561 cb (EV_A_ EV_CHILD, wl);
3303 wl = wn; 4562 wl = wn;
3304 } 4563 }
4564#endif
3305/* EV_STAT 0x00001000 /* stat data changed */ 4565/* EV_STAT 0x00001000 /* stat data changed */
3306/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */ 4566/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3307} 4567}
3308#endif 4568#endif
3309 4569
3310#if EV_MULTIPLICITY 4570#if EV_MULTIPLICITY
3311 #include "ev_wrap.h" 4571 #include "ev_wrap.h"
3312#endif 4572#endif
3313 4573
3314#ifdef __cplusplus
3315}
3316#endif
3317

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines