ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.286 by root, Wed Apr 15 19:37:15 2009 UTC vs.
Revision 1.483 by root, Tue Jul 31 04:45:58 2018 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
46# endif
47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
50# endif 52# endif
51 53
52# if HAVE_CLOCK_SYSCALL 54# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL 55# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1 56# define EV_USE_CLOCK_SYSCALL 1
57# endif 59# endif
58# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1 61# define EV_USE_MONOTONIC 1
60# endif 62# endif
61# endif 63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
62# endif 66# endif
63 67
64# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
75# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
77# endif 81# endif
78# endif 82# endif
79 83
84# if HAVE_NANOSLEEP
80# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
83# else 88# else
89# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
85# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
86# endif 100# endif
87 101
102# if HAVE_POLL && HAVE_POLL_H
88# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
89# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
90# define EV_USE_SELECT 1
91# else
92# define EV_USE_SELECT 0
93# endif 105# endif
94# endif
95
96# ifndef EV_USE_POLL
97# if HAVE_POLL && HAVE_POLL_H
98# define EV_USE_POLL 1
99# else 106# else
107# undef EV_USE_POLL
100# define EV_USE_POLL 0 108# define EV_USE_POLL 0
101# endif
102# endif 109# endif
103 110
104# ifndef EV_USE_EPOLL
105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
107# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
108# define EV_USE_EPOLL 0
109# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
110# endif 118# endif
111 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
112# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
113# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
114# define EV_USE_KQUEUE 1
115# else
116# define EV_USE_KQUEUE 0
117# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
118# endif 127# endif
119 128
120# ifndef EV_USE_PORT
121# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
122# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
123# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
124# define EV_USE_PORT 0
125# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
126# endif 136# endif
127 137
128# ifndef EV_USE_INOTIFY
129# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
131# else
132# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
133# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
134# endif 145# endif
135 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
136# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
137# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
142# endif 163# endif
143 164
144#endif 165#endif
145 166
146#include <math.h> 167/* OS X, in its infinite idiocy, actually HARDCODES
168 * a limit of 1024 into their select. Where people have brains,
169 * OS X engineers apparently have a vacuum. Or maybe they were
170 * ordered to have a vacuum, or they do anything for money.
171 * This might help. Or not.
172 * Note that this must be defined early, as other include files
173 * will rely on this define as well.
174 */
175#define _DARWIN_UNLIMITED_SELECT 1
176
147#include <stdlib.h> 177#include <stdlib.h>
178#include <string.h>
148#include <fcntl.h> 179#include <fcntl.h>
149#include <stddef.h> 180#include <stddef.h>
150 181
151#include <stdio.h> 182#include <stdio.h>
152 183
153#include <assert.h> 184#include <assert.h>
154#include <errno.h> 185#include <errno.h>
155#include <sys/types.h> 186#include <sys/types.h>
156#include <time.h> 187#include <time.h>
188#include <limits.h>
157 189
158#include <signal.h> 190#include <signal.h>
159 191
160#ifdef EV_H 192#ifdef EV_H
161# include EV_H 193# include EV_H
162#else 194#else
163# include "ev.h" 195# include "ev.h"
196#endif
197
198#if EV_NO_THREADS
199# undef EV_NO_SMP
200# define EV_NO_SMP 1
201# undef ECB_NO_THREADS
202# define ECB_NO_THREADS 1
203#endif
204#if EV_NO_SMP
205# undef EV_NO_SMP
206# define ECB_NO_SMP 1
164#endif 207#endif
165 208
166#ifndef _WIN32 209#ifndef _WIN32
167# include <sys/time.h> 210# include <sys/time.h>
168# include <sys/wait.h> 211# include <sys/wait.h>
169# include <unistd.h> 212# include <unistd.h>
170#else 213#else
171# include <io.h> 214# include <io.h>
172# define WIN32_LEAN_AND_MEAN 215# define WIN32_LEAN_AND_MEAN
216# include <winsock2.h>
173# include <windows.h> 217# include <windows.h>
174# ifndef EV_SELECT_IS_WINSOCKET 218# ifndef EV_SELECT_IS_WINSOCKET
175# define EV_SELECT_IS_WINSOCKET 1 219# define EV_SELECT_IS_WINSOCKET 1
176# endif 220# endif
221# undef EV_AVOID_STDIO
177#endif 222#endif
178 223
179/* this block tries to deduce configuration from header-defined symbols and defaults */ 224/* this block tries to deduce configuration from header-defined symbols and defaults */
180 225
226/* try to deduce the maximum number of signals on this platform */
227#if defined EV_NSIG
228/* use what's provided */
229#elif defined NSIG
230# define EV_NSIG (NSIG)
231#elif defined _NSIG
232# define EV_NSIG (_NSIG)
233#elif defined SIGMAX
234# define EV_NSIG (SIGMAX+1)
235#elif defined SIG_MAX
236# define EV_NSIG (SIG_MAX+1)
237#elif defined _SIG_MAX
238# define EV_NSIG (_SIG_MAX+1)
239#elif defined MAXSIG
240# define EV_NSIG (MAXSIG+1)
241#elif defined MAX_SIG
242# define EV_NSIG (MAX_SIG+1)
243#elif defined SIGARRAYSIZE
244# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
245#elif defined _sys_nsig
246# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
247#else
248# define EV_NSIG (8 * sizeof (sigset_t) + 1)
249#endif
250
251#ifndef EV_USE_FLOOR
252# define EV_USE_FLOOR 0
253#endif
254
181#ifndef EV_USE_CLOCK_SYSCALL 255#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2 256# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
183# define EV_USE_CLOCK_SYSCALL 1 257# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
184# else 258# else
185# define EV_USE_CLOCK_SYSCALL 0 259# define EV_USE_CLOCK_SYSCALL 0
186# endif 260# endif
187#endif 261#endif
188 262
263#if !(_POSIX_TIMERS > 0)
264# ifndef EV_USE_MONOTONIC
265# define EV_USE_MONOTONIC 0
266# endif
267# ifndef EV_USE_REALTIME
268# define EV_USE_REALTIME 0
269# endif
270#endif
271
189#ifndef EV_USE_MONOTONIC 272#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 273# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1 274# define EV_USE_MONOTONIC EV_FEATURE_OS
192# else 275# else
193# define EV_USE_MONOTONIC 0 276# define EV_USE_MONOTONIC 0
194# endif 277# endif
195#endif 278#endif
196 279
198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL 281# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif 282#endif
200 283
201#ifndef EV_USE_NANOSLEEP 284#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L 285# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1 286# define EV_USE_NANOSLEEP EV_FEATURE_OS
204# else 287# else
205# define EV_USE_NANOSLEEP 0 288# define EV_USE_NANOSLEEP 0
206# endif 289# endif
207#endif 290#endif
208 291
209#ifndef EV_USE_SELECT 292#ifndef EV_USE_SELECT
210# define EV_USE_SELECT 1 293# define EV_USE_SELECT EV_FEATURE_BACKENDS
211#endif 294#endif
212 295
213#ifndef EV_USE_POLL 296#ifndef EV_USE_POLL
214# ifdef _WIN32 297# ifdef _WIN32
215# define EV_USE_POLL 0 298# define EV_USE_POLL 0
216# else 299# else
217# define EV_USE_POLL 1 300# define EV_USE_POLL EV_FEATURE_BACKENDS
218# endif 301# endif
219#endif 302#endif
220 303
221#ifndef EV_USE_EPOLL 304#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 305# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1 306# define EV_USE_EPOLL EV_FEATURE_BACKENDS
224# else 307# else
225# define EV_USE_EPOLL 0 308# define EV_USE_EPOLL 0
226# endif 309# endif
227#endif 310#endif
228 311
234# define EV_USE_PORT 0 317# define EV_USE_PORT 0
235#endif 318#endif
236 319
237#ifndef EV_USE_INOTIFY 320#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 321# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1 322# define EV_USE_INOTIFY EV_FEATURE_OS
240# else 323# else
241# define EV_USE_INOTIFY 0 324# define EV_USE_INOTIFY 0
242# endif 325# endif
243#endif 326#endif
244 327
245#ifndef EV_PID_HASHSIZE 328#ifndef EV_PID_HASHSIZE
246# if EV_MINIMAL 329# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
247# define EV_PID_HASHSIZE 1
248# else
249# define EV_PID_HASHSIZE 16
250# endif
251#endif 330#endif
252 331
253#ifndef EV_INOTIFY_HASHSIZE 332#ifndef EV_INOTIFY_HASHSIZE
254# if EV_MINIMAL 333# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
255# define EV_INOTIFY_HASHSIZE 1
256# else
257# define EV_INOTIFY_HASHSIZE 16
258# endif
259#endif 334#endif
260 335
261#ifndef EV_USE_EVENTFD 336#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1 338# define EV_USE_EVENTFD EV_FEATURE_OS
264# else 339# else
265# define EV_USE_EVENTFD 0 340# define EV_USE_EVENTFD 0
341# endif
342#endif
343
344#ifndef EV_USE_SIGNALFD
345# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
346# define EV_USE_SIGNALFD EV_FEATURE_OS
347# else
348# define EV_USE_SIGNALFD 0
266# endif 349# endif
267#endif 350#endif
268 351
269#if 0 /* debugging */ 352#if 0 /* debugging */
270# define EV_VERIFY 3 353# define EV_VERIFY 3
271# define EV_USE_4HEAP 1 354# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1 355# define EV_HEAP_CACHE_AT 1
273#endif 356#endif
274 357
275#ifndef EV_VERIFY 358#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL 359# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
277#endif 360#endif
278 361
279#ifndef EV_USE_4HEAP 362#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL 363# define EV_USE_4HEAP EV_FEATURE_DATA
281#endif 364#endif
282 365
283#ifndef EV_HEAP_CACHE_AT 366#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL 367# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
368#endif
369
370#ifdef __ANDROID__
371/* supposedly, android doesn't typedef fd_mask */
372# undef EV_USE_SELECT
373# define EV_USE_SELECT 0
374/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
375# undef EV_USE_CLOCK_SYSCALL
376# define EV_USE_CLOCK_SYSCALL 0
377#endif
378
379/* aix's poll.h seems to cause lots of trouble */
380#ifdef _AIX
381/* AIX has a completely broken poll.h header */
382# undef EV_USE_POLL
383# define EV_USE_POLL 0
384#endif
385
386/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
387/* which makes programs even slower. might work on other unices, too. */
388#if EV_USE_CLOCK_SYSCALL
389# include <sys/syscall.h>
390# ifdef SYS_clock_gettime
391# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
392# undef EV_USE_MONOTONIC
393# define EV_USE_MONOTONIC 1
394# else
395# undef EV_USE_CLOCK_SYSCALL
396# define EV_USE_CLOCK_SYSCALL 0
397# endif
285#endif 398#endif
286 399
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 400/* this block fixes any misconfiguration where we know we run into trouble otherwise */
288 401
289#ifndef CLOCK_MONOTONIC 402#ifndef CLOCK_MONOTONIC
300# undef EV_USE_INOTIFY 413# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0 414# define EV_USE_INOTIFY 0
302#endif 415#endif
303 416
304#if !EV_USE_NANOSLEEP 417#if !EV_USE_NANOSLEEP
305# ifndef _WIN32 418/* hp-ux has it in sys/time.h, which we unconditionally include above */
419# if !defined _WIN32 && !defined __hpux
306# include <sys/select.h> 420# include <sys/select.h>
307# endif 421# endif
308#endif 422#endif
309 423
310#if EV_USE_INOTIFY 424#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h> 425# include <sys/statfs.h>
313# include <sys/inotify.h> 426# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 427/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW 428# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY 429# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0 430# define EV_USE_INOTIFY 0
318# endif 431# endif
319#endif 432#endif
320 433
321#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h>
323#endif
324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD 434#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 435/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h> 436# include <stdint.h>
337# ifdef __cplusplus 437# ifndef EFD_NONBLOCK
338extern "C" { 438# define EFD_NONBLOCK O_NONBLOCK
339# endif 439# endif
340int eventfd (unsigned int initval, int flags); 440# ifndef EFD_CLOEXEC
341# ifdef __cplusplus 441# ifdef O_CLOEXEC
342} 442# define EFD_CLOEXEC O_CLOEXEC
443# else
444# define EFD_CLOEXEC 02000000
445# endif
343# endif 446# endif
447EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
448#endif
449
450#if EV_USE_SIGNALFD
451/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
452# include <stdint.h>
453# ifndef SFD_NONBLOCK
454# define SFD_NONBLOCK O_NONBLOCK
455# endif
456# ifndef SFD_CLOEXEC
457# ifdef O_CLOEXEC
458# define SFD_CLOEXEC O_CLOEXEC
459# else
460# define SFD_CLOEXEC 02000000
461# endif
462# endif
463EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
464
465struct signalfd_siginfo
466{
467 uint32_t ssi_signo;
468 char pad[128 - sizeof (uint32_t)];
469};
344#endif 470#endif
345 471
346/**/ 472/**/
347 473
348#if EV_VERIFY >= 3 474#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 475# define EV_FREQUENT_CHECK ev_verify (EV_A)
350#else 476#else
351# define EV_FREQUENT_CHECK do { } while (0) 477# define EV_FREQUENT_CHECK do { } while (0)
352#endif 478#endif
353 479
354/* 480/*
355 * This is used to avoid floating point rounding problems. 481 * This is used to work around floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000. 482 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */ 483 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 484#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
485/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
363 486
364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 487#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 488#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
367 489
490#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
491#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
492
493/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
494/* ECB.H BEGIN */
495/*
496 * libecb - http://software.schmorp.de/pkg/libecb
497 *
498 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
499 * Copyright (©) 2011 Emanuele Giaquinta
500 * All rights reserved.
501 *
502 * Redistribution and use in source and binary forms, with or without modifica-
503 * tion, are permitted provided that the following conditions are met:
504 *
505 * 1. Redistributions of source code must retain the above copyright notice,
506 * this list of conditions and the following disclaimer.
507 *
508 * 2. Redistributions in binary form must reproduce the above copyright
509 * notice, this list of conditions and the following disclaimer in the
510 * documentation and/or other materials provided with the distribution.
511 *
512 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
513 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
514 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
515 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
516 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
517 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
518 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
519 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
520 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
521 * OF THE POSSIBILITY OF SUCH DAMAGE.
522 *
523 * Alternatively, the contents of this file may be used under the terms of
524 * the GNU General Public License ("GPL") version 2 or any later version,
525 * in which case the provisions of the GPL are applicable instead of
526 * the above. If you wish to allow the use of your version of this file
527 * only under the terms of the GPL and not to allow others to use your
528 * version of this file under the BSD license, indicate your decision
529 * by deleting the provisions above and replace them with the notice
530 * and other provisions required by the GPL. If you do not delete the
531 * provisions above, a recipient may use your version of this file under
532 * either the BSD or the GPL.
533 */
534
535#ifndef ECB_H
536#define ECB_H
537
538/* 16 bits major, 16 bits minor */
539#define ECB_VERSION 0x00010005
540
541#ifdef _WIN32
542 typedef signed char int8_t;
543 typedef unsigned char uint8_t;
544 typedef signed short int16_t;
545 typedef unsigned short uint16_t;
546 typedef signed int int32_t;
547 typedef unsigned int uint32_t;
368#if __GNUC__ >= 4 548 #if __GNUC__
549 typedef signed long long int64_t;
550 typedef unsigned long long uint64_t;
551 #else /* _MSC_VER || __BORLANDC__ */
552 typedef signed __int64 int64_t;
553 typedef unsigned __int64 uint64_t;
554 #endif
555 #ifdef _WIN64
556 #define ECB_PTRSIZE 8
557 typedef uint64_t uintptr_t;
558 typedef int64_t intptr_t;
559 #else
560 #define ECB_PTRSIZE 4
561 typedef uint32_t uintptr_t;
562 typedef int32_t intptr_t;
563 #endif
564#else
565 #include <inttypes.h>
566 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
567 #define ECB_PTRSIZE 8
568 #else
569 #define ECB_PTRSIZE 4
570 #endif
571#endif
572
573#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
574#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
575
576/* work around x32 idiocy by defining proper macros */
577#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
578 #if _ILP32
579 #define ECB_AMD64_X32 1
580 #else
581 #define ECB_AMD64 1
582 #endif
583#endif
584
585/* many compilers define _GNUC_ to some versions but then only implement
586 * what their idiot authors think are the "more important" extensions,
587 * causing enormous grief in return for some better fake benchmark numbers.
588 * or so.
589 * we try to detect these and simply assume they are not gcc - if they have
590 * an issue with that they should have done it right in the first place.
591 */
592#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
593 #define ECB_GCC_VERSION(major,minor) 0
594#else
595 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
596#endif
597
598#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
599
600#if __clang__ && defined __has_builtin
601 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
602#else
603 #define ECB_CLANG_BUILTIN(x) 0
604#endif
605
606#if __clang__ && defined __has_extension
607 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
608#else
609 #define ECB_CLANG_EXTENSION(x) 0
610#endif
611
612#define ECB_CPP (__cplusplus+0)
613#define ECB_CPP11 (__cplusplus >= 201103L)
614
615#if ECB_CPP
616 #define ECB_C 0
617 #define ECB_STDC_VERSION 0
618#else
619 #define ECB_C 1
620 #define ECB_STDC_VERSION __STDC_VERSION__
621#endif
622
623#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
624#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
625
626#if ECB_CPP
627 #define ECB_EXTERN_C extern "C"
628 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
629 #define ECB_EXTERN_C_END }
630#else
631 #define ECB_EXTERN_C extern
632 #define ECB_EXTERN_C_BEG
633 #define ECB_EXTERN_C_END
634#endif
635
636/*****************************************************************************/
637
638/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
639/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
640
641#if ECB_NO_THREADS
642 #define ECB_NO_SMP 1
643#endif
644
645#if ECB_NO_SMP
646 #define ECB_MEMORY_FENCE do { } while (0)
647#endif
648
649/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
650#if __xlC__ && ECB_CPP
651 #include <builtins.h>
652#endif
653
654#if 1400 <= _MSC_VER
655 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
656#endif
657
658#ifndef ECB_MEMORY_FENCE
659 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
660 #if __i386 || __i386__
661 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
662 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
663 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
664 #elif ECB_GCC_AMD64
665 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
666 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
667 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
668 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
669 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
670 #elif defined __ARM_ARCH_2__ \
671 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
672 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
673 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
674 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
675 || defined __ARM_ARCH_5TEJ__
676 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
677 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
678 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
679 || defined __ARM_ARCH_6T2__
680 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
681 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
682 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
683 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
684 #elif __aarch64__
685 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
686 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
687 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
688 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
689 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
690 #elif defined __s390__ || defined __s390x__
691 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
692 #elif defined __mips__
693 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
694 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
695 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
696 #elif defined __alpha__
697 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
698 #elif defined __hppa__
699 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
700 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
701 #elif defined __ia64__
702 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
703 #elif defined __m68k__
704 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
705 #elif defined __m88k__
706 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
707 #elif defined __sh__
708 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
709 #endif
710 #endif
711#endif
712
713#ifndef ECB_MEMORY_FENCE
714 #if ECB_GCC_VERSION(4,7)
715 /* see comment below (stdatomic.h) about the C11 memory model. */
716 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
717 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
718 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
719
720 #elif ECB_CLANG_EXTENSION(c_atomic)
721 /* see comment below (stdatomic.h) about the C11 memory model. */
722 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
723 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
724 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
725
726 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
727 #define ECB_MEMORY_FENCE __sync_synchronize ()
728 #elif _MSC_VER >= 1500 /* VC++ 2008 */
729 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
730 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
731 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
732 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
733 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
734 #elif _MSC_VER >= 1400 /* VC++ 2005 */
735 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
736 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
737 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
738 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
739 #elif defined _WIN32
740 #include <WinNT.h>
741 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
742 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
743 #include <mbarrier.h>
744 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
745 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
746 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
747 #elif __xlC__
748 #define ECB_MEMORY_FENCE __sync ()
749 #endif
750#endif
751
752#ifndef ECB_MEMORY_FENCE
753 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
754 /* we assume that these memory fences work on all variables/all memory accesses, */
755 /* not just C11 atomics and atomic accesses */
756 #include <stdatomic.h>
757 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
758 /* any fence other than seq_cst, which isn't very efficient for us. */
759 /* Why that is, we don't know - either the C11 memory model is quite useless */
760 /* for most usages, or gcc and clang have a bug */
761 /* I *currently* lean towards the latter, and inefficiently implement */
762 /* all three of ecb's fences as a seq_cst fence */
763 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
764 /* for all __atomic_thread_fence's except seq_cst */
765 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
766 #endif
767#endif
768
769#ifndef ECB_MEMORY_FENCE
770 #if !ECB_AVOID_PTHREADS
771 /*
772 * if you get undefined symbol references to pthread_mutex_lock,
773 * or failure to find pthread.h, then you should implement
774 * the ECB_MEMORY_FENCE operations for your cpu/compiler
775 * OR provide pthread.h and link against the posix thread library
776 * of your system.
777 */
778 #include <pthread.h>
779 #define ECB_NEEDS_PTHREADS 1
780 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
781
782 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
783 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
784 #endif
785#endif
786
787#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
788 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
789#endif
790
791#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
792 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
793#endif
794
795/*****************************************************************************/
796
797#if ECB_CPP
798 #define ecb_inline static inline
799#elif ECB_GCC_VERSION(2,5)
800 #define ecb_inline static __inline__
801#elif ECB_C99
802 #define ecb_inline static inline
803#else
804 #define ecb_inline static
805#endif
806
807#if ECB_GCC_VERSION(3,3)
808 #define ecb_restrict __restrict__
809#elif ECB_C99
810 #define ecb_restrict restrict
811#else
812 #define ecb_restrict
813#endif
814
815typedef int ecb_bool;
816
817#define ECB_CONCAT_(a, b) a ## b
818#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
819#define ECB_STRINGIFY_(a) # a
820#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
821#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
822
823#define ecb_function_ ecb_inline
824
825#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
826 #define ecb_attribute(attrlist) __attribute__ (attrlist)
827#else
828 #define ecb_attribute(attrlist)
829#endif
830
831#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
832 #define ecb_is_constant(expr) __builtin_constant_p (expr)
833#else
834 /* possible C11 impl for integral types
835 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
836 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
837
838 #define ecb_is_constant(expr) 0
839#endif
840
841#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
369# define expect(expr,value) __builtin_expect ((expr),(value)) 842 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
370# define noinline __attribute__ ((noinline))
371#else 843#else
372# define expect(expr,value) (expr) 844 #define ecb_expect(expr,value) (expr)
373# define noinline
374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
375# define inline
376# endif 845#endif
377#endif
378 846
847#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
848 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
849#else
850 #define ecb_prefetch(addr,rw,locality)
851#endif
852
853/* no emulation for ecb_decltype */
854#if ECB_CPP11
855 // older implementations might have problems with decltype(x)::type, work around it
856 template<class T> struct ecb_decltype_t { typedef T type; };
857 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
858#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
859 #define ecb_decltype(x) __typeof__ (x)
860#endif
861
862#if _MSC_VER >= 1300
863 #define ecb_deprecated __declspec (deprecated)
864#else
865 #define ecb_deprecated ecb_attribute ((__deprecated__))
866#endif
867
868#if _MSC_VER >= 1500
869 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
870#elif ECB_GCC_VERSION(4,5)
871 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
872#else
873 #define ecb_deprecated_message(msg) ecb_deprecated
874#endif
875
876#if _MSC_VER >= 1400
877 #define ecb_noinline __declspec (noinline)
878#else
879 #define ecb_noinline ecb_attribute ((__noinline__))
880#endif
881
882#define ecb_unused ecb_attribute ((__unused__))
883#define ecb_const ecb_attribute ((__const__))
884#define ecb_pure ecb_attribute ((__pure__))
885
886#if ECB_C11 || __IBMC_NORETURN
887 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
888 #define ecb_noreturn _Noreturn
889#elif ECB_CPP11
890 #define ecb_noreturn [[noreturn]]
891#elif _MSC_VER >= 1200
892 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
893 #define ecb_noreturn __declspec (noreturn)
894#else
895 #define ecb_noreturn ecb_attribute ((__noreturn__))
896#endif
897
898#if ECB_GCC_VERSION(4,3)
899 #define ecb_artificial ecb_attribute ((__artificial__))
900 #define ecb_hot ecb_attribute ((__hot__))
901 #define ecb_cold ecb_attribute ((__cold__))
902#else
903 #define ecb_artificial
904 #define ecb_hot
905 #define ecb_cold
906#endif
907
908/* put around conditional expressions if you are very sure that the */
909/* expression is mostly true or mostly false. note that these return */
910/* booleans, not the expression. */
379#define expect_false(expr) expect ((expr) != 0, 0) 911#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
380#define expect_true(expr) expect ((expr) != 0, 1) 912#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
913/* for compatibility to the rest of the world */
914#define ecb_likely(expr) ecb_expect_true (expr)
915#define ecb_unlikely(expr) ecb_expect_false (expr)
916
917/* count trailing zero bits and count # of one bits */
918#if ECB_GCC_VERSION(3,4) \
919 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
920 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
921 && ECB_CLANG_BUILTIN(__builtin_popcount))
922 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
923 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
924 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
925 #define ecb_ctz32(x) __builtin_ctz (x)
926 #define ecb_ctz64(x) __builtin_ctzll (x)
927 #define ecb_popcount32(x) __builtin_popcount (x)
928 /* no popcountll */
929#else
930 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
931 ecb_function_ ecb_const int
932 ecb_ctz32 (uint32_t x)
933 {
934#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
935 unsigned long r;
936 _BitScanForward (&r, x);
937 return (int)r;
938#else
939 int r = 0;
940
941 x &= ~x + 1; /* this isolates the lowest bit */
942
943#if ECB_branchless_on_i386
944 r += !!(x & 0xaaaaaaaa) << 0;
945 r += !!(x & 0xcccccccc) << 1;
946 r += !!(x & 0xf0f0f0f0) << 2;
947 r += !!(x & 0xff00ff00) << 3;
948 r += !!(x & 0xffff0000) << 4;
949#else
950 if (x & 0xaaaaaaaa) r += 1;
951 if (x & 0xcccccccc) r += 2;
952 if (x & 0xf0f0f0f0) r += 4;
953 if (x & 0xff00ff00) r += 8;
954 if (x & 0xffff0000) r += 16;
955#endif
956
957 return r;
958#endif
959 }
960
961 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
962 ecb_function_ ecb_const int
963 ecb_ctz64 (uint64_t x)
964 {
965#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
966 unsigned long r;
967 _BitScanForward64 (&r, x);
968 return (int)r;
969#else
970 int shift = x & 0xffffffff ? 0 : 32;
971 return ecb_ctz32 (x >> shift) + shift;
972#endif
973 }
974
975 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
976 ecb_function_ ecb_const int
977 ecb_popcount32 (uint32_t x)
978 {
979 x -= (x >> 1) & 0x55555555;
980 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
981 x = ((x >> 4) + x) & 0x0f0f0f0f;
982 x *= 0x01010101;
983
984 return x >> 24;
985 }
986
987 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
988 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
989 {
990#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
991 unsigned long r;
992 _BitScanReverse (&r, x);
993 return (int)r;
994#else
995 int r = 0;
996
997 if (x >> 16) { x >>= 16; r += 16; }
998 if (x >> 8) { x >>= 8; r += 8; }
999 if (x >> 4) { x >>= 4; r += 4; }
1000 if (x >> 2) { x >>= 2; r += 2; }
1001 if (x >> 1) { r += 1; }
1002
1003 return r;
1004#endif
1005 }
1006
1007 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1008 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1009 {
1010#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1011 unsigned long r;
1012 _BitScanReverse64 (&r, x);
1013 return (int)r;
1014#else
1015 int r = 0;
1016
1017 if (x >> 32) { x >>= 32; r += 32; }
1018
1019 return r + ecb_ld32 (x);
1020#endif
1021 }
1022#endif
1023
1024ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1025ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1026ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1027ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1028
1029ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1030ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1031{
1032 return ( (x * 0x0802U & 0x22110U)
1033 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1034}
1035
1036ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1037ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1038{
1039 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1040 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1041 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1042 x = ( x >> 8 ) | ( x << 8);
1043
1044 return x;
1045}
1046
1047ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1048ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1049{
1050 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1051 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1052 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1053 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1054 x = ( x >> 16 ) | ( x << 16);
1055
1056 return x;
1057}
1058
1059/* popcount64 is only available on 64 bit cpus as gcc builtin */
1060/* so for this version we are lazy */
1061ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1062ecb_function_ ecb_const int
1063ecb_popcount64 (uint64_t x)
1064{
1065 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1066}
1067
1068ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1069ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1070ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1071ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1072ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1073ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1074ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1075ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1076
1077ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1078ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1079ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1080ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1081ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1082ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1083ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1084ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1085
1086#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1087 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1088 #define ecb_bswap16(x) __builtin_bswap16 (x)
1089 #else
1090 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1091 #endif
1092 #define ecb_bswap32(x) __builtin_bswap32 (x)
1093 #define ecb_bswap64(x) __builtin_bswap64 (x)
1094#elif _MSC_VER
1095 #include <stdlib.h>
1096 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1097 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1098 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1099#else
1100 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1101 ecb_function_ ecb_const uint16_t
1102 ecb_bswap16 (uint16_t x)
1103 {
1104 return ecb_rotl16 (x, 8);
1105 }
1106
1107 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1108 ecb_function_ ecb_const uint32_t
1109 ecb_bswap32 (uint32_t x)
1110 {
1111 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1112 }
1113
1114 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1115 ecb_function_ ecb_const uint64_t
1116 ecb_bswap64 (uint64_t x)
1117 {
1118 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1119 }
1120#endif
1121
1122#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1123 #define ecb_unreachable() __builtin_unreachable ()
1124#else
1125 /* this seems to work fine, but gcc always emits a warning for it :/ */
1126 ecb_inline ecb_noreturn void ecb_unreachable (void);
1127 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1128#endif
1129
1130/* try to tell the compiler that some condition is definitely true */
1131#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1132
1133ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1134ecb_inline ecb_const uint32_t
1135ecb_byteorder_helper (void)
1136{
1137 /* the union code still generates code under pressure in gcc, */
1138 /* but less than using pointers, and always seems to */
1139 /* successfully return a constant. */
1140 /* the reason why we have this horrible preprocessor mess */
1141 /* is to avoid it in all cases, at least on common architectures */
1142 /* or when using a recent enough gcc version (>= 4.6) */
1143#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1144 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1145 #define ECB_LITTLE_ENDIAN 1
1146 return 0x44332211;
1147#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1148 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1149 #define ECB_BIG_ENDIAN 1
1150 return 0x11223344;
1151#else
1152 union
1153 {
1154 uint8_t c[4];
1155 uint32_t u;
1156 } u = { 0x11, 0x22, 0x33, 0x44 };
1157 return u.u;
1158#endif
1159}
1160
1161ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1162ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1163ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1164ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1165
1166#if ECB_GCC_VERSION(3,0) || ECB_C99
1167 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1168#else
1169 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1170#endif
1171
1172#if ECB_CPP
1173 template<typename T>
1174 static inline T ecb_div_rd (T val, T div)
1175 {
1176 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1177 }
1178 template<typename T>
1179 static inline T ecb_div_ru (T val, T div)
1180 {
1181 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1182 }
1183#else
1184 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1185 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1186#endif
1187
1188#if ecb_cplusplus_does_not_suck
1189 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1190 template<typename T, int N>
1191 static inline int ecb_array_length (const T (&arr)[N])
1192 {
1193 return N;
1194 }
1195#else
1196 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1197#endif
1198
1199ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1200ecb_function_ ecb_const uint32_t
1201ecb_binary16_to_binary32 (uint32_t x)
1202{
1203 unsigned int s = (x & 0x8000) << (31 - 15);
1204 int e = (x >> 10) & 0x001f;
1205 unsigned int m = x & 0x03ff;
1206
1207 if (ecb_expect_false (e == 31))
1208 /* infinity or NaN */
1209 e = 255 - (127 - 15);
1210 else if (ecb_expect_false (!e))
1211 {
1212 if (ecb_expect_true (!m))
1213 /* zero, handled by code below by forcing e to 0 */
1214 e = 0 - (127 - 15);
1215 else
1216 {
1217 /* subnormal, renormalise */
1218 unsigned int s = 10 - ecb_ld32 (m);
1219
1220 m = (m << s) & 0x3ff; /* mask implicit bit */
1221 e -= s - 1;
1222 }
1223 }
1224
1225 /* e and m now are normalised, or zero, (or inf or nan) */
1226 e += 127 - 15;
1227
1228 return s | (e << 23) | (m << (23 - 10));
1229}
1230
1231ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1232ecb_function_ ecb_const uint16_t
1233ecb_binary32_to_binary16 (uint32_t x)
1234{
1235 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1236 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1237 unsigned int m = x & 0x007fffff;
1238
1239 x &= 0x7fffffff;
1240
1241 /* if it's within range of binary16 normals, use fast path */
1242 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1243 {
1244 /* mantissa round-to-even */
1245 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1246
1247 /* handle overflow */
1248 if (ecb_expect_false (m >= 0x00800000))
1249 {
1250 m >>= 1;
1251 e += 1;
1252 }
1253
1254 return s | (e << 10) | (m >> (23 - 10));
1255 }
1256
1257 /* handle large numbers and infinity */
1258 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1259 return s | 0x7c00;
1260
1261 /* handle zero, subnormals and small numbers */
1262 if (ecb_expect_true (x < 0x38800000))
1263 {
1264 /* zero */
1265 if (ecb_expect_true (!x))
1266 return s;
1267
1268 /* handle subnormals */
1269
1270 /* too small, will be zero */
1271 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1272 return s;
1273
1274 m |= 0x00800000; /* make implicit bit explicit */
1275
1276 /* very tricky - we need to round to the nearest e (+10) bit value */
1277 {
1278 unsigned int bits = 14 - e;
1279 unsigned int half = (1 << (bits - 1)) - 1;
1280 unsigned int even = (m >> bits) & 1;
1281
1282 /* if this overflows, we will end up with a normalised number */
1283 m = (m + half + even) >> bits;
1284 }
1285
1286 return s | m;
1287 }
1288
1289 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1290 m >>= 13;
1291
1292 return s | 0x7c00 | m | !m;
1293}
1294
1295/*******************************************************************************/
1296/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1297
1298/* basically, everything uses "ieee pure-endian" floating point numbers */
1299/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1300#if 0 \
1301 || __i386 || __i386__ \
1302 || ECB_GCC_AMD64 \
1303 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1304 || defined __s390__ || defined __s390x__ \
1305 || defined __mips__ \
1306 || defined __alpha__ \
1307 || defined __hppa__ \
1308 || defined __ia64__ \
1309 || defined __m68k__ \
1310 || defined __m88k__ \
1311 || defined __sh__ \
1312 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1313 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1314 || defined __aarch64__
1315 #define ECB_STDFP 1
1316 #include <string.h> /* for memcpy */
1317#else
1318 #define ECB_STDFP 0
1319#endif
1320
1321#ifndef ECB_NO_LIBM
1322
1323 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1324
1325 /* only the oldest of old doesn't have this one. solaris. */
1326 #ifdef INFINITY
1327 #define ECB_INFINITY INFINITY
1328 #else
1329 #define ECB_INFINITY HUGE_VAL
1330 #endif
1331
1332 #ifdef NAN
1333 #define ECB_NAN NAN
1334 #else
1335 #define ECB_NAN ECB_INFINITY
1336 #endif
1337
1338 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1339 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1340 #define ecb_frexpf(x,e) frexpf ((x), (e))
1341 #else
1342 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1343 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1344 #endif
1345
1346 /* convert a float to ieee single/binary32 */
1347 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1348 ecb_function_ ecb_const uint32_t
1349 ecb_float_to_binary32 (float x)
1350 {
1351 uint32_t r;
1352
1353 #if ECB_STDFP
1354 memcpy (&r, &x, 4);
1355 #else
1356 /* slow emulation, works for anything but -0 */
1357 uint32_t m;
1358 int e;
1359
1360 if (x == 0e0f ) return 0x00000000U;
1361 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1362 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1363 if (x != x ) return 0x7fbfffffU;
1364
1365 m = ecb_frexpf (x, &e) * 0x1000000U;
1366
1367 r = m & 0x80000000U;
1368
1369 if (r)
1370 m = -m;
1371
1372 if (e <= -126)
1373 {
1374 m &= 0xffffffU;
1375 m >>= (-125 - e);
1376 e = -126;
1377 }
1378
1379 r |= (e + 126) << 23;
1380 r |= m & 0x7fffffU;
1381 #endif
1382
1383 return r;
1384 }
1385
1386 /* converts an ieee single/binary32 to a float */
1387 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1388 ecb_function_ ecb_const float
1389 ecb_binary32_to_float (uint32_t x)
1390 {
1391 float r;
1392
1393 #if ECB_STDFP
1394 memcpy (&r, &x, 4);
1395 #else
1396 /* emulation, only works for normals and subnormals and +0 */
1397 int neg = x >> 31;
1398 int e = (x >> 23) & 0xffU;
1399
1400 x &= 0x7fffffU;
1401
1402 if (e)
1403 x |= 0x800000U;
1404 else
1405 e = 1;
1406
1407 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1408 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1409
1410 r = neg ? -r : r;
1411 #endif
1412
1413 return r;
1414 }
1415
1416 /* convert a double to ieee double/binary64 */
1417 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1418 ecb_function_ ecb_const uint64_t
1419 ecb_double_to_binary64 (double x)
1420 {
1421 uint64_t r;
1422
1423 #if ECB_STDFP
1424 memcpy (&r, &x, 8);
1425 #else
1426 /* slow emulation, works for anything but -0 */
1427 uint64_t m;
1428 int e;
1429
1430 if (x == 0e0 ) return 0x0000000000000000U;
1431 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1432 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1433 if (x != x ) return 0X7ff7ffffffffffffU;
1434
1435 m = frexp (x, &e) * 0x20000000000000U;
1436
1437 r = m & 0x8000000000000000;;
1438
1439 if (r)
1440 m = -m;
1441
1442 if (e <= -1022)
1443 {
1444 m &= 0x1fffffffffffffU;
1445 m >>= (-1021 - e);
1446 e = -1022;
1447 }
1448
1449 r |= ((uint64_t)(e + 1022)) << 52;
1450 r |= m & 0xfffffffffffffU;
1451 #endif
1452
1453 return r;
1454 }
1455
1456 /* converts an ieee double/binary64 to a double */
1457 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1458 ecb_function_ ecb_const double
1459 ecb_binary64_to_double (uint64_t x)
1460 {
1461 double r;
1462
1463 #if ECB_STDFP
1464 memcpy (&r, &x, 8);
1465 #else
1466 /* emulation, only works for normals and subnormals and +0 */
1467 int neg = x >> 63;
1468 int e = (x >> 52) & 0x7ffU;
1469
1470 x &= 0xfffffffffffffU;
1471
1472 if (e)
1473 x |= 0x10000000000000U;
1474 else
1475 e = 1;
1476
1477 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1478 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1479
1480 r = neg ? -r : r;
1481 #endif
1482
1483 return r;
1484 }
1485
1486 /* convert a float to ieee half/binary16 */
1487 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1488 ecb_function_ ecb_const uint16_t
1489 ecb_float_to_binary16 (float x)
1490 {
1491 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1492 }
1493
1494 /* convert an ieee half/binary16 to float */
1495 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1496 ecb_function_ ecb_const float
1497 ecb_binary16_to_float (uint16_t x)
1498 {
1499 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1500 }
1501
1502#endif
1503
1504#endif
1505
1506/* ECB.H END */
1507
1508#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1509/* if your architecture doesn't need memory fences, e.g. because it is
1510 * single-cpu/core, or if you use libev in a project that doesn't use libev
1511 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1512 * libev, in which cases the memory fences become nops.
1513 * alternatively, you can remove this #error and link against libpthread,
1514 * which will then provide the memory fences.
1515 */
1516# error "memory fences not defined for your architecture, please report"
1517#endif
1518
1519#ifndef ECB_MEMORY_FENCE
1520# define ECB_MEMORY_FENCE do { } while (0)
1521# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1522# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1523#endif
1524
1525#define expect_false(cond) ecb_expect_false (cond)
1526#define expect_true(cond) ecb_expect_true (cond)
1527#define noinline ecb_noinline
1528
381#define inline_size static inline 1529#define inline_size ecb_inline
382 1530
383#if EV_MINIMAL 1531#if EV_FEATURE_CODE
384# define inline_speed static noinline
385#else
386# define inline_speed static inline 1532# define inline_speed ecb_inline
1533#else
1534# define inline_speed noinline static
387#endif 1535#endif
388 1536
389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1537#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1538
1539#if EV_MINPRI == EV_MAXPRI
1540# define ABSPRI(w) (((W)w), 0)
1541#else
390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1542# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1543#endif
391 1544
392#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1545#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */ 1546#define EMPTY2(a,b) /* used to suppress some warnings */
394 1547
395typedef ev_watcher *W; 1548typedef ev_watcher *W;
399#define ev_active(w) ((W)(w))->active 1552#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at 1553#define ev_at(w) ((WT)(w))->at
401 1554
402#if EV_USE_REALTIME 1555#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 1556/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */ 1557/* giving it a reasonably high chance of working on typical architectures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */ 1558static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif 1559#endif
407 1560
408#if EV_USE_MONOTONIC 1561#if EV_USE_MONOTONIC
409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1562static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif 1563#endif
411 1564
1565#ifndef EV_FD_TO_WIN32_HANDLE
1566# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1567#endif
1568#ifndef EV_WIN32_HANDLE_TO_FD
1569# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1570#endif
1571#ifndef EV_WIN32_CLOSE_FD
1572# define EV_WIN32_CLOSE_FD(fd) close (fd)
1573#endif
1574
412#ifdef _WIN32 1575#ifdef _WIN32
413# include "ev_win32.c" 1576# include "ev_win32.c"
414#endif 1577#endif
415 1578
416/*****************************************************************************/ 1579/*****************************************************************************/
417 1580
1581/* define a suitable floor function (only used by periodics atm) */
1582
1583#if EV_USE_FLOOR
1584# include <math.h>
1585# define ev_floor(v) floor (v)
1586#else
1587
1588#include <float.h>
1589
1590/* a floor() replacement function, should be independent of ev_tstamp type */
1591noinline
1592static ev_tstamp
1593ev_floor (ev_tstamp v)
1594{
1595 /* the choice of shift factor is not terribly important */
1596#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1597 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1598#else
1599 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1600#endif
1601
1602 /* argument too large for an unsigned long? */
1603 if (expect_false (v >= shift))
1604 {
1605 ev_tstamp f;
1606
1607 if (v == v - 1.)
1608 return v; /* very large number */
1609
1610 f = shift * ev_floor (v * (1. / shift));
1611 return f + ev_floor (v - f);
1612 }
1613
1614 /* special treatment for negative args? */
1615 if (expect_false (v < 0.))
1616 {
1617 ev_tstamp f = -ev_floor (-v);
1618
1619 return f - (f == v ? 0 : 1);
1620 }
1621
1622 /* fits into an unsigned long */
1623 return (unsigned long)v;
1624}
1625
1626#endif
1627
1628/*****************************************************************************/
1629
1630#ifdef __linux
1631# include <sys/utsname.h>
1632#endif
1633
1634noinline ecb_cold
1635static unsigned int
1636ev_linux_version (void)
1637{
1638#ifdef __linux
1639 unsigned int v = 0;
1640 struct utsname buf;
1641 int i;
1642 char *p = buf.release;
1643
1644 if (uname (&buf))
1645 return 0;
1646
1647 for (i = 3+1; --i; )
1648 {
1649 unsigned int c = 0;
1650
1651 for (;;)
1652 {
1653 if (*p >= '0' && *p <= '9')
1654 c = c * 10 + *p++ - '0';
1655 else
1656 {
1657 p += *p == '.';
1658 break;
1659 }
1660 }
1661
1662 v = (v << 8) | c;
1663 }
1664
1665 return v;
1666#else
1667 return 0;
1668#endif
1669}
1670
1671/*****************************************************************************/
1672
1673#if EV_AVOID_STDIO
1674noinline ecb_cold
1675static void
1676ev_printerr (const char *msg)
1677{
1678 write (STDERR_FILENO, msg, strlen (msg));
1679}
1680#endif
1681
418static void (*syserr_cb)(const char *msg); 1682static void (*syserr_cb)(const char *msg) EV_THROW;
419 1683
1684ecb_cold
420void 1685void
421ev_set_syserr_cb (void (*cb)(const char *msg)) 1686ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
422{ 1687{
423 syserr_cb = cb; 1688 syserr_cb = cb;
424} 1689}
425 1690
426static void noinline 1691noinline ecb_cold
1692static void
427ev_syserr (const char *msg) 1693ev_syserr (const char *msg)
428{ 1694{
429 if (!msg) 1695 if (!msg)
430 msg = "(libev) system error"; 1696 msg = "(libev) system error";
431 1697
432 if (syserr_cb) 1698 if (syserr_cb)
433 syserr_cb (msg); 1699 syserr_cb (msg);
434 else 1700 else
435 { 1701 {
1702#if EV_AVOID_STDIO
1703 ev_printerr (msg);
1704 ev_printerr (": ");
1705 ev_printerr (strerror (errno));
1706 ev_printerr ("\n");
1707#else
436 perror (msg); 1708 perror (msg);
1709#endif
437 abort (); 1710 abort ();
438 } 1711 }
439} 1712}
440 1713
441static void * 1714static void *
442ev_realloc_emul (void *ptr, long size) 1715ev_realloc_emul (void *ptr, long size) EV_THROW
443{ 1716{
444 /* some systems, notably openbsd and darwin, fail to properly 1717 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and 1718 * implement realloc (x, 0) (as required by both ansi c-89 and
446 * the single unix specification, so work around them here. 1719 * the single unix specification, so work around them here.
1720 * recently, also (at least) fedora and debian started breaking it,
1721 * despite documenting it otherwise.
447 */ 1722 */
448 1723
449 if (size) 1724 if (size)
450 return realloc (ptr, size); 1725 return realloc (ptr, size);
451 1726
452 free (ptr); 1727 free (ptr);
453 return 0; 1728 return 0;
454} 1729}
455 1730
456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1731static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
457 1732
1733ecb_cold
458void 1734void
459ev_set_allocator (void *(*cb)(void *ptr, long size)) 1735ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
460{ 1736{
461 alloc = cb; 1737 alloc = cb;
462} 1738}
463 1739
464inline_speed void * 1740inline_speed void *
466{ 1742{
467 ptr = alloc (ptr, size); 1743 ptr = alloc (ptr, size);
468 1744
469 if (!ptr && size) 1745 if (!ptr && size)
470 { 1746 {
1747#if EV_AVOID_STDIO
1748 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1749#else
471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1750 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1751#endif
472 abort (); 1752 abort ();
473 } 1753 }
474 1754
475 return ptr; 1755 return ptr;
476} 1756}
478#define ev_malloc(size) ev_realloc (0, (size)) 1758#define ev_malloc(size) ev_realloc (0, (size))
479#define ev_free(ptr) ev_realloc ((ptr), 0) 1759#define ev_free(ptr) ev_realloc ((ptr), 0)
480 1760
481/*****************************************************************************/ 1761/*****************************************************************************/
482 1762
1763/* set in reify when reification needed */
1764#define EV_ANFD_REIFY 1
1765
1766/* file descriptor info structure */
483typedef struct 1767typedef struct
484{ 1768{
485 WL head; 1769 WL head;
486 unsigned char events; 1770 unsigned char events; /* the events watched for */
487 unsigned char reify; 1771 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 1772 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused; 1773 unsigned char unused;
490#if EV_USE_EPOLL 1774#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */ 1775 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif 1776#endif
493#if EV_SELECT_IS_WINSOCKET 1777#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
494 SOCKET handle; 1778 SOCKET handle;
495#endif 1779#endif
1780#if EV_USE_IOCP
1781 OVERLAPPED or, ow;
1782#endif
496} ANFD; 1783} ANFD;
497 1784
1785/* stores the pending event set for a given watcher */
498typedef struct 1786typedef struct
499{ 1787{
500 W w; 1788 W w;
501 int events; 1789 int events; /* the pending event set for the given watcher */
502} ANPENDING; 1790} ANPENDING;
503 1791
504#if EV_USE_INOTIFY 1792#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */ 1793/* hash table entry per inotify-id */
506typedef struct 1794typedef struct
509} ANFS; 1797} ANFS;
510#endif 1798#endif
511 1799
512/* Heap Entry */ 1800/* Heap Entry */
513#if EV_HEAP_CACHE_AT 1801#if EV_HEAP_CACHE_AT
1802 /* a heap element */
514 typedef struct { 1803 typedef struct {
515 ev_tstamp at; 1804 ev_tstamp at;
516 WT w; 1805 WT w;
517 } ANHE; 1806 } ANHE;
518 1807
519 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1808 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1809 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1810 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else 1811#else
1812 /* a heap element */
523 typedef WT ANHE; 1813 typedef WT ANHE;
524 1814
525 #define ANHE_w(he) (he) 1815 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at 1816 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he) 1817 #define ANHE_at_cache(he)
538 #undef VAR 1828 #undef VAR
539 }; 1829 };
540 #include "ev_wrap.h" 1830 #include "ev_wrap.h"
541 1831
542 static struct ev_loop default_loop_struct; 1832 static struct ev_loop default_loop_struct;
543 struct ev_loop *ev_default_loop_ptr; 1833 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
544 1834
545#else 1835#else
546 1836
547 ev_tstamp ev_rt_now; 1837 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
548 #define VAR(name,decl) static decl; 1838 #define VAR(name,decl) static decl;
549 #include "ev_vars.h" 1839 #include "ev_vars.h"
550 #undef VAR 1840 #undef VAR
551 1841
552 static int ev_default_loop_ptr; 1842 static int ev_default_loop_ptr;
553 1843
554#endif 1844#endif
555 1845
1846#if EV_FEATURE_API
1847# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1848# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1849# define EV_INVOKE_PENDING invoke_cb (EV_A)
1850#else
1851# define EV_RELEASE_CB (void)0
1852# define EV_ACQUIRE_CB (void)0
1853# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1854#endif
1855
1856#define EVBREAK_RECURSE 0x80
1857
556/*****************************************************************************/ 1858/*****************************************************************************/
557 1859
1860#ifndef EV_HAVE_EV_TIME
558ev_tstamp 1861ev_tstamp
559ev_time (void) 1862ev_time (void) EV_THROW
560{ 1863{
561#if EV_USE_REALTIME 1864#if EV_USE_REALTIME
562 if (expect_true (have_realtime)) 1865 if (expect_true (have_realtime))
563 { 1866 {
564 struct timespec ts; 1867 struct timespec ts;
569 1872
570 struct timeval tv; 1873 struct timeval tv;
571 gettimeofday (&tv, 0); 1874 gettimeofday (&tv, 0);
572 return tv.tv_sec + tv.tv_usec * 1e-6; 1875 return tv.tv_sec + tv.tv_usec * 1e-6;
573} 1876}
1877#endif
574 1878
575inline_size ev_tstamp 1879inline_size ev_tstamp
576get_clock (void) 1880get_clock (void)
577{ 1881{
578#if EV_USE_MONOTONIC 1882#if EV_USE_MONOTONIC
587 return ev_time (); 1891 return ev_time ();
588} 1892}
589 1893
590#if EV_MULTIPLICITY 1894#if EV_MULTIPLICITY
591ev_tstamp 1895ev_tstamp
592ev_now (EV_P) 1896ev_now (EV_P) EV_THROW
593{ 1897{
594 return ev_rt_now; 1898 return ev_rt_now;
595} 1899}
596#endif 1900#endif
597 1901
598void 1902void
599ev_sleep (ev_tstamp delay) 1903ev_sleep (ev_tstamp delay) EV_THROW
600{ 1904{
601 if (delay > 0.) 1905 if (delay > 0.)
602 { 1906 {
603#if EV_USE_NANOSLEEP 1907#if EV_USE_NANOSLEEP
604 struct timespec ts; 1908 struct timespec ts;
605 1909
606 ts.tv_sec = (time_t)delay; 1910 EV_TS_SET (ts, delay);
607 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
608
609 nanosleep (&ts, 0); 1911 nanosleep (&ts, 0);
610#elif defined(_WIN32) 1912#elif defined _WIN32
1913 /* maybe this should round up, as ms is very low resolution */
1914 /* compared to select (µs) or nanosleep (ns) */
611 Sleep ((unsigned long)(delay * 1e3)); 1915 Sleep ((unsigned long)(delay * 1e3));
612#else 1916#else
613 struct timeval tv; 1917 struct timeval tv;
614 1918
615 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 1919 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 1920 /* something not guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */ 1921 /* by older ones */
1922 EV_TV_SET (tv, delay);
621 select (0, 0, 0, 0, &tv); 1923 select (0, 0, 0, 0, &tv);
622#endif 1924#endif
623 } 1925 }
624} 1926}
625 1927
626/*****************************************************************************/ 1928/*****************************************************************************/
627 1929
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1930#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629 1931
1932/* find a suitable new size for the given array, */
1933/* hopefully by rounding to a nice-to-malloc size */
630inline_size int 1934inline_size int
631array_nextsize (int elem, int cur, int cnt) 1935array_nextsize (int elem, int cur, int cnt)
632{ 1936{
633 int ncur = cur + 1; 1937 int ncur = cur + 1;
634 1938
635 do 1939 do
636 ncur <<= 1; 1940 ncur <<= 1;
637 while (cnt > ncur); 1941 while (cnt > ncur);
638 1942
639 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1943 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
640 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1944 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
641 { 1945 {
642 ncur *= elem; 1946 ncur *= elem;
643 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1947 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
644 ncur = ncur - sizeof (void *) * 4; 1948 ncur = ncur - sizeof (void *) * 4;
646 } 1950 }
647 1951
648 return ncur; 1952 return ncur;
649} 1953}
650 1954
651static noinline void * 1955noinline ecb_cold
1956static void *
652array_realloc (int elem, void *base, int *cur, int cnt) 1957array_realloc (int elem, void *base, int *cur, int cnt)
653{ 1958{
654 *cur = array_nextsize (elem, *cur, cnt); 1959 *cur = array_nextsize (elem, *cur, cnt);
655 return ev_realloc (base, elem * *cur); 1960 return ev_realloc (base, elem * *cur);
656} 1961}
659 memset ((void *)(base), 0, sizeof (*(base)) * (count)) 1964 memset ((void *)(base), 0, sizeof (*(base)) * (count))
660 1965
661#define array_needsize(type,base,cur,cnt,init) \ 1966#define array_needsize(type,base,cur,cnt,init) \
662 if (expect_false ((cnt) > (cur))) \ 1967 if (expect_false ((cnt) > (cur))) \
663 { \ 1968 { \
664 int ocur_ = (cur); \ 1969 ecb_unused int ocur_ = (cur); \
665 (base) = (type *)array_realloc \ 1970 (base) = (type *)array_realloc \
666 (sizeof (type), (base), &(cur), (cnt)); \ 1971 (sizeof (type), (base), &(cur), (cnt)); \
667 init ((base) + (ocur_), (cur) - ocur_); \ 1972 init ((base) + (ocur_), (cur) - ocur_); \
668 } 1973 }
669 1974
680#define array_free(stem, idx) \ 1985#define array_free(stem, idx) \
681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0 1986 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
682 1987
683/*****************************************************************************/ 1988/*****************************************************************************/
684 1989
1990/* dummy callback for pending events */
685void noinline 1991noinline
1992static void
1993pendingcb (EV_P_ ev_prepare *w, int revents)
1994{
1995}
1996
1997noinline
1998void
686ev_feed_event (EV_P_ void *w, int revents) 1999ev_feed_event (EV_P_ void *w, int revents) EV_THROW
687{ 2000{
688 W w_ = (W)w; 2001 W w_ = (W)w;
689 int pri = ABSPRI (w_); 2002 int pri = ABSPRI (w_);
690 2003
691 if (expect_false (w_->pending)) 2004 if (expect_false (w_->pending))
695 w_->pending = ++pendingcnt [pri]; 2008 w_->pending = ++pendingcnt [pri];
696 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 2009 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
697 pendings [pri][w_->pending - 1].w = w_; 2010 pendings [pri][w_->pending - 1].w = w_;
698 pendings [pri][w_->pending - 1].events = revents; 2011 pendings [pri][w_->pending - 1].events = revents;
699 } 2012 }
2013
2014 pendingpri = NUMPRI - 1;
700} 2015}
701 2016
702inline_speed void 2017inline_speed void
703feed_reverse (EV_P_ W w) 2018feed_reverse (EV_P_ W w)
704{ 2019{
724} 2039}
725 2040
726/*****************************************************************************/ 2041/*****************************************************************************/
727 2042
728inline_speed void 2043inline_speed void
729fd_event (EV_P_ int fd, int revents) 2044fd_event_nocheck (EV_P_ int fd, int revents)
730{ 2045{
731 ANFD *anfd = anfds + fd; 2046 ANFD *anfd = anfds + fd;
732 ev_io *w; 2047 ev_io *w;
733 2048
734 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2049 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
738 if (ev) 2053 if (ev)
739 ev_feed_event (EV_A_ (W)w, ev); 2054 ev_feed_event (EV_A_ (W)w, ev);
740 } 2055 }
741} 2056}
742 2057
2058/* do not submit kernel events for fds that have reify set */
2059/* because that means they changed while we were polling for new events */
2060inline_speed void
2061fd_event (EV_P_ int fd, int revents)
2062{
2063 ANFD *anfd = anfds + fd;
2064
2065 if (expect_true (!anfd->reify))
2066 fd_event_nocheck (EV_A_ fd, revents);
2067}
2068
743void 2069void
744ev_feed_fd_event (EV_P_ int fd, int revents) 2070ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
745{ 2071{
746 if (fd >= 0 && fd < anfdmax) 2072 if (fd >= 0 && fd < anfdmax)
747 fd_event (EV_A_ fd, revents); 2073 fd_event_nocheck (EV_A_ fd, revents);
748} 2074}
749 2075
2076/* make sure the external fd watch events are in-sync */
2077/* with the kernel/libev internal state */
750inline_size void 2078inline_size void
751fd_reify (EV_P) 2079fd_reify (EV_P)
752{ 2080{
753 int i; 2081 int i;
2082
2083#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2084 for (i = 0; i < fdchangecnt; ++i)
2085 {
2086 int fd = fdchanges [i];
2087 ANFD *anfd = anfds + fd;
2088
2089 if (anfd->reify & EV__IOFDSET && anfd->head)
2090 {
2091 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2092
2093 if (handle != anfd->handle)
2094 {
2095 unsigned long arg;
2096
2097 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2098
2099 /* handle changed, but fd didn't - we need to do it in two steps */
2100 backend_modify (EV_A_ fd, anfd->events, 0);
2101 anfd->events = 0;
2102 anfd->handle = handle;
2103 }
2104 }
2105 }
2106#endif
754 2107
755 for (i = 0; i < fdchangecnt; ++i) 2108 for (i = 0; i < fdchangecnt; ++i)
756 { 2109 {
757 int fd = fdchanges [i]; 2110 int fd = fdchanges [i];
758 ANFD *anfd = anfds + fd; 2111 ANFD *anfd = anfds + fd;
759 ev_io *w; 2112 ev_io *w;
760 2113
761 unsigned char events = 0; 2114 unsigned char o_events = anfd->events;
2115 unsigned char o_reify = anfd->reify;
762 2116
763 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2117 anfd->reify = 0;
764 events |= (unsigned char)w->events;
765 2118
766#if EV_SELECT_IS_WINSOCKET 2119 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
767 if (events)
768 { 2120 {
769 unsigned long arg; 2121 anfd->events = 0;
770 #ifdef EV_FD_TO_WIN32_HANDLE 2122
771 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 2123 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
772 #else 2124 anfd->events |= (unsigned char)w->events;
773 anfd->handle = _get_osfhandle (fd); 2125
774 #endif 2126 if (o_events != anfd->events)
775 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 2127 o_reify = EV__IOFDSET; /* actually |= */
776 } 2128 }
777#endif
778 2129
779 { 2130 if (o_reify & EV__IOFDSET)
780 unsigned char o_events = anfd->events;
781 unsigned char o_reify = anfd->reify;
782
783 anfd->reify = 0;
784 anfd->events = events;
785
786 if (o_events != events || o_reify & EV__IOFDSET)
787 backend_modify (EV_A_ fd, o_events, events); 2131 backend_modify (EV_A_ fd, o_events, anfd->events);
788 }
789 } 2132 }
790 2133
791 fdchangecnt = 0; 2134 fdchangecnt = 0;
792} 2135}
793 2136
2137/* something about the given fd changed */
794inline_size void 2138inline_size
2139void
795fd_change (EV_P_ int fd, int flags) 2140fd_change (EV_P_ int fd, int flags)
796{ 2141{
797 unsigned char reify = anfds [fd].reify; 2142 unsigned char reify = anfds [fd].reify;
798 anfds [fd].reify |= flags; 2143 anfds [fd].reify |= flags;
799 2144
803 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2148 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
804 fdchanges [fdchangecnt - 1] = fd; 2149 fdchanges [fdchangecnt - 1] = fd;
805 } 2150 }
806} 2151}
807 2152
2153/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
808inline_speed void 2154inline_speed ecb_cold void
809fd_kill (EV_P_ int fd) 2155fd_kill (EV_P_ int fd)
810{ 2156{
811 ev_io *w; 2157 ev_io *w;
812 2158
813 while ((w = (ev_io *)anfds [fd].head)) 2159 while ((w = (ev_io *)anfds [fd].head))
815 ev_io_stop (EV_A_ w); 2161 ev_io_stop (EV_A_ w);
816 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2162 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
817 } 2163 }
818} 2164}
819 2165
2166/* check whether the given fd is actually valid, for error recovery */
820inline_size int 2167inline_size ecb_cold int
821fd_valid (int fd) 2168fd_valid (int fd)
822{ 2169{
823#ifdef _WIN32 2170#ifdef _WIN32
824 return _get_osfhandle (fd) != -1; 2171 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
825#else 2172#else
826 return fcntl (fd, F_GETFD) != -1; 2173 return fcntl (fd, F_GETFD) != -1;
827#endif 2174#endif
828} 2175}
829 2176
830/* called on EBADF to verify fds */ 2177/* called on EBADF to verify fds */
831static void noinline 2178noinline ecb_cold
2179static void
832fd_ebadf (EV_P) 2180fd_ebadf (EV_P)
833{ 2181{
834 int fd; 2182 int fd;
835 2183
836 for (fd = 0; fd < anfdmax; ++fd) 2184 for (fd = 0; fd < anfdmax; ++fd)
838 if (!fd_valid (fd) && errno == EBADF) 2186 if (!fd_valid (fd) && errno == EBADF)
839 fd_kill (EV_A_ fd); 2187 fd_kill (EV_A_ fd);
840} 2188}
841 2189
842/* called on ENOMEM in select/poll to kill some fds and retry */ 2190/* called on ENOMEM in select/poll to kill some fds and retry */
843static void noinline 2191noinline ecb_cold
2192static void
844fd_enomem (EV_P) 2193fd_enomem (EV_P)
845{ 2194{
846 int fd; 2195 int fd;
847 2196
848 for (fd = anfdmax; fd--; ) 2197 for (fd = anfdmax; fd--; )
849 if (anfds [fd].events) 2198 if (anfds [fd].events)
850 { 2199 {
851 fd_kill (EV_A_ fd); 2200 fd_kill (EV_A_ fd);
852 return; 2201 break;
853 } 2202 }
854} 2203}
855 2204
856/* usually called after fork if backend needs to re-arm all fds from scratch */ 2205/* usually called after fork if backend needs to re-arm all fds from scratch */
857static void noinline 2206noinline
2207static void
858fd_rearm_all (EV_P) 2208fd_rearm_all (EV_P)
859{ 2209{
860 int fd; 2210 int fd;
861 2211
862 for (fd = 0; fd < anfdmax; ++fd) 2212 for (fd = 0; fd < anfdmax; ++fd)
863 if (anfds [fd].events) 2213 if (anfds [fd].events)
864 { 2214 {
865 anfds [fd].events = 0; 2215 anfds [fd].events = 0;
866 anfds [fd].emask = 0; 2216 anfds [fd].emask = 0;
867 fd_change (EV_A_ fd, EV__IOFDSET | 1); 2217 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
868 } 2218 }
869} 2219}
870 2220
2221/* used to prepare libev internal fd's */
2222/* this is not fork-safe */
2223inline_speed void
2224fd_intern (int fd)
2225{
2226#ifdef _WIN32
2227 unsigned long arg = 1;
2228 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2229#else
2230 fcntl (fd, F_SETFD, FD_CLOEXEC);
2231 fcntl (fd, F_SETFL, O_NONBLOCK);
2232#endif
2233}
2234
871/*****************************************************************************/ 2235/*****************************************************************************/
872 2236
873/* 2237/*
874 * the heap functions want a real array index. array index 0 uis guaranteed to not 2238 * the heap functions want a real array index. array index 0 is guaranteed to not
875 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 2239 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
876 * the branching factor of the d-tree. 2240 * the branching factor of the d-tree.
877 */ 2241 */
878 2242
879/* 2243/*
947 2311
948 for (;;) 2312 for (;;)
949 { 2313 {
950 int c = k << 1; 2314 int c = k << 1;
951 2315
952 if (c > N + HEAP0 - 1) 2316 if (c >= N + HEAP0)
953 break; 2317 break;
954 2318
955 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2319 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
956 ? 1 : 0; 2320 ? 1 : 0;
957 2321
989 2353
990 heap [k] = he; 2354 heap [k] = he;
991 ev_active (ANHE_w (he)) = k; 2355 ev_active (ANHE_w (he)) = k;
992} 2356}
993 2357
2358/* move an element suitably so it is in a correct place */
994inline_size void 2359inline_size void
995adjustheap (ANHE *heap, int N, int k) 2360adjustheap (ANHE *heap, int N, int k)
996{ 2361{
997 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 2362 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
998 upheap (heap, k); 2363 upheap (heap, k);
999 else 2364 else
1000 downheap (heap, N, k); 2365 downheap (heap, N, k);
1001} 2366}
1002 2367
1012 upheap (heap, i + HEAP0); 2377 upheap (heap, i + HEAP0);
1013} 2378}
1014 2379
1015/*****************************************************************************/ 2380/*****************************************************************************/
1016 2381
2382/* associate signal watchers to a signal signal */
1017typedef struct 2383typedef struct
1018{ 2384{
2385 EV_ATOMIC_T pending;
2386#if EV_MULTIPLICITY
2387 EV_P;
2388#endif
1019 WL head; 2389 WL head;
1020 EV_ATOMIC_T gotsig;
1021} ANSIG; 2390} ANSIG;
1022 2391
1023static ANSIG *signals; 2392static ANSIG signals [EV_NSIG - 1];
1024static int signalmax;
1025
1026static EV_ATOMIC_T gotsig;
1027 2393
1028/*****************************************************************************/ 2394/*****************************************************************************/
1029 2395
2396#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2397
2398noinline ecb_cold
2399static void
2400evpipe_init (EV_P)
2401{
2402 if (!ev_is_active (&pipe_w))
2403 {
2404 int fds [2];
2405
2406# if EV_USE_EVENTFD
2407 fds [0] = -1;
2408 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2409 if (fds [1] < 0 && errno == EINVAL)
2410 fds [1] = eventfd (0, 0);
2411
2412 if (fds [1] < 0)
2413# endif
2414 {
2415 while (pipe (fds))
2416 ev_syserr ("(libev) error creating signal/async pipe");
2417
2418 fd_intern (fds [0]);
2419 }
2420
2421 evpipe [0] = fds [0];
2422
2423 if (evpipe [1] < 0)
2424 evpipe [1] = fds [1]; /* first call, set write fd */
2425 else
2426 {
2427 /* on subsequent calls, do not change evpipe [1] */
2428 /* so that evpipe_write can always rely on its value. */
2429 /* this branch does not do anything sensible on windows, */
2430 /* so must not be executed on windows */
2431
2432 dup2 (fds [1], evpipe [1]);
2433 close (fds [1]);
2434 }
2435
2436 fd_intern (evpipe [1]);
2437
2438 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2439 ev_io_start (EV_A_ &pipe_w);
2440 ev_unref (EV_A); /* watcher should not keep loop alive */
2441 }
2442}
2443
1030inline_speed void 2444inline_speed void
1031fd_intern (int fd) 2445evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1032{ 2446{
1033#ifdef _WIN32 2447 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1034 unsigned long arg = 1;
1035 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1036#else
1037 fcntl (fd, F_SETFD, FD_CLOEXEC);
1038 fcntl (fd, F_SETFL, O_NONBLOCK);
1039#endif
1040}
1041 2448
1042static void noinline 2449 if (expect_true (*flag))
1043evpipe_init (EV_P) 2450 return;
1044{ 2451
1045 if (!ev_is_active (&pipeev)) 2452 *flag = 1;
2453 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2454
2455 pipe_write_skipped = 1;
2456
2457 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2458
2459 if (pipe_write_wanted)
1046 { 2460 {
2461 int old_errno;
2462
2463 pipe_write_skipped = 0;
2464 ECB_MEMORY_FENCE_RELEASE;
2465
2466 old_errno = errno; /* save errno because write will clobber it */
2467
1047#if EV_USE_EVENTFD 2468#if EV_USE_EVENTFD
1048 if ((evfd = eventfd (0, 0)) >= 0) 2469 if (evpipe [0] < 0)
1049 { 2470 {
1050 evpipe [0] = -1; 2471 uint64_t counter = 1;
1051 fd_intern (evfd); 2472 write (evpipe [1], &counter, sizeof (uint64_t));
1052 ev_io_set (&pipeev, evfd, EV_READ);
1053 } 2473 }
1054 else 2474 else
1055#endif 2475#endif
1056 { 2476 {
1057 while (pipe (evpipe)) 2477#ifdef _WIN32
1058 ev_syserr ("(libev) error creating signal/async pipe"); 2478 WSABUF buf;
1059 2479 DWORD sent;
1060 fd_intern (evpipe [0]); 2480 buf.buf = &buf;
1061 fd_intern (evpipe [1]); 2481 buf.len = 1;
1062 ev_io_set (&pipeev, evpipe [0], EV_READ); 2482 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2483#else
2484 write (evpipe [1], &(evpipe [1]), 1);
2485#endif
1063 } 2486 }
1064 2487
1065 ev_io_start (EV_A_ &pipeev); 2488 errno = old_errno;
1066 ev_unref (EV_A); /* watcher should not keep loop alive */
1067 }
1068}
1069
1070inline_size void
1071evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1072{
1073 if (!*flag)
1074 { 2489 }
1075 int old_errno = errno; /* save errno because write might clobber it */ 2490}
1076 2491
1077 *flag = 1; 2492/* called whenever the libev signal pipe */
2493/* got some events (signal, async) */
2494static void
2495pipecb (EV_P_ ev_io *iow, int revents)
2496{
2497 int i;
1078 2498
2499 if (revents & EV_READ)
2500 {
1079#if EV_USE_EVENTFD 2501#if EV_USE_EVENTFD
1080 if (evfd >= 0) 2502 if (evpipe [0] < 0)
1081 { 2503 {
1082 uint64_t counter = 1; 2504 uint64_t counter;
1083 write (evfd, &counter, sizeof (uint64_t)); 2505 read (evpipe [1], &counter, sizeof (uint64_t));
1084 } 2506 }
1085 else 2507 else
1086#endif 2508#endif
1087 write (evpipe [1], &old_errno, 1); 2509 {
1088
1089 errno = old_errno;
1090 }
1091}
1092
1093static void
1094pipecb (EV_P_ ev_io *iow, int revents)
1095{
1096#if EV_USE_EVENTFD
1097 if (evfd >= 0)
1098 {
1099 uint64_t counter;
1100 read (evfd, &counter, sizeof (uint64_t));
1101 }
1102 else
1103#endif
1104 {
1105 char dummy; 2510 char dummy[4];
2511#ifdef _WIN32
2512 WSABUF buf;
2513 DWORD recvd;
2514 DWORD flags = 0;
2515 buf.buf = dummy;
2516 buf.len = sizeof (dummy);
2517 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2518#else
1106 read (evpipe [0], &dummy, 1); 2519 read (evpipe [0], &dummy, sizeof (dummy));
2520#endif
2521 }
2522 }
2523
2524 pipe_write_skipped = 0;
2525
2526 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2527
2528#if EV_SIGNAL_ENABLE
2529 if (sig_pending)
1107 } 2530 {
2531 sig_pending = 0;
1108 2532
1109 if (gotsig && ev_is_default_loop (EV_A)) 2533 ECB_MEMORY_FENCE;
1110 {
1111 int signum;
1112 gotsig = 0;
1113 2534
1114 for (signum = signalmax; signum--; ) 2535 for (i = EV_NSIG - 1; i--; )
1115 if (signals [signum].gotsig) 2536 if (expect_false (signals [i].pending))
1116 ev_feed_signal_event (EV_A_ signum + 1); 2537 ev_feed_signal_event (EV_A_ i + 1);
1117 } 2538 }
2539#endif
1118 2540
1119#if EV_ASYNC_ENABLE 2541#if EV_ASYNC_ENABLE
1120 if (gotasync) 2542 if (async_pending)
1121 { 2543 {
1122 int i; 2544 async_pending = 0;
1123 gotasync = 0; 2545
2546 ECB_MEMORY_FENCE;
1124 2547
1125 for (i = asynccnt; i--; ) 2548 for (i = asynccnt; i--; )
1126 if (asyncs [i]->sent) 2549 if (asyncs [i]->sent)
1127 { 2550 {
1128 asyncs [i]->sent = 0; 2551 asyncs [i]->sent = 0;
2552 ECB_MEMORY_FENCE_RELEASE;
1129 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2553 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1130 } 2554 }
1131 } 2555 }
1132#endif 2556#endif
1133} 2557}
1134 2558
1135/*****************************************************************************/ 2559/*****************************************************************************/
1136 2560
2561void
2562ev_feed_signal (int signum) EV_THROW
2563{
2564#if EV_MULTIPLICITY
2565 EV_P;
2566 ECB_MEMORY_FENCE_ACQUIRE;
2567 EV_A = signals [signum - 1].loop;
2568
2569 if (!EV_A)
2570 return;
2571#endif
2572
2573 signals [signum - 1].pending = 1;
2574 evpipe_write (EV_A_ &sig_pending);
2575}
2576
1137static void 2577static void
1138ev_sighandler (int signum) 2578ev_sighandler (int signum)
1139{ 2579{
2580#ifdef _WIN32
2581 signal (signum, ev_sighandler);
2582#endif
2583
2584 ev_feed_signal (signum);
2585}
2586
2587noinline
2588void
2589ev_feed_signal_event (EV_P_ int signum) EV_THROW
2590{
2591 WL w;
2592
2593 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2594 return;
2595
2596 --signum;
2597
1140#if EV_MULTIPLICITY 2598#if EV_MULTIPLICITY
1141 struct ev_loop *loop = &default_loop_struct; 2599 /* it is permissible to try to feed a signal to the wrong loop */
1142#endif 2600 /* or, likely more useful, feeding a signal nobody is waiting for */
1143 2601
1144#if _WIN32 2602 if (expect_false (signals [signum].loop != EV_A))
1145 signal (signum, ev_sighandler);
1146#endif
1147
1148 signals [signum - 1].gotsig = 1;
1149 evpipe_write (EV_A_ &gotsig);
1150}
1151
1152void noinline
1153ev_feed_signal_event (EV_P_ int signum)
1154{
1155 WL w;
1156
1157#if EV_MULTIPLICITY
1158 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1159#endif
1160
1161 --signum;
1162
1163 if (signum < 0 || signum >= signalmax)
1164 return; 2603 return;
2604#endif
1165 2605
1166 signals [signum].gotsig = 0; 2606 signals [signum].pending = 0;
2607 ECB_MEMORY_FENCE_RELEASE;
1167 2608
1168 for (w = signals [signum].head; w; w = w->next) 2609 for (w = signals [signum].head; w; w = w->next)
1169 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2610 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1170} 2611}
1171 2612
2613#if EV_USE_SIGNALFD
2614static void
2615sigfdcb (EV_P_ ev_io *iow, int revents)
2616{
2617 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2618
2619 for (;;)
2620 {
2621 ssize_t res = read (sigfd, si, sizeof (si));
2622
2623 /* not ISO-C, as res might be -1, but works with SuS */
2624 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2625 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2626
2627 if (res < (ssize_t)sizeof (si))
2628 break;
2629 }
2630}
2631#endif
2632
2633#endif
2634
1172/*****************************************************************************/ 2635/*****************************************************************************/
1173 2636
2637#if EV_CHILD_ENABLE
1174static WL childs [EV_PID_HASHSIZE]; 2638static WL childs [EV_PID_HASHSIZE];
1175
1176#ifndef _WIN32
1177 2639
1178static ev_signal childev; 2640static ev_signal childev;
1179 2641
1180#ifndef WIFCONTINUED 2642#ifndef WIFCONTINUED
1181# define WIFCONTINUED(status) 0 2643# define WIFCONTINUED(status) 0
1182#endif 2644#endif
1183 2645
2646/* handle a single child status event */
1184inline_speed void 2647inline_speed void
1185child_reap (EV_P_ int chain, int pid, int status) 2648child_reap (EV_P_ int chain, int pid, int status)
1186{ 2649{
1187 ev_child *w; 2650 ev_child *w;
1188 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2651 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1189 2652
1190 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2653 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1191 { 2654 {
1192 if ((w->pid == pid || !w->pid) 2655 if ((w->pid == pid || !w->pid)
1193 && (!traced || (w->flags & 1))) 2656 && (!traced || (w->flags & 1)))
1194 { 2657 {
1195 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2658 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1202 2665
1203#ifndef WCONTINUED 2666#ifndef WCONTINUED
1204# define WCONTINUED 0 2667# define WCONTINUED 0
1205#endif 2668#endif
1206 2669
2670/* called on sigchld etc., calls waitpid */
1207static void 2671static void
1208childcb (EV_P_ ev_signal *sw, int revents) 2672childcb (EV_P_ ev_signal *sw, int revents)
1209{ 2673{
1210 int pid, status; 2674 int pid, status;
1211 2675
1219 /* make sure we are called again until all children have been reaped */ 2683 /* make sure we are called again until all children have been reaped */
1220 /* we need to do it this way so that the callback gets called before we continue */ 2684 /* we need to do it this way so that the callback gets called before we continue */
1221 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2685 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1222 2686
1223 child_reap (EV_A_ pid, pid, status); 2687 child_reap (EV_A_ pid, pid, status);
1224 if (EV_PID_HASHSIZE > 1) 2688 if ((EV_PID_HASHSIZE) > 1)
1225 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2689 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1226} 2690}
1227 2691
1228#endif 2692#endif
1229 2693
1230/*****************************************************************************/ 2694/*****************************************************************************/
1231 2695
2696#if EV_USE_IOCP
2697# include "ev_iocp.c"
2698#endif
1232#if EV_USE_PORT 2699#if EV_USE_PORT
1233# include "ev_port.c" 2700# include "ev_port.c"
1234#endif 2701#endif
1235#if EV_USE_KQUEUE 2702#if EV_USE_KQUEUE
1236# include "ev_kqueue.c" 2703# include "ev_kqueue.c"
1243#endif 2710#endif
1244#if EV_USE_SELECT 2711#if EV_USE_SELECT
1245# include "ev_select.c" 2712# include "ev_select.c"
1246#endif 2713#endif
1247 2714
1248int 2715ecb_cold int
1249ev_version_major (void) 2716ev_version_major (void) EV_THROW
1250{ 2717{
1251 return EV_VERSION_MAJOR; 2718 return EV_VERSION_MAJOR;
1252} 2719}
1253 2720
1254int 2721ecb_cold int
1255ev_version_minor (void) 2722ev_version_minor (void) EV_THROW
1256{ 2723{
1257 return EV_VERSION_MINOR; 2724 return EV_VERSION_MINOR;
1258} 2725}
1259 2726
1260/* return true if we are running with elevated privileges and should ignore env variables */ 2727/* return true if we are running with elevated privileges and should ignore env variables */
1261int inline_size 2728inline_size ecb_cold int
1262enable_secure (void) 2729enable_secure (void)
1263{ 2730{
1264#ifdef _WIN32 2731#ifdef _WIN32
1265 return 0; 2732 return 0;
1266#else 2733#else
1267 return getuid () != geteuid () 2734 return getuid () != geteuid ()
1268 || getgid () != getegid (); 2735 || getgid () != getegid ();
1269#endif 2736#endif
1270} 2737}
1271 2738
2739ecb_cold
1272unsigned int 2740unsigned int
1273ev_supported_backends (void) 2741ev_supported_backends (void) EV_THROW
1274{ 2742{
1275 unsigned int flags = 0; 2743 unsigned int flags = 0;
1276 2744
1277 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2745 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1278 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2746 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1281 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2749 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1282 2750
1283 return flags; 2751 return flags;
1284} 2752}
1285 2753
2754ecb_cold
1286unsigned int 2755unsigned int
1287ev_recommended_backends (void) 2756ev_recommended_backends (void) EV_THROW
1288{ 2757{
1289 unsigned int flags = ev_supported_backends (); 2758 unsigned int flags = ev_supported_backends ();
1290 2759
1291#ifndef __NetBSD__ 2760#ifndef __NetBSD__
1292 /* kqueue is borked on everything but netbsd apparently */ 2761 /* kqueue is borked on everything but netbsd apparently */
1296#ifdef __APPLE__ 2765#ifdef __APPLE__
1297 /* only select works correctly on that "unix-certified" platform */ 2766 /* only select works correctly on that "unix-certified" platform */
1298 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */ 2767 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1299 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */ 2768 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1300#endif 2769#endif
2770#ifdef __FreeBSD__
2771 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2772#endif
1301 2773
1302 return flags; 2774 return flags;
1303} 2775}
1304 2776
2777ecb_cold
1305unsigned int 2778unsigned int
1306ev_embeddable_backends (void) 2779ev_embeddable_backends (void) EV_THROW
1307{ 2780{
1308 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2781 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1309 2782
1310 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2783 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1311 /* please fix it and tell me how to detect the fix */ 2784 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1312 flags &= ~EVBACKEND_EPOLL; 2785 flags &= ~EVBACKEND_EPOLL;
1313 2786
1314 return flags; 2787 return flags;
1315} 2788}
1316 2789
1317unsigned int 2790unsigned int
1318ev_backend (EV_P) 2791ev_backend (EV_P) EV_THROW
1319{ 2792{
1320 return backend; 2793 return backend;
1321} 2794}
1322 2795
2796#if EV_FEATURE_API
1323unsigned int 2797unsigned int
1324ev_loop_count (EV_P) 2798ev_iteration (EV_P) EV_THROW
1325{ 2799{
1326 return loop_count; 2800 return loop_count;
1327} 2801}
1328 2802
2803unsigned int
2804ev_depth (EV_P) EV_THROW
2805{
2806 return loop_depth;
2807}
2808
1329void 2809void
1330ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2810ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1331{ 2811{
1332 io_blocktime = interval; 2812 io_blocktime = interval;
1333} 2813}
1334 2814
1335void 2815void
1336ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2816ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1337{ 2817{
1338 timeout_blocktime = interval; 2818 timeout_blocktime = interval;
1339} 2819}
1340 2820
1341static void noinline 2821void
2822ev_set_userdata (EV_P_ void *data) EV_THROW
2823{
2824 userdata = data;
2825}
2826
2827void *
2828ev_userdata (EV_P) EV_THROW
2829{
2830 return userdata;
2831}
2832
2833void
2834ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2835{
2836 invoke_cb = invoke_pending_cb;
2837}
2838
2839void
2840ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2841{
2842 release_cb = release;
2843 acquire_cb = acquire;
2844}
2845#endif
2846
2847/* initialise a loop structure, must be zero-initialised */
2848noinline ecb_cold
2849static void
1342loop_init (EV_P_ unsigned int flags) 2850loop_init (EV_P_ unsigned int flags) EV_THROW
1343{ 2851{
1344 if (!backend) 2852 if (!backend)
1345 { 2853 {
2854 origflags = flags;
2855
1346#if EV_USE_REALTIME 2856#if EV_USE_REALTIME
1347 if (!have_realtime) 2857 if (!have_realtime)
1348 { 2858 {
1349 struct timespec ts; 2859 struct timespec ts;
1350 2860
1361 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2871 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1362 have_monotonic = 1; 2872 have_monotonic = 1;
1363 } 2873 }
1364#endif 2874#endif
1365 2875
1366 ev_rt_now = ev_time ();
1367 mn_now = get_clock ();
1368 now_floor = mn_now;
1369 rtmn_diff = ev_rt_now - mn_now;
1370
1371 io_blocktime = 0.;
1372 timeout_blocktime = 0.;
1373 backend = 0;
1374 backend_fd = -1;
1375 gotasync = 0;
1376#if EV_USE_INOTIFY
1377 fs_fd = -2;
1378#endif
1379
1380 /* pid check not overridable via env */ 2876 /* pid check not overridable via env */
1381#ifndef _WIN32 2877#ifndef _WIN32
1382 if (flags & EVFLAG_FORKCHECK) 2878 if (flags & EVFLAG_FORKCHECK)
1383 curpid = getpid (); 2879 curpid = getpid ();
1384#endif 2880#endif
1386 if (!(flags & EVFLAG_NOENV) 2882 if (!(flags & EVFLAG_NOENV)
1387 && !enable_secure () 2883 && !enable_secure ()
1388 && getenv ("LIBEV_FLAGS")) 2884 && getenv ("LIBEV_FLAGS"))
1389 flags = atoi (getenv ("LIBEV_FLAGS")); 2885 flags = atoi (getenv ("LIBEV_FLAGS"));
1390 2886
1391 if (!(flags & 0x0000ffffU)) 2887 ev_rt_now = ev_time ();
2888 mn_now = get_clock ();
2889 now_floor = mn_now;
2890 rtmn_diff = ev_rt_now - mn_now;
2891#if EV_FEATURE_API
2892 invoke_cb = ev_invoke_pending;
2893#endif
2894
2895 io_blocktime = 0.;
2896 timeout_blocktime = 0.;
2897 backend = 0;
2898 backend_fd = -1;
2899 sig_pending = 0;
2900#if EV_ASYNC_ENABLE
2901 async_pending = 0;
2902#endif
2903 pipe_write_skipped = 0;
2904 pipe_write_wanted = 0;
2905 evpipe [0] = -1;
2906 evpipe [1] = -1;
2907#if EV_USE_INOTIFY
2908 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2909#endif
2910#if EV_USE_SIGNALFD
2911 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2912#endif
2913
2914 if (!(flags & EVBACKEND_MASK))
1392 flags |= ev_recommended_backends (); 2915 flags |= ev_recommended_backends ();
1393 2916
2917#if EV_USE_IOCP
2918 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2919#endif
1394#if EV_USE_PORT 2920#if EV_USE_PORT
1395 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2921 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1396#endif 2922#endif
1397#if EV_USE_KQUEUE 2923#if EV_USE_KQUEUE
1398 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2924 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1405#endif 2931#endif
1406#if EV_USE_SELECT 2932#if EV_USE_SELECT
1407 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2933 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1408#endif 2934#endif
1409 2935
2936 ev_prepare_init (&pending_w, pendingcb);
2937
2938#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1410 ev_init (&pipeev, pipecb); 2939 ev_init (&pipe_w, pipecb);
1411 ev_set_priority (&pipeev, EV_MAXPRI); 2940 ev_set_priority (&pipe_w, EV_MAXPRI);
2941#endif
1412 } 2942 }
1413} 2943}
1414 2944
1415static void noinline 2945/* free up a loop structure */
2946ecb_cold
2947void
1416loop_destroy (EV_P) 2948ev_loop_destroy (EV_P)
1417{ 2949{
1418 int i; 2950 int i;
1419 2951
2952#if EV_MULTIPLICITY
2953 /* mimic free (0) */
2954 if (!EV_A)
2955 return;
2956#endif
2957
2958#if EV_CLEANUP_ENABLE
2959 /* queue cleanup watchers (and execute them) */
2960 if (expect_false (cleanupcnt))
2961 {
2962 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2963 EV_INVOKE_PENDING;
2964 }
2965#endif
2966
2967#if EV_CHILD_ENABLE
2968 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2969 {
2970 ev_ref (EV_A); /* child watcher */
2971 ev_signal_stop (EV_A_ &childev);
2972 }
2973#endif
2974
1420 if (ev_is_active (&pipeev)) 2975 if (ev_is_active (&pipe_w))
1421 { 2976 {
1422 ev_ref (EV_A); /* signal watcher */ 2977 /*ev_ref (EV_A);*/
1423 ev_io_stop (EV_A_ &pipeev); 2978 /*ev_io_stop (EV_A_ &pipe_w);*/
1424 2979
2980 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2981 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2982 }
2983
1425#if EV_USE_EVENTFD 2984#if EV_USE_SIGNALFD
1426 if (evfd >= 0) 2985 if (ev_is_active (&sigfd_w))
1427 close (evfd); 2986 close (sigfd);
1428#endif 2987#endif
1429
1430 if (evpipe [0] >= 0)
1431 {
1432 close (evpipe [0]);
1433 close (evpipe [1]);
1434 }
1435 }
1436 2988
1437#if EV_USE_INOTIFY 2989#if EV_USE_INOTIFY
1438 if (fs_fd >= 0) 2990 if (fs_fd >= 0)
1439 close (fs_fd); 2991 close (fs_fd);
1440#endif 2992#endif
1441 2993
1442 if (backend_fd >= 0) 2994 if (backend_fd >= 0)
1443 close (backend_fd); 2995 close (backend_fd);
1444 2996
2997#if EV_USE_IOCP
2998 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2999#endif
1445#if EV_USE_PORT 3000#if EV_USE_PORT
1446 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 3001 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1447#endif 3002#endif
1448#if EV_USE_KQUEUE 3003#if EV_USE_KQUEUE
1449 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 3004 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1464#if EV_IDLE_ENABLE 3019#if EV_IDLE_ENABLE
1465 array_free (idle, [i]); 3020 array_free (idle, [i]);
1466#endif 3021#endif
1467 } 3022 }
1468 3023
1469 ev_free (anfds); anfdmax = 0; 3024 ev_free (anfds); anfds = 0; anfdmax = 0;
1470 3025
1471 /* have to use the microsoft-never-gets-it-right macro */ 3026 /* have to use the microsoft-never-gets-it-right macro */
1472 array_free (rfeed, EMPTY); 3027 array_free (rfeed, EMPTY);
1473 array_free (fdchange, EMPTY); 3028 array_free (fdchange, EMPTY);
1474 array_free (timer, EMPTY); 3029 array_free (timer, EMPTY);
1476 array_free (periodic, EMPTY); 3031 array_free (periodic, EMPTY);
1477#endif 3032#endif
1478#if EV_FORK_ENABLE 3033#if EV_FORK_ENABLE
1479 array_free (fork, EMPTY); 3034 array_free (fork, EMPTY);
1480#endif 3035#endif
3036#if EV_CLEANUP_ENABLE
3037 array_free (cleanup, EMPTY);
3038#endif
1481 array_free (prepare, EMPTY); 3039 array_free (prepare, EMPTY);
1482 array_free (check, EMPTY); 3040 array_free (check, EMPTY);
1483#if EV_ASYNC_ENABLE 3041#if EV_ASYNC_ENABLE
1484 array_free (async, EMPTY); 3042 array_free (async, EMPTY);
1485#endif 3043#endif
1486 3044
1487 backend = 0; 3045 backend = 0;
3046
3047#if EV_MULTIPLICITY
3048 if (ev_is_default_loop (EV_A))
3049#endif
3050 ev_default_loop_ptr = 0;
3051#if EV_MULTIPLICITY
3052 else
3053 ev_free (EV_A);
3054#endif
1488} 3055}
1489 3056
1490#if EV_USE_INOTIFY 3057#if EV_USE_INOTIFY
1491inline_size void infy_fork (EV_P); 3058inline_size void infy_fork (EV_P);
1492#endif 3059#endif
1505#endif 3072#endif
1506#if EV_USE_INOTIFY 3073#if EV_USE_INOTIFY
1507 infy_fork (EV_A); 3074 infy_fork (EV_A);
1508#endif 3075#endif
1509 3076
1510 if (ev_is_active (&pipeev)) 3077#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3078 if (ev_is_active (&pipe_w) && postfork != 2)
1511 { 3079 {
1512 /* this "locks" the handlers against writing to the pipe */ 3080 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1513 /* while we modify the fd vars */
1514 gotsig = 1;
1515#if EV_ASYNC_ENABLE
1516 gotasync = 1;
1517#endif
1518 3081
1519 ev_ref (EV_A); 3082 ev_ref (EV_A);
1520 ev_io_stop (EV_A_ &pipeev); 3083 ev_io_stop (EV_A_ &pipe_w);
1521
1522#if EV_USE_EVENTFD
1523 if (evfd >= 0)
1524 close (evfd);
1525#endif
1526 3084
1527 if (evpipe [0] >= 0) 3085 if (evpipe [0] >= 0)
1528 { 3086 EV_WIN32_CLOSE_FD (evpipe [0]);
1529 close (evpipe [0]);
1530 close (evpipe [1]);
1531 }
1532 3087
1533 evpipe_init (EV_A); 3088 evpipe_init (EV_A);
1534 /* now iterate over everything, in case we missed something */ 3089 /* iterate over everything, in case we missed something before */
1535 pipecb (EV_A_ &pipeev, EV_READ); 3090 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1536 } 3091 }
3092#endif
1537 3093
1538 postfork = 0; 3094 postfork = 0;
1539} 3095}
1540 3096
1541#if EV_MULTIPLICITY 3097#if EV_MULTIPLICITY
1542 3098
3099ecb_cold
1543struct ev_loop * 3100struct ev_loop *
1544ev_loop_new (unsigned int flags) 3101ev_loop_new (unsigned int flags) EV_THROW
1545{ 3102{
1546 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 3103 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1547 3104
1548 memset (loop, 0, sizeof (struct ev_loop)); 3105 memset (EV_A, 0, sizeof (struct ev_loop));
1549
1550 loop_init (EV_A_ flags); 3106 loop_init (EV_A_ flags);
1551 3107
1552 if (ev_backend (EV_A)) 3108 if (ev_backend (EV_A))
1553 return loop; 3109 return EV_A;
1554 3110
3111 ev_free (EV_A);
1555 return 0; 3112 return 0;
1556} 3113}
1557 3114
1558void 3115#endif /* multiplicity */
1559ev_loop_destroy (EV_P)
1560{
1561 loop_destroy (EV_A);
1562 ev_free (loop);
1563}
1564
1565void
1566ev_loop_fork (EV_P)
1567{
1568 postfork = 1; /* must be in line with ev_default_fork */
1569}
1570 3116
1571#if EV_VERIFY 3117#if EV_VERIFY
1572static void noinline 3118noinline ecb_cold
3119static void
1573verify_watcher (EV_P_ W w) 3120verify_watcher (EV_P_ W w)
1574{ 3121{
1575 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 3122 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1576 3123
1577 if (w->pending) 3124 if (w->pending)
1578 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 3125 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1579} 3126}
1580 3127
1581static void noinline 3128noinline ecb_cold
3129static void
1582verify_heap (EV_P_ ANHE *heap, int N) 3130verify_heap (EV_P_ ANHE *heap, int N)
1583{ 3131{
1584 int i; 3132 int i;
1585 3133
1586 for (i = HEAP0; i < N + HEAP0; ++i) 3134 for (i = HEAP0; i < N + HEAP0; ++i)
1591 3139
1592 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 3140 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1593 } 3141 }
1594} 3142}
1595 3143
1596static void noinline 3144noinline ecb_cold
3145static void
1597array_verify (EV_P_ W *ws, int cnt) 3146array_verify (EV_P_ W *ws, int cnt)
1598{ 3147{
1599 while (cnt--) 3148 while (cnt--)
1600 { 3149 {
1601 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 3150 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1602 verify_watcher (EV_A_ ws [cnt]); 3151 verify_watcher (EV_A_ ws [cnt]);
1603 } 3152 }
1604} 3153}
1605#endif 3154#endif
1606 3155
1607void 3156#if EV_FEATURE_API
1608ev_loop_verify (EV_P) 3157void ecb_cold
3158ev_verify (EV_P) EV_THROW
1609{ 3159{
1610#if EV_VERIFY 3160#if EV_VERIFY
1611 int i; 3161 int i;
1612 WL w; 3162 WL w, w2;
1613 3163
1614 assert (activecnt >= -1); 3164 assert (activecnt >= -1);
1615 3165
1616 assert (fdchangemax >= fdchangecnt); 3166 assert (fdchangemax >= fdchangecnt);
1617 for (i = 0; i < fdchangecnt; ++i) 3167 for (i = 0; i < fdchangecnt; ++i)
1618 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0)); 3168 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1619 3169
1620 assert (anfdmax >= 0); 3170 assert (anfdmax >= 0);
1621 for (i = 0; i < anfdmax; ++i) 3171 for (i = 0; i < anfdmax; ++i)
3172 {
3173 int j = 0;
3174
1622 for (w = anfds [i].head; w; w = w->next) 3175 for (w = w2 = anfds [i].head; w; w = w->next)
1623 { 3176 {
1624 verify_watcher (EV_A_ (W)w); 3177 verify_watcher (EV_A_ (W)w);
3178
3179 if (j++ & 1)
3180 {
3181 assert (("libev: io watcher list contains a loop", w != w2));
3182 w2 = w2->next;
3183 }
3184
1625 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1)); 3185 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1626 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 3186 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1627 } 3187 }
3188 }
1628 3189
1629 assert (timermax >= timercnt); 3190 assert (timermax >= timercnt);
1630 verify_heap (EV_A_ timers, timercnt); 3191 verify_heap (EV_A_ timers, timercnt);
1631 3192
1632#if EV_PERIODIC_ENABLE 3193#if EV_PERIODIC_ENABLE
1647#if EV_FORK_ENABLE 3208#if EV_FORK_ENABLE
1648 assert (forkmax >= forkcnt); 3209 assert (forkmax >= forkcnt);
1649 array_verify (EV_A_ (W *)forks, forkcnt); 3210 array_verify (EV_A_ (W *)forks, forkcnt);
1650#endif 3211#endif
1651 3212
3213#if EV_CLEANUP_ENABLE
3214 assert (cleanupmax >= cleanupcnt);
3215 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3216#endif
3217
1652#if EV_ASYNC_ENABLE 3218#if EV_ASYNC_ENABLE
1653 assert (asyncmax >= asynccnt); 3219 assert (asyncmax >= asynccnt);
1654 array_verify (EV_A_ (W *)asyncs, asynccnt); 3220 array_verify (EV_A_ (W *)asyncs, asynccnt);
1655#endif 3221#endif
1656 3222
3223#if EV_PREPARE_ENABLE
1657 assert (preparemax >= preparecnt); 3224 assert (preparemax >= preparecnt);
1658 array_verify (EV_A_ (W *)prepares, preparecnt); 3225 array_verify (EV_A_ (W *)prepares, preparecnt);
3226#endif
1659 3227
3228#if EV_CHECK_ENABLE
1660 assert (checkmax >= checkcnt); 3229 assert (checkmax >= checkcnt);
1661 array_verify (EV_A_ (W *)checks, checkcnt); 3230 array_verify (EV_A_ (W *)checks, checkcnt);
3231#endif
1662 3232
1663# if 0 3233# if 0
3234#if EV_CHILD_ENABLE
1664 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 3235 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1665 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 3236 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3237#endif
1666# endif 3238# endif
1667#endif 3239#endif
1668} 3240}
1669 3241#endif
1670#endif /* multiplicity */
1671 3242
1672#if EV_MULTIPLICITY 3243#if EV_MULTIPLICITY
3244ecb_cold
1673struct ev_loop * 3245struct ev_loop *
1674ev_default_loop_init (unsigned int flags)
1675#else 3246#else
1676int 3247int
3248#endif
1677ev_default_loop (unsigned int flags) 3249ev_default_loop (unsigned int flags) EV_THROW
1678#endif
1679{ 3250{
1680 if (!ev_default_loop_ptr) 3251 if (!ev_default_loop_ptr)
1681 { 3252 {
1682#if EV_MULTIPLICITY 3253#if EV_MULTIPLICITY
1683 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3254 EV_P = ev_default_loop_ptr = &default_loop_struct;
1684#else 3255#else
1685 ev_default_loop_ptr = 1; 3256 ev_default_loop_ptr = 1;
1686#endif 3257#endif
1687 3258
1688 loop_init (EV_A_ flags); 3259 loop_init (EV_A_ flags);
1689 3260
1690 if (ev_backend (EV_A)) 3261 if (ev_backend (EV_A))
1691 { 3262 {
1692#ifndef _WIN32 3263#if EV_CHILD_ENABLE
1693 ev_signal_init (&childev, childcb, SIGCHLD); 3264 ev_signal_init (&childev, childcb, SIGCHLD);
1694 ev_set_priority (&childev, EV_MAXPRI); 3265 ev_set_priority (&childev, EV_MAXPRI);
1695 ev_signal_start (EV_A_ &childev); 3266 ev_signal_start (EV_A_ &childev);
1696 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3267 ev_unref (EV_A); /* child watcher should not keep loop alive */
1697#endif 3268#endif
1702 3273
1703 return ev_default_loop_ptr; 3274 return ev_default_loop_ptr;
1704} 3275}
1705 3276
1706void 3277void
1707ev_default_destroy (void) 3278ev_loop_fork (EV_P) EV_THROW
1708{ 3279{
1709#if EV_MULTIPLICITY 3280 postfork = 1;
1710 struct ev_loop *loop = ev_default_loop_ptr;
1711#endif
1712
1713 ev_default_loop_ptr = 0;
1714
1715#ifndef _WIN32
1716 ev_ref (EV_A); /* child watcher */
1717 ev_signal_stop (EV_A_ &childev);
1718#endif
1719
1720 loop_destroy (EV_A);
1721}
1722
1723void
1724ev_default_fork (void)
1725{
1726#if EV_MULTIPLICITY
1727 struct ev_loop *loop = ev_default_loop_ptr;
1728#endif
1729
1730 postfork = 1; /* must be in line with ev_loop_fork */
1731} 3281}
1732 3282
1733/*****************************************************************************/ 3283/*****************************************************************************/
1734 3284
1735void 3285void
1736ev_invoke (EV_P_ void *w, int revents) 3286ev_invoke (EV_P_ void *w, int revents)
1737{ 3287{
1738 EV_CB_INVOKE ((W)w, revents); 3288 EV_CB_INVOKE ((W)w, revents);
1739} 3289}
1740 3290
1741inline_speed void 3291unsigned int
1742call_pending (EV_P) 3292ev_pending_count (EV_P) EV_THROW
1743{ 3293{
1744 int pri; 3294 int pri;
3295 unsigned int count = 0;
1745 3296
1746 for (pri = NUMPRI; pri--; ) 3297 for (pri = NUMPRI; pri--; )
3298 count += pendingcnt [pri];
3299
3300 return count;
3301}
3302
3303noinline
3304void
3305ev_invoke_pending (EV_P)
3306{
3307 pendingpri = NUMPRI;
3308
3309 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3310 {
3311 --pendingpri;
3312
1747 while (pendingcnt [pri]) 3313 while (pendingcnt [pendingpri])
1748 {
1749 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1750
1751 if (expect_true (p->w))
1752 { 3314 {
1753 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/ 3315 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1754 3316
1755 p->w->pending = 0; 3317 p->w->pending = 0;
1756 EV_CB_INVOKE (p->w, p->events); 3318 EV_CB_INVOKE (p->w, p->events);
1757 EV_FREQUENT_CHECK; 3319 EV_FREQUENT_CHECK;
1758 } 3320 }
1759 } 3321 }
1760} 3322}
1761 3323
1762#if EV_IDLE_ENABLE 3324#if EV_IDLE_ENABLE
3325/* make idle watchers pending. this handles the "call-idle */
3326/* only when higher priorities are idle" logic */
1763inline_size void 3327inline_size void
1764idle_reify (EV_P) 3328idle_reify (EV_P)
1765{ 3329{
1766 if (expect_false (idleall)) 3330 if (expect_false (idleall))
1767 { 3331 {
1780 } 3344 }
1781 } 3345 }
1782} 3346}
1783#endif 3347#endif
1784 3348
3349/* make timers pending */
1785inline_size void 3350inline_size void
1786timers_reify (EV_P) 3351timers_reify (EV_P)
1787{ 3352{
1788 EV_FREQUENT_CHECK; 3353 EV_FREQUENT_CHECK;
1789 3354
1813 EV_FREQUENT_CHECK; 3378 EV_FREQUENT_CHECK;
1814 feed_reverse (EV_A_ (W)w); 3379 feed_reverse (EV_A_ (W)w);
1815 } 3380 }
1816 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now); 3381 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1817 3382
1818 feed_reverse_done (EV_A_ EV_TIMEOUT); 3383 feed_reverse_done (EV_A_ EV_TIMER);
1819 } 3384 }
1820} 3385}
1821 3386
1822#if EV_PERIODIC_ENABLE 3387#if EV_PERIODIC_ENABLE
3388
3389noinline
3390static void
3391periodic_recalc (EV_P_ ev_periodic *w)
3392{
3393 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3394 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3395
3396 /* the above almost always errs on the low side */
3397 while (at <= ev_rt_now)
3398 {
3399 ev_tstamp nat = at + w->interval;
3400
3401 /* when resolution fails us, we use ev_rt_now */
3402 if (expect_false (nat == at))
3403 {
3404 at = ev_rt_now;
3405 break;
3406 }
3407
3408 at = nat;
3409 }
3410
3411 ev_at (w) = at;
3412}
3413
3414/* make periodics pending */
1823inline_size void 3415inline_size void
1824periodics_reify (EV_P) 3416periodics_reify (EV_P)
1825{ 3417{
1826 EV_FREQUENT_CHECK; 3418 EV_FREQUENT_CHECK;
1827 3419
1828 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3420 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1829 { 3421 {
1830 int feed_count = 0;
1831
1832 do 3422 do
1833 { 3423 {
1834 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3424 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1835 3425
1836 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/ 3426 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1845 ANHE_at_cache (periodics [HEAP0]); 3435 ANHE_at_cache (periodics [HEAP0]);
1846 downheap (periodics, periodiccnt, HEAP0); 3436 downheap (periodics, periodiccnt, HEAP0);
1847 } 3437 }
1848 else if (w->interval) 3438 else if (w->interval)
1849 { 3439 {
1850 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3440 periodic_recalc (EV_A_ w);
1851 /* if next trigger time is not sufficiently in the future, put it there */
1852 /* this might happen because of floating point inexactness */
1853 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1854 {
1855 ev_at (w) += w->interval;
1856
1857 /* if interval is unreasonably low we might still have a time in the past */
1858 /* so correct this. this will make the periodic very inexact, but the user */
1859 /* has effectively asked to get triggered more often than possible */
1860 if (ev_at (w) < ev_rt_now)
1861 ev_at (w) = ev_rt_now;
1862 }
1863
1864 ANHE_at_cache (periodics [HEAP0]); 3441 ANHE_at_cache (periodics [HEAP0]);
1865 downheap (periodics, periodiccnt, HEAP0); 3442 downheap (periodics, periodiccnt, HEAP0);
1866 } 3443 }
1867 else 3444 else
1868 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 3445 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1874 3451
1875 feed_reverse_done (EV_A_ EV_PERIODIC); 3452 feed_reverse_done (EV_A_ EV_PERIODIC);
1876 } 3453 }
1877} 3454}
1878 3455
1879static void noinline 3456/* simply recalculate all periodics */
3457/* TODO: maybe ensure that at least one event happens when jumping forward? */
3458noinline ecb_cold
3459static void
1880periodics_reschedule (EV_P) 3460periodics_reschedule (EV_P)
1881{ 3461{
1882 int i; 3462 int i;
1883 3463
1884 /* adjust periodics after time jump */ 3464 /* adjust periodics after time jump */
1887 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3467 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1888 3468
1889 if (w->reschedule_cb) 3469 if (w->reschedule_cb)
1890 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3470 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1891 else if (w->interval) 3471 else if (w->interval)
1892 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3472 periodic_recalc (EV_A_ w);
1893 3473
1894 ANHE_at_cache (periodics [i]); 3474 ANHE_at_cache (periodics [i]);
1895 } 3475 }
1896 3476
1897 reheap (periodics, periodiccnt); 3477 reheap (periodics, periodiccnt);
1898} 3478}
1899#endif 3479#endif
1900 3480
1901static void noinline 3481/* adjust all timers by a given offset */
3482noinline ecb_cold
3483static void
1902timers_reschedule (EV_P_ ev_tstamp adjust) 3484timers_reschedule (EV_P_ ev_tstamp adjust)
1903{ 3485{
1904 int i; 3486 int i;
1905 3487
1906 for (i = 0; i < timercnt; ++i) 3488 for (i = 0; i < timercnt; ++i)
1909 ANHE_w (*he)->at += adjust; 3491 ANHE_w (*he)->at += adjust;
1910 ANHE_at_cache (*he); 3492 ANHE_at_cache (*he);
1911 } 3493 }
1912} 3494}
1913 3495
3496/* fetch new monotonic and realtime times from the kernel */
3497/* also detect if there was a timejump, and act accordingly */
1914inline_speed void 3498inline_speed void
1915time_update (EV_P_ ev_tstamp max_block) 3499time_update (EV_P_ ev_tstamp max_block)
1916{ 3500{
1917 int i;
1918
1919#if EV_USE_MONOTONIC 3501#if EV_USE_MONOTONIC
1920 if (expect_true (have_monotonic)) 3502 if (expect_true (have_monotonic))
1921 { 3503 {
3504 int i;
1922 ev_tstamp odiff = rtmn_diff; 3505 ev_tstamp odiff = rtmn_diff;
1923 3506
1924 mn_now = get_clock (); 3507 mn_now = get_clock ();
1925 3508
1926 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3509 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1942 * doesn't hurt either as we only do this on time-jumps or 3525 * doesn't hurt either as we only do this on time-jumps or
1943 * in the unlikely event of having been preempted here. 3526 * in the unlikely event of having been preempted here.
1944 */ 3527 */
1945 for (i = 4; --i; ) 3528 for (i = 4; --i; )
1946 { 3529 {
3530 ev_tstamp diff;
1947 rtmn_diff = ev_rt_now - mn_now; 3531 rtmn_diff = ev_rt_now - mn_now;
1948 3532
3533 diff = odiff - rtmn_diff;
3534
1949 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3535 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1950 return; /* all is well */ 3536 return; /* all is well */
1951 3537
1952 ev_rt_now = ev_time (); 3538 ev_rt_now = ev_time ();
1953 mn_now = get_clock (); 3539 mn_now = get_clock ();
1954 now_floor = mn_now; 3540 now_floor = mn_now;
1976 3562
1977 mn_now = ev_rt_now; 3563 mn_now = ev_rt_now;
1978 } 3564 }
1979} 3565}
1980 3566
1981static int loop_done; 3567int
1982
1983void
1984ev_loop (EV_P_ int flags) 3568ev_run (EV_P_ int flags)
1985{ 3569{
3570#if EV_FEATURE_API
3571 ++loop_depth;
3572#endif
3573
3574 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3575
1986 loop_done = EVUNLOOP_CANCEL; 3576 loop_done = EVBREAK_CANCEL;
1987 3577
1988 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3578 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1989 3579
1990 do 3580 do
1991 { 3581 {
1992#if EV_VERIFY >= 2 3582#if EV_VERIFY >= 2
1993 ev_loop_verify (EV_A); 3583 ev_verify (EV_A);
1994#endif 3584#endif
1995 3585
1996#ifndef _WIN32 3586#ifndef _WIN32
1997 if (expect_false (curpid)) /* penalise the forking check even more */ 3587 if (expect_false (curpid)) /* penalise the forking check even more */
1998 if (expect_false (getpid () != curpid)) 3588 if (expect_false (getpid () != curpid))
2006 /* we might have forked, so queue fork handlers */ 3596 /* we might have forked, so queue fork handlers */
2007 if (expect_false (postfork)) 3597 if (expect_false (postfork))
2008 if (forkcnt) 3598 if (forkcnt)
2009 { 3599 {
2010 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3600 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2011 call_pending (EV_A); 3601 EV_INVOKE_PENDING;
2012 } 3602 }
2013#endif 3603#endif
2014 3604
3605#if EV_PREPARE_ENABLE
2015 /* queue prepare watchers (and execute them) */ 3606 /* queue prepare watchers (and execute them) */
2016 if (expect_false (preparecnt)) 3607 if (expect_false (preparecnt))
2017 { 3608 {
2018 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3609 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2019 call_pending (EV_A); 3610 EV_INVOKE_PENDING;
2020 } 3611 }
3612#endif
3613
3614 if (expect_false (loop_done))
3615 break;
2021 3616
2022 /* we might have forked, so reify kernel state if necessary */ 3617 /* we might have forked, so reify kernel state if necessary */
2023 if (expect_false (postfork)) 3618 if (expect_false (postfork))
2024 loop_fork (EV_A); 3619 loop_fork (EV_A);
2025 3620
2029 /* calculate blocking time */ 3624 /* calculate blocking time */
2030 { 3625 {
2031 ev_tstamp waittime = 0.; 3626 ev_tstamp waittime = 0.;
2032 ev_tstamp sleeptime = 0.; 3627 ev_tstamp sleeptime = 0.;
2033 3628
3629 /* remember old timestamp for io_blocktime calculation */
3630 ev_tstamp prev_mn_now = mn_now;
3631
3632 /* update time to cancel out callback processing overhead */
3633 time_update (EV_A_ 1e100);
3634
3635 /* from now on, we want a pipe-wake-up */
3636 pipe_write_wanted = 1;
3637
3638 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3639
2034 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3640 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
2035 { 3641 {
2036 /* update time to cancel out callback processing overhead */ 3642 waittime = MAX_BLOCKTIME;
2037 time_update (EV_A_ 1e100);
2038 3643
2039 if (timercnt) 3644 if (timercnt)
2040 { 3645 {
2041 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3646 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
2042 if (waittime > to) waittime = to; 3647 if (waittime > to) waittime = to;
2043 } 3648 }
2044 3649
2045#if EV_PERIODIC_ENABLE 3650#if EV_PERIODIC_ENABLE
2046 if (periodiccnt) 3651 if (periodiccnt)
2047 { 3652 {
2048 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3653 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
2049 if (waittime > to) waittime = to; 3654 if (waittime > to) waittime = to;
2050 } 3655 }
2051#endif 3656#endif
2052 3657
3658 /* don't let timeouts decrease the waittime below timeout_blocktime */
2053 if (expect_false (waittime < timeout_blocktime)) 3659 if (expect_false (waittime < timeout_blocktime))
2054 waittime = timeout_blocktime; 3660 waittime = timeout_blocktime;
2055 3661
2056 sleeptime = waittime - backend_fudge; 3662 /* at this point, we NEED to wait, so we have to ensure */
3663 /* to pass a minimum nonzero value to the backend */
3664 if (expect_false (waittime < backend_mintime))
3665 waittime = backend_mintime;
2057 3666
3667 /* extra check because io_blocktime is commonly 0 */
2058 if (expect_true (sleeptime > io_blocktime)) 3668 if (expect_false (io_blocktime))
2059 sleeptime = io_blocktime;
2060
2061 if (sleeptime)
2062 { 3669 {
3670 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3671
3672 if (sleeptime > waittime - backend_mintime)
3673 sleeptime = waittime - backend_mintime;
3674
3675 if (expect_true (sleeptime > 0.))
3676 {
2063 ev_sleep (sleeptime); 3677 ev_sleep (sleeptime);
2064 waittime -= sleeptime; 3678 waittime -= sleeptime;
3679 }
2065 } 3680 }
2066 } 3681 }
2067 3682
3683#if EV_FEATURE_API
2068 ++loop_count; 3684 ++loop_count;
3685#endif
3686 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2069 backend_poll (EV_A_ waittime); 3687 backend_poll (EV_A_ waittime);
3688 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3689
3690 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3691
3692 ECB_MEMORY_FENCE_ACQUIRE;
3693 if (pipe_write_skipped)
3694 {
3695 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3696 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3697 }
3698
2070 3699
2071 /* update ev_rt_now, do magic */ 3700 /* update ev_rt_now, do magic */
2072 time_update (EV_A_ waittime + sleeptime); 3701 time_update (EV_A_ waittime + sleeptime);
2073 } 3702 }
2074 3703
2081#if EV_IDLE_ENABLE 3710#if EV_IDLE_ENABLE
2082 /* queue idle watchers unless other events are pending */ 3711 /* queue idle watchers unless other events are pending */
2083 idle_reify (EV_A); 3712 idle_reify (EV_A);
2084#endif 3713#endif
2085 3714
3715#if EV_CHECK_ENABLE
2086 /* queue check watchers, to be executed first */ 3716 /* queue check watchers, to be executed first */
2087 if (expect_false (checkcnt)) 3717 if (expect_false (checkcnt))
2088 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3718 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3719#endif
2089 3720
2090 call_pending (EV_A); 3721 EV_INVOKE_PENDING;
2091 } 3722 }
2092 while (expect_true ( 3723 while (expect_true (
2093 activecnt 3724 activecnt
2094 && !loop_done 3725 && !loop_done
2095 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3726 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2096 )); 3727 ));
2097 3728
2098 if (loop_done == EVUNLOOP_ONE) 3729 if (loop_done == EVBREAK_ONE)
2099 loop_done = EVUNLOOP_CANCEL; 3730 loop_done = EVBREAK_CANCEL;
2100}
2101 3731
3732#if EV_FEATURE_API
3733 --loop_depth;
3734#endif
3735
3736 return activecnt;
3737}
3738
2102void 3739void
2103ev_unloop (EV_P_ int how) 3740ev_break (EV_P_ int how) EV_THROW
2104{ 3741{
2105 loop_done = how; 3742 loop_done = how;
2106} 3743}
2107 3744
2108void 3745void
2109ev_ref (EV_P) 3746ev_ref (EV_P) EV_THROW
2110{ 3747{
2111 ++activecnt; 3748 ++activecnt;
2112} 3749}
2113 3750
2114void 3751void
2115ev_unref (EV_P) 3752ev_unref (EV_P) EV_THROW
2116{ 3753{
2117 --activecnt; 3754 --activecnt;
2118} 3755}
2119 3756
2120void 3757void
2121ev_now_update (EV_P) 3758ev_now_update (EV_P) EV_THROW
2122{ 3759{
2123 time_update (EV_A_ 1e100); 3760 time_update (EV_A_ 1e100);
2124} 3761}
2125 3762
2126void 3763void
2127ev_suspend (EV_P) 3764ev_suspend (EV_P) EV_THROW
2128{ 3765{
2129 ev_now_update (EV_A); 3766 ev_now_update (EV_A);
2130} 3767}
2131 3768
2132void 3769void
2133ev_resume (EV_P) 3770ev_resume (EV_P) EV_THROW
2134{ 3771{
2135 ev_tstamp mn_prev = mn_now; 3772 ev_tstamp mn_prev = mn_now;
2136 3773
2137 ev_now_update (EV_A); 3774 ev_now_update (EV_A);
2138 timers_reschedule (EV_A_ mn_now - mn_prev); 3775 timers_reschedule (EV_A_ mn_now - mn_prev);
2139#if EV_PERIODIC_ENABLE 3776#if EV_PERIODIC_ENABLE
3777 /* TODO: really do this? */
2140 periodics_reschedule (EV_A); 3778 periodics_reschedule (EV_A);
2141#endif 3779#endif
2142} 3780}
2143 3781
2144/*****************************************************************************/ 3782/*****************************************************************************/
3783/* singly-linked list management, used when the expected list length is short */
2145 3784
2146inline_size void 3785inline_size void
2147wlist_add (WL *head, WL elem) 3786wlist_add (WL *head, WL elem)
2148{ 3787{
2149 elem->next = *head; 3788 elem->next = *head;
2153inline_size void 3792inline_size void
2154wlist_del (WL *head, WL elem) 3793wlist_del (WL *head, WL elem)
2155{ 3794{
2156 while (*head) 3795 while (*head)
2157 { 3796 {
2158 if (*head == elem) 3797 if (expect_true (*head == elem))
2159 { 3798 {
2160 *head = elem->next; 3799 *head = elem->next;
2161 return; 3800 break;
2162 } 3801 }
2163 3802
2164 head = &(*head)->next; 3803 head = &(*head)->next;
2165 } 3804 }
2166} 3805}
2167 3806
3807/* internal, faster, version of ev_clear_pending */
2168inline_speed void 3808inline_speed void
2169clear_pending (EV_P_ W w) 3809clear_pending (EV_P_ W w)
2170{ 3810{
2171 if (w->pending) 3811 if (w->pending)
2172 { 3812 {
2173 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3813 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2174 w->pending = 0; 3814 w->pending = 0;
2175 } 3815 }
2176} 3816}
2177 3817
2178int 3818int
2179ev_clear_pending (EV_P_ void *w) 3819ev_clear_pending (EV_P_ void *w) EV_THROW
2180{ 3820{
2181 W w_ = (W)w; 3821 W w_ = (W)w;
2182 int pending = w_->pending; 3822 int pending = w_->pending;
2183 3823
2184 if (expect_true (pending)) 3824 if (expect_true (pending))
2185 { 3825 {
2186 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3826 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3827 p->w = (W)&pending_w;
2187 w_->pending = 0; 3828 w_->pending = 0;
2188 p->w = 0;
2189 return p->events; 3829 return p->events;
2190 } 3830 }
2191 else 3831 else
2192 return 0; 3832 return 0;
2193} 3833}
2194 3834
2195inline_size void 3835inline_size void
2196pri_adjust (EV_P_ W w) 3836pri_adjust (EV_P_ W w)
2197{ 3837{
2198 int pri = w->priority; 3838 int pri = ev_priority (w);
2199 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3839 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2200 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3840 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2201 w->priority = pri; 3841 ev_set_priority (w, pri);
2202} 3842}
2203 3843
2204inline_speed void 3844inline_speed void
2205ev_start (EV_P_ W w, int active) 3845ev_start (EV_P_ W w, int active)
2206{ 3846{
2216 w->active = 0; 3856 w->active = 0;
2217} 3857}
2218 3858
2219/*****************************************************************************/ 3859/*****************************************************************************/
2220 3860
2221void noinline 3861noinline
3862void
2222ev_io_start (EV_P_ ev_io *w) 3863ev_io_start (EV_P_ ev_io *w) EV_THROW
2223{ 3864{
2224 int fd = w->fd; 3865 int fd = w->fd;
2225 3866
2226 if (expect_false (ev_is_active (w))) 3867 if (expect_false (ev_is_active (w)))
2227 return; 3868 return;
2228 3869
2229 assert (("libev: ev_io_start called with negative fd", fd >= 0)); 3870 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2230 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE)))); 3871 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2231 3872
2232 EV_FREQUENT_CHECK; 3873 EV_FREQUENT_CHECK;
2233 3874
2234 ev_start (EV_A_ (W)w, 1); 3875 ev_start (EV_A_ (W)w, 1);
2235 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 3876 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2236 wlist_add (&anfds[fd].head, (WL)w); 3877 wlist_add (&anfds[fd].head, (WL)w);
2237 3878
3879 /* common bug, apparently */
3880 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3881
2238 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1); 3882 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2239 w->events &= ~EV__IOFDSET; 3883 w->events &= ~EV__IOFDSET;
2240 3884
2241 EV_FREQUENT_CHECK; 3885 EV_FREQUENT_CHECK;
2242} 3886}
2243 3887
2244void noinline 3888noinline
3889void
2245ev_io_stop (EV_P_ ev_io *w) 3890ev_io_stop (EV_P_ ev_io *w) EV_THROW
2246{ 3891{
2247 clear_pending (EV_A_ (W)w); 3892 clear_pending (EV_A_ (W)w);
2248 if (expect_false (!ev_is_active (w))) 3893 if (expect_false (!ev_is_active (w)))
2249 return; 3894 return;
2250 3895
2253 EV_FREQUENT_CHECK; 3898 EV_FREQUENT_CHECK;
2254 3899
2255 wlist_del (&anfds[w->fd].head, (WL)w); 3900 wlist_del (&anfds[w->fd].head, (WL)w);
2256 ev_stop (EV_A_ (W)w); 3901 ev_stop (EV_A_ (W)w);
2257 3902
2258 fd_change (EV_A_ w->fd, 1); 3903 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2259 3904
2260 EV_FREQUENT_CHECK; 3905 EV_FREQUENT_CHECK;
2261} 3906}
2262 3907
2263void noinline 3908noinline
3909void
2264ev_timer_start (EV_P_ ev_timer *w) 3910ev_timer_start (EV_P_ ev_timer *w) EV_THROW
2265{ 3911{
2266 if (expect_false (ev_is_active (w))) 3912 if (expect_false (ev_is_active (w)))
2267 return; 3913 return;
2268 3914
2269 ev_at (w) += mn_now; 3915 ev_at (w) += mn_now;
2282 EV_FREQUENT_CHECK; 3928 EV_FREQUENT_CHECK;
2283 3929
2284 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3930 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2285} 3931}
2286 3932
2287void noinline 3933noinline
3934void
2288ev_timer_stop (EV_P_ ev_timer *w) 3935ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
2289{ 3936{
2290 clear_pending (EV_A_ (W)w); 3937 clear_pending (EV_A_ (W)w);
2291 if (expect_false (!ev_is_active (w))) 3938 if (expect_false (!ev_is_active (w)))
2292 return; 3939 return;
2293 3940
2305 timers [active] = timers [timercnt + HEAP0]; 3952 timers [active] = timers [timercnt + HEAP0];
2306 adjustheap (timers, timercnt, active); 3953 adjustheap (timers, timercnt, active);
2307 } 3954 }
2308 } 3955 }
2309 3956
2310 EV_FREQUENT_CHECK;
2311
2312 ev_at (w) -= mn_now; 3957 ev_at (w) -= mn_now;
2313 3958
2314 ev_stop (EV_A_ (W)w); 3959 ev_stop (EV_A_ (W)w);
2315}
2316 3960
3961 EV_FREQUENT_CHECK;
3962}
3963
2317void noinline 3964noinline
3965void
2318ev_timer_again (EV_P_ ev_timer *w) 3966ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2319{ 3967{
2320 EV_FREQUENT_CHECK; 3968 EV_FREQUENT_CHECK;
3969
3970 clear_pending (EV_A_ (W)w);
2321 3971
2322 if (ev_is_active (w)) 3972 if (ev_is_active (w))
2323 { 3973 {
2324 if (w->repeat) 3974 if (w->repeat)
2325 { 3975 {
2337 } 3987 }
2338 3988
2339 EV_FREQUENT_CHECK; 3989 EV_FREQUENT_CHECK;
2340} 3990}
2341 3991
3992ev_tstamp
3993ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3994{
3995 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3996}
3997
2342#if EV_PERIODIC_ENABLE 3998#if EV_PERIODIC_ENABLE
2343void noinline 3999noinline
4000void
2344ev_periodic_start (EV_P_ ev_periodic *w) 4001ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2345{ 4002{
2346 if (expect_false (ev_is_active (w))) 4003 if (expect_false (ev_is_active (w)))
2347 return; 4004 return;
2348 4005
2349 if (w->reschedule_cb) 4006 if (w->reschedule_cb)
2350 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 4007 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2351 else if (w->interval) 4008 else if (w->interval)
2352 { 4009 {
2353 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.)); 4010 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2354 /* this formula differs from the one in periodic_reify because we do not always round up */ 4011 periodic_recalc (EV_A_ w);
2355 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2356 } 4012 }
2357 else 4013 else
2358 ev_at (w) = w->offset; 4014 ev_at (w) = w->offset;
2359 4015
2360 EV_FREQUENT_CHECK; 4016 EV_FREQUENT_CHECK;
2369 EV_FREQUENT_CHECK; 4025 EV_FREQUENT_CHECK;
2370 4026
2371 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 4027 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2372} 4028}
2373 4029
2374void noinline 4030noinline
4031void
2375ev_periodic_stop (EV_P_ ev_periodic *w) 4032ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2376{ 4033{
2377 clear_pending (EV_A_ (W)w); 4034 clear_pending (EV_A_ (W)w);
2378 if (expect_false (!ev_is_active (w))) 4035 if (expect_false (!ev_is_active (w)))
2379 return; 4036 return;
2380 4037
2392 periodics [active] = periodics [periodiccnt + HEAP0]; 4049 periodics [active] = periodics [periodiccnt + HEAP0];
2393 adjustheap (periodics, periodiccnt, active); 4050 adjustheap (periodics, periodiccnt, active);
2394 } 4051 }
2395 } 4052 }
2396 4053
2397 EV_FREQUENT_CHECK;
2398
2399 ev_stop (EV_A_ (W)w); 4054 ev_stop (EV_A_ (W)w);
2400}
2401 4055
4056 EV_FREQUENT_CHECK;
4057}
4058
2402void noinline 4059noinline
4060void
2403ev_periodic_again (EV_P_ ev_periodic *w) 4061ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2404{ 4062{
2405 /* TODO: use adjustheap and recalculation */ 4063 /* TODO: use adjustheap and recalculation */
2406 ev_periodic_stop (EV_A_ w); 4064 ev_periodic_stop (EV_A_ w);
2407 ev_periodic_start (EV_A_ w); 4065 ev_periodic_start (EV_A_ w);
2408} 4066}
2410 4068
2411#ifndef SA_RESTART 4069#ifndef SA_RESTART
2412# define SA_RESTART 0 4070# define SA_RESTART 0
2413#endif 4071#endif
2414 4072
4073#if EV_SIGNAL_ENABLE
4074
2415void noinline 4075noinline
4076void
2416ev_signal_start (EV_P_ ev_signal *w) 4077ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2417{ 4078{
2418#if EV_MULTIPLICITY
2419 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2420#endif
2421 if (expect_false (ev_is_active (w))) 4079 if (expect_false (ev_is_active (w)))
2422 return; 4080 return;
2423 4081
2424 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0)); 4082 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2425 4083
2426 evpipe_init (EV_A); 4084#if EV_MULTIPLICITY
4085 assert (("libev: a signal must not be attached to two different loops",
4086 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2427 4087
2428 EV_FREQUENT_CHECK; 4088 signals [w->signum - 1].loop = EV_A;
4089 ECB_MEMORY_FENCE_RELEASE;
4090#endif
2429 4091
4092 EV_FREQUENT_CHECK;
4093
4094#if EV_USE_SIGNALFD
4095 if (sigfd == -2)
2430 { 4096 {
2431#ifndef _WIN32 4097 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2432 sigset_t full, prev; 4098 if (sigfd < 0 && errno == EINVAL)
2433 sigfillset (&full); 4099 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2434 sigprocmask (SIG_SETMASK, &full, &prev);
2435#endif
2436 4100
2437 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero); 4101 if (sigfd >= 0)
4102 {
4103 fd_intern (sigfd); /* doing it twice will not hurt */
2438 4104
2439#ifndef _WIN32 4105 sigemptyset (&sigfd_set);
2440 sigprocmask (SIG_SETMASK, &prev, 0); 4106
2441#endif 4107 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4108 ev_set_priority (&sigfd_w, EV_MAXPRI);
4109 ev_io_start (EV_A_ &sigfd_w);
4110 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4111 }
2442 } 4112 }
4113
4114 if (sigfd >= 0)
4115 {
4116 /* TODO: check .head */
4117 sigaddset (&sigfd_set, w->signum);
4118 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4119
4120 signalfd (sigfd, &sigfd_set, 0);
4121 }
4122#endif
2443 4123
2444 ev_start (EV_A_ (W)w, 1); 4124 ev_start (EV_A_ (W)w, 1);
2445 wlist_add (&signals [w->signum - 1].head, (WL)w); 4125 wlist_add (&signals [w->signum - 1].head, (WL)w);
2446 4126
2447 if (!((WL)w)->next) 4127 if (!((WL)w)->next)
4128# if EV_USE_SIGNALFD
4129 if (sigfd < 0) /*TODO*/
4130# endif
2448 { 4131 {
2449#if _WIN32 4132# ifdef _WIN32
4133 evpipe_init (EV_A);
4134
2450 signal (w->signum, ev_sighandler); 4135 signal (w->signum, ev_sighandler);
2451#else 4136# else
2452 struct sigaction sa; 4137 struct sigaction sa;
4138
4139 evpipe_init (EV_A);
4140
2453 sa.sa_handler = ev_sighandler; 4141 sa.sa_handler = ev_sighandler;
2454 sigfillset (&sa.sa_mask); 4142 sigfillset (&sa.sa_mask);
2455 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 4143 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2456 sigaction (w->signum, &sa, 0); 4144 sigaction (w->signum, &sa, 0);
4145
4146 if (origflags & EVFLAG_NOSIGMASK)
4147 {
4148 sigemptyset (&sa.sa_mask);
4149 sigaddset (&sa.sa_mask, w->signum);
4150 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4151 }
2457#endif 4152#endif
2458 } 4153 }
2459 4154
2460 EV_FREQUENT_CHECK; 4155 EV_FREQUENT_CHECK;
2461} 4156}
2462 4157
2463void noinline 4158noinline
4159void
2464ev_signal_stop (EV_P_ ev_signal *w) 4160ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2465{ 4161{
2466 clear_pending (EV_A_ (W)w); 4162 clear_pending (EV_A_ (W)w);
2467 if (expect_false (!ev_is_active (w))) 4163 if (expect_false (!ev_is_active (w)))
2468 return; 4164 return;
2469 4165
2471 4167
2472 wlist_del (&signals [w->signum - 1].head, (WL)w); 4168 wlist_del (&signals [w->signum - 1].head, (WL)w);
2473 ev_stop (EV_A_ (W)w); 4169 ev_stop (EV_A_ (W)w);
2474 4170
2475 if (!signals [w->signum - 1].head) 4171 if (!signals [w->signum - 1].head)
4172 {
4173#if EV_MULTIPLICITY
4174 signals [w->signum - 1].loop = 0; /* unattach from signal */
4175#endif
4176#if EV_USE_SIGNALFD
4177 if (sigfd >= 0)
4178 {
4179 sigset_t ss;
4180
4181 sigemptyset (&ss);
4182 sigaddset (&ss, w->signum);
4183 sigdelset (&sigfd_set, w->signum);
4184
4185 signalfd (sigfd, &sigfd_set, 0);
4186 sigprocmask (SIG_UNBLOCK, &ss, 0);
4187 }
4188 else
4189#endif
2476 signal (w->signum, SIG_DFL); 4190 signal (w->signum, SIG_DFL);
4191 }
2477 4192
2478 EV_FREQUENT_CHECK; 4193 EV_FREQUENT_CHECK;
2479} 4194}
2480 4195
4196#endif
4197
4198#if EV_CHILD_ENABLE
4199
2481void 4200void
2482ev_child_start (EV_P_ ev_child *w) 4201ev_child_start (EV_P_ ev_child *w) EV_THROW
2483{ 4202{
2484#if EV_MULTIPLICITY 4203#if EV_MULTIPLICITY
2485 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4204 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2486#endif 4205#endif
2487 if (expect_false (ev_is_active (w))) 4206 if (expect_false (ev_is_active (w)))
2488 return; 4207 return;
2489 4208
2490 EV_FREQUENT_CHECK; 4209 EV_FREQUENT_CHECK;
2491 4210
2492 ev_start (EV_A_ (W)w, 1); 4211 ev_start (EV_A_ (W)w, 1);
2493 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4212 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2494 4213
2495 EV_FREQUENT_CHECK; 4214 EV_FREQUENT_CHECK;
2496} 4215}
2497 4216
2498void 4217void
2499ev_child_stop (EV_P_ ev_child *w) 4218ev_child_stop (EV_P_ ev_child *w) EV_THROW
2500{ 4219{
2501 clear_pending (EV_A_ (W)w); 4220 clear_pending (EV_A_ (W)w);
2502 if (expect_false (!ev_is_active (w))) 4221 if (expect_false (!ev_is_active (w)))
2503 return; 4222 return;
2504 4223
2505 EV_FREQUENT_CHECK; 4224 EV_FREQUENT_CHECK;
2506 4225
2507 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4226 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2508 ev_stop (EV_A_ (W)w); 4227 ev_stop (EV_A_ (W)w);
2509 4228
2510 EV_FREQUENT_CHECK; 4229 EV_FREQUENT_CHECK;
2511} 4230}
4231
4232#endif
2512 4233
2513#if EV_STAT_ENABLE 4234#if EV_STAT_ENABLE
2514 4235
2515# ifdef _WIN32 4236# ifdef _WIN32
2516# undef lstat 4237# undef lstat
2519 4240
2520#define DEF_STAT_INTERVAL 5.0074891 4241#define DEF_STAT_INTERVAL 5.0074891
2521#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */ 4242#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2522#define MIN_STAT_INTERVAL 0.1074891 4243#define MIN_STAT_INTERVAL 0.1074891
2523 4244
2524static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4245noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2525 4246
2526#if EV_USE_INOTIFY 4247#if EV_USE_INOTIFY
2527# define EV_INOTIFY_BUFSIZE 8192
2528 4248
2529static void noinline 4249/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4250# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4251
4252noinline
4253static void
2530infy_add (EV_P_ ev_stat *w) 4254infy_add (EV_P_ ev_stat *w)
2531{ 4255{
2532 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4256 w->wd = inotify_add_watch (fs_fd, w->path,
4257 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4258 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4259 | IN_DONT_FOLLOW | IN_MASK_ADD);
2533 4260
2534 if (w->wd < 0) 4261 if (w->wd >= 0)
4262 {
4263 struct statfs sfs;
4264
4265 /* now local changes will be tracked by inotify, but remote changes won't */
4266 /* unless the filesystem is known to be local, we therefore still poll */
4267 /* also do poll on <2.6.25, but with normal frequency */
4268
4269 if (!fs_2625)
4270 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4271 else if (!statfs (w->path, &sfs)
4272 && (sfs.f_type == 0x1373 /* devfs */
4273 || sfs.f_type == 0x4006 /* fat */
4274 || sfs.f_type == 0x4d44 /* msdos */
4275 || sfs.f_type == 0xEF53 /* ext2/3 */
4276 || sfs.f_type == 0x72b6 /* jffs2 */
4277 || sfs.f_type == 0x858458f6 /* ramfs */
4278 || sfs.f_type == 0x5346544e /* ntfs */
4279 || sfs.f_type == 0x3153464a /* jfs */
4280 || sfs.f_type == 0x9123683e /* btrfs */
4281 || sfs.f_type == 0x52654973 /* reiser3 */
4282 || sfs.f_type == 0x01021994 /* tmpfs */
4283 || sfs.f_type == 0x58465342 /* xfs */))
4284 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4285 else
4286 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2535 { 4287 }
4288 else
4289 {
4290 /* can't use inotify, continue to stat */
2536 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL; 4291 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2537 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2538 4292
2539 /* monitor some parent directory for speedup hints */ 4293 /* if path is not there, monitor some parent directory for speedup hints */
2540 /* note that exceeding the hardcoded path limit is not a correctness issue, */ 4294 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2541 /* but an efficiency issue only */ 4295 /* but an efficiency issue only */
2542 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4296 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2543 { 4297 {
2544 char path [4096]; 4298 char path [4096];
2554 if (!pend || pend == path) 4308 if (!pend || pend == path)
2555 break; 4309 break;
2556 4310
2557 *pend = 0; 4311 *pend = 0;
2558 w->wd = inotify_add_watch (fs_fd, path, mask); 4312 w->wd = inotify_add_watch (fs_fd, path, mask);
2559 } 4313 }
2560 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4314 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2561 } 4315 }
2562 } 4316 }
2563 4317
2564 if (w->wd >= 0) 4318 if (w->wd >= 0)
2565 {
2566 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4319 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2567 4320
2568 /* now local changes will be tracked by inotify, but remote changes won't */ 4321 /* now re-arm timer, if required */
2569 /* unless the filesystem it known to be local, we therefore still poll */ 4322 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2570 /* also do poll on <2.6.25, but with normal frequency */
2571 struct statfs sfs;
2572
2573 if (fs_2625 && !statfs (w->path, &sfs))
2574 if (sfs.f_type == 0x1373 /* devfs */
2575 || sfs.f_type == 0xEF53 /* ext2/3 */
2576 || sfs.f_type == 0x3153464a /* jfs */
2577 || sfs.f_type == 0x52654973 /* reiser3 */
2578 || sfs.f_type == 0x01021994 /* tempfs */
2579 || sfs.f_type == 0x58465342 /* xfs */)
2580 return;
2581
2582 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2583 ev_timer_again (EV_A_ &w->timer); 4323 ev_timer_again (EV_A_ &w->timer);
2584 } 4324 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2585} 4325}
2586 4326
2587static void noinline 4327noinline
4328static void
2588infy_del (EV_P_ ev_stat *w) 4329infy_del (EV_P_ ev_stat *w)
2589{ 4330{
2590 int slot; 4331 int slot;
2591 int wd = w->wd; 4332 int wd = w->wd;
2592 4333
2593 if (wd < 0) 4334 if (wd < 0)
2594 return; 4335 return;
2595 4336
2596 w->wd = -2; 4337 w->wd = -2;
2597 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4338 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2598 wlist_del (&fs_hash [slot].head, (WL)w); 4339 wlist_del (&fs_hash [slot].head, (WL)w);
2599 4340
2600 /* remove this watcher, if others are watching it, they will rearm */ 4341 /* remove this watcher, if others are watching it, they will rearm */
2601 inotify_rm_watch (fs_fd, wd); 4342 inotify_rm_watch (fs_fd, wd);
2602} 4343}
2603 4344
2604static void noinline 4345noinline
4346static void
2605infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4347infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2606{ 4348{
2607 if (slot < 0) 4349 if (slot < 0)
2608 /* overflow, need to check for all hash slots */ 4350 /* overflow, need to check for all hash slots */
2609 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4351 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2610 infy_wd (EV_A_ slot, wd, ev); 4352 infy_wd (EV_A_ slot, wd, ev);
2611 else 4353 else
2612 { 4354 {
2613 WL w_; 4355 WL w_;
2614 4356
2615 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4357 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2616 { 4358 {
2617 ev_stat *w = (ev_stat *)w_; 4359 ev_stat *w = (ev_stat *)w_;
2618 w_ = w_->next; /* lets us remove this watcher and all before it */ 4360 w_ = w_->next; /* lets us remove this watcher and all before it */
2619 4361
2620 if (w->wd == wd || wd == -1) 4362 if (w->wd == wd || wd == -1)
2621 { 4363 {
2622 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4364 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2623 { 4365 {
2624 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4366 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2625 w->wd = -1; 4367 w->wd = -1;
2626 infy_add (EV_A_ w); /* re-add, no matter what */ 4368 infy_add (EV_A_ w); /* re-add, no matter what */
2627 } 4369 }
2628 4370
2629 stat_timer_cb (EV_A_ &w->timer, 0); 4371 stat_timer_cb (EV_A_ &w->timer, 0);
2634 4376
2635static void 4377static void
2636infy_cb (EV_P_ ev_io *w, int revents) 4378infy_cb (EV_P_ ev_io *w, int revents)
2637{ 4379{
2638 char buf [EV_INOTIFY_BUFSIZE]; 4380 char buf [EV_INOTIFY_BUFSIZE];
2639 struct inotify_event *ev = (struct inotify_event *)buf;
2640 int ofs; 4381 int ofs;
2641 int len = read (fs_fd, buf, sizeof (buf)); 4382 int len = read (fs_fd, buf, sizeof (buf));
2642 4383
2643 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4384 for (ofs = 0; ofs < len; )
4385 {
4386 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2644 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4387 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4388 ofs += sizeof (struct inotify_event) + ev->len;
4389 }
2645} 4390}
2646 4391
2647inline_size void 4392inline_size ecb_cold
4393void
2648check_2625 (EV_P) 4394ev_check_2625 (EV_P)
2649{ 4395{
2650 /* kernels < 2.6.25 are borked 4396 /* kernels < 2.6.25 are borked
2651 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 4397 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2652 */ 4398 */
2653 struct utsname buf; 4399 if (ev_linux_version () < 0x020619)
2654 int major, minor, micro;
2655
2656 if (uname (&buf))
2657 return; 4400 return;
2658 4401
2659 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2660 return;
2661
2662 if (major < 2
2663 || (major == 2 && minor < 6)
2664 || (major == 2 && minor == 6 && micro < 25))
2665 return;
2666
2667 fs_2625 = 1; 4402 fs_2625 = 1;
4403}
4404
4405inline_size int
4406infy_newfd (void)
4407{
4408#if defined IN_CLOEXEC && defined IN_NONBLOCK
4409 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4410 if (fd >= 0)
4411 return fd;
4412#endif
4413 return inotify_init ();
2668} 4414}
2669 4415
2670inline_size void 4416inline_size void
2671infy_init (EV_P) 4417infy_init (EV_P)
2672{ 4418{
2673 if (fs_fd != -2) 4419 if (fs_fd != -2)
2674 return; 4420 return;
2675 4421
2676 fs_fd = -1; 4422 fs_fd = -1;
2677 4423
2678 check_2625 (EV_A); 4424 ev_check_2625 (EV_A);
2679 4425
2680 fs_fd = inotify_init (); 4426 fs_fd = infy_newfd ();
2681 4427
2682 if (fs_fd >= 0) 4428 if (fs_fd >= 0)
2683 { 4429 {
4430 fd_intern (fs_fd);
2684 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4431 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2685 ev_set_priority (&fs_w, EV_MAXPRI); 4432 ev_set_priority (&fs_w, EV_MAXPRI);
2686 ev_io_start (EV_A_ &fs_w); 4433 ev_io_start (EV_A_ &fs_w);
4434 ev_unref (EV_A);
2687 } 4435 }
2688} 4436}
2689 4437
2690inline_size void 4438inline_size void
2691infy_fork (EV_P) 4439infy_fork (EV_P)
2693 int slot; 4441 int slot;
2694 4442
2695 if (fs_fd < 0) 4443 if (fs_fd < 0)
2696 return; 4444 return;
2697 4445
4446 ev_ref (EV_A);
4447 ev_io_stop (EV_A_ &fs_w);
2698 close (fs_fd); 4448 close (fs_fd);
2699 fs_fd = inotify_init (); 4449 fs_fd = infy_newfd ();
2700 4450
4451 if (fs_fd >= 0)
4452 {
4453 fd_intern (fs_fd);
4454 ev_io_set (&fs_w, fs_fd, EV_READ);
4455 ev_io_start (EV_A_ &fs_w);
4456 ev_unref (EV_A);
4457 }
4458
2701 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4459 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2702 { 4460 {
2703 WL w_ = fs_hash [slot].head; 4461 WL w_ = fs_hash [slot].head;
2704 fs_hash [slot].head = 0; 4462 fs_hash [slot].head = 0;
2705 4463
2706 while (w_) 4464 while (w_)
2711 w->wd = -1; 4469 w->wd = -1;
2712 4470
2713 if (fs_fd >= 0) 4471 if (fs_fd >= 0)
2714 infy_add (EV_A_ w); /* re-add, no matter what */ 4472 infy_add (EV_A_ w); /* re-add, no matter what */
2715 else 4473 else
4474 {
4475 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4476 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2716 ev_timer_again (EV_A_ &w->timer); 4477 ev_timer_again (EV_A_ &w->timer);
4478 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4479 }
2717 } 4480 }
2718 } 4481 }
2719} 4482}
2720 4483
2721#endif 4484#endif
2725#else 4488#else
2726# define EV_LSTAT(p,b) lstat (p, b) 4489# define EV_LSTAT(p,b) lstat (p, b)
2727#endif 4490#endif
2728 4491
2729void 4492void
2730ev_stat_stat (EV_P_ ev_stat *w) 4493ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2731{ 4494{
2732 if (lstat (w->path, &w->attr) < 0) 4495 if (lstat (w->path, &w->attr) < 0)
2733 w->attr.st_nlink = 0; 4496 w->attr.st_nlink = 0;
2734 else if (!w->attr.st_nlink) 4497 else if (!w->attr.st_nlink)
2735 w->attr.st_nlink = 1; 4498 w->attr.st_nlink = 1;
2736} 4499}
2737 4500
2738static void noinline 4501noinline
4502static void
2739stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4503stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2740{ 4504{
2741 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4505 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2742 4506
2743 /* we copy this here each the time so that */ 4507 ev_statdata prev = w->attr;
2744 /* prev has the old value when the callback gets invoked */
2745 w->prev = w->attr;
2746 ev_stat_stat (EV_A_ w); 4508 ev_stat_stat (EV_A_ w);
2747 4509
2748 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4510 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2749 if ( 4511 if (
2750 w->prev.st_dev != w->attr.st_dev 4512 prev.st_dev != w->attr.st_dev
2751 || w->prev.st_ino != w->attr.st_ino 4513 || prev.st_ino != w->attr.st_ino
2752 || w->prev.st_mode != w->attr.st_mode 4514 || prev.st_mode != w->attr.st_mode
2753 || w->prev.st_nlink != w->attr.st_nlink 4515 || prev.st_nlink != w->attr.st_nlink
2754 || w->prev.st_uid != w->attr.st_uid 4516 || prev.st_uid != w->attr.st_uid
2755 || w->prev.st_gid != w->attr.st_gid 4517 || prev.st_gid != w->attr.st_gid
2756 || w->prev.st_rdev != w->attr.st_rdev 4518 || prev.st_rdev != w->attr.st_rdev
2757 || w->prev.st_size != w->attr.st_size 4519 || prev.st_size != w->attr.st_size
2758 || w->prev.st_atime != w->attr.st_atime 4520 || prev.st_atime != w->attr.st_atime
2759 || w->prev.st_mtime != w->attr.st_mtime 4521 || prev.st_mtime != w->attr.st_mtime
2760 || w->prev.st_ctime != w->attr.st_ctime 4522 || prev.st_ctime != w->attr.st_ctime
2761 ) { 4523 ) {
4524 /* we only update w->prev on actual differences */
4525 /* in case we test more often than invoke the callback, */
4526 /* to ensure that prev is always different to attr */
4527 w->prev = prev;
4528
2762 #if EV_USE_INOTIFY 4529 #if EV_USE_INOTIFY
2763 if (fs_fd >= 0) 4530 if (fs_fd >= 0)
2764 { 4531 {
2765 infy_del (EV_A_ w); 4532 infy_del (EV_A_ w);
2766 infy_add (EV_A_ w); 4533 infy_add (EV_A_ w);
2771 ev_feed_event (EV_A_ w, EV_STAT); 4538 ev_feed_event (EV_A_ w, EV_STAT);
2772 } 4539 }
2773} 4540}
2774 4541
2775void 4542void
2776ev_stat_start (EV_P_ ev_stat *w) 4543ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2777{ 4544{
2778 if (expect_false (ev_is_active (w))) 4545 if (expect_false (ev_is_active (w)))
2779 return; 4546 return;
2780 4547
2781 ev_stat_stat (EV_A_ w); 4548 ev_stat_stat (EV_A_ w);
2791 4558
2792 if (fs_fd >= 0) 4559 if (fs_fd >= 0)
2793 infy_add (EV_A_ w); 4560 infy_add (EV_A_ w);
2794 else 4561 else
2795#endif 4562#endif
4563 {
2796 ev_timer_again (EV_A_ &w->timer); 4564 ev_timer_again (EV_A_ &w->timer);
4565 ev_unref (EV_A);
4566 }
2797 4567
2798 ev_start (EV_A_ (W)w, 1); 4568 ev_start (EV_A_ (W)w, 1);
2799 4569
2800 EV_FREQUENT_CHECK; 4570 EV_FREQUENT_CHECK;
2801} 4571}
2802 4572
2803void 4573void
2804ev_stat_stop (EV_P_ ev_stat *w) 4574ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2805{ 4575{
2806 clear_pending (EV_A_ (W)w); 4576 clear_pending (EV_A_ (W)w);
2807 if (expect_false (!ev_is_active (w))) 4577 if (expect_false (!ev_is_active (w)))
2808 return; 4578 return;
2809 4579
2810 EV_FREQUENT_CHECK; 4580 EV_FREQUENT_CHECK;
2811 4581
2812#if EV_USE_INOTIFY 4582#if EV_USE_INOTIFY
2813 infy_del (EV_A_ w); 4583 infy_del (EV_A_ w);
2814#endif 4584#endif
4585
4586 if (ev_is_active (&w->timer))
4587 {
4588 ev_ref (EV_A);
2815 ev_timer_stop (EV_A_ &w->timer); 4589 ev_timer_stop (EV_A_ &w->timer);
4590 }
2816 4591
2817 ev_stop (EV_A_ (W)w); 4592 ev_stop (EV_A_ (W)w);
2818 4593
2819 EV_FREQUENT_CHECK; 4594 EV_FREQUENT_CHECK;
2820} 4595}
2821#endif 4596#endif
2822 4597
2823#if EV_IDLE_ENABLE 4598#if EV_IDLE_ENABLE
2824void 4599void
2825ev_idle_start (EV_P_ ev_idle *w) 4600ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2826{ 4601{
2827 if (expect_false (ev_is_active (w))) 4602 if (expect_false (ev_is_active (w)))
2828 return; 4603 return;
2829 4604
2830 pri_adjust (EV_A_ (W)w); 4605 pri_adjust (EV_A_ (W)w);
2843 4618
2844 EV_FREQUENT_CHECK; 4619 EV_FREQUENT_CHECK;
2845} 4620}
2846 4621
2847void 4622void
2848ev_idle_stop (EV_P_ ev_idle *w) 4623ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2849{ 4624{
2850 clear_pending (EV_A_ (W)w); 4625 clear_pending (EV_A_ (W)w);
2851 if (expect_false (!ev_is_active (w))) 4626 if (expect_false (!ev_is_active (w)))
2852 return; 4627 return;
2853 4628
2865 4640
2866 EV_FREQUENT_CHECK; 4641 EV_FREQUENT_CHECK;
2867} 4642}
2868#endif 4643#endif
2869 4644
4645#if EV_PREPARE_ENABLE
2870void 4646void
2871ev_prepare_start (EV_P_ ev_prepare *w) 4647ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2872{ 4648{
2873 if (expect_false (ev_is_active (w))) 4649 if (expect_false (ev_is_active (w)))
2874 return; 4650 return;
2875 4651
2876 EV_FREQUENT_CHECK; 4652 EV_FREQUENT_CHECK;
2881 4657
2882 EV_FREQUENT_CHECK; 4658 EV_FREQUENT_CHECK;
2883} 4659}
2884 4660
2885void 4661void
2886ev_prepare_stop (EV_P_ ev_prepare *w) 4662ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2887{ 4663{
2888 clear_pending (EV_A_ (W)w); 4664 clear_pending (EV_A_ (W)w);
2889 if (expect_false (!ev_is_active (w))) 4665 if (expect_false (!ev_is_active (w)))
2890 return; 4666 return;
2891 4667
2900 4676
2901 ev_stop (EV_A_ (W)w); 4677 ev_stop (EV_A_ (W)w);
2902 4678
2903 EV_FREQUENT_CHECK; 4679 EV_FREQUENT_CHECK;
2904} 4680}
4681#endif
2905 4682
4683#if EV_CHECK_ENABLE
2906void 4684void
2907ev_check_start (EV_P_ ev_check *w) 4685ev_check_start (EV_P_ ev_check *w) EV_THROW
2908{ 4686{
2909 if (expect_false (ev_is_active (w))) 4687 if (expect_false (ev_is_active (w)))
2910 return; 4688 return;
2911 4689
2912 EV_FREQUENT_CHECK; 4690 EV_FREQUENT_CHECK;
2917 4695
2918 EV_FREQUENT_CHECK; 4696 EV_FREQUENT_CHECK;
2919} 4697}
2920 4698
2921void 4699void
2922ev_check_stop (EV_P_ ev_check *w) 4700ev_check_stop (EV_P_ ev_check *w) EV_THROW
2923{ 4701{
2924 clear_pending (EV_A_ (W)w); 4702 clear_pending (EV_A_ (W)w);
2925 if (expect_false (!ev_is_active (w))) 4703 if (expect_false (!ev_is_active (w)))
2926 return; 4704 return;
2927 4705
2936 4714
2937 ev_stop (EV_A_ (W)w); 4715 ev_stop (EV_A_ (W)w);
2938 4716
2939 EV_FREQUENT_CHECK; 4717 EV_FREQUENT_CHECK;
2940} 4718}
4719#endif
2941 4720
2942#if EV_EMBED_ENABLE 4721#if EV_EMBED_ENABLE
2943void noinline 4722noinline
4723void
2944ev_embed_sweep (EV_P_ ev_embed *w) 4724ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2945{ 4725{
2946 ev_loop (w->other, EVLOOP_NONBLOCK); 4726 ev_run (w->other, EVRUN_NOWAIT);
2947} 4727}
2948 4728
2949static void 4729static void
2950embed_io_cb (EV_P_ ev_io *io, int revents) 4730embed_io_cb (EV_P_ ev_io *io, int revents)
2951{ 4731{
2952 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4732 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2953 4733
2954 if (ev_cb (w)) 4734 if (ev_cb (w))
2955 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4735 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2956 else 4736 else
2957 ev_loop (w->other, EVLOOP_NONBLOCK); 4737 ev_run (w->other, EVRUN_NOWAIT);
2958} 4738}
2959 4739
2960static void 4740static void
2961embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4741embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2962{ 4742{
2963 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4743 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2964 4744
2965 { 4745 {
2966 struct ev_loop *loop = w->other; 4746 EV_P = w->other;
2967 4747
2968 while (fdchangecnt) 4748 while (fdchangecnt)
2969 { 4749 {
2970 fd_reify (EV_A); 4750 fd_reify (EV_A);
2971 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4751 ev_run (EV_A_ EVRUN_NOWAIT);
2972 } 4752 }
2973 } 4753 }
2974} 4754}
2975 4755
2976static void 4756static void
2979 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 4759 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2980 4760
2981 ev_embed_stop (EV_A_ w); 4761 ev_embed_stop (EV_A_ w);
2982 4762
2983 { 4763 {
2984 struct ev_loop *loop = w->other; 4764 EV_P = w->other;
2985 4765
2986 ev_loop_fork (EV_A); 4766 ev_loop_fork (EV_A);
2987 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4767 ev_run (EV_A_ EVRUN_NOWAIT);
2988 } 4768 }
2989 4769
2990 ev_embed_start (EV_A_ w); 4770 ev_embed_start (EV_A_ w);
2991} 4771}
2992 4772
2997 ev_idle_stop (EV_A_ idle); 4777 ev_idle_stop (EV_A_ idle);
2998} 4778}
2999#endif 4779#endif
3000 4780
3001void 4781void
3002ev_embed_start (EV_P_ ev_embed *w) 4782ev_embed_start (EV_P_ ev_embed *w) EV_THROW
3003{ 4783{
3004 if (expect_false (ev_is_active (w))) 4784 if (expect_false (ev_is_active (w)))
3005 return; 4785 return;
3006 4786
3007 { 4787 {
3008 struct ev_loop *loop = w->other; 4788 EV_P = w->other;
3009 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4789 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3010 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4790 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3011 } 4791 }
3012 4792
3013 EV_FREQUENT_CHECK; 4793 EV_FREQUENT_CHECK;
3028 4808
3029 EV_FREQUENT_CHECK; 4809 EV_FREQUENT_CHECK;
3030} 4810}
3031 4811
3032void 4812void
3033ev_embed_stop (EV_P_ ev_embed *w) 4813ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
3034{ 4814{
3035 clear_pending (EV_A_ (W)w); 4815 clear_pending (EV_A_ (W)w);
3036 if (expect_false (!ev_is_active (w))) 4816 if (expect_false (!ev_is_active (w)))
3037 return; 4817 return;
3038 4818
3040 4820
3041 ev_io_stop (EV_A_ &w->io); 4821 ev_io_stop (EV_A_ &w->io);
3042 ev_prepare_stop (EV_A_ &w->prepare); 4822 ev_prepare_stop (EV_A_ &w->prepare);
3043 ev_fork_stop (EV_A_ &w->fork); 4823 ev_fork_stop (EV_A_ &w->fork);
3044 4824
4825 ev_stop (EV_A_ (W)w);
4826
3045 EV_FREQUENT_CHECK; 4827 EV_FREQUENT_CHECK;
3046} 4828}
3047#endif 4829#endif
3048 4830
3049#if EV_FORK_ENABLE 4831#if EV_FORK_ENABLE
3050void 4832void
3051ev_fork_start (EV_P_ ev_fork *w) 4833ev_fork_start (EV_P_ ev_fork *w) EV_THROW
3052{ 4834{
3053 if (expect_false (ev_is_active (w))) 4835 if (expect_false (ev_is_active (w)))
3054 return; 4836 return;
3055 4837
3056 EV_FREQUENT_CHECK; 4838 EV_FREQUENT_CHECK;
3061 4843
3062 EV_FREQUENT_CHECK; 4844 EV_FREQUENT_CHECK;
3063} 4845}
3064 4846
3065void 4847void
3066ev_fork_stop (EV_P_ ev_fork *w) 4848ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
3067{ 4849{
3068 clear_pending (EV_A_ (W)w); 4850 clear_pending (EV_A_ (W)w);
3069 if (expect_false (!ev_is_active (w))) 4851 if (expect_false (!ev_is_active (w)))
3070 return; 4852 return;
3071 4853
3082 4864
3083 EV_FREQUENT_CHECK; 4865 EV_FREQUENT_CHECK;
3084} 4866}
3085#endif 4867#endif
3086 4868
3087#if EV_ASYNC_ENABLE 4869#if EV_CLEANUP_ENABLE
3088void 4870void
3089ev_async_start (EV_P_ ev_async *w) 4871ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
3090{ 4872{
3091 if (expect_false (ev_is_active (w))) 4873 if (expect_false (ev_is_active (w)))
3092 return; 4874 return;
4875
4876 EV_FREQUENT_CHECK;
4877
4878 ev_start (EV_A_ (W)w, ++cleanupcnt);
4879 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4880 cleanups [cleanupcnt - 1] = w;
4881
4882 /* cleanup watchers should never keep a refcount on the loop */
4883 ev_unref (EV_A);
4884 EV_FREQUENT_CHECK;
4885}
4886
4887void
4888ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4889{
4890 clear_pending (EV_A_ (W)w);
4891 if (expect_false (!ev_is_active (w)))
4892 return;
4893
4894 EV_FREQUENT_CHECK;
4895 ev_ref (EV_A);
4896
4897 {
4898 int active = ev_active (w);
4899
4900 cleanups [active - 1] = cleanups [--cleanupcnt];
4901 ev_active (cleanups [active - 1]) = active;
4902 }
4903
4904 ev_stop (EV_A_ (W)w);
4905
4906 EV_FREQUENT_CHECK;
4907}
4908#endif
4909
4910#if EV_ASYNC_ENABLE
4911void
4912ev_async_start (EV_P_ ev_async *w) EV_THROW
4913{
4914 if (expect_false (ev_is_active (w)))
4915 return;
4916
4917 w->sent = 0;
3093 4918
3094 evpipe_init (EV_A); 4919 evpipe_init (EV_A);
3095 4920
3096 EV_FREQUENT_CHECK; 4921 EV_FREQUENT_CHECK;
3097 4922
3101 4926
3102 EV_FREQUENT_CHECK; 4927 EV_FREQUENT_CHECK;
3103} 4928}
3104 4929
3105void 4930void
3106ev_async_stop (EV_P_ ev_async *w) 4931ev_async_stop (EV_P_ ev_async *w) EV_THROW
3107{ 4932{
3108 clear_pending (EV_A_ (W)w); 4933 clear_pending (EV_A_ (W)w);
3109 if (expect_false (!ev_is_active (w))) 4934 if (expect_false (!ev_is_active (w)))
3110 return; 4935 return;
3111 4936
3122 4947
3123 EV_FREQUENT_CHECK; 4948 EV_FREQUENT_CHECK;
3124} 4949}
3125 4950
3126void 4951void
3127ev_async_send (EV_P_ ev_async *w) 4952ev_async_send (EV_P_ ev_async *w) EV_THROW
3128{ 4953{
3129 w->sent = 1; 4954 w->sent = 1;
3130 evpipe_write (EV_A_ &gotasync); 4955 evpipe_write (EV_A_ &async_pending);
3131} 4956}
3132#endif 4957#endif
3133 4958
3134/*****************************************************************************/ 4959/*****************************************************************************/
3135 4960
3169 4994
3170 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io)); 4995 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3171} 4996}
3172 4997
3173void 4998void
3174ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4999ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
3175{ 5000{
3176 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5001 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3177 5002
3178 if (expect_false (!once)) 5003 if (expect_false (!once))
3179 { 5004 {
3180 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 5005 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3181 return; 5006 return;
3182 } 5007 }
3183 5008
3184 once->cb = cb; 5009 once->cb = cb;
3185 once->arg = arg; 5010 once->arg = arg;
3199 } 5024 }
3200} 5025}
3201 5026
3202/*****************************************************************************/ 5027/*****************************************************************************/
3203 5028
3204#if 0 5029#if EV_WALK_ENABLE
5030ecb_cold
3205void 5031void
3206ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) 5032ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
3207{ 5033{
3208 int i, j; 5034 int i, j;
3209 ev_watcher_list *wl, *wn; 5035 ev_watcher_list *wl, *wn;
3210 5036
3211 if (types & (EV_IO | EV_EMBED)) 5037 if (types & (EV_IO | EV_EMBED))
3225#if EV_USE_INOTIFY 5051#if EV_USE_INOTIFY
3226 if (ev_cb ((ev_io *)wl) == infy_cb) 5052 if (ev_cb ((ev_io *)wl) == infy_cb)
3227 ; 5053 ;
3228 else 5054 else
3229#endif 5055#endif
3230 if ((ev_io *)wl != &pipeev) 5056 if ((ev_io *)wl != &pipe_w)
3231 if (types & EV_IO) 5057 if (types & EV_IO)
3232 cb (EV_A_ EV_IO, wl); 5058 cb (EV_A_ EV_IO, wl);
3233 5059
3234 wl = wn; 5060 wl = wn;
3235 } 5061 }
3254 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i])); 5080 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3255#endif 5081#endif
3256 5082
3257#if EV_IDLE_ENABLE 5083#if EV_IDLE_ENABLE
3258 if (types & EV_IDLE) 5084 if (types & EV_IDLE)
3259 for (j = NUMPRI; i--; ) 5085 for (j = NUMPRI; j--; )
3260 for (i = idlecnt [j]; i--; ) 5086 for (i = idlecnt [j]; i--; )
3261 cb (EV_A_ EV_IDLE, idles [j][i]); 5087 cb (EV_A_ EV_IDLE, idles [j][i]);
3262#endif 5088#endif
3263 5089
3264#if EV_FORK_ENABLE 5090#if EV_FORK_ENABLE
3272 if (types & EV_ASYNC) 5098 if (types & EV_ASYNC)
3273 for (i = asynccnt; i--; ) 5099 for (i = asynccnt; i--; )
3274 cb (EV_A_ EV_ASYNC, asyncs [i]); 5100 cb (EV_A_ EV_ASYNC, asyncs [i]);
3275#endif 5101#endif
3276 5102
5103#if EV_PREPARE_ENABLE
3277 if (types & EV_PREPARE) 5104 if (types & EV_PREPARE)
3278 for (i = preparecnt; i--; ) 5105 for (i = preparecnt; i--; )
3279#if EV_EMBED_ENABLE 5106# if EV_EMBED_ENABLE
3280 if (ev_cb (prepares [i]) != embed_prepare_cb) 5107 if (ev_cb (prepares [i]) != embed_prepare_cb)
3281#endif 5108# endif
3282 cb (EV_A_ EV_PREPARE, prepares [i]); 5109 cb (EV_A_ EV_PREPARE, prepares [i]);
5110#endif
3283 5111
5112#if EV_CHECK_ENABLE
3284 if (types & EV_CHECK) 5113 if (types & EV_CHECK)
3285 for (i = checkcnt; i--; ) 5114 for (i = checkcnt; i--; )
3286 cb (EV_A_ EV_CHECK, checks [i]); 5115 cb (EV_A_ EV_CHECK, checks [i]);
5116#endif
3287 5117
5118#if EV_SIGNAL_ENABLE
3288 if (types & EV_SIGNAL) 5119 if (types & EV_SIGNAL)
3289 for (i = 0; i < signalmax; ++i) 5120 for (i = 0; i < EV_NSIG - 1; ++i)
3290 for (wl = signals [i].head; wl; ) 5121 for (wl = signals [i].head; wl; )
3291 { 5122 {
3292 wn = wl->next; 5123 wn = wl->next;
3293 cb (EV_A_ EV_SIGNAL, wl); 5124 cb (EV_A_ EV_SIGNAL, wl);
3294 wl = wn; 5125 wl = wn;
3295 } 5126 }
5127#endif
3296 5128
5129#if EV_CHILD_ENABLE
3297 if (types & EV_CHILD) 5130 if (types & EV_CHILD)
3298 for (i = EV_PID_HASHSIZE; i--; ) 5131 for (i = (EV_PID_HASHSIZE); i--; )
3299 for (wl = childs [i]; wl; ) 5132 for (wl = childs [i]; wl; )
3300 { 5133 {
3301 wn = wl->next; 5134 wn = wl->next;
3302 cb (EV_A_ EV_CHILD, wl); 5135 cb (EV_A_ EV_CHILD, wl);
3303 wl = wn; 5136 wl = wn;
3304 } 5137 }
5138#endif
3305/* EV_STAT 0x00001000 /* stat data changed */ 5139/* EV_STAT 0x00001000 /* stat data changed */
3306/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */ 5140/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3307} 5141}
3308#endif 5142#endif
3309 5143
3310#if EV_MULTIPLICITY 5144#if EV_MULTIPLICITY
3311 #include "ev_wrap.h" 5145 #include "ev_wrap.h"
3312#endif 5146#endif
3313 5147
3314#ifdef __cplusplus
3315}
3316#endif
3317

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines