ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.107 by root, Mon Nov 12 01:20:25 2007 UTC vs.
Revision 1.287 by root, Mon Apr 20 19:45:58 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
38 63
39# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
42# endif 67# endif
43# ifndef EV_USE_REALTIME 68# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 0
70# endif
71# else
72# ifndef EV_USE_MONOTONIC
73# define EV_USE_MONOTONIC 0
74# endif
75# ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 0
45# endif 77# endif
46# endif 78# endif
47 79
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 80# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 82# define EV_USE_NANOSLEEP 1
83# else
84# define EV_USE_NANOSLEEP 0
85# endif
50# endif 86# endif
51 87
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 88# ifndef EV_USE_SELECT
89# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 90# define EV_USE_SELECT 1
91# else
92# define EV_USE_SELECT 0
93# endif
54# endif 94# endif
55 95
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 96# ifndef EV_USE_POLL
97# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 98# define EV_USE_POLL 1
99# else
100# define EV_USE_POLL 0
101# endif
58# endif 102# endif
59 103
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 104# ifndef EV_USE_EPOLL
105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 106# define EV_USE_EPOLL 1
107# else
108# define EV_USE_EPOLL 0
109# endif
62# endif 110# endif
111
112# ifndef EV_USE_KQUEUE
113# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
114# define EV_USE_KQUEUE 1
115# else
116# define EV_USE_KQUEUE 0
117# endif
118# endif
119
120# ifndef EV_USE_PORT
121# if HAVE_PORT_H && HAVE_PORT_CREATE
122# define EV_USE_PORT 1
123# else
124# define EV_USE_PORT 0
125# endif
126# endif
63 127
128# ifndef EV_USE_INOTIFY
129# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130# define EV_USE_INOTIFY 1
131# else
132# define EV_USE_INOTIFY 0
133# endif
134# endif
135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
64#endif 144#endif
65 145
66#include <math.h> 146#include <math.h>
67#include <stdlib.h> 147#include <stdlib.h>
68#include <fcntl.h> 148#include <fcntl.h>
75#include <sys/types.h> 155#include <sys/types.h>
76#include <time.h> 156#include <time.h>
77 157
78#include <signal.h> 158#include <signal.h>
79 159
160#ifdef EV_H
161# include EV_H
162#else
163# include "ev.h"
164#endif
165
80#ifndef _WIN32 166#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h> 167# include <sys/time.h>
83# include <sys/wait.h> 168# include <sys/wait.h>
169# include <unistd.h>
84#else 170#else
171# include <io.h>
85# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
86# include <windows.h> 173# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
89# endif 176# endif
90#endif 177#endif
91 178
92/**/ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
93 188
94#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
95# define EV_USE_MONOTONIC 1 191# define EV_USE_MONOTONIC 1
192# else
193# define EV_USE_MONOTONIC 0
194# endif
195#endif
196
197#ifndef EV_USE_REALTIME
198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif
200
201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
205# define EV_USE_NANOSLEEP 0
206# endif
96#endif 207#endif
97 208
98#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
99# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
100# define EV_SELECT_USE_FD_SET 1
101#endif 211#endif
102 212
103#ifndef EV_USE_POLL 213#ifndef EV_USE_POLL
104# ifdef _WIN32 214# ifdef _WIN32
105# define EV_USE_POLL 0 215# define EV_USE_POLL 0
107# define EV_USE_POLL 1 217# define EV_USE_POLL 1
108# endif 218# endif
109#endif 219#endif
110 220
111#ifndef EV_USE_EPOLL 221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
112# define EV_USE_EPOLL 0 225# define EV_USE_EPOLL 0
226# endif
113#endif 227#endif
114 228
115#ifndef EV_USE_KQUEUE 229#ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE 0 230# define EV_USE_KQUEUE 0
117#endif 231#endif
118 232
119#ifndef EV_USE_REALTIME 233#ifndef EV_USE_PORT
234# define EV_USE_PORT 0
235#endif
236
237#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
120# define EV_USE_REALTIME 1 239# define EV_USE_INOTIFY 1
240# else
241# define EV_USE_INOTIFY 0
121#endif 242# endif
243#endif
122 244
123/**/ 245#ifndef EV_PID_HASHSIZE
124 246# if EV_MINIMAL
125/* darwin simply cannot be helped */ 247# define EV_PID_HASHSIZE 1
126#ifdef __APPLE__ 248# else
127# undef EV_USE_POLL 249# define EV_PID_HASHSIZE 16
128# undef EV_USE_KQUEUE
129#endif 250# endif
251#endif
252
253#ifndef EV_INOTIFY_HASHSIZE
254# if EV_MINIMAL
255# define EV_INOTIFY_HASHSIZE 1
256# else
257# define EV_INOTIFY_HASHSIZE 16
258# endif
259#endif
260
261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
130 288
131#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
132# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
133# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
134#endif 292#endif
136#ifndef CLOCK_REALTIME 294#ifndef CLOCK_REALTIME
137# undef EV_USE_REALTIME 295# undef EV_USE_REALTIME
138# define EV_USE_REALTIME 0 296# define EV_USE_REALTIME 0
139#endif 297#endif
140 298
299#if !EV_STAT_ENABLE
300# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0
302#endif
303
304#if !EV_USE_NANOSLEEP
305# ifndef _WIN32
306# include <sys/select.h>
307# endif
308#endif
309
310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
319#endif
320
141#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
142# include <winsock.h> 322# include <winsock.h>
143#endif 323#endif
144 324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
339# endif
340int eventfd (unsigned int initval, int flags);
341# ifdef __cplusplus
342}
343# endif
344#endif
345
145/**/ 346/**/
146 347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
353
354/*
355 * This is used to avoid floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
363
147#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
148#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
149#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
150/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
151 367
152#ifdef EV_H
153# include EV_H
154#else
155# include "ev.h"
156#endif
157
158#if __GNUC__ >= 3 368#if __GNUC__ >= 4
159# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
160# define inline inline 370# define noinline __attribute__ ((noinline))
161#else 371#else
162# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
163# define inline static 373# define noinline
374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
375# define inline
376# endif
164#endif 377#endif
165 378
166#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
167#define expect_true(expr) expect ((expr) != 0, 1) 380#define expect_true(expr) expect ((expr) != 0, 1)
381#define inline_size static inline
382
383#if EV_MINIMAL
384# define inline_speed static noinline
385#else
386# define inline_speed static inline
387#endif
168 388
169#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
170#define ABSPRI(w) ((w)->priority - EV_MINPRI) 390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
171 391
172#define EMPTY /* required for microsofts broken pseudo-c compiler */ 392#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */
173 394
174typedef struct ev_watcher *W; 395typedef ev_watcher *W;
175typedef struct ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
176typedef struct ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
177 398
399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
178static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif
179 411
180#ifdef _WIN32 412#ifdef _WIN32
181# include "ev_win32.c" 413# include "ev_win32.c"
182#endif 414#endif
183 415
184/*****************************************************************************/ 416/*****************************************************************************/
185 417
186static void (*syserr_cb)(const char *msg); 418static void (*syserr_cb)(const char *msg);
187 419
420void
188void ev_set_syserr_cb (void (*cb)(const char *msg)) 421ev_set_syserr_cb (void (*cb)(const char *msg))
189{ 422{
190 syserr_cb = cb; 423 syserr_cb = cb;
191} 424}
192 425
193static void 426static void noinline
194syserr (const char *msg) 427ev_syserr (const char *msg)
195{ 428{
196 if (!msg) 429 if (!msg)
197 msg = "(libev) system error"; 430 msg = "(libev) system error";
198 431
199 if (syserr_cb) 432 if (syserr_cb)
203 perror (msg); 436 perror (msg);
204 abort (); 437 abort ();
205 } 438 }
206} 439}
207 440
441static void *
442ev_realloc_emul (void *ptr, long size)
443{
444 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and
446 * the single unix specification, so work around them here.
447 */
448
449 if (size)
450 return realloc (ptr, size);
451
452 free (ptr);
453 return 0;
454}
455
208static void *(*alloc)(void *ptr, long size); 456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
209 457
458void
210void ev_set_allocator (void *(*cb)(void *ptr, long size)) 459ev_set_allocator (void *(*cb)(void *ptr, long size))
211{ 460{
212 alloc = cb; 461 alloc = cb;
213} 462}
214 463
215static void * 464inline_speed void *
216ev_realloc (void *ptr, long size) 465ev_realloc (void *ptr, long size)
217{ 466{
218 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 467 ptr = alloc (ptr, size);
219 468
220 if (!ptr && size) 469 if (!ptr && size)
221 { 470 {
222 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
223 abort (); 472 abort ();
234typedef struct 483typedef struct
235{ 484{
236 WL head; 485 WL head;
237 unsigned char events; 486 unsigned char events;
238 unsigned char reify; 487 unsigned char reify;
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused;
490#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif
239#if EV_SELECT_IS_WINSOCKET 493#if EV_SELECT_IS_WINSOCKET
240 SOCKET handle; 494 SOCKET handle;
241#endif 495#endif
242} ANFD; 496} ANFD;
243 497
244typedef struct 498typedef struct
245{ 499{
246 W w; 500 W w;
247 int events; 501 int events;
248} ANPENDING; 502} ANPENDING;
503
504#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */
506typedef struct
507{
508 WL head;
509} ANFS;
510#endif
511
512/* Heap Entry */
513#if EV_HEAP_CACHE_AT
514 typedef struct {
515 ev_tstamp at;
516 WT w;
517 } ANHE;
518
519 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else
523 typedef WT ANHE;
524
525 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he)
528#endif
249 529
250#if EV_MULTIPLICITY 530#if EV_MULTIPLICITY
251 531
252 struct ev_loop 532 struct ev_loop
253 { 533 {
257 #include "ev_vars.h" 537 #include "ev_vars.h"
258 #undef VAR 538 #undef VAR
259 }; 539 };
260 #include "ev_wrap.h" 540 #include "ev_wrap.h"
261 541
262 struct ev_loop default_loop_struct; 542 static struct ev_loop default_loop_struct;
263 static struct ev_loop *default_loop; 543 struct ev_loop *ev_default_loop_ptr;
264 544
265#else 545#else
266 546
267 ev_tstamp ev_rt_now; 547 ev_tstamp ev_rt_now;
268 #define VAR(name,decl) static decl; 548 #define VAR(name,decl) static decl;
269 #include "ev_vars.h" 549 #include "ev_vars.h"
270 #undef VAR 550 #undef VAR
271 551
272 static int default_loop; 552 static int ev_default_loop_ptr;
273 553
274#endif 554#endif
275 555
276/*****************************************************************************/ 556/*****************************************************************************/
277 557
278ev_tstamp 558ev_tstamp
279ev_time (void) 559ev_time (void)
280{ 560{
281#if EV_USE_REALTIME 561#if EV_USE_REALTIME
562 if (expect_true (have_realtime))
563 {
282 struct timespec ts; 564 struct timespec ts;
283 clock_gettime (CLOCK_REALTIME, &ts); 565 clock_gettime (CLOCK_REALTIME, &ts);
284 return ts.tv_sec + ts.tv_nsec * 1e-9; 566 return ts.tv_sec + ts.tv_nsec * 1e-9;
285#else 567 }
568#endif
569
286 struct timeval tv; 570 struct timeval tv;
287 gettimeofday (&tv, 0); 571 gettimeofday (&tv, 0);
288 return tv.tv_sec + tv.tv_usec * 1e-6; 572 return tv.tv_sec + tv.tv_usec * 1e-6;
289#endif
290} 573}
291 574
292inline ev_tstamp 575inline_size ev_tstamp
293get_clock (void) 576get_clock (void)
294{ 577{
295#if EV_USE_MONOTONIC 578#if EV_USE_MONOTONIC
296 if (expect_true (have_monotonic)) 579 if (expect_true (have_monotonic))
297 { 580 {
310{ 593{
311 return ev_rt_now; 594 return ev_rt_now;
312} 595}
313#endif 596#endif
314 597
315#define array_roundsize(type,n) ((n) | 4 & ~3) 598void
599ev_sleep (ev_tstamp delay)
600{
601 if (delay > 0.)
602 {
603#if EV_USE_NANOSLEEP
604 struct timespec ts;
605
606 ts.tv_sec = (time_t)delay;
607 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
608
609 nanosleep (&ts, 0);
610#elif defined(_WIN32)
611 Sleep ((unsigned long)(delay * 1e3));
612#else
613 struct timeval tv;
614
615 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */
621 select (0, 0, 0, 0, &tv);
622#endif
623 }
624}
625
626/*****************************************************************************/
627
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629
630inline_size int
631array_nextsize (int elem, int cur, int cnt)
632{
633 int ncur = cur + 1;
634
635 do
636 ncur <<= 1;
637 while (cnt > ncur);
638
639 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
640 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
641 {
642 ncur *= elem;
643 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
644 ncur = ncur - sizeof (void *) * 4;
645 ncur /= elem;
646 }
647
648 return ncur;
649}
650
651static noinline void *
652array_realloc (int elem, void *base, int *cur, int cnt)
653{
654 *cur = array_nextsize (elem, *cur, cnt);
655 return ev_realloc (base, elem * *cur);
656}
657
658#define array_init_zero(base,count) \
659 memset ((void *)(base), 0, sizeof (*(base)) * (count))
316 660
317#define array_needsize(type,base,cur,cnt,init) \ 661#define array_needsize(type,base,cur,cnt,init) \
318 if (expect_false ((cnt) > cur)) \ 662 if (expect_false ((cnt) > (cur))) \
319 { \ 663 { \
320 int newcnt = cur; \ 664 int ocur_ = (cur); \
321 do \ 665 (base) = (type *)array_realloc \
322 { \ 666 (sizeof (type), (base), &(cur), (cnt)); \
323 newcnt = array_roundsize (type, newcnt << 1); \ 667 init ((base) + (ocur_), (cur) - ocur_); \
324 } \
325 while ((cnt) > newcnt); \
326 \
327 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
328 init (base + cur, newcnt - cur); \
329 cur = newcnt; \
330 } 668 }
331 669
670#if 0
332#define array_slim(type,stem) \ 671#define array_slim(type,stem) \
333 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 672 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
334 { \ 673 { \
335 stem ## max = array_roundsize (stem ## cnt >> 1); \ 674 stem ## max = array_roundsize (stem ## cnt >> 1); \
336 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 675 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
337 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 676 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
338 } 677 }
678#endif
339 679
340#define array_free(stem, idx) \ 680#define array_free(stem, idx) \
341 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
342 682
343/*****************************************************************************/ 683/*****************************************************************************/
344 684
345static void 685void noinline
346anfds_init (ANFD *base, int count)
347{
348 while (count--)
349 {
350 base->head = 0;
351 base->events = EV_NONE;
352 base->reify = 0;
353
354 ++base;
355 }
356}
357
358void
359ev_feed_event (EV_P_ void *w, int revents) 686ev_feed_event (EV_P_ void *w, int revents)
360{ 687{
361 W w_ = (W)w; 688 W w_ = (W)w;
689 int pri = ABSPRI (w_);
362 690
363 if (w_->pending) 691 if (expect_false (w_->pending))
692 pendings [pri][w_->pending - 1].events |= revents;
693 else
364 { 694 {
695 w_->pending = ++pendingcnt [pri];
696 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
697 pendings [pri][w_->pending - 1].w = w_;
365 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 698 pendings [pri][w_->pending - 1].events = revents;
366 return;
367 } 699 }
368
369 w_->pending = ++pendingcnt [ABSPRI (w_)];
370 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
371 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
372 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
373} 700}
374 701
375static void 702inline_speed void
703feed_reverse (EV_P_ W w)
704{
705 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
706 rfeeds [rfeedcnt++] = w;
707}
708
709inline_size void
710feed_reverse_done (EV_P_ int revents)
711{
712 do
713 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
714 while (rfeedcnt);
715}
716
717inline_speed void
376queue_events (EV_P_ W *events, int eventcnt, int type) 718queue_events (EV_P_ W *events, int eventcnt, int type)
377{ 719{
378 int i; 720 int i;
379 721
380 for (i = 0; i < eventcnt; ++i) 722 for (i = 0; i < eventcnt; ++i)
381 ev_feed_event (EV_A_ events [i], type); 723 ev_feed_event (EV_A_ events [i], type);
382} 724}
383 725
726/*****************************************************************************/
727
384inline void 728inline_speed void
385fd_event (EV_P_ int fd, int revents) 729fd_event (EV_P_ int fd, int revents)
386{ 730{
387 ANFD *anfd = anfds + fd; 731 ANFD *anfd = anfds + fd;
388 struct ev_io *w; 732 ev_io *w;
389 733
390 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 734 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
391 { 735 {
392 int ev = w->events & revents; 736 int ev = w->events & revents;
393 737
394 if (ev) 738 if (ev)
395 ev_feed_event (EV_A_ (W)w, ev); 739 ev_feed_event (EV_A_ (W)w, ev);
397} 741}
398 742
399void 743void
400ev_feed_fd_event (EV_P_ int fd, int revents) 744ev_feed_fd_event (EV_P_ int fd, int revents)
401{ 745{
746 if (fd >= 0 && fd < anfdmax)
402 fd_event (EV_A_ fd, revents); 747 fd_event (EV_A_ fd, revents);
403} 748}
404 749
405/*****************************************************************************/ 750inline_size void
406
407static void
408fd_reify (EV_P) 751fd_reify (EV_P)
409{ 752{
410 int i; 753 int i;
411 754
412 for (i = 0; i < fdchangecnt; ++i) 755 for (i = 0; i < fdchangecnt; ++i)
413 { 756 {
414 int fd = fdchanges [i]; 757 int fd = fdchanges [i];
415 ANFD *anfd = anfds + fd; 758 ANFD *anfd = anfds + fd;
416 struct ev_io *w; 759 ev_io *w;
417 760
418 int events = 0; 761 unsigned char events = 0;
419 762
420 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 763 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
421 events |= w->events; 764 events |= (unsigned char)w->events;
422 765
423#if EV_SELECT_IS_WINSOCKET 766#if EV_SELECT_IS_WINSOCKET
424 if (events) 767 if (events)
425 { 768 {
426 unsigned long argp; 769 unsigned long arg;
770 #ifdef EV_FD_TO_WIN32_HANDLE
771 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
772 #else
427 anfd->handle = _get_osfhandle (fd); 773 anfd->handle = _get_osfhandle (fd);
774 #endif
428 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 775 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
429 } 776 }
430#endif 777#endif
431 778
779 {
780 unsigned char o_events = anfd->events;
781 unsigned char o_reify = anfd->reify;
782
432 anfd->reify = 0; 783 anfd->reify = 0;
433
434 method_modify (EV_A_ fd, anfd->events, events);
435 anfd->events = events; 784 anfd->events = events;
785
786 if (o_events != events || o_reify & EV__IOFDSET)
787 backend_modify (EV_A_ fd, o_events, events);
788 }
436 } 789 }
437 790
438 fdchangecnt = 0; 791 fdchangecnt = 0;
439} 792}
440 793
441static void 794inline_size void
442fd_change (EV_P_ int fd) 795fd_change (EV_P_ int fd, int flags)
443{ 796{
444 if (anfds [fd].reify) 797 unsigned char reify = anfds [fd].reify;
445 return;
446
447 anfds [fd].reify = 1; 798 anfds [fd].reify |= flags;
448 799
800 if (expect_true (!reify))
801 {
449 ++fdchangecnt; 802 ++fdchangecnt;
450 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 803 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
451 fdchanges [fdchangecnt - 1] = fd; 804 fdchanges [fdchangecnt - 1] = fd;
805 }
452} 806}
453 807
454static void 808inline_speed void
455fd_kill (EV_P_ int fd) 809fd_kill (EV_P_ int fd)
456{ 810{
457 struct ev_io *w; 811 ev_io *w;
458 812
459 while ((w = (struct ev_io *)anfds [fd].head)) 813 while ((w = (ev_io *)anfds [fd].head))
460 { 814 {
461 ev_io_stop (EV_A_ w); 815 ev_io_stop (EV_A_ w);
462 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 816 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
463 } 817 }
464} 818}
465 819
466static int 820inline_size int
467fd_valid (int fd) 821fd_valid (int fd)
468{ 822{
469#ifdef _WIN32 823#ifdef _WIN32
470 return _get_osfhandle (fd) != -1; 824 return _get_osfhandle (fd) != -1;
471#else 825#else
472 return fcntl (fd, F_GETFD) != -1; 826 return fcntl (fd, F_GETFD) != -1;
473#endif 827#endif
474} 828}
475 829
476/* called on EBADF to verify fds */ 830/* called on EBADF to verify fds */
477static void 831static void noinline
478fd_ebadf (EV_P) 832fd_ebadf (EV_P)
479{ 833{
480 int fd; 834 int fd;
481 835
482 for (fd = 0; fd < anfdmax; ++fd) 836 for (fd = 0; fd < anfdmax; ++fd)
483 if (anfds [fd].events) 837 if (anfds [fd].events)
484 if (!fd_valid (fd) == -1 && errno == EBADF) 838 if (!fd_valid (fd) && errno == EBADF)
485 fd_kill (EV_A_ fd); 839 fd_kill (EV_A_ fd);
486} 840}
487 841
488/* called on ENOMEM in select/poll to kill some fds and retry */ 842/* called on ENOMEM in select/poll to kill some fds and retry */
489static void 843static void noinline
490fd_enomem (EV_P) 844fd_enomem (EV_P)
491{ 845{
492 int fd; 846 int fd;
493 847
494 for (fd = anfdmax; fd--; ) 848 for (fd = anfdmax; fd--; )
497 fd_kill (EV_A_ fd); 851 fd_kill (EV_A_ fd);
498 return; 852 return;
499 } 853 }
500} 854}
501 855
502/* usually called after fork if method needs to re-arm all fds from scratch */ 856/* usually called after fork if backend needs to re-arm all fds from scratch */
503static void 857static void noinline
504fd_rearm_all (EV_P) 858fd_rearm_all (EV_P)
505{ 859{
506 int fd; 860 int fd;
507 861
508 /* this should be highly optimised to not do anything but set a flag */
509 for (fd = 0; fd < anfdmax; ++fd) 862 for (fd = 0; fd < anfdmax; ++fd)
510 if (anfds [fd].events) 863 if (anfds [fd].events)
511 { 864 {
512 anfds [fd].events = 0; 865 anfds [fd].events = 0;
866 anfds [fd].emask = 0;
513 fd_change (EV_A_ fd); 867 fd_change (EV_A_ fd, EV__IOFDSET | 1);
514 } 868 }
515} 869}
516 870
517/*****************************************************************************/ 871/*****************************************************************************/
518 872
519static void 873/*
520upheap (WT *heap, int k) 874 * the heap functions want a real array index. array index 0 uis guaranteed to not
521{ 875 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
522 WT w = heap [k]; 876 * the branching factor of the d-tree.
877 */
523 878
524 while (k && heap [k >> 1]->at > w->at) 879/*
525 { 880 * at the moment we allow libev the luxury of two heaps,
526 heap [k] = heap [k >> 1]; 881 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
527 ((W)heap [k])->active = k + 1; 882 * which is more cache-efficient.
528 k >>= 1; 883 * the difference is about 5% with 50000+ watchers.
529 } 884 */
885#if EV_USE_4HEAP
530 886
531 heap [k] = w; 887#define DHEAP 4
532 ((W)heap [k])->active = k + 1; 888#define HEAP0 (DHEAP - 1) /* index of first element in heap */
889#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
890#define UPHEAP_DONE(p,k) ((p) == (k))
533 891
534} 892/* away from the root */
535 893inline_speed void
536static void
537downheap (WT *heap, int N, int k) 894downheap (ANHE *heap, int N, int k)
538{ 895{
539 WT w = heap [k]; 896 ANHE he = heap [k];
897 ANHE *E = heap + N + HEAP0;
540 898
541 while (k < (N >> 1)) 899 for (;;)
542 { 900 {
543 int j = k << 1; 901 ev_tstamp minat;
902 ANHE *minpos;
903 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
544 904
545 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 905 /* find minimum child */
906 if (expect_true (pos + DHEAP - 1 < E))
546 ++j; 907 {
547 908 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
548 if (w->at <= heap [j]->at) 909 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
910 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
911 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
912 }
913 else if (pos < E)
914 {
915 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
916 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
917 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
918 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
919 }
920 else
549 break; 921 break;
550 922
923 if (ANHE_at (he) <= minat)
924 break;
925
926 heap [k] = *minpos;
927 ev_active (ANHE_w (*minpos)) = k;
928
929 k = minpos - heap;
930 }
931
932 heap [k] = he;
933 ev_active (ANHE_w (he)) = k;
934}
935
936#else /* 4HEAP */
937
938#define HEAP0 1
939#define HPARENT(k) ((k) >> 1)
940#define UPHEAP_DONE(p,k) (!(p))
941
942/* away from the root */
943inline_speed void
944downheap (ANHE *heap, int N, int k)
945{
946 ANHE he = heap [k];
947
948 for (;;)
949 {
950 int c = k << 1;
951
952 if (c > N + HEAP0 - 1)
953 break;
954
955 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
956 ? 1 : 0;
957
958 if (ANHE_at (he) <= ANHE_at (heap [c]))
959 break;
960
551 heap [k] = heap [j]; 961 heap [k] = heap [c];
552 ((W)heap [k])->active = k + 1; 962 ev_active (ANHE_w (heap [k])) = k;
963
553 k = j; 964 k = c;
554 } 965 }
555 966
556 heap [k] = w; 967 heap [k] = he;
557 ((W)heap [k])->active = k + 1; 968 ev_active (ANHE_w (he)) = k;
558} 969}
970#endif
559 971
972/* towards the root */
973inline_speed void
974upheap (ANHE *heap, int k)
975{
976 ANHE he = heap [k];
977
978 for (;;)
979 {
980 int p = HPARENT (k);
981
982 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
983 break;
984
985 heap [k] = heap [p];
986 ev_active (ANHE_w (heap [k])) = k;
987 k = p;
988 }
989
990 heap [k] = he;
991 ev_active (ANHE_w (he)) = k;
992}
993
560inline void 994inline_size void
561adjustheap (WT *heap, int N, int k) 995adjustheap (ANHE *heap, int N, int k)
562{ 996{
997 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
563 upheap (heap, k); 998 upheap (heap, k);
999 else
564 downheap (heap, N, k); 1000 downheap (heap, N, k);
1001}
1002
1003/* rebuild the heap: this function is used only once and executed rarely */
1004inline_size void
1005reheap (ANHE *heap, int N)
1006{
1007 int i;
1008
1009 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1010 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1011 for (i = 0; i < N; ++i)
1012 upheap (heap, i + HEAP0);
565} 1013}
566 1014
567/*****************************************************************************/ 1015/*****************************************************************************/
568 1016
569typedef struct 1017typedef struct
570{ 1018{
571 WL head; 1019 WL head;
572 sig_atomic_t volatile gotsig; 1020 EV_ATOMIC_T gotsig;
573} ANSIG; 1021} ANSIG;
574 1022
575static ANSIG *signals; 1023static ANSIG *signals;
576static int signalmax; 1024static int signalmax;
577 1025
578static int sigpipe [2]; 1026static EV_ATOMIC_T gotsig;
579static sig_atomic_t volatile gotsig;
580static struct ev_io sigev;
581 1027
582static void 1028/*****************************************************************************/
583signals_init (ANSIG *base, int count)
584{
585 while (count--)
586 {
587 base->head = 0;
588 base->gotsig = 0;
589 1029
590 ++base;
591 }
592}
593
594static void
595sighandler (int signum)
596{
597#if _WIN32
598 signal (signum, sighandler);
599#endif
600
601 signals [signum - 1].gotsig = 1;
602
603 if (!gotsig)
604 {
605 int old_errno = errno;
606 gotsig = 1;
607 write (sigpipe [1], &signum, 1);
608 errno = old_errno;
609 }
610}
611
612void
613ev_feed_signal_event (EV_P_ int signum)
614{
615 WL w;
616
617#if EV_MULTIPLICITY
618 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
619#endif
620
621 --signum;
622
623 if (signum < 0 || signum >= signalmax)
624 return;
625
626 signals [signum].gotsig = 0;
627
628 for (w = signals [signum].head; w; w = w->next)
629 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
630}
631
632static void
633sigcb (EV_P_ struct ev_io *iow, int revents)
634{
635 int signum;
636
637 read (sigpipe [0], &revents, 1);
638 gotsig = 0;
639
640 for (signum = signalmax; signum--; )
641 if (signals [signum].gotsig)
642 ev_feed_signal_event (EV_A_ signum + 1);
643}
644
645inline void 1030inline_speed void
646fd_intern (int fd) 1031fd_intern (int fd)
647{ 1032{
648#ifdef _WIN32 1033#ifdef _WIN32
649 int arg = 1; 1034 unsigned long arg = 1;
650 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1035 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
651#else 1036#else
652 fcntl (fd, F_SETFD, FD_CLOEXEC); 1037 fcntl (fd, F_SETFD, FD_CLOEXEC);
653 fcntl (fd, F_SETFL, O_NONBLOCK); 1038 fcntl (fd, F_SETFL, O_NONBLOCK);
654#endif 1039#endif
655} 1040}
656 1041
1042static void noinline
1043evpipe_init (EV_P)
1044{
1045 if (!ev_is_active (&pipeev))
1046 {
1047#if EV_USE_EVENTFD
1048 if ((evfd = eventfd (0, 0)) >= 0)
1049 {
1050 evpipe [0] = -1;
1051 fd_intern (evfd);
1052 ev_io_set (&pipeev, evfd, EV_READ);
1053 }
1054 else
1055#endif
1056 {
1057 while (pipe (evpipe))
1058 ev_syserr ("(libev) error creating signal/async pipe");
1059
1060 fd_intern (evpipe [0]);
1061 fd_intern (evpipe [1]);
1062 ev_io_set (&pipeev, evpipe [0], EV_READ);
1063 }
1064
1065 ev_io_start (EV_A_ &pipeev);
1066 ev_unref (EV_A); /* watcher should not keep loop alive */
1067 }
1068}
1069
1070inline_size void
1071evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1072{
1073 if (!*flag)
1074 {
1075 int old_errno = errno; /* save errno because write might clobber it */
1076
1077 *flag = 1;
1078
1079#if EV_USE_EVENTFD
1080 if (evfd >= 0)
1081 {
1082 uint64_t counter = 1;
1083 write (evfd, &counter, sizeof (uint64_t));
1084 }
1085 else
1086#endif
1087 write (evpipe [1], &old_errno, 1);
1088
1089 errno = old_errno;
1090 }
1091}
1092
657static void 1093static void
658siginit (EV_P) 1094pipecb (EV_P_ ev_io *iow, int revents)
659{ 1095{
660 fd_intern (sigpipe [0]); 1096#if EV_USE_EVENTFD
661 fd_intern (sigpipe [1]); 1097 if (evfd >= 0)
1098 {
1099 uint64_t counter;
1100 read (evfd, &counter, sizeof (uint64_t));
1101 }
1102 else
1103#endif
1104 {
1105 char dummy;
1106 read (evpipe [0], &dummy, 1);
1107 }
662 1108
663 ev_io_set (&sigev, sigpipe [0], EV_READ); 1109 if (gotsig && ev_is_default_loop (EV_A))
664 ev_io_start (EV_A_ &sigev); 1110 {
665 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1111 int signum;
1112 gotsig = 0;
1113
1114 for (signum = signalmax; signum--; )
1115 if (signals [signum].gotsig)
1116 ev_feed_signal_event (EV_A_ signum + 1);
1117 }
1118
1119#if EV_ASYNC_ENABLE
1120 if (gotasync)
1121 {
1122 int i;
1123 gotasync = 0;
1124
1125 for (i = asynccnt; i--; )
1126 if (asyncs [i]->sent)
1127 {
1128 asyncs [i]->sent = 0;
1129 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1130 }
1131 }
1132#endif
666} 1133}
667 1134
668/*****************************************************************************/ 1135/*****************************************************************************/
669 1136
670static struct ev_child *childs [PID_HASHSIZE]; 1137static void
1138ev_sighandler (int signum)
1139{
1140#if EV_MULTIPLICITY
1141 struct ev_loop *loop = &default_loop_struct;
1142#endif
1143
1144#if _WIN32
1145 signal (signum, ev_sighandler);
1146#endif
1147
1148 signals [signum - 1].gotsig = 1;
1149 evpipe_write (EV_A_ &gotsig);
1150}
1151
1152void noinline
1153ev_feed_signal_event (EV_P_ int signum)
1154{
1155 WL w;
1156
1157#if EV_MULTIPLICITY
1158 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1159#endif
1160
1161 --signum;
1162
1163 if (signum < 0 || signum >= signalmax)
1164 return;
1165
1166 signals [signum].gotsig = 0;
1167
1168 for (w = signals [signum].head; w; w = w->next)
1169 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1170}
1171
1172/*****************************************************************************/
1173
1174static WL childs [EV_PID_HASHSIZE];
671 1175
672#ifndef _WIN32 1176#ifndef _WIN32
673 1177
674static struct ev_signal childev; 1178static ev_signal childev;
1179
1180#ifndef WIFCONTINUED
1181# define WIFCONTINUED(status) 0
1182#endif
1183
1184inline_speed void
1185child_reap (EV_P_ int chain, int pid, int status)
1186{
1187 ev_child *w;
1188 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1189
1190 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1191 {
1192 if ((w->pid == pid || !w->pid)
1193 && (!traced || (w->flags & 1)))
1194 {
1195 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1196 w->rpid = pid;
1197 w->rstatus = status;
1198 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1199 }
1200 }
1201}
675 1202
676#ifndef WCONTINUED 1203#ifndef WCONTINUED
677# define WCONTINUED 0 1204# define WCONTINUED 0
678#endif 1205#endif
679 1206
680static void 1207static void
681child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
682{
683 struct ev_child *w;
684
685 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
686 if (w->pid == pid || !w->pid)
687 {
688 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
689 w->rpid = pid;
690 w->rstatus = status;
691 ev_feed_event (EV_A_ (W)w, EV_CHILD);
692 }
693}
694
695static void
696childcb (EV_P_ struct ev_signal *sw, int revents) 1208childcb (EV_P_ ev_signal *sw, int revents)
697{ 1209{
698 int pid, status; 1210 int pid, status;
699 1211
1212 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
700 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1213 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
701 { 1214 if (!WCONTINUED
1215 || errno != EINVAL
1216 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1217 return;
1218
702 /* make sure we are called again until all childs have been reaped */ 1219 /* make sure we are called again until all children have been reaped */
1220 /* we need to do it this way so that the callback gets called before we continue */
703 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1221 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
704 1222
705 child_reap (EV_A_ sw, pid, pid, status); 1223 child_reap (EV_A_ pid, pid, status);
1224 if (EV_PID_HASHSIZE > 1)
706 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1225 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
707 }
708} 1226}
709 1227
710#endif 1228#endif
711 1229
712/*****************************************************************************/ 1230/*****************************************************************************/
713 1231
1232#if EV_USE_PORT
1233# include "ev_port.c"
1234#endif
714#if EV_USE_KQUEUE 1235#if EV_USE_KQUEUE
715# include "ev_kqueue.c" 1236# include "ev_kqueue.c"
716#endif 1237#endif
717#if EV_USE_EPOLL 1238#if EV_USE_EPOLL
718# include "ev_epoll.c" 1239# include "ev_epoll.c"
735{ 1256{
736 return EV_VERSION_MINOR; 1257 return EV_VERSION_MINOR;
737} 1258}
738 1259
739/* return true if we are running with elevated privileges and should ignore env variables */ 1260/* return true if we are running with elevated privileges and should ignore env variables */
740static int 1261int inline_size
741enable_secure (void) 1262enable_secure (void)
742{ 1263{
743#ifdef _WIN32 1264#ifdef _WIN32
744 return 0; 1265 return 0;
745#else 1266#else
746 return getuid () != geteuid () 1267 return getuid () != geteuid ()
747 || getgid () != getegid (); 1268 || getgid () != getegid ();
748#endif 1269#endif
749} 1270}
750 1271
751int 1272unsigned int
752ev_method (EV_P) 1273ev_supported_backends (void)
753{ 1274{
754 return method; 1275 unsigned int flags = 0;
755}
756 1276
757static void 1277 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
758loop_init (EV_P_ int methods) 1278 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1279 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1280 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1281 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1282
1283 return flags;
1284}
1285
1286unsigned int
1287ev_recommended_backends (void)
759{ 1288{
760 if (!method) 1289 unsigned int flags = ev_supported_backends ();
1290
1291#ifndef __NetBSD__
1292 /* kqueue is borked on everything but netbsd apparently */
1293 /* it usually doesn't work correctly on anything but sockets and pipes */
1294 flags &= ~EVBACKEND_KQUEUE;
1295#endif
1296#ifdef __APPLE__
1297 /* only select works correctly on that "unix-certified" platform */
1298 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1299 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1300#endif
1301
1302 return flags;
1303}
1304
1305unsigned int
1306ev_embeddable_backends (void)
1307{
1308 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1309
1310 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1311 /* please fix it and tell me how to detect the fix */
1312 flags &= ~EVBACKEND_EPOLL;
1313
1314 return flags;
1315}
1316
1317unsigned int
1318ev_backend (EV_P)
1319{
1320 return backend;
1321}
1322
1323unsigned int
1324ev_loop_count (EV_P)
1325{
1326 return loop_count;
1327}
1328
1329void
1330ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1331{
1332 io_blocktime = interval;
1333}
1334
1335void
1336ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1337{
1338 timeout_blocktime = interval;
1339}
1340
1341static void noinline
1342loop_init (EV_P_ unsigned int flags)
1343{
1344 if (!backend)
761 { 1345 {
1346#if EV_USE_REALTIME
1347 if (!have_realtime)
1348 {
1349 struct timespec ts;
1350
1351 if (!clock_gettime (CLOCK_REALTIME, &ts))
1352 have_realtime = 1;
1353 }
1354#endif
1355
762#if EV_USE_MONOTONIC 1356#if EV_USE_MONOTONIC
1357 if (!have_monotonic)
763 { 1358 {
764 struct timespec ts; 1359 struct timespec ts;
1360
765 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1361 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
766 have_monotonic = 1; 1362 have_monotonic = 1;
767 } 1363 }
768#endif 1364#endif
769 1365
770 ev_rt_now = ev_time (); 1366 ev_rt_now = ev_time ();
771 mn_now = get_clock (); 1367 mn_now = get_clock ();
772 now_floor = mn_now; 1368 now_floor = mn_now;
773 rtmn_diff = ev_rt_now - mn_now; 1369 rtmn_diff = ev_rt_now - mn_now;
774 1370
775 if (methods == EVMETHOD_AUTO) 1371 io_blocktime = 0.;
776 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1372 timeout_blocktime = 0.;
1373 backend = 0;
1374 backend_fd = -1;
1375 gotasync = 0;
1376#if EV_USE_INOTIFY
1377 fs_fd = -2;
1378#endif
1379
1380 /* pid check not overridable via env */
1381#ifndef _WIN32
1382 if (flags & EVFLAG_FORKCHECK)
1383 curpid = getpid ();
1384#endif
1385
1386 if (!(flags & EVFLAG_NOENV)
1387 && !enable_secure ()
1388 && getenv ("LIBEV_FLAGS"))
777 methods = atoi (getenv ("LIBEV_METHODS")); 1389 flags = atoi (getenv ("LIBEV_FLAGS"));
778 else
779 methods = EVMETHOD_ANY;
780 1390
781 method = 0; 1391 if (!(flags & 0x0000ffffU))
1392 flags |= ev_recommended_backends ();
1393
1394#if EV_USE_PORT
1395 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1396#endif
782#if EV_USE_KQUEUE 1397#if EV_USE_KQUEUE
783 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1398 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
784#endif 1399#endif
785#if EV_USE_EPOLL 1400#if EV_USE_EPOLL
786 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1401 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
787#endif 1402#endif
788#if EV_USE_POLL 1403#if EV_USE_POLL
789 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1404 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
790#endif 1405#endif
791#if EV_USE_SELECT 1406#if EV_USE_SELECT
792 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1407 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
793#endif 1408#endif
794 1409
795 ev_init (&sigev, sigcb); 1410 ev_init (&pipeev, pipecb);
796 ev_set_priority (&sigev, EV_MAXPRI); 1411 ev_set_priority (&pipeev, EV_MAXPRI);
797 } 1412 }
798} 1413}
799 1414
800void 1415static void noinline
801loop_destroy (EV_P) 1416loop_destroy (EV_P)
802{ 1417{
803 int i; 1418 int i;
804 1419
1420 if (ev_is_active (&pipeev))
1421 {
1422 ev_ref (EV_A); /* signal watcher */
1423 ev_io_stop (EV_A_ &pipeev);
1424
1425#if EV_USE_EVENTFD
1426 if (evfd >= 0)
1427 close (evfd);
1428#endif
1429
1430 if (evpipe [0] >= 0)
1431 {
1432 close (evpipe [0]);
1433 close (evpipe [1]);
1434 }
1435 }
1436
1437#if EV_USE_INOTIFY
1438 if (fs_fd >= 0)
1439 close (fs_fd);
1440#endif
1441
1442 if (backend_fd >= 0)
1443 close (backend_fd);
1444
1445#if EV_USE_PORT
1446 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1447#endif
805#if EV_USE_KQUEUE 1448#if EV_USE_KQUEUE
806 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1449 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
807#endif 1450#endif
808#if EV_USE_EPOLL 1451#if EV_USE_EPOLL
809 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1452 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
810#endif 1453#endif
811#if EV_USE_POLL 1454#if EV_USE_POLL
812 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1455 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
813#endif 1456#endif
814#if EV_USE_SELECT 1457#if EV_USE_SELECT
815 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1458 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
816#endif 1459#endif
817 1460
818 for (i = NUMPRI; i--; ) 1461 for (i = NUMPRI; i--; )
1462 {
819 array_free (pending, [i]); 1463 array_free (pending, [i]);
1464#if EV_IDLE_ENABLE
1465 array_free (idle, [i]);
1466#endif
1467 }
1468
1469 ev_free (anfds); anfdmax = 0;
820 1470
821 /* have to use the microsoft-never-gets-it-right macro */ 1471 /* have to use the microsoft-never-gets-it-right macro */
1472 array_free (rfeed, EMPTY);
822 array_free (fdchange, EMPTY); 1473 array_free (fdchange, EMPTY);
823 array_free (timer, EMPTY); 1474 array_free (timer, EMPTY);
824#if EV_PERIODICS 1475#if EV_PERIODIC_ENABLE
825 array_free (periodic, EMPTY); 1476 array_free (periodic, EMPTY);
826#endif 1477#endif
1478#if EV_FORK_ENABLE
827 array_free (idle, EMPTY); 1479 array_free (fork, EMPTY);
1480#endif
828 array_free (prepare, EMPTY); 1481 array_free (prepare, EMPTY);
829 array_free (check, EMPTY); 1482 array_free (check, EMPTY);
1483#if EV_ASYNC_ENABLE
1484 array_free (async, EMPTY);
1485#endif
830 1486
831 method = 0; 1487 backend = 0;
832} 1488}
833 1489
834static void 1490#if EV_USE_INOTIFY
1491inline_size void infy_fork (EV_P);
1492#endif
1493
1494inline_size void
835loop_fork (EV_P) 1495loop_fork (EV_P)
836{ 1496{
1497#if EV_USE_PORT
1498 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1499#endif
1500#if EV_USE_KQUEUE
1501 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1502#endif
837#if EV_USE_EPOLL 1503#if EV_USE_EPOLL
838 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1504 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
839#endif 1505#endif
840#if EV_USE_KQUEUE 1506#if EV_USE_INOTIFY
841 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1507 infy_fork (EV_A);
842#endif 1508#endif
843 1509
844 if (ev_is_active (&sigev)) 1510 if (ev_is_active (&pipeev))
845 { 1511 {
846 /* default loop */ 1512 /* this "locks" the handlers against writing to the pipe */
1513 /* while we modify the fd vars */
1514 gotsig = 1;
1515#if EV_ASYNC_ENABLE
1516 gotasync = 1;
1517#endif
847 1518
848 ev_ref (EV_A); 1519 ev_ref (EV_A);
849 ev_io_stop (EV_A_ &sigev); 1520 ev_io_stop (EV_A_ &pipeev);
1521
1522#if EV_USE_EVENTFD
1523 if (evfd >= 0)
1524 close (evfd);
1525#endif
1526
1527 if (evpipe [0] >= 0)
1528 {
850 close (sigpipe [0]); 1529 close (evpipe [0]);
851 close (sigpipe [1]); 1530 close (evpipe [1]);
1531 }
852 1532
853 while (pipe (sigpipe))
854 syserr ("(libev) error creating pipe");
855
856 siginit (EV_A); 1533 evpipe_init (EV_A);
1534 /* now iterate over everything, in case we missed something */
1535 pipecb (EV_A_ &pipeev, EV_READ);
857 } 1536 }
858 1537
859 postfork = 0; 1538 postfork = 0;
860} 1539}
1540
1541#if EV_MULTIPLICITY
1542
1543struct ev_loop *
1544ev_loop_new (unsigned int flags)
1545{
1546 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1547
1548 memset (loop, 0, sizeof (struct ev_loop));
1549
1550 loop_init (EV_A_ flags);
1551
1552 if (ev_backend (EV_A))
1553 return loop;
1554
1555 return 0;
1556}
1557
1558void
1559ev_loop_destroy (EV_P)
1560{
1561 loop_destroy (EV_A);
1562 ev_free (loop);
1563}
1564
1565void
1566ev_loop_fork (EV_P)
1567{
1568 postfork = 1; /* must be in line with ev_default_fork */
1569}
1570
1571#if EV_VERIFY
1572static void noinline
1573verify_watcher (EV_P_ W w)
1574{
1575 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1576
1577 if (w->pending)
1578 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1579}
1580
1581static void noinline
1582verify_heap (EV_P_ ANHE *heap, int N)
1583{
1584 int i;
1585
1586 for (i = HEAP0; i < N + HEAP0; ++i)
1587 {
1588 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1589 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1590 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1591
1592 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1593 }
1594}
1595
1596static void noinline
1597array_verify (EV_P_ W *ws, int cnt)
1598{
1599 while (cnt--)
1600 {
1601 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1602 verify_watcher (EV_A_ ws [cnt]);
1603 }
1604}
1605#endif
1606
1607void
1608ev_loop_verify (EV_P)
1609{
1610#if EV_VERIFY
1611 int i;
1612 WL w;
1613
1614 assert (activecnt >= -1);
1615
1616 assert (fdchangemax >= fdchangecnt);
1617 for (i = 0; i < fdchangecnt; ++i)
1618 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1619
1620 assert (anfdmax >= 0);
1621 for (i = 0; i < anfdmax; ++i)
1622 for (w = anfds [i].head; w; w = w->next)
1623 {
1624 verify_watcher (EV_A_ (W)w);
1625 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1626 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1627 }
1628
1629 assert (timermax >= timercnt);
1630 verify_heap (EV_A_ timers, timercnt);
1631
1632#if EV_PERIODIC_ENABLE
1633 assert (periodicmax >= periodiccnt);
1634 verify_heap (EV_A_ periodics, periodiccnt);
1635#endif
1636
1637 for (i = NUMPRI; i--; )
1638 {
1639 assert (pendingmax [i] >= pendingcnt [i]);
1640#if EV_IDLE_ENABLE
1641 assert (idleall >= 0);
1642 assert (idlemax [i] >= idlecnt [i]);
1643 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1644#endif
1645 }
1646
1647#if EV_FORK_ENABLE
1648 assert (forkmax >= forkcnt);
1649 array_verify (EV_A_ (W *)forks, forkcnt);
1650#endif
1651
1652#if EV_ASYNC_ENABLE
1653 assert (asyncmax >= asynccnt);
1654 array_verify (EV_A_ (W *)asyncs, asynccnt);
1655#endif
1656
1657 assert (preparemax >= preparecnt);
1658 array_verify (EV_A_ (W *)prepares, preparecnt);
1659
1660 assert (checkmax >= checkcnt);
1661 array_verify (EV_A_ (W *)checks, checkcnt);
1662
1663# if 0
1664 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1665 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1666# endif
1667#endif
1668}
1669
1670#endif /* multiplicity */
861 1671
862#if EV_MULTIPLICITY 1672#if EV_MULTIPLICITY
863struct ev_loop * 1673struct ev_loop *
864ev_loop_new (int methods) 1674ev_default_loop_init (unsigned int flags)
865{
866 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
867
868 memset (loop, 0, sizeof (struct ev_loop));
869
870 loop_init (EV_A_ methods);
871
872 if (ev_method (EV_A))
873 return loop;
874
875 return 0;
876}
877
878void
879ev_loop_destroy (EV_P)
880{
881 loop_destroy (EV_A);
882 ev_free (loop);
883}
884
885void
886ev_loop_fork (EV_P)
887{
888 postfork = 1;
889}
890
891#endif
892
893#if EV_MULTIPLICITY
894struct ev_loop *
895#else 1675#else
896int 1676int
1677ev_default_loop (unsigned int flags)
897#endif 1678#endif
898ev_default_loop (int methods)
899{ 1679{
900 if (sigpipe [0] == sigpipe [1])
901 if (pipe (sigpipe))
902 return 0;
903
904 if (!default_loop) 1680 if (!ev_default_loop_ptr)
905 { 1681 {
906#if EV_MULTIPLICITY 1682#if EV_MULTIPLICITY
907 struct ev_loop *loop = default_loop = &default_loop_struct; 1683 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
908#else 1684#else
909 default_loop = 1; 1685 ev_default_loop_ptr = 1;
910#endif 1686#endif
911 1687
912 loop_init (EV_A_ methods); 1688 loop_init (EV_A_ flags);
913 1689
914 if (ev_method (EV_A)) 1690 if (ev_backend (EV_A))
915 { 1691 {
916 siginit (EV_A);
917
918#ifndef _WIN32 1692#ifndef _WIN32
919 ev_signal_init (&childev, childcb, SIGCHLD); 1693 ev_signal_init (&childev, childcb, SIGCHLD);
920 ev_set_priority (&childev, EV_MAXPRI); 1694 ev_set_priority (&childev, EV_MAXPRI);
921 ev_signal_start (EV_A_ &childev); 1695 ev_signal_start (EV_A_ &childev);
922 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1696 ev_unref (EV_A); /* child watcher should not keep loop alive */
923#endif 1697#endif
924 } 1698 }
925 else 1699 else
926 default_loop = 0; 1700 ev_default_loop_ptr = 0;
927 } 1701 }
928 1702
929 return default_loop; 1703 return ev_default_loop_ptr;
930} 1704}
931 1705
932void 1706void
933ev_default_destroy (void) 1707ev_default_destroy (void)
934{ 1708{
935#if EV_MULTIPLICITY 1709#if EV_MULTIPLICITY
936 struct ev_loop *loop = default_loop; 1710 struct ev_loop *loop = ev_default_loop_ptr;
937#endif 1711#endif
1712
1713 ev_default_loop_ptr = 0;
938 1714
939#ifndef _WIN32 1715#ifndef _WIN32
940 ev_ref (EV_A); /* child watcher */ 1716 ev_ref (EV_A); /* child watcher */
941 ev_signal_stop (EV_A_ &childev); 1717 ev_signal_stop (EV_A_ &childev);
942#endif 1718#endif
943 1719
944 ev_ref (EV_A); /* signal watcher */
945 ev_io_stop (EV_A_ &sigev);
946
947 close (sigpipe [0]); sigpipe [0] = 0;
948 close (sigpipe [1]); sigpipe [1] = 0;
949
950 loop_destroy (EV_A); 1720 loop_destroy (EV_A);
951} 1721}
952 1722
953void 1723void
954ev_default_fork (void) 1724ev_default_fork (void)
955{ 1725{
956#if EV_MULTIPLICITY 1726#if EV_MULTIPLICITY
957 struct ev_loop *loop = default_loop; 1727 struct ev_loop *loop = ev_default_loop_ptr;
958#endif 1728#endif
959 1729
960 if (method) 1730 postfork = 1; /* must be in line with ev_loop_fork */
961 postfork = 1;
962} 1731}
963 1732
964/*****************************************************************************/ 1733/*****************************************************************************/
965 1734
966static int 1735void
967any_pending (EV_P) 1736ev_invoke (EV_P_ void *w, int revents)
968{ 1737{
969 int pri; 1738 EV_CB_INVOKE ((W)w, revents);
970
971 for (pri = NUMPRI; pri--; )
972 if (pendingcnt [pri])
973 return 1;
974
975 return 0;
976} 1739}
977 1740
978static void 1741inline_speed void
979call_pending (EV_P) 1742call_pending (EV_P)
980{ 1743{
981 int pri; 1744 int pri;
982 1745
983 for (pri = NUMPRI; pri--; ) 1746 for (pri = NUMPRI; pri--; )
984 while (pendingcnt [pri]) 1747 while (pendingcnt [pri])
985 { 1748 {
986 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1749 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
987 1750
988 if (p->w) 1751 if (expect_true (p->w))
989 { 1752 {
1753 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1754
990 p->w->pending = 0; 1755 p->w->pending = 0;
991 EV_CB_INVOKE (p->w, p->events); 1756 EV_CB_INVOKE (p->w, p->events);
1757 EV_FREQUENT_CHECK;
992 } 1758 }
993 } 1759 }
994} 1760}
995 1761
996static void 1762#if EV_IDLE_ENABLE
1763inline_size void
1764idle_reify (EV_P)
1765{
1766 if (expect_false (idleall))
1767 {
1768 int pri;
1769
1770 for (pri = NUMPRI; pri--; )
1771 {
1772 if (pendingcnt [pri])
1773 break;
1774
1775 if (idlecnt [pri])
1776 {
1777 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1778 break;
1779 }
1780 }
1781 }
1782}
1783#endif
1784
1785inline_size void
997timers_reify (EV_P) 1786timers_reify (EV_P)
998{ 1787{
1788 EV_FREQUENT_CHECK;
1789
999 while (timercnt && ((WT)timers [0])->at <= mn_now) 1790 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1000 { 1791 {
1001 struct ev_timer *w = timers [0]; 1792 do
1002
1003 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1004
1005 /* first reschedule or stop timer */
1006 if (w->repeat)
1007 { 1793 {
1794 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1795
1796 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1797
1798 /* first reschedule or stop timer */
1799 if (w->repeat)
1800 {
1801 ev_at (w) += w->repeat;
1802 if (ev_at (w) < mn_now)
1803 ev_at (w) = mn_now;
1804
1008 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1805 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1009 1806
1010 ((WT)w)->at += w->repeat; 1807 ANHE_at_cache (timers [HEAP0]);
1011 if (((WT)w)->at < mn_now)
1012 ((WT)w)->at = mn_now;
1013
1014 downheap ((WT *)timers, timercnt, 0); 1808 downheap (timers, timercnt, HEAP0);
1809 }
1810 else
1811 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1812
1813 EV_FREQUENT_CHECK;
1814 feed_reverse (EV_A_ (W)w);
1015 } 1815 }
1016 else 1816 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1017 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1018 1817
1019 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1818 feed_reverse_done (EV_A_ EV_TIMEOUT);
1020 } 1819 }
1021} 1820}
1022 1821
1023#if EV_PERIODICS 1822#if EV_PERIODIC_ENABLE
1024static void 1823inline_size void
1025periodics_reify (EV_P) 1824periodics_reify (EV_P)
1026{ 1825{
1826 EV_FREQUENT_CHECK;
1827
1027 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1828 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1028 { 1829 {
1029 struct ev_periodic *w = periodics [0]; 1830 int feed_count = 0;
1030 1831
1832 do
1833 {
1834 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1835
1031 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1836 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1032 1837
1033 /* first reschedule or stop timer */ 1838 /* first reschedule or stop timer */
1839 if (w->reschedule_cb)
1840 {
1841 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1842
1843 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1844
1845 ANHE_at_cache (periodics [HEAP0]);
1846 downheap (periodics, periodiccnt, HEAP0);
1847 }
1848 else if (w->interval)
1849 {
1850 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1851 /* if next trigger time is not sufficiently in the future, put it there */
1852 /* this might happen because of floating point inexactness */
1853 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1854 {
1855 ev_at (w) += w->interval;
1856
1857 /* if interval is unreasonably low we might still have a time in the past */
1858 /* so correct this. this will make the periodic very inexact, but the user */
1859 /* has effectively asked to get triggered more often than possible */
1860 if (ev_at (w) < ev_rt_now)
1861 ev_at (w) = ev_rt_now;
1862 }
1863
1864 ANHE_at_cache (periodics [HEAP0]);
1865 downheap (periodics, periodiccnt, HEAP0);
1866 }
1867 else
1868 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1869
1870 EV_FREQUENT_CHECK;
1871 feed_reverse (EV_A_ (W)w);
1872 }
1873 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1874
1875 feed_reverse_done (EV_A_ EV_PERIODIC);
1876 }
1877}
1878
1879static void noinline
1880periodics_reschedule (EV_P)
1881{
1882 int i;
1883
1884 /* adjust periodics after time jump */
1885 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1886 {
1887 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1888
1034 if (w->reschedule_cb) 1889 if (w->reschedule_cb)
1890 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1891 else if (w->interval)
1892 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1893
1894 ANHE_at_cache (periodics [i]);
1895 }
1896
1897 reheap (periodics, periodiccnt);
1898}
1899#endif
1900
1901static void noinline
1902timers_reschedule (EV_P_ ev_tstamp adjust)
1903{
1904 int i;
1905
1906 for (i = 0; i < timercnt; ++i)
1907 {
1908 ANHE *he = timers + i + HEAP0;
1909 ANHE_w (*he)->at += adjust;
1910 ANHE_at_cache (*he);
1911 }
1912}
1913
1914inline_speed void
1915time_update (EV_P_ ev_tstamp max_block)
1916{
1917 int i;
1918
1919#if EV_USE_MONOTONIC
1920 if (expect_true (have_monotonic))
1921 {
1922 ev_tstamp odiff = rtmn_diff;
1923
1924 mn_now = get_clock ();
1925
1926 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1927 /* interpolate in the meantime */
1928 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1035 { 1929 {
1036 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1930 ev_rt_now = rtmn_diff + mn_now;
1037 1931 return;
1038 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1039 downheap ((WT *)periodics, periodiccnt, 0);
1040 } 1932 }
1041 else if (w->interval)
1042 {
1043 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1044 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1045 downheap ((WT *)periodics, periodiccnt, 0);
1046 }
1047 else
1048 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1049 1933
1050 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1051 }
1052}
1053
1054static void
1055periodics_reschedule (EV_P)
1056{
1057 int i;
1058
1059 /* adjust periodics after time jump */
1060 for (i = 0; i < periodiccnt; ++i)
1061 {
1062 struct ev_periodic *w = periodics [i];
1063
1064 if (w->reschedule_cb)
1065 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1066 else if (w->interval)
1067 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1068 }
1069
1070 /* now rebuild the heap */
1071 for (i = periodiccnt >> 1; i--; )
1072 downheap ((WT *)periodics, periodiccnt, i);
1073}
1074#endif
1075
1076inline int
1077time_update_monotonic (EV_P)
1078{
1079 mn_now = get_clock ();
1080
1081 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1082 {
1083 ev_rt_now = rtmn_diff + mn_now;
1084 return 0;
1085 }
1086 else
1087 {
1088 now_floor = mn_now; 1934 now_floor = mn_now;
1089 ev_rt_now = ev_time (); 1935 ev_rt_now = ev_time ();
1090 return 1;
1091 }
1092}
1093 1936
1094static void 1937 /* loop a few times, before making important decisions.
1095time_update (EV_P) 1938 * on the choice of "4": one iteration isn't enough,
1096{ 1939 * in case we get preempted during the calls to
1097 int i; 1940 * ev_time and get_clock. a second call is almost guaranteed
1098 1941 * to succeed in that case, though. and looping a few more times
1099#if EV_USE_MONOTONIC 1942 * doesn't hurt either as we only do this on time-jumps or
1100 if (expect_true (have_monotonic)) 1943 * in the unlikely event of having been preempted here.
1101 { 1944 */
1102 if (time_update_monotonic (EV_A)) 1945 for (i = 4; --i; )
1103 { 1946 {
1104 ev_tstamp odiff = rtmn_diff;
1105
1106 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1107 {
1108 rtmn_diff = ev_rt_now - mn_now; 1947 rtmn_diff = ev_rt_now - mn_now;
1109 1948
1110 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1949 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1111 return; /* all is well */ 1950 return; /* all is well */
1112 1951
1113 ev_rt_now = ev_time (); 1952 ev_rt_now = ev_time ();
1114 mn_now = get_clock (); 1953 mn_now = get_clock ();
1115 now_floor = mn_now; 1954 now_floor = mn_now;
1116 } 1955 }
1117 1956
1957 /* no timer adjustment, as the monotonic clock doesn't jump */
1958 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1118# if EV_PERIODICS 1959# if EV_PERIODIC_ENABLE
1960 periodics_reschedule (EV_A);
1961# endif
1962 }
1963 else
1964#endif
1965 {
1966 ev_rt_now = ev_time ();
1967
1968 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1969 {
1970 /* adjust timers. this is easy, as the offset is the same for all of them */
1971 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1972#if EV_PERIODIC_ENABLE
1119 periodics_reschedule (EV_A); 1973 periodics_reschedule (EV_A);
1120# endif 1974#endif
1121 /* no timer adjustment, as the monotonic clock doesn't jump */
1122 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1123 } 1975 }
1124 }
1125 else
1126#endif
1127 {
1128 ev_rt_now = ev_time ();
1129
1130 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1131 {
1132#if EV_PERIODICS
1133 periodics_reschedule (EV_A);
1134#endif
1135
1136 /* adjust timers. this is easy, as the offset is the same for all */
1137 for (i = 0; i < timercnt; ++i)
1138 ((WT)timers [i])->at += ev_rt_now - mn_now;
1139 }
1140 1976
1141 mn_now = ev_rt_now; 1977 mn_now = ev_rt_now;
1142 } 1978 }
1143} 1979}
1144 1980
1145void
1146ev_ref (EV_P)
1147{
1148 ++activecnt;
1149}
1150
1151void
1152ev_unref (EV_P)
1153{
1154 --activecnt;
1155}
1156
1157static int loop_done; 1981static int loop_done;
1158 1982
1159void 1983void
1160ev_loop (EV_P_ int flags) 1984ev_loop (EV_P_ int flags)
1161{ 1985{
1162 double block; 1986 loop_done = EVUNLOOP_CANCEL;
1163 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1987
1988 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1164 1989
1165 do 1990 do
1166 { 1991 {
1992#if EV_VERIFY >= 2
1993 ev_loop_verify (EV_A);
1994#endif
1995
1996#ifndef _WIN32
1997 if (expect_false (curpid)) /* penalise the forking check even more */
1998 if (expect_false (getpid () != curpid))
1999 {
2000 curpid = getpid ();
2001 postfork = 1;
2002 }
2003#endif
2004
2005#if EV_FORK_ENABLE
2006 /* we might have forked, so queue fork handlers */
2007 if (expect_false (postfork))
2008 if (forkcnt)
2009 {
2010 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2011 call_pending (EV_A);
2012 }
2013#endif
2014
1167 /* queue check watchers (and execute them) */ 2015 /* queue prepare watchers (and execute them) */
1168 if (expect_false (preparecnt)) 2016 if (expect_false (preparecnt))
1169 { 2017 {
1170 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2018 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1171 call_pending (EV_A); 2019 call_pending (EV_A);
1172 } 2020 }
1177 2025
1178 /* update fd-related kernel structures */ 2026 /* update fd-related kernel structures */
1179 fd_reify (EV_A); 2027 fd_reify (EV_A);
1180 2028
1181 /* calculate blocking time */ 2029 /* calculate blocking time */
2030 {
2031 ev_tstamp waittime = 0.;
2032 ev_tstamp sleeptime = 0.;
1182 2033
1183 /* we only need this for !monotonic clock or timers, but as we basically 2034 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1184 always have timers, we just calculate it always */
1185#if EV_USE_MONOTONIC
1186 if (expect_true (have_monotonic))
1187 time_update_monotonic (EV_A);
1188 else
1189#endif
1190 { 2035 {
1191 ev_rt_now = ev_time (); 2036 /* update time to cancel out callback processing overhead */
1192 mn_now = ev_rt_now; 2037 time_update (EV_A_ 1e100);
1193 }
1194 2038
1195 if (flags & EVLOOP_NONBLOCK || idlecnt)
1196 block = 0.;
1197 else
1198 {
1199 block = MAX_BLOCKTIME; 2039 waittime = MAX_BLOCKTIME;
1200 2040
1201 if (timercnt) 2041 if (timercnt)
1202 { 2042 {
1203 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2043 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1204 if (block > to) block = to; 2044 if (waittime > to) waittime = to;
1205 } 2045 }
1206 2046
1207#if EV_PERIODICS 2047#if EV_PERIODIC_ENABLE
1208 if (periodiccnt) 2048 if (periodiccnt)
1209 { 2049 {
1210 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2050 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1211 if (block > to) block = to; 2051 if (waittime > to) waittime = to;
1212 } 2052 }
1213#endif 2053#endif
1214 2054
1215 if (block < 0.) block = 0.; 2055 if (expect_false (waittime < timeout_blocktime))
2056 waittime = timeout_blocktime;
2057
2058 sleeptime = waittime - backend_fudge;
2059
2060 if (expect_true (sleeptime > io_blocktime))
2061 sleeptime = io_blocktime;
2062
2063 if (sleeptime)
2064 {
2065 ev_sleep (sleeptime);
2066 waittime -= sleeptime;
2067 }
1216 } 2068 }
1217 2069
1218 method_poll (EV_A_ block); 2070 ++loop_count;
2071 backend_poll (EV_A_ waittime);
1219 2072
1220 /* update ev_rt_now, do magic */ 2073 /* update ev_rt_now, do magic */
1221 time_update (EV_A); 2074 time_update (EV_A_ waittime + sleeptime);
2075 }
1222 2076
1223 /* queue pending timers and reschedule them */ 2077 /* queue pending timers and reschedule them */
1224 timers_reify (EV_A); /* relative timers called last */ 2078 timers_reify (EV_A); /* relative timers called last */
1225#if EV_PERIODICS 2079#if EV_PERIODIC_ENABLE
1226 periodics_reify (EV_A); /* absolute timers called first */ 2080 periodics_reify (EV_A); /* absolute timers called first */
1227#endif 2081#endif
1228 2082
2083#if EV_IDLE_ENABLE
1229 /* queue idle watchers unless io or timers are pending */ 2084 /* queue idle watchers unless other events are pending */
1230 if (idlecnt && !any_pending (EV_A)) 2085 idle_reify (EV_A);
1231 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2086#endif
1232 2087
1233 /* queue check watchers, to be executed first */ 2088 /* queue check watchers, to be executed first */
1234 if (checkcnt) 2089 if (expect_false (checkcnt))
1235 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2090 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1236 2091
1237 call_pending (EV_A); 2092 call_pending (EV_A);
1238 } 2093 }
1239 while (activecnt && !loop_done); 2094 while (expect_true (
2095 activecnt
2096 && !loop_done
2097 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2098 ));
1240 2099
1241 if (loop_done != 2) 2100 if (loop_done == EVUNLOOP_ONE)
1242 loop_done = 0; 2101 loop_done = EVUNLOOP_CANCEL;
1243} 2102}
1244 2103
1245void 2104void
1246ev_unloop (EV_P_ int how) 2105ev_unloop (EV_P_ int how)
1247{ 2106{
1248 loop_done = how; 2107 loop_done = how;
1249} 2108}
1250 2109
2110void
2111ev_ref (EV_P)
2112{
2113 ++activecnt;
2114}
2115
2116void
2117ev_unref (EV_P)
2118{
2119 --activecnt;
2120}
2121
2122void
2123ev_now_update (EV_P)
2124{
2125 time_update (EV_A_ 1e100);
2126}
2127
2128void
2129ev_suspend (EV_P)
2130{
2131 ev_now_update (EV_A);
2132}
2133
2134void
2135ev_resume (EV_P)
2136{
2137 ev_tstamp mn_prev = mn_now;
2138
2139 ev_now_update (EV_A);
2140 timers_reschedule (EV_A_ mn_now - mn_prev);
2141#if EV_PERIODIC_ENABLE
2142 periodics_reschedule (EV_A);
2143#endif
2144}
2145
1251/*****************************************************************************/ 2146/*****************************************************************************/
1252 2147
1253inline void 2148inline_size void
1254wlist_add (WL *head, WL elem) 2149wlist_add (WL *head, WL elem)
1255{ 2150{
1256 elem->next = *head; 2151 elem->next = *head;
1257 *head = elem; 2152 *head = elem;
1258} 2153}
1259 2154
1260inline void 2155inline_size void
1261wlist_del (WL *head, WL elem) 2156wlist_del (WL *head, WL elem)
1262{ 2157{
1263 while (*head) 2158 while (*head)
1264 { 2159 {
1265 if (*head == elem) 2160 if (*head == elem)
1270 2165
1271 head = &(*head)->next; 2166 head = &(*head)->next;
1272 } 2167 }
1273} 2168}
1274 2169
1275inline void 2170inline_speed void
1276ev_clear_pending (EV_P_ W w) 2171clear_pending (EV_P_ W w)
1277{ 2172{
1278 if (w->pending) 2173 if (w->pending)
1279 { 2174 {
1280 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2175 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1281 w->pending = 0; 2176 w->pending = 0;
1282 } 2177 }
1283} 2178}
1284 2179
2180int
2181ev_clear_pending (EV_P_ void *w)
2182{
2183 W w_ = (W)w;
2184 int pending = w_->pending;
2185
2186 if (expect_true (pending))
2187 {
2188 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2189 w_->pending = 0;
2190 p->w = 0;
2191 return p->events;
2192 }
2193 else
2194 return 0;
2195}
2196
1285inline void 2197inline_size void
2198pri_adjust (EV_P_ W w)
2199{
2200 int pri = w->priority;
2201 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2202 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2203 w->priority = pri;
2204}
2205
2206inline_speed void
1286ev_start (EV_P_ W w, int active) 2207ev_start (EV_P_ W w, int active)
1287{ 2208{
1288 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2209 pri_adjust (EV_A_ w);
1289 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1290
1291 w->active = active; 2210 w->active = active;
1292 ev_ref (EV_A); 2211 ev_ref (EV_A);
1293} 2212}
1294 2213
1295inline void 2214inline_size void
1296ev_stop (EV_P_ W w) 2215ev_stop (EV_P_ W w)
1297{ 2216{
1298 ev_unref (EV_A); 2217 ev_unref (EV_A);
1299 w->active = 0; 2218 w->active = 0;
1300} 2219}
1301 2220
1302/*****************************************************************************/ 2221/*****************************************************************************/
1303 2222
1304void 2223void noinline
1305ev_io_start (EV_P_ struct ev_io *w) 2224ev_io_start (EV_P_ ev_io *w)
1306{ 2225{
1307 int fd = w->fd; 2226 int fd = w->fd;
1308 2227
1309 if (ev_is_active (w)) 2228 if (expect_false (ev_is_active (w)))
1310 return; 2229 return;
1311 2230
1312 assert (("ev_io_start called with negative fd", fd >= 0)); 2231 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2232 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2233
2234 EV_FREQUENT_CHECK;
1313 2235
1314 ev_start (EV_A_ (W)w, 1); 2236 ev_start (EV_A_ (W)w, 1);
1315 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2237 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1316 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2238 wlist_add (&anfds[fd].head, (WL)w);
1317 2239
1318 fd_change (EV_A_ fd); 2240 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1319} 2241 w->events &= ~EV__IOFDSET;
1320 2242
1321void 2243 EV_FREQUENT_CHECK;
2244}
2245
2246void noinline
1322ev_io_stop (EV_P_ struct ev_io *w) 2247ev_io_stop (EV_P_ ev_io *w)
1323{ 2248{
1324 ev_clear_pending (EV_A_ (W)w); 2249 clear_pending (EV_A_ (W)w);
1325 if (!ev_is_active (w)) 2250 if (expect_false (!ev_is_active (w)))
1326 return; 2251 return;
1327 2252
1328 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2253 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1329 2254
2255 EV_FREQUENT_CHECK;
2256
1330 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2257 wlist_del (&anfds[w->fd].head, (WL)w);
1331 ev_stop (EV_A_ (W)w); 2258 ev_stop (EV_A_ (W)w);
1332 2259
1333 fd_change (EV_A_ w->fd); 2260 fd_change (EV_A_ w->fd, 1);
1334}
1335 2261
1336void 2262 EV_FREQUENT_CHECK;
2263}
2264
2265void noinline
1337ev_timer_start (EV_P_ struct ev_timer *w) 2266ev_timer_start (EV_P_ ev_timer *w)
1338{ 2267{
1339 if (ev_is_active (w)) 2268 if (expect_false (ev_is_active (w)))
1340 return; 2269 return;
1341 2270
1342 ((WT)w)->at += mn_now; 2271 ev_at (w) += mn_now;
1343 2272
1344 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2273 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1345 2274
2275 EV_FREQUENT_CHECK;
2276
2277 ++timercnt;
1346 ev_start (EV_A_ (W)w, ++timercnt); 2278 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1347 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 2279 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1348 timers [timercnt - 1] = w; 2280 ANHE_w (timers [ev_active (w)]) = (WT)w;
1349 upheap ((WT *)timers, timercnt - 1); 2281 ANHE_at_cache (timers [ev_active (w)]);
2282 upheap (timers, ev_active (w));
1350 2283
2284 EV_FREQUENT_CHECK;
2285
1351 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2286 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1352} 2287}
1353 2288
1354void 2289void noinline
1355ev_timer_stop (EV_P_ struct ev_timer *w) 2290ev_timer_stop (EV_P_ ev_timer *w)
1356{ 2291{
1357 ev_clear_pending (EV_A_ (W)w); 2292 clear_pending (EV_A_ (W)w);
1358 if (!ev_is_active (w)) 2293 if (expect_false (!ev_is_active (w)))
1359 return; 2294 return;
1360 2295
2296 EV_FREQUENT_CHECK;
2297
2298 {
2299 int active = ev_active (w);
2300
1361 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2301 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1362 2302
1363 if (((W)w)->active < timercnt--) 2303 --timercnt;
2304
2305 if (expect_true (active < timercnt + HEAP0))
1364 { 2306 {
1365 timers [((W)w)->active - 1] = timers [timercnt]; 2307 timers [active] = timers [timercnt + HEAP0];
1366 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2308 adjustheap (timers, timercnt, active);
1367 } 2309 }
2310 }
1368 2311
1369 ((WT)w)->at -= mn_now; 2312 EV_FREQUENT_CHECK;
2313
2314 ev_at (w) -= mn_now;
1370 2315
1371 ev_stop (EV_A_ (W)w); 2316 ev_stop (EV_A_ (W)w);
1372} 2317}
1373 2318
1374void 2319void noinline
1375ev_timer_again (EV_P_ struct ev_timer *w) 2320ev_timer_again (EV_P_ ev_timer *w)
1376{ 2321{
2322 EV_FREQUENT_CHECK;
2323
1377 if (ev_is_active (w)) 2324 if (ev_is_active (w))
1378 { 2325 {
1379 if (w->repeat) 2326 if (w->repeat)
1380 { 2327 {
1381 ((WT)w)->at = mn_now + w->repeat; 2328 ev_at (w) = mn_now + w->repeat;
2329 ANHE_at_cache (timers [ev_active (w)]);
1382 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2330 adjustheap (timers, timercnt, ev_active (w));
1383 } 2331 }
1384 else 2332 else
1385 ev_timer_stop (EV_A_ w); 2333 ev_timer_stop (EV_A_ w);
1386 } 2334 }
1387 else if (w->repeat) 2335 else if (w->repeat)
2336 {
2337 ev_at (w) = w->repeat;
1388 ev_timer_start (EV_A_ w); 2338 ev_timer_start (EV_A_ w);
1389} 2339 }
1390 2340
2341 EV_FREQUENT_CHECK;
2342}
2343
1391#if EV_PERIODICS 2344#if EV_PERIODIC_ENABLE
1392void 2345void noinline
1393ev_periodic_start (EV_P_ struct ev_periodic *w) 2346ev_periodic_start (EV_P_ ev_periodic *w)
1394{ 2347{
1395 if (ev_is_active (w)) 2348 if (expect_false (ev_is_active (w)))
1396 return; 2349 return;
1397 2350
1398 if (w->reschedule_cb) 2351 if (w->reschedule_cb)
1399 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2352 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1400 else if (w->interval) 2353 else if (w->interval)
1401 { 2354 {
1402 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2355 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1403 /* this formula differs from the one in periodic_reify because we do not always round up */ 2356 /* this formula differs from the one in periodic_reify because we do not always round up */
1404 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2357 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1405 } 2358 }
2359 else
2360 ev_at (w) = w->offset;
1406 2361
2362 EV_FREQUENT_CHECK;
2363
2364 ++periodiccnt;
1407 ev_start (EV_A_ (W)w, ++periodiccnt); 2365 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1408 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 2366 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1409 periodics [periodiccnt - 1] = w; 2367 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1410 upheap ((WT *)periodics, periodiccnt - 1); 2368 ANHE_at_cache (periodics [ev_active (w)]);
2369 upheap (periodics, ev_active (w));
1411 2370
2371 EV_FREQUENT_CHECK;
2372
1412 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2373 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1413} 2374}
1414 2375
1415void 2376void noinline
1416ev_periodic_stop (EV_P_ struct ev_periodic *w) 2377ev_periodic_stop (EV_P_ ev_periodic *w)
1417{ 2378{
1418 ev_clear_pending (EV_A_ (W)w); 2379 clear_pending (EV_A_ (W)w);
1419 if (!ev_is_active (w)) 2380 if (expect_false (!ev_is_active (w)))
1420 return; 2381 return;
1421 2382
2383 EV_FREQUENT_CHECK;
2384
2385 {
2386 int active = ev_active (w);
2387
1422 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2388 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1423 2389
1424 if (((W)w)->active < periodiccnt--) 2390 --periodiccnt;
2391
2392 if (expect_true (active < periodiccnt + HEAP0))
1425 { 2393 {
1426 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2394 periodics [active] = periodics [periodiccnt + HEAP0];
1427 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2395 adjustheap (periodics, periodiccnt, active);
1428 } 2396 }
2397 }
2398
2399 EV_FREQUENT_CHECK;
1429 2400
1430 ev_stop (EV_A_ (W)w); 2401 ev_stop (EV_A_ (W)w);
1431} 2402}
1432 2403
1433void 2404void noinline
1434ev_periodic_again (EV_P_ struct ev_periodic *w) 2405ev_periodic_again (EV_P_ ev_periodic *w)
1435{ 2406{
1436 /* TODO: use adjustheap and recalculation */ 2407 /* TODO: use adjustheap and recalculation */
1437 ev_periodic_stop (EV_A_ w); 2408 ev_periodic_stop (EV_A_ w);
1438 ev_periodic_start (EV_A_ w); 2409 ev_periodic_start (EV_A_ w);
1439} 2410}
1440#endif 2411#endif
1441 2412
1442void
1443ev_idle_start (EV_P_ struct ev_idle *w)
1444{
1445 if (ev_is_active (w))
1446 return;
1447
1448 ev_start (EV_A_ (W)w, ++idlecnt);
1449 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1450 idles [idlecnt - 1] = w;
1451}
1452
1453void
1454ev_idle_stop (EV_P_ struct ev_idle *w)
1455{
1456 ev_clear_pending (EV_A_ (W)w);
1457 if (!ev_is_active (w))
1458 return;
1459
1460 idles [((W)w)->active - 1] = idles [--idlecnt];
1461 ev_stop (EV_A_ (W)w);
1462}
1463
1464void
1465ev_prepare_start (EV_P_ struct ev_prepare *w)
1466{
1467 if (ev_is_active (w))
1468 return;
1469
1470 ev_start (EV_A_ (W)w, ++preparecnt);
1471 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1472 prepares [preparecnt - 1] = w;
1473}
1474
1475void
1476ev_prepare_stop (EV_P_ struct ev_prepare *w)
1477{
1478 ev_clear_pending (EV_A_ (W)w);
1479 if (!ev_is_active (w))
1480 return;
1481
1482 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1483 ev_stop (EV_A_ (W)w);
1484}
1485
1486void
1487ev_check_start (EV_P_ struct ev_check *w)
1488{
1489 if (ev_is_active (w))
1490 return;
1491
1492 ev_start (EV_A_ (W)w, ++checkcnt);
1493 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1494 checks [checkcnt - 1] = w;
1495}
1496
1497void
1498ev_check_stop (EV_P_ struct ev_check *w)
1499{
1500 ev_clear_pending (EV_A_ (W)w);
1501 if (!ev_is_active (w))
1502 return;
1503
1504 checks [((W)w)->active - 1] = checks [--checkcnt];
1505 ev_stop (EV_A_ (W)w);
1506}
1507
1508#ifndef SA_RESTART 2413#ifndef SA_RESTART
1509# define SA_RESTART 0 2414# define SA_RESTART 0
1510#endif 2415#endif
1511 2416
1512void 2417void noinline
1513ev_signal_start (EV_P_ struct ev_signal *w) 2418ev_signal_start (EV_P_ ev_signal *w)
1514{ 2419{
1515#if EV_MULTIPLICITY 2420#if EV_MULTIPLICITY
1516 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2421 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1517#endif 2422#endif
1518 if (ev_is_active (w)) 2423 if (expect_false (ev_is_active (w)))
1519 return; 2424 return;
1520 2425
1521 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2426 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2427
2428 evpipe_init (EV_A);
2429
2430 EV_FREQUENT_CHECK;
2431
2432 {
2433#ifndef _WIN32
2434 sigset_t full, prev;
2435 sigfillset (&full);
2436 sigprocmask (SIG_SETMASK, &full, &prev);
2437#endif
2438
2439 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2440
2441#ifndef _WIN32
2442 sigprocmask (SIG_SETMASK, &prev, 0);
2443#endif
2444 }
1522 2445
1523 ev_start (EV_A_ (W)w, 1); 2446 ev_start (EV_A_ (W)w, 1);
1524 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1525 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2447 wlist_add (&signals [w->signum - 1].head, (WL)w);
1526 2448
1527 if (!((WL)w)->next) 2449 if (!((WL)w)->next)
1528 { 2450 {
1529#if _WIN32 2451#if _WIN32
1530 signal (w->signum, sighandler); 2452 signal (w->signum, ev_sighandler);
1531#else 2453#else
1532 struct sigaction sa; 2454 struct sigaction sa;
1533 sa.sa_handler = sighandler; 2455 sa.sa_handler = ev_sighandler;
1534 sigfillset (&sa.sa_mask); 2456 sigfillset (&sa.sa_mask);
1535 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2457 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1536 sigaction (w->signum, &sa, 0); 2458 sigaction (w->signum, &sa, 0);
1537#endif 2459#endif
1538 } 2460 }
1539}
1540 2461
1541void 2462 EV_FREQUENT_CHECK;
2463}
2464
2465void noinline
1542ev_signal_stop (EV_P_ struct ev_signal *w) 2466ev_signal_stop (EV_P_ ev_signal *w)
1543{ 2467{
1544 ev_clear_pending (EV_A_ (W)w); 2468 clear_pending (EV_A_ (W)w);
1545 if (!ev_is_active (w)) 2469 if (expect_false (!ev_is_active (w)))
1546 return; 2470 return;
1547 2471
2472 EV_FREQUENT_CHECK;
2473
1548 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2474 wlist_del (&signals [w->signum - 1].head, (WL)w);
1549 ev_stop (EV_A_ (W)w); 2475 ev_stop (EV_A_ (W)w);
1550 2476
1551 if (!signals [w->signum - 1].head) 2477 if (!signals [w->signum - 1].head)
1552 signal (w->signum, SIG_DFL); 2478 signal (w->signum, SIG_DFL);
1553}
1554 2479
2480 EV_FREQUENT_CHECK;
2481}
2482
1555void 2483void
1556ev_child_start (EV_P_ struct ev_child *w) 2484ev_child_start (EV_P_ ev_child *w)
1557{ 2485{
1558#if EV_MULTIPLICITY 2486#if EV_MULTIPLICITY
1559 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2487 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1560#endif 2488#endif
1561 if (ev_is_active (w)) 2489 if (expect_false (ev_is_active (w)))
1562 return; 2490 return;
1563 2491
2492 EV_FREQUENT_CHECK;
2493
1564 ev_start (EV_A_ (W)w, 1); 2494 ev_start (EV_A_ (W)w, 1);
1565 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2495 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1566}
1567 2496
2497 EV_FREQUENT_CHECK;
2498}
2499
1568void 2500void
1569ev_child_stop (EV_P_ struct ev_child *w) 2501ev_child_stop (EV_P_ ev_child *w)
1570{ 2502{
1571 ev_clear_pending (EV_A_ (W)w); 2503 clear_pending (EV_A_ (W)w);
1572 if (!ev_is_active (w)) 2504 if (expect_false (!ev_is_active (w)))
1573 return; 2505 return;
1574 2506
2507 EV_FREQUENT_CHECK;
2508
1575 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2509 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1576 ev_stop (EV_A_ (W)w); 2510 ev_stop (EV_A_ (W)w);
2511
2512 EV_FREQUENT_CHECK;
1577} 2513}
2514
2515#if EV_STAT_ENABLE
2516
2517# ifdef _WIN32
2518# undef lstat
2519# define lstat(a,b) _stati64 (a,b)
2520# endif
2521
2522#define DEF_STAT_INTERVAL 5.0074891
2523#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2524#define MIN_STAT_INTERVAL 0.1074891
2525
2526static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2527
2528#if EV_USE_INOTIFY
2529# define EV_INOTIFY_BUFSIZE 8192
2530
2531static void noinline
2532infy_add (EV_P_ ev_stat *w)
2533{
2534 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2535
2536 if (w->wd < 0)
2537 {
2538 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2539 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2540
2541 /* monitor some parent directory for speedup hints */
2542 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2543 /* but an efficiency issue only */
2544 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2545 {
2546 char path [4096];
2547 strcpy (path, w->path);
2548
2549 do
2550 {
2551 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2552 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2553
2554 char *pend = strrchr (path, '/');
2555
2556 if (!pend || pend == path)
2557 break;
2558
2559 *pend = 0;
2560 w->wd = inotify_add_watch (fs_fd, path, mask);
2561 }
2562 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2563 }
2564 }
2565
2566 if (w->wd >= 0)
2567 {
2568 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2569
2570 /* now local changes will be tracked by inotify, but remote changes won't */
2571 /* unless the filesystem it known to be local, we therefore still poll */
2572 /* also do poll on <2.6.25, but with normal frequency */
2573 struct statfs sfs;
2574
2575 if (fs_2625 && !statfs (w->path, &sfs))
2576 if (sfs.f_type == 0x1373 /* devfs */
2577 || sfs.f_type == 0xEF53 /* ext2/3 */
2578 || sfs.f_type == 0x3153464a /* jfs */
2579 || sfs.f_type == 0x52654973 /* reiser3 */
2580 || sfs.f_type == 0x01021994 /* tempfs */
2581 || sfs.f_type == 0x58465342 /* xfs */)
2582 return;
2583
2584 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2585 ev_timer_again (EV_A_ &w->timer);
2586 }
2587}
2588
2589static void noinline
2590infy_del (EV_P_ ev_stat *w)
2591{
2592 int slot;
2593 int wd = w->wd;
2594
2595 if (wd < 0)
2596 return;
2597
2598 w->wd = -2;
2599 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2600 wlist_del (&fs_hash [slot].head, (WL)w);
2601
2602 /* remove this watcher, if others are watching it, they will rearm */
2603 inotify_rm_watch (fs_fd, wd);
2604}
2605
2606static void noinline
2607infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2608{
2609 if (slot < 0)
2610 /* overflow, need to check for all hash slots */
2611 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2612 infy_wd (EV_A_ slot, wd, ev);
2613 else
2614 {
2615 WL w_;
2616
2617 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2618 {
2619 ev_stat *w = (ev_stat *)w_;
2620 w_ = w_->next; /* lets us remove this watcher and all before it */
2621
2622 if (w->wd == wd || wd == -1)
2623 {
2624 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2625 {
2626 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2627 w->wd = -1;
2628 infy_add (EV_A_ w); /* re-add, no matter what */
2629 }
2630
2631 stat_timer_cb (EV_A_ &w->timer, 0);
2632 }
2633 }
2634 }
2635}
2636
2637static void
2638infy_cb (EV_P_ ev_io *w, int revents)
2639{
2640 char buf [EV_INOTIFY_BUFSIZE];
2641 struct inotify_event *ev = (struct inotify_event *)buf;
2642 int ofs;
2643 int len = read (fs_fd, buf, sizeof (buf));
2644
2645 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2646 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2647}
2648
2649inline_size void
2650check_2625 (EV_P)
2651{
2652 /* kernels < 2.6.25 are borked
2653 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2654 */
2655 struct utsname buf;
2656 int major, minor, micro;
2657
2658 if (uname (&buf))
2659 return;
2660
2661 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2662 return;
2663
2664 if (major < 2
2665 || (major == 2 && minor < 6)
2666 || (major == 2 && minor == 6 && micro < 25))
2667 return;
2668
2669 fs_2625 = 1;
2670}
2671
2672inline_size void
2673infy_init (EV_P)
2674{
2675 if (fs_fd != -2)
2676 return;
2677
2678 fs_fd = -1;
2679
2680 check_2625 (EV_A);
2681
2682 fs_fd = inotify_init ();
2683
2684 if (fs_fd >= 0)
2685 {
2686 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2687 ev_set_priority (&fs_w, EV_MAXPRI);
2688 ev_io_start (EV_A_ &fs_w);
2689 }
2690}
2691
2692inline_size void
2693infy_fork (EV_P)
2694{
2695 int slot;
2696
2697 if (fs_fd < 0)
2698 return;
2699
2700 close (fs_fd);
2701 fs_fd = inotify_init ();
2702
2703 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2704 {
2705 WL w_ = fs_hash [slot].head;
2706 fs_hash [slot].head = 0;
2707
2708 while (w_)
2709 {
2710 ev_stat *w = (ev_stat *)w_;
2711 w_ = w_->next; /* lets us add this watcher */
2712
2713 w->wd = -1;
2714
2715 if (fs_fd >= 0)
2716 infy_add (EV_A_ w); /* re-add, no matter what */
2717 else
2718 ev_timer_again (EV_A_ &w->timer);
2719 }
2720 }
2721}
2722
2723#endif
2724
2725#ifdef _WIN32
2726# define EV_LSTAT(p,b) _stati64 (p, b)
2727#else
2728# define EV_LSTAT(p,b) lstat (p, b)
2729#endif
2730
2731void
2732ev_stat_stat (EV_P_ ev_stat *w)
2733{
2734 if (lstat (w->path, &w->attr) < 0)
2735 w->attr.st_nlink = 0;
2736 else if (!w->attr.st_nlink)
2737 w->attr.st_nlink = 1;
2738}
2739
2740static void noinline
2741stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2742{
2743 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2744
2745 /* we copy this here each the time so that */
2746 /* prev has the old value when the callback gets invoked */
2747 w->prev = w->attr;
2748 ev_stat_stat (EV_A_ w);
2749
2750 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2751 if (
2752 w->prev.st_dev != w->attr.st_dev
2753 || w->prev.st_ino != w->attr.st_ino
2754 || w->prev.st_mode != w->attr.st_mode
2755 || w->prev.st_nlink != w->attr.st_nlink
2756 || w->prev.st_uid != w->attr.st_uid
2757 || w->prev.st_gid != w->attr.st_gid
2758 || w->prev.st_rdev != w->attr.st_rdev
2759 || w->prev.st_size != w->attr.st_size
2760 || w->prev.st_atime != w->attr.st_atime
2761 || w->prev.st_mtime != w->attr.st_mtime
2762 || w->prev.st_ctime != w->attr.st_ctime
2763 ) {
2764 #if EV_USE_INOTIFY
2765 if (fs_fd >= 0)
2766 {
2767 infy_del (EV_A_ w);
2768 infy_add (EV_A_ w);
2769 ev_stat_stat (EV_A_ w); /* avoid race... */
2770 }
2771 #endif
2772
2773 ev_feed_event (EV_A_ w, EV_STAT);
2774 }
2775}
2776
2777void
2778ev_stat_start (EV_P_ ev_stat *w)
2779{
2780 if (expect_false (ev_is_active (w)))
2781 return;
2782
2783 ev_stat_stat (EV_A_ w);
2784
2785 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2786 w->interval = MIN_STAT_INTERVAL;
2787
2788 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2789 ev_set_priority (&w->timer, ev_priority (w));
2790
2791#if EV_USE_INOTIFY
2792 infy_init (EV_A);
2793
2794 if (fs_fd >= 0)
2795 infy_add (EV_A_ w);
2796 else
2797#endif
2798 ev_timer_again (EV_A_ &w->timer);
2799
2800 ev_start (EV_A_ (W)w, 1);
2801
2802 EV_FREQUENT_CHECK;
2803}
2804
2805void
2806ev_stat_stop (EV_P_ ev_stat *w)
2807{
2808 clear_pending (EV_A_ (W)w);
2809 if (expect_false (!ev_is_active (w)))
2810 return;
2811
2812 EV_FREQUENT_CHECK;
2813
2814#if EV_USE_INOTIFY
2815 infy_del (EV_A_ w);
2816#endif
2817 ev_timer_stop (EV_A_ &w->timer);
2818
2819 ev_stop (EV_A_ (W)w);
2820
2821 EV_FREQUENT_CHECK;
2822}
2823#endif
2824
2825#if EV_IDLE_ENABLE
2826void
2827ev_idle_start (EV_P_ ev_idle *w)
2828{
2829 if (expect_false (ev_is_active (w)))
2830 return;
2831
2832 pri_adjust (EV_A_ (W)w);
2833
2834 EV_FREQUENT_CHECK;
2835
2836 {
2837 int active = ++idlecnt [ABSPRI (w)];
2838
2839 ++idleall;
2840 ev_start (EV_A_ (W)w, active);
2841
2842 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2843 idles [ABSPRI (w)][active - 1] = w;
2844 }
2845
2846 EV_FREQUENT_CHECK;
2847}
2848
2849void
2850ev_idle_stop (EV_P_ ev_idle *w)
2851{
2852 clear_pending (EV_A_ (W)w);
2853 if (expect_false (!ev_is_active (w)))
2854 return;
2855
2856 EV_FREQUENT_CHECK;
2857
2858 {
2859 int active = ev_active (w);
2860
2861 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2862 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2863
2864 ev_stop (EV_A_ (W)w);
2865 --idleall;
2866 }
2867
2868 EV_FREQUENT_CHECK;
2869}
2870#endif
2871
2872void
2873ev_prepare_start (EV_P_ ev_prepare *w)
2874{
2875 if (expect_false (ev_is_active (w)))
2876 return;
2877
2878 EV_FREQUENT_CHECK;
2879
2880 ev_start (EV_A_ (W)w, ++preparecnt);
2881 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2882 prepares [preparecnt - 1] = w;
2883
2884 EV_FREQUENT_CHECK;
2885}
2886
2887void
2888ev_prepare_stop (EV_P_ ev_prepare *w)
2889{
2890 clear_pending (EV_A_ (W)w);
2891 if (expect_false (!ev_is_active (w)))
2892 return;
2893
2894 EV_FREQUENT_CHECK;
2895
2896 {
2897 int active = ev_active (w);
2898
2899 prepares [active - 1] = prepares [--preparecnt];
2900 ev_active (prepares [active - 1]) = active;
2901 }
2902
2903 ev_stop (EV_A_ (W)w);
2904
2905 EV_FREQUENT_CHECK;
2906}
2907
2908void
2909ev_check_start (EV_P_ ev_check *w)
2910{
2911 if (expect_false (ev_is_active (w)))
2912 return;
2913
2914 EV_FREQUENT_CHECK;
2915
2916 ev_start (EV_A_ (W)w, ++checkcnt);
2917 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2918 checks [checkcnt - 1] = w;
2919
2920 EV_FREQUENT_CHECK;
2921}
2922
2923void
2924ev_check_stop (EV_P_ ev_check *w)
2925{
2926 clear_pending (EV_A_ (W)w);
2927 if (expect_false (!ev_is_active (w)))
2928 return;
2929
2930 EV_FREQUENT_CHECK;
2931
2932 {
2933 int active = ev_active (w);
2934
2935 checks [active - 1] = checks [--checkcnt];
2936 ev_active (checks [active - 1]) = active;
2937 }
2938
2939 ev_stop (EV_A_ (W)w);
2940
2941 EV_FREQUENT_CHECK;
2942}
2943
2944#if EV_EMBED_ENABLE
2945void noinline
2946ev_embed_sweep (EV_P_ ev_embed *w)
2947{
2948 ev_loop (w->other, EVLOOP_NONBLOCK);
2949}
2950
2951static void
2952embed_io_cb (EV_P_ ev_io *io, int revents)
2953{
2954 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2955
2956 if (ev_cb (w))
2957 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2958 else
2959 ev_loop (w->other, EVLOOP_NONBLOCK);
2960}
2961
2962static void
2963embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2964{
2965 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2966
2967 {
2968 struct ev_loop *loop = w->other;
2969
2970 while (fdchangecnt)
2971 {
2972 fd_reify (EV_A);
2973 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2974 }
2975 }
2976}
2977
2978static void
2979embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2980{
2981 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2982
2983 ev_embed_stop (EV_A_ w);
2984
2985 {
2986 struct ev_loop *loop = w->other;
2987
2988 ev_loop_fork (EV_A);
2989 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2990 }
2991
2992 ev_embed_start (EV_A_ w);
2993}
2994
2995#if 0
2996static void
2997embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2998{
2999 ev_idle_stop (EV_A_ idle);
3000}
3001#endif
3002
3003void
3004ev_embed_start (EV_P_ ev_embed *w)
3005{
3006 if (expect_false (ev_is_active (w)))
3007 return;
3008
3009 {
3010 struct ev_loop *loop = w->other;
3011 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3012 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3013 }
3014
3015 EV_FREQUENT_CHECK;
3016
3017 ev_set_priority (&w->io, ev_priority (w));
3018 ev_io_start (EV_A_ &w->io);
3019
3020 ev_prepare_init (&w->prepare, embed_prepare_cb);
3021 ev_set_priority (&w->prepare, EV_MINPRI);
3022 ev_prepare_start (EV_A_ &w->prepare);
3023
3024 ev_fork_init (&w->fork, embed_fork_cb);
3025 ev_fork_start (EV_A_ &w->fork);
3026
3027 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3028
3029 ev_start (EV_A_ (W)w, 1);
3030
3031 EV_FREQUENT_CHECK;
3032}
3033
3034void
3035ev_embed_stop (EV_P_ ev_embed *w)
3036{
3037 clear_pending (EV_A_ (W)w);
3038 if (expect_false (!ev_is_active (w)))
3039 return;
3040
3041 EV_FREQUENT_CHECK;
3042
3043 ev_io_stop (EV_A_ &w->io);
3044 ev_prepare_stop (EV_A_ &w->prepare);
3045 ev_fork_stop (EV_A_ &w->fork);
3046
3047 EV_FREQUENT_CHECK;
3048}
3049#endif
3050
3051#if EV_FORK_ENABLE
3052void
3053ev_fork_start (EV_P_ ev_fork *w)
3054{
3055 if (expect_false (ev_is_active (w)))
3056 return;
3057
3058 EV_FREQUENT_CHECK;
3059
3060 ev_start (EV_A_ (W)w, ++forkcnt);
3061 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3062 forks [forkcnt - 1] = w;
3063
3064 EV_FREQUENT_CHECK;
3065}
3066
3067void
3068ev_fork_stop (EV_P_ ev_fork *w)
3069{
3070 clear_pending (EV_A_ (W)w);
3071 if (expect_false (!ev_is_active (w)))
3072 return;
3073
3074 EV_FREQUENT_CHECK;
3075
3076 {
3077 int active = ev_active (w);
3078
3079 forks [active - 1] = forks [--forkcnt];
3080 ev_active (forks [active - 1]) = active;
3081 }
3082
3083 ev_stop (EV_A_ (W)w);
3084
3085 EV_FREQUENT_CHECK;
3086}
3087#endif
3088
3089#if EV_ASYNC_ENABLE
3090void
3091ev_async_start (EV_P_ ev_async *w)
3092{
3093 if (expect_false (ev_is_active (w)))
3094 return;
3095
3096 evpipe_init (EV_A);
3097
3098 EV_FREQUENT_CHECK;
3099
3100 ev_start (EV_A_ (W)w, ++asynccnt);
3101 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3102 asyncs [asynccnt - 1] = w;
3103
3104 EV_FREQUENT_CHECK;
3105}
3106
3107void
3108ev_async_stop (EV_P_ ev_async *w)
3109{
3110 clear_pending (EV_A_ (W)w);
3111 if (expect_false (!ev_is_active (w)))
3112 return;
3113
3114 EV_FREQUENT_CHECK;
3115
3116 {
3117 int active = ev_active (w);
3118
3119 asyncs [active - 1] = asyncs [--asynccnt];
3120 ev_active (asyncs [active - 1]) = active;
3121 }
3122
3123 ev_stop (EV_A_ (W)w);
3124
3125 EV_FREQUENT_CHECK;
3126}
3127
3128void
3129ev_async_send (EV_P_ ev_async *w)
3130{
3131 w->sent = 1;
3132 evpipe_write (EV_A_ &gotasync);
3133}
3134#endif
1578 3135
1579/*****************************************************************************/ 3136/*****************************************************************************/
1580 3137
1581struct ev_once 3138struct ev_once
1582{ 3139{
1583 struct ev_io io; 3140 ev_io io;
1584 struct ev_timer to; 3141 ev_timer to;
1585 void (*cb)(int revents, void *arg); 3142 void (*cb)(int revents, void *arg);
1586 void *arg; 3143 void *arg;
1587}; 3144};
1588 3145
1589static void 3146static void
1590once_cb (EV_P_ struct ev_once *once, int revents) 3147once_cb (EV_P_ struct ev_once *once, int revents)
1591{ 3148{
1592 void (*cb)(int revents, void *arg) = once->cb; 3149 void (*cb)(int revents, void *arg) = once->cb;
1593 void *arg = once->arg; 3150 void *arg = once->arg;
1594 3151
1595 ev_io_stop (EV_A_ &once->io); 3152 ev_io_stop (EV_A_ &once->io);
1596 ev_timer_stop (EV_A_ &once->to); 3153 ev_timer_stop (EV_A_ &once->to);
1597 ev_free (once); 3154 ev_free (once);
1598 3155
1599 cb (revents, arg); 3156 cb (revents, arg);
1600} 3157}
1601 3158
1602static void 3159static void
1603once_cb_io (EV_P_ struct ev_io *w, int revents) 3160once_cb_io (EV_P_ ev_io *w, int revents)
1604{ 3161{
1605 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3162 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3163
3164 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1606} 3165}
1607 3166
1608static void 3167static void
1609once_cb_to (EV_P_ struct ev_timer *w, int revents) 3168once_cb_to (EV_P_ ev_timer *w, int revents)
1610{ 3169{
1611 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3170 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3171
3172 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1612} 3173}
1613 3174
1614void 3175void
1615ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3176ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1616{ 3177{
1617 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3178 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1618 3179
1619 if (!once) 3180 if (expect_false (!once))
3181 {
1620 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3182 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1621 else 3183 return;
1622 { 3184 }
3185
1623 once->cb = cb; 3186 once->cb = cb;
1624 once->arg = arg; 3187 once->arg = arg;
1625 3188
1626 ev_init (&once->io, once_cb_io); 3189 ev_init (&once->io, once_cb_io);
1627 if (fd >= 0) 3190 if (fd >= 0)
3191 {
3192 ev_io_set (&once->io, fd, events);
3193 ev_io_start (EV_A_ &once->io);
3194 }
3195
3196 ev_init (&once->to, once_cb_to);
3197 if (timeout >= 0.)
3198 {
3199 ev_timer_set (&once->to, timeout, 0.);
3200 ev_timer_start (EV_A_ &once->to);
3201 }
3202}
3203
3204/*****************************************************************************/
3205
3206#if 0
3207void
3208ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3209{
3210 int i, j;
3211 ev_watcher_list *wl, *wn;
3212
3213 if (types & (EV_IO | EV_EMBED))
3214 for (i = 0; i < anfdmax; ++i)
3215 for (wl = anfds [i].head; wl; )
1628 { 3216 {
1629 ev_io_set (&once->io, fd, events); 3217 wn = wl->next;
1630 ev_io_start (EV_A_ &once->io); 3218
3219#if EV_EMBED_ENABLE
3220 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3221 {
3222 if (types & EV_EMBED)
3223 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3224 }
3225 else
3226#endif
3227#if EV_USE_INOTIFY
3228 if (ev_cb ((ev_io *)wl) == infy_cb)
3229 ;
3230 else
3231#endif
3232 if ((ev_io *)wl != &pipeev)
3233 if (types & EV_IO)
3234 cb (EV_A_ EV_IO, wl);
3235
3236 wl = wn;
1631 } 3237 }
1632 3238
1633 ev_init (&once->to, once_cb_to); 3239 if (types & (EV_TIMER | EV_STAT))
1634 if (timeout >= 0.) 3240 for (i = timercnt + HEAP0; i-- > HEAP0; )
3241#if EV_STAT_ENABLE
3242 /*TODO: timer is not always active*/
3243 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1635 { 3244 {
1636 ev_timer_set (&once->to, timeout, 0.); 3245 if (types & EV_STAT)
1637 ev_timer_start (EV_A_ &once->to); 3246 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1638 } 3247 }
1639 } 3248 else
3249#endif
3250 if (types & EV_TIMER)
3251 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3252
3253#if EV_PERIODIC_ENABLE
3254 if (types & EV_PERIODIC)
3255 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3256 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3257#endif
3258
3259#if EV_IDLE_ENABLE
3260 if (types & EV_IDLE)
3261 for (j = NUMPRI; i--; )
3262 for (i = idlecnt [j]; i--; )
3263 cb (EV_A_ EV_IDLE, idles [j][i]);
3264#endif
3265
3266#if EV_FORK_ENABLE
3267 if (types & EV_FORK)
3268 for (i = forkcnt; i--; )
3269 if (ev_cb (forks [i]) != embed_fork_cb)
3270 cb (EV_A_ EV_FORK, forks [i]);
3271#endif
3272
3273#if EV_ASYNC_ENABLE
3274 if (types & EV_ASYNC)
3275 for (i = asynccnt; i--; )
3276 cb (EV_A_ EV_ASYNC, asyncs [i]);
3277#endif
3278
3279 if (types & EV_PREPARE)
3280 for (i = preparecnt; i--; )
3281#if EV_EMBED_ENABLE
3282 if (ev_cb (prepares [i]) != embed_prepare_cb)
3283#endif
3284 cb (EV_A_ EV_PREPARE, prepares [i]);
3285
3286 if (types & EV_CHECK)
3287 for (i = checkcnt; i--; )
3288 cb (EV_A_ EV_CHECK, checks [i]);
3289
3290 if (types & EV_SIGNAL)
3291 for (i = 0; i < signalmax; ++i)
3292 for (wl = signals [i].head; wl; )
3293 {
3294 wn = wl->next;
3295 cb (EV_A_ EV_SIGNAL, wl);
3296 wl = wn;
3297 }
3298
3299 if (types & EV_CHILD)
3300 for (i = EV_PID_HASHSIZE; i--; )
3301 for (wl = childs [i]; wl; )
3302 {
3303 wn = wl->next;
3304 cb (EV_A_ EV_CHILD, wl);
3305 wl = wn;
3306 }
3307/* EV_STAT 0x00001000 /* stat data changed */
3308/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
1640} 3309}
3310#endif
3311
3312#if EV_MULTIPLICITY
3313 #include "ev_wrap.h"
3314#endif
1641 3315
1642#ifdef __cplusplus 3316#ifdef __cplusplus
1643} 3317}
1644#endif 3318#endif
1645 3319

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines