ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.193 by root, Sat Dec 22 05:47:58 2007 UTC vs.
Revision 1.287 by root, Mon Apr 20 19:45:58 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
63
43# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
46# endif 67# endif
47# ifndef EV_USE_REALTIME 68# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 0
49# endif 70# endif
50# else 71# else
51# ifndef EV_USE_MONOTONIC 72# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 73# define EV_USE_MONOTONIC 0
53# endif 74# endif
110# else 131# else
111# define EV_USE_INOTIFY 0 132# define EV_USE_INOTIFY 0
112# endif 133# endif
113# endif 134# endif
114 135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
115#endif 144#endif
116 145
117#include <math.h> 146#include <math.h>
118#include <stdlib.h> 147#include <stdlib.h>
119#include <fcntl.h> 148#include <fcntl.h>
137#ifndef _WIN32 166#ifndef _WIN32
138# include <sys/time.h> 167# include <sys/time.h>
139# include <sys/wait.h> 168# include <sys/wait.h>
140# include <unistd.h> 169# include <unistd.h>
141#else 170#else
171# include <io.h>
142# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
143# include <windows.h> 173# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
146# endif 176# endif
147#endif 177#endif
148 178
149/**/ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
150 188
151#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
152# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif
153#endif 195#endif
154 196
155#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
157#endif 199#endif
158 200
159#ifndef EV_USE_NANOSLEEP 201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
160# define EV_USE_NANOSLEEP 0 205# define EV_USE_NANOSLEEP 0
206# endif
161#endif 207#endif
162 208
163#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
164# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
165#endif 211#endif
171# define EV_USE_POLL 1 217# define EV_USE_POLL 1
172# endif 218# endif
173#endif 219#endif
174 220
175#ifndef EV_USE_EPOLL 221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
176# define EV_USE_EPOLL 0 225# define EV_USE_EPOLL 0
226# endif
177#endif 227#endif
178 228
179#ifndef EV_USE_KQUEUE 229#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 230# define EV_USE_KQUEUE 0
181#endif 231#endif
183#ifndef EV_USE_PORT 233#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 234# define EV_USE_PORT 0
185#endif 235#endif
186 236
187#ifndef EV_USE_INOTIFY 237#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1
240# else
188# define EV_USE_INOTIFY 0 241# define EV_USE_INOTIFY 0
242# endif
189#endif 243#endif
190 244
191#ifndef EV_PID_HASHSIZE 245#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 246# if EV_MINIMAL
193# define EV_PID_HASHSIZE 1 247# define EV_PID_HASHSIZE 1
202# else 256# else
203# define EV_INOTIFY_HASHSIZE 16 257# define EV_INOTIFY_HASHSIZE 16
204# endif 258# endif
205#endif 259#endif
206 260
207/**/ 261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
208 288
209#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
212#endif 292#endif
226# include <sys/select.h> 306# include <sys/select.h>
227# endif 307# endif
228#endif 308#endif
229 309
230#if EV_USE_INOTIFY 310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
231# include <sys/inotify.h> 313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
232#endif 319#endif
233 320
234#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h> 322# include <winsock.h>
236#endif 323#endif
237 324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
339# endif
340int eventfd (unsigned int initval, int flags);
341# ifdef __cplusplus
342}
343# endif
344#endif
345
238/**/ 346/**/
347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
239 353
240/* 354/*
241 * This is used to avoid floating point rounding problems. 355 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics 356 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding 357 * to ensure progress, time-wise, even when rounding
255# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
256# define noinline __attribute__ ((noinline)) 370# define noinline __attribute__ ((noinline))
257#else 371#else
258# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
259# define noinline 373# define noinline
260# if __STDC_VERSION__ < 199901L 374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
261# define inline 375# define inline
262# endif 376# endif
263#endif 377#endif
264 378
265#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
280 394
281typedef ev_watcher *W; 395typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
284 398
399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
285static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif
286 411
287#ifdef _WIN32 412#ifdef _WIN32
288# include "ev_win32.c" 413# include "ev_win32.c"
289#endif 414#endif
290 415
297{ 422{
298 syserr_cb = cb; 423 syserr_cb = cb;
299} 424}
300 425
301static void noinline 426static void noinline
302syserr (const char *msg) 427ev_syserr (const char *msg)
303{ 428{
304 if (!msg) 429 if (!msg)
305 msg = "(libev) system error"; 430 msg = "(libev) system error";
306 431
307 if (syserr_cb) 432 if (syserr_cb)
311 perror (msg); 436 perror (msg);
312 abort (); 437 abort ();
313 } 438 }
314} 439}
315 440
441static void *
442ev_realloc_emul (void *ptr, long size)
443{
444 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and
446 * the single unix specification, so work around them here.
447 */
448
449 if (size)
450 return realloc (ptr, size);
451
452 free (ptr);
453 return 0;
454}
455
316static void *(*alloc)(void *ptr, long size); 456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
317 457
318void 458void
319ev_set_allocator (void *(*cb)(void *ptr, long size)) 459ev_set_allocator (void *(*cb)(void *ptr, long size))
320{ 460{
321 alloc = cb; 461 alloc = cb;
322} 462}
323 463
324inline_speed void * 464inline_speed void *
325ev_realloc (void *ptr, long size) 465ev_realloc (void *ptr, long size)
326{ 466{
327 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 467 ptr = alloc (ptr, size);
328 468
329 if (!ptr && size) 469 if (!ptr && size)
330 { 470 {
331 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
332 abort (); 472 abort ();
343typedef struct 483typedef struct
344{ 484{
345 WL head; 485 WL head;
346 unsigned char events; 486 unsigned char events;
347 unsigned char reify; 487 unsigned char reify;
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused;
490#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif
348#if EV_SELECT_IS_WINSOCKET 493#if EV_SELECT_IS_WINSOCKET
349 SOCKET handle; 494 SOCKET handle;
350#endif 495#endif
351} ANFD; 496} ANFD;
352 497
355 W w; 500 W w;
356 int events; 501 int events;
357} ANPENDING; 502} ANPENDING;
358 503
359#if EV_USE_INOTIFY 504#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */
360typedef struct 506typedef struct
361{ 507{
362 WL head; 508 WL head;
363} ANFS; 509} ANFS;
510#endif
511
512/* Heap Entry */
513#if EV_HEAP_CACHE_AT
514 typedef struct {
515 ev_tstamp at;
516 WT w;
517 } ANHE;
518
519 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else
523 typedef WT ANHE;
524
525 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he)
364#endif 528#endif
365 529
366#if EV_MULTIPLICITY 530#if EV_MULTIPLICITY
367 531
368 struct ev_loop 532 struct ev_loop
393 557
394ev_tstamp 558ev_tstamp
395ev_time (void) 559ev_time (void)
396{ 560{
397#if EV_USE_REALTIME 561#if EV_USE_REALTIME
562 if (expect_true (have_realtime))
563 {
398 struct timespec ts; 564 struct timespec ts;
399 clock_gettime (CLOCK_REALTIME, &ts); 565 clock_gettime (CLOCK_REALTIME, &ts);
400 return ts.tv_sec + ts.tv_nsec * 1e-9; 566 return ts.tv_sec + ts.tv_nsec * 1e-9;
401#else 567 }
568#endif
569
402 struct timeval tv; 570 struct timeval tv;
403 gettimeofday (&tv, 0); 571 gettimeofday (&tv, 0);
404 return tv.tv_sec + tv.tv_usec * 1e-6; 572 return tv.tv_sec + tv.tv_usec * 1e-6;
405#endif
406} 573}
407 574
408ev_tstamp inline_size 575inline_size ev_tstamp
409get_clock (void) 576get_clock (void)
410{ 577{
411#if EV_USE_MONOTONIC 578#if EV_USE_MONOTONIC
412 if (expect_true (have_monotonic)) 579 if (expect_true (have_monotonic))
413 { 580 {
439 ts.tv_sec = (time_t)delay; 606 ts.tv_sec = (time_t)delay;
440 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 607 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
441 608
442 nanosleep (&ts, 0); 609 nanosleep (&ts, 0);
443#elif defined(_WIN32) 610#elif defined(_WIN32)
444 Sleep (delay * 1e3); 611 Sleep ((unsigned long)(delay * 1e3));
445#else 612#else
446 struct timeval tv; 613 struct timeval tv;
447 614
448 tv.tv_sec = (time_t)delay; 615 tv.tv_sec = (time_t)delay;
449 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
450 617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */
451 select (0, 0, 0, 0, &tv); 621 select (0, 0, 0, 0, &tv);
452#endif 622#endif
453 } 623 }
454} 624}
455 625
456/*****************************************************************************/ 626/*****************************************************************************/
457 627
458int inline_size 628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629
630inline_size int
459array_nextsize (int elem, int cur, int cnt) 631array_nextsize (int elem, int cur, int cnt)
460{ 632{
461 int ncur = cur + 1; 633 int ncur = cur + 1;
462 634
463 do 635 do
464 ncur <<= 1; 636 ncur <<= 1;
465 while (cnt > ncur); 637 while (cnt > ncur);
466 638
467 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 639 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
468 if (elem * ncur > 4096) 640 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
469 { 641 {
470 ncur *= elem; 642 ncur *= elem;
471 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 643 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
472 ncur = ncur - sizeof (void *) * 4; 644 ncur = ncur - sizeof (void *) * 4;
473 ncur /= elem; 645 ncur /= elem;
474 } 646 }
475 647
476 return ncur; 648 return ncur;
480array_realloc (int elem, void *base, int *cur, int cnt) 652array_realloc (int elem, void *base, int *cur, int cnt)
481{ 653{
482 *cur = array_nextsize (elem, *cur, cnt); 654 *cur = array_nextsize (elem, *cur, cnt);
483 return ev_realloc (base, elem * *cur); 655 return ev_realloc (base, elem * *cur);
484} 656}
657
658#define array_init_zero(base,count) \
659 memset ((void *)(base), 0, sizeof (*(base)) * (count))
485 660
486#define array_needsize(type,base,cur,cnt,init) \ 661#define array_needsize(type,base,cur,cnt,init) \
487 if (expect_false ((cnt) > (cur))) \ 662 if (expect_false ((cnt) > (cur))) \
488 { \ 663 { \
489 int ocur_ = (cur); \ 664 int ocur_ = (cur); \
501 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 676 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
502 } 677 }
503#endif 678#endif
504 679
505#define array_free(stem, idx) \ 680#define array_free(stem, idx) \
506 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
507 682
508/*****************************************************************************/ 683/*****************************************************************************/
509 684
510void noinline 685void noinline
511ev_feed_event (EV_P_ void *w, int revents) 686ev_feed_event (EV_P_ void *w, int revents)
522 pendings [pri][w_->pending - 1].w = w_; 697 pendings [pri][w_->pending - 1].w = w_;
523 pendings [pri][w_->pending - 1].events = revents; 698 pendings [pri][w_->pending - 1].events = revents;
524 } 699 }
525} 700}
526 701
527void inline_speed 702inline_speed void
703feed_reverse (EV_P_ W w)
704{
705 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
706 rfeeds [rfeedcnt++] = w;
707}
708
709inline_size void
710feed_reverse_done (EV_P_ int revents)
711{
712 do
713 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
714 while (rfeedcnt);
715}
716
717inline_speed void
528queue_events (EV_P_ W *events, int eventcnt, int type) 718queue_events (EV_P_ W *events, int eventcnt, int type)
529{ 719{
530 int i; 720 int i;
531 721
532 for (i = 0; i < eventcnt; ++i) 722 for (i = 0; i < eventcnt; ++i)
533 ev_feed_event (EV_A_ events [i], type); 723 ev_feed_event (EV_A_ events [i], type);
534} 724}
535 725
536/*****************************************************************************/ 726/*****************************************************************************/
537 727
538void inline_size 728inline_speed void
539anfds_init (ANFD *base, int count)
540{
541 while (count--)
542 {
543 base->head = 0;
544 base->events = EV_NONE;
545 base->reify = 0;
546
547 ++base;
548 }
549}
550
551void inline_speed
552fd_event (EV_P_ int fd, int revents) 729fd_event (EV_P_ int fd, int revents)
553{ 730{
554 ANFD *anfd = anfds + fd; 731 ANFD *anfd = anfds + fd;
555 ev_io *w; 732 ev_io *w;
556 733
568{ 745{
569 if (fd >= 0 && fd < anfdmax) 746 if (fd >= 0 && fd < anfdmax)
570 fd_event (EV_A_ fd, revents); 747 fd_event (EV_A_ fd, revents);
571} 748}
572 749
573void inline_size 750inline_size void
574fd_reify (EV_P) 751fd_reify (EV_P)
575{ 752{
576 int i; 753 int i;
577 754
578 for (i = 0; i < fdchangecnt; ++i) 755 for (i = 0; i < fdchangecnt; ++i)
587 events |= (unsigned char)w->events; 764 events |= (unsigned char)w->events;
588 765
589#if EV_SELECT_IS_WINSOCKET 766#if EV_SELECT_IS_WINSOCKET
590 if (events) 767 if (events)
591 { 768 {
592 unsigned long argp; 769 unsigned long arg;
770 #ifdef EV_FD_TO_WIN32_HANDLE
771 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
772 #else
593 anfd->handle = _get_osfhandle (fd); 773 anfd->handle = _get_osfhandle (fd);
774 #endif
594 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 775 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
595 } 776 }
596#endif 777#endif
597 778
598 { 779 {
599 unsigned char o_events = anfd->events; 780 unsigned char o_events = anfd->events;
600 unsigned char o_reify = anfd->reify; 781 unsigned char o_reify = anfd->reify;
601 782
602 anfd->reify = 0; 783 anfd->reify = 0;
603 anfd->events = events; 784 anfd->events = events;
604 785
605 if (o_events != events || o_reify & EV_IOFDSET) 786 if (o_events != events || o_reify & EV__IOFDSET)
606 backend_modify (EV_A_ fd, o_events, events); 787 backend_modify (EV_A_ fd, o_events, events);
607 } 788 }
608 } 789 }
609 790
610 fdchangecnt = 0; 791 fdchangecnt = 0;
611} 792}
612 793
613void inline_size 794inline_size void
614fd_change (EV_P_ int fd, int flags) 795fd_change (EV_P_ int fd, int flags)
615{ 796{
616 unsigned char reify = anfds [fd].reify; 797 unsigned char reify = anfds [fd].reify;
617 anfds [fd].reify |= flags; 798 anfds [fd].reify |= flags;
618 799
622 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 803 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
623 fdchanges [fdchangecnt - 1] = fd; 804 fdchanges [fdchangecnt - 1] = fd;
624 } 805 }
625} 806}
626 807
627void inline_speed 808inline_speed void
628fd_kill (EV_P_ int fd) 809fd_kill (EV_P_ int fd)
629{ 810{
630 ev_io *w; 811 ev_io *w;
631 812
632 while ((w = (ev_io *)anfds [fd].head)) 813 while ((w = (ev_io *)anfds [fd].head))
634 ev_io_stop (EV_A_ w); 815 ev_io_stop (EV_A_ w);
635 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 816 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
636 } 817 }
637} 818}
638 819
639int inline_size 820inline_size int
640fd_valid (int fd) 821fd_valid (int fd)
641{ 822{
642#ifdef _WIN32 823#ifdef _WIN32
643 return _get_osfhandle (fd) != -1; 824 return _get_osfhandle (fd) != -1;
644#else 825#else
652{ 833{
653 int fd; 834 int fd;
654 835
655 for (fd = 0; fd < anfdmax; ++fd) 836 for (fd = 0; fd < anfdmax; ++fd)
656 if (anfds [fd].events) 837 if (anfds [fd].events)
657 if (!fd_valid (fd) == -1 && errno == EBADF) 838 if (!fd_valid (fd) && errno == EBADF)
658 fd_kill (EV_A_ fd); 839 fd_kill (EV_A_ fd);
659} 840}
660 841
661/* called on ENOMEM in select/poll to kill some fds and retry */ 842/* called on ENOMEM in select/poll to kill some fds and retry */
662static void noinline 843static void noinline
680 861
681 for (fd = 0; fd < anfdmax; ++fd) 862 for (fd = 0; fd < anfdmax; ++fd)
682 if (anfds [fd].events) 863 if (anfds [fd].events)
683 { 864 {
684 anfds [fd].events = 0; 865 anfds [fd].events = 0;
866 anfds [fd].emask = 0;
685 fd_change (EV_A_ fd, EV_IOFDSET | 1); 867 fd_change (EV_A_ fd, EV__IOFDSET | 1);
686 } 868 }
687} 869}
688 870
689/*****************************************************************************/ 871/*****************************************************************************/
690 872
691void inline_speed 873/*
692upheap (WT *heap, int k) 874 * the heap functions want a real array index. array index 0 uis guaranteed to not
693{ 875 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
694 WT w = heap [k]; 876 * the branching factor of the d-tree.
877 */
695 878
696 while (k) 879/*
697 { 880 * at the moment we allow libev the luxury of two heaps,
698 int p = (k - 1) >> 1; 881 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
882 * which is more cache-efficient.
883 * the difference is about 5% with 50000+ watchers.
884 */
885#if EV_USE_4HEAP
699 886
700 if (heap [p]->at <= w->at) 887#define DHEAP 4
888#define HEAP0 (DHEAP - 1) /* index of first element in heap */
889#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
890#define UPHEAP_DONE(p,k) ((p) == (k))
891
892/* away from the root */
893inline_speed void
894downheap (ANHE *heap, int N, int k)
895{
896 ANHE he = heap [k];
897 ANHE *E = heap + N + HEAP0;
898
899 for (;;)
900 {
901 ev_tstamp minat;
902 ANHE *minpos;
903 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
904
905 /* find minimum child */
906 if (expect_true (pos + DHEAP - 1 < E))
907 {
908 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
909 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
910 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
911 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
912 }
913 else if (pos < E)
914 {
915 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
916 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
917 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
918 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
919 }
920 else
701 break; 921 break;
702 922
923 if (ANHE_at (he) <= minat)
924 break;
925
926 heap [k] = *minpos;
927 ev_active (ANHE_w (*minpos)) = k;
928
929 k = minpos - heap;
930 }
931
932 heap [k] = he;
933 ev_active (ANHE_w (he)) = k;
934}
935
936#else /* 4HEAP */
937
938#define HEAP0 1
939#define HPARENT(k) ((k) >> 1)
940#define UPHEAP_DONE(p,k) (!(p))
941
942/* away from the root */
943inline_speed void
944downheap (ANHE *heap, int N, int k)
945{
946 ANHE he = heap [k];
947
948 for (;;)
949 {
950 int c = k << 1;
951
952 if (c > N + HEAP0 - 1)
953 break;
954
955 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
956 ? 1 : 0;
957
958 if (ANHE_at (he) <= ANHE_at (heap [c]))
959 break;
960
961 heap [k] = heap [c];
962 ev_active (ANHE_w (heap [k])) = k;
963
964 k = c;
965 }
966
967 heap [k] = he;
968 ev_active (ANHE_w (he)) = k;
969}
970#endif
971
972/* towards the root */
973inline_speed void
974upheap (ANHE *heap, int k)
975{
976 ANHE he = heap [k];
977
978 for (;;)
979 {
980 int p = HPARENT (k);
981
982 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
983 break;
984
703 heap [k] = heap [p]; 985 heap [k] = heap [p];
704 ((W)heap [k])->active = k + 1; 986 ev_active (ANHE_w (heap [k])) = k;
705 k = p; 987 k = p;
706 } 988 }
707 989
708 heap [k] = w; 990 heap [k] = he;
709 ((W)heap [k])->active = k + 1; 991 ev_active (ANHE_w (he)) = k;
710} 992}
711 993
712void inline_speed 994inline_size void
713downheap (WT *heap, int N, int k)
714{
715 WT w = heap [k];
716
717 for (;;)
718 {
719 int c = (k << 1) + 1;
720
721 if (c >= N)
722 break;
723
724 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
725 ? 1 : 0;
726
727 if (w->at <= heap [c]->at)
728 break;
729
730 heap [k] = heap [c];
731 ((W)heap [k])->active = k + 1;
732
733 k = c;
734 }
735
736 heap [k] = w;
737 ((W)heap [k])->active = k + 1;
738}
739
740void inline_size
741adjustheap (WT *heap, int N, int k) 995adjustheap (ANHE *heap, int N, int k)
742{ 996{
997 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
743 upheap (heap, k); 998 upheap (heap, k);
999 else
744 downheap (heap, N, k); 1000 downheap (heap, N, k);
1001}
1002
1003/* rebuild the heap: this function is used only once and executed rarely */
1004inline_size void
1005reheap (ANHE *heap, int N)
1006{
1007 int i;
1008
1009 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1010 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1011 for (i = 0; i < N; ++i)
1012 upheap (heap, i + HEAP0);
745} 1013}
746 1014
747/*****************************************************************************/ 1015/*****************************************************************************/
748 1016
749typedef struct 1017typedef struct
750{ 1018{
751 WL head; 1019 WL head;
752 sig_atomic_t volatile gotsig; 1020 EV_ATOMIC_T gotsig;
753} ANSIG; 1021} ANSIG;
754 1022
755static ANSIG *signals; 1023static ANSIG *signals;
756static int signalmax; 1024static int signalmax;
757 1025
758static int sigpipe [2]; 1026static EV_ATOMIC_T gotsig;
759static sig_atomic_t volatile gotsig;
760static ev_io sigev;
761 1027
762void inline_size 1028/*****************************************************************************/
763signals_init (ANSIG *base, int count)
764{
765 while (count--)
766 {
767 base->head = 0;
768 base->gotsig = 0;
769 1029
770 ++base; 1030inline_speed void
771 }
772}
773
774static void
775sighandler (int signum)
776{
777#if _WIN32
778 signal (signum, sighandler);
779#endif
780
781 signals [signum - 1].gotsig = 1;
782
783 if (!gotsig)
784 {
785 int old_errno = errno;
786 gotsig = 1;
787 write (sigpipe [1], &signum, 1);
788 errno = old_errno;
789 }
790}
791
792void noinline
793ev_feed_signal_event (EV_P_ int signum)
794{
795 WL w;
796
797#if EV_MULTIPLICITY
798 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
799#endif
800
801 --signum;
802
803 if (signum < 0 || signum >= signalmax)
804 return;
805
806 signals [signum].gotsig = 0;
807
808 for (w = signals [signum].head; w; w = w->next)
809 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
810}
811
812static void
813sigcb (EV_P_ ev_io *iow, int revents)
814{
815 int signum;
816
817 read (sigpipe [0], &revents, 1);
818 gotsig = 0;
819
820 for (signum = signalmax; signum--; )
821 if (signals [signum].gotsig)
822 ev_feed_signal_event (EV_A_ signum + 1);
823}
824
825void inline_speed
826fd_intern (int fd) 1031fd_intern (int fd)
827{ 1032{
828#ifdef _WIN32 1033#ifdef _WIN32
829 int arg = 1; 1034 unsigned long arg = 1;
830 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1035 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
831#else 1036#else
832 fcntl (fd, F_SETFD, FD_CLOEXEC); 1037 fcntl (fd, F_SETFD, FD_CLOEXEC);
833 fcntl (fd, F_SETFL, O_NONBLOCK); 1038 fcntl (fd, F_SETFL, O_NONBLOCK);
834#endif 1039#endif
835} 1040}
836 1041
837static void noinline 1042static void noinline
838siginit (EV_P) 1043evpipe_init (EV_P)
839{ 1044{
1045 if (!ev_is_active (&pipeev))
1046 {
1047#if EV_USE_EVENTFD
1048 if ((evfd = eventfd (0, 0)) >= 0)
1049 {
1050 evpipe [0] = -1;
1051 fd_intern (evfd);
1052 ev_io_set (&pipeev, evfd, EV_READ);
1053 }
1054 else
1055#endif
1056 {
1057 while (pipe (evpipe))
1058 ev_syserr ("(libev) error creating signal/async pipe");
1059
840 fd_intern (sigpipe [0]); 1060 fd_intern (evpipe [0]);
841 fd_intern (sigpipe [1]); 1061 fd_intern (evpipe [1]);
1062 ev_io_set (&pipeev, evpipe [0], EV_READ);
1063 }
842 1064
843 ev_io_set (&sigev, sigpipe [0], EV_READ);
844 ev_io_start (EV_A_ &sigev); 1065 ev_io_start (EV_A_ &pipeev);
845 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1066 ev_unref (EV_A); /* watcher should not keep loop alive */
1067 }
1068}
1069
1070inline_size void
1071evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1072{
1073 if (!*flag)
1074 {
1075 int old_errno = errno; /* save errno because write might clobber it */
1076
1077 *flag = 1;
1078
1079#if EV_USE_EVENTFD
1080 if (evfd >= 0)
1081 {
1082 uint64_t counter = 1;
1083 write (evfd, &counter, sizeof (uint64_t));
1084 }
1085 else
1086#endif
1087 write (evpipe [1], &old_errno, 1);
1088
1089 errno = old_errno;
1090 }
1091}
1092
1093static void
1094pipecb (EV_P_ ev_io *iow, int revents)
1095{
1096#if EV_USE_EVENTFD
1097 if (evfd >= 0)
1098 {
1099 uint64_t counter;
1100 read (evfd, &counter, sizeof (uint64_t));
1101 }
1102 else
1103#endif
1104 {
1105 char dummy;
1106 read (evpipe [0], &dummy, 1);
1107 }
1108
1109 if (gotsig && ev_is_default_loop (EV_A))
1110 {
1111 int signum;
1112 gotsig = 0;
1113
1114 for (signum = signalmax; signum--; )
1115 if (signals [signum].gotsig)
1116 ev_feed_signal_event (EV_A_ signum + 1);
1117 }
1118
1119#if EV_ASYNC_ENABLE
1120 if (gotasync)
1121 {
1122 int i;
1123 gotasync = 0;
1124
1125 for (i = asynccnt; i--; )
1126 if (asyncs [i]->sent)
1127 {
1128 asyncs [i]->sent = 0;
1129 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1130 }
1131 }
1132#endif
846} 1133}
847 1134
848/*****************************************************************************/ 1135/*****************************************************************************/
849 1136
1137static void
1138ev_sighandler (int signum)
1139{
1140#if EV_MULTIPLICITY
1141 struct ev_loop *loop = &default_loop_struct;
1142#endif
1143
1144#if _WIN32
1145 signal (signum, ev_sighandler);
1146#endif
1147
1148 signals [signum - 1].gotsig = 1;
1149 evpipe_write (EV_A_ &gotsig);
1150}
1151
1152void noinline
1153ev_feed_signal_event (EV_P_ int signum)
1154{
1155 WL w;
1156
1157#if EV_MULTIPLICITY
1158 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1159#endif
1160
1161 --signum;
1162
1163 if (signum < 0 || signum >= signalmax)
1164 return;
1165
1166 signals [signum].gotsig = 0;
1167
1168 for (w = signals [signum].head; w; w = w->next)
1169 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1170}
1171
1172/*****************************************************************************/
1173
850static WL childs [EV_PID_HASHSIZE]; 1174static WL childs [EV_PID_HASHSIZE];
851 1175
852#ifndef _WIN32 1176#ifndef _WIN32
853 1177
854static ev_signal childev; 1178static ev_signal childev;
855 1179
856void inline_speed 1180#ifndef WIFCONTINUED
1181# define WIFCONTINUED(status) 0
1182#endif
1183
1184inline_speed void
857child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1185child_reap (EV_P_ int chain, int pid, int status)
858{ 1186{
859 ev_child *w; 1187 ev_child *w;
1188 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
860 1189
861 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1190 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1191 {
862 if (w->pid == pid || !w->pid) 1192 if ((w->pid == pid || !w->pid)
1193 && (!traced || (w->flags & 1)))
863 { 1194 {
864 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1195 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
865 w->rpid = pid; 1196 w->rpid = pid;
866 w->rstatus = status; 1197 w->rstatus = status;
867 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1198 ev_feed_event (EV_A_ (W)w, EV_CHILD);
868 } 1199 }
1200 }
869} 1201}
870 1202
871#ifndef WCONTINUED 1203#ifndef WCONTINUED
872# define WCONTINUED 0 1204# define WCONTINUED 0
873#endif 1205#endif
882 if (!WCONTINUED 1214 if (!WCONTINUED
883 || errno != EINVAL 1215 || errno != EINVAL
884 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1216 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
885 return; 1217 return;
886 1218
887 /* make sure we are called again until all childs have been reaped */ 1219 /* make sure we are called again until all children have been reaped */
888 /* we need to do it this way so that the callback gets called before we continue */ 1220 /* we need to do it this way so that the callback gets called before we continue */
889 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1221 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
890 1222
891 child_reap (EV_A_ sw, pid, pid, status); 1223 child_reap (EV_A_ pid, pid, status);
892 if (EV_PID_HASHSIZE > 1) 1224 if (EV_PID_HASHSIZE > 1)
893 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1225 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
894} 1226}
895 1227
896#endif 1228#endif
897 1229
898/*****************************************************************************/ 1230/*****************************************************************************/
960 /* kqueue is borked on everything but netbsd apparently */ 1292 /* kqueue is borked on everything but netbsd apparently */
961 /* it usually doesn't work correctly on anything but sockets and pipes */ 1293 /* it usually doesn't work correctly on anything but sockets and pipes */
962 flags &= ~EVBACKEND_KQUEUE; 1294 flags &= ~EVBACKEND_KQUEUE;
963#endif 1295#endif
964#ifdef __APPLE__ 1296#ifdef __APPLE__
965 // flags &= ~EVBACKEND_KQUEUE; for documentation 1297 /* only select works correctly on that "unix-certified" platform */
966 flags &= ~EVBACKEND_POLL; 1298 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1299 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
967#endif 1300#endif
968 1301
969 return flags; 1302 return flags;
970} 1303}
971 1304
972unsigned int 1305unsigned int
973ev_embeddable_backends (void) 1306ev_embeddable_backends (void)
974{ 1307{
1308 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1309
975 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1310 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
976 return EVBACKEND_KQUEUE 1311 /* please fix it and tell me how to detect the fix */
977 | EVBACKEND_PORT; 1312 flags &= ~EVBACKEND_EPOLL;
1313
1314 return flags;
978} 1315}
979 1316
980unsigned int 1317unsigned int
981ev_backend (EV_P) 1318ev_backend (EV_P)
982{ 1319{
1004static void noinline 1341static void noinline
1005loop_init (EV_P_ unsigned int flags) 1342loop_init (EV_P_ unsigned int flags)
1006{ 1343{
1007 if (!backend) 1344 if (!backend)
1008 { 1345 {
1346#if EV_USE_REALTIME
1347 if (!have_realtime)
1348 {
1349 struct timespec ts;
1350
1351 if (!clock_gettime (CLOCK_REALTIME, &ts))
1352 have_realtime = 1;
1353 }
1354#endif
1355
1009#if EV_USE_MONOTONIC 1356#if EV_USE_MONOTONIC
1357 if (!have_monotonic)
1010 { 1358 {
1011 struct timespec ts; 1359 struct timespec ts;
1360
1012 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1361 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1013 have_monotonic = 1; 1362 have_monotonic = 1;
1014 } 1363 }
1015#endif 1364#endif
1016 1365
1017 ev_rt_now = ev_time (); 1366 ev_rt_now = ev_time ();
1018 mn_now = get_clock (); 1367 mn_now = get_clock ();
1019 now_floor = mn_now; 1368 now_floor = mn_now;
1020 rtmn_diff = ev_rt_now - mn_now; 1369 rtmn_diff = ev_rt_now - mn_now;
1021 1370
1022 io_blocktime = 0.; 1371 io_blocktime = 0.;
1023 timeout_blocktime = 0.; 1372 timeout_blocktime = 0.;
1373 backend = 0;
1374 backend_fd = -1;
1375 gotasync = 0;
1376#if EV_USE_INOTIFY
1377 fs_fd = -2;
1378#endif
1024 1379
1025 /* pid check not overridable via env */ 1380 /* pid check not overridable via env */
1026#ifndef _WIN32 1381#ifndef _WIN32
1027 if (flags & EVFLAG_FORKCHECK) 1382 if (flags & EVFLAG_FORKCHECK)
1028 curpid = getpid (); 1383 curpid = getpid ();
1031 if (!(flags & EVFLAG_NOENV) 1386 if (!(flags & EVFLAG_NOENV)
1032 && !enable_secure () 1387 && !enable_secure ()
1033 && getenv ("LIBEV_FLAGS")) 1388 && getenv ("LIBEV_FLAGS"))
1034 flags = atoi (getenv ("LIBEV_FLAGS")); 1389 flags = atoi (getenv ("LIBEV_FLAGS"));
1035 1390
1036 if (!(flags & 0x0000ffffUL)) 1391 if (!(flags & 0x0000ffffU))
1037 flags |= ev_recommended_backends (); 1392 flags |= ev_recommended_backends ();
1038
1039 backend = 0;
1040 backend_fd = -1;
1041#if EV_USE_INOTIFY
1042 fs_fd = -2;
1043#endif
1044 1393
1045#if EV_USE_PORT 1394#if EV_USE_PORT
1046 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1395 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1047#endif 1396#endif
1048#if EV_USE_KQUEUE 1397#if EV_USE_KQUEUE
1056#endif 1405#endif
1057#if EV_USE_SELECT 1406#if EV_USE_SELECT
1058 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1407 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1059#endif 1408#endif
1060 1409
1061 ev_init (&sigev, sigcb); 1410 ev_init (&pipeev, pipecb);
1062 ev_set_priority (&sigev, EV_MAXPRI); 1411 ev_set_priority (&pipeev, EV_MAXPRI);
1063 } 1412 }
1064} 1413}
1065 1414
1066static void noinline 1415static void noinline
1067loop_destroy (EV_P) 1416loop_destroy (EV_P)
1068{ 1417{
1069 int i; 1418 int i;
1419
1420 if (ev_is_active (&pipeev))
1421 {
1422 ev_ref (EV_A); /* signal watcher */
1423 ev_io_stop (EV_A_ &pipeev);
1424
1425#if EV_USE_EVENTFD
1426 if (evfd >= 0)
1427 close (evfd);
1428#endif
1429
1430 if (evpipe [0] >= 0)
1431 {
1432 close (evpipe [0]);
1433 close (evpipe [1]);
1434 }
1435 }
1070 1436
1071#if EV_USE_INOTIFY 1437#if EV_USE_INOTIFY
1072 if (fs_fd >= 0) 1438 if (fs_fd >= 0)
1073 close (fs_fd); 1439 close (fs_fd);
1074#endif 1440#endif
1101 } 1467 }
1102 1468
1103 ev_free (anfds); anfdmax = 0; 1469 ev_free (anfds); anfdmax = 0;
1104 1470
1105 /* have to use the microsoft-never-gets-it-right macro */ 1471 /* have to use the microsoft-never-gets-it-right macro */
1472 array_free (rfeed, EMPTY);
1106 array_free (fdchange, EMPTY); 1473 array_free (fdchange, EMPTY);
1107 array_free (timer, EMPTY); 1474 array_free (timer, EMPTY);
1108#if EV_PERIODIC_ENABLE 1475#if EV_PERIODIC_ENABLE
1109 array_free (periodic, EMPTY); 1476 array_free (periodic, EMPTY);
1110#endif 1477#endif
1111#if EV_FORK_ENABLE 1478#if EV_FORK_ENABLE
1112 array_free (fork, EMPTY); 1479 array_free (fork, EMPTY);
1113#endif 1480#endif
1114 array_free (prepare, EMPTY); 1481 array_free (prepare, EMPTY);
1115 array_free (check, EMPTY); 1482 array_free (check, EMPTY);
1483#if EV_ASYNC_ENABLE
1484 array_free (async, EMPTY);
1485#endif
1116 1486
1117 backend = 0; 1487 backend = 0;
1118} 1488}
1119 1489
1490#if EV_USE_INOTIFY
1120void inline_size infy_fork (EV_P); 1491inline_size void infy_fork (EV_P);
1492#endif
1121 1493
1122void inline_size 1494inline_size void
1123loop_fork (EV_P) 1495loop_fork (EV_P)
1124{ 1496{
1125#if EV_USE_PORT 1497#if EV_USE_PORT
1126 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1498 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1127#endif 1499#endif
1133#endif 1505#endif
1134#if EV_USE_INOTIFY 1506#if EV_USE_INOTIFY
1135 infy_fork (EV_A); 1507 infy_fork (EV_A);
1136#endif 1508#endif
1137 1509
1138 if (ev_is_active (&sigev)) 1510 if (ev_is_active (&pipeev))
1139 { 1511 {
1140 /* default loop */ 1512 /* this "locks" the handlers against writing to the pipe */
1513 /* while we modify the fd vars */
1514 gotsig = 1;
1515#if EV_ASYNC_ENABLE
1516 gotasync = 1;
1517#endif
1141 1518
1142 ev_ref (EV_A); 1519 ev_ref (EV_A);
1143 ev_io_stop (EV_A_ &sigev); 1520 ev_io_stop (EV_A_ &pipeev);
1521
1522#if EV_USE_EVENTFD
1523 if (evfd >= 0)
1524 close (evfd);
1525#endif
1526
1527 if (evpipe [0] >= 0)
1528 {
1144 close (sigpipe [0]); 1529 close (evpipe [0]);
1145 close (sigpipe [1]); 1530 close (evpipe [1]);
1531 }
1146 1532
1147 while (pipe (sigpipe))
1148 syserr ("(libev) error creating pipe");
1149
1150 siginit (EV_A); 1533 evpipe_init (EV_A);
1534 /* now iterate over everything, in case we missed something */
1535 pipecb (EV_A_ &pipeev, EV_READ);
1151 } 1536 }
1152 1537
1153 postfork = 0; 1538 postfork = 0;
1154} 1539}
1155 1540
1156#if EV_MULTIPLICITY 1541#if EV_MULTIPLICITY
1542
1157struct ev_loop * 1543struct ev_loop *
1158ev_loop_new (unsigned int flags) 1544ev_loop_new (unsigned int flags)
1159{ 1545{
1160 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1546 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1161 1547
1177} 1563}
1178 1564
1179void 1565void
1180ev_loop_fork (EV_P) 1566ev_loop_fork (EV_P)
1181{ 1567{
1182 postfork = 1; 1568 postfork = 1; /* must be in line with ev_default_fork */
1183} 1569}
1184 1570
1571#if EV_VERIFY
1572static void noinline
1573verify_watcher (EV_P_ W w)
1574{
1575 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1576
1577 if (w->pending)
1578 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1579}
1580
1581static void noinline
1582verify_heap (EV_P_ ANHE *heap, int N)
1583{
1584 int i;
1585
1586 for (i = HEAP0; i < N + HEAP0; ++i)
1587 {
1588 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1589 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1590 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1591
1592 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1593 }
1594}
1595
1596static void noinline
1597array_verify (EV_P_ W *ws, int cnt)
1598{
1599 while (cnt--)
1600 {
1601 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1602 verify_watcher (EV_A_ ws [cnt]);
1603 }
1604}
1605#endif
1606
1607void
1608ev_loop_verify (EV_P)
1609{
1610#if EV_VERIFY
1611 int i;
1612 WL w;
1613
1614 assert (activecnt >= -1);
1615
1616 assert (fdchangemax >= fdchangecnt);
1617 for (i = 0; i < fdchangecnt; ++i)
1618 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1619
1620 assert (anfdmax >= 0);
1621 for (i = 0; i < anfdmax; ++i)
1622 for (w = anfds [i].head; w; w = w->next)
1623 {
1624 verify_watcher (EV_A_ (W)w);
1625 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1626 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1627 }
1628
1629 assert (timermax >= timercnt);
1630 verify_heap (EV_A_ timers, timercnt);
1631
1632#if EV_PERIODIC_ENABLE
1633 assert (periodicmax >= periodiccnt);
1634 verify_heap (EV_A_ periodics, periodiccnt);
1635#endif
1636
1637 for (i = NUMPRI; i--; )
1638 {
1639 assert (pendingmax [i] >= pendingcnt [i]);
1640#if EV_IDLE_ENABLE
1641 assert (idleall >= 0);
1642 assert (idlemax [i] >= idlecnt [i]);
1643 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1644#endif
1645 }
1646
1647#if EV_FORK_ENABLE
1648 assert (forkmax >= forkcnt);
1649 array_verify (EV_A_ (W *)forks, forkcnt);
1650#endif
1651
1652#if EV_ASYNC_ENABLE
1653 assert (asyncmax >= asynccnt);
1654 array_verify (EV_A_ (W *)asyncs, asynccnt);
1655#endif
1656
1657 assert (preparemax >= preparecnt);
1658 array_verify (EV_A_ (W *)prepares, preparecnt);
1659
1660 assert (checkmax >= checkcnt);
1661 array_verify (EV_A_ (W *)checks, checkcnt);
1662
1663# if 0
1664 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1665 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1185#endif 1666# endif
1667#endif
1668}
1669
1670#endif /* multiplicity */
1186 1671
1187#if EV_MULTIPLICITY 1672#if EV_MULTIPLICITY
1188struct ev_loop * 1673struct ev_loop *
1189ev_default_loop_init (unsigned int flags) 1674ev_default_loop_init (unsigned int flags)
1190#else 1675#else
1191int 1676int
1192ev_default_loop (unsigned int flags) 1677ev_default_loop (unsigned int flags)
1193#endif 1678#endif
1194{ 1679{
1195 if (sigpipe [0] == sigpipe [1])
1196 if (pipe (sigpipe))
1197 return 0;
1198
1199 if (!ev_default_loop_ptr) 1680 if (!ev_default_loop_ptr)
1200 { 1681 {
1201#if EV_MULTIPLICITY 1682#if EV_MULTIPLICITY
1202 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1683 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1203#else 1684#else
1206 1687
1207 loop_init (EV_A_ flags); 1688 loop_init (EV_A_ flags);
1208 1689
1209 if (ev_backend (EV_A)) 1690 if (ev_backend (EV_A))
1210 { 1691 {
1211 siginit (EV_A);
1212
1213#ifndef _WIN32 1692#ifndef _WIN32
1214 ev_signal_init (&childev, childcb, SIGCHLD); 1693 ev_signal_init (&childev, childcb, SIGCHLD);
1215 ev_set_priority (&childev, EV_MAXPRI); 1694 ev_set_priority (&childev, EV_MAXPRI);
1216 ev_signal_start (EV_A_ &childev); 1695 ev_signal_start (EV_A_ &childev);
1217 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1696 ev_unref (EV_A); /* child watcher should not keep loop alive */
1229{ 1708{
1230#if EV_MULTIPLICITY 1709#if EV_MULTIPLICITY
1231 struct ev_loop *loop = ev_default_loop_ptr; 1710 struct ev_loop *loop = ev_default_loop_ptr;
1232#endif 1711#endif
1233 1712
1713 ev_default_loop_ptr = 0;
1714
1234#ifndef _WIN32 1715#ifndef _WIN32
1235 ev_ref (EV_A); /* child watcher */ 1716 ev_ref (EV_A); /* child watcher */
1236 ev_signal_stop (EV_A_ &childev); 1717 ev_signal_stop (EV_A_ &childev);
1237#endif 1718#endif
1238 1719
1239 ev_ref (EV_A); /* signal watcher */
1240 ev_io_stop (EV_A_ &sigev);
1241
1242 close (sigpipe [0]); sigpipe [0] = 0;
1243 close (sigpipe [1]); sigpipe [1] = 0;
1244
1245 loop_destroy (EV_A); 1720 loop_destroy (EV_A);
1246} 1721}
1247 1722
1248void 1723void
1249ev_default_fork (void) 1724ev_default_fork (void)
1250{ 1725{
1251#if EV_MULTIPLICITY 1726#if EV_MULTIPLICITY
1252 struct ev_loop *loop = ev_default_loop_ptr; 1727 struct ev_loop *loop = ev_default_loop_ptr;
1253#endif 1728#endif
1254 1729
1255 if (backend) 1730 postfork = 1; /* must be in line with ev_loop_fork */
1256 postfork = 1;
1257} 1731}
1258 1732
1259/*****************************************************************************/ 1733/*****************************************************************************/
1260 1734
1261void 1735void
1262ev_invoke (EV_P_ void *w, int revents) 1736ev_invoke (EV_P_ void *w, int revents)
1263{ 1737{
1264 EV_CB_INVOKE ((W)w, revents); 1738 EV_CB_INVOKE ((W)w, revents);
1265} 1739}
1266 1740
1267void inline_speed 1741inline_speed void
1268call_pending (EV_P) 1742call_pending (EV_P)
1269{ 1743{
1270 int pri; 1744 int pri;
1271 1745
1272 for (pri = NUMPRI; pri--; ) 1746 for (pri = NUMPRI; pri--; )
1274 { 1748 {
1275 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1749 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1276 1750
1277 if (expect_true (p->w)) 1751 if (expect_true (p->w))
1278 { 1752 {
1279 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1753 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1280 1754
1281 p->w->pending = 0; 1755 p->w->pending = 0;
1282 EV_CB_INVOKE (p->w, p->events); 1756 EV_CB_INVOKE (p->w, p->events);
1757 EV_FREQUENT_CHECK;
1283 } 1758 }
1284 } 1759 }
1285} 1760}
1286 1761
1287void inline_size
1288timers_reify (EV_P)
1289{
1290 while (timercnt && ((WT)timers [0])->at <= mn_now)
1291 {
1292 ev_timer *w = (ev_timer *)timers [0];
1293
1294 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1295
1296 /* first reschedule or stop timer */
1297 if (w->repeat)
1298 {
1299 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1300
1301 ((WT)w)->at += w->repeat;
1302 if (((WT)w)->at < mn_now)
1303 ((WT)w)->at = mn_now;
1304
1305 downheap (timers, timercnt, 0);
1306 }
1307 else
1308 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1309
1310 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1311 }
1312}
1313
1314#if EV_PERIODIC_ENABLE
1315void inline_size
1316periodics_reify (EV_P)
1317{
1318 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1319 {
1320 ev_periodic *w = (ev_periodic *)periodics [0];
1321
1322 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1323
1324 /* first reschedule or stop timer */
1325 if (w->reschedule_cb)
1326 {
1327 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1328 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1329 downheap (periodics, periodiccnt, 0);
1330 }
1331 else if (w->interval)
1332 {
1333 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1334 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1335 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1336 downheap (periodics, periodiccnt, 0);
1337 }
1338 else
1339 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1340
1341 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1342 }
1343}
1344
1345static void noinline
1346periodics_reschedule (EV_P)
1347{
1348 int i;
1349
1350 /* adjust periodics after time jump */
1351 for (i = 0; i < periodiccnt; ++i)
1352 {
1353 ev_periodic *w = (ev_periodic *)periodics [i];
1354
1355 if (w->reschedule_cb)
1356 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1357 else if (w->interval)
1358 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1359 }
1360
1361 /* now rebuild the heap */
1362 for (i = periodiccnt >> 1; i--; )
1363 downheap (periodics, periodiccnt, i);
1364}
1365#endif
1366
1367#if EV_IDLE_ENABLE 1762#if EV_IDLE_ENABLE
1368void inline_size 1763inline_size void
1369idle_reify (EV_P) 1764idle_reify (EV_P)
1370{ 1765{
1371 if (expect_false (idleall)) 1766 if (expect_false (idleall))
1372 { 1767 {
1373 int pri; 1768 int pri;
1385 } 1780 }
1386 } 1781 }
1387} 1782}
1388#endif 1783#endif
1389 1784
1390void inline_speed 1785inline_size void
1786timers_reify (EV_P)
1787{
1788 EV_FREQUENT_CHECK;
1789
1790 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1791 {
1792 do
1793 {
1794 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1795
1796 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1797
1798 /* first reschedule or stop timer */
1799 if (w->repeat)
1800 {
1801 ev_at (w) += w->repeat;
1802 if (ev_at (w) < mn_now)
1803 ev_at (w) = mn_now;
1804
1805 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1806
1807 ANHE_at_cache (timers [HEAP0]);
1808 downheap (timers, timercnt, HEAP0);
1809 }
1810 else
1811 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1812
1813 EV_FREQUENT_CHECK;
1814 feed_reverse (EV_A_ (W)w);
1815 }
1816 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1817
1818 feed_reverse_done (EV_A_ EV_TIMEOUT);
1819 }
1820}
1821
1822#if EV_PERIODIC_ENABLE
1823inline_size void
1824periodics_reify (EV_P)
1825{
1826 EV_FREQUENT_CHECK;
1827
1828 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1829 {
1830 int feed_count = 0;
1831
1832 do
1833 {
1834 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1835
1836 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1837
1838 /* first reschedule or stop timer */
1839 if (w->reschedule_cb)
1840 {
1841 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1842
1843 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1844
1845 ANHE_at_cache (periodics [HEAP0]);
1846 downheap (periodics, periodiccnt, HEAP0);
1847 }
1848 else if (w->interval)
1849 {
1850 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1851 /* if next trigger time is not sufficiently in the future, put it there */
1852 /* this might happen because of floating point inexactness */
1853 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1854 {
1855 ev_at (w) += w->interval;
1856
1857 /* if interval is unreasonably low we might still have a time in the past */
1858 /* so correct this. this will make the periodic very inexact, but the user */
1859 /* has effectively asked to get triggered more often than possible */
1860 if (ev_at (w) < ev_rt_now)
1861 ev_at (w) = ev_rt_now;
1862 }
1863
1864 ANHE_at_cache (periodics [HEAP0]);
1865 downheap (periodics, periodiccnt, HEAP0);
1866 }
1867 else
1868 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1869
1870 EV_FREQUENT_CHECK;
1871 feed_reverse (EV_A_ (W)w);
1872 }
1873 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1874
1875 feed_reverse_done (EV_A_ EV_PERIODIC);
1876 }
1877}
1878
1879static void noinline
1880periodics_reschedule (EV_P)
1881{
1882 int i;
1883
1884 /* adjust periodics after time jump */
1885 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1886 {
1887 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1888
1889 if (w->reschedule_cb)
1890 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1891 else if (w->interval)
1892 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1893
1894 ANHE_at_cache (periodics [i]);
1895 }
1896
1897 reheap (periodics, periodiccnt);
1898}
1899#endif
1900
1901static void noinline
1902timers_reschedule (EV_P_ ev_tstamp adjust)
1903{
1904 int i;
1905
1906 for (i = 0; i < timercnt; ++i)
1907 {
1908 ANHE *he = timers + i + HEAP0;
1909 ANHE_w (*he)->at += adjust;
1910 ANHE_at_cache (*he);
1911 }
1912}
1913
1914inline_speed void
1391time_update (EV_P_ ev_tstamp max_block) 1915time_update (EV_P_ ev_tstamp max_block)
1392{ 1916{
1393 int i; 1917 int i;
1394 1918
1395#if EV_USE_MONOTONIC 1919#if EV_USE_MONOTONIC
1420 */ 1944 */
1421 for (i = 4; --i; ) 1945 for (i = 4; --i; )
1422 { 1946 {
1423 rtmn_diff = ev_rt_now - mn_now; 1947 rtmn_diff = ev_rt_now - mn_now;
1424 1948
1425 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1949 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1426 return; /* all is well */ 1950 return; /* all is well */
1427 1951
1428 ev_rt_now = ev_time (); 1952 ev_rt_now = ev_time ();
1429 mn_now = get_clock (); 1953 mn_now = get_clock ();
1430 now_floor = mn_now; 1954 now_floor = mn_now;
1431 } 1955 }
1432 1956
1957 /* no timer adjustment, as the monotonic clock doesn't jump */
1958 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1433# if EV_PERIODIC_ENABLE 1959# if EV_PERIODIC_ENABLE
1434 periodics_reschedule (EV_A); 1960 periodics_reschedule (EV_A);
1435# endif 1961# endif
1436 /* no timer adjustment, as the monotonic clock doesn't jump */
1437 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1438 } 1962 }
1439 else 1963 else
1440#endif 1964#endif
1441 { 1965 {
1442 ev_rt_now = ev_time (); 1966 ev_rt_now = ev_time ();
1443 1967
1444 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 1968 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1445 { 1969 {
1970 /* adjust timers. this is easy, as the offset is the same for all of them */
1971 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1446#if EV_PERIODIC_ENABLE 1972#if EV_PERIODIC_ENABLE
1447 periodics_reschedule (EV_A); 1973 periodics_reschedule (EV_A);
1448#endif 1974#endif
1449 /* adjust timers. this is easy, as the offset is the same for all of them */
1450 for (i = 0; i < timercnt; ++i)
1451 ((WT)timers [i])->at += ev_rt_now - mn_now;
1452 } 1975 }
1453 1976
1454 mn_now = ev_rt_now; 1977 mn_now = ev_rt_now;
1455 } 1978 }
1456} 1979}
1457 1980
1458void
1459ev_ref (EV_P)
1460{
1461 ++activecnt;
1462}
1463
1464void
1465ev_unref (EV_P)
1466{
1467 --activecnt;
1468}
1469
1470static int loop_done; 1981static int loop_done;
1471 1982
1472void 1983void
1473ev_loop (EV_P_ int flags) 1984ev_loop (EV_P_ int flags)
1474{ 1985{
1475 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1986 loop_done = EVUNLOOP_CANCEL;
1476 ? EVUNLOOP_ONE
1477 : EVUNLOOP_CANCEL;
1478 1987
1479 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1988 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1480 1989
1481 do 1990 do
1482 { 1991 {
1992#if EV_VERIFY >= 2
1993 ev_loop_verify (EV_A);
1994#endif
1995
1483#ifndef _WIN32 1996#ifndef _WIN32
1484 if (expect_false (curpid)) /* penalise the forking check even more */ 1997 if (expect_false (curpid)) /* penalise the forking check even more */
1485 if (expect_false (getpid () != curpid)) 1998 if (expect_false (getpid () != curpid))
1486 { 1999 {
1487 curpid = getpid (); 2000 curpid = getpid ();
1504 { 2017 {
1505 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2018 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1506 call_pending (EV_A); 2019 call_pending (EV_A);
1507 } 2020 }
1508 2021
1509 if (expect_false (!activecnt))
1510 break;
1511
1512 /* we might have forked, so reify kernel state if necessary */ 2022 /* we might have forked, so reify kernel state if necessary */
1513 if (expect_false (postfork)) 2023 if (expect_false (postfork))
1514 loop_fork (EV_A); 2024 loop_fork (EV_A);
1515 2025
1516 /* update fd-related kernel structures */ 2026 /* update fd-related kernel structures */
1528 2038
1529 waittime = MAX_BLOCKTIME; 2039 waittime = MAX_BLOCKTIME;
1530 2040
1531 if (timercnt) 2041 if (timercnt)
1532 { 2042 {
1533 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2043 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1534 if (waittime > to) waittime = to; 2044 if (waittime > to) waittime = to;
1535 } 2045 }
1536 2046
1537#if EV_PERIODIC_ENABLE 2047#if EV_PERIODIC_ENABLE
1538 if (periodiccnt) 2048 if (periodiccnt)
1539 { 2049 {
1540 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2050 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1541 if (waittime > to) waittime = to; 2051 if (waittime > to) waittime = to;
1542 } 2052 }
1543#endif 2053#endif
1544 2054
1545 if (expect_false (waittime < timeout_blocktime)) 2055 if (expect_false (waittime < timeout_blocktime))
1578 /* queue check watchers, to be executed first */ 2088 /* queue check watchers, to be executed first */
1579 if (expect_false (checkcnt)) 2089 if (expect_false (checkcnt))
1580 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2090 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1581 2091
1582 call_pending (EV_A); 2092 call_pending (EV_A);
1583
1584 } 2093 }
1585 while (expect_true (activecnt && !loop_done)); 2094 while (expect_true (
2095 activecnt
2096 && !loop_done
2097 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2098 ));
1586 2099
1587 if (loop_done == EVUNLOOP_ONE) 2100 if (loop_done == EVUNLOOP_ONE)
1588 loop_done = EVUNLOOP_CANCEL; 2101 loop_done = EVUNLOOP_CANCEL;
1589} 2102}
1590 2103
1592ev_unloop (EV_P_ int how) 2105ev_unloop (EV_P_ int how)
1593{ 2106{
1594 loop_done = how; 2107 loop_done = how;
1595} 2108}
1596 2109
2110void
2111ev_ref (EV_P)
2112{
2113 ++activecnt;
2114}
2115
2116void
2117ev_unref (EV_P)
2118{
2119 --activecnt;
2120}
2121
2122void
2123ev_now_update (EV_P)
2124{
2125 time_update (EV_A_ 1e100);
2126}
2127
2128void
2129ev_suspend (EV_P)
2130{
2131 ev_now_update (EV_A);
2132}
2133
2134void
2135ev_resume (EV_P)
2136{
2137 ev_tstamp mn_prev = mn_now;
2138
2139 ev_now_update (EV_A);
2140 timers_reschedule (EV_A_ mn_now - mn_prev);
2141#if EV_PERIODIC_ENABLE
2142 periodics_reschedule (EV_A);
2143#endif
2144}
2145
1597/*****************************************************************************/ 2146/*****************************************************************************/
1598 2147
1599void inline_size 2148inline_size void
1600wlist_add (WL *head, WL elem) 2149wlist_add (WL *head, WL elem)
1601{ 2150{
1602 elem->next = *head; 2151 elem->next = *head;
1603 *head = elem; 2152 *head = elem;
1604} 2153}
1605 2154
1606void inline_size 2155inline_size void
1607wlist_del (WL *head, WL elem) 2156wlist_del (WL *head, WL elem)
1608{ 2157{
1609 while (*head) 2158 while (*head)
1610 { 2159 {
1611 if (*head == elem) 2160 if (*head == elem)
1616 2165
1617 head = &(*head)->next; 2166 head = &(*head)->next;
1618 } 2167 }
1619} 2168}
1620 2169
1621void inline_speed 2170inline_speed void
1622clear_pending (EV_P_ W w) 2171clear_pending (EV_P_ W w)
1623{ 2172{
1624 if (w->pending) 2173 if (w->pending)
1625 { 2174 {
1626 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2175 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1643 } 2192 }
1644 else 2193 else
1645 return 0; 2194 return 0;
1646} 2195}
1647 2196
1648void inline_size 2197inline_size void
1649pri_adjust (EV_P_ W w) 2198pri_adjust (EV_P_ W w)
1650{ 2199{
1651 int pri = w->priority; 2200 int pri = w->priority;
1652 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2201 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1653 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2202 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1654 w->priority = pri; 2203 w->priority = pri;
1655} 2204}
1656 2205
1657void inline_speed 2206inline_speed void
1658ev_start (EV_P_ W w, int active) 2207ev_start (EV_P_ W w, int active)
1659{ 2208{
1660 pri_adjust (EV_A_ w); 2209 pri_adjust (EV_A_ w);
1661 w->active = active; 2210 w->active = active;
1662 ev_ref (EV_A); 2211 ev_ref (EV_A);
1663} 2212}
1664 2213
1665void inline_size 2214inline_size void
1666ev_stop (EV_P_ W w) 2215ev_stop (EV_P_ W w)
1667{ 2216{
1668 ev_unref (EV_A); 2217 ev_unref (EV_A);
1669 w->active = 0; 2218 w->active = 0;
1670} 2219}
1677 int fd = w->fd; 2226 int fd = w->fd;
1678 2227
1679 if (expect_false (ev_is_active (w))) 2228 if (expect_false (ev_is_active (w)))
1680 return; 2229 return;
1681 2230
1682 assert (("ev_io_start called with negative fd", fd >= 0)); 2231 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2232 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2233
2234 EV_FREQUENT_CHECK;
1683 2235
1684 ev_start (EV_A_ (W)w, 1); 2236 ev_start (EV_A_ (W)w, 1);
1685 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2237 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1686 wlist_add (&anfds[fd].head, (WL)w); 2238 wlist_add (&anfds[fd].head, (WL)w);
1687 2239
1688 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2240 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1689 w->events &= ~EV_IOFDSET; 2241 w->events &= ~EV__IOFDSET;
2242
2243 EV_FREQUENT_CHECK;
1690} 2244}
1691 2245
1692void noinline 2246void noinline
1693ev_io_stop (EV_P_ ev_io *w) 2247ev_io_stop (EV_P_ ev_io *w)
1694{ 2248{
1695 clear_pending (EV_A_ (W)w); 2249 clear_pending (EV_A_ (W)w);
1696 if (expect_false (!ev_is_active (w))) 2250 if (expect_false (!ev_is_active (w)))
1697 return; 2251 return;
1698 2252
1699 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2253 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2254
2255 EV_FREQUENT_CHECK;
1700 2256
1701 wlist_del (&anfds[w->fd].head, (WL)w); 2257 wlist_del (&anfds[w->fd].head, (WL)w);
1702 ev_stop (EV_A_ (W)w); 2258 ev_stop (EV_A_ (W)w);
1703 2259
1704 fd_change (EV_A_ w->fd, 1); 2260 fd_change (EV_A_ w->fd, 1);
2261
2262 EV_FREQUENT_CHECK;
1705} 2263}
1706 2264
1707void noinline 2265void noinline
1708ev_timer_start (EV_P_ ev_timer *w) 2266ev_timer_start (EV_P_ ev_timer *w)
1709{ 2267{
1710 if (expect_false (ev_is_active (w))) 2268 if (expect_false (ev_is_active (w)))
1711 return; 2269 return;
1712 2270
1713 ((WT)w)->at += mn_now; 2271 ev_at (w) += mn_now;
1714 2272
1715 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2273 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1716 2274
2275 EV_FREQUENT_CHECK;
2276
2277 ++timercnt;
1717 ev_start (EV_A_ (W)w, ++timercnt); 2278 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1718 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2279 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1719 timers [timercnt - 1] = (WT)w; 2280 ANHE_w (timers [ev_active (w)]) = (WT)w;
1720 upheap (timers, timercnt - 1); 2281 ANHE_at_cache (timers [ev_active (w)]);
2282 upheap (timers, ev_active (w));
1721 2283
2284 EV_FREQUENT_CHECK;
2285
1722 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2286 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1723} 2287}
1724 2288
1725void noinline 2289void noinline
1726ev_timer_stop (EV_P_ ev_timer *w) 2290ev_timer_stop (EV_P_ ev_timer *w)
1727{ 2291{
1728 clear_pending (EV_A_ (W)w); 2292 clear_pending (EV_A_ (W)w);
1729 if (expect_false (!ev_is_active (w))) 2293 if (expect_false (!ev_is_active (w)))
1730 return; 2294 return;
1731 2295
1732 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2296 EV_FREQUENT_CHECK;
1733 2297
1734 { 2298 {
1735 int active = ((W)w)->active; 2299 int active = ev_active (w);
1736 2300
2301 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2302
2303 --timercnt;
2304
1737 if (expect_true (--active < --timercnt)) 2305 if (expect_true (active < timercnt + HEAP0))
1738 { 2306 {
1739 timers [active] = timers [timercnt]; 2307 timers [active] = timers [timercnt + HEAP0];
1740 adjustheap (timers, timercnt, active); 2308 adjustheap (timers, timercnt, active);
1741 } 2309 }
1742 } 2310 }
1743 2311
1744 ((WT)w)->at -= mn_now; 2312 EV_FREQUENT_CHECK;
2313
2314 ev_at (w) -= mn_now;
1745 2315
1746 ev_stop (EV_A_ (W)w); 2316 ev_stop (EV_A_ (W)w);
1747} 2317}
1748 2318
1749void noinline 2319void noinline
1750ev_timer_again (EV_P_ ev_timer *w) 2320ev_timer_again (EV_P_ ev_timer *w)
1751{ 2321{
2322 EV_FREQUENT_CHECK;
2323
1752 if (ev_is_active (w)) 2324 if (ev_is_active (w))
1753 { 2325 {
1754 if (w->repeat) 2326 if (w->repeat)
1755 { 2327 {
1756 ((WT)w)->at = mn_now + w->repeat; 2328 ev_at (w) = mn_now + w->repeat;
2329 ANHE_at_cache (timers [ev_active (w)]);
1757 adjustheap (timers, timercnt, ((W)w)->active - 1); 2330 adjustheap (timers, timercnt, ev_active (w));
1758 } 2331 }
1759 else 2332 else
1760 ev_timer_stop (EV_A_ w); 2333 ev_timer_stop (EV_A_ w);
1761 } 2334 }
1762 else if (w->repeat) 2335 else if (w->repeat)
1763 { 2336 {
1764 w->at = w->repeat; 2337 ev_at (w) = w->repeat;
1765 ev_timer_start (EV_A_ w); 2338 ev_timer_start (EV_A_ w);
1766 } 2339 }
2340
2341 EV_FREQUENT_CHECK;
1767} 2342}
1768 2343
1769#if EV_PERIODIC_ENABLE 2344#if EV_PERIODIC_ENABLE
1770void noinline 2345void noinline
1771ev_periodic_start (EV_P_ ev_periodic *w) 2346ev_periodic_start (EV_P_ ev_periodic *w)
1772{ 2347{
1773 if (expect_false (ev_is_active (w))) 2348 if (expect_false (ev_is_active (w)))
1774 return; 2349 return;
1775 2350
1776 if (w->reschedule_cb) 2351 if (w->reschedule_cb)
1777 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2352 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1778 else if (w->interval) 2353 else if (w->interval)
1779 { 2354 {
1780 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2355 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1781 /* this formula differs from the one in periodic_reify because we do not always round up */ 2356 /* this formula differs from the one in periodic_reify because we do not always round up */
1782 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2357 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1783 } 2358 }
1784 else 2359 else
1785 ((WT)w)->at = w->offset; 2360 ev_at (w) = w->offset;
1786 2361
2362 EV_FREQUENT_CHECK;
2363
2364 ++periodiccnt;
1787 ev_start (EV_A_ (W)w, ++periodiccnt); 2365 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1788 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2366 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1789 periodics [periodiccnt - 1] = (WT)w; 2367 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1790 upheap (periodics, periodiccnt - 1); 2368 ANHE_at_cache (periodics [ev_active (w)]);
2369 upheap (periodics, ev_active (w));
1791 2370
2371 EV_FREQUENT_CHECK;
2372
1792 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2373 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1793} 2374}
1794 2375
1795void noinline 2376void noinline
1796ev_periodic_stop (EV_P_ ev_periodic *w) 2377ev_periodic_stop (EV_P_ ev_periodic *w)
1797{ 2378{
1798 clear_pending (EV_A_ (W)w); 2379 clear_pending (EV_A_ (W)w);
1799 if (expect_false (!ev_is_active (w))) 2380 if (expect_false (!ev_is_active (w)))
1800 return; 2381 return;
1801 2382
1802 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2383 EV_FREQUENT_CHECK;
1803 2384
1804 { 2385 {
1805 int active = ((W)w)->active; 2386 int active = ev_active (w);
1806 2387
2388 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2389
2390 --periodiccnt;
2391
1807 if (expect_true (--active < --periodiccnt)) 2392 if (expect_true (active < periodiccnt + HEAP0))
1808 { 2393 {
1809 periodics [active] = periodics [periodiccnt]; 2394 periodics [active] = periodics [periodiccnt + HEAP0];
1810 adjustheap (periodics, periodiccnt, active); 2395 adjustheap (periodics, periodiccnt, active);
1811 } 2396 }
1812 } 2397 }
1813 2398
2399 EV_FREQUENT_CHECK;
2400
1814 ev_stop (EV_A_ (W)w); 2401 ev_stop (EV_A_ (W)w);
1815} 2402}
1816 2403
1817void noinline 2404void noinline
1818ev_periodic_again (EV_P_ ev_periodic *w) 2405ev_periodic_again (EV_P_ ev_periodic *w)
1829 2416
1830void noinline 2417void noinline
1831ev_signal_start (EV_P_ ev_signal *w) 2418ev_signal_start (EV_P_ ev_signal *w)
1832{ 2419{
1833#if EV_MULTIPLICITY 2420#if EV_MULTIPLICITY
1834 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2421 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1835#endif 2422#endif
1836 if (expect_false (ev_is_active (w))) 2423 if (expect_false (ev_is_active (w)))
1837 return; 2424 return;
1838 2425
1839 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2426 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2427
2428 evpipe_init (EV_A);
2429
2430 EV_FREQUENT_CHECK;
1840 2431
1841 { 2432 {
1842#ifndef _WIN32 2433#ifndef _WIN32
1843 sigset_t full, prev; 2434 sigset_t full, prev;
1844 sigfillset (&full); 2435 sigfillset (&full);
1845 sigprocmask (SIG_SETMASK, &full, &prev); 2436 sigprocmask (SIG_SETMASK, &full, &prev);
1846#endif 2437#endif
1847 2438
1848 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2439 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
1849 2440
1850#ifndef _WIN32 2441#ifndef _WIN32
1851 sigprocmask (SIG_SETMASK, &prev, 0); 2442 sigprocmask (SIG_SETMASK, &prev, 0);
1852#endif 2443#endif
1853 } 2444 }
1856 wlist_add (&signals [w->signum - 1].head, (WL)w); 2447 wlist_add (&signals [w->signum - 1].head, (WL)w);
1857 2448
1858 if (!((WL)w)->next) 2449 if (!((WL)w)->next)
1859 { 2450 {
1860#if _WIN32 2451#if _WIN32
1861 signal (w->signum, sighandler); 2452 signal (w->signum, ev_sighandler);
1862#else 2453#else
1863 struct sigaction sa; 2454 struct sigaction sa;
1864 sa.sa_handler = sighandler; 2455 sa.sa_handler = ev_sighandler;
1865 sigfillset (&sa.sa_mask); 2456 sigfillset (&sa.sa_mask);
1866 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2457 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1867 sigaction (w->signum, &sa, 0); 2458 sigaction (w->signum, &sa, 0);
1868#endif 2459#endif
1869 } 2460 }
2461
2462 EV_FREQUENT_CHECK;
1870} 2463}
1871 2464
1872void noinline 2465void noinline
1873ev_signal_stop (EV_P_ ev_signal *w) 2466ev_signal_stop (EV_P_ ev_signal *w)
1874{ 2467{
1875 clear_pending (EV_A_ (W)w); 2468 clear_pending (EV_A_ (W)w);
1876 if (expect_false (!ev_is_active (w))) 2469 if (expect_false (!ev_is_active (w)))
1877 return; 2470 return;
1878 2471
2472 EV_FREQUENT_CHECK;
2473
1879 wlist_del (&signals [w->signum - 1].head, (WL)w); 2474 wlist_del (&signals [w->signum - 1].head, (WL)w);
1880 ev_stop (EV_A_ (W)w); 2475 ev_stop (EV_A_ (W)w);
1881 2476
1882 if (!signals [w->signum - 1].head) 2477 if (!signals [w->signum - 1].head)
1883 signal (w->signum, SIG_DFL); 2478 signal (w->signum, SIG_DFL);
2479
2480 EV_FREQUENT_CHECK;
1884} 2481}
1885 2482
1886void 2483void
1887ev_child_start (EV_P_ ev_child *w) 2484ev_child_start (EV_P_ ev_child *w)
1888{ 2485{
1889#if EV_MULTIPLICITY 2486#if EV_MULTIPLICITY
1890 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2487 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1891#endif 2488#endif
1892 if (expect_false (ev_is_active (w))) 2489 if (expect_false (ev_is_active (w)))
1893 return; 2490 return;
1894 2491
2492 EV_FREQUENT_CHECK;
2493
1895 ev_start (EV_A_ (W)w, 1); 2494 ev_start (EV_A_ (W)w, 1);
1896 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2495 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2496
2497 EV_FREQUENT_CHECK;
1897} 2498}
1898 2499
1899void 2500void
1900ev_child_stop (EV_P_ ev_child *w) 2501ev_child_stop (EV_P_ ev_child *w)
1901{ 2502{
1902 clear_pending (EV_A_ (W)w); 2503 clear_pending (EV_A_ (W)w);
1903 if (expect_false (!ev_is_active (w))) 2504 if (expect_false (!ev_is_active (w)))
1904 return; 2505 return;
1905 2506
2507 EV_FREQUENT_CHECK;
2508
1906 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2509 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1907 ev_stop (EV_A_ (W)w); 2510 ev_stop (EV_A_ (W)w);
2511
2512 EV_FREQUENT_CHECK;
1908} 2513}
1909 2514
1910#if EV_STAT_ENABLE 2515#if EV_STAT_ENABLE
1911 2516
1912# ifdef _WIN32 2517# ifdef _WIN32
1913# undef lstat 2518# undef lstat
1914# define lstat(a,b) _stati64 (a,b) 2519# define lstat(a,b) _stati64 (a,b)
1915# endif 2520# endif
1916 2521
1917#define DEF_STAT_INTERVAL 5.0074891 2522#define DEF_STAT_INTERVAL 5.0074891
2523#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1918#define MIN_STAT_INTERVAL 0.1074891 2524#define MIN_STAT_INTERVAL 0.1074891
1919 2525
1920static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2526static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1921 2527
1922#if EV_USE_INOTIFY 2528#if EV_USE_INOTIFY
1923# define EV_INOTIFY_BUFSIZE 8192 2529# define EV_INOTIFY_BUFSIZE 8192
1927{ 2533{
1928 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2534 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1929 2535
1930 if (w->wd < 0) 2536 if (w->wd < 0)
1931 { 2537 {
2538 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1932 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2539 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1933 2540
1934 /* monitor some parent directory for speedup hints */ 2541 /* monitor some parent directory for speedup hints */
2542 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2543 /* but an efficiency issue only */
1935 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2544 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1936 { 2545 {
1937 char path [4096]; 2546 char path [4096];
1938 strcpy (path, w->path); 2547 strcpy (path, w->path);
1939 2548
1942 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2551 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1943 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2552 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1944 2553
1945 char *pend = strrchr (path, '/'); 2554 char *pend = strrchr (path, '/');
1946 2555
1947 if (!pend) 2556 if (!pend || pend == path)
1948 break; /* whoops, no '/', complain to your admin */ 2557 break;
1949 2558
1950 *pend = 0; 2559 *pend = 0;
1951 w->wd = inotify_add_watch (fs_fd, path, mask); 2560 w->wd = inotify_add_watch (fs_fd, path, mask);
1952 } 2561 }
1953 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2562 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1954 } 2563 }
1955 } 2564 }
1956 else
1957 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1958 2565
1959 if (w->wd >= 0) 2566 if (w->wd >= 0)
2567 {
1960 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2568 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2569
2570 /* now local changes will be tracked by inotify, but remote changes won't */
2571 /* unless the filesystem it known to be local, we therefore still poll */
2572 /* also do poll on <2.6.25, but with normal frequency */
2573 struct statfs sfs;
2574
2575 if (fs_2625 && !statfs (w->path, &sfs))
2576 if (sfs.f_type == 0x1373 /* devfs */
2577 || sfs.f_type == 0xEF53 /* ext2/3 */
2578 || sfs.f_type == 0x3153464a /* jfs */
2579 || sfs.f_type == 0x52654973 /* reiser3 */
2580 || sfs.f_type == 0x01021994 /* tempfs */
2581 || sfs.f_type == 0x58465342 /* xfs */)
2582 return;
2583
2584 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2585 ev_timer_again (EV_A_ &w->timer);
2586 }
1961} 2587}
1962 2588
1963static void noinline 2589static void noinline
1964infy_del (EV_P_ ev_stat *w) 2590infy_del (EV_P_ ev_stat *w)
1965{ 2591{
1979 2605
1980static void noinline 2606static void noinline
1981infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2607infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1982{ 2608{
1983 if (slot < 0) 2609 if (slot < 0)
1984 /* overflow, need to check for all hahs slots */ 2610 /* overflow, need to check for all hash slots */
1985 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2611 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1986 infy_wd (EV_A_ slot, wd, ev); 2612 infy_wd (EV_A_ slot, wd, ev);
1987 else 2613 else
1988 { 2614 {
1989 WL w_; 2615 WL w_;
1995 2621
1996 if (w->wd == wd || wd == -1) 2622 if (w->wd == wd || wd == -1)
1997 { 2623 {
1998 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2624 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1999 { 2625 {
2626 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2000 w->wd = -1; 2627 w->wd = -1;
2001 infy_add (EV_A_ w); /* re-add, no matter what */ 2628 infy_add (EV_A_ w); /* re-add, no matter what */
2002 } 2629 }
2003 2630
2004 stat_timer_cb (EV_A_ &w->timer, 0); 2631 stat_timer_cb (EV_A_ &w->timer, 0);
2017 2644
2018 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2645 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2019 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2646 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2020} 2647}
2021 2648
2022void inline_size 2649inline_size void
2650check_2625 (EV_P)
2651{
2652 /* kernels < 2.6.25 are borked
2653 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2654 */
2655 struct utsname buf;
2656 int major, minor, micro;
2657
2658 if (uname (&buf))
2659 return;
2660
2661 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2662 return;
2663
2664 if (major < 2
2665 || (major == 2 && minor < 6)
2666 || (major == 2 && minor == 6 && micro < 25))
2667 return;
2668
2669 fs_2625 = 1;
2670}
2671
2672inline_size void
2023infy_init (EV_P) 2673infy_init (EV_P)
2024{ 2674{
2025 if (fs_fd != -2) 2675 if (fs_fd != -2)
2026 return; 2676 return;
2677
2678 fs_fd = -1;
2679
2680 check_2625 (EV_A);
2027 2681
2028 fs_fd = inotify_init (); 2682 fs_fd = inotify_init ();
2029 2683
2030 if (fs_fd >= 0) 2684 if (fs_fd >= 0)
2031 { 2685 {
2033 ev_set_priority (&fs_w, EV_MAXPRI); 2687 ev_set_priority (&fs_w, EV_MAXPRI);
2034 ev_io_start (EV_A_ &fs_w); 2688 ev_io_start (EV_A_ &fs_w);
2035 } 2689 }
2036} 2690}
2037 2691
2038void inline_size 2692inline_size void
2039infy_fork (EV_P) 2693infy_fork (EV_P)
2040{ 2694{
2041 int slot; 2695 int slot;
2042 2696
2043 if (fs_fd < 0) 2697 if (fs_fd < 0)
2059 w->wd = -1; 2713 w->wd = -1;
2060 2714
2061 if (fs_fd >= 0) 2715 if (fs_fd >= 0)
2062 infy_add (EV_A_ w); /* re-add, no matter what */ 2716 infy_add (EV_A_ w); /* re-add, no matter what */
2063 else 2717 else
2064 ev_timer_start (EV_A_ &w->timer); 2718 ev_timer_again (EV_A_ &w->timer);
2065 } 2719 }
2066
2067 } 2720 }
2068} 2721}
2069 2722
2723#endif
2724
2725#ifdef _WIN32
2726# define EV_LSTAT(p,b) _stati64 (p, b)
2727#else
2728# define EV_LSTAT(p,b) lstat (p, b)
2070#endif 2729#endif
2071 2730
2072void 2731void
2073ev_stat_stat (EV_P_ ev_stat *w) 2732ev_stat_stat (EV_P_ ev_stat *w)
2074{ 2733{
2101 || w->prev.st_atime != w->attr.st_atime 2760 || w->prev.st_atime != w->attr.st_atime
2102 || w->prev.st_mtime != w->attr.st_mtime 2761 || w->prev.st_mtime != w->attr.st_mtime
2103 || w->prev.st_ctime != w->attr.st_ctime 2762 || w->prev.st_ctime != w->attr.st_ctime
2104 ) { 2763 ) {
2105 #if EV_USE_INOTIFY 2764 #if EV_USE_INOTIFY
2765 if (fs_fd >= 0)
2766 {
2106 infy_del (EV_A_ w); 2767 infy_del (EV_A_ w);
2107 infy_add (EV_A_ w); 2768 infy_add (EV_A_ w);
2108 ev_stat_stat (EV_A_ w); /* avoid race... */ 2769 ev_stat_stat (EV_A_ w); /* avoid race... */
2770 }
2109 #endif 2771 #endif
2110 2772
2111 ev_feed_event (EV_A_ w, EV_STAT); 2773 ev_feed_event (EV_A_ w, EV_STAT);
2112 } 2774 }
2113} 2775}
2116ev_stat_start (EV_P_ ev_stat *w) 2778ev_stat_start (EV_P_ ev_stat *w)
2117{ 2779{
2118 if (expect_false (ev_is_active (w))) 2780 if (expect_false (ev_is_active (w)))
2119 return; 2781 return;
2120 2782
2121 /* since we use memcmp, we need to clear any padding data etc. */
2122 memset (&w->prev, 0, sizeof (ev_statdata));
2123 memset (&w->attr, 0, sizeof (ev_statdata));
2124
2125 ev_stat_stat (EV_A_ w); 2783 ev_stat_stat (EV_A_ w);
2126 2784
2785 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2127 if (w->interval < MIN_STAT_INTERVAL) 2786 w->interval = MIN_STAT_INTERVAL;
2128 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2129 2787
2130 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2788 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2131 ev_set_priority (&w->timer, ev_priority (w)); 2789 ev_set_priority (&w->timer, ev_priority (w));
2132 2790
2133#if EV_USE_INOTIFY 2791#if EV_USE_INOTIFY
2134 infy_init (EV_A); 2792 infy_init (EV_A);
2135 2793
2136 if (fs_fd >= 0) 2794 if (fs_fd >= 0)
2137 infy_add (EV_A_ w); 2795 infy_add (EV_A_ w);
2138 else 2796 else
2139#endif 2797#endif
2140 ev_timer_start (EV_A_ &w->timer); 2798 ev_timer_again (EV_A_ &w->timer);
2141 2799
2142 ev_start (EV_A_ (W)w, 1); 2800 ev_start (EV_A_ (W)w, 1);
2801
2802 EV_FREQUENT_CHECK;
2143} 2803}
2144 2804
2145void 2805void
2146ev_stat_stop (EV_P_ ev_stat *w) 2806ev_stat_stop (EV_P_ ev_stat *w)
2147{ 2807{
2148 clear_pending (EV_A_ (W)w); 2808 clear_pending (EV_A_ (W)w);
2149 if (expect_false (!ev_is_active (w))) 2809 if (expect_false (!ev_is_active (w)))
2150 return; 2810 return;
2151 2811
2812 EV_FREQUENT_CHECK;
2813
2152#if EV_USE_INOTIFY 2814#if EV_USE_INOTIFY
2153 infy_del (EV_A_ w); 2815 infy_del (EV_A_ w);
2154#endif 2816#endif
2155 ev_timer_stop (EV_A_ &w->timer); 2817 ev_timer_stop (EV_A_ &w->timer);
2156 2818
2157 ev_stop (EV_A_ (W)w); 2819 ev_stop (EV_A_ (W)w);
2820
2821 EV_FREQUENT_CHECK;
2158} 2822}
2159#endif 2823#endif
2160 2824
2161#if EV_IDLE_ENABLE 2825#if EV_IDLE_ENABLE
2162void 2826void
2164{ 2828{
2165 if (expect_false (ev_is_active (w))) 2829 if (expect_false (ev_is_active (w)))
2166 return; 2830 return;
2167 2831
2168 pri_adjust (EV_A_ (W)w); 2832 pri_adjust (EV_A_ (W)w);
2833
2834 EV_FREQUENT_CHECK;
2169 2835
2170 { 2836 {
2171 int active = ++idlecnt [ABSPRI (w)]; 2837 int active = ++idlecnt [ABSPRI (w)];
2172 2838
2173 ++idleall; 2839 ++idleall;
2174 ev_start (EV_A_ (W)w, active); 2840 ev_start (EV_A_ (W)w, active);
2175 2841
2176 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2842 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2177 idles [ABSPRI (w)][active - 1] = w; 2843 idles [ABSPRI (w)][active - 1] = w;
2178 } 2844 }
2845
2846 EV_FREQUENT_CHECK;
2179} 2847}
2180 2848
2181void 2849void
2182ev_idle_stop (EV_P_ ev_idle *w) 2850ev_idle_stop (EV_P_ ev_idle *w)
2183{ 2851{
2184 clear_pending (EV_A_ (W)w); 2852 clear_pending (EV_A_ (W)w);
2185 if (expect_false (!ev_is_active (w))) 2853 if (expect_false (!ev_is_active (w)))
2186 return; 2854 return;
2187 2855
2856 EV_FREQUENT_CHECK;
2857
2188 { 2858 {
2189 int active = ((W)w)->active; 2859 int active = ev_active (w);
2190 2860
2191 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2861 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2192 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2862 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2193 2863
2194 ev_stop (EV_A_ (W)w); 2864 ev_stop (EV_A_ (W)w);
2195 --idleall; 2865 --idleall;
2196 } 2866 }
2867
2868 EV_FREQUENT_CHECK;
2197} 2869}
2198#endif 2870#endif
2199 2871
2200void 2872void
2201ev_prepare_start (EV_P_ ev_prepare *w) 2873ev_prepare_start (EV_P_ ev_prepare *w)
2202{ 2874{
2203 if (expect_false (ev_is_active (w))) 2875 if (expect_false (ev_is_active (w)))
2204 return; 2876 return;
2877
2878 EV_FREQUENT_CHECK;
2205 2879
2206 ev_start (EV_A_ (W)w, ++preparecnt); 2880 ev_start (EV_A_ (W)w, ++preparecnt);
2207 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2881 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2208 prepares [preparecnt - 1] = w; 2882 prepares [preparecnt - 1] = w;
2883
2884 EV_FREQUENT_CHECK;
2209} 2885}
2210 2886
2211void 2887void
2212ev_prepare_stop (EV_P_ ev_prepare *w) 2888ev_prepare_stop (EV_P_ ev_prepare *w)
2213{ 2889{
2214 clear_pending (EV_A_ (W)w); 2890 clear_pending (EV_A_ (W)w);
2215 if (expect_false (!ev_is_active (w))) 2891 if (expect_false (!ev_is_active (w)))
2216 return; 2892 return;
2217 2893
2894 EV_FREQUENT_CHECK;
2895
2218 { 2896 {
2219 int active = ((W)w)->active; 2897 int active = ev_active (w);
2898
2220 prepares [active - 1] = prepares [--preparecnt]; 2899 prepares [active - 1] = prepares [--preparecnt];
2221 ((W)prepares [active - 1])->active = active; 2900 ev_active (prepares [active - 1]) = active;
2222 } 2901 }
2223 2902
2224 ev_stop (EV_A_ (W)w); 2903 ev_stop (EV_A_ (W)w);
2904
2905 EV_FREQUENT_CHECK;
2225} 2906}
2226 2907
2227void 2908void
2228ev_check_start (EV_P_ ev_check *w) 2909ev_check_start (EV_P_ ev_check *w)
2229{ 2910{
2230 if (expect_false (ev_is_active (w))) 2911 if (expect_false (ev_is_active (w)))
2231 return; 2912 return;
2913
2914 EV_FREQUENT_CHECK;
2232 2915
2233 ev_start (EV_A_ (W)w, ++checkcnt); 2916 ev_start (EV_A_ (W)w, ++checkcnt);
2234 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2917 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2235 checks [checkcnt - 1] = w; 2918 checks [checkcnt - 1] = w;
2919
2920 EV_FREQUENT_CHECK;
2236} 2921}
2237 2922
2238void 2923void
2239ev_check_stop (EV_P_ ev_check *w) 2924ev_check_stop (EV_P_ ev_check *w)
2240{ 2925{
2241 clear_pending (EV_A_ (W)w); 2926 clear_pending (EV_A_ (W)w);
2242 if (expect_false (!ev_is_active (w))) 2927 if (expect_false (!ev_is_active (w)))
2243 return; 2928 return;
2244 2929
2930 EV_FREQUENT_CHECK;
2931
2245 { 2932 {
2246 int active = ((W)w)->active; 2933 int active = ev_active (w);
2934
2247 checks [active - 1] = checks [--checkcnt]; 2935 checks [active - 1] = checks [--checkcnt];
2248 ((W)checks [active - 1])->active = active; 2936 ev_active (checks [active - 1]) = active;
2249 } 2937 }
2250 2938
2251 ev_stop (EV_A_ (W)w); 2939 ev_stop (EV_A_ (W)w);
2940
2941 EV_FREQUENT_CHECK;
2252} 2942}
2253 2943
2254#if EV_EMBED_ENABLE 2944#if EV_EMBED_ENABLE
2255void noinline 2945void noinline
2256ev_embed_sweep (EV_P_ ev_embed *w) 2946ev_embed_sweep (EV_P_ ev_embed *w)
2264 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2954 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2265 2955
2266 if (ev_cb (w)) 2956 if (ev_cb (w))
2267 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2957 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2268 else 2958 else
2269 ev_embed_sweep (loop, w); 2959 ev_loop (w->other, EVLOOP_NONBLOCK);
2270} 2960}
2271 2961
2272static void 2962static void
2273embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 2963embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2274{ 2964{
2275 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 2965 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2276 2966
2277 fd_reify (w->other); 2967 {
2968 struct ev_loop *loop = w->other;
2969
2970 while (fdchangecnt)
2971 {
2972 fd_reify (EV_A);
2973 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2974 }
2975 }
2278} 2976}
2977
2978static void
2979embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2980{
2981 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2982
2983 ev_embed_stop (EV_A_ w);
2984
2985 {
2986 struct ev_loop *loop = w->other;
2987
2988 ev_loop_fork (EV_A);
2989 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2990 }
2991
2992 ev_embed_start (EV_A_ w);
2993}
2994
2995#if 0
2996static void
2997embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2998{
2999 ev_idle_stop (EV_A_ idle);
3000}
3001#endif
2279 3002
2280void 3003void
2281ev_embed_start (EV_P_ ev_embed *w) 3004ev_embed_start (EV_P_ ev_embed *w)
2282{ 3005{
2283 if (expect_false (ev_is_active (w))) 3006 if (expect_false (ev_is_active (w)))
2284 return; 3007 return;
2285 3008
2286 { 3009 {
2287 struct ev_loop *loop = w->other; 3010 struct ev_loop *loop = w->other;
2288 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3011 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2289 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3012 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2290 } 3013 }
3014
3015 EV_FREQUENT_CHECK;
2291 3016
2292 ev_set_priority (&w->io, ev_priority (w)); 3017 ev_set_priority (&w->io, ev_priority (w));
2293 ev_io_start (EV_A_ &w->io); 3018 ev_io_start (EV_A_ &w->io);
2294 3019
2295 ev_prepare_init (&w->prepare, embed_prepare_cb); 3020 ev_prepare_init (&w->prepare, embed_prepare_cb);
2296 ev_set_priority (&w->prepare, EV_MINPRI); 3021 ev_set_priority (&w->prepare, EV_MINPRI);
2297 ev_prepare_start (EV_A_ &w->prepare); 3022 ev_prepare_start (EV_A_ &w->prepare);
2298 3023
3024 ev_fork_init (&w->fork, embed_fork_cb);
3025 ev_fork_start (EV_A_ &w->fork);
3026
3027 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3028
2299 ev_start (EV_A_ (W)w, 1); 3029 ev_start (EV_A_ (W)w, 1);
3030
3031 EV_FREQUENT_CHECK;
2300} 3032}
2301 3033
2302void 3034void
2303ev_embed_stop (EV_P_ ev_embed *w) 3035ev_embed_stop (EV_P_ ev_embed *w)
2304{ 3036{
2305 clear_pending (EV_A_ (W)w); 3037 clear_pending (EV_A_ (W)w);
2306 if (expect_false (!ev_is_active (w))) 3038 if (expect_false (!ev_is_active (w)))
2307 return; 3039 return;
2308 3040
3041 EV_FREQUENT_CHECK;
3042
2309 ev_io_stop (EV_A_ &w->io); 3043 ev_io_stop (EV_A_ &w->io);
2310 ev_prepare_stop (EV_A_ &w->prepare); 3044 ev_prepare_stop (EV_A_ &w->prepare);
3045 ev_fork_stop (EV_A_ &w->fork);
2311 3046
2312 ev_stop (EV_A_ (W)w); 3047 EV_FREQUENT_CHECK;
2313} 3048}
2314#endif 3049#endif
2315 3050
2316#if EV_FORK_ENABLE 3051#if EV_FORK_ENABLE
2317void 3052void
2318ev_fork_start (EV_P_ ev_fork *w) 3053ev_fork_start (EV_P_ ev_fork *w)
2319{ 3054{
2320 if (expect_false (ev_is_active (w))) 3055 if (expect_false (ev_is_active (w)))
2321 return; 3056 return;
3057
3058 EV_FREQUENT_CHECK;
2322 3059
2323 ev_start (EV_A_ (W)w, ++forkcnt); 3060 ev_start (EV_A_ (W)w, ++forkcnt);
2324 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3061 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2325 forks [forkcnt - 1] = w; 3062 forks [forkcnt - 1] = w;
3063
3064 EV_FREQUENT_CHECK;
2326} 3065}
2327 3066
2328void 3067void
2329ev_fork_stop (EV_P_ ev_fork *w) 3068ev_fork_stop (EV_P_ ev_fork *w)
2330{ 3069{
2331 clear_pending (EV_A_ (W)w); 3070 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w))) 3071 if (expect_false (!ev_is_active (w)))
2333 return; 3072 return;
2334 3073
3074 EV_FREQUENT_CHECK;
3075
2335 { 3076 {
2336 int active = ((W)w)->active; 3077 int active = ev_active (w);
3078
2337 forks [active - 1] = forks [--forkcnt]; 3079 forks [active - 1] = forks [--forkcnt];
2338 ((W)forks [active - 1])->active = active; 3080 ev_active (forks [active - 1]) = active;
2339 } 3081 }
2340 3082
2341 ev_stop (EV_A_ (W)w); 3083 ev_stop (EV_A_ (W)w);
3084
3085 EV_FREQUENT_CHECK;
3086}
3087#endif
3088
3089#if EV_ASYNC_ENABLE
3090void
3091ev_async_start (EV_P_ ev_async *w)
3092{
3093 if (expect_false (ev_is_active (w)))
3094 return;
3095
3096 evpipe_init (EV_A);
3097
3098 EV_FREQUENT_CHECK;
3099
3100 ev_start (EV_A_ (W)w, ++asynccnt);
3101 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3102 asyncs [asynccnt - 1] = w;
3103
3104 EV_FREQUENT_CHECK;
3105}
3106
3107void
3108ev_async_stop (EV_P_ ev_async *w)
3109{
3110 clear_pending (EV_A_ (W)w);
3111 if (expect_false (!ev_is_active (w)))
3112 return;
3113
3114 EV_FREQUENT_CHECK;
3115
3116 {
3117 int active = ev_active (w);
3118
3119 asyncs [active - 1] = asyncs [--asynccnt];
3120 ev_active (asyncs [active - 1]) = active;
3121 }
3122
3123 ev_stop (EV_A_ (W)w);
3124
3125 EV_FREQUENT_CHECK;
3126}
3127
3128void
3129ev_async_send (EV_P_ ev_async *w)
3130{
3131 w->sent = 1;
3132 evpipe_write (EV_A_ &gotasync);
2342} 3133}
2343#endif 3134#endif
2344 3135
2345/*****************************************************************************/ 3136/*****************************************************************************/
2346 3137
2356once_cb (EV_P_ struct ev_once *once, int revents) 3147once_cb (EV_P_ struct ev_once *once, int revents)
2357{ 3148{
2358 void (*cb)(int revents, void *arg) = once->cb; 3149 void (*cb)(int revents, void *arg) = once->cb;
2359 void *arg = once->arg; 3150 void *arg = once->arg;
2360 3151
2361 ev_io_stop (EV_A_ &once->io); 3152 ev_io_stop (EV_A_ &once->io);
2362 ev_timer_stop (EV_A_ &once->to); 3153 ev_timer_stop (EV_A_ &once->to);
2363 ev_free (once); 3154 ev_free (once);
2364 3155
2365 cb (revents, arg); 3156 cb (revents, arg);
2366} 3157}
2367 3158
2368static void 3159static void
2369once_cb_io (EV_P_ ev_io *w, int revents) 3160once_cb_io (EV_P_ ev_io *w, int revents)
2370{ 3161{
2371 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3162 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3163
3164 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2372} 3165}
2373 3166
2374static void 3167static void
2375once_cb_to (EV_P_ ev_timer *w, int revents) 3168once_cb_to (EV_P_ ev_timer *w, int revents)
2376{ 3169{
2377 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3170 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3171
3172 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2378} 3173}
2379 3174
2380void 3175void
2381ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3176ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2382{ 3177{
2404 ev_timer_set (&once->to, timeout, 0.); 3199 ev_timer_set (&once->to, timeout, 0.);
2405 ev_timer_start (EV_A_ &once->to); 3200 ev_timer_start (EV_A_ &once->to);
2406 } 3201 }
2407} 3202}
2408 3203
3204/*****************************************************************************/
3205
3206#if 0
3207void
3208ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3209{
3210 int i, j;
3211 ev_watcher_list *wl, *wn;
3212
3213 if (types & (EV_IO | EV_EMBED))
3214 for (i = 0; i < anfdmax; ++i)
3215 for (wl = anfds [i].head; wl; )
3216 {
3217 wn = wl->next;
3218
3219#if EV_EMBED_ENABLE
3220 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3221 {
3222 if (types & EV_EMBED)
3223 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3224 }
3225 else
3226#endif
3227#if EV_USE_INOTIFY
3228 if (ev_cb ((ev_io *)wl) == infy_cb)
3229 ;
3230 else
3231#endif
3232 if ((ev_io *)wl != &pipeev)
3233 if (types & EV_IO)
3234 cb (EV_A_ EV_IO, wl);
3235
3236 wl = wn;
3237 }
3238
3239 if (types & (EV_TIMER | EV_STAT))
3240 for (i = timercnt + HEAP0; i-- > HEAP0; )
3241#if EV_STAT_ENABLE
3242 /*TODO: timer is not always active*/
3243 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3244 {
3245 if (types & EV_STAT)
3246 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3247 }
3248 else
3249#endif
3250 if (types & EV_TIMER)
3251 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3252
3253#if EV_PERIODIC_ENABLE
3254 if (types & EV_PERIODIC)
3255 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3256 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3257#endif
3258
3259#if EV_IDLE_ENABLE
3260 if (types & EV_IDLE)
3261 for (j = NUMPRI; i--; )
3262 for (i = idlecnt [j]; i--; )
3263 cb (EV_A_ EV_IDLE, idles [j][i]);
3264#endif
3265
3266#if EV_FORK_ENABLE
3267 if (types & EV_FORK)
3268 for (i = forkcnt; i--; )
3269 if (ev_cb (forks [i]) != embed_fork_cb)
3270 cb (EV_A_ EV_FORK, forks [i]);
3271#endif
3272
3273#if EV_ASYNC_ENABLE
3274 if (types & EV_ASYNC)
3275 for (i = asynccnt; i--; )
3276 cb (EV_A_ EV_ASYNC, asyncs [i]);
3277#endif
3278
3279 if (types & EV_PREPARE)
3280 for (i = preparecnt; i--; )
3281#if EV_EMBED_ENABLE
3282 if (ev_cb (prepares [i]) != embed_prepare_cb)
3283#endif
3284 cb (EV_A_ EV_PREPARE, prepares [i]);
3285
3286 if (types & EV_CHECK)
3287 for (i = checkcnt; i--; )
3288 cb (EV_A_ EV_CHECK, checks [i]);
3289
3290 if (types & EV_SIGNAL)
3291 for (i = 0; i < signalmax; ++i)
3292 for (wl = signals [i].head; wl; )
3293 {
3294 wn = wl->next;
3295 cb (EV_A_ EV_SIGNAL, wl);
3296 wl = wn;
3297 }
3298
3299 if (types & EV_CHILD)
3300 for (i = EV_PID_HASHSIZE; i--; )
3301 for (wl = childs [i]; wl; )
3302 {
3303 wn = wl->next;
3304 cb (EV_A_ EV_CHILD, wl);
3305 wl = wn;
3306 }
3307/* EV_STAT 0x00001000 /* stat data changed */
3308/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3309}
3310#endif
3311
2409#if EV_MULTIPLICITY 3312#if EV_MULTIPLICITY
2410 #include "ev_wrap.h" 3313 #include "ev_wrap.h"
2411#endif 3314#endif
2412 3315
2413#ifdef __cplusplus 3316#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines