ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.197 by root, Sat Dec 22 15:20:13 2007 UTC vs.
Revision 1.287 by root, Mon Apr 20 19:45:58 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
63
43# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
46# endif 67# endif
47# ifndef EV_USE_REALTIME 68# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 0
49# endif 70# endif
50# else 71# else
51# ifndef EV_USE_MONOTONIC 72# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 73# define EV_USE_MONOTONIC 0
53# endif 74# endif
110# else 131# else
111# define EV_USE_INOTIFY 0 132# define EV_USE_INOTIFY 0
112# endif 133# endif
113# endif 134# endif
114 135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
115#endif 144#endif
116 145
117#include <math.h> 146#include <math.h>
118#include <stdlib.h> 147#include <stdlib.h>
119#include <fcntl.h> 148#include <fcntl.h>
137#ifndef _WIN32 166#ifndef _WIN32
138# include <sys/time.h> 167# include <sys/time.h>
139# include <sys/wait.h> 168# include <sys/wait.h>
140# include <unistd.h> 169# include <unistd.h>
141#else 170#else
171# include <io.h>
142# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
143# include <windows.h> 173# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
146# endif 176# endif
147#endif 177#endif
148 178
149/**/ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
150 188
151#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
152# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif
153#endif 195#endif
154 196
155#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
157#endif 199#endif
158 200
159#ifndef EV_USE_NANOSLEEP 201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
160# define EV_USE_NANOSLEEP 0 205# define EV_USE_NANOSLEEP 0
206# endif
161#endif 207#endif
162 208
163#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
164# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
165#endif 211#endif
171# define EV_USE_POLL 1 217# define EV_USE_POLL 1
172# endif 218# endif
173#endif 219#endif
174 220
175#ifndef EV_USE_EPOLL 221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
176# define EV_USE_EPOLL 0 225# define EV_USE_EPOLL 0
226# endif
177#endif 227#endif
178 228
179#ifndef EV_USE_KQUEUE 229#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 230# define EV_USE_KQUEUE 0
181#endif 231#endif
183#ifndef EV_USE_PORT 233#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 234# define EV_USE_PORT 0
185#endif 235#endif
186 236
187#ifndef EV_USE_INOTIFY 237#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1
240# else
188# define EV_USE_INOTIFY 0 241# define EV_USE_INOTIFY 0
242# endif
189#endif 243#endif
190 244
191#ifndef EV_PID_HASHSIZE 245#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 246# if EV_MINIMAL
193# define EV_PID_HASHSIZE 1 247# define EV_PID_HASHSIZE 1
202# else 256# else
203# define EV_INOTIFY_HASHSIZE 16 257# define EV_INOTIFY_HASHSIZE 16
204# endif 258# endif
205#endif 259#endif
206 260
207/**/ 261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
208 288
209#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
212#endif 292#endif
226# include <sys/select.h> 306# include <sys/select.h>
227# endif 307# endif
228#endif 308#endif
229 309
230#if EV_USE_INOTIFY 310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
231# include <sys/inotify.h> 313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
232#endif 319#endif
233 320
234#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h> 322# include <winsock.h>
236#endif 323#endif
237 324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
339# endif
340int eventfd (unsigned int initval, int flags);
341# ifdef __cplusplus
342}
343# endif
344#endif
345
238/**/ 346/**/
347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
239 353
240/* 354/*
241 * This is used to avoid floating point rounding problems. 355 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics 356 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding 357 * to ensure progress, time-wise, even when rounding
255# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
256# define noinline __attribute__ ((noinline)) 370# define noinline __attribute__ ((noinline))
257#else 371#else
258# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
259# define noinline 373# define noinline
260# if __STDC_VERSION__ < 199901L 374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
261# define inline 375# define inline
262# endif 376# endif
263#endif 377#endif
264 378
265#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
280 394
281typedef ev_watcher *W; 395typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
284 398
399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_REALTIME
285/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
286/* giving it a reasonably high chance of working on typical architetcures */ 404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
287static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif
288 411
289#ifdef _WIN32 412#ifdef _WIN32
290# include "ev_win32.c" 413# include "ev_win32.c"
291#endif 414#endif
292 415
299{ 422{
300 syserr_cb = cb; 423 syserr_cb = cb;
301} 424}
302 425
303static void noinline 426static void noinline
304syserr (const char *msg) 427ev_syserr (const char *msg)
305{ 428{
306 if (!msg) 429 if (!msg)
307 msg = "(libev) system error"; 430 msg = "(libev) system error";
308 431
309 if (syserr_cb) 432 if (syserr_cb)
313 perror (msg); 436 perror (msg);
314 abort (); 437 abort ();
315 } 438 }
316} 439}
317 440
441static void *
442ev_realloc_emul (void *ptr, long size)
443{
444 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and
446 * the single unix specification, so work around them here.
447 */
448
449 if (size)
450 return realloc (ptr, size);
451
452 free (ptr);
453 return 0;
454}
455
318static void *(*alloc)(void *ptr, long size); 456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
319 457
320void 458void
321ev_set_allocator (void *(*cb)(void *ptr, long size)) 459ev_set_allocator (void *(*cb)(void *ptr, long size))
322{ 460{
323 alloc = cb; 461 alloc = cb;
324} 462}
325 463
326inline_speed void * 464inline_speed void *
327ev_realloc (void *ptr, long size) 465ev_realloc (void *ptr, long size)
328{ 466{
329 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 467 ptr = alloc (ptr, size);
330 468
331 if (!ptr && size) 469 if (!ptr && size)
332 { 470 {
333 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
334 abort (); 472 abort ();
345typedef struct 483typedef struct
346{ 484{
347 WL head; 485 WL head;
348 unsigned char events; 486 unsigned char events;
349 unsigned char reify; 487 unsigned char reify;
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused;
490#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif
350#if EV_SELECT_IS_WINSOCKET 493#if EV_SELECT_IS_WINSOCKET
351 SOCKET handle; 494 SOCKET handle;
352#endif 495#endif
353} ANFD; 496} ANFD;
354 497
357 W w; 500 W w;
358 int events; 501 int events;
359} ANPENDING; 502} ANPENDING;
360 503
361#if EV_USE_INOTIFY 504#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */
362typedef struct 506typedef struct
363{ 507{
364 WL head; 508 WL head;
365} ANFS; 509} ANFS;
510#endif
511
512/* Heap Entry */
513#if EV_HEAP_CACHE_AT
514 typedef struct {
515 ev_tstamp at;
516 WT w;
517 } ANHE;
518
519 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else
523 typedef WT ANHE;
524
525 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he)
366#endif 528#endif
367 529
368#if EV_MULTIPLICITY 530#if EV_MULTIPLICITY
369 531
370 struct ev_loop 532 struct ev_loop
395 557
396ev_tstamp 558ev_tstamp
397ev_time (void) 559ev_time (void)
398{ 560{
399#if EV_USE_REALTIME 561#if EV_USE_REALTIME
562 if (expect_true (have_realtime))
563 {
400 struct timespec ts; 564 struct timespec ts;
401 clock_gettime (CLOCK_REALTIME, &ts); 565 clock_gettime (CLOCK_REALTIME, &ts);
402 return ts.tv_sec + ts.tv_nsec * 1e-9; 566 return ts.tv_sec + ts.tv_nsec * 1e-9;
403#else 567 }
568#endif
569
404 struct timeval tv; 570 struct timeval tv;
405 gettimeofday (&tv, 0); 571 gettimeofday (&tv, 0);
406 return tv.tv_sec + tv.tv_usec * 1e-6; 572 return tv.tv_sec + tv.tv_usec * 1e-6;
407#endif
408} 573}
409 574
410ev_tstamp inline_size 575inline_size ev_tstamp
411get_clock (void) 576get_clock (void)
412{ 577{
413#if EV_USE_MONOTONIC 578#if EV_USE_MONOTONIC
414 if (expect_true (have_monotonic)) 579 if (expect_true (have_monotonic))
415 { 580 {
441 ts.tv_sec = (time_t)delay; 606 ts.tv_sec = (time_t)delay;
442 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 607 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
443 608
444 nanosleep (&ts, 0); 609 nanosleep (&ts, 0);
445#elif defined(_WIN32) 610#elif defined(_WIN32)
446 Sleep (delay * 1e3); 611 Sleep ((unsigned long)(delay * 1e3));
447#else 612#else
448 struct timeval tv; 613 struct timeval tv;
449 614
450 tv.tv_sec = (time_t)delay; 615 tv.tv_sec = (time_t)delay;
451 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
452 617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */
453 select (0, 0, 0, 0, &tv); 621 select (0, 0, 0, 0, &tv);
454#endif 622#endif
455 } 623 }
456} 624}
457 625
458/*****************************************************************************/ 626/*****************************************************************************/
459 627
460int inline_size 628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629
630inline_size int
461array_nextsize (int elem, int cur, int cnt) 631array_nextsize (int elem, int cur, int cnt)
462{ 632{
463 int ncur = cur + 1; 633 int ncur = cur + 1;
464 634
465 do 635 do
466 ncur <<= 1; 636 ncur <<= 1;
467 while (cnt > ncur); 637 while (cnt > ncur);
468 638
469 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 639 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
470 if (elem * ncur > 4096) 640 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
471 { 641 {
472 ncur *= elem; 642 ncur *= elem;
473 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 643 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
474 ncur = ncur - sizeof (void *) * 4; 644 ncur = ncur - sizeof (void *) * 4;
475 ncur /= elem; 645 ncur /= elem;
476 } 646 }
477 647
478 return ncur; 648 return ncur;
482array_realloc (int elem, void *base, int *cur, int cnt) 652array_realloc (int elem, void *base, int *cur, int cnt)
483{ 653{
484 *cur = array_nextsize (elem, *cur, cnt); 654 *cur = array_nextsize (elem, *cur, cnt);
485 return ev_realloc (base, elem * *cur); 655 return ev_realloc (base, elem * *cur);
486} 656}
657
658#define array_init_zero(base,count) \
659 memset ((void *)(base), 0, sizeof (*(base)) * (count))
487 660
488#define array_needsize(type,base,cur,cnt,init) \ 661#define array_needsize(type,base,cur,cnt,init) \
489 if (expect_false ((cnt) > (cur))) \ 662 if (expect_false ((cnt) > (cur))) \
490 { \ 663 { \
491 int ocur_ = (cur); \ 664 int ocur_ = (cur); \
503 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 676 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
504 } 677 }
505#endif 678#endif
506 679
507#define array_free(stem, idx) \ 680#define array_free(stem, idx) \
508 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
509 682
510/*****************************************************************************/ 683/*****************************************************************************/
511 684
512void noinline 685void noinline
513ev_feed_event (EV_P_ void *w, int revents) 686ev_feed_event (EV_P_ void *w, int revents)
524 pendings [pri][w_->pending - 1].w = w_; 697 pendings [pri][w_->pending - 1].w = w_;
525 pendings [pri][w_->pending - 1].events = revents; 698 pendings [pri][w_->pending - 1].events = revents;
526 } 699 }
527} 700}
528 701
529void inline_speed 702inline_speed void
703feed_reverse (EV_P_ W w)
704{
705 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
706 rfeeds [rfeedcnt++] = w;
707}
708
709inline_size void
710feed_reverse_done (EV_P_ int revents)
711{
712 do
713 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
714 while (rfeedcnt);
715}
716
717inline_speed void
530queue_events (EV_P_ W *events, int eventcnt, int type) 718queue_events (EV_P_ W *events, int eventcnt, int type)
531{ 719{
532 int i; 720 int i;
533 721
534 for (i = 0; i < eventcnt; ++i) 722 for (i = 0; i < eventcnt; ++i)
535 ev_feed_event (EV_A_ events [i], type); 723 ev_feed_event (EV_A_ events [i], type);
536} 724}
537 725
538/*****************************************************************************/ 726/*****************************************************************************/
539 727
540void inline_size 728inline_speed void
541anfds_init (ANFD *base, int count)
542{
543 while (count--)
544 {
545 base->head = 0;
546 base->events = EV_NONE;
547 base->reify = 0;
548
549 ++base;
550 }
551}
552
553void inline_speed
554fd_event (EV_P_ int fd, int revents) 729fd_event (EV_P_ int fd, int revents)
555{ 730{
556 ANFD *anfd = anfds + fd; 731 ANFD *anfd = anfds + fd;
557 ev_io *w; 732 ev_io *w;
558 733
570{ 745{
571 if (fd >= 0 && fd < anfdmax) 746 if (fd >= 0 && fd < anfdmax)
572 fd_event (EV_A_ fd, revents); 747 fd_event (EV_A_ fd, revents);
573} 748}
574 749
575void inline_size 750inline_size void
576fd_reify (EV_P) 751fd_reify (EV_P)
577{ 752{
578 int i; 753 int i;
579 754
580 for (i = 0; i < fdchangecnt; ++i) 755 for (i = 0; i < fdchangecnt; ++i)
589 events |= (unsigned char)w->events; 764 events |= (unsigned char)w->events;
590 765
591#if EV_SELECT_IS_WINSOCKET 766#if EV_SELECT_IS_WINSOCKET
592 if (events) 767 if (events)
593 { 768 {
594 unsigned long argp; 769 unsigned long arg;
770 #ifdef EV_FD_TO_WIN32_HANDLE
771 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
772 #else
595 anfd->handle = _get_osfhandle (fd); 773 anfd->handle = _get_osfhandle (fd);
774 #endif
596 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 775 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
597 } 776 }
598#endif 777#endif
599 778
600 { 779 {
601 unsigned char o_events = anfd->events; 780 unsigned char o_events = anfd->events;
602 unsigned char o_reify = anfd->reify; 781 unsigned char o_reify = anfd->reify;
603 782
604 anfd->reify = 0; 783 anfd->reify = 0;
605 anfd->events = events; 784 anfd->events = events;
606 785
607 if (o_events != events || o_reify & EV_IOFDSET) 786 if (o_events != events || o_reify & EV__IOFDSET)
608 backend_modify (EV_A_ fd, o_events, events); 787 backend_modify (EV_A_ fd, o_events, events);
609 } 788 }
610 } 789 }
611 790
612 fdchangecnt = 0; 791 fdchangecnt = 0;
613} 792}
614 793
615void inline_size 794inline_size void
616fd_change (EV_P_ int fd, int flags) 795fd_change (EV_P_ int fd, int flags)
617{ 796{
618 unsigned char reify = anfds [fd].reify; 797 unsigned char reify = anfds [fd].reify;
619 anfds [fd].reify |= flags; 798 anfds [fd].reify |= flags;
620 799
624 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 803 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
625 fdchanges [fdchangecnt - 1] = fd; 804 fdchanges [fdchangecnt - 1] = fd;
626 } 805 }
627} 806}
628 807
629void inline_speed 808inline_speed void
630fd_kill (EV_P_ int fd) 809fd_kill (EV_P_ int fd)
631{ 810{
632 ev_io *w; 811 ev_io *w;
633 812
634 while ((w = (ev_io *)anfds [fd].head)) 813 while ((w = (ev_io *)anfds [fd].head))
636 ev_io_stop (EV_A_ w); 815 ev_io_stop (EV_A_ w);
637 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 816 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
638 } 817 }
639} 818}
640 819
641int inline_size 820inline_size int
642fd_valid (int fd) 821fd_valid (int fd)
643{ 822{
644#ifdef _WIN32 823#ifdef _WIN32
645 return _get_osfhandle (fd) != -1; 824 return _get_osfhandle (fd) != -1;
646#else 825#else
654{ 833{
655 int fd; 834 int fd;
656 835
657 for (fd = 0; fd < anfdmax; ++fd) 836 for (fd = 0; fd < anfdmax; ++fd)
658 if (anfds [fd].events) 837 if (anfds [fd].events)
659 if (!fd_valid (fd) == -1 && errno == EBADF) 838 if (!fd_valid (fd) && errno == EBADF)
660 fd_kill (EV_A_ fd); 839 fd_kill (EV_A_ fd);
661} 840}
662 841
663/* called on ENOMEM in select/poll to kill some fds and retry */ 842/* called on ENOMEM in select/poll to kill some fds and retry */
664static void noinline 843static void noinline
682 861
683 for (fd = 0; fd < anfdmax; ++fd) 862 for (fd = 0; fd < anfdmax; ++fd)
684 if (anfds [fd].events) 863 if (anfds [fd].events)
685 { 864 {
686 anfds [fd].events = 0; 865 anfds [fd].events = 0;
866 anfds [fd].emask = 0;
687 fd_change (EV_A_ fd, EV_IOFDSET | 1); 867 fd_change (EV_A_ fd, EV__IOFDSET | 1);
688 } 868 }
689} 869}
690 870
691/*****************************************************************************/ 871/*****************************************************************************/
692 872
693void inline_speed 873/*
694upheap (WT *heap, int k) 874 * the heap functions want a real array index. array index 0 uis guaranteed to not
695{ 875 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
696 WT w = heap [k]; 876 * the branching factor of the d-tree.
877 */
697 878
698 while (k) 879/*
699 { 880 * at the moment we allow libev the luxury of two heaps,
700 int p = (k - 1) >> 1; 881 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
882 * which is more cache-efficient.
883 * the difference is about 5% with 50000+ watchers.
884 */
885#if EV_USE_4HEAP
701 886
702 if (heap [p]->at <= w->at) 887#define DHEAP 4
888#define HEAP0 (DHEAP - 1) /* index of first element in heap */
889#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
890#define UPHEAP_DONE(p,k) ((p) == (k))
891
892/* away from the root */
893inline_speed void
894downheap (ANHE *heap, int N, int k)
895{
896 ANHE he = heap [k];
897 ANHE *E = heap + N + HEAP0;
898
899 for (;;)
900 {
901 ev_tstamp minat;
902 ANHE *minpos;
903 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
904
905 /* find minimum child */
906 if (expect_true (pos + DHEAP - 1 < E))
907 {
908 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
909 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
910 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
911 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
912 }
913 else if (pos < E)
914 {
915 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
916 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
917 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
918 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
919 }
920 else
703 break; 921 break;
704 922
923 if (ANHE_at (he) <= minat)
924 break;
925
926 heap [k] = *minpos;
927 ev_active (ANHE_w (*minpos)) = k;
928
929 k = minpos - heap;
930 }
931
932 heap [k] = he;
933 ev_active (ANHE_w (he)) = k;
934}
935
936#else /* 4HEAP */
937
938#define HEAP0 1
939#define HPARENT(k) ((k) >> 1)
940#define UPHEAP_DONE(p,k) (!(p))
941
942/* away from the root */
943inline_speed void
944downheap (ANHE *heap, int N, int k)
945{
946 ANHE he = heap [k];
947
948 for (;;)
949 {
950 int c = k << 1;
951
952 if (c > N + HEAP0 - 1)
953 break;
954
955 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
956 ? 1 : 0;
957
958 if (ANHE_at (he) <= ANHE_at (heap [c]))
959 break;
960
961 heap [k] = heap [c];
962 ev_active (ANHE_w (heap [k])) = k;
963
964 k = c;
965 }
966
967 heap [k] = he;
968 ev_active (ANHE_w (he)) = k;
969}
970#endif
971
972/* towards the root */
973inline_speed void
974upheap (ANHE *heap, int k)
975{
976 ANHE he = heap [k];
977
978 for (;;)
979 {
980 int p = HPARENT (k);
981
982 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
983 break;
984
705 heap [k] = heap [p]; 985 heap [k] = heap [p];
706 ((W)heap [k])->active = k + 1; 986 ev_active (ANHE_w (heap [k])) = k;
707 k = p; 987 k = p;
708 } 988 }
709 989
710 heap [k] = w; 990 heap [k] = he;
711 ((W)heap [k])->active = k + 1; 991 ev_active (ANHE_w (he)) = k;
712} 992}
713 993
714void inline_speed 994inline_size void
715downheap (WT *heap, int N, int k)
716{
717 WT w = heap [k];
718
719 for (;;)
720 {
721 int c = (k << 1) + 1;
722
723 if (c >= N)
724 break;
725
726 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
727 ? 1 : 0;
728
729 if (w->at <= heap [c]->at)
730 break;
731
732 heap [k] = heap [c];
733 ((W)heap [k])->active = k + 1;
734
735 k = c;
736 }
737
738 heap [k] = w;
739 ((W)heap [k])->active = k + 1;
740}
741
742void inline_size
743adjustheap (WT *heap, int N, int k) 995adjustheap (ANHE *heap, int N, int k)
744{ 996{
997 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
745 upheap (heap, k); 998 upheap (heap, k);
999 else
746 downheap (heap, N, k); 1000 downheap (heap, N, k);
1001}
1002
1003/* rebuild the heap: this function is used only once and executed rarely */
1004inline_size void
1005reheap (ANHE *heap, int N)
1006{
1007 int i;
1008
1009 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1010 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1011 for (i = 0; i < N; ++i)
1012 upheap (heap, i + HEAP0);
747} 1013}
748 1014
749/*****************************************************************************/ 1015/*****************************************************************************/
750 1016
751typedef struct 1017typedef struct
752{ 1018{
753 WL head; 1019 WL head;
754 sig_atomic_t volatile gotsig; 1020 EV_ATOMIC_T gotsig;
755} ANSIG; 1021} ANSIG;
756 1022
757static ANSIG *signals; 1023static ANSIG *signals;
758static int signalmax; 1024static int signalmax;
759 1025
760static int sigpipe [2]; 1026static EV_ATOMIC_T gotsig;
761static sig_atomic_t volatile gotsig;
762static ev_io sigev;
763 1027
764void inline_size 1028/*****************************************************************************/
765signals_init (ANSIG *base, int count)
766{
767 while (count--)
768 {
769 base->head = 0;
770 base->gotsig = 0;
771 1029
772 ++base; 1030inline_speed void
773 }
774}
775
776static void
777sighandler (int signum)
778{
779#if _WIN32
780 signal (signum, sighandler);
781#endif
782
783 signals [signum - 1].gotsig = 1;
784
785 if (!gotsig)
786 {
787 int old_errno = errno;
788 gotsig = 1;
789 write (sigpipe [1], &signum, 1);
790 errno = old_errno;
791 }
792}
793
794void noinline
795ev_feed_signal_event (EV_P_ int signum)
796{
797 WL w;
798
799#if EV_MULTIPLICITY
800 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
801#endif
802
803 --signum;
804
805 if (signum < 0 || signum >= signalmax)
806 return;
807
808 signals [signum].gotsig = 0;
809
810 for (w = signals [signum].head; w; w = w->next)
811 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
812}
813
814static void
815sigcb (EV_P_ ev_io *iow, int revents)
816{
817 int signum;
818
819 read (sigpipe [0], &revents, 1);
820 gotsig = 0;
821
822 for (signum = signalmax; signum--; )
823 if (signals [signum].gotsig)
824 ev_feed_signal_event (EV_A_ signum + 1);
825}
826
827void inline_speed
828fd_intern (int fd) 1031fd_intern (int fd)
829{ 1032{
830#ifdef _WIN32 1033#ifdef _WIN32
831 int arg = 1; 1034 unsigned long arg = 1;
832 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1035 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
833#else 1036#else
834 fcntl (fd, F_SETFD, FD_CLOEXEC); 1037 fcntl (fd, F_SETFD, FD_CLOEXEC);
835 fcntl (fd, F_SETFL, O_NONBLOCK); 1038 fcntl (fd, F_SETFL, O_NONBLOCK);
836#endif 1039#endif
837} 1040}
838 1041
839static void noinline 1042static void noinline
840siginit (EV_P) 1043evpipe_init (EV_P)
841{ 1044{
1045 if (!ev_is_active (&pipeev))
1046 {
1047#if EV_USE_EVENTFD
1048 if ((evfd = eventfd (0, 0)) >= 0)
1049 {
1050 evpipe [0] = -1;
1051 fd_intern (evfd);
1052 ev_io_set (&pipeev, evfd, EV_READ);
1053 }
1054 else
1055#endif
1056 {
1057 while (pipe (evpipe))
1058 ev_syserr ("(libev) error creating signal/async pipe");
1059
842 fd_intern (sigpipe [0]); 1060 fd_intern (evpipe [0]);
843 fd_intern (sigpipe [1]); 1061 fd_intern (evpipe [1]);
1062 ev_io_set (&pipeev, evpipe [0], EV_READ);
1063 }
844 1064
845 ev_io_set (&sigev, sigpipe [0], EV_READ);
846 ev_io_start (EV_A_ &sigev); 1065 ev_io_start (EV_A_ &pipeev);
847 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1066 ev_unref (EV_A); /* watcher should not keep loop alive */
1067 }
1068}
1069
1070inline_size void
1071evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1072{
1073 if (!*flag)
1074 {
1075 int old_errno = errno; /* save errno because write might clobber it */
1076
1077 *flag = 1;
1078
1079#if EV_USE_EVENTFD
1080 if (evfd >= 0)
1081 {
1082 uint64_t counter = 1;
1083 write (evfd, &counter, sizeof (uint64_t));
1084 }
1085 else
1086#endif
1087 write (evpipe [1], &old_errno, 1);
1088
1089 errno = old_errno;
1090 }
1091}
1092
1093static void
1094pipecb (EV_P_ ev_io *iow, int revents)
1095{
1096#if EV_USE_EVENTFD
1097 if (evfd >= 0)
1098 {
1099 uint64_t counter;
1100 read (evfd, &counter, sizeof (uint64_t));
1101 }
1102 else
1103#endif
1104 {
1105 char dummy;
1106 read (evpipe [0], &dummy, 1);
1107 }
1108
1109 if (gotsig && ev_is_default_loop (EV_A))
1110 {
1111 int signum;
1112 gotsig = 0;
1113
1114 for (signum = signalmax; signum--; )
1115 if (signals [signum].gotsig)
1116 ev_feed_signal_event (EV_A_ signum + 1);
1117 }
1118
1119#if EV_ASYNC_ENABLE
1120 if (gotasync)
1121 {
1122 int i;
1123 gotasync = 0;
1124
1125 for (i = asynccnt; i--; )
1126 if (asyncs [i]->sent)
1127 {
1128 asyncs [i]->sent = 0;
1129 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1130 }
1131 }
1132#endif
848} 1133}
849 1134
850/*****************************************************************************/ 1135/*****************************************************************************/
851 1136
1137static void
1138ev_sighandler (int signum)
1139{
1140#if EV_MULTIPLICITY
1141 struct ev_loop *loop = &default_loop_struct;
1142#endif
1143
1144#if _WIN32
1145 signal (signum, ev_sighandler);
1146#endif
1147
1148 signals [signum - 1].gotsig = 1;
1149 evpipe_write (EV_A_ &gotsig);
1150}
1151
1152void noinline
1153ev_feed_signal_event (EV_P_ int signum)
1154{
1155 WL w;
1156
1157#if EV_MULTIPLICITY
1158 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1159#endif
1160
1161 --signum;
1162
1163 if (signum < 0 || signum >= signalmax)
1164 return;
1165
1166 signals [signum].gotsig = 0;
1167
1168 for (w = signals [signum].head; w; w = w->next)
1169 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1170}
1171
1172/*****************************************************************************/
1173
852static WL childs [EV_PID_HASHSIZE]; 1174static WL childs [EV_PID_HASHSIZE];
853 1175
854#ifndef _WIN32 1176#ifndef _WIN32
855 1177
856static ev_signal childev; 1178static ev_signal childev;
857 1179
858void inline_speed 1180#ifndef WIFCONTINUED
1181# define WIFCONTINUED(status) 0
1182#endif
1183
1184inline_speed void
859child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1185child_reap (EV_P_ int chain, int pid, int status)
860{ 1186{
861 ev_child *w; 1187 ev_child *w;
1188 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
862 1189
863 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1190 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1191 {
864 if (w->pid == pid || !w->pid) 1192 if ((w->pid == pid || !w->pid)
1193 && (!traced || (w->flags & 1)))
865 { 1194 {
866 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1195 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
867 w->rpid = pid; 1196 w->rpid = pid;
868 w->rstatus = status; 1197 w->rstatus = status;
869 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1198 ev_feed_event (EV_A_ (W)w, EV_CHILD);
870 } 1199 }
1200 }
871} 1201}
872 1202
873#ifndef WCONTINUED 1203#ifndef WCONTINUED
874# define WCONTINUED 0 1204# define WCONTINUED 0
875#endif 1205#endif
884 if (!WCONTINUED 1214 if (!WCONTINUED
885 || errno != EINVAL 1215 || errno != EINVAL
886 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1216 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
887 return; 1217 return;
888 1218
889 /* make sure we are called again until all childs have been reaped */ 1219 /* make sure we are called again until all children have been reaped */
890 /* we need to do it this way so that the callback gets called before we continue */ 1220 /* we need to do it this way so that the callback gets called before we continue */
891 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1221 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
892 1222
893 child_reap (EV_A_ sw, pid, pid, status); 1223 child_reap (EV_A_ pid, pid, status);
894 if (EV_PID_HASHSIZE > 1) 1224 if (EV_PID_HASHSIZE > 1)
895 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1225 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
896} 1226}
897 1227
898#endif 1228#endif
899 1229
900/*****************************************************************************/ 1230/*****************************************************************************/
962 /* kqueue is borked on everything but netbsd apparently */ 1292 /* kqueue is borked on everything but netbsd apparently */
963 /* it usually doesn't work correctly on anything but sockets and pipes */ 1293 /* it usually doesn't work correctly on anything but sockets and pipes */
964 flags &= ~EVBACKEND_KQUEUE; 1294 flags &= ~EVBACKEND_KQUEUE;
965#endif 1295#endif
966#ifdef __APPLE__ 1296#ifdef __APPLE__
967 // flags &= ~EVBACKEND_KQUEUE; for documentation 1297 /* only select works correctly on that "unix-certified" platform */
968 flags &= ~EVBACKEND_POLL; 1298 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1299 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
969#endif 1300#endif
970 1301
971 return flags; 1302 return flags;
972} 1303}
973 1304
1010static void noinline 1341static void noinline
1011loop_init (EV_P_ unsigned int flags) 1342loop_init (EV_P_ unsigned int flags)
1012{ 1343{
1013 if (!backend) 1344 if (!backend)
1014 { 1345 {
1346#if EV_USE_REALTIME
1347 if (!have_realtime)
1348 {
1349 struct timespec ts;
1350
1351 if (!clock_gettime (CLOCK_REALTIME, &ts))
1352 have_realtime = 1;
1353 }
1354#endif
1355
1015#if EV_USE_MONOTONIC 1356#if EV_USE_MONOTONIC
1357 if (!have_monotonic)
1016 { 1358 {
1017 struct timespec ts; 1359 struct timespec ts;
1360
1018 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1361 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1019 have_monotonic = 1; 1362 have_monotonic = 1;
1020 } 1363 }
1021#endif 1364#endif
1022 1365
1023 ev_rt_now = ev_time (); 1366 ev_rt_now = ev_time ();
1024 mn_now = get_clock (); 1367 mn_now = get_clock ();
1025 now_floor = mn_now; 1368 now_floor = mn_now;
1026 rtmn_diff = ev_rt_now - mn_now; 1369 rtmn_diff = ev_rt_now - mn_now;
1027 1370
1028 io_blocktime = 0.; 1371 io_blocktime = 0.;
1029 timeout_blocktime = 0.; 1372 timeout_blocktime = 0.;
1373 backend = 0;
1374 backend_fd = -1;
1375 gotasync = 0;
1376#if EV_USE_INOTIFY
1377 fs_fd = -2;
1378#endif
1030 1379
1031 /* pid check not overridable via env */ 1380 /* pid check not overridable via env */
1032#ifndef _WIN32 1381#ifndef _WIN32
1033 if (flags & EVFLAG_FORKCHECK) 1382 if (flags & EVFLAG_FORKCHECK)
1034 curpid = getpid (); 1383 curpid = getpid ();
1037 if (!(flags & EVFLAG_NOENV) 1386 if (!(flags & EVFLAG_NOENV)
1038 && !enable_secure () 1387 && !enable_secure ()
1039 && getenv ("LIBEV_FLAGS")) 1388 && getenv ("LIBEV_FLAGS"))
1040 flags = atoi (getenv ("LIBEV_FLAGS")); 1389 flags = atoi (getenv ("LIBEV_FLAGS"));
1041 1390
1042 if (!(flags & 0x0000ffffUL)) 1391 if (!(flags & 0x0000ffffU))
1043 flags |= ev_recommended_backends (); 1392 flags |= ev_recommended_backends ();
1044
1045 backend = 0;
1046 backend_fd = -1;
1047#if EV_USE_INOTIFY
1048 fs_fd = -2;
1049#endif
1050 1393
1051#if EV_USE_PORT 1394#if EV_USE_PORT
1052 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1395 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1053#endif 1396#endif
1054#if EV_USE_KQUEUE 1397#if EV_USE_KQUEUE
1062#endif 1405#endif
1063#if EV_USE_SELECT 1406#if EV_USE_SELECT
1064 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1407 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1065#endif 1408#endif
1066 1409
1067 ev_init (&sigev, sigcb); 1410 ev_init (&pipeev, pipecb);
1068 ev_set_priority (&sigev, EV_MAXPRI); 1411 ev_set_priority (&pipeev, EV_MAXPRI);
1069 } 1412 }
1070} 1413}
1071 1414
1072static void noinline 1415static void noinline
1073loop_destroy (EV_P) 1416loop_destroy (EV_P)
1074{ 1417{
1075 int i; 1418 int i;
1419
1420 if (ev_is_active (&pipeev))
1421 {
1422 ev_ref (EV_A); /* signal watcher */
1423 ev_io_stop (EV_A_ &pipeev);
1424
1425#if EV_USE_EVENTFD
1426 if (evfd >= 0)
1427 close (evfd);
1428#endif
1429
1430 if (evpipe [0] >= 0)
1431 {
1432 close (evpipe [0]);
1433 close (evpipe [1]);
1434 }
1435 }
1076 1436
1077#if EV_USE_INOTIFY 1437#if EV_USE_INOTIFY
1078 if (fs_fd >= 0) 1438 if (fs_fd >= 0)
1079 close (fs_fd); 1439 close (fs_fd);
1080#endif 1440#endif
1107 } 1467 }
1108 1468
1109 ev_free (anfds); anfdmax = 0; 1469 ev_free (anfds); anfdmax = 0;
1110 1470
1111 /* have to use the microsoft-never-gets-it-right macro */ 1471 /* have to use the microsoft-never-gets-it-right macro */
1472 array_free (rfeed, EMPTY);
1112 array_free (fdchange, EMPTY); 1473 array_free (fdchange, EMPTY);
1113 array_free (timer, EMPTY); 1474 array_free (timer, EMPTY);
1114#if EV_PERIODIC_ENABLE 1475#if EV_PERIODIC_ENABLE
1115 array_free (periodic, EMPTY); 1476 array_free (periodic, EMPTY);
1116#endif 1477#endif
1117#if EV_FORK_ENABLE 1478#if EV_FORK_ENABLE
1118 array_free (fork, EMPTY); 1479 array_free (fork, EMPTY);
1119#endif 1480#endif
1120 array_free (prepare, EMPTY); 1481 array_free (prepare, EMPTY);
1121 array_free (check, EMPTY); 1482 array_free (check, EMPTY);
1483#if EV_ASYNC_ENABLE
1484 array_free (async, EMPTY);
1485#endif
1122 1486
1123 backend = 0; 1487 backend = 0;
1124} 1488}
1125 1489
1490#if EV_USE_INOTIFY
1126void inline_size infy_fork (EV_P); 1491inline_size void infy_fork (EV_P);
1492#endif
1127 1493
1128void inline_size 1494inline_size void
1129loop_fork (EV_P) 1495loop_fork (EV_P)
1130{ 1496{
1131#if EV_USE_PORT 1497#if EV_USE_PORT
1132 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1498 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1133#endif 1499#endif
1139#endif 1505#endif
1140#if EV_USE_INOTIFY 1506#if EV_USE_INOTIFY
1141 infy_fork (EV_A); 1507 infy_fork (EV_A);
1142#endif 1508#endif
1143 1509
1144 if (ev_is_active (&sigev)) 1510 if (ev_is_active (&pipeev))
1145 { 1511 {
1146 /* default loop */ 1512 /* this "locks" the handlers against writing to the pipe */
1513 /* while we modify the fd vars */
1514 gotsig = 1;
1515#if EV_ASYNC_ENABLE
1516 gotasync = 1;
1517#endif
1147 1518
1148 ev_ref (EV_A); 1519 ev_ref (EV_A);
1149 ev_io_stop (EV_A_ &sigev); 1520 ev_io_stop (EV_A_ &pipeev);
1521
1522#if EV_USE_EVENTFD
1523 if (evfd >= 0)
1524 close (evfd);
1525#endif
1526
1527 if (evpipe [0] >= 0)
1528 {
1150 close (sigpipe [0]); 1529 close (evpipe [0]);
1151 close (sigpipe [1]); 1530 close (evpipe [1]);
1531 }
1152 1532
1153 while (pipe (sigpipe))
1154 syserr ("(libev) error creating pipe");
1155
1156 siginit (EV_A); 1533 evpipe_init (EV_A);
1534 /* now iterate over everything, in case we missed something */
1535 pipecb (EV_A_ &pipeev, EV_READ);
1157 } 1536 }
1158 1537
1159 postfork = 0; 1538 postfork = 0;
1160} 1539}
1161 1540
1162#if EV_MULTIPLICITY 1541#if EV_MULTIPLICITY
1542
1163struct ev_loop * 1543struct ev_loop *
1164ev_loop_new (unsigned int flags) 1544ev_loop_new (unsigned int flags)
1165{ 1545{
1166 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1546 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1167 1547
1183} 1563}
1184 1564
1185void 1565void
1186ev_loop_fork (EV_P) 1566ev_loop_fork (EV_P)
1187{ 1567{
1188 postfork = 1; 1568 postfork = 1; /* must be in line with ev_default_fork */
1189} 1569}
1190 1570
1571#if EV_VERIFY
1572static void noinline
1573verify_watcher (EV_P_ W w)
1574{
1575 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1576
1577 if (w->pending)
1578 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1579}
1580
1581static void noinline
1582verify_heap (EV_P_ ANHE *heap, int N)
1583{
1584 int i;
1585
1586 for (i = HEAP0; i < N + HEAP0; ++i)
1587 {
1588 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1589 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1590 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1591
1592 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1593 }
1594}
1595
1596static void noinline
1597array_verify (EV_P_ W *ws, int cnt)
1598{
1599 while (cnt--)
1600 {
1601 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1602 verify_watcher (EV_A_ ws [cnt]);
1603 }
1604}
1605#endif
1606
1607void
1608ev_loop_verify (EV_P)
1609{
1610#if EV_VERIFY
1611 int i;
1612 WL w;
1613
1614 assert (activecnt >= -1);
1615
1616 assert (fdchangemax >= fdchangecnt);
1617 for (i = 0; i < fdchangecnt; ++i)
1618 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1619
1620 assert (anfdmax >= 0);
1621 for (i = 0; i < anfdmax; ++i)
1622 for (w = anfds [i].head; w; w = w->next)
1623 {
1624 verify_watcher (EV_A_ (W)w);
1625 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1626 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1627 }
1628
1629 assert (timermax >= timercnt);
1630 verify_heap (EV_A_ timers, timercnt);
1631
1632#if EV_PERIODIC_ENABLE
1633 assert (periodicmax >= periodiccnt);
1634 verify_heap (EV_A_ periodics, periodiccnt);
1635#endif
1636
1637 for (i = NUMPRI; i--; )
1638 {
1639 assert (pendingmax [i] >= pendingcnt [i]);
1640#if EV_IDLE_ENABLE
1641 assert (idleall >= 0);
1642 assert (idlemax [i] >= idlecnt [i]);
1643 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1644#endif
1645 }
1646
1647#if EV_FORK_ENABLE
1648 assert (forkmax >= forkcnt);
1649 array_verify (EV_A_ (W *)forks, forkcnt);
1650#endif
1651
1652#if EV_ASYNC_ENABLE
1653 assert (asyncmax >= asynccnt);
1654 array_verify (EV_A_ (W *)asyncs, asynccnt);
1655#endif
1656
1657 assert (preparemax >= preparecnt);
1658 array_verify (EV_A_ (W *)prepares, preparecnt);
1659
1660 assert (checkmax >= checkcnt);
1661 array_verify (EV_A_ (W *)checks, checkcnt);
1662
1663# if 0
1664 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1665 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1191#endif 1666# endif
1667#endif
1668}
1669
1670#endif /* multiplicity */
1192 1671
1193#if EV_MULTIPLICITY 1672#if EV_MULTIPLICITY
1194struct ev_loop * 1673struct ev_loop *
1195ev_default_loop_init (unsigned int flags) 1674ev_default_loop_init (unsigned int flags)
1196#else 1675#else
1197int 1676int
1198ev_default_loop (unsigned int flags) 1677ev_default_loop (unsigned int flags)
1199#endif 1678#endif
1200{ 1679{
1201 if (sigpipe [0] == sigpipe [1])
1202 if (pipe (sigpipe))
1203 return 0;
1204
1205 if (!ev_default_loop_ptr) 1680 if (!ev_default_loop_ptr)
1206 { 1681 {
1207#if EV_MULTIPLICITY 1682#if EV_MULTIPLICITY
1208 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1683 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1209#else 1684#else
1212 1687
1213 loop_init (EV_A_ flags); 1688 loop_init (EV_A_ flags);
1214 1689
1215 if (ev_backend (EV_A)) 1690 if (ev_backend (EV_A))
1216 { 1691 {
1217 siginit (EV_A);
1218
1219#ifndef _WIN32 1692#ifndef _WIN32
1220 ev_signal_init (&childev, childcb, SIGCHLD); 1693 ev_signal_init (&childev, childcb, SIGCHLD);
1221 ev_set_priority (&childev, EV_MAXPRI); 1694 ev_set_priority (&childev, EV_MAXPRI);
1222 ev_signal_start (EV_A_ &childev); 1695 ev_signal_start (EV_A_ &childev);
1223 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1696 ev_unref (EV_A); /* child watcher should not keep loop alive */
1235{ 1708{
1236#if EV_MULTIPLICITY 1709#if EV_MULTIPLICITY
1237 struct ev_loop *loop = ev_default_loop_ptr; 1710 struct ev_loop *loop = ev_default_loop_ptr;
1238#endif 1711#endif
1239 1712
1713 ev_default_loop_ptr = 0;
1714
1240#ifndef _WIN32 1715#ifndef _WIN32
1241 ev_ref (EV_A); /* child watcher */ 1716 ev_ref (EV_A); /* child watcher */
1242 ev_signal_stop (EV_A_ &childev); 1717 ev_signal_stop (EV_A_ &childev);
1243#endif 1718#endif
1244 1719
1245 ev_ref (EV_A); /* signal watcher */
1246 ev_io_stop (EV_A_ &sigev);
1247
1248 close (sigpipe [0]); sigpipe [0] = 0;
1249 close (sigpipe [1]); sigpipe [1] = 0;
1250
1251 loop_destroy (EV_A); 1720 loop_destroy (EV_A);
1252} 1721}
1253 1722
1254void 1723void
1255ev_default_fork (void) 1724ev_default_fork (void)
1256{ 1725{
1257#if EV_MULTIPLICITY 1726#if EV_MULTIPLICITY
1258 struct ev_loop *loop = ev_default_loop_ptr; 1727 struct ev_loop *loop = ev_default_loop_ptr;
1259#endif 1728#endif
1260 1729
1261 if (backend) 1730 postfork = 1; /* must be in line with ev_loop_fork */
1262 postfork = 1;
1263} 1731}
1264 1732
1265/*****************************************************************************/ 1733/*****************************************************************************/
1266 1734
1267void 1735void
1268ev_invoke (EV_P_ void *w, int revents) 1736ev_invoke (EV_P_ void *w, int revents)
1269{ 1737{
1270 EV_CB_INVOKE ((W)w, revents); 1738 EV_CB_INVOKE ((W)w, revents);
1271} 1739}
1272 1740
1273void inline_speed 1741inline_speed void
1274call_pending (EV_P) 1742call_pending (EV_P)
1275{ 1743{
1276 int pri; 1744 int pri;
1277 1745
1278 for (pri = NUMPRI; pri--; ) 1746 for (pri = NUMPRI; pri--; )
1280 { 1748 {
1281 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1749 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1282 1750
1283 if (expect_true (p->w)) 1751 if (expect_true (p->w))
1284 { 1752 {
1285 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1753 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1286 1754
1287 p->w->pending = 0; 1755 p->w->pending = 0;
1288 EV_CB_INVOKE (p->w, p->events); 1756 EV_CB_INVOKE (p->w, p->events);
1757 EV_FREQUENT_CHECK;
1289 } 1758 }
1290 } 1759 }
1291} 1760}
1292 1761
1293void inline_size
1294timers_reify (EV_P)
1295{
1296 while (timercnt && ((WT)timers [0])->at <= mn_now)
1297 {
1298 ev_timer *w = (ev_timer *)timers [0];
1299
1300 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1301
1302 /* first reschedule or stop timer */
1303 if (w->repeat)
1304 {
1305 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1306
1307 ((WT)w)->at += w->repeat;
1308 if (((WT)w)->at < mn_now)
1309 ((WT)w)->at = mn_now;
1310
1311 downheap (timers, timercnt, 0);
1312 }
1313 else
1314 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1315
1316 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1317 }
1318}
1319
1320#if EV_PERIODIC_ENABLE
1321void inline_size
1322periodics_reify (EV_P)
1323{
1324 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1325 {
1326 ev_periodic *w = (ev_periodic *)periodics [0];
1327
1328 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1329
1330 /* first reschedule or stop timer */
1331 if (w->reschedule_cb)
1332 {
1333 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1334 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1335 downheap (periodics, periodiccnt, 0);
1336 }
1337 else if (w->interval)
1338 {
1339 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1340 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1341 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1342 downheap (periodics, periodiccnt, 0);
1343 }
1344 else
1345 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1346
1347 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1348 }
1349}
1350
1351static void noinline
1352periodics_reschedule (EV_P)
1353{
1354 int i;
1355
1356 /* adjust periodics after time jump */
1357 for (i = 0; i < periodiccnt; ++i)
1358 {
1359 ev_periodic *w = (ev_periodic *)periodics [i];
1360
1361 if (w->reschedule_cb)
1362 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1363 else if (w->interval)
1364 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1365 }
1366
1367 /* now rebuild the heap */
1368 for (i = periodiccnt >> 1; i--; )
1369 downheap (periodics, periodiccnt, i);
1370}
1371#endif
1372
1373#if EV_IDLE_ENABLE 1762#if EV_IDLE_ENABLE
1374void inline_size 1763inline_size void
1375idle_reify (EV_P) 1764idle_reify (EV_P)
1376{ 1765{
1377 if (expect_false (idleall)) 1766 if (expect_false (idleall))
1378 { 1767 {
1379 int pri; 1768 int pri;
1391 } 1780 }
1392 } 1781 }
1393} 1782}
1394#endif 1783#endif
1395 1784
1396void inline_speed 1785inline_size void
1786timers_reify (EV_P)
1787{
1788 EV_FREQUENT_CHECK;
1789
1790 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1791 {
1792 do
1793 {
1794 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1795
1796 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1797
1798 /* first reschedule or stop timer */
1799 if (w->repeat)
1800 {
1801 ev_at (w) += w->repeat;
1802 if (ev_at (w) < mn_now)
1803 ev_at (w) = mn_now;
1804
1805 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1806
1807 ANHE_at_cache (timers [HEAP0]);
1808 downheap (timers, timercnt, HEAP0);
1809 }
1810 else
1811 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1812
1813 EV_FREQUENT_CHECK;
1814 feed_reverse (EV_A_ (W)w);
1815 }
1816 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1817
1818 feed_reverse_done (EV_A_ EV_TIMEOUT);
1819 }
1820}
1821
1822#if EV_PERIODIC_ENABLE
1823inline_size void
1824periodics_reify (EV_P)
1825{
1826 EV_FREQUENT_CHECK;
1827
1828 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1829 {
1830 int feed_count = 0;
1831
1832 do
1833 {
1834 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1835
1836 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1837
1838 /* first reschedule or stop timer */
1839 if (w->reschedule_cb)
1840 {
1841 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1842
1843 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1844
1845 ANHE_at_cache (periodics [HEAP0]);
1846 downheap (periodics, periodiccnt, HEAP0);
1847 }
1848 else if (w->interval)
1849 {
1850 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1851 /* if next trigger time is not sufficiently in the future, put it there */
1852 /* this might happen because of floating point inexactness */
1853 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1854 {
1855 ev_at (w) += w->interval;
1856
1857 /* if interval is unreasonably low we might still have a time in the past */
1858 /* so correct this. this will make the periodic very inexact, but the user */
1859 /* has effectively asked to get triggered more often than possible */
1860 if (ev_at (w) < ev_rt_now)
1861 ev_at (w) = ev_rt_now;
1862 }
1863
1864 ANHE_at_cache (periodics [HEAP0]);
1865 downheap (periodics, periodiccnt, HEAP0);
1866 }
1867 else
1868 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1869
1870 EV_FREQUENT_CHECK;
1871 feed_reverse (EV_A_ (W)w);
1872 }
1873 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1874
1875 feed_reverse_done (EV_A_ EV_PERIODIC);
1876 }
1877}
1878
1879static void noinline
1880periodics_reschedule (EV_P)
1881{
1882 int i;
1883
1884 /* adjust periodics after time jump */
1885 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1886 {
1887 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1888
1889 if (w->reschedule_cb)
1890 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1891 else if (w->interval)
1892 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1893
1894 ANHE_at_cache (periodics [i]);
1895 }
1896
1897 reheap (periodics, periodiccnt);
1898}
1899#endif
1900
1901static void noinline
1902timers_reschedule (EV_P_ ev_tstamp adjust)
1903{
1904 int i;
1905
1906 for (i = 0; i < timercnt; ++i)
1907 {
1908 ANHE *he = timers + i + HEAP0;
1909 ANHE_w (*he)->at += adjust;
1910 ANHE_at_cache (*he);
1911 }
1912}
1913
1914inline_speed void
1397time_update (EV_P_ ev_tstamp max_block) 1915time_update (EV_P_ ev_tstamp max_block)
1398{ 1916{
1399 int i; 1917 int i;
1400 1918
1401#if EV_USE_MONOTONIC 1919#if EV_USE_MONOTONIC
1426 */ 1944 */
1427 for (i = 4; --i; ) 1945 for (i = 4; --i; )
1428 { 1946 {
1429 rtmn_diff = ev_rt_now - mn_now; 1947 rtmn_diff = ev_rt_now - mn_now;
1430 1948
1431 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1949 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1432 return; /* all is well */ 1950 return; /* all is well */
1433 1951
1434 ev_rt_now = ev_time (); 1952 ev_rt_now = ev_time ();
1435 mn_now = get_clock (); 1953 mn_now = get_clock ();
1436 now_floor = mn_now; 1954 now_floor = mn_now;
1437 } 1955 }
1438 1956
1957 /* no timer adjustment, as the monotonic clock doesn't jump */
1958 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1439# if EV_PERIODIC_ENABLE 1959# if EV_PERIODIC_ENABLE
1440 periodics_reschedule (EV_A); 1960 periodics_reschedule (EV_A);
1441# endif 1961# endif
1442 /* no timer adjustment, as the monotonic clock doesn't jump */
1443 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1444 } 1962 }
1445 else 1963 else
1446#endif 1964#endif
1447 { 1965 {
1448 ev_rt_now = ev_time (); 1966 ev_rt_now = ev_time ();
1449 1967
1450 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 1968 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1451 { 1969 {
1970 /* adjust timers. this is easy, as the offset is the same for all of them */
1971 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1452#if EV_PERIODIC_ENABLE 1972#if EV_PERIODIC_ENABLE
1453 periodics_reschedule (EV_A); 1973 periodics_reschedule (EV_A);
1454#endif 1974#endif
1455 /* adjust timers. this is easy, as the offset is the same for all of them */
1456 for (i = 0; i < timercnt; ++i)
1457 ((WT)timers [i])->at += ev_rt_now - mn_now;
1458 } 1975 }
1459 1976
1460 mn_now = ev_rt_now; 1977 mn_now = ev_rt_now;
1461 } 1978 }
1462} 1979}
1463 1980
1464void
1465ev_ref (EV_P)
1466{
1467 ++activecnt;
1468}
1469
1470void
1471ev_unref (EV_P)
1472{
1473 --activecnt;
1474}
1475
1476static int loop_done; 1981static int loop_done;
1477 1982
1478void 1983void
1479ev_loop (EV_P_ int flags) 1984ev_loop (EV_P_ int flags)
1480{ 1985{
1481 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1986 loop_done = EVUNLOOP_CANCEL;
1482 ? EVUNLOOP_ONE
1483 : EVUNLOOP_CANCEL;
1484 1987
1485 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1988 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1486 1989
1487 do 1990 do
1488 { 1991 {
1992#if EV_VERIFY >= 2
1993 ev_loop_verify (EV_A);
1994#endif
1995
1489#ifndef _WIN32 1996#ifndef _WIN32
1490 if (expect_false (curpid)) /* penalise the forking check even more */ 1997 if (expect_false (curpid)) /* penalise the forking check even more */
1491 if (expect_false (getpid () != curpid)) 1998 if (expect_false (getpid () != curpid))
1492 { 1999 {
1493 curpid = getpid (); 2000 curpid = getpid ();
1510 { 2017 {
1511 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2018 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1512 call_pending (EV_A); 2019 call_pending (EV_A);
1513 } 2020 }
1514 2021
1515 if (expect_false (!activecnt))
1516 break;
1517
1518 /* we might have forked, so reify kernel state if necessary */ 2022 /* we might have forked, so reify kernel state if necessary */
1519 if (expect_false (postfork)) 2023 if (expect_false (postfork))
1520 loop_fork (EV_A); 2024 loop_fork (EV_A);
1521 2025
1522 /* update fd-related kernel structures */ 2026 /* update fd-related kernel structures */
1534 2038
1535 waittime = MAX_BLOCKTIME; 2039 waittime = MAX_BLOCKTIME;
1536 2040
1537 if (timercnt) 2041 if (timercnt)
1538 { 2042 {
1539 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2043 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1540 if (waittime > to) waittime = to; 2044 if (waittime > to) waittime = to;
1541 } 2045 }
1542 2046
1543#if EV_PERIODIC_ENABLE 2047#if EV_PERIODIC_ENABLE
1544 if (periodiccnt) 2048 if (periodiccnt)
1545 { 2049 {
1546 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2050 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1547 if (waittime > to) waittime = to; 2051 if (waittime > to) waittime = to;
1548 } 2052 }
1549#endif 2053#endif
1550 2054
1551 if (expect_false (waittime < timeout_blocktime)) 2055 if (expect_false (waittime < timeout_blocktime))
1584 /* queue check watchers, to be executed first */ 2088 /* queue check watchers, to be executed first */
1585 if (expect_false (checkcnt)) 2089 if (expect_false (checkcnt))
1586 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2090 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1587 2091
1588 call_pending (EV_A); 2092 call_pending (EV_A);
1589
1590 } 2093 }
1591 while (expect_true (activecnt && !loop_done)); 2094 while (expect_true (
2095 activecnt
2096 && !loop_done
2097 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2098 ));
1592 2099
1593 if (loop_done == EVUNLOOP_ONE) 2100 if (loop_done == EVUNLOOP_ONE)
1594 loop_done = EVUNLOOP_CANCEL; 2101 loop_done = EVUNLOOP_CANCEL;
1595} 2102}
1596 2103
1598ev_unloop (EV_P_ int how) 2105ev_unloop (EV_P_ int how)
1599{ 2106{
1600 loop_done = how; 2107 loop_done = how;
1601} 2108}
1602 2109
2110void
2111ev_ref (EV_P)
2112{
2113 ++activecnt;
2114}
2115
2116void
2117ev_unref (EV_P)
2118{
2119 --activecnt;
2120}
2121
2122void
2123ev_now_update (EV_P)
2124{
2125 time_update (EV_A_ 1e100);
2126}
2127
2128void
2129ev_suspend (EV_P)
2130{
2131 ev_now_update (EV_A);
2132}
2133
2134void
2135ev_resume (EV_P)
2136{
2137 ev_tstamp mn_prev = mn_now;
2138
2139 ev_now_update (EV_A);
2140 timers_reschedule (EV_A_ mn_now - mn_prev);
2141#if EV_PERIODIC_ENABLE
2142 periodics_reschedule (EV_A);
2143#endif
2144}
2145
1603/*****************************************************************************/ 2146/*****************************************************************************/
1604 2147
1605void inline_size 2148inline_size void
1606wlist_add (WL *head, WL elem) 2149wlist_add (WL *head, WL elem)
1607{ 2150{
1608 elem->next = *head; 2151 elem->next = *head;
1609 *head = elem; 2152 *head = elem;
1610} 2153}
1611 2154
1612void inline_size 2155inline_size void
1613wlist_del (WL *head, WL elem) 2156wlist_del (WL *head, WL elem)
1614{ 2157{
1615 while (*head) 2158 while (*head)
1616 { 2159 {
1617 if (*head == elem) 2160 if (*head == elem)
1622 2165
1623 head = &(*head)->next; 2166 head = &(*head)->next;
1624 } 2167 }
1625} 2168}
1626 2169
1627void inline_speed 2170inline_speed void
1628clear_pending (EV_P_ W w) 2171clear_pending (EV_P_ W w)
1629{ 2172{
1630 if (w->pending) 2173 if (w->pending)
1631 { 2174 {
1632 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2175 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1649 } 2192 }
1650 else 2193 else
1651 return 0; 2194 return 0;
1652} 2195}
1653 2196
1654void inline_size 2197inline_size void
1655pri_adjust (EV_P_ W w) 2198pri_adjust (EV_P_ W w)
1656{ 2199{
1657 int pri = w->priority; 2200 int pri = w->priority;
1658 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2201 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1659 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2202 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1660 w->priority = pri; 2203 w->priority = pri;
1661} 2204}
1662 2205
1663void inline_speed 2206inline_speed void
1664ev_start (EV_P_ W w, int active) 2207ev_start (EV_P_ W w, int active)
1665{ 2208{
1666 pri_adjust (EV_A_ w); 2209 pri_adjust (EV_A_ w);
1667 w->active = active; 2210 w->active = active;
1668 ev_ref (EV_A); 2211 ev_ref (EV_A);
1669} 2212}
1670 2213
1671void inline_size 2214inline_size void
1672ev_stop (EV_P_ W w) 2215ev_stop (EV_P_ W w)
1673{ 2216{
1674 ev_unref (EV_A); 2217 ev_unref (EV_A);
1675 w->active = 0; 2218 w->active = 0;
1676} 2219}
1683 int fd = w->fd; 2226 int fd = w->fd;
1684 2227
1685 if (expect_false (ev_is_active (w))) 2228 if (expect_false (ev_is_active (w)))
1686 return; 2229 return;
1687 2230
1688 assert (("ev_io_start called with negative fd", fd >= 0)); 2231 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2232 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2233
2234 EV_FREQUENT_CHECK;
1689 2235
1690 ev_start (EV_A_ (W)w, 1); 2236 ev_start (EV_A_ (W)w, 1);
1691 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2237 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1692 wlist_add (&anfds[fd].head, (WL)w); 2238 wlist_add (&anfds[fd].head, (WL)w);
1693 2239
1694 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2240 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1695 w->events &= ~EV_IOFDSET; 2241 w->events &= ~EV__IOFDSET;
2242
2243 EV_FREQUENT_CHECK;
1696} 2244}
1697 2245
1698void noinline 2246void noinline
1699ev_io_stop (EV_P_ ev_io *w) 2247ev_io_stop (EV_P_ ev_io *w)
1700{ 2248{
1701 clear_pending (EV_A_ (W)w); 2249 clear_pending (EV_A_ (W)w);
1702 if (expect_false (!ev_is_active (w))) 2250 if (expect_false (!ev_is_active (w)))
1703 return; 2251 return;
1704 2252
1705 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2253 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2254
2255 EV_FREQUENT_CHECK;
1706 2256
1707 wlist_del (&anfds[w->fd].head, (WL)w); 2257 wlist_del (&anfds[w->fd].head, (WL)w);
1708 ev_stop (EV_A_ (W)w); 2258 ev_stop (EV_A_ (W)w);
1709 2259
1710 fd_change (EV_A_ w->fd, 1); 2260 fd_change (EV_A_ w->fd, 1);
2261
2262 EV_FREQUENT_CHECK;
1711} 2263}
1712 2264
1713void noinline 2265void noinline
1714ev_timer_start (EV_P_ ev_timer *w) 2266ev_timer_start (EV_P_ ev_timer *w)
1715{ 2267{
1716 if (expect_false (ev_is_active (w))) 2268 if (expect_false (ev_is_active (w)))
1717 return; 2269 return;
1718 2270
1719 ((WT)w)->at += mn_now; 2271 ev_at (w) += mn_now;
1720 2272
1721 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2273 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1722 2274
2275 EV_FREQUENT_CHECK;
2276
2277 ++timercnt;
1723 ev_start (EV_A_ (W)w, ++timercnt); 2278 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1724 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2279 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1725 timers [timercnt - 1] = (WT)w; 2280 ANHE_w (timers [ev_active (w)]) = (WT)w;
1726 upheap (timers, timercnt - 1); 2281 ANHE_at_cache (timers [ev_active (w)]);
2282 upheap (timers, ev_active (w));
1727 2283
2284 EV_FREQUENT_CHECK;
2285
1728 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2286 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1729} 2287}
1730 2288
1731void noinline 2289void noinline
1732ev_timer_stop (EV_P_ ev_timer *w) 2290ev_timer_stop (EV_P_ ev_timer *w)
1733{ 2291{
1734 clear_pending (EV_A_ (W)w); 2292 clear_pending (EV_A_ (W)w);
1735 if (expect_false (!ev_is_active (w))) 2293 if (expect_false (!ev_is_active (w)))
1736 return; 2294 return;
1737 2295
1738 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2296 EV_FREQUENT_CHECK;
1739 2297
1740 { 2298 {
1741 int active = ((W)w)->active; 2299 int active = ev_active (w);
1742 2300
2301 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2302
2303 --timercnt;
2304
1743 if (expect_true (--active < --timercnt)) 2305 if (expect_true (active < timercnt + HEAP0))
1744 { 2306 {
1745 timers [active] = timers [timercnt]; 2307 timers [active] = timers [timercnt + HEAP0];
1746 adjustheap (timers, timercnt, active); 2308 adjustheap (timers, timercnt, active);
1747 } 2309 }
1748 } 2310 }
1749 2311
1750 ((WT)w)->at -= mn_now; 2312 EV_FREQUENT_CHECK;
2313
2314 ev_at (w) -= mn_now;
1751 2315
1752 ev_stop (EV_A_ (W)w); 2316 ev_stop (EV_A_ (W)w);
1753} 2317}
1754 2318
1755void noinline 2319void noinline
1756ev_timer_again (EV_P_ ev_timer *w) 2320ev_timer_again (EV_P_ ev_timer *w)
1757{ 2321{
2322 EV_FREQUENT_CHECK;
2323
1758 if (ev_is_active (w)) 2324 if (ev_is_active (w))
1759 { 2325 {
1760 if (w->repeat) 2326 if (w->repeat)
1761 { 2327 {
1762 ((WT)w)->at = mn_now + w->repeat; 2328 ev_at (w) = mn_now + w->repeat;
2329 ANHE_at_cache (timers [ev_active (w)]);
1763 adjustheap (timers, timercnt, ((W)w)->active - 1); 2330 adjustheap (timers, timercnt, ev_active (w));
1764 } 2331 }
1765 else 2332 else
1766 ev_timer_stop (EV_A_ w); 2333 ev_timer_stop (EV_A_ w);
1767 } 2334 }
1768 else if (w->repeat) 2335 else if (w->repeat)
1769 { 2336 {
1770 w->at = w->repeat; 2337 ev_at (w) = w->repeat;
1771 ev_timer_start (EV_A_ w); 2338 ev_timer_start (EV_A_ w);
1772 } 2339 }
2340
2341 EV_FREQUENT_CHECK;
1773} 2342}
1774 2343
1775#if EV_PERIODIC_ENABLE 2344#if EV_PERIODIC_ENABLE
1776void noinline 2345void noinline
1777ev_periodic_start (EV_P_ ev_periodic *w) 2346ev_periodic_start (EV_P_ ev_periodic *w)
1778{ 2347{
1779 if (expect_false (ev_is_active (w))) 2348 if (expect_false (ev_is_active (w)))
1780 return; 2349 return;
1781 2350
1782 if (w->reschedule_cb) 2351 if (w->reschedule_cb)
1783 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2352 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1784 else if (w->interval) 2353 else if (w->interval)
1785 { 2354 {
1786 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2355 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1787 /* this formula differs from the one in periodic_reify because we do not always round up */ 2356 /* this formula differs from the one in periodic_reify because we do not always round up */
1788 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2357 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1789 } 2358 }
1790 else 2359 else
1791 ((WT)w)->at = w->offset; 2360 ev_at (w) = w->offset;
1792 2361
2362 EV_FREQUENT_CHECK;
2363
2364 ++periodiccnt;
1793 ev_start (EV_A_ (W)w, ++periodiccnt); 2365 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1794 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2366 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1795 periodics [periodiccnt - 1] = (WT)w; 2367 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1796 upheap (periodics, periodiccnt - 1); 2368 ANHE_at_cache (periodics [ev_active (w)]);
2369 upheap (periodics, ev_active (w));
1797 2370
2371 EV_FREQUENT_CHECK;
2372
1798 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2373 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1799} 2374}
1800 2375
1801void noinline 2376void noinline
1802ev_periodic_stop (EV_P_ ev_periodic *w) 2377ev_periodic_stop (EV_P_ ev_periodic *w)
1803{ 2378{
1804 clear_pending (EV_A_ (W)w); 2379 clear_pending (EV_A_ (W)w);
1805 if (expect_false (!ev_is_active (w))) 2380 if (expect_false (!ev_is_active (w)))
1806 return; 2381 return;
1807 2382
1808 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2383 EV_FREQUENT_CHECK;
1809 2384
1810 { 2385 {
1811 int active = ((W)w)->active; 2386 int active = ev_active (w);
1812 2387
2388 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2389
2390 --periodiccnt;
2391
1813 if (expect_true (--active < --periodiccnt)) 2392 if (expect_true (active < periodiccnt + HEAP0))
1814 { 2393 {
1815 periodics [active] = periodics [periodiccnt]; 2394 periodics [active] = periodics [periodiccnt + HEAP0];
1816 adjustheap (periodics, periodiccnt, active); 2395 adjustheap (periodics, periodiccnt, active);
1817 } 2396 }
1818 } 2397 }
1819 2398
2399 EV_FREQUENT_CHECK;
2400
1820 ev_stop (EV_A_ (W)w); 2401 ev_stop (EV_A_ (W)w);
1821} 2402}
1822 2403
1823void noinline 2404void noinline
1824ev_periodic_again (EV_P_ ev_periodic *w) 2405ev_periodic_again (EV_P_ ev_periodic *w)
1835 2416
1836void noinline 2417void noinline
1837ev_signal_start (EV_P_ ev_signal *w) 2418ev_signal_start (EV_P_ ev_signal *w)
1838{ 2419{
1839#if EV_MULTIPLICITY 2420#if EV_MULTIPLICITY
1840 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2421 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1841#endif 2422#endif
1842 if (expect_false (ev_is_active (w))) 2423 if (expect_false (ev_is_active (w)))
1843 return; 2424 return;
1844 2425
1845 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2426 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2427
2428 evpipe_init (EV_A);
2429
2430 EV_FREQUENT_CHECK;
1846 2431
1847 { 2432 {
1848#ifndef _WIN32 2433#ifndef _WIN32
1849 sigset_t full, prev; 2434 sigset_t full, prev;
1850 sigfillset (&full); 2435 sigfillset (&full);
1851 sigprocmask (SIG_SETMASK, &full, &prev); 2436 sigprocmask (SIG_SETMASK, &full, &prev);
1852#endif 2437#endif
1853 2438
1854 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2439 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
1855 2440
1856#ifndef _WIN32 2441#ifndef _WIN32
1857 sigprocmask (SIG_SETMASK, &prev, 0); 2442 sigprocmask (SIG_SETMASK, &prev, 0);
1858#endif 2443#endif
1859 } 2444 }
1862 wlist_add (&signals [w->signum - 1].head, (WL)w); 2447 wlist_add (&signals [w->signum - 1].head, (WL)w);
1863 2448
1864 if (!((WL)w)->next) 2449 if (!((WL)w)->next)
1865 { 2450 {
1866#if _WIN32 2451#if _WIN32
1867 signal (w->signum, sighandler); 2452 signal (w->signum, ev_sighandler);
1868#else 2453#else
1869 struct sigaction sa; 2454 struct sigaction sa;
1870 sa.sa_handler = sighandler; 2455 sa.sa_handler = ev_sighandler;
1871 sigfillset (&sa.sa_mask); 2456 sigfillset (&sa.sa_mask);
1872 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2457 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1873 sigaction (w->signum, &sa, 0); 2458 sigaction (w->signum, &sa, 0);
1874#endif 2459#endif
1875 } 2460 }
2461
2462 EV_FREQUENT_CHECK;
1876} 2463}
1877 2464
1878void noinline 2465void noinline
1879ev_signal_stop (EV_P_ ev_signal *w) 2466ev_signal_stop (EV_P_ ev_signal *w)
1880{ 2467{
1881 clear_pending (EV_A_ (W)w); 2468 clear_pending (EV_A_ (W)w);
1882 if (expect_false (!ev_is_active (w))) 2469 if (expect_false (!ev_is_active (w)))
1883 return; 2470 return;
1884 2471
2472 EV_FREQUENT_CHECK;
2473
1885 wlist_del (&signals [w->signum - 1].head, (WL)w); 2474 wlist_del (&signals [w->signum - 1].head, (WL)w);
1886 ev_stop (EV_A_ (W)w); 2475 ev_stop (EV_A_ (W)w);
1887 2476
1888 if (!signals [w->signum - 1].head) 2477 if (!signals [w->signum - 1].head)
1889 signal (w->signum, SIG_DFL); 2478 signal (w->signum, SIG_DFL);
2479
2480 EV_FREQUENT_CHECK;
1890} 2481}
1891 2482
1892void 2483void
1893ev_child_start (EV_P_ ev_child *w) 2484ev_child_start (EV_P_ ev_child *w)
1894{ 2485{
1895#if EV_MULTIPLICITY 2486#if EV_MULTIPLICITY
1896 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2487 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1897#endif 2488#endif
1898 if (expect_false (ev_is_active (w))) 2489 if (expect_false (ev_is_active (w)))
1899 return; 2490 return;
1900 2491
2492 EV_FREQUENT_CHECK;
2493
1901 ev_start (EV_A_ (W)w, 1); 2494 ev_start (EV_A_ (W)w, 1);
1902 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2495 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2496
2497 EV_FREQUENT_CHECK;
1903} 2498}
1904 2499
1905void 2500void
1906ev_child_stop (EV_P_ ev_child *w) 2501ev_child_stop (EV_P_ ev_child *w)
1907{ 2502{
1908 clear_pending (EV_A_ (W)w); 2503 clear_pending (EV_A_ (W)w);
1909 if (expect_false (!ev_is_active (w))) 2504 if (expect_false (!ev_is_active (w)))
1910 return; 2505 return;
1911 2506
2507 EV_FREQUENT_CHECK;
2508
1912 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2509 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1913 ev_stop (EV_A_ (W)w); 2510 ev_stop (EV_A_ (W)w);
2511
2512 EV_FREQUENT_CHECK;
1914} 2513}
1915 2514
1916#if EV_STAT_ENABLE 2515#if EV_STAT_ENABLE
1917 2516
1918# ifdef _WIN32 2517# ifdef _WIN32
1919# undef lstat 2518# undef lstat
1920# define lstat(a,b) _stati64 (a,b) 2519# define lstat(a,b) _stati64 (a,b)
1921# endif 2520# endif
1922 2521
1923#define DEF_STAT_INTERVAL 5.0074891 2522#define DEF_STAT_INTERVAL 5.0074891
2523#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1924#define MIN_STAT_INTERVAL 0.1074891 2524#define MIN_STAT_INTERVAL 0.1074891
1925 2525
1926static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2526static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1927 2527
1928#if EV_USE_INOTIFY 2528#if EV_USE_INOTIFY
1929# define EV_INOTIFY_BUFSIZE 8192 2529# define EV_INOTIFY_BUFSIZE 8192
1933{ 2533{
1934 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2534 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1935 2535
1936 if (w->wd < 0) 2536 if (w->wd < 0)
1937 { 2537 {
2538 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1938 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2539 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1939 2540
1940 /* monitor some parent directory for speedup hints */ 2541 /* monitor some parent directory for speedup hints */
2542 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2543 /* but an efficiency issue only */
1941 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2544 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1942 { 2545 {
1943 char path [4096]; 2546 char path [4096];
1944 strcpy (path, w->path); 2547 strcpy (path, w->path);
1945 2548
1948 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2551 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1949 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2552 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1950 2553
1951 char *pend = strrchr (path, '/'); 2554 char *pend = strrchr (path, '/');
1952 2555
1953 if (!pend) 2556 if (!pend || pend == path)
1954 break; /* whoops, no '/', complain to your admin */ 2557 break;
1955 2558
1956 *pend = 0; 2559 *pend = 0;
1957 w->wd = inotify_add_watch (fs_fd, path, mask); 2560 w->wd = inotify_add_watch (fs_fd, path, mask);
1958 } 2561 }
1959 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2562 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1960 } 2563 }
1961 } 2564 }
1962 else
1963 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1964 2565
1965 if (w->wd >= 0) 2566 if (w->wd >= 0)
2567 {
1966 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2568 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2569
2570 /* now local changes will be tracked by inotify, but remote changes won't */
2571 /* unless the filesystem it known to be local, we therefore still poll */
2572 /* also do poll on <2.6.25, but with normal frequency */
2573 struct statfs sfs;
2574
2575 if (fs_2625 && !statfs (w->path, &sfs))
2576 if (sfs.f_type == 0x1373 /* devfs */
2577 || sfs.f_type == 0xEF53 /* ext2/3 */
2578 || sfs.f_type == 0x3153464a /* jfs */
2579 || sfs.f_type == 0x52654973 /* reiser3 */
2580 || sfs.f_type == 0x01021994 /* tempfs */
2581 || sfs.f_type == 0x58465342 /* xfs */)
2582 return;
2583
2584 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2585 ev_timer_again (EV_A_ &w->timer);
2586 }
1967} 2587}
1968 2588
1969static void noinline 2589static void noinline
1970infy_del (EV_P_ ev_stat *w) 2590infy_del (EV_P_ ev_stat *w)
1971{ 2591{
1985 2605
1986static void noinline 2606static void noinline
1987infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2607infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1988{ 2608{
1989 if (slot < 0) 2609 if (slot < 0)
1990 /* overflow, need to check for all hahs slots */ 2610 /* overflow, need to check for all hash slots */
1991 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2611 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1992 infy_wd (EV_A_ slot, wd, ev); 2612 infy_wd (EV_A_ slot, wd, ev);
1993 else 2613 else
1994 { 2614 {
1995 WL w_; 2615 WL w_;
2001 2621
2002 if (w->wd == wd || wd == -1) 2622 if (w->wd == wd || wd == -1)
2003 { 2623 {
2004 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2624 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2005 { 2625 {
2626 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2006 w->wd = -1; 2627 w->wd = -1;
2007 infy_add (EV_A_ w); /* re-add, no matter what */ 2628 infy_add (EV_A_ w); /* re-add, no matter what */
2008 } 2629 }
2009 2630
2010 stat_timer_cb (EV_A_ &w->timer, 0); 2631 stat_timer_cb (EV_A_ &w->timer, 0);
2023 2644
2024 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2645 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2025 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2646 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2026} 2647}
2027 2648
2028void inline_size 2649inline_size void
2650check_2625 (EV_P)
2651{
2652 /* kernels < 2.6.25 are borked
2653 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2654 */
2655 struct utsname buf;
2656 int major, minor, micro;
2657
2658 if (uname (&buf))
2659 return;
2660
2661 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2662 return;
2663
2664 if (major < 2
2665 || (major == 2 && minor < 6)
2666 || (major == 2 && minor == 6 && micro < 25))
2667 return;
2668
2669 fs_2625 = 1;
2670}
2671
2672inline_size void
2029infy_init (EV_P) 2673infy_init (EV_P)
2030{ 2674{
2031 if (fs_fd != -2) 2675 if (fs_fd != -2)
2032 return; 2676 return;
2677
2678 fs_fd = -1;
2679
2680 check_2625 (EV_A);
2033 2681
2034 fs_fd = inotify_init (); 2682 fs_fd = inotify_init ();
2035 2683
2036 if (fs_fd >= 0) 2684 if (fs_fd >= 0)
2037 { 2685 {
2039 ev_set_priority (&fs_w, EV_MAXPRI); 2687 ev_set_priority (&fs_w, EV_MAXPRI);
2040 ev_io_start (EV_A_ &fs_w); 2688 ev_io_start (EV_A_ &fs_w);
2041 } 2689 }
2042} 2690}
2043 2691
2044void inline_size 2692inline_size void
2045infy_fork (EV_P) 2693infy_fork (EV_P)
2046{ 2694{
2047 int slot; 2695 int slot;
2048 2696
2049 if (fs_fd < 0) 2697 if (fs_fd < 0)
2065 w->wd = -1; 2713 w->wd = -1;
2066 2714
2067 if (fs_fd >= 0) 2715 if (fs_fd >= 0)
2068 infy_add (EV_A_ w); /* re-add, no matter what */ 2716 infy_add (EV_A_ w); /* re-add, no matter what */
2069 else 2717 else
2070 ev_timer_start (EV_A_ &w->timer); 2718 ev_timer_again (EV_A_ &w->timer);
2071 } 2719 }
2072
2073 } 2720 }
2074} 2721}
2075 2722
2723#endif
2724
2725#ifdef _WIN32
2726# define EV_LSTAT(p,b) _stati64 (p, b)
2727#else
2728# define EV_LSTAT(p,b) lstat (p, b)
2076#endif 2729#endif
2077 2730
2078void 2731void
2079ev_stat_stat (EV_P_ ev_stat *w) 2732ev_stat_stat (EV_P_ ev_stat *w)
2080{ 2733{
2107 || w->prev.st_atime != w->attr.st_atime 2760 || w->prev.st_atime != w->attr.st_atime
2108 || w->prev.st_mtime != w->attr.st_mtime 2761 || w->prev.st_mtime != w->attr.st_mtime
2109 || w->prev.st_ctime != w->attr.st_ctime 2762 || w->prev.st_ctime != w->attr.st_ctime
2110 ) { 2763 ) {
2111 #if EV_USE_INOTIFY 2764 #if EV_USE_INOTIFY
2765 if (fs_fd >= 0)
2766 {
2112 infy_del (EV_A_ w); 2767 infy_del (EV_A_ w);
2113 infy_add (EV_A_ w); 2768 infy_add (EV_A_ w);
2114 ev_stat_stat (EV_A_ w); /* avoid race... */ 2769 ev_stat_stat (EV_A_ w); /* avoid race... */
2770 }
2115 #endif 2771 #endif
2116 2772
2117 ev_feed_event (EV_A_ w, EV_STAT); 2773 ev_feed_event (EV_A_ w, EV_STAT);
2118 } 2774 }
2119} 2775}
2122ev_stat_start (EV_P_ ev_stat *w) 2778ev_stat_start (EV_P_ ev_stat *w)
2123{ 2779{
2124 if (expect_false (ev_is_active (w))) 2780 if (expect_false (ev_is_active (w)))
2125 return; 2781 return;
2126 2782
2127 /* since we use memcmp, we need to clear any padding data etc. */
2128 memset (&w->prev, 0, sizeof (ev_statdata));
2129 memset (&w->attr, 0, sizeof (ev_statdata));
2130
2131 ev_stat_stat (EV_A_ w); 2783 ev_stat_stat (EV_A_ w);
2132 2784
2785 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2133 if (w->interval < MIN_STAT_INTERVAL) 2786 w->interval = MIN_STAT_INTERVAL;
2134 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2135 2787
2136 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2788 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2137 ev_set_priority (&w->timer, ev_priority (w)); 2789 ev_set_priority (&w->timer, ev_priority (w));
2138 2790
2139#if EV_USE_INOTIFY 2791#if EV_USE_INOTIFY
2140 infy_init (EV_A); 2792 infy_init (EV_A);
2141 2793
2142 if (fs_fd >= 0) 2794 if (fs_fd >= 0)
2143 infy_add (EV_A_ w); 2795 infy_add (EV_A_ w);
2144 else 2796 else
2145#endif 2797#endif
2146 ev_timer_start (EV_A_ &w->timer); 2798 ev_timer_again (EV_A_ &w->timer);
2147 2799
2148 ev_start (EV_A_ (W)w, 1); 2800 ev_start (EV_A_ (W)w, 1);
2801
2802 EV_FREQUENT_CHECK;
2149} 2803}
2150 2804
2151void 2805void
2152ev_stat_stop (EV_P_ ev_stat *w) 2806ev_stat_stop (EV_P_ ev_stat *w)
2153{ 2807{
2154 clear_pending (EV_A_ (W)w); 2808 clear_pending (EV_A_ (W)w);
2155 if (expect_false (!ev_is_active (w))) 2809 if (expect_false (!ev_is_active (w)))
2156 return; 2810 return;
2157 2811
2812 EV_FREQUENT_CHECK;
2813
2158#if EV_USE_INOTIFY 2814#if EV_USE_INOTIFY
2159 infy_del (EV_A_ w); 2815 infy_del (EV_A_ w);
2160#endif 2816#endif
2161 ev_timer_stop (EV_A_ &w->timer); 2817 ev_timer_stop (EV_A_ &w->timer);
2162 2818
2163 ev_stop (EV_A_ (W)w); 2819 ev_stop (EV_A_ (W)w);
2820
2821 EV_FREQUENT_CHECK;
2164} 2822}
2165#endif 2823#endif
2166 2824
2167#if EV_IDLE_ENABLE 2825#if EV_IDLE_ENABLE
2168void 2826void
2170{ 2828{
2171 if (expect_false (ev_is_active (w))) 2829 if (expect_false (ev_is_active (w)))
2172 return; 2830 return;
2173 2831
2174 pri_adjust (EV_A_ (W)w); 2832 pri_adjust (EV_A_ (W)w);
2833
2834 EV_FREQUENT_CHECK;
2175 2835
2176 { 2836 {
2177 int active = ++idlecnt [ABSPRI (w)]; 2837 int active = ++idlecnt [ABSPRI (w)];
2178 2838
2179 ++idleall; 2839 ++idleall;
2180 ev_start (EV_A_ (W)w, active); 2840 ev_start (EV_A_ (W)w, active);
2181 2841
2182 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2842 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2183 idles [ABSPRI (w)][active - 1] = w; 2843 idles [ABSPRI (w)][active - 1] = w;
2184 } 2844 }
2845
2846 EV_FREQUENT_CHECK;
2185} 2847}
2186 2848
2187void 2849void
2188ev_idle_stop (EV_P_ ev_idle *w) 2850ev_idle_stop (EV_P_ ev_idle *w)
2189{ 2851{
2190 clear_pending (EV_A_ (W)w); 2852 clear_pending (EV_A_ (W)w);
2191 if (expect_false (!ev_is_active (w))) 2853 if (expect_false (!ev_is_active (w)))
2192 return; 2854 return;
2193 2855
2856 EV_FREQUENT_CHECK;
2857
2194 { 2858 {
2195 int active = ((W)w)->active; 2859 int active = ev_active (w);
2196 2860
2197 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2861 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2198 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2862 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2199 2863
2200 ev_stop (EV_A_ (W)w); 2864 ev_stop (EV_A_ (W)w);
2201 --idleall; 2865 --idleall;
2202 } 2866 }
2867
2868 EV_FREQUENT_CHECK;
2203} 2869}
2204#endif 2870#endif
2205 2871
2206void 2872void
2207ev_prepare_start (EV_P_ ev_prepare *w) 2873ev_prepare_start (EV_P_ ev_prepare *w)
2208{ 2874{
2209 if (expect_false (ev_is_active (w))) 2875 if (expect_false (ev_is_active (w)))
2210 return; 2876 return;
2877
2878 EV_FREQUENT_CHECK;
2211 2879
2212 ev_start (EV_A_ (W)w, ++preparecnt); 2880 ev_start (EV_A_ (W)w, ++preparecnt);
2213 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2881 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2214 prepares [preparecnt - 1] = w; 2882 prepares [preparecnt - 1] = w;
2883
2884 EV_FREQUENT_CHECK;
2215} 2885}
2216 2886
2217void 2887void
2218ev_prepare_stop (EV_P_ ev_prepare *w) 2888ev_prepare_stop (EV_P_ ev_prepare *w)
2219{ 2889{
2220 clear_pending (EV_A_ (W)w); 2890 clear_pending (EV_A_ (W)w);
2221 if (expect_false (!ev_is_active (w))) 2891 if (expect_false (!ev_is_active (w)))
2222 return; 2892 return;
2223 2893
2894 EV_FREQUENT_CHECK;
2895
2224 { 2896 {
2225 int active = ((W)w)->active; 2897 int active = ev_active (w);
2898
2226 prepares [active - 1] = prepares [--preparecnt]; 2899 prepares [active - 1] = prepares [--preparecnt];
2227 ((W)prepares [active - 1])->active = active; 2900 ev_active (prepares [active - 1]) = active;
2228 } 2901 }
2229 2902
2230 ev_stop (EV_A_ (W)w); 2903 ev_stop (EV_A_ (W)w);
2904
2905 EV_FREQUENT_CHECK;
2231} 2906}
2232 2907
2233void 2908void
2234ev_check_start (EV_P_ ev_check *w) 2909ev_check_start (EV_P_ ev_check *w)
2235{ 2910{
2236 if (expect_false (ev_is_active (w))) 2911 if (expect_false (ev_is_active (w)))
2237 return; 2912 return;
2913
2914 EV_FREQUENT_CHECK;
2238 2915
2239 ev_start (EV_A_ (W)w, ++checkcnt); 2916 ev_start (EV_A_ (W)w, ++checkcnt);
2240 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2917 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2241 checks [checkcnt - 1] = w; 2918 checks [checkcnt - 1] = w;
2919
2920 EV_FREQUENT_CHECK;
2242} 2921}
2243 2922
2244void 2923void
2245ev_check_stop (EV_P_ ev_check *w) 2924ev_check_stop (EV_P_ ev_check *w)
2246{ 2925{
2247 clear_pending (EV_A_ (W)w); 2926 clear_pending (EV_A_ (W)w);
2248 if (expect_false (!ev_is_active (w))) 2927 if (expect_false (!ev_is_active (w)))
2249 return; 2928 return;
2250 2929
2930 EV_FREQUENT_CHECK;
2931
2251 { 2932 {
2252 int active = ((W)w)->active; 2933 int active = ev_active (w);
2934
2253 checks [active - 1] = checks [--checkcnt]; 2935 checks [active - 1] = checks [--checkcnt];
2254 ((W)checks [active - 1])->active = active; 2936 ev_active (checks [active - 1]) = active;
2255 } 2937 }
2256 2938
2257 ev_stop (EV_A_ (W)w); 2939 ev_stop (EV_A_ (W)w);
2940
2941 EV_FREQUENT_CHECK;
2258} 2942}
2259 2943
2260#if EV_EMBED_ENABLE 2944#if EV_EMBED_ENABLE
2261void noinline 2945void noinline
2262ev_embed_sweep (EV_P_ ev_embed *w) 2946ev_embed_sweep (EV_P_ ev_embed *w)
2289 ev_loop (EV_A_ EVLOOP_NONBLOCK); 2973 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2290 } 2974 }
2291 } 2975 }
2292} 2976}
2293 2977
2978static void
2979embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2980{
2981 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2982
2983 ev_embed_stop (EV_A_ w);
2984
2985 {
2986 struct ev_loop *loop = w->other;
2987
2988 ev_loop_fork (EV_A);
2989 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2990 }
2991
2992 ev_embed_start (EV_A_ w);
2993}
2994
2294#if 0 2995#if 0
2295static void 2996static void
2296embed_idle_cb (EV_P_ ev_idle *idle, int revents) 2997embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2297{ 2998{
2298 ev_idle_stop (EV_A_ idle); 2999 ev_idle_stop (EV_A_ idle);
2305 if (expect_false (ev_is_active (w))) 3006 if (expect_false (ev_is_active (w)))
2306 return; 3007 return;
2307 3008
2308 { 3009 {
2309 struct ev_loop *loop = w->other; 3010 struct ev_loop *loop = w->other;
2310 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3011 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2311 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3012 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2312 } 3013 }
3014
3015 EV_FREQUENT_CHECK;
2313 3016
2314 ev_set_priority (&w->io, ev_priority (w)); 3017 ev_set_priority (&w->io, ev_priority (w));
2315 ev_io_start (EV_A_ &w->io); 3018 ev_io_start (EV_A_ &w->io);
2316 3019
2317 ev_prepare_init (&w->prepare, embed_prepare_cb); 3020 ev_prepare_init (&w->prepare, embed_prepare_cb);
2318 ev_set_priority (&w->prepare, EV_MINPRI); 3021 ev_set_priority (&w->prepare, EV_MINPRI);
2319 ev_prepare_start (EV_A_ &w->prepare); 3022 ev_prepare_start (EV_A_ &w->prepare);
2320 3023
3024 ev_fork_init (&w->fork, embed_fork_cb);
3025 ev_fork_start (EV_A_ &w->fork);
3026
2321 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3027 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2322 3028
2323 ev_start (EV_A_ (W)w, 1); 3029 ev_start (EV_A_ (W)w, 1);
3030
3031 EV_FREQUENT_CHECK;
2324} 3032}
2325 3033
2326void 3034void
2327ev_embed_stop (EV_P_ ev_embed *w) 3035ev_embed_stop (EV_P_ ev_embed *w)
2328{ 3036{
2329 clear_pending (EV_A_ (W)w); 3037 clear_pending (EV_A_ (W)w);
2330 if (expect_false (!ev_is_active (w))) 3038 if (expect_false (!ev_is_active (w)))
2331 return; 3039 return;
2332 3040
3041 EV_FREQUENT_CHECK;
3042
2333 ev_io_stop (EV_A_ &w->io); 3043 ev_io_stop (EV_A_ &w->io);
2334 ev_prepare_stop (EV_A_ &w->prepare); 3044 ev_prepare_stop (EV_A_ &w->prepare);
3045 ev_fork_stop (EV_A_ &w->fork);
2335 3046
2336 ev_stop (EV_A_ (W)w); 3047 EV_FREQUENT_CHECK;
2337} 3048}
2338#endif 3049#endif
2339 3050
2340#if EV_FORK_ENABLE 3051#if EV_FORK_ENABLE
2341void 3052void
2342ev_fork_start (EV_P_ ev_fork *w) 3053ev_fork_start (EV_P_ ev_fork *w)
2343{ 3054{
2344 if (expect_false (ev_is_active (w))) 3055 if (expect_false (ev_is_active (w)))
2345 return; 3056 return;
3057
3058 EV_FREQUENT_CHECK;
2346 3059
2347 ev_start (EV_A_ (W)w, ++forkcnt); 3060 ev_start (EV_A_ (W)w, ++forkcnt);
2348 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3061 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2349 forks [forkcnt - 1] = w; 3062 forks [forkcnt - 1] = w;
3063
3064 EV_FREQUENT_CHECK;
2350} 3065}
2351 3066
2352void 3067void
2353ev_fork_stop (EV_P_ ev_fork *w) 3068ev_fork_stop (EV_P_ ev_fork *w)
2354{ 3069{
2355 clear_pending (EV_A_ (W)w); 3070 clear_pending (EV_A_ (W)w);
2356 if (expect_false (!ev_is_active (w))) 3071 if (expect_false (!ev_is_active (w)))
2357 return; 3072 return;
2358 3073
3074 EV_FREQUENT_CHECK;
3075
2359 { 3076 {
2360 int active = ((W)w)->active; 3077 int active = ev_active (w);
3078
2361 forks [active - 1] = forks [--forkcnt]; 3079 forks [active - 1] = forks [--forkcnt];
2362 ((W)forks [active - 1])->active = active; 3080 ev_active (forks [active - 1]) = active;
2363 } 3081 }
2364 3082
2365 ev_stop (EV_A_ (W)w); 3083 ev_stop (EV_A_ (W)w);
3084
3085 EV_FREQUENT_CHECK;
3086}
3087#endif
3088
3089#if EV_ASYNC_ENABLE
3090void
3091ev_async_start (EV_P_ ev_async *w)
3092{
3093 if (expect_false (ev_is_active (w)))
3094 return;
3095
3096 evpipe_init (EV_A);
3097
3098 EV_FREQUENT_CHECK;
3099
3100 ev_start (EV_A_ (W)w, ++asynccnt);
3101 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3102 asyncs [asynccnt - 1] = w;
3103
3104 EV_FREQUENT_CHECK;
3105}
3106
3107void
3108ev_async_stop (EV_P_ ev_async *w)
3109{
3110 clear_pending (EV_A_ (W)w);
3111 if (expect_false (!ev_is_active (w)))
3112 return;
3113
3114 EV_FREQUENT_CHECK;
3115
3116 {
3117 int active = ev_active (w);
3118
3119 asyncs [active - 1] = asyncs [--asynccnt];
3120 ev_active (asyncs [active - 1]) = active;
3121 }
3122
3123 ev_stop (EV_A_ (W)w);
3124
3125 EV_FREQUENT_CHECK;
3126}
3127
3128void
3129ev_async_send (EV_P_ ev_async *w)
3130{
3131 w->sent = 1;
3132 evpipe_write (EV_A_ &gotasync);
2366} 3133}
2367#endif 3134#endif
2368 3135
2369/*****************************************************************************/ 3136/*****************************************************************************/
2370 3137
2380once_cb (EV_P_ struct ev_once *once, int revents) 3147once_cb (EV_P_ struct ev_once *once, int revents)
2381{ 3148{
2382 void (*cb)(int revents, void *arg) = once->cb; 3149 void (*cb)(int revents, void *arg) = once->cb;
2383 void *arg = once->arg; 3150 void *arg = once->arg;
2384 3151
2385 ev_io_stop (EV_A_ &once->io); 3152 ev_io_stop (EV_A_ &once->io);
2386 ev_timer_stop (EV_A_ &once->to); 3153 ev_timer_stop (EV_A_ &once->to);
2387 ev_free (once); 3154 ev_free (once);
2388 3155
2389 cb (revents, arg); 3156 cb (revents, arg);
2390} 3157}
2391 3158
2392static void 3159static void
2393once_cb_io (EV_P_ ev_io *w, int revents) 3160once_cb_io (EV_P_ ev_io *w, int revents)
2394{ 3161{
2395 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3162 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3163
3164 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2396} 3165}
2397 3166
2398static void 3167static void
2399once_cb_to (EV_P_ ev_timer *w, int revents) 3168once_cb_to (EV_P_ ev_timer *w, int revents)
2400{ 3169{
2401 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3170 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3171
3172 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2402} 3173}
2403 3174
2404void 3175void
2405ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3176ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2406{ 3177{
2428 ev_timer_set (&once->to, timeout, 0.); 3199 ev_timer_set (&once->to, timeout, 0.);
2429 ev_timer_start (EV_A_ &once->to); 3200 ev_timer_start (EV_A_ &once->to);
2430 } 3201 }
2431} 3202}
2432 3203
3204/*****************************************************************************/
3205
3206#if 0
3207void
3208ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3209{
3210 int i, j;
3211 ev_watcher_list *wl, *wn;
3212
3213 if (types & (EV_IO | EV_EMBED))
3214 for (i = 0; i < anfdmax; ++i)
3215 for (wl = anfds [i].head; wl; )
3216 {
3217 wn = wl->next;
3218
3219#if EV_EMBED_ENABLE
3220 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3221 {
3222 if (types & EV_EMBED)
3223 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3224 }
3225 else
3226#endif
3227#if EV_USE_INOTIFY
3228 if (ev_cb ((ev_io *)wl) == infy_cb)
3229 ;
3230 else
3231#endif
3232 if ((ev_io *)wl != &pipeev)
3233 if (types & EV_IO)
3234 cb (EV_A_ EV_IO, wl);
3235
3236 wl = wn;
3237 }
3238
3239 if (types & (EV_TIMER | EV_STAT))
3240 for (i = timercnt + HEAP0; i-- > HEAP0; )
3241#if EV_STAT_ENABLE
3242 /*TODO: timer is not always active*/
3243 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3244 {
3245 if (types & EV_STAT)
3246 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3247 }
3248 else
3249#endif
3250 if (types & EV_TIMER)
3251 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3252
3253#if EV_PERIODIC_ENABLE
3254 if (types & EV_PERIODIC)
3255 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3256 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3257#endif
3258
3259#if EV_IDLE_ENABLE
3260 if (types & EV_IDLE)
3261 for (j = NUMPRI; i--; )
3262 for (i = idlecnt [j]; i--; )
3263 cb (EV_A_ EV_IDLE, idles [j][i]);
3264#endif
3265
3266#if EV_FORK_ENABLE
3267 if (types & EV_FORK)
3268 for (i = forkcnt; i--; )
3269 if (ev_cb (forks [i]) != embed_fork_cb)
3270 cb (EV_A_ EV_FORK, forks [i]);
3271#endif
3272
3273#if EV_ASYNC_ENABLE
3274 if (types & EV_ASYNC)
3275 for (i = asynccnt; i--; )
3276 cb (EV_A_ EV_ASYNC, asyncs [i]);
3277#endif
3278
3279 if (types & EV_PREPARE)
3280 for (i = preparecnt; i--; )
3281#if EV_EMBED_ENABLE
3282 if (ev_cb (prepares [i]) != embed_prepare_cb)
3283#endif
3284 cb (EV_A_ EV_PREPARE, prepares [i]);
3285
3286 if (types & EV_CHECK)
3287 for (i = checkcnt; i--; )
3288 cb (EV_A_ EV_CHECK, checks [i]);
3289
3290 if (types & EV_SIGNAL)
3291 for (i = 0; i < signalmax; ++i)
3292 for (wl = signals [i].head; wl; )
3293 {
3294 wn = wl->next;
3295 cb (EV_A_ EV_SIGNAL, wl);
3296 wl = wn;
3297 }
3298
3299 if (types & EV_CHILD)
3300 for (i = EV_PID_HASHSIZE; i--; )
3301 for (wl = childs [i]; wl; )
3302 {
3303 wn = wl->next;
3304 cb (EV_A_ EV_CHILD, wl);
3305 wl = wn;
3306 }
3307/* EV_STAT 0x00001000 /* stat data changed */
3308/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3309}
3310#endif
3311
2433#if EV_MULTIPLICITY 3312#if EV_MULTIPLICITY
2434 #include "ev_wrap.h" 3313 #include "ev_wrap.h"
2435#endif 3314#endif
2436 3315
2437#ifdef __cplusplus 3316#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines