ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.184 by root, Wed Dec 12 05:30:52 2007 UTC vs.
Revision 1.288 by root, Sat Apr 25 14:12:48 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
63
43# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
46# endif 67# endif
47# ifndef EV_USE_REALTIME 68# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 0
49# endif 70# endif
50# else 71# else
51# ifndef EV_USE_MONOTONIC 72# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 73# define EV_USE_MONOTONIC 0
53# endif 74# endif
54# ifndef EV_USE_REALTIME 75# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 76# define EV_USE_REALTIME 0
77# endif
78# endif
79
80# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1
83# else
84# define EV_USE_NANOSLEEP 0
56# endif 85# endif
57# endif 86# endif
58 87
59# ifndef EV_USE_SELECT 88# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 89# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 131# else
103# define EV_USE_INOTIFY 0 132# define EV_USE_INOTIFY 0
104# endif 133# endif
105# endif 134# endif
106 135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
107#endif 144#endif
108 145
109#include <math.h> 146#include <math.h>
110#include <stdlib.h> 147#include <stdlib.h>
111#include <fcntl.h> 148#include <fcntl.h>
129#ifndef _WIN32 166#ifndef _WIN32
130# include <sys/time.h> 167# include <sys/time.h>
131# include <sys/wait.h> 168# include <sys/wait.h>
132# include <unistd.h> 169# include <unistd.h>
133#else 170#else
171# include <io.h>
134# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 173# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
138# endif 176# endif
139#endif 177#endif
140 178
141/**/ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
142 188
143#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
144# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif
145#endif 195#endif
146 196
147#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif
200
201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
205# define EV_USE_NANOSLEEP 0
206# endif
149#endif 207#endif
150 208
151#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
153#endif 211#endif
159# define EV_USE_POLL 1 217# define EV_USE_POLL 1
160# endif 218# endif
161#endif 219#endif
162 220
163#ifndef EV_USE_EPOLL 221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
164# define EV_USE_EPOLL 0 225# define EV_USE_EPOLL 0
226# endif
165#endif 227#endif
166 228
167#ifndef EV_USE_KQUEUE 229#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 230# define EV_USE_KQUEUE 0
169#endif 231#endif
171#ifndef EV_USE_PORT 233#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 234# define EV_USE_PORT 0
173#endif 235#endif
174 236
175#ifndef EV_USE_INOTIFY 237#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1
240# else
176# define EV_USE_INOTIFY 0 241# define EV_USE_INOTIFY 0
242# endif
177#endif 243#endif
178 244
179#ifndef EV_PID_HASHSIZE 245#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 246# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 247# define EV_PID_HASHSIZE 1
190# else 256# else
191# define EV_INOTIFY_HASHSIZE 16 257# define EV_INOTIFY_HASHSIZE 16
192# endif 258# endif
193#endif 259#endif
194 260
195/**/ 261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 288
197#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
200#endif 292#endif
202#ifndef CLOCK_REALTIME 294#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 295# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 296# define EV_USE_REALTIME 0
205#endif 297#endif
206 298
299#if !EV_STAT_ENABLE
300# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0
302#endif
303
304#if !EV_USE_NANOSLEEP
305# ifndef _WIN32
306# include <sys/select.h>
307# endif
308#endif
309
310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
319#endif
320
207#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 322# include <winsock.h>
209#endif 323#endif
210 324
211#if !EV_STAT_ENABLE 325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
212# define EV_USE_INOTIFY 0 331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
213#endif 339# endif
214 340int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 341# ifdef __cplusplus
216# include <sys/inotify.h> 342}
343# endif
217#endif 344#endif
218 345
219/**/ 346/**/
347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
220 353
221/* 354/*
222 * This is used to avoid floating point rounding problems. 355 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics 356 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding 357 * to ensure progress, time-wise, even when rounding
230 363
231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
234 367
235#if __GNUC__ >= 3 368#if __GNUC__ >= 4
236# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
237# define noinline __attribute__ ((noinline)) 370# define noinline __attribute__ ((noinline))
238#else 371#else
239# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
240# define noinline 373# define noinline
241# if __STDC_VERSION__ < 199901L 374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
242# define inline 375# define inline
243# endif 376# endif
244#endif 377#endif
245 378
246#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
261 394
262typedef ev_watcher *W; 395typedef ev_watcher *W;
263typedef ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
264typedef ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
265 398
399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
266static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif
267 411
268#ifdef _WIN32 412#ifdef _WIN32
269# include "ev_win32.c" 413# include "ev_win32.c"
270#endif 414#endif
271 415
278{ 422{
279 syserr_cb = cb; 423 syserr_cb = cb;
280} 424}
281 425
282static void noinline 426static void noinline
283syserr (const char *msg) 427ev_syserr (const char *msg)
284{ 428{
285 if (!msg) 429 if (!msg)
286 msg = "(libev) system error"; 430 msg = "(libev) system error";
287 431
288 if (syserr_cb) 432 if (syserr_cb)
292 perror (msg); 436 perror (msg);
293 abort (); 437 abort ();
294 } 438 }
295} 439}
296 440
441static void *
442ev_realloc_emul (void *ptr, long size)
443{
444 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and
446 * the single unix specification, so work around them here.
447 */
448
449 if (size)
450 return realloc (ptr, size);
451
452 free (ptr);
453 return 0;
454}
455
297static void *(*alloc)(void *ptr, long size); 456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
298 457
299void 458void
300ev_set_allocator (void *(*cb)(void *ptr, long size)) 459ev_set_allocator (void *(*cb)(void *ptr, long size))
301{ 460{
302 alloc = cb; 461 alloc = cb;
303} 462}
304 463
305inline_speed void * 464inline_speed void *
306ev_realloc (void *ptr, long size) 465ev_realloc (void *ptr, long size)
307{ 466{
308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 467 ptr = alloc (ptr, size);
309 468
310 if (!ptr && size) 469 if (!ptr && size)
311 { 470 {
312 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
313 abort (); 472 abort ();
319#define ev_malloc(size) ev_realloc (0, (size)) 478#define ev_malloc(size) ev_realloc (0, (size))
320#define ev_free(ptr) ev_realloc ((ptr), 0) 479#define ev_free(ptr) ev_realloc ((ptr), 0)
321 480
322/*****************************************************************************/ 481/*****************************************************************************/
323 482
483/* file descriptor info structure */
324typedef struct 484typedef struct
325{ 485{
326 WL head; 486 WL head;
327 unsigned char events; 487 unsigned char events; /* the events watched for */
488 unsigned char reify; /* flag set when this ANFD needs reification */
489 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
328 unsigned char reify; 490 unsigned char unused;
491#if EV_USE_EPOLL
492 unsigned int egen; /* generation counter to counter epoll bugs */
493#endif
329#if EV_SELECT_IS_WINSOCKET 494#if EV_SELECT_IS_WINSOCKET
330 SOCKET handle; 495 SOCKET handle;
331#endif 496#endif
332} ANFD; 497} ANFD;
333 498
499/* stores the pending event set for a given watcher */
334typedef struct 500typedef struct
335{ 501{
336 W w; 502 W w;
337 int events; 503 int events; /* the pending event set for the given watcher */
338} ANPENDING; 504} ANPENDING;
339 505
340#if EV_USE_INOTIFY 506#if EV_USE_INOTIFY
507/* hash table entry per inotify-id */
341typedef struct 508typedef struct
342{ 509{
343 WL head; 510 WL head;
344} ANFS; 511} ANFS;
512#endif
513
514/* Heap Entry */
515#if EV_HEAP_CACHE_AT
516 /* a heap element */
517 typedef struct {
518 ev_tstamp at;
519 WT w;
520 } ANHE;
521
522 #define ANHE_w(he) (he).w /* access watcher, read-write */
523 #define ANHE_at(he) (he).at /* access cached at, read-only */
524 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
525#else
526 /* a heap element */
527 typedef WT ANHE;
528
529 #define ANHE_w(he) (he)
530 #define ANHE_at(he) (he)->at
531 #define ANHE_at_cache(he)
345#endif 532#endif
346 533
347#if EV_MULTIPLICITY 534#if EV_MULTIPLICITY
348 535
349 struct ev_loop 536 struct ev_loop
374 561
375ev_tstamp 562ev_tstamp
376ev_time (void) 563ev_time (void)
377{ 564{
378#if EV_USE_REALTIME 565#if EV_USE_REALTIME
566 if (expect_true (have_realtime))
567 {
379 struct timespec ts; 568 struct timespec ts;
380 clock_gettime (CLOCK_REALTIME, &ts); 569 clock_gettime (CLOCK_REALTIME, &ts);
381 return ts.tv_sec + ts.tv_nsec * 1e-9; 570 return ts.tv_sec + ts.tv_nsec * 1e-9;
382#else 571 }
572#endif
573
383 struct timeval tv; 574 struct timeval tv;
384 gettimeofday (&tv, 0); 575 gettimeofday (&tv, 0);
385 return tv.tv_sec + tv.tv_usec * 1e-6; 576 return tv.tv_sec + tv.tv_usec * 1e-6;
386#endif
387} 577}
388 578
389ev_tstamp inline_size 579inline_size ev_tstamp
390get_clock (void) 580get_clock (void)
391{ 581{
392#if EV_USE_MONOTONIC 582#if EV_USE_MONOTONIC
393 if (expect_true (have_monotonic)) 583 if (expect_true (have_monotonic))
394 { 584 {
407{ 597{
408 return ev_rt_now; 598 return ev_rt_now;
409} 599}
410#endif 600#endif
411 601
412int inline_size 602void
603ev_sleep (ev_tstamp delay)
604{
605 if (delay > 0.)
606 {
607#if EV_USE_NANOSLEEP
608 struct timespec ts;
609
610 ts.tv_sec = (time_t)delay;
611 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
612
613 nanosleep (&ts, 0);
614#elif defined(_WIN32)
615 Sleep ((unsigned long)(delay * 1e3));
616#else
617 struct timeval tv;
618
619 tv.tv_sec = (time_t)delay;
620 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
621
622 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
623 /* somehting nto guaranteed by newer posix versions, but guaranteed */
624 /* by older ones */
625 select (0, 0, 0, 0, &tv);
626#endif
627 }
628}
629
630/*****************************************************************************/
631
632#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
633
634/* find a suitable new size for the given array, */
635/* hopefully by rounding to a ncie-to-malloc size */
636inline_size int
413array_nextsize (int elem, int cur, int cnt) 637array_nextsize (int elem, int cur, int cnt)
414{ 638{
415 int ncur = cur + 1; 639 int ncur = cur + 1;
416 640
417 do 641 do
418 ncur <<= 1; 642 ncur <<= 1;
419 while (cnt > ncur); 643 while (cnt > ncur);
420 644
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 645 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096) 646 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
423 { 647 {
424 ncur *= elem; 648 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 649 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
426 ncur = ncur - sizeof (void *) * 4; 650 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem; 651 ncur /= elem;
428 } 652 }
429 653
430 return ncur; 654 return ncur;
434array_realloc (int elem, void *base, int *cur, int cnt) 658array_realloc (int elem, void *base, int *cur, int cnt)
435{ 659{
436 *cur = array_nextsize (elem, *cur, cnt); 660 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur); 661 return ev_realloc (base, elem * *cur);
438} 662}
663
664#define array_init_zero(base,count) \
665 memset ((void *)(base), 0, sizeof (*(base)) * (count))
439 666
440#define array_needsize(type,base,cur,cnt,init) \ 667#define array_needsize(type,base,cur,cnt,init) \
441 if (expect_false ((cnt) > (cur))) \ 668 if (expect_false ((cnt) > (cur))) \
442 { \ 669 { \
443 int ocur_ = (cur); \ 670 int ocur_ = (cur); \
455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 682 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
456 } 683 }
457#endif 684#endif
458 685
459#define array_free(stem, idx) \ 686#define array_free(stem, idx) \
460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 687 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
461 688
462/*****************************************************************************/ 689/*****************************************************************************/
690
691/* dummy callback for pending events */
692static void noinline
693pendingcb (EV_P_ ev_prepare *w, int revents)
694{
695}
463 696
464void noinline 697void noinline
465ev_feed_event (EV_P_ void *w, int revents) 698ev_feed_event (EV_P_ void *w, int revents)
466{ 699{
467 W w_ = (W)w; 700 W w_ = (W)w;
476 pendings [pri][w_->pending - 1].w = w_; 709 pendings [pri][w_->pending - 1].w = w_;
477 pendings [pri][w_->pending - 1].events = revents; 710 pendings [pri][w_->pending - 1].events = revents;
478 } 711 }
479} 712}
480 713
481void inline_speed 714inline_speed void
715feed_reverse (EV_P_ W w)
716{
717 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
718 rfeeds [rfeedcnt++] = w;
719}
720
721inline_size void
722feed_reverse_done (EV_P_ int revents)
723{
724 do
725 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
726 while (rfeedcnt);
727}
728
729inline_speed void
482queue_events (EV_P_ W *events, int eventcnt, int type) 730queue_events (EV_P_ W *events, int eventcnt, int type)
483{ 731{
484 int i; 732 int i;
485 733
486 for (i = 0; i < eventcnt; ++i) 734 for (i = 0; i < eventcnt; ++i)
487 ev_feed_event (EV_A_ events [i], type); 735 ev_feed_event (EV_A_ events [i], type);
488} 736}
489 737
490/*****************************************************************************/ 738/*****************************************************************************/
491 739
492void inline_size 740inline_speed void
493anfds_init (ANFD *base, int count)
494{
495 while (count--)
496 {
497 base->head = 0;
498 base->events = EV_NONE;
499 base->reify = 0;
500
501 ++base;
502 }
503}
504
505void inline_speed
506fd_event (EV_P_ int fd, int revents) 741fd_event (EV_P_ int fd, int revents)
507{ 742{
508 ANFD *anfd = anfds + fd; 743 ANFD *anfd = anfds + fd;
509 ev_io *w; 744 ev_io *w;
510 745
522{ 757{
523 if (fd >= 0 && fd < anfdmax) 758 if (fd >= 0 && fd < anfdmax)
524 fd_event (EV_A_ fd, revents); 759 fd_event (EV_A_ fd, revents);
525} 760}
526 761
527void inline_size 762/* make sure the external fd watch events are in-sync */
763/* with the kernel/libev internal state */
764inline_size void
528fd_reify (EV_P) 765fd_reify (EV_P)
529{ 766{
530 int i; 767 int i;
531 768
532 for (i = 0; i < fdchangecnt; ++i) 769 for (i = 0; i < fdchangecnt; ++i)
541 events |= (unsigned char)w->events; 778 events |= (unsigned char)w->events;
542 779
543#if EV_SELECT_IS_WINSOCKET 780#if EV_SELECT_IS_WINSOCKET
544 if (events) 781 if (events)
545 { 782 {
546 unsigned long argp; 783 unsigned long arg;
784 #ifdef EV_FD_TO_WIN32_HANDLE
785 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
786 #else
547 anfd->handle = _get_osfhandle (fd); 787 anfd->handle = _get_osfhandle (fd);
788 #endif
548 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 789 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
549 } 790 }
550#endif 791#endif
551 792
552 { 793 {
553 unsigned char o_events = anfd->events; 794 unsigned char o_events = anfd->events;
554 unsigned char o_reify = anfd->reify; 795 unsigned char o_reify = anfd->reify;
555 796
556 anfd->reify = 0; 797 anfd->reify = 0;
557 anfd->events = events; 798 anfd->events = events;
558 799
559 if (o_events != events || o_reify & EV_IOFDSET) 800 if (o_events != events || o_reify & EV__IOFDSET)
560 backend_modify (EV_A_ fd, o_events, events); 801 backend_modify (EV_A_ fd, o_events, events);
561 } 802 }
562 } 803 }
563 804
564 fdchangecnt = 0; 805 fdchangecnt = 0;
565} 806}
566 807
567void inline_size 808/* something about the given fd changed */
809inline_size void
568fd_change (EV_P_ int fd, int flags) 810fd_change (EV_P_ int fd, int flags)
569{ 811{
570 unsigned char reify = anfds [fd].reify; 812 unsigned char reify = anfds [fd].reify;
571 anfds [fd].reify |= flags; 813 anfds [fd].reify |= flags;
572 814
576 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 818 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
577 fdchanges [fdchangecnt - 1] = fd; 819 fdchanges [fdchangecnt - 1] = fd;
578 } 820 }
579} 821}
580 822
581void inline_speed 823/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
824inline_speed void
582fd_kill (EV_P_ int fd) 825fd_kill (EV_P_ int fd)
583{ 826{
584 ev_io *w; 827 ev_io *w;
585 828
586 while ((w = (ev_io *)anfds [fd].head)) 829 while ((w = (ev_io *)anfds [fd].head))
588 ev_io_stop (EV_A_ w); 831 ev_io_stop (EV_A_ w);
589 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 832 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
590 } 833 }
591} 834}
592 835
593int inline_size 836/* check whether the given fd is atcually valid, for error recovery */
837inline_size int
594fd_valid (int fd) 838fd_valid (int fd)
595{ 839{
596#ifdef _WIN32 840#ifdef _WIN32
597 return _get_osfhandle (fd) != -1; 841 return _get_osfhandle (fd) != -1;
598#else 842#else
606{ 850{
607 int fd; 851 int fd;
608 852
609 for (fd = 0; fd < anfdmax; ++fd) 853 for (fd = 0; fd < anfdmax; ++fd)
610 if (anfds [fd].events) 854 if (anfds [fd].events)
611 if (!fd_valid (fd) == -1 && errno == EBADF) 855 if (!fd_valid (fd) && errno == EBADF)
612 fd_kill (EV_A_ fd); 856 fd_kill (EV_A_ fd);
613} 857}
614 858
615/* called on ENOMEM in select/poll to kill some fds and retry */ 859/* called on ENOMEM in select/poll to kill some fds and retry */
616static void noinline 860static void noinline
634 878
635 for (fd = 0; fd < anfdmax; ++fd) 879 for (fd = 0; fd < anfdmax; ++fd)
636 if (anfds [fd].events) 880 if (anfds [fd].events)
637 { 881 {
638 anfds [fd].events = 0; 882 anfds [fd].events = 0;
883 anfds [fd].emask = 0;
639 fd_change (EV_A_ fd, EV_IOFDSET | 1); 884 fd_change (EV_A_ fd, EV__IOFDSET | 1);
640 } 885 }
641} 886}
642 887
643/*****************************************************************************/ 888/*****************************************************************************/
644 889
645void inline_speed 890/*
646upheap (WT *heap, int k) 891 * the heap functions want a real array index. array index 0 uis guaranteed to not
647{ 892 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
648 WT w = heap [k]; 893 * the branching factor of the d-tree.
894 */
649 895
650 while (k) 896/*
651 { 897 * at the moment we allow libev the luxury of two heaps,
652 int p = (k - 1) >> 1; 898 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
899 * which is more cache-efficient.
900 * the difference is about 5% with 50000+ watchers.
901 */
902#if EV_USE_4HEAP
653 903
654 if (heap [p]->at <= w->at) 904#define DHEAP 4
905#define HEAP0 (DHEAP - 1) /* index of first element in heap */
906#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
907#define UPHEAP_DONE(p,k) ((p) == (k))
908
909/* away from the root */
910inline_speed void
911downheap (ANHE *heap, int N, int k)
912{
913 ANHE he = heap [k];
914 ANHE *E = heap + N + HEAP0;
915
916 for (;;)
917 {
918 ev_tstamp minat;
919 ANHE *minpos;
920 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
921
922 /* find minimum child */
923 if (expect_true (pos + DHEAP - 1 < E))
924 {
925 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
926 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
927 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
928 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
929 }
930 else if (pos < E)
931 {
932 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
933 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
934 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
935 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
936 }
937 else
655 break; 938 break;
656 939
940 if (ANHE_at (he) <= minat)
941 break;
942
943 heap [k] = *minpos;
944 ev_active (ANHE_w (*minpos)) = k;
945
946 k = minpos - heap;
947 }
948
949 heap [k] = he;
950 ev_active (ANHE_w (he)) = k;
951}
952
953#else /* 4HEAP */
954
955#define HEAP0 1
956#define HPARENT(k) ((k) >> 1)
957#define UPHEAP_DONE(p,k) (!(p))
958
959/* away from the root */
960inline_speed void
961downheap (ANHE *heap, int N, int k)
962{
963 ANHE he = heap [k];
964
965 for (;;)
966 {
967 int c = k << 1;
968
969 if (c > N + HEAP0 - 1)
970 break;
971
972 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
973 ? 1 : 0;
974
975 if (ANHE_at (he) <= ANHE_at (heap [c]))
976 break;
977
978 heap [k] = heap [c];
979 ev_active (ANHE_w (heap [k])) = k;
980
981 k = c;
982 }
983
984 heap [k] = he;
985 ev_active (ANHE_w (he)) = k;
986}
987#endif
988
989/* towards the root */
990inline_speed void
991upheap (ANHE *heap, int k)
992{
993 ANHE he = heap [k];
994
995 for (;;)
996 {
997 int p = HPARENT (k);
998
999 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1000 break;
1001
657 heap [k] = heap [p]; 1002 heap [k] = heap [p];
658 ((W)heap [k])->active = k + 1; 1003 ev_active (ANHE_w (heap [k])) = k;
659 k = p; 1004 k = p;
660 } 1005 }
661 1006
662 heap [k] = w; 1007 heap [k] = he;
663 ((W)heap [k])->active = k + 1; 1008 ev_active (ANHE_w (he)) = k;
664} 1009}
665 1010
666void inline_speed 1011/* move an element suitably so it is in a correct place */
667downheap (WT *heap, int N, int k) 1012inline_size void
668{
669 WT w = heap [k];
670
671 for (;;)
672 {
673 int c = (k << 1) + 1;
674
675 if (c >= N)
676 break;
677
678 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
679 ? 1 : 0;
680
681 if (w->at <= heap [c]->at)
682 break;
683
684 heap [k] = heap [c];
685 ((W)heap [k])->active = k + 1;
686
687 k = c;
688 }
689
690 heap [k] = w;
691 ((W)heap [k])->active = k + 1;
692}
693
694void inline_size
695adjustheap (WT *heap, int N, int k) 1013adjustheap (ANHE *heap, int N, int k)
696{ 1014{
1015 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
697 upheap (heap, k); 1016 upheap (heap, k);
1017 else
698 downheap (heap, N, k); 1018 downheap (heap, N, k);
1019}
1020
1021/* rebuild the heap: this function is used only once and executed rarely */
1022inline_size void
1023reheap (ANHE *heap, int N)
1024{
1025 int i;
1026
1027 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1028 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1029 for (i = 0; i < N; ++i)
1030 upheap (heap, i + HEAP0);
699} 1031}
700 1032
701/*****************************************************************************/ 1033/*****************************************************************************/
702 1034
1035/* associate signal watchers to a signal signal */
703typedef struct 1036typedef struct
704{ 1037{
705 WL head; 1038 WL head;
706 sig_atomic_t volatile gotsig; 1039 EV_ATOMIC_T gotsig;
707} ANSIG; 1040} ANSIG;
708 1041
709static ANSIG *signals; 1042static ANSIG *signals;
710static int signalmax; 1043static int signalmax;
711 1044
712static int sigpipe [2]; 1045static EV_ATOMIC_T gotsig;
713static sig_atomic_t volatile gotsig;
714static ev_io sigev;
715 1046
716void inline_size 1047/*****************************************************************************/
717signals_init (ANSIG *base, int count)
718{
719 while (count--)
720 {
721 base->head = 0;
722 base->gotsig = 0;
723 1048
724 ++base; 1049/* used to prepare libev internal fd's */
725 } 1050/* this is not fork-safe */
726} 1051inline_speed void
727
728static void
729sighandler (int signum)
730{
731#if _WIN32
732 signal (signum, sighandler);
733#endif
734
735 signals [signum - 1].gotsig = 1;
736
737 if (!gotsig)
738 {
739 int old_errno = errno;
740 gotsig = 1;
741 write (sigpipe [1], &signum, 1);
742 errno = old_errno;
743 }
744}
745
746void noinline
747ev_feed_signal_event (EV_P_ int signum)
748{
749 WL w;
750
751#if EV_MULTIPLICITY
752 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
753#endif
754
755 --signum;
756
757 if (signum < 0 || signum >= signalmax)
758 return;
759
760 signals [signum].gotsig = 0;
761
762 for (w = signals [signum].head; w; w = w->next)
763 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
764}
765
766static void
767sigcb (EV_P_ ev_io *iow, int revents)
768{
769 int signum;
770
771 read (sigpipe [0], &revents, 1);
772 gotsig = 0;
773
774 for (signum = signalmax; signum--; )
775 if (signals [signum].gotsig)
776 ev_feed_signal_event (EV_A_ signum + 1);
777}
778
779void inline_speed
780fd_intern (int fd) 1052fd_intern (int fd)
781{ 1053{
782#ifdef _WIN32 1054#ifdef _WIN32
783 int arg = 1; 1055 unsigned long arg = 1;
784 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1056 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
785#else 1057#else
786 fcntl (fd, F_SETFD, FD_CLOEXEC); 1058 fcntl (fd, F_SETFD, FD_CLOEXEC);
787 fcntl (fd, F_SETFL, O_NONBLOCK); 1059 fcntl (fd, F_SETFL, O_NONBLOCK);
788#endif 1060#endif
789} 1061}
790 1062
791static void noinline 1063static void noinline
792siginit (EV_P) 1064evpipe_init (EV_P)
793{ 1065{
1066 if (!ev_is_active (&pipe_w))
1067 {
1068#if EV_USE_EVENTFD
1069 if ((evfd = eventfd (0, 0)) >= 0)
1070 {
1071 evpipe [0] = -1;
1072 fd_intern (evfd);
1073 ev_io_set (&pipe_w, evfd, EV_READ);
1074 }
1075 else
1076#endif
1077 {
1078 while (pipe (evpipe))
1079 ev_syserr ("(libev) error creating signal/async pipe");
1080
794 fd_intern (sigpipe [0]); 1081 fd_intern (evpipe [0]);
795 fd_intern (sigpipe [1]); 1082 fd_intern (evpipe [1]);
1083 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1084 }
796 1085
797 ev_io_set (&sigev, sigpipe [0], EV_READ);
798 ev_io_start (EV_A_ &sigev); 1086 ev_io_start (EV_A_ &pipe_w);
799 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1087 ev_unref (EV_A); /* watcher should not keep loop alive */
1088 }
1089}
1090
1091inline_size void
1092evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1093{
1094 if (!*flag)
1095 {
1096 int old_errno = errno; /* save errno because write might clobber it */
1097
1098 *flag = 1;
1099
1100#if EV_USE_EVENTFD
1101 if (evfd >= 0)
1102 {
1103 uint64_t counter = 1;
1104 write (evfd, &counter, sizeof (uint64_t));
1105 }
1106 else
1107#endif
1108 write (evpipe [1], &old_errno, 1);
1109
1110 errno = old_errno;
1111 }
1112}
1113
1114/* called whenever the libev signal pipe */
1115/* got some events (signal, async) */
1116static void
1117pipecb (EV_P_ ev_io *iow, int revents)
1118{
1119#if EV_USE_EVENTFD
1120 if (evfd >= 0)
1121 {
1122 uint64_t counter;
1123 read (evfd, &counter, sizeof (uint64_t));
1124 }
1125 else
1126#endif
1127 {
1128 char dummy;
1129 read (evpipe [0], &dummy, 1);
1130 }
1131
1132 if (gotsig && ev_is_default_loop (EV_A))
1133 {
1134 int signum;
1135 gotsig = 0;
1136
1137 for (signum = signalmax; signum--; )
1138 if (signals [signum].gotsig)
1139 ev_feed_signal_event (EV_A_ signum + 1);
1140 }
1141
1142#if EV_ASYNC_ENABLE
1143 if (gotasync)
1144 {
1145 int i;
1146 gotasync = 0;
1147
1148 for (i = asynccnt; i--; )
1149 if (asyncs [i]->sent)
1150 {
1151 asyncs [i]->sent = 0;
1152 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1153 }
1154 }
1155#endif
800} 1156}
801 1157
802/*****************************************************************************/ 1158/*****************************************************************************/
803 1159
1160static void
1161ev_sighandler (int signum)
1162{
1163#if EV_MULTIPLICITY
1164 struct ev_loop *loop = &default_loop_struct;
1165#endif
1166
1167#if _WIN32
1168 signal (signum, ev_sighandler);
1169#endif
1170
1171 signals [signum - 1].gotsig = 1;
1172 evpipe_write (EV_A_ &gotsig);
1173}
1174
1175void noinline
1176ev_feed_signal_event (EV_P_ int signum)
1177{
1178 WL w;
1179
1180#if EV_MULTIPLICITY
1181 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1182#endif
1183
1184 --signum;
1185
1186 if (signum < 0 || signum >= signalmax)
1187 return;
1188
1189 signals [signum].gotsig = 0;
1190
1191 for (w = signals [signum].head; w; w = w->next)
1192 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1193}
1194
1195/*****************************************************************************/
1196
804static WL childs [EV_PID_HASHSIZE]; 1197static WL childs [EV_PID_HASHSIZE];
805 1198
806#ifndef _WIN32 1199#ifndef _WIN32
807 1200
808static ev_signal childev; 1201static ev_signal childev;
809 1202
810void inline_speed 1203#ifndef WIFCONTINUED
1204# define WIFCONTINUED(status) 0
1205#endif
1206
1207/* handle a single child status event */
1208inline_speed void
811child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1209child_reap (EV_P_ int chain, int pid, int status)
812{ 1210{
813 ev_child *w; 1211 ev_child *w;
1212 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
814 1213
815 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1214 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1215 {
816 if (w->pid == pid || !w->pid) 1216 if ((w->pid == pid || !w->pid)
1217 && (!traced || (w->flags & 1)))
817 { 1218 {
818 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1219 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
819 w->rpid = pid; 1220 w->rpid = pid;
820 w->rstatus = status; 1221 w->rstatus = status;
821 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1222 ev_feed_event (EV_A_ (W)w, EV_CHILD);
822 } 1223 }
1224 }
823} 1225}
824 1226
825#ifndef WCONTINUED 1227#ifndef WCONTINUED
826# define WCONTINUED 0 1228# define WCONTINUED 0
827#endif 1229#endif
828 1230
1231/* called on sigchld etc., calls waitpid */
829static void 1232static void
830childcb (EV_P_ ev_signal *sw, int revents) 1233childcb (EV_P_ ev_signal *sw, int revents)
831{ 1234{
832 int pid, status; 1235 int pid, status;
833 1236
836 if (!WCONTINUED 1239 if (!WCONTINUED
837 || errno != EINVAL 1240 || errno != EINVAL
838 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1241 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
839 return; 1242 return;
840 1243
841 /* make sure we are called again until all childs have been reaped */ 1244 /* make sure we are called again until all children have been reaped */
842 /* we need to do it this way so that the callback gets called before we continue */ 1245 /* we need to do it this way so that the callback gets called before we continue */
843 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1246 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
844 1247
845 child_reap (EV_A_ sw, pid, pid, status); 1248 child_reap (EV_A_ pid, pid, status);
846 if (EV_PID_HASHSIZE > 1) 1249 if (EV_PID_HASHSIZE > 1)
847 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1250 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
848} 1251}
849 1252
850#endif 1253#endif
851 1254
852/*****************************************************************************/ 1255/*****************************************************************************/
914 /* kqueue is borked on everything but netbsd apparently */ 1317 /* kqueue is borked on everything but netbsd apparently */
915 /* it usually doesn't work correctly on anything but sockets and pipes */ 1318 /* it usually doesn't work correctly on anything but sockets and pipes */
916 flags &= ~EVBACKEND_KQUEUE; 1319 flags &= ~EVBACKEND_KQUEUE;
917#endif 1320#endif
918#ifdef __APPLE__ 1321#ifdef __APPLE__
919 // flags &= ~EVBACKEND_KQUEUE; for documentation 1322 /* only select works correctly on that "unix-certified" platform */
920 flags &= ~EVBACKEND_POLL; 1323 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1324 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
921#endif 1325#endif
922 1326
923 return flags; 1327 return flags;
924} 1328}
925 1329
926unsigned int 1330unsigned int
927ev_embeddable_backends (void) 1331ev_embeddable_backends (void)
928{ 1332{
929 return EVBACKEND_EPOLL 1333 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
930 | EVBACKEND_KQUEUE 1334
931 | EVBACKEND_PORT; 1335 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1336 /* please fix it and tell me how to detect the fix */
1337 flags &= ~EVBACKEND_EPOLL;
1338
1339 return flags;
932} 1340}
933 1341
934unsigned int 1342unsigned int
935ev_backend (EV_P) 1343ev_backend (EV_P)
936{ 1344{
941ev_loop_count (EV_P) 1349ev_loop_count (EV_P)
942{ 1350{
943 return loop_count; 1351 return loop_count;
944} 1352}
945 1353
1354void
1355ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1356{
1357 io_blocktime = interval;
1358}
1359
1360void
1361ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1362{
1363 timeout_blocktime = interval;
1364}
1365
1366/* initialise a loop structure, must be zero-initialised */
946static void noinline 1367static void noinline
947loop_init (EV_P_ unsigned int flags) 1368loop_init (EV_P_ unsigned int flags)
948{ 1369{
949 if (!backend) 1370 if (!backend)
950 { 1371 {
1372#if EV_USE_REALTIME
1373 if (!have_realtime)
1374 {
1375 struct timespec ts;
1376
1377 if (!clock_gettime (CLOCK_REALTIME, &ts))
1378 have_realtime = 1;
1379 }
1380#endif
1381
951#if EV_USE_MONOTONIC 1382#if EV_USE_MONOTONIC
1383 if (!have_monotonic)
952 { 1384 {
953 struct timespec ts; 1385 struct timespec ts;
1386
954 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1387 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
955 have_monotonic = 1; 1388 have_monotonic = 1;
956 } 1389 }
957#endif 1390#endif
958 1391
959 ev_rt_now = ev_time (); 1392 ev_rt_now = ev_time ();
960 mn_now = get_clock (); 1393 mn_now = get_clock ();
961 now_floor = mn_now; 1394 now_floor = mn_now;
962 rtmn_diff = ev_rt_now - mn_now; 1395 rtmn_diff = ev_rt_now - mn_now;
1396
1397 io_blocktime = 0.;
1398 timeout_blocktime = 0.;
1399 backend = 0;
1400 backend_fd = -1;
1401 gotasync = 0;
1402#if EV_USE_INOTIFY
1403 fs_fd = -2;
1404#endif
963 1405
964 /* pid check not overridable via env */ 1406 /* pid check not overridable via env */
965#ifndef _WIN32 1407#ifndef _WIN32
966 if (flags & EVFLAG_FORKCHECK) 1408 if (flags & EVFLAG_FORKCHECK)
967 curpid = getpid (); 1409 curpid = getpid ();
970 if (!(flags & EVFLAG_NOENV) 1412 if (!(flags & EVFLAG_NOENV)
971 && !enable_secure () 1413 && !enable_secure ()
972 && getenv ("LIBEV_FLAGS")) 1414 && getenv ("LIBEV_FLAGS"))
973 flags = atoi (getenv ("LIBEV_FLAGS")); 1415 flags = atoi (getenv ("LIBEV_FLAGS"));
974 1416
975 if (!(flags & 0x0000ffffUL)) 1417 if (!(flags & 0x0000ffffU))
976 flags |= ev_recommended_backends (); 1418 flags |= ev_recommended_backends ();
977
978 backend = 0;
979 backend_fd = -1;
980#if EV_USE_INOTIFY
981 fs_fd = -2;
982#endif
983 1419
984#if EV_USE_PORT 1420#if EV_USE_PORT
985 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1421 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
986#endif 1422#endif
987#if EV_USE_KQUEUE 1423#if EV_USE_KQUEUE
995#endif 1431#endif
996#if EV_USE_SELECT 1432#if EV_USE_SELECT
997 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1433 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
998#endif 1434#endif
999 1435
1436 ev_prepare_init (&pending_w, pendingcb);
1437
1000 ev_init (&sigev, sigcb); 1438 ev_init (&pipe_w, pipecb);
1001 ev_set_priority (&sigev, EV_MAXPRI); 1439 ev_set_priority (&pipe_w, EV_MAXPRI);
1002 } 1440 }
1003} 1441}
1004 1442
1443/* free up a loop structure */
1005static void noinline 1444static void noinline
1006loop_destroy (EV_P) 1445loop_destroy (EV_P)
1007{ 1446{
1008 int i; 1447 int i;
1448
1449 if (ev_is_active (&pipe_w))
1450 {
1451 ev_ref (EV_A); /* signal watcher */
1452 ev_io_stop (EV_A_ &pipe_w);
1453
1454#if EV_USE_EVENTFD
1455 if (evfd >= 0)
1456 close (evfd);
1457#endif
1458
1459 if (evpipe [0] >= 0)
1460 {
1461 close (evpipe [0]);
1462 close (evpipe [1]);
1463 }
1464 }
1009 1465
1010#if EV_USE_INOTIFY 1466#if EV_USE_INOTIFY
1011 if (fs_fd >= 0) 1467 if (fs_fd >= 0)
1012 close (fs_fd); 1468 close (fs_fd);
1013#endif 1469#endif
1037#if EV_IDLE_ENABLE 1493#if EV_IDLE_ENABLE
1038 array_free (idle, [i]); 1494 array_free (idle, [i]);
1039#endif 1495#endif
1040 } 1496 }
1041 1497
1498 ev_free (anfds); anfdmax = 0;
1499
1042 /* have to use the microsoft-never-gets-it-right macro */ 1500 /* have to use the microsoft-never-gets-it-right macro */
1501 array_free (rfeed, EMPTY);
1043 array_free (fdchange, EMPTY); 1502 array_free (fdchange, EMPTY);
1044 array_free (timer, EMPTY); 1503 array_free (timer, EMPTY);
1045#if EV_PERIODIC_ENABLE 1504#if EV_PERIODIC_ENABLE
1046 array_free (periodic, EMPTY); 1505 array_free (periodic, EMPTY);
1047#endif 1506#endif
1507#if EV_FORK_ENABLE
1508 array_free (fork, EMPTY);
1509#endif
1048 array_free (prepare, EMPTY); 1510 array_free (prepare, EMPTY);
1049 array_free (check, EMPTY); 1511 array_free (check, EMPTY);
1512#if EV_ASYNC_ENABLE
1513 array_free (async, EMPTY);
1514#endif
1050 1515
1051 backend = 0; 1516 backend = 0;
1052} 1517}
1053 1518
1519#if EV_USE_INOTIFY
1054void inline_size infy_fork (EV_P); 1520inline_size void infy_fork (EV_P);
1521#endif
1055 1522
1056void inline_size 1523inline_size void
1057loop_fork (EV_P) 1524loop_fork (EV_P)
1058{ 1525{
1059#if EV_USE_PORT 1526#if EV_USE_PORT
1060 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1527 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1061#endif 1528#endif
1067#endif 1534#endif
1068#if EV_USE_INOTIFY 1535#if EV_USE_INOTIFY
1069 infy_fork (EV_A); 1536 infy_fork (EV_A);
1070#endif 1537#endif
1071 1538
1072 if (ev_is_active (&sigev)) 1539 if (ev_is_active (&pipe_w))
1073 { 1540 {
1074 /* default loop */ 1541 /* this "locks" the handlers against writing to the pipe */
1542 /* while we modify the fd vars */
1543 gotsig = 1;
1544#if EV_ASYNC_ENABLE
1545 gotasync = 1;
1546#endif
1075 1547
1076 ev_ref (EV_A); 1548 ev_ref (EV_A);
1077 ev_io_stop (EV_A_ &sigev); 1549 ev_io_stop (EV_A_ &pipe_w);
1550
1551#if EV_USE_EVENTFD
1552 if (evfd >= 0)
1553 close (evfd);
1554#endif
1555
1556 if (evpipe [0] >= 0)
1557 {
1078 close (sigpipe [0]); 1558 close (evpipe [0]);
1079 close (sigpipe [1]); 1559 close (evpipe [1]);
1560 }
1080 1561
1081 while (pipe (sigpipe))
1082 syserr ("(libev) error creating pipe");
1083
1084 siginit (EV_A); 1562 evpipe_init (EV_A);
1563 /* now iterate over everything, in case we missed something */
1564 pipecb (EV_A_ &pipe_w, EV_READ);
1085 } 1565 }
1086 1566
1087 postfork = 0; 1567 postfork = 0;
1088} 1568}
1089 1569
1090#if EV_MULTIPLICITY 1570#if EV_MULTIPLICITY
1571
1091struct ev_loop * 1572struct ev_loop *
1092ev_loop_new (unsigned int flags) 1573ev_loop_new (unsigned int flags)
1093{ 1574{
1094 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1575 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1095 1576
1111} 1592}
1112 1593
1113void 1594void
1114ev_loop_fork (EV_P) 1595ev_loop_fork (EV_P)
1115{ 1596{
1116 postfork = 1; 1597 postfork = 1; /* must be in line with ev_default_fork */
1117} 1598}
1118 1599
1600#if EV_VERIFY
1601static void noinline
1602verify_watcher (EV_P_ W w)
1603{
1604 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1605
1606 if (w->pending)
1607 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1608}
1609
1610static void noinline
1611verify_heap (EV_P_ ANHE *heap, int N)
1612{
1613 int i;
1614
1615 for (i = HEAP0; i < N + HEAP0; ++i)
1616 {
1617 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1618 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1619 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1620
1621 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1622 }
1623}
1624
1625static void noinline
1626array_verify (EV_P_ W *ws, int cnt)
1627{
1628 while (cnt--)
1629 {
1630 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1631 verify_watcher (EV_A_ ws [cnt]);
1632 }
1633}
1634#endif
1635
1636void
1637ev_loop_verify (EV_P)
1638{
1639#if EV_VERIFY
1640 int i;
1641 WL w;
1642
1643 assert (activecnt >= -1);
1644
1645 assert (fdchangemax >= fdchangecnt);
1646 for (i = 0; i < fdchangecnt; ++i)
1647 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1648
1649 assert (anfdmax >= 0);
1650 for (i = 0; i < anfdmax; ++i)
1651 for (w = anfds [i].head; w; w = w->next)
1652 {
1653 verify_watcher (EV_A_ (W)w);
1654 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1655 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1656 }
1657
1658 assert (timermax >= timercnt);
1659 verify_heap (EV_A_ timers, timercnt);
1660
1661#if EV_PERIODIC_ENABLE
1662 assert (periodicmax >= periodiccnt);
1663 verify_heap (EV_A_ periodics, periodiccnt);
1664#endif
1665
1666 for (i = NUMPRI; i--; )
1667 {
1668 assert (pendingmax [i] >= pendingcnt [i]);
1669#if EV_IDLE_ENABLE
1670 assert (idleall >= 0);
1671 assert (idlemax [i] >= idlecnt [i]);
1672 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1673#endif
1674 }
1675
1676#if EV_FORK_ENABLE
1677 assert (forkmax >= forkcnt);
1678 array_verify (EV_A_ (W *)forks, forkcnt);
1679#endif
1680
1681#if EV_ASYNC_ENABLE
1682 assert (asyncmax >= asynccnt);
1683 array_verify (EV_A_ (W *)asyncs, asynccnt);
1684#endif
1685
1686 assert (preparemax >= preparecnt);
1687 array_verify (EV_A_ (W *)prepares, preparecnt);
1688
1689 assert (checkmax >= checkcnt);
1690 array_verify (EV_A_ (W *)checks, checkcnt);
1691
1692# if 0
1693 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1694 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1119#endif 1695# endif
1696#endif
1697}
1698
1699#endif /* multiplicity */
1120 1700
1121#if EV_MULTIPLICITY 1701#if EV_MULTIPLICITY
1122struct ev_loop * 1702struct ev_loop *
1123ev_default_loop_init (unsigned int flags) 1703ev_default_loop_init (unsigned int flags)
1124#else 1704#else
1125int 1705int
1126ev_default_loop (unsigned int flags) 1706ev_default_loop (unsigned int flags)
1127#endif 1707#endif
1128{ 1708{
1129 if (sigpipe [0] == sigpipe [1])
1130 if (pipe (sigpipe))
1131 return 0;
1132
1133 if (!ev_default_loop_ptr) 1709 if (!ev_default_loop_ptr)
1134 { 1710 {
1135#if EV_MULTIPLICITY 1711#if EV_MULTIPLICITY
1136 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1712 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1137#else 1713#else
1140 1716
1141 loop_init (EV_A_ flags); 1717 loop_init (EV_A_ flags);
1142 1718
1143 if (ev_backend (EV_A)) 1719 if (ev_backend (EV_A))
1144 { 1720 {
1145 siginit (EV_A);
1146
1147#ifndef _WIN32 1721#ifndef _WIN32
1148 ev_signal_init (&childev, childcb, SIGCHLD); 1722 ev_signal_init (&childev, childcb, SIGCHLD);
1149 ev_set_priority (&childev, EV_MAXPRI); 1723 ev_set_priority (&childev, EV_MAXPRI);
1150 ev_signal_start (EV_A_ &childev); 1724 ev_signal_start (EV_A_ &childev);
1151 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1725 ev_unref (EV_A); /* child watcher should not keep loop alive */
1163{ 1737{
1164#if EV_MULTIPLICITY 1738#if EV_MULTIPLICITY
1165 struct ev_loop *loop = ev_default_loop_ptr; 1739 struct ev_loop *loop = ev_default_loop_ptr;
1166#endif 1740#endif
1167 1741
1742 ev_default_loop_ptr = 0;
1743
1168#ifndef _WIN32 1744#ifndef _WIN32
1169 ev_ref (EV_A); /* child watcher */ 1745 ev_ref (EV_A); /* child watcher */
1170 ev_signal_stop (EV_A_ &childev); 1746 ev_signal_stop (EV_A_ &childev);
1171#endif 1747#endif
1172 1748
1173 ev_ref (EV_A); /* signal watcher */
1174 ev_io_stop (EV_A_ &sigev);
1175
1176 close (sigpipe [0]); sigpipe [0] = 0;
1177 close (sigpipe [1]); sigpipe [1] = 0;
1178
1179 loop_destroy (EV_A); 1749 loop_destroy (EV_A);
1180} 1750}
1181 1751
1182void 1752void
1183ev_default_fork (void) 1753ev_default_fork (void)
1184{ 1754{
1185#if EV_MULTIPLICITY 1755#if EV_MULTIPLICITY
1186 struct ev_loop *loop = ev_default_loop_ptr; 1756 struct ev_loop *loop = ev_default_loop_ptr;
1187#endif 1757#endif
1188 1758
1189 if (backend) 1759 postfork = 1; /* must be in line with ev_loop_fork */
1190 postfork = 1;
1191} 1760}
1192 1761
1193/*****************************************************************************/ 1762/*****************************************************************************/
1194 1763
1195void 1764void
1196ev_invoke (EV_P_ void *w, int revents) 1765ev_invoke (EV_P_ void *w, int revents)
1197{ 1766{
1198 EV_CB_INVOKE ((W)w, revents); 1767 EV_CB_INVOKE ((W)w, revents);
1199} 1768}
1200 1769
1201void inline_speed 1770inline_speed void
1202call_pending (EV_P) 1771call_pending (EV_P)
1203{ 1772{
1204 int pri; 1773 int pri;
1205 1774
1206 for (pri = NUMPRI; pri--; ) 1775 for (pri = NUMPRI; pri--; )
1207 while (pendingcnt [pri]) 1776 while (pendingcnt [pri])
1208 { 1777 {
1209 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1778 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1210 1779
1211 if (expect_true (p->w))
1212 {
1213 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1780 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1781 /* ^ this is no longer true, as pending_w could be here */
1214 1782
1215 p->w->pending = 0; 1783 p->w->pending = 0;
1216 EV_CB_INVOKE (p->w, p->events); 1784 EV_CB_INVOKE (p->w, p->events);
1217 } 1785 EV_FREQUENT_CHECK;
1218 } 1786 }
1219} 1787}
1220 1788
1221void inline_size
1222timers_reify (EV_P)
1223{
1224 while (timercnt && ((WT)timers [0])->at <= mn_now)
1225 {
1226 ev_timer *w = (ev_timer *)timers [0];
1227
1228 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1229
1230 /* first reschedule or stop timer */
1231 if (w->repeat)
1232 {
1233 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1234
1235 ((WT)w)->at += w->repeat;
1236 if (((WT)w)->at < mn_now)
1237 ((WT)w)->at = mn_now;
1238
1239 downheap (timers, timercnt, 0);
1240 }
1241 else
1242 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1243
1244 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1245 }
1246}
1247
1248#if EV_PERIODIC_ENABLE
1249void inline_size
1250periodics_reify (EV_P)
1251{
1252 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1253 {
1254 ev_periodic *w = (ev_periodic *)periodics [0];
1255
1256 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1257
1258 /* first reschedule or stop timer */
1259 if (w->reschedule_cb)
1260 {
1261 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1262 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1263 downheap (periodics, periodiccnt, 0);
1264 }
1265 else if (w->interval)
1266 {
1267 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1268 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1269 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1270 downheap (periodics, periodiccnt, 0);
1271 }
1272 else
1273 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1274
1275 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1276 }
1277}
1278
1279static void noinline
1280periodics_reschedule (EV_P)
1281{
1282 int i;
1283
1284 /* adjust periodics after time jump */
1285 for (i = 0; i < periodiccnt; ++i)
1286 {
1287 ev_periodic *w = (ev_periodic *)periodics [i];
1288
1289 if (w->reschedule_cb)
1290 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1291 else if (w->interval)
1292 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1293 }
1294
1295 /* now rebuild the heap */
1296 for (i = periodiccnt >> 1; i--; )
1297 downheap (periodics, periodiccnt, i);
1298}
1299#endif
1300
1301#if EV_IDLE_ENABLE 1789#if EV_IDLE_ENABLE
1302void inline_size 1790/* make idle watchers pending. this handles the "call-idle */
1791/* only when higher priorities are idle" logic */
1792inline_size void
1303idle_reify (EV_P) 1793idle_reify (EV_P)
1304{ 1794{
1305 if (expect_false (idleall)) 1795 if (expect_false (idleall))
1306 { 1796 {
1307 int pri; 1797 int pri;
1319 } 1809 }
1320 } 1810 }
1321} 1811}
1322#endif 1812#endif
1323 1813
1324void inline_speed 1814/* make timers pending */
1815inline_size void
1816timers_reify (EV_P)
1817{
1818 EV_FREQUENT_CHECK;
1819
1820 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1821 {
1822 do
1823 {
1824 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1825
1826 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1827
1828 /* first reschedule or stop timer */
1829 if (w->repeat)
1830 {
1831 ev_at (w) += w->repeat;
1832 if (ev_at (w) < mn_now)
1833 ev_at (w) = mn_now;
1834
1835 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1836
1837 ANHE_at_cache (timers [HEAP0]);
1838 downheap (timers, timercnt, HEAP0);
1839 }
1840 else
1841 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1842
1843 EV_FREQUENT_CHECK;
1844 feed_reverse (EV_A_ (W)w);
1845 }
1846 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1847
1848 feed_reverse_done (EV_A_ EV_TIMEOUT);
1849 }
1850}
1851
1852#if EV_PERIODIC_ENABLE
1853/* make periodics pending */
1854inline_size void
1855periodics_reify (EV_P)
1856{
1857 EV_FREQUENT_CHECK;
1858
1859 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1860 {
1861 int feed_count = 0;
1862
1863 do
1864 {
1865 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1866
1867 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1868
1869 /* first reschedule or stop timer */
1870 if (w->reschedule_cb)
1871 {
1872 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1873
1874 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1875
1876 ANHE_at_cache (periodics [HEAP0]);
1877 downheap (periodics, periodiccnt, HEAP0);
1878 }
1879 else if (w->interval)
1880 {
1881 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1882 /* if next trigger time is not sufficiently in the future, put it there */
1883 /* this might happen because of floating point inexactness */
1884 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1885 {
1886 ev_at (w) += w->interval;
1887
1888 /* if interval is unreasonably low we might still have a time in the past */
1889 /* so correct this. this will make the periodic very inexact, but the user */
1890 /* has effectively asked to get triggered more often than possible */
1891 if (ev_at (w) < ev_rt_now)
1892 ev_at (w) = ev_rt_now;
1893 }
1894
1895 ANHE_at_cache (periodics [HEAP0]);
1896 downheap (periodics, periodiccnt, HEAP0);
1897 }
1898 else
1899 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1900
1901 EV_FREQUENT_CHECK;
1902 feed_reverse (EV_A_ (W)w);
1903 }
1904 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1905
1906 feed_reverse_done (EV_A_ EV_PERIODIC);
1907 }
1908}
1909
1910/* simply recalculate all periodics */
1911/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1912static void noinline
1913periodics_reschedule (EV_P)
1914{
1915 int i;
1916
1917 /* adjust periodics after time jump */
1918 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1919 {
1920 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1921
1922 if (w->reschedule_cb)
1923 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1924 else if (w->interval)
1925 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1926
1927 ANHE_at_cache (periodics [i]);
1928 }
1929
1930 reheap (periodics, periodiccnt);
1931}
1932#endif
1933
1934/* adjust all timers by a given offset */
1935static void noinline
1936timers_reschedule (EV_P_ ev_tstamp adjust)
1937{
1938 int i;
1939
1940 for (i = 0; i < timercnt; ++i)
1941 {
1942 ANHE *he = timers + i + HEAP0;
1943 ANHE_w (*he)->at += adjust;
1944 ANHE_at_cache (*he);
1945 }
1946}
1947
1948/* fetch new monotonic and realtime times from the kernel */
1949/* also detetc if there was a timejump, and act accordingly */
1950inline_speed void
1325time_update (EV_P_ ev_tstamp max_block) 1951time_update (EV_P_ ev_tstamp max_block)
1326{ 1952{
1327 int i; 1953 int i;
1328 1954
1329#if EV_USE_MONOTONIC 1955#if EV_USE_MONOTONIC
1354 */ 1980 */
1355 for (i = 4; --i; ) 1981 for (i = 4; --i; )
1356 { 1982 {
1357 rtmn_diff = ev_rt_now - mn_now; 1983 rtmn_diff = ev_rt_now - mn_now;
1358 1984
1359 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1985 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1360 return; /* all is well */ 1986 return; /* all is well */
1361 1987
1362 ev_rt_now = ev_time (); 1988 ev_rt_now = ev_time ();
1363 mn_now = get_clock (); 1989 mn_now = get_clock ();
1364 now_floor = mn_now; 1990 now_floor = mn_now;
1365 } 1991 }
1366 1992
1993 /* no timer adjustment, as the monotonic clock doesn't jump */
1994 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1367# if EV_PERIODIC_ENABLE 1995# if EV_PERIODIC_ENABLE
1368 periodics_reschedule (EV_A); 1996 periodics_reschedule (EV_A);
1369# endif 1997# endif
1370 /* no timer adjustment, as the monotonic clock doesn't jump */
1371 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1372 } 1998 }
1373 else 1999 else
1374#endif 2000#endif
1375 { 2001 {
1376 ev_rt_now = ev_time (); 2002 ev_rt_now = ev_time ();
1377 2003
1378 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2004 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1379 { 2005 {
2006 /* adjust timers. this is easy, as the offset is the same for all of them */
2007 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1380#if EV_PERIODIC_ENABLE 2008#if EV_PERIODIC_ENABLE
1381 periodics_reschedule (EV_A); 2009 periodics_reschedule (EV_A);
1382#endif 2010#endif
1383 /* adjust timers. this is easy, as the offset is the same for all of them */
1384 for (i = 0; i < timercnt; ++i)
1385 ((WT)timers [i])->at += ev_rt_now - mn_now;
1386 } 2011 }
1387 2012
1388 mn_now = ev_rt_now; 2013 mn_now = ev_rt_now;
1389 } 2014 }
1390} 2015}
1391 2016
1392void
1393ev_ref (EV_P)
1394{
1395 ++activecnt;
1396}
1397
1398void
1399ev_unref (EV_P)
1400{
1401 --activecnt;
1402}
1403
1404static int loop_done; 2017static int loop_done;
1405 2018
1406void 2019void
1407ev_loop (EV_P_ int flags) 2020ev_loop (EV_P_ int flags)
1408{ 2021{
1409 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2022 loop_done = EVUNLOOP_CANCEL;
1410 ? EVUNLOOP_ONE
1411 : EVUNLOOP_CANCEL;
1412 2023
1413 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2024 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1414 2025
1415 do 2026 do
1416 { 2027 {
2028#if EV_VERIFY >= 2
2029 ev_loop_verify (EV_A);
2030#endif
2031
1417#ifndef _WIN32 2032#ifndef _WIN32
1418 if (expect_false (curpid)) /* penalise the forking check even more */ 2033 if (expect_false (curpid)) /* penalise the forking check even more */
1419 if (expect_false (getpid () != curpid)) 2034 if (expect_false (getpid () != curpid))
1420 { 2035 {
1421 curpid = getpid (); 2036 curpid = getpid ();
1438 { 2053 {
1439 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2054 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1440 call_pending (EV_A); 2055 call_pending (EV_A);
1441 } 2056 }
1442 2057
1443 if (expect_false (!activecnt))
1444 break;
1445
1446 /* we might have forked, so reify kernel state if necessary */ 2058 /* we might have forked, so reify kernel state if necessary */
1447 if (expect_false (postfork)) 2059 if (expect_false (postfork))
1448 loop_fork (EV_A); 2060 loop_fork (EV_A);
1449 2061
1450 /* update fd-related kernel structures */ 2062 /* update fd-related kernel structures */
1451 fd_reify (EV_A); 2063 fd_reify (EV_A);
1452 2064
1453 /* calculate blocking time */ 2065 /* calculate blocking time */
1454 { 2066 {
1455 ev_tstamp block; 2067 ev_tstamp waittime = 0.;
2068 ev_tstamp sleeptime = 0.;
1456 2069
1457 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2070 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1458 block = 0.; /* do not block at all */
1459 else
1460 { 2071 {
1461 /* update time to cancel out callback processing overhead */ 2072 /* update time to cancel out callback processing overhead */
1462 time_update (EV_A_ 1e100); 2073 time_update (EV_A_ 1e100);
1463 2074
1464 block = MAX_BLOCKTIME; 2075 waittime = MAX_BLOCKTIME;
1465 2076
1466 if (timercnt) 2077 if (timercnt)
1467 { 2078 {
1468 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2079 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1469 if (block > to) block = to; 2080 if (waittime > to) waittime = to;
1470 } 2081 }
1471 2082
1472#if EV_PERIODIC_ENABLE 2083#if EV_PERIODIC_ENABLE
1473 if (periodiccnt) 2084 if (periodiccnt)
1474 { 2085 {
1475 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2086 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1476 if (block > to) block = to; 2087 if (waittime > to) waittime = to;
1477 } 2088 }
1478#endif 2089#endif
1479 2090
1480 if (expect_false (block < 0.)) block = 0.; 2091 if (expect_false (waittime < timeout_blocktime))
2092 waittime = timeout_blocktime;
2093
2094 sleeptime = waittime - backend_fudge;
2095
2096 if (expect_true (sleeptime > io_blocktime))
2097 sleeptime = io_blocktime;
2098
2099 if (sleeptime)
2100 {
2101 ev_sleep (sleeptime);
2102 waittime -= sleeptime;
2103 }
1481 } 2104 }
1482 2105
1483 ++loop_count; 2106 ++loop_count;
1484 backend_poll (EV_A_ block); 2107 backend_poll (EV_A_ waittime);
1485 2108
1486 /* update ev_rt_now, do magic */ 2109 /* update ev_rt_now, do magic */
1487 time_update (EV_A_ block); 2110 time_update (EV_A_ waittime + sleeptime);
1488 } 2111 }
1489 2112
1490 /* queue pending timers and reschedule them */ 2113 /* queue pending timers and reschedule them */
1491 timers_reify (EV_A); /* relative timers called last */ 2114 timers_reify (EV_A); /* relative timers called last */
1492#if EV_PERIODIC_ENABLE 2115#if EV_PERIODIC_ENABLE
1501 /* queue check watchers, to be executed first */ 2124 /* queue check watchers, to be executed first */
1502 if (expect_false (checkcnt)) 2125 if (expect_false (checkcnt))
1503 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2126 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1504 2127
1505 call_pending (EV_A); 2128 call_pending (EV_A);
1506
1507 } 2129 }
1508 while (expect_true (activecnt && !loop_done)); 2130 while (expect_true (
2131 activecnt
2132 && !loop_done
2133 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2134 ));
1509 2135
1510 if (loop_done == EVUNLOOP_ONE) 2136 if (loop_done == EVUNLOOP_ONE)
1511 loop_done = EVUNLOOP_CANCEL; 2137 loop_done = EVUNLOOP_CANCEL;
1512} 2138}
1513 2139
1515ev_unloop (EV_P_ int how) 2141ev_unloop (EV_P_ int how)
1516{ 2142{
1517 loop_done = how; 2143 loop_done = how;
1518} 2144}
1519 2145
2146void
2147ev_ref (EV_P)
2148{
2149 ++activecnt;
2150}
2151
2152void
2153ev_unref (EV_P)
2154{
2155 --activecnt;
2156}
2157
2158void
2159ev_now_update (EV_P)
2160{
2161 time_update (EV_A_ 1e100);
2162}
2163
2164void
2165ev_suspend (EV_P)
2166{
2167 ev_now_update (EV_A);
2168}
2169
2170void
2171ev_resume (EV_P)
2172{
2173 ev_tstamp mn_prev = mn_now;
2174
2175 ev_now_update (EV_A);
2176 timers_reschedule (EV_A_ mn_now - mn_prev);
2177#if EV_PERIODIC_ENABLE
2178 /* TODO: really do this? */
2179 periodics_reschedule (EV_A);
2180#endif
2181}
2182
1520/*****************************************************************************/ 2183/*****************************************************************************/
2184/* singly-linked list management, used when the expected list length is short */
1521 2185
1522void inline_size 2186inline_size void
1523wlist_add (WL *head, WL elem) 2187wlist_add (WL *head, WL elem)
1524{ 2188{
1525 elem->next = *head; 2189 elem->next = *head;
1526 *head = elem; 2190 *head = elem;
1527} 2191}
1528 2192
1529void inline_size 2193inline_size void
1530wlist_del (WL *head, WL elem) 2194wlist_del (WL *head, WL elem)
1531{ 2195{
1532 while (*head) 2196 while (*head)
1533 { 2197 {
1534 if (*head == elem) 2198 if (*head == elem)
1539 2203
1540 head = &(*head)->next; 2204 head = &(*head)->next;
1541 } 2205 }
1542} 2206}
1543 2207
1544void inline_speed 2208/* internal, faster, version of ev_clear_pending */
2209inline_speed void
1545clear_pending (EV_P_ W w) 2210clear_pending (EV_P_ W w)
1546{ 2211{
1547 if (w->pending) 2212 if (w->pending)
1548 { 2213 {
1549 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2214 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1550 w->pending = 0; 2215 w->pending = 0;
1551 } 2216 }
1552} 2217}
1553 2218
1554int 2219int
1558 int pending = w_->pending; 2223 int pending = w_->pending;
1559 2224
1560 if (expect_true (pending)) 2225 if (expect_true (pending))
1561 { 2226 {
1562 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2227 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2228 p->w = (W)&pending_w;
1563 w_->pending = 0; 2229 w_->pending = 0;
1564 p->w = 0;
1565 return p->events; 2230 return p->events;
1566 } 2231 }
1567 else 2232 else
1568 return 0; 2233 return 0;
1569} 2234}
1570 2235
1571void inline_size 2236inline_size void
1572pri_adjust (EV_P_ W w) 2237pri_adjust (EV_P_ W w)
1573{ 2238{
1574 int pri = w->priority; 2239 int pri = w->priority;
1575 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2240 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1576 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2241 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1577 w->priority = pri; 2242 w->priority = pri;
1578} 2243}
1579 2244
1580void inline_speed 2245inline_speed void
1581ev_start (EV_P_ W w, int active) 2246ev_start (EV_P_ W w, int active)
1582{ 2247{
1583 pri_adjust (EV_A_ w); 2248 pri_adjust (EV_A_ w);
1584 w->active = active; 2249 w->active = active;
1585 ev_ref (EV_A); 2250 ev_ref (EV_A);
1586} 2251}
1587 2252
1588void inline_size 2253inline_size void
1589ev_stop (EV_P_ W w) 2254ev_stop (EV_P_ W w)
1590{ 2255{
1591 ev_unref (EV_A); 2256 ev_unref (EV_A);
1592 w->active = 0; 2257 w->active = 0;
1593} 2258}
1600 int fd = w->fd; 2265 int fd = w->fd;
1601 2266
1602 if (expect_false (ev_is_active (w))) 2267 if (expect_false (ev_is_active (w)))
1603 return; 2268 return;
1604 2269
1605 assert (("ev_io_start called with negative fd", fd >= 0)); 2270 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2271 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2272
2273 EV_FREQUENT_CHECK;
1606 2274
1607 ev_start (EV_A_ (W)w, 1); 2275 ev_start (EV_A_ (W)w, 1);
1608 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2276 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1609 wlist_add (&anfds[fd].head, (WL)w); 2277 wlist_add (&anfds[fd].head, (WL)w);
1610 2278
1611 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2279 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1612 w->events &= ~EV_IOFDSET; 2280 w->events &= ~EV__IOFDSET;
2281
2282 EV_FREQUENT_CHECK;
1613} 2283}
1614 2284
1615void noinline 2285void noinline
1616ev_io_stop (EV_P_ ev_io *w) 2286ev_io_stop (EV_P_ ev_io *w)
1617{ 2287{
1618 clear_pending (EV_A_ (W)w); 2288 clear_pending (EV_A_ (W)w);
1619 if (expect_false (!ev_is_active (w))) 2289 if (expect_false (!ev_is_active (w)))
1620 return; 2290 return;
1621 2291
1622 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2292 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2293
2294 EV_FREQUENT_CHECK;
1623 2295
1624 wlist_del (&anfds[w->fd].head, (WL)w); 2296 wlist_del (&anfds[w->fd].head, (WL)w);
1625 ev_stop (EV_A_ (W)w); 2297 ev_stop (EV_A_ (W)w);
1626 2298
1627 fd_change (EV_A_ w->fd, 1); 2299 fd_change (EV_A_ w->fd, 1);
2300
2301 EV_FREQUENT_CHECK;
1628} 2302}
1629 2303
1630void noinline 2304void noinline
1631ev_timer_start (EV_P_ ev_timer *w) 2305ev_timer_start (EV_P_ ev_timer *w)
1632{ 2306{
1633 if (expect_false (ev_is_active (w))) 2307 if (expect_false (ev_is_active (w)))
1634 return; 2308 return;
1635 2309
1636 ((WT)w)->at += mn_now; 2310 ev_at (w) += mn_now;
1637 2311
1638 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2312 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1639 2313
2314 EV_FREQUENT_CHECK;
2315
2316 ++timercnt;
1640 ev_start (EV_A_ (W)w, ++timercnt); 2317 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1641 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2318 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1642 timers [timercnt - 1] = (WT)w; 2319 ANHE_w (timers [ev_active (w)]) = (WT)w;
1643 upheap (timers, timercnt - 1); 2320 ANHE_at_cache (timers [ev_active (w)]);
2321 upheap (timers, ev_active (w));
1644 2322
2323 EV_FREQUENT_CHECK;
2324
1645 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2325 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1646} 2326}
1647 2327
1648void noinline 2328void noinline
1649ev_timer_stop (EV_P_ ev_timer *w) 2329ev_timer_stop (EV_P_ ev_timer *w)
1650{ 2330{
1651 clear_pending (EV_A_ (W)w); 2331 clear_pending (EV_A_ (W)w);
1652 if (expect_false (!ev_is_active (w))) 2332 if (expect_false (!ev_is_active (w)))
1653 return; 2333 return;
1654 2334
1655 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2335 EV_FREQUENT_CHECK;
1656 2336
1657 { 2337 {
1658 int active = ((W)w)->active; 2338 int active = ev_active (w);
1659 2339
2340 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2341
2342 --timercnt;
2343
1660 if (expect_true (--active < --timercnt)) 2344 if (expect_true (active < timercnt + HEAP0))
1661 { 2345 {
1662 timers [active] = timers [timercnt]; 2346 timers [active] = timers [timercnt + HEAP0];
1663 adjustheap (timers, timercnt, active); 2347 adjustheap (timers, timercnt, active);
1664 } 2348 }
1665 } 2349 }
1666 2350
1667 ((WT)w)->at -= mn_now; 2351 EV_FREQUENT_CHECK;
2352
2353 ev_at (w) -= mn_now;
1668 2354
1669 ev_stop (EV_A_ (W)w); 2355 ev_stop (EV_A_ (W)w);
1670} 2356}
1671 2357
1672void noinline 2358void noinline
1673ev_timer_again (EV_P_ ev_timer *w) 2359ev_timer_again (EV_P_ ev_timer *w)
1674{ 2360{
2361 EV_FREQUENT_CHECK;
2362
1675 if (ev_is_active (w)) 2363 if (ev_is_active (w))
1676 { 2364 {
1677 if (w->repeat) 2365 if (w->repeat)
1678 { 2366 {
1679 ((WT)w)->at = mn_now + w->repeat; 2367 ev_at (w) = mn_now + w->repeat;
2368 ANHE_at_cache (timers [ev_active (w)]);
1680 adjustheap (timers, timercnt, ((W)w)->active - 1); 2369 adjustheap (timers, timercnt, ev_active (w));
1681 } 2370 }
1682 else 2371 else
1683 ev_timer_stop (EV_A_ w); 2372 ev_timer_stop (EV_A_ w);
1684 } 2373 }
1685 else if (w->repeat) 2374 else if (w->repeat)
1686 { 2375 {
1687 w->at = w->repeat; 2376 ev_at (w) = w->repeat;
1688 ev_timer_start (EV_A_ w); 2377 ev_timer_start (EV_A_ w);
1689 } 2378 }
2379
2380 EV_FREQUENT_CHECK;
1690} 2381}
1691 2382
1692#if EV_PERIODIC_ENABLE 2383#if EV_PERIODIC_ENABLE
1693void noinline 2384void noinline
1694ev_periodic_start (EV_P_ ev_periodic *w) 2385ev_periodic_start (EV_P_ ev_periodic *w)
1695{ 2386{
1696 if (expect_false (ev_is_active (w))) 2387 if (expect_false (ev_is_active (w)))
1697 return; 2388 return;
1698 2389
1699 if (w->reschedule_cb) 2390 if (w->reschedule_cb)
1700 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2391 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1701 else if (w->interval) 2392 else if (w->interval)
1702 { 2393 {
1703 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2394 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1704 /* this formula differs from the one in periodic_reify because we do not always round up */ 2395 /* this formula differs from the one in periodic_reify because we do not always round up */
1705 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2396 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1706 } 2397 }
1707 else 2398 else
1708 ((WT)w)->at = w->offset; 2399 ev_at (w) = w->offset;
1709 2400
2401 EV_FREQUENT_CHECK;
2402
2403 ++periodiccnt;
1710 ev_start (EV_A_ (W)w, ++periodiccnt); 2404 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1711 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2405 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1712 periodics [periodiccnt - 1] = (WT)w; 2406 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1713 upheap (periodics, periodiccnt - 1); 2407 ANHE_at_cache (periodics [ev_active (w)]);
2408 upheap (periodics, ev_active (w));
1714 2409
2410 EV_FREQUENT_CHECK;
2411
1715 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2412 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1716} 2413}
1717 2414
1718void noinline 2415void noinline
1719ev_periodic_stop (EV_P_ ev_periodic *w) 2416ev_periodic_stop (EV_P_ ev_periodic *w)
1720{ 2417{
1721 clear_pending (EV_A_ (W)w); 2418 clear_pending (EV_A_ (W)w);
1722 if (expect_false (!ev_is_active (w))) 2419 if (expect_false (!ev_is_active (w)))
1723 return; 2420 return;
1724 2421
1725 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2422 EV_FREQUENT_CHECK;
1726 2423
1727 { 2424 {
1728 int active = ((W)w)->active; 2425 int active = ev_active (w);
1729 2426
2427 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2428
2429 --periodiccnt;
2430
1730 if (expect_true (--active < --periodiccnt)) 2431 if (expect_true (active < periodiccnt + HEAP0))
1731 { 2432 {
1732 periodics [active] = periodics [periodiccnt]; 2433 periodics [active] = periodics [periodiccnt + HEAP0];
1733 adjustheap (periodics, periodiccnt, active); 2434 adjustheap (periodics, periodiccnt, active);
1734 } 2435 }
1735 } 2436 }
1736 2437
2438 EV_FREQUENT_CHECK;
2439
1737 ev_stop (EV_A_ (W)w); 2440 ev_stop (EV_A_ (W)w);
1738} 2441}
1739 2442
1740void noinline 2443void noinline
1741ev_periodic_again (EV_P_ ev_periodic *w) 2444ev_periodic_again (EV_P_ ev_periodic *w)
1752 2455
1753void noinline 2456void noinline
1754ev_signal_start (EV_P_ ev_signal *w) 2457ev_signal_start (EV_P_ ev_signal *w)
1755{ 2458{
1756#if EV_MULTIPLICITY 2459#if EV_MULTIPLICITY
1757 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2460 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1758#endif 2461#endif
1759 if (expect_false (ev_is_active (w))) 2462 if (expect_false (ev_is_active (w)))
1760 return; 2463 return;
1761 2464
1762 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2465 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2466
2467 evpipe_init (EV_A);
2468
2469 EV_FREQUENT_CHECK;
1763 2470
1764 { 2471 {
1765#ifndef _WIN32 2472#ifndef _WIN32
1766 sigset_t full, prev; 2473 sigset_t full, prev;
1767 sigfillset (&full); 2474 sigfillset (&full);
1768 sigprocmask (SIG_SETMASK, &full, &prev); 2475 sigprocmask (SIG_SETMASK, &full, &prev);
1769#endif 2476#endif
1770 2477
1771 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2478 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
1772 2479
1773#ifndef _WIN32 2480#ifndef _WIN32
1774 sigprocmask (SIG_SETMASK, &prev, 0); 2481 sigprocmask (SIG_SETMASK, &prev, 0);
1775#endif 2482#endif
1776 } 2483 }
1779 wlist_add (&signals [w->signum - 1].head, (WL)w); 2486 wlist_add (&signals [w->signum - 1].head, (WL)w);
1780 2487
1781 if (!((WL)w)->next) 2488 if (!((WL)w)->next)
1782 { 2489 {
1783#if _WIN32 2490#if _WIN32
1784 signal (w->signum, sighandler); 2491 signal (w->signum, ev_sighandler);
1785#else 2492#else
1786 struct sigaction sa; 2493 struct sigaction sa;
1787 sa.sa_handler = sighandler; 2494 sa.sa_handler = ev_sighandler;
1788 sigfillset (&sa.sa_mask); 2495 sigfillset (&sa.sa_mask);
1789 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2496 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1790 sigaction (w->signum, &sa, 0); 2497 sigaction (w->signum, &sa, 0);
1791#endif 2498#endif
1792 } 2499 }
2500
2501 EV_FREQUENT_CHECK;
1793} 2502}
1794 2503
1795void noinline 2504void noinline
1796ev_signal_stop (EV_P_ ev_signal *w) 2505ev_signal_stop (EV_P_ ev_signal *w)
1797{ 2506{
1798 clear_pending (EV_A_ (W)w); 2507 clear_pending (EV_A_ (W)w);
1799 if (expect_false (!ev_is_active (w))) 2508 if (expect_false (!ev_is_active (w)))
1800 return; 2509 return;
1801 2510
2511 EV_FREQUENT_CHECK;
2512
1802 wlist_del (&signals [w->signum - 1].head, (WL)w); 2513 wlist_del (&signals [w->signum - 1].head, (WL)w);
1803 ev_stop (EV_A_ (W)w); 2514 ev_stop (EV_A_ (W)w);
1804 2515
1805 if (!signals [w->signum - 1].head) 2516 if (!signals [w->signum - 1].head)
1806 signal (w->signum, SIG_DFL); 2517 signal (w->signum, SIG_DFL);
2518
2519 EV_FREQUENT_CHECK;
1807} 2520}
1808 2521
1809void 2522void
1810ev_child_start (EV_P_ ev_child *w) 2523ev_child_start (EV_P_ ev_child *w)
1811{ 2524{
1812#if EV_MULTIPLICITY 2525#if EV_MULTIPLICITY
1813 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2526 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1814#endif 2527#endif
1815 if (expect_false (ev_is_active (w))) 2528 if (expect_false (ev_is_active (w)))
1816 return; 2529 return;
1817 2530
2531 EV_FREQUENT_CHECK;
2532
1818 ev_start (EV_A_ (W)w, 1); 2533 ev_start (EV_A_ (W)w, 1);
1819 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2534 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2535
2536 EV_FREQUENT_CHECK;
1820} 2537}
1821 2538
1822void 2539void
1823ev_child_stop (EV_P_ ev_child *w) 2540ev_child_stop (EV_P_ ev_child *w)
1824{ 2541{
1825 clear_pending (EV_A_ (W)w); 2542 clear_pending (EV_A_ (W)w);
1826 if (expect_false (!ev_is_active (w))) 2543 if (expect_false (!ev_is_active (w)))
1827 return; 2544 return;
1828 2545
2546 EV_FREQUENT_CHECK;
2547
1829 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2548 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1830 ev_stop (EV_A_ (W)w); 2549 ev_stop (EV_A_ (W)w);
2550
2551 EV_FREQUENT_CHECK;
1831} 2552}
1832 2553
1833#if EV_STAT_ENABLE 2554#if EV_STAT_ENABLE
1834 2555
1835# ifdef _WIN32 2556# ifdef _WIN32
1836# undef lstat 2557# undef lstat
1837# define lstat(a,b) _stati64 (a,b) 2558# define lstat(a,b) _stati64 (a,b)
1838# endif 2559# endif
1839 2560
1840#define DEF_STAT_INTERVAL 5.0074891 2561#define DEF_STAT_INTERVAL 5.0074891
2562#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1841#define MIN_STAT_INTERVAL 0.1074891 2563#define MIN_STAT_INTERVAL 0.1074891
1842 2564
1843static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2565static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1844 2566
1845#if EV_USE_INOTIFY 2567#if EV_USE_INOTIFY
1846# define EV_INOTIFY_BUFSIZE 8192 2568# define EV_INOTIFY_BUFSIZE 8192
1850{ 2572{
1851 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2573 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1852 2574
1853 if (w->wd < 0) 2575 if (w->wd < 0)
1854 { 2576 {
2577 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1855 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2578 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1856 2579
1857 /* monitor some parent directory for speedup hints */ 2580 /* monitor some parent directory for speedup hints */
2581 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2582 /* but an efficiency issue only */
1858 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2583 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1859 { 2584 {
1860 char path [4096]; 2585 char path [4096];
1861 strcpy (path, w->path); 2586 strcpy (path, w->path);
1862 2587
1865 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2590 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1866 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2591 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1867 2592
1868 char *pend = strrchr (path, '/'); 2593 char *pend = strrchr (path, '/');
1869 2594
1870 if (!pend) 2595 if (!pend || pend == path)
1871 break; /* whoops, no '/', complain to your admin */ 2596 break;
1872 2597
1873 *pend = 0; 2598 *pend = 0;
1874 w->wd = inotify_add_watch (fs_fd, path, mask); 2599 w->wd = inotify_add_watch (fs_fd, path, mask);
1875 } 2600 }
1876 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2601 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1877 } 2602 }
1878 } 2603 }
1879 else
1880 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1881 2604
1882 if (w->wd >= 0) 2605 if (w->wd >= 0)
2606 {
1883 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2607 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2608
2609 /* now local changes will be tracked by inotify, but remote changes won't */
2610 /* unless the filesystem it known to be local, we therefore still poll */
2611 /* also do poll on <2.6.25, but with normal frequency */
2612 struct statfs sfs;
2613
2614 if (fs_2625 && !statfs (w->path, &sfs))
2615 if (sfs.f_type == 0x1373 /* devfs */
2616 || sfs.f_type == 0xEF53 /* ext2/3 */
2617 || sfs.f_type == 0x3153464a /* jfs */
2618 || sfs.f_type == 0x52654973 /* reiser3 */
2619 || sfs.f_type == 0x01021994 /* tempfs */
2620 || sfs.f_type == 0x58465342 /* xfs */)
2621 return;
2622
2623 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2624 ev_timer_again (EV_A_ &w->timer);
2625 }
1884} 2626}
1885 2627
1886static void noinline 2628static void noinline
1887infy_del (EV_P_ ev_stat *w) 2629infy_del (EV_P_ ev_stat *w)
1888{ 2630{
1902 2644
1903static void noinline 2645static void noinline
1904infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2646infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1905{ 2647{
1906 if (slot < 0) 2648 if (slot < 0)
1907 /* overflow, need to check for all hahs slots */ 2649 /* overflow, need to check for all hash slots */
1908 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2650 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1909 infy_wd (EV_A_ slot, wd, ev); 2651 infy_wd (EV_A_ slot, wd, ev);
1910 else 2652 else
1911 { 2653 {
1912 WL w_; 2654 WL w_;
1918 2660
1919 if (w->wd == wd || wd == -1) 2661 if (w->wd == wd || wd == -1)
1920 { 2662 {
1921 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2663 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1922 { 2664 {
2665 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1923 w->wd = -1; 2666 w->wd = -1;
1924 infy_add (EV_A_ w); /* re-add, no matter what */ 2667 infy_add (EV_A_ w); /* re-add, no matter what */
1925 } 2668 }
1926 2669
1927 stat_timer_cb (EV_A_ &w->timer, 0); 2670 stat_timer_cb (EV_A_ &w->timer, 0);
1940 2683
1941 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2684 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1942 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2685 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1943} 2686}
1944 2687
1945void inline_size 2688inline_size void
2689check_2625 (EV_P)
2690{
2691 /* kernels < 2.6.25 are borked
2692 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2693 */
2694 struct utsname buf;
2695 int major, minor, micro;
2696
2697 if (uname (&buf))
2698 return;
2699
2700 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2701 return;
2702
2703 if (major < 2
2704 || (major == 2 && minor < 6)
2705 || (major == 2 && minor == 6 && micro < 25))
2706 return;
2707
2708 fs_2625 = 1;
2709}
2710
2711inline_size void
1946infy_init (EV_P) 2712infy_init (EV_P)
1947{ 2713{
1948 if (fs_fd != -2) 2714 if (fs_fd != -2)
1949 return; 2715 return;
2716
2717 fs_fd = -1;
2718
2719 check_2625 (EV_A);
1950 2720
1951 fs_fd = inotify_init (); 2721 fs_fd = inotify_init ();
1952 2722
1953 if (fs_fd >= 0) 2723 if (fs_fd >= 0)
1954 { 2724 {
1956 ev_set_priority (&fs_w, EV_MAXPRI); 2726 ev_set_priority (&fs_w, EV_MAXPRI);
1957 ev_io_start (EV_A_ &fs_w); 2727 ev_io_start (EV_A_ &fs_w);
1958 } 2728 }
1959} 2729}
1960 2730
1961void inline_size 2731inline_size void
1962infy_fork (EV_P) 2732infy_fork (EV_P)
1963{ 2733{
1964 int slot; 2734 int slot;
1965 2735
1966 if (fs_fd < 0) 2736 if (fs_fd < 0)
1982 w->wd = -1; 2752 w->wd = -1;
1983 2753
1984 if (fs_fd >= 0) 2754 if (fs_fd >= 0)
1985 infy_add (EV_A_ w); /* re-add, no matter what */ 2755 infy_add (EV_A_ w); /* re-add, no matter what */
1986 else 2756 else
1987 ev_timer_start (EV_A_ &w->timer); 2757 ev_timer_again (EV_A_ &w->timer);
1988 } 2758 }
1989
1990 } 2759 }
1991} 2760}
1992 2761
2762#endif
2763
2764#ifdef _WIN32
2765# define EV_LSTAT(p,b) _stati64 (p, b)
2766#else
2767# define EV_LSTAT(p,b) lstat (p, b)
1993#endif 2768#endif
1994 2769
1995void 2770void
1996ev_stat_stat (EV_P_ ev_stat *w) 2771ev_stat_stat (EV_P_ ev_stat *w)
1997{ 2772{
2024 || w->prev.st_atime != w->attr.st_atime 2799 || w->prev.st_atime != w->attr.st_atime
2025 || w->prev.st_mtime != w->attr.st_mtime 2800 || w->prev.st_mtime != w->attr.st_mtime
2026 || w->prev.st_ctime != w->attr.st_ctime 2801 || w->prev.st_ctime != w->attr.st_ctime
2027 ) { 2802 ) {
2028 #if EV_USE_INOTIFY 2803 #if EV_USE_INOTIFY
2804 if (fs_fd >= 0)
2805 {
2029 infy_del (EV_A_ w); 2806 infy_del (EV_A_ w);
2030 infy_add (EV_A_ w); 2807 infy_add (EV_A_ w);
2031 ev_stat_stat (EV_A_ w); /* avoid race... */ 2808 ev_stat_stat (EV_A_ w); /* avoid race... */
2809 }
2032 #endif 2810 #endif
2033 2811
2034 ev_feed_event (EV_A_ w, EV_STAT); 2812 ev_feed_event (EV_A_ w, EV_STAT);
2035 } 2813 }
2036} 2814}
2039ev_stat_start (EV_P_ ev_stat *w) 2817ev_stat_start (EV_P_ ev_stat *w)
2040{ 2818{
2041 if (expect_false (ev_is_active (w))) 2819 if (expect_false (ev_is_active (w)))
2042 return; 2820 return;
2043 2821
2044 /* since we use memcmp, we need to clear any padding data etc. */
2045 memset (&w->prev, 0, sizeof (ev_statdata));
2046 memset (&w->attr, 0, sizeof (ev_statdata));
2047
2048 ev_stat_stat (EV_A_ w); 2822 ev_stat_stat (EV_A_ w);
2049 2823
2824 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2050 if (w->interval < MIN_STAT_INTERVAL) 2825 w->interval = MIN_STAT_INTERVAL;
2051 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2052 2826
2053 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2827 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2054 ev_set_priority (&w->timer, ev_priority (w)); 2828 ev_set_priority (&w->timer, ev_priority (w));
2055 2829
2056#if EV_USE_INOTIFY 2830#if EV_USE_INOTIFY
2057 infy_init (EV_A); 2831 infy_init (EV_A);
2058 2832
2059 if (fs_fd >= 0) 2833 if (fs_fd >= 0)
2060 infy_add (EV_A_ w); 2834 infy_add (EV_A_ w);
2061 else 2835 else
2062#endif 2836#endif
2063 ev_timer_start (EV_A_ &w->timer); 2837 ev_timer_again (EV_A_ &w->timer);
2064 2838
2065 ev_start (EV_A_ (W)w, 1); 2839 ev_start (EV_A_ (W)w, 1);
2840
2841 EV_FREQUENT_CHECK;
2066} 2842}
2067 2843
2068void 2844void
2069ev_stat_stop (EV_P_ ev_stat *w) 2845ev_stat_stop (EV_P_ ev_stat *w)
2070{ 2846{
2071 clear_pending (EV_A_ (W)w); 2847 clear_pending (EV_A_ (W)w);
2072 if (expect_false (!ev_is_active (w))) 2848 if (expect_false (!ev_is_active (w)))
2073 return; 2849 return;
2074 2850
2851 EV_FREQUENT_CHECK;
2852
2075#if EV_USE_INOTIFY 2853#if EV_USE_INOTIFY
2076 infy_del (EV_A_ w); 2854 infy_del (EV_A_ w);
2077#endif 2855#endif
2078 ev_timer_stop (EV_A_ &w->timer); 2856 ev_timer_stop (EV_A_ &w->timer);
2079 2857
2080 ev_stop (EV_A_ (W)w); 2858 ev_stop (EV_A_ (W)w);
2859
2860 EV_FREQUENT_CHECK;
2081} 2861}
2082#endif 2862#endif
2083 2863
2084#if EV_IDLE_ENABLE 2864#if EV_IDLE_ENABLE
2085void 2865void
2087{ 2867{
2088 if (expect_false (ev_is_active (w))) 2868 if (expect_false (ev_is_active (w)))
2089 return; 2869 return;
2090 2870
2091 pri_adjust (EV_A_ (W)w); 2871 pri_adjust (EV_A_ (W)w);
2872
2873 EV_FREQUENT_CHECK;
2092 2874
2093 { 2875 {
2094 int active = ++idlecnt [ABSPRI (w)]; 2876 int active = ++idlecnt [ABSPRI (w)];
2095 2877
2096 ++idleall; 2878 ++idleall;
2097 ev_start (EV_A_ (W)w, active); 2879 ev_start (EV_A_ (W)w, active);
2098 2880
2099 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2881 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2100 idles [ABSPRI (w)][active - 1] = w; 2882 idles [ABSPRI (w)][active - 1] = w;
2101 } 2883 }
2884
2885 EV_FREQUENT_CHECK;
2102} 2886}
2103 2887
2104void 2888void
2105ev_idle_stop (EV_P_ ev_idle *w) 2889ev_idle_stop (EV_P_ ev_idle *w)
2106{ 2890{
2107 clear_pending (EV_A_ (W)w); 2891 clear_pending (EV_A_ (W)w);
2108 if (expect_false (!ev_is_active (w))) 2892 if (expect_false (!ev_is_active (w)))
2109 return; 2893 return;
2110 2894
2895 EV_FREQUENT_CHECK;
2896
2111 { 2897 {
2112 int active = ((W)w)->active; 2898 int active = ev_active (w);
2113 2899
2114 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2900 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2115 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2901 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2116 2902
2117 ev_stop (EV_A_ (W)w); 2903 ev_stop (EV_A_ (W)w);
2118 --idleall; 2904 --idleall;
2119 } 2905 }
2906
2907 EV_FREQUENT_CHECK;
2120} 2908}
2121#endif 2909#endif
2122 2910
2123void 2911void
2124ev_prepare_start (EV_P_ ev_prepare *w) 2912ev_prepare_start (EV_P_ ev_prepare *w)
2125{ 2913{
2126 if (expect_false (ev_is_active (w))) 2914 if (expect_false (ev_is_active (w)))
2127 return; 2915 return;
2916
2917 EV_FREQUENT_CHECK;
2128 2918
2129 ev_start (EV_A_ (W)w, ++preparecnt); 2919 ev_start (EV_A_ (W)w, ++preparecnt);
2130 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2920 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2131 prepares [preparecnt - 1] = w; 2921 prepares [preparecnt - 1] = w;
2922
2923 EV_FREQUENT_CHECK;
2132} 2924}
2133 2925
2134void 2926void
2135ev_prepare_stop (EV_P_ ev_prepare *w) 2927ev_prepare_stop (EV_P_ ev_prepare *w)
2136{ 2928{
2137 clear_pending (EV_A_ (W)w); 2929 clear_pending (EV_A_ (W)w);
2138 if (expect_false (!ev_is_active (w))) 2930 if (expect_false (!ev_is_active (w)))
2139 return; 2931 return;
2140 2932
2933 EV_FREQUENT_CHECK;
2934
2141 { 2935 {
2142 int active = ((W)w)->active; 2936 int active = ev_active (w);
2937
2143 prepares [active - 1] = prepares [--preparecnt]; 2938 prepares [active - 1] = prepares [--preparecnt];
2144 ((W)prepares [active - 1])->active = active; 2939 ev_active (prepares [active - 1]) = active;
2145 } 2940 }
2146 2941
2147 ev_stop (EV_A_ (W)w); 2942 ev_stop (EV_A_ (W)w);
2943
2944 EV_FREQUENT_CHECK;
2148} 2945}
2149 2946
2150void 2947void
2151ev_check_start (EV_P_ ev_check *w) 2948ev_check_start (EV_P_ ev_check *w)
2152{ 2949{
2153 if (expect_false (ev_is_active (w))) 2950 if (expect_false (ev_is_active (w)))
2154 return; 2951 return;
2952
2953 EV_FREQUENT_CHECK;
2155 2954
2156 ev_start (EV_A_ (W)w, ++checkcnt); 2955 ev_start (EV_A_ (W)w, ++checkcnt);
2157 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2956 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2158 checks [checkcnt - 1] = w; 2957 checks [checkcnt - 1] = w;
2958
2959 EV_FREQUENT_CHECK;
2159} 2960}
2160 2961
2161void 2962void
2162ev_check_stop (EV_P_ ev_check *w) 2963ev_check_stop (EV_P_ ev_check *w)
2163{ 2964{
2164 clear_pending (EV_A_ (W)w); 2965 clear_pending (EV_A_ (W)w);
2165 if (expect_false (!ev_is_active (w))) 2966 if (expect_false (!ev_is_active (w)))
2166 return; 2967 return;
2167 2968
2969 EV_FREQUENT_CHECK;
2970
2168 { 2971 {
2169 int active = ((W)w)->active; 2972 int active = ev_active (w);
2973
2170 checks [active - 1] = checks [--checkcnt]; 2974 checks [active - 1] = checks [--checkcnt];
2171 ((W)checks [active - 1])->active = active; 2975 ev_active (checks [active - 1]) = active;
2172 } 2976 }
2173 2977
2174 ev_stop (EV_A_ (W)w); 2978 ev_stop (EV_A_ (W)w);
2979
2980 EV_FREQUENT_CHECK;
2175} 2981}
2176 2982
2177#if EV_EMBED_ENABLE 2983#if EV_EMBED_ENABLE
2178void noinline 2984void noinline
2179ev_embed_sweep (EV_P_ ev_embed *w) 2985ev_embed_sweep (EV_P_ ev_embed *w)
2180{ 2986{
2181 ev_loop (w->loop, EVLOOP_NONBLOCK); 2987 ev_loop (w->other, EVLOOP_NONBLOCK);
2182} 2988}
2183 2989
2184static void 2990static void
2185embed_cb (EV_P_ ev_io *io, int revents) 2991embed_io_cb (EV_P_ ev_io *io, int revents)
2186{ 2992{
2187 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2993 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2188 2994
2189 if (ev_cb (w)) 2995 if (ev_cb (w))
2190 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2996 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2191 else 2997 else
2192 ev_embed_sweep (loop, w); 2998 ev_loop (w->other, EVLOOP_NONBLOCK);
2193} 2999}
3000
3001static void
3002embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3003{
3004 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3005
3006 {
3007 struct ev_loop *loop = w->other;
3008
3009 while (fdchangecnt)
3010 {
3011 fd_reify (EV_A);
3012 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3013 }
3014 }
3015}
3016
3017static void
3018embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3019{
3020 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3021
3022 ev_embed_stop (EV_A_ w);
3023
3024 {
3025 struct ev_loop *loop = w->other;
3026
3027 ev_loop_fork (EV_A);
3028 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3029 }
3030
3031 ev_embed_start (EV_A_ w);
3032}
3033
3034#if 0
3035static void
3036embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3037{
3038 ev_idle_stop (EV_A_ idle);
3039}
3040#endif
2194 3041
2195void 3042void
2196ev_embed_start (EV_P_ ev_embed *w) 3043ev_embed_start (EV_P_ ev_embed *w)
2197{ 3044{
2198 if (expect_false (ev_is_active (w))) 3045 if (expect_false (ev_is_active (w)))
2199 return; 3046 return;
2200 3047
2201 { 3048 {
2202 struct ev_loop *loop = w->loop; 3049 struct ev_loop *loop = w->other;
2203 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3050 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2204 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3051 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2205 } 3052 }
3053
3054 EV_FREQUENT_CHECK;
2206 3055
2207 ev_set_priority (&w->io, ev_priority (w)); 3056 ev_set_priority (&w->io, ev_priority (w));
2208 ev_io_start (EV_A_ &w->io); 3057 ev_io_start (EV_A_ &w->io);
2209 3058
3059 ev_prepare_init (&w->prepare, embed_prepare_cb);
3060 ev_set_priority (&w->prepare, EV_MINPRI);
3061 ev_prepare_start (EV_A_ &w->prepare);
3062
3063 ev_fork_init (&w->fork, embed_fork_cb);
3064 ev_fork_start (EV_A_ &w->fork);
3065
3066 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3067
2210 ev_start (EV_A_ (W)w, 1); 3068 ev_start (EV_A_ (W)w, 1);
3069
3070 EV_FREQUENT_CHECK;
2211} 3071}
2212 3072
2213void 3073void
2214ev_embed_stop (EV_P_ ev_embed *w) 3074ev_embed_stop (EV_P_ ev_embed *w)
2215{ 3075{
2216 clear_pending (EV_A_ (W)w); 3076 clear_pending (EV_A_ (W)w);
2217 if (expect_false (!ev_is_active (w))) 3077 if (expect_false (!ev_is_active (w)))
2218 return; 3078 return;
2219 3079
3080 EV_FREQUENT_CHECK;
3081
2220 ev_io_stop (EV_A_ &w->io); 3082 ev_io_stop (EV_A_ &w->io);
3083 ev_prepare_stop (EV_A_ &w->prepare);
3084 ev_fork_stop (EV_A_ &w->fork);
2221 3085
2222 ev_stop (EV_A_ (W)w); 3086 EV_FREQUENT_CHECK;
2223} 3087}
2224#endif 3088#endif
2225 3089
2226#if EV_FORK_ENABLE 3090#if EV_FORK_ENABLE
2227void 3091void
2228ev_fork_start (EV_P_ ev_fork *w) 3092ev_fork_start (EV_P_ ev_fork *w)
2229{ 3093{
2230 if (expect_false (ev_is_active (w))) 3094 if (expect_false (ev_is_active (w)))
2231 return; 3095 return;
3096
3097 EV_FREQUENT_CHECK;
2232 3098
2233 ev_start (EV_A_ (W)w, ++forkcnt); 3099 ev_start (EV_A_ (W)w, ++forkcnt);
2234 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3100 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2235 forks [forkcnt - 1] = w; 3101 forks [forkcnt - 1] = w;
3102
3103 EV_FREQUENT_CHECK;
2236} 3104}
2237 3105
2238void 3106void
2239ev_fork_stop (EV_P_ ev_fork *w) 3107ev_fork_stop (EV_P_ ev_fork *w)
2240{ 3108{
2241 clear_pending (EV_A_ (W)w); 3109 clear_pending (EV_A_ (W)w);
2242 if (expect_false (!ev_is_active (w))) 3110 if (expect_false (!ev_is_active (w)))
2243 return; 3111 return;
2244 3112
3113 EV_FREQUENT_CHECK;
3114
2245 { 3115 {
2246 int active = ((W)w)->active; 3116 int active = ev_active (w);
3117
2247 forks [active - 1] = forks [--forkcnt]; 3118 forks [active - 1] = forks [--forkcnt];
2248 ((W)forks [active - 1])->active = active; 3119 ev_active (forks [active - 1]) = active;
2249 } 3120 }
2250 3121
2251 ev_stop (EV_A_ (W)w); 3122 ev_stop (EV_A_ (W)w);
3123
3124 EV_FREQUENT_CHECK;
3125}
3126#endif
3127
3128#if EV_ASYNC_ENABLE
3129void
3130ev_async_start (EV_P_ ev_async *w)
3131{
3132 if (expect_false (ev_is_active (w)))
3133 return;
3134
3135 evpipe_init (EV_A);
3136
3137 EV_FREQUENT_CHECK;
3138
3139 ev_start (EV_A_ (W)w, ++asynccnt);
3140 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3141 asyncs [asynccnt - 1] = w;
3142
3143 EV_FREQUENT_CHECK;
3144}
3145
3146void
3147ev_async_stop (EV_P_ ev_async *w)
3148{
3149 clear_pending (EV_A_ (W)w);
3150 if (expect_false (!ev_is_active (w)))
3151 return;
3152
3153 EV_FREQUENT_CHECK;
3154
3155 {
3156 int active = ev_active (w);
3157
3158 asyncs [active - 1] = asyncs [--asynccnt];
3159 ev_active (asyncs [active - 1]) = active;
3160 }
3161
3162 ev_stop (EV_A_ (W)w);
3163
3164 EV_FREQUENT_CHECK;
3165}
3166
3167void
3168ev_async_send (EV_P_ ev_async *w)
3169{
3170 w->sent = 1;
3171 evpipe_write (EV_A_ &gotasync);
2252} 3172}
2253#endif 3173#endif
2254 3174
2255/*****************************************************************************/ 3175/*****************************************************************************/
2256 3176
2266once_cb (EV_P_ struct ev_once *once, int revents) 3186once_cb (EV_P_ struct ev_once *once, int revents)
2267{ 3187{
2268 void (*cb)(int revents, void *arg) = once->cb; 3188 void (*cb)(int revents, void *arg) = once->cb;
2269 void *arg = once->arg; 3189 void *arg = once->arg;
2270 3190
2271 ev_io_stop (EV_A_ &once->io); 3191 ev_io_stop (EV_A_ &once->io);
2272 ev_timer_stop (EV_A_ &once->to); 3192 ev_timer_stop (EV_A_ &once->to);
2273 ev_free (once); 3193 ev_free (once);
2274 3194
2275 cb (revents, arg); 3195 cb (revents, arg);
2276} 3196}
2277 3197
2278static void 3198static void
2279once_cb_io (EV_P_ ev_io *w, int revents) 3199once_cb_io (EV_P_ ev_io *w, int revents)
2280{ 3200{
2281 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3201 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3202
3203 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2282} 3204}
2283 3205
2284static void 3206static void
2285once_cb_to (EV_P_ ev_timer *w, int revents) 3207once_cb_to (EV_P_ ev_timer *w, int revents)
2286{ 3208{
2287 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3209 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3210
3211 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2288} 3212}
2289 3213
2290void 3214void
2291ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3215ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2292{ 3216{
2314 ev_timer_set (&once->to, timeout, 0.); 3238 ev_timer_set (&once->to, timeout, 0.);
2315 ev_timer_start (EV_A_ &once->to); 3239 ev_timer_start (EV_A_ &once->to);
2316 } 3240 }
2317} 3241}
2318 3242
3243/*****************************************************************************/
3244
3245#if EV_WALK_ENABLE
3246void
3247ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3248{
3249 int i, j;
3250 ev_watcher_list *wl, *wn;
3251
3252 if (types & (EV_IO | EV_EMBED))
3253 for (i = 0; i < anfdmax; ++i)
3254 for (wl = anfds [i].head; wl; )
3255 {
3256 wn = wl->next;
3257
3258#if EV_EMBED_ENABLE
3259 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3260 {
3261 if (types & EV_EMBED)
3262 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3263 }
3264 else
3265#endif
3266#if EV_USE_INOTIFY
3267 if (ev_cb ((ev_io *)wl) == infy_cb)
3268 ;
3269 else
3270#endif
3271 if ((ev_io *)wl != &pipe_w)
3272 if (types & EV_IO)
3273 cb (EV_A_ EV_IO, wl);
3274
3275 wl = wn;
3276 }
3277
3278 if (types & (EV_TIMER | EV_STAT))
3279 for (i = timercnt + HEAP0; i-- > HEAP0; )
3280#if EV_STAT_ENABLE
3281 /*TODO: timer is not always active*/
3282 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3283 {
3284 if (types & EV_STAT)
3285 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3286 }
3287 else
3288#endif
3289 if (types & EV_TIMER)
3290 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3291
3292#if EV_PERIODIC_ENABLE
3293 if (types & EV_PERIODIC)
3294 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3295 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3296#endif
3297
3298#if EV_IDLE_ENABLE
3299 if (types & EV_IDLE)
3300 for (j = NUMPRI; i--; )
3301 for (i = idlecnt [j]; i--; )
3302 cb (EV_A_ EV_IDLE, idles [j][i]);
3303#endif
3304
3305#if EV_FORK_ENABLE
3306 if (types & EV_FORK)
3307 for (i = forkcnt; i--; )
3308 if (ev_cb (forks [i]) != embed_fork_cb)
3309 cb (EV_A_ EV_FORK, forks [i]);
3310#endif
3311
3312#if EV_ASYNC_ENABLE
3313 if (types & EV_ASYNC)
3314 for (i = asynccnt; i--; )
3315 cb (EV_A_ EV_ASYNC, asyncs [i]);
3316#endif
3317
3318 if (types & EV_PREPARE)
3319 for (i = preparecnt; i--; )
3320#if EV_EMBED_ENABLE
3321 if (ev_cb (prepares [i]) != embed_prepare_cb)
3322#endif
3323 cb (EV_A_ EV_PREPARE, prepares [i]);
3324
3325 if (types & EV_CHECK)
3326 for (i = checkcnt; i--; )
3327 cb (EV_A_ EV_CHECK, checks [i]);
3328
3329 if (types & EV_SIGNAL)
3330 for (i = 0; i < signalmax; ++i)
3331 for (wl = signals [i].head; wl; )
3332 {
3333 wn = wl->next;
3334 cb (EV_A_ EV_SIGNAL, wl);
3335 wl = wn;
3336 }
3337
3338 if (types & EV_CHILD)
3339 for (i = EV_PID_HASHSIZE; i--; )
3340 for (wl = childs [i]; wl; )
3341 {
3342 wn = wl->next;
3343 cb (EV_A_ EV_CHILD, wl);
3344 wl = wn;
3345 }
3346/* EV_STAT 0x00001000 /* stat data changed */
3347/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3348}
3349#endif
3350
3351#if EV_MULTIPLICITY
3352 #include "ev_wrap.h"
3353#endif
3354
2319#ifdef __cplusplus 3355#ifdef __cplusplus
2320} 3356}
2321#endif 3357#endif
2322 3358

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines