ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.226 by root, Fri Apr 18 17:16:44 2008 UTC vs.
Revision 1.288 by root, Sat Apr 25 14:12:48 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
63
52# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
55# endif 67# endif
56# ifndef EV_USE_REALTIME 68# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 0
58# endif 70# endif
59# else 71# else
60# ifndef EV_USE_MONOTONIC 72# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 73# define EV_USE_MONOTONIC 0
62# endif 74# endif
126# define EV_USE_EVENTFD 1 138# define EV_USE_EVENTFD 1
127# else 139# else
128# define EV_USE_EVENTFD 0 140# define EV_USE_EVENTFD 0
129# endif 141# endif
130# endif 142# endif
131 143
132#endif 144#endif
133 145
134#include <math.h> 146#include <math.h>
135#include <stdlib.h> 147#include <stdlib.h>
136#include <fcntl.h> 148#include <fcntl.h>
154#ifndef _WIN32 166#ifndef _WIN32
155# include <sys/time.h> 167# include <sys/time.h>
156# include <sys/wait.h> 168# include <sys/wait.h>
157# include <unistd.h> 169# include <unistd.h>
158#else 170#else
171# include <io.h>
159# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 173# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
163# endif 176# endif
164#endif 177#endif
165 178
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
167 180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
188
168#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
169# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif
170#endif 195#endif
171 196
172#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 199#endif
175 200
176#ifndef EV_USE_NANOSLEEP 201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
177# define EV_USE_NANOSLEEP 0 205# define EV_USE_NANOSLEEP 0
206# endif
178#endif 207#endif
179 208
180#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
182#endif 211#endif
235# else 264# else
236# define EV_USE_EVENTFD 0 265# define EV_USE_EVENTFD 0
237# endif 266# endif
238#endif 267#endif
239 268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 288
242#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
259# include <sys/select.h> 306# include <sys/select.h>
260# endif 307# endif
261#endif 308#endif
262 309
263#if EV_USE_INOTIFY 310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
264# include <sys/inotify.h> 313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
265#endif 319#endif
266 320
267#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 322# include <winsock.h>
323#endif
324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
269#endif 332#endif
270 333
271#if EV_USE_EVENTFD 334#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 336# include <stdint.h>
279} 342}
280# endif 343# endif
281#endif 344#endif
282 345
283/**/ 346/**/
347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
284 353
285/* 354/*
286 * This is used to avoid floating point rounding problems. 355 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 356 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 357 * to ensure progress, time-wise, even when rounding
325 394
326typedef ev_watcher *W; 395typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
329 398
330#if EV_USE_MONOTONIC 399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_REALTIME
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */ 404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
334#endif 410#endif
335 411
336#ifdef _WIN32 412#ifdef _WIN32
337# include "ev_win32.c" 413# include "ev_win32.c"
346{ 422{
347 syserr_cb = cb; 423 syserr_cb = cb;
348} 424}
349 425
350static void noinline 426static void noinline
351syserr (const char *msg) 427ev_syserr (const char *msg)
352{ 428{
353 if (!msg) 429 if (!msg)
354 msg = "(libev) system error"; 430 msg = "(libev) system error";
355 431
356 if (syserr_cb) 432 if (syserr_cb)
402#define ev_malloc(size) ev_realloc (0, (size)) 478#define ev_malloc(size) ev_realloc (0, (size))
403#define ev_free(ptr) ev_realloc ((ptr), 0) 479#define ev_free(ptr) ev_realloc ((ptr), 0)
404 480
405/*****************************************************************************/ 481/*****************************************************************************/
406 482
483/* file descriptor info structure */
407typedef struct 484typedef struct
408{ 485{
409 WL head; 486 WL head;
410 unsigned char events; 487 unsigned char events; /* the events watched for */
488 unsigned char reify; /* flag set when this ANFD needs reification */
489 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
411 unsigned char reify; 490 unsigned char unused;
491#if EV_USE_EPOLL
492 unsigned int egen; /* generation counter to counter epoll bugs */
493#endif
412#if EV_SELECT_IS_WINSOCKET 494#if EV_SELECT_IS_WINSOCKET
413 SOCKET handle; 495 SOCKET handle;
414#endif 496#endif
415} ANFD; 497} ANFD;
416 498
499/* stores the pending event set for a given watcher */
417typedef struct 500typedef struct
418{ 501{
419 W w; 502 W w;
420 int events; 503 int events; /* the pending event set for the given watcher */
421} ANPENDING; 504} ANPENDING;
422 505
423#if EV_USE_INOTIFY 506#if EV_USE_INOTIFY
507/* hash table entry per inotify-id */
424typedef struct 508typedef struct
425{ 509{
426 WL head; 510 WL head;
427} ANFS; 511} ANFS;
512#endif
513
514/* Heap Entry */
515#if EV_HEAP_CACHE_AT
516 /* a heap element */
517 typedef struct {
518 ev_tstamp at;
519 WT w;
520 } ANHE;
521
522 #define ANHE_w(he) (he).w /* access watcher, read-write */
523 #define ANHE_at(he) (he).at /* access cached at, read-only */
524 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
525#else
526 /* a heap element */
527 typedef WT ANHE;
528
529 #define ANHE_w(he) (he)
530 #define ANHE_at(he) (he)->at
531 #define ANHE_at_cache(he)
428#endif 532#endif
429 533
430#if EV_MULTIPLICITY 534#if EV_MULTIPLICITY
431 535
432 struct ev_loop 536 struct ev_loop
457 561
458ev_tstamp 562ev_tstamp
459ev_time (void) 563ev_time (void)
460{ 564{
461#if EV_USE_REALTIME 565#if EV_USE_REALTIME
566 if (expect_true (have_realtime))
567 {
462 struct timespec ts; 568 struct timespec ts;
463 clock_gettime (CLOCK_REALTIME, &ts); 569 clock_gettime (CLOCK_REALTIME, &ts);
464 return ts.tv_sec + ts.tv_nsec * 1e-9; 570 return ts.tv_sec + ts.tv_nsec * 1e-9;
465#else 571 }
572#endif
573
466 struct timeval tv; 574 struct timeval tv;
467 gettimeofday (&tv, 0); 575 gettimeofday (&tv, 0);
468 return tv.tv_sec + tv.tv_usec * 1e-6; 576 return tv.tv_sec + tv.tv_usec * 1e-6;
469#endif
470} 577}
471 578
472ev_tstamp inline_size 579inline_size ev_tstamp
473get_clock (void) 580get_clock (void)
474{ 581{
475#if EV_USE_MONOTONIC 582#if EV_USE_MONOTONIC
476 if (expect_true (have_monotonic)) 583 if (expect_true (have_monotonic))
477 { 584 {
510 struct timeval tv; 617 struct timeval tv;
511 618
512 tv.tv_sec = (time_t)delay; 619 tv.tv_sec = (time_t)delay;
513 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 620 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
514 621
622 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
623 /* somehting nto guaranteed by newer posix versions, but guaranteed */
624 /* by older ones */
515 select (0, 0, 0, 0, &tv); 625 select (0, 0, 0, 0, &tv);
516#endif 626#endif
517 } 627 }
518} 628}
519 629
520/*****************************************************************************/ 630/*****************************************************************************/
521 631
522int inline_size 632#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
633
634/* find a suitable new size for the given array, */
635/* hopefully by rounding to a ncie-to-malloc size */
636inline_size int
523array_nextsize (int elem, int cur, int cnt) 637array_nextsize (int elem, int cur, int cnt)
524{ 638{
525 int ncur = cur + 1; 639 int ncur = cur + 1;
526 640
527 do 641 do
528 ncur <<= 1; 642 ncur <<= 1;
529 while (cnt > ncur); 643 while (cnt > ncur);
530 644
531 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 645 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
532 if (elem * ncur > 4096) 646 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
533 { 647 {
534 ncur *= elem; 648 ncur *= elem;
535 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 649 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
536 ncur = ncur - sizeof (void *) * 4; 650 ncur = ncur - sizeof (void *) * 4;
537 ncur /= elem; 651 ncur /= elem;
538 } 652 }
539 653
540 return ncur; 654 return ncur;
544array_realloc (int elem, void *base, int *cur, int cnt) 658array_realloc (int elem, void *base, int *cur, int cnt)
545{ 659{
546 *cur = array_nextsize (elem, *cur, cnt); 660 *cur = array_nextsize (elem, *cur, cnt);
547 return ev_realloc (base, elem * *cur); 661 return ev_realloc (base, elem * *cur);
548} 662}
663
664#define array_init_zero(base,count) \
665 memset ((void *)(base), 0, sizeof (*(base)) * (count))
549 666
550#define array_needsize(type,base,cur,cnt,init) \ 667#define array_needsize(type,base,cur,cnt,init) \
551 if (expect_false ((cnt) > (cur))) \ 668 if (expect_false ((cnt) > (cur))) \
552 { \ 669 { \
553 int ocur_ = (cur); \ 670 int ocur_ = (cur); \
565 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 682 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
566 } 683 }
567#endif 684#endif
568 685
569#define array_free(stem, idx) \ 686#define array_free(stem, idx) \
570 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 687 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
571 688
572/*****************************************************************************/ 689/*****************************************************************************/
690
691/* dummy callback for pending events */
692static void noinline
693pendingcb (EV_P_ ev_prepare *w, int revents)
694{
695}
573 696
574void noinline 697void noinline
575ev_feed_event (EV_P_ void *w, int revents) 698ev_feed_event (EV_P_ void *w, int revents)
576{ 699{
577 W w_ = (W)w; 700 W w_ = (W)w;
586 pendings [pri][w_->pending - 1].w = w_; 709 pendings [pri][w_->pending - 1].w = w_;
587 pendings [pri][w_->pending - 1].events = revents; 710 pendings [pri][w_->pending - 1].events = revents;
588 } 711 }
589} 712}
590 713
591void inline_speed 714inline_speed void
715feed_reverse (EV_P_ W w)
716{
717 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
718 rfeeds [rfeedcnt++] = w;
719}
720
721inline_size void
722feed_reverse_done (EV_P_ int revents)
723{
724 do
725 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
726 while (rfeedcnt);
727}
728
729inline_speed void
592queue_events (EV_P_ W *events, int eventcnt, int type) 730queue_events (EV_P_ W *events, int eventcnt, int type)
593{ 731{
594 int i; 732 int i;
595 733
596 for (i = 0; i < eventcnt; ++i) 734 for (i = 0; i < eventcnt; ++i)
597 ev_feed_event (EV_A_ events [i], type); 735 ev_feed_event (EV_A_ events [i], type);
598} 736}
599 737
600/*****************************************************************************/ 738/*****************************************************************************/
601 739
602void inline_size 740inline_speed void
603anfds_init (ANFD *base, int count)
604{
605 while (count--)
606 {
607 base->head = 0;
608 base->events = EV_NONE;
609 base->reify = 0;
610
611 ++base;
612 }
613}
614
615void inline_speed
616fd_event (EV_P_ int fd, int revents) 741fd_event (EV_P_ int fd, int revents)
617{ 742{
618 ANFD *anfd = anfds + fd; 743 ANFD *anfd = anfds + fd;
619 ev_io *w; 744 ev_io *w;
620 745
632{ 757{
633 if (fd >= 0 && fd < anfdmax) 758 if (fd >= 0 && fd < anfdmax)
634 fd_event (EV_A_ fd, revents); 759 fd_event (EV_A_ fd, revents);
635} 760}
636 761
637void inline_size 762/* make sure the external fd watch events are in-sync */
763/* with the kernel/libev internal state */
764inline_size void
638fd_reify (EV_P) 765fd_reify (EV_P)
639{ 766{
640 int i; 767 int i;
641 768
642 for (i = 0; i < fdchangecnt; ++i) 769 for (i = 0; i < fdchangecnt; ++i)
651 events |= (unsigned char)w->events; 778 events |= (unsigned char)w->events;
652 779
653#if EV_SELECT_IS_WINSOCKET 780#if EV_SELECT_IS_WINSOCKET
654 if (events) 781 if (events)
655 { 782 {
656 unsigned long argp; 783 unsigned long arg;
657 #ifdef EV_FD_TO_WIN32_HANDLE 784 #ifdef EV_FD_TO_WIN32_HANDLE
658 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 785 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
659 #else 786 #else
660 anfd->handle = _get_osfhandle (fd); 787 anfd->handle = _get_osfhandle (fd);
661 #endif 788 #endif
662 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 789 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
663 } 790 }
664#endif 791#endif
665 792
666 { 793 {
667 unsigned char o_events = anfd->events; 794 unsigned char o_events = anfd->events;
668 unsigned char o_reify = anfd->reify; 795 unsigned char o_reify = anfd->reify;
669 796
670 anfd->reify = 0; 797 anfd->reify = 0;
671 anfd->events = events; 798 anfd->events = events;
672 799
673 if (o_events != events || o_reify & EV_IOFDSET) 800 if (o_events != events || o_reify & EV__IOFDSET)
674 backend_modify (EV_A_ fd, o_events, events); 801 backend_modify (EV_A_ fd, o_events, events);
675 } 802 }
676 } 803 }
677 804
678 fdchangecnt = 0; 805 fdchangecnt = 0;
679} 806}
680 807
681void inline_size 808/* something about the given fd changed */
809inline_size void
682fd_change (EV_P_ int fd, int flags) 810fd_change (EV_P_ int fd, int flags)
683{ 811{
684 unsigned char reify = anfds [fd].reify; 812 unsigned char reify = anfds [fd].reify;
685 anfds [fd].reify |= flags; 813 anfds [fd].reify |= flags;
686 814
690 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 818 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
691 fdchanges [fdchangecnt - 1] = fd; 819 fdchanges [fdchangecnt - 1] = fd;
692 } 820 }
693} 821}
694 822
695void inline_speed 823/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
824inline_speed void
696fd_kill (EV_P_ int fd) 825fd_kill (EV_P_ int fd)
697{ 826{
698 ev_io *w; 827 ev_io *w;
699 828
700 while ((w = (ev_io *)anfds [fd].head)) 829 while ((w = (ev_io *)anfds [fd].head))
702 ev_io_stop (EV_A_ w); 831 ev_io_stop (EV_A_ w);
703 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 832 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
704 } 833 }
705} 834}
706 835
707int inline_size 836/* check whether the given fd is atcually valid, for error recovery */
837inline_size int
708fd_valid (int fd) 838fd_valid (int fd)
709{ 839{
710#ifdef _WIN32 840#ifdef _WIN32
711 return _get_osfhandle (fd) != -1; 841 return _get_osfhandle (fd) != -1;
712#else 842#else
720{ 850{
721 int fd; 851 int fd;
722 852
723 for (fd = 0; fd < anfdmax; ++fd) 853 for (fd = 0; fd < anfdmax; ++fd)
724 if (anfds [fd].events) 854 if (anfds [fd].events)
725 if (!fd_valid (fd) == -1 && errno == EBADF) 855 if (!fd_valid (fd) && errno == EBADF)
726 fd_kill (EV_A_ fd); 856 fd_kill (EV_A_ fd);
727} 857}
728 858
729/* called on ENOMEM in select/poll to kill some fds and retry */ 859/* called on ENOMEM in select/poll to kill some fds and retry */
730static void noinline 860static void noinline
748 878
749 for (fd = 0; fd < anfdmax; ++fd) 879 for (fd = 0; fd < anfdmax; ++fd)
750 if (anfds [fd].events) 880 if (anfds [fd].events)
751 { 881 {
752 anfds [fd].events = 0; 882 anfds [fd].events = 0;
883 anfds [fd].emask = 0;
753 fd_change (EV_A_ fd, EV_IOFDSET | 1); 884 fd_change (EV_A_ fd, EV__IOFDSET | 1);
754 } 885 }
755} 886}
756 887
757/*****************************************************************************/ 888/*****************************************************************************/
758 889
759void inline_speed 890/*
760upheap (WT *heap, int k) 891 * the heap functions want a real array index. array index 0 uis guaranteed to not
761{ 892 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
762 WT w = heap [k]; 893 * the branching factor of the d-tree.
894 */
763 895
764 while (k) 896/*
765 { 897 * at the moment we allow libev the luxury of two heaps,
766 int p = (k - 1) >> 1; 898 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
899 * which is more cache-efficient.
900 * the difference is about 5% with 50000+ watchers.
901 */
902#if EV_USE_4HEAP
767 903
768 if (heap [p]->at <= w->at) 904#define DHEAP 4
905#define HEAP0 (DHEAP - 1) /* index of first element in heap */
906#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
907#define UPHEAP_DONE(p,k) ((p) == (k))
908
909/* away from the root */
910inline_speed void
911downheap (ANHE *heap, int N, int k)
912{
913 ANHE he = heap [k];
914 ANHE *E = heap + N + HEAP0;
915
916 for (;;)
917 {
918 ev_tstamp minat;
919 ANHE *minpos;
920 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
921
922 /* find minimum child */
923 if (expect_true (pos + DHEAP - 1 < E))
924 {
925 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
926 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
927 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
928 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
929 }
930 else if (pos < E)
931 {
932 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
933 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
934 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
935 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
936 }
937 else
769 break; 938 break;
770 939
940 if (ANHE_at (he) <= minat)
941 break;
942
943 heap [k] = *minpos;
944 ev_active (ANHE_w (*minpos)) = k;
945
946 k = minpos - heap;
947 }
948
949 heap [k] = he;
950 ev_active (ANHE_w (he)) = k;
951}
952
953#else /* 4HEAP */
954
955#define HEAP0 1
956#define HPARENT(k) ((k) >> 1)
957#define UPHEAP_DONE(p,k) (!(p))
958
959/* away from the root */
960inline_speed void
961downheap (ANHE *heap, int N, int k)
962{
963 ANHE he = heap [k];
964
965 for (;;)
966 {
967 int c = k << 1;
968
969 if (c > N + HEAP0 - 1)
970 break;
971
972 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
973 ? 1 : 0;
974
975 if (ANHE_at (he) <= ANHE_at (heap [c]))
976 break;
977
978 heap [k] = heap [c];
979 ev_active (ANHE_w (heap [k])) = k;
980
981 k = c;
982 }
983
984 heap [k] = he;
985 ev_active (ANHE_w (he)) = k;
986}
987#endif
988
989/* towards the root */
990inline_speed void
991upheap (ANHE *heap, int k)
992{
993 ANHE he = heap [k];
994
995 for (;;)
996 {
997 int p = HPARENT (k);
998
999 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1000 break;
1001
771 heap [k] = heap [p]; 1002 heap [k] = heap [p];
772 ((W)heap [k])->active = k + 1; 1003 ev_active (ANHE_w (heap [k])) = k;
773 k = p; 1004 k = p;
774 } 1005 }
775 1006
776 heap [k] = w; 1007 heap [k] = he;
777 ((W)heap [k])->active = k + 1; 1008 ev_active (ANHE_w (he)) = k;
778} 1009}
779 1010
780void inline_speed 1011/* move an element suitably so it is in a correct place */
781downheap (WT *heap, int N, int k) 1012inline_size void
782{
783 WT w = heap [k];
784
785 for (;;)
786 {
787 int c = (k << 1) + 1;
788
789 if (c >= N)
790 break;
791
792 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
793 ? 1 : 0;
794
795 if (w->at <= heap [c]->at)
796 break;
797
798 heap [k] = heap [c];
799 ((W)heap [k])->active = k + 1;
800
801 k = c;
802 }
803
804 heap [k] = w;
805 ((W)heap [k])->active = k + 1;
806}
807
808void inline_size
809adjustheap (WT *heap, int N, int k) 1013adjustheap (ANHE *heap, int N, int k)
810{ 1014{
1015 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
811 upheap (heap, k); 1016 upheap (heap, k);
1017 else
812 downheap (heap, N, k); 1018 downheap (heap, N, k);
1019}
1020
1021/* rebuild the heap: this function is used only once and executed rarely */
1022inline_size void
1023reheap (ANHE *heap, int N)
1024{
1025 int i;
1026
1027 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1028 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1029 for (i = 0; i < N; ++i)
1030 upheap (heap, i + HEAP0);
813} 1031}
814 1032
815/*****************************************************************************/ 1033/*****************************************************************************/
816 1034
1035/* associate signal watchers to a signal signal */
817typedef struct 1036typedef struct
818{ 1037{
819 WL head; 1038 WL head;
820 EV_ATOMIC_T gotsig; 1039 EV_ATOMIC_T gotsig;
821} ANSIG; 1040} ANSIG;
823static ANSIG *signals; 1042static ANSIG *signals;
824static int signalmax; 1043static int signalmax;
825 1044
826static EV_ATOMIC_T gotsig; 1045static EV_ATOMIC_T gotsig;
827 1046
828void inline_size
829signals_init (ANSIG *base, int count)
830{
831 while (count--)
832 {
833 base->head = 0;
834 base->gotsig = 0;
835
836 ++base;
837 }
838}
839
840/*****************************************************************************/ 1047/*****************************************************************************/
841 1048
842void inline_speed 1049/* used to prepare libev internal fd's */
1050/* this is not fork-safe */
1051inline_speed void
843fd_intern (int fd) 1052fd_intern (int fd)
844{ 1053{
845#ifdef _WIN32 1054#ifdef _WIN32
846 int arg = 1; 1055 unsigned long arg = 1;
847 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1056 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
848#else 1057#else
849 fcntl (fd, F_SETFD, FD_CLOEXEC); 1058 fcntl (fd, F_SETFD, FD_CLOEXEC);
850 fcntl (fd, F_SETFL, O_NONBLOCK); 1059 fcntl (fd, F_SETFL, O_NONBLOCK);
851#endif 1060#endif
852} 1061}
853 1062
854static void noinline 1063static void noinline
855evpipe_init (EV_P) 1064evpipe_init (EV_P)
856{ 1065{
857 if (!ev_is_active (&pipeev)) 1066 if (!ev_is_active (&pipe_w))
858 { 1067 {
859#if EV_USE_EVENTFD 1068#if EV_USE_EVENTFD
860 if ((evfd = eventfd (0, 0)) >= 0) 1069 if ((evfd = eventfd (0, 0)) >= 0)
861 { 1070 {
862 evpipe [0] = -1; 1071 evpipe [0] = -1;
863 fd_intern (evfd); 1072 fd_intern (evfd);
864 ev_io_set (&pipeev, evfd, EV_READ); 1073 ev_io_set (&pipe_w, evfd, EV_READ);
865 } 1074 }
866 else 1075 else
867#endif 1076#endif
868 { 1077 {
869 while (pipe (evpipe)) 1078 while (pipe (evpipe))
870 syserr ("(libev) error creating signal/async pipe"); 1079 ev_syserr ("(libev) error creating signal/async pipe");
871 1080
872 fd_intern (evpipe [0]); 1081 fd_intern (evpipe [0]);
873 fd_intern (evpipe [1]); 1082 fd_intern (evpipe [1]);
874 ev_io_set (&pipeev, evpipe [0], EV_READ); 1083 ev_io_set (&pipe_w, evpipe [0], EV_READ);
875 } 1084 }
876 1085
877 ev_io_start (EV_A_ &pipeev); 1086 ev_io_start (EV_A_ &pipe_w);
878 ev_unref (EV_A); /* watcher should not keep loop alive */ 1087 ev_unref (EV_A); /* watcher should not keep loop alive */
879 } 1088 }
880} 1089}
881 1090
882void inline_size 1091inline_size void
883evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1092evpipe_write (EV_P_ EV_ATOMIC_T *flag)
884{ 1093{
885 if (!*flag) 1094 if (!*flag)
886 { 1095 {
887 int old_errno = errno; /* save errno because write might clobber it */ 1096 int old_errno = errno; /* save errno because write might clobber it */
900 1109
901 errno = old_errno; 1110 errno = old_errno;
902 } 1111 }
903} 1112}
904 1113
1114/* called whenever the libev signal pipe */
1115/* got some events (signal, async) */
905static void 1116static void
906pipecb (EV_P_ ev_io *iow, int revents) 1117pipecb (EV_P_ ev_io *iow, int revents)
907{ 1118{
908#if EV_USE_EVENTFD 1119#if EV_USE_EVENTFD
909 if (evfd >= 0) 1120 if (evfd >= 0)
910 { 1121 {
911 uint64_t counter = 1; 1122 uint64_t counter;
912 read (evfd, &counter, sizeof (uint64_t)); 1123 read (evfd, &counter, sizeof (uint64_t));
913 } 1124 }
914 else 1125 else
915#endif 1126#endif
916 { 1127 {
965ev_feed_signal_event (EV_P_ int signum) 1176ev_feed_signal_event (EV_P_ int signum)
966{ 1177{
967 WL w; 1178 WL w;
968 1179
969#if EV_MULTIPLICITY 1180#if EV_MULTIPLICITY
970 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1181 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
971#endif 1182#endif
972 1183
973 --signum; 1184 --signum;
974 1185
975 if (signum < 0 || signum >= signalmax) 1186 if (signum < 0 || signum >= signalmax)
991 1202
992#ifndef WIFCONTINUED 1203#ifndef WIFCONTINUED
993# define WIFCONTINUED(status) 0 1204# define WIFCONTINUED(status) 0
994#endif 1205#endif
995 1206
996void inline_speed 1207/* handle a single child status event */
1208inline_speed void
997child_reap (EV_P_ int chain, int pid, int status) 1209child_reap (EV_P_ int chain, int pid, int status)
998{ 1210{
999 ev_child *w; 1211 ev_child *w;
1000 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1212 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1001 1213
1014 1226
1015#ifndef WCONTINUED 1227#ifndef WCONTINUED
1016# define WCONTINUED 0 1228# define WCONTINUED 0
1017#endif 1229#endif
1018 1230
1231/* called on sigchld etc., calls waitpid */
1019static void 1232static void
1020childcb (EV_P_ ev_signal *sw, int revents) 1233childcb (EV_P_ ev_signal *sw, int revents)
1021{ 1234{
1022 int pid, status; 1235 int pid, status;
1023 1236
1104 /* kqueue is borked on everything but netbsd apparently */ 1317 /* kqueue is borked on everything but netbsd apparently */
1105 /* it usually doesn't work correctly on anything but sockets and pipes */ 1318 /* it usually doesn't work correctly on anything but sockets and pipes */
1106 flags &= ~EVBACKEND_KQUEUE; 1319 flags &= ~EVBACKEND_KQUEUE;
1107#endif 1320#endif
1108#ifdef __APPLE__ 1321#ifdef __APPLE__
1109 // flags &= ~EVBACKEND_KQUEUE; for documentation 1322 /* only select works correctly on that "unix-certified" platform */
1110 flags &= ~EVBACKEND_POLL; 1323 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1324 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1111#endif 1325#endif
1112 1326
1113 return flags; 1327 return flags;
1114} 1328}
1115 1329
1147ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1361ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1148{ 1362{
1149 timeout_blocktime = interval; 1363 timeout_blocktime = interval;
1150} 1364}
1151 1365
1366/* initialise a loop structure, must be zero-initialised */
1152static void noinline 1367static void noinline
1153loop_init (EV_P_ unsigned int flags) 1368loop_init (EV_P_ unsigned int flags)
1154{ 1369{
1155 if (!backend) 1370 if (!backend)
1156 { 1371 {
1372#if EV_USE_REALTIME
1373 if (!have_realtime)
1374 {
1375 struct timespec ts;
1376
1377 if (!clock_gettime (CLOCK_REALTIME, &ts))
1378 have_realtime = 1;
1379 }
1380#endif
1381
1157#if EV_USE_MONOTONIC 1382#if EV_USE_MONOTONIC
1383 if (!have_monotonic)
1158 { 1384 {
1159 struct timespec ts; 1385 struct timespec ts;
1386
1160 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1387 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1161 have_monotonic = 1; 1388 have_monotonic = 1;
1162 } 1389 }
1163#endif 1390#endif
1164 1391
1165 ev_rt_now = ev_time (); 1392 ev_rt_now = ev_time ();
1166 mn_now = get_clock (); 1393 mn_now = get_clock ();
1167 now_floor = mn_now; 1394 now_floor = mn_now;
1204#endif 1431#endif
1205#if EV_USE_SELECT 1432#if EV_USE_SELECT
1206 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1433 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1207#endif 1434#endif
1208 1435
1436 ev_prepare_init (&pending_w, pendingcb);
1437
1209 ev_init (&pipeev, pipecb); 1438 ev_init (&pipe_w, pipecb);
1210 ev_set_priority (&pipeev, EV_MAXPRI); 1439 ev_set_priority (&pipe_w, EV_MAXPRI);
1211 } 1440 }
1212} 1441}
1213 1442
1443/* free up a loop structure */
1214static void noinline 1444static void noinline
1215loop_destroy (EV_P) 1445loop_destroy (EV_P)
1216{ 1446{
1217 int i; 1447 int i;
1218 1448
1219 if (ev_is_active (&pipeev)) 1449 if (ev_is_active (&pipe_w))
1220 { 1450 {
1221 ev_ref (EV_A); /* signal watcher */ 1451 ev_ref (EV_A); /* signal watcher */
1222 ev_io_stop (EV_A_ &pipeev); 1452 ev_io_stop (EV_A_ &pipe_w);
1223 1453
1224#if EV_USE_EVENTFD 1454#if EV_USE_EVENTFD
1225 if (evfd >= 0) 1455 if (evfd >= 0)
1226 close (evfd); 1456 close (evfd);
1227#endif 1457#endif
1266 } 1496 }
1267 1497
1268 ev_free (anfds); anfdmax = 0; 1498 ev_free (anfds); anfdmax = 0;
1269 1499
1270 /* have to use the microsoft-never-gets-it-right macro */ 1500 /* have to use the microsoft-never-gets-it-right macro */
1501 array_free (rfeed, EMPTY);
1271 array_free (fdchange, EMPTY); 1502 array_free (fdchange, EMPTY);
1272 array_free (timer, EMPTY); 1503 array_free (timer, EMPTY);
1273#if EV_PERIODIC_ENABLE 1504#if EV_PERIODIC_ENABLE
1274 array_free (periodic, EMPTY); 1505 array_free (periodic, EMPTY);
1275#endif 1506#endif
1284 1515
1285 backend = 0; 1516 backend = 0;
1286} 1517}
1287 1518
1288#if EV_USE_INOTIFY 1519#if EV_USE_INOTIFY
1289void inline_size infy_fork (EV_P); 1520inline_size void infy_fork (EV_P);
1290#endif 1521#endif
1291 1522
1292void inline_size 1523inline_size void
1293loop_fork (EV_P) 1524loop_fork (EV_P)
1294{ 1525{
1295#if EV_USE_PORT 1526#if EV_USE_PORT
1296 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1527 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1297#endif 1528#endif
1303#endif 1534#endif
1304#if EV_USE_INOTIFY 1535#if EV_USE_INOTIFY
1305 infy_fork (EV_A); 1536 infy_fork (EV_A);
1306#endif 1537#endif
1307 1538
1308 if (ev_is_active (&pipeev)) 1539 if (ev_is_active (&pipe_w))
1309 { 1540 {
1310 /* this "locks" the handlers against writing to the pipe */ 1541 /* this "locks" the handlers against writing to the pipe */
1311 /* while we modify the fd vars */ 1542 /* while we modify the fd vars */
1312 gotsig = 1; 1543 gotsig = 1;
1313#if EV_ASYNC_ENABLE 1544#if EV_ASYNC_ENABLE
1314 gotasync = 1; 1545 gotasync = 1;
1315#endif 1546#endif
1316 1547
1317 ev_ref (EV_A); 1548 ev_ref (EV_A);
1318 ev_io_stop (EV_A_ &pipeev); 1549 ev_io_stop (EV_A_ &pipe_w);
1319 1550
1320#if EV_USE_EVENTFD 1551#if EV_USE_EVENTFD
1321 if (evfd >= 0) 1552 if (evfd >= 0)
1322 close (evfd); 1553 close (evfd);
1323#endif 1554#endif
1328 close (evpipe [1]); 1559 close (evpipe [1]);
1329 } 1560 }
1330 1561
1331 evpipe_init (EV_A); 1562 evpipe_init (EV_A);
1332 /* now iterate over everything, in case we missed something */ 1563 /* now iterate over everything, in case we missed something */
1333 pipecb (EV_A_ &pipeev, EV_READ); 1564 pipecb (EV_A_ &pipe_w, EV_READ);
1334 } 1565 }
1335 1566
1336 postfork = 0; 1567 postfork = 0;
1337} 1568}
1338 1569
1339#if EV_MULTIPLICITY 1570#if EV_MULTIPLICITY
1571
1340struct ev_loop * 1572struct ev_loop *
1341ev_loop_new (unsigned int flags) 1573ev_loop_new (unsigned int flags)
1342{ 1574{
1343 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1575 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1344 1576
1363ev_loop_fork (EV_P) 1595ev_loop_fork (EV_P)
1364{ 1596{
1365 postfork = 1; /* must be in line with ev_default_fork */ 1597 postfork = 1; /* must be in line with ev_default_fork */
1366} 1598}
1367 1599
1600#if EV_VERIFY
1601static void noinline
1602verify_watcher (EV_P_ W w)
1603{
1604 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1605
1606 if (w->pending)
1607 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1608}
1609
1610static void noinline
1611verify_heap (EV_P_ ANHE *heap, int N)
1612{
1613 int i;
1614
1615 for (i = HEAP0; i < N + HEAP0; ++i)
1616 {
1617 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1618 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1619 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1620
1621 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1622 }
1623}
1624
1625static void noinline
1626array_verify (EV_P_ W *ws, int cnt)
1627{
1628 while (cnt--)
1629 {
1630 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1631 verify_watcher (EV_A_ ws [cnt]);
1632 }
1633}
1634#endif
1635
1636void
1637ev_loop_verify (EV_P)
1638{
1639#if EV_VERIFY
1640 int i;
1641 WL w;
1642
1643 assert (activecnt >= -1);
1644
1645 assert (fdchangemax >= fdchangecnt);
1646 for (i = 0; i < fdchangecnt; ++i)
1647 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1648
1649 assert (anfdmax >= 0);
1650 for (i = 0; i < anfdmax; ++i)
1651 for (w = anfds [i].head; w; w = w->next)
1652 {
1653 verify_watcher (EV_A_ (W)w);
1654 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1655 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1656 }
1657
1658 assert (timermax >= timercnt);
1659 verify_heap (EV_A_ timers, timercnt);
1660
1661#if EV_PERIODIC_ENABLE
1662 assert (periodicmax >= periodiccnt);
1663 verify_heap (EV_A_ periodics, periodiccnt);
1664#endif
1665
1666 for (i = NUMPRI; i--; )
1667 {
1668 assert (pendingmax [i] >= pendingcnt [i]);
1669#if EV_IDLE_ENABLE
1670 assert (idleall >= 0);
1671 assert (idlemax [i] >= idlecnt [i]);
1672 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1673#endif
1674 }
1675
1676#if EV_FORK_ENABLE
1677 assert (forkmax >= forkcnt);
1678 array_verify (EV_A_ (W *)forks, forkcnt);
1679#endif
1680
1681#if EV_ASYNC_ENABLE
1682 assert (asyncmax >= asynccnt);
1683 array_verify (EV_A_ (W *)asyncs, asynccnt);
1684#endif
1685
1686 assert (preparemax >= preparecnt);
1687 array_verify (EV_A_ (W *)prepares, preparecnt);
1688
1689 assert (checkmax >= checkcnt);
1690 array_verify (EV_A_ (W *)checks, checkcnt);
1691
1692# if 0
1693 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1694 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1368#endif 1695# endif
1696#endif
1697}
1698
1699#endif /* multiplicity */
1369 1700
1370#if EV_MULTIPLICITY 1701#if EV_MULTIPLICITY
1371struct ev_loop * 1702struct ev_loop *
1372ev_default_loop_init (unsigned int flags) 1703ev_default_loop_init (unsigned int flags)
1373#else 1704#else
1406{ 1737{
1407#if EV_MULTIPLICITY 1738#if EV_MULTIPLICITY
1408 struct ev_loop *loop = ev_default_loop_ptr; 1739 struct ev_loop *loop = ev_default_loop_ptr;
1409#endif 1740#endif
1410 1741
1742 ev_default_loop_ptr = 0;
1743
1411#ifndef _WIN32 1744#ifndef _WIN32
1412 ev_ref (EV_A); /* child watcher */ 1745 ev_ref (EV_A); /* child watcher */
1413 ev_signal_stop (EV_A_ &childev); 1746 ev_signal_stop (EV_A_ &childev);
1414#endif 1747#endif
1415 1748
1421{ 1754{
1422#if EV_MULTIPLICITY 1755#if EV_MULTIPLICITY
1423 struct ev_loop *loop = ev_default_loop_ptr; 1756 struct ev_loop *loop = ev_default_loop_ptr;
1424#endif 1757#endif
1425 1758
1426 if (backend)
1427 postfork = 1; /* must be in line with ev_loop_fork */ 1759 postfork = 1; /* must be in line with ev_loop_fork */
1428} 1760}
1429 1761
1430/*****************************************************************************/ 1762/*****************************************************************************/
1431 1763
1432void 1764void
1433ev_invoke (EV_P_ void *w, int revents) 1765ev_invoke (EV_P_ void *w, int revents)
1434{ 1766{
1435 EV_CB_INVOKE ((W)w, revents); 1767 EV_CB_INVOKE ((W)w, revents);
1436} 1768}
1437 1769
1438void inline_speed 1770inline_speed void
1439call_pending (EV_P) 1771call_pending (EV_P)
1440{ 1772{
1441 int pri; 1773 int pri;
1442 1774
1443 for (pri = NUMPRI; pri--; ) 1775 for (pri = NUMPRI; pri--; )
1444 while (pendingcnt [pri]) 1776 while (pendingcnt [pri])
1445 { 1777 {
1446 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1778 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1447 1779
1448 if (expect_true (p->w))
1449 {
1450 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1780 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1781 /* ^ this is no longer true, as pending_w could be here */
1451 1782
1452 p->w->pending = 0; 1783 p->w->pending = 0;
1453 EV_CB_INVOKE (p->w, p->events); 1784 EV_CB_INVOKE (p->w, p->events);
1454 } 1785 EV_FREQUENT_CHECK;
1455 } 1786 }
1456} 1787}
1457 1788
1458void inline_size
1459timers_reify (EV_P)
1460{
1461 while (timercnt && ((WT)timers [0])->at <= mn_now)
1462 {
1463 ev_timer *w = (ev_timer *)timers [0];
1464
1465 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1466
1467 /* first reschedule or stop timer */
1468 if (w->repeat)
1469 {
1470 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1471
1472 ((WT)w)->at += w->repeat;
1473 if (((WT)w)->at < mn_now)
1474 ((WT)w)->at = mn_now;
1475
1476 downheap (timers, timercnt, 0);
1477 }
1478 else
1479 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1480
1481 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1482 }
1483}
1484
1485#if EV_PERIODIC_ENABLE
1486void inline_size
1487periodics_reify (EV_P)
1488{
1489 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1490 {
1491 ev_periodic *w = (ev_periodic *)periodics [0];
1492
1493 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1494
1495 /* first reschedule or stop timer */
1496 if (w->reschedule_cb)
1497 {
1498 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1499 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1500 downheap (periodics, periodiccnt, 0);
1501 }
1502 else if (w->interval)
1503 {
1504 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1505 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1506 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1507 downheap (periodics, periodiccnt, 0);
1508 }
1509 else
1510 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1511
1512 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1513 }
1514}
1515
1516static void noinline
1517periodics_reschedule (EV_P)
1518{
1519 int i;
1520
1521 /* adjust periodics after time jump */
1522 for (i = 0; i < periodiccnt; ++i)
1523 {
1524 ev_periodic *w = (ev_periodic *)periodics [i];
1525
1526 if (w->reschedule_cb)
1527 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1528 else if (w->interval)
1529 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1530 }
1531
1532 /* now rebuild the heap */
1533 for (i = periodiccnt >> 1; i--; )
1534 downheap (periodics, periodiccnt, i);
1535}
1536#endif
1537
1538#if EV_IDLE_ENABLE 1789#if EV_IDLE_ENABLE
1539void inline_size 1790/* make idle watchers pending. this handles the "call-idle */
1791/* only when higher priorities are idle" logic */
1792inline_size void
1540idle_reify (EV_P) 1793idle_reify (EV_P)
1541{ 1794{
1542 if (expect_false (idleall)) 1795 if (expect_false (idleall))
1543 { 1796 {
1544 int pri; 1797 int pri;
1556 } 1809 }
1557 } 1810 }
1558} 1811}
1559#endif 1812#endif
1560 1813
1561void inline_speed 1814/* make timers pending */
1815inline_size void
1816timers_reify (EV_P)
1817{
1818 EV_FREQUENT_CHECK;
1819
1820 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1821 {
1822 do
1823 {
1824 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1825
1826 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1827
1828 /* first reschedule or stop timer */
1829 if (w->repeat)
1830 {
1831 ev_at (w) += w->repeat;
1832 if (ev_at (w) < mn_now)
1833 ev_at (w) = mn_now;
1834
1835 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1836
1837 ANHE_at_cache (timers [HEAP0]);
1838 downheap (timers, timercnt, HEAP0);
1839 }
1840 else
1841 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1842
1843 EV_FREQUENT_CHECK;
1844 feed_reverse (EV_A_ (W)w);
1845 }
1846 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1847
1848 feed_reverse_done (EV_A_ EV_TIMEOUT);
1849 }
1850}
1851
1852#if EV_PERIODIC_ENABLE
1853/* make periodics pending */
1854inline_size void
1855periodics_reify (EV_P)
1856{
1857 EV_FREQUENT_CHECK;
1858
1859 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1860 {
1861 int feed_count = 0;
1862
1863 do
1864 {
1865 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1866
1867 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1868
1869 /* first reschedule or stop timer */
1870 if (w->reschedule_cb)
1871 {
1872 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1873
1874 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1875
1876 ANHE_at_cache (periodics [HEAP0]);
1877 downheap (periodics, periodiccnt, HEAP0);
1878 }
1879 else if (w->interval)
1880 {
1881 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1882 /* if next trigger time is not sufficiently in the future, put it there */
1883 /* this might happen because of floating point inexactness */
1884 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1885 {
1886 ev_at (w) += w->interval;
1887
1888 /* if interval is unreasonably low we might still have a time in the past */
1889 /* so correct this. this will make the periodic very inexact, but the user */
1890 /* has effectively asked to get triggered more often than possible */
1891 if (ev_at (w) < ev_rt_now)
1892 ev_at (w) = ev_rt_now;
1893 }
1894
1895 ANHE_at_cache (periodics [HEAP0]);
1896 downheap (periodics, periodiccnt, HEAP0);
1897 }
1898 else
1899 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1900
1901 EV_FREQUENT_CHECK;
1902 feed_reverse (EV_A_ (W)w);
1903 }
1904 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1905
1906 feed_reverse_done (EV_A_ EV_PERIODIC);
1907 }
1908}
1909
1910/* simply recalculate all periodics */
1911/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1912static void noinline
1913periodics_reschedule (EV_P)
1914{
1915 int i;
1916
1917 /* adjust periodics after time jump */
1918 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1919 {
1920 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1921
1922 if (w->reschedule_cb)
1923 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1924 else if (w->interval)
1925 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1926
1927 ANHE_at_cache (periodics [i]);
1928 }
1929
1930 reheap (periodics, periodiccnt);
1931}
1932#endif
1933
1934/* adjust all timers by a given offset */
1935static void noinline
1936timers_reschedule (EV_P_ ev_tstamp adjust)
1937{
1938 int i;
1939
1940 for (i = 0; i < timercnt; ++i)
1941 {
1942 ANHE *he = timers + i + HEAP0;
1943 ANHE_w (*he)->at += adjust;
1944 ANHE_at_cache (*he);
1945 }
1946}
1947
1948/* fetch new monotonic and realtime times from the kernel */
1949/* also detetc if there was a timejump, and act accordingly */
1950inline_speed void
1562time_update (EV_P_ ev_tstamp max_block) 1951time_update (EV_P_ ev_tstamp max_block)
1563{ 1952{
1564 int i; 1953 int i;
1565 1954
1566#if EV_USE_MONOTONIC 1955#if EV_USE_MONOTONIC
1591 */ 1980 */
1592 for (i = 4; --i; ) 1981 for (i = 4; --i; )
1593 { 1982 {
1594 rtmn_diff = ev_rt_now - mn_now; 1983 rtmn_diff = ev_rt_now - mn_now;
1595 1984
1596 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1985 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1597 return; /* all is well */ 1986 return; /* all is well */
1598 1987
1599 ev_rt_now = ev_time (); 1988 ev_rt_now = ev_time ();
1600 mn_now = get_clock (); 1989 mn_now = get_clock ();
1601 now_floor = mn_now; 1990 now_floor = mn_now;
1602 } 1991 }
1603 1992
1993 /* no timer adjustment, as the monotonic clock doesn't jump */
1994 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1604# if EV_PERIODIC_ENABLE 1995# if EV_PERIODIC_ENABLE
1605 periodics_reschedule (EV_A); 1996 periodics_reschedule (EV_A);
1606# endif 1997# endif
1607 /* no timer adjustment, as the monotonic clock doesn't jump */
1608 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1609 } 1998 }
1610 else 1999 else
1611#endif 2000#endif
1612 { 2001 {
1613 ev_rt_now = ev_time (); 2002 ev_rt_now = ev_time ();
1614 2003
1615 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2004 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1616 { 2005 {
2006 /* adjust timers. this is easy, as the offset is the same for all of them */
2007 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1617#if EV_PERIODIC_ENABLE 2008#if EV_PERIODIC_ENABLE
1618 periodics_reschedule (EV_A); 2009 periodics_reschedule (EV_A);
1619#endif 2010#endif
1620 /* adjust timers. this is easy, as the offset is the same for all of them */
1621 for (i = 0; i < timercnt; ++i)
1622 ((WT)timers [i])->at += ev_rt_now - mn_now;
1623 } 2011 }
1624 2012
1625 mn_now = ev_rt_now; 2013 mn_now = ev_rt_now;
1626 } 2014 }
1627} 2015}
1628 2016
1629void
1630ev_ref (EV_P)
1631{
1632 ++activecnt;
1633}
1634
1635void
1636ev_unref (EV_P)
1637{
1638 --activecnt;
1639}
1640
1641static int loop_done; 2017static int loop_done;
1642 2018
1643void 2019void
1644ev_loop (EV_P_ int flags) 2020ev_loop (EV_P_ int flags)
1645{ 2021{
1647 2023
1648 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2024 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1649 2025
1650 do 2026 do
1651 { 2027 {
2028#if EV_VERIFY >= 2
2029 ev_loop_verify (EV_A);
2030#endif
2031
1652#ifndef _WIN32 2032#ifndef _WIN32
1653 if (expect_false (curpid)) /* penalise the forking check even more */ 2033 if (expect_false (curpid)) /* penalise the forking check even more */
1654 if (expect_false (getpid () != curpid)) 2034 if (expect_false (getpid () != curpid))
1655 { 2035 {
1656 curpid = getpid (); 2036 curpid = getpid ();
1673 { 2053 {
1674 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2054 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1675 call_pending (EV_A); 2055 call_pending (EV_A);
1676 } 2056 }
1677 2057
1678 if (expect_false (!activecnt))
1679 break;
1680
1681 /* we might have forked, so reify kernel state if necessary */ 2058 /* we might have forked, so reify kernel state if necessary */
1682 if (expect_false (postfork)) 2059 if (expect_false (postfork))
1683 loop_fork (EV_A); 2060 loop_fork (EV_A);
1684 2061
1685 /* update fd-related kernel structures */ 2062 /* update fd-related kernel structures */
1697 2074
1698 waittime = MAX_BLOCKTIME; 2075 waittime = MAX_BLOCKTIME;
1699 2076
1700 if (timercnt) 2077 if (timercnt)
1701 { 2078 {
1702 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2079 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1703 if (waittime > to) waittime = to; 2080 if (waittime > to) waittime = to;
1704 } 2081 }
1705 2082
1706#if EV_PERIODIC_ENABLE 2083#if EV_PERIODIC_ENABLE
1707 if (periodiccnt) 2084 if (periodiccnt)
1708 { 2085 {
1709 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2086 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1710 if (waittime > to) waittime = to; 2087 if (waittime > to) waittime = to;
1711 } 2088 }
1712#endif 2089#endif
1713 2090
1714 if (expect_false (waittime < timeout_blocktime)) 2091 if (expect_false (waittime < timeout_blocktime))
1764ev_unloop (EV_P_ int how) 2141ev_unloop (EV_P_ int how)
1765{ 2142{
1766 loop_done = how; 2143 loop_done = how;
1767} 2144}
1768 2145
2146void
2147ev_ref (EV_P)
2148{
2149 ++activecnt;
2150}
2151
2152void
2153ev_unref (EV_P)
2154{
2155 --activecnt;
2156}
2157
2158void
2159ev_now_update (EV_P)
2160{
2161 time_update (EV_A_ 1e100);
2162}
2163
2164void
2165ev_suspend (EV_P)
2166{
2167 ev_now_update (EV_A);
2168}
2169
2170void
2171ev_resume (EV_P)
2172{
2173 ev_tstamp mn_prev = mn_now;
2174
2175 ev_now_update (EV_A);
2176 timers_reschedule (EV_A_ mn_now - mn_prev);
2177#if EV_PERIODIC_ENABLE
2178 /* TODO: really do this? */
2179 periodics_reschedule (EV_A);
2180#endif
2181}
2182
1769/*****************************************************************************/ 2183/*****************************************************************************/
2184/* singly-linked list management, used when the expected list length is short */
1770 2185
1771void inline_size 2186inline_size void
1772wlist_add (WL *head, WL elem) 2187wlist_add (WL *head, WL elem)
1773{ 2188{
1774 elem->next = *head; 2189 elem->next = *head;
1775 *head = elem; 2190 *head = elem;
1776} 2191}
1777 2192
1778void inline_size 2193inline_size void
1779wlist_del (WL *head, WL elem) 2194wlist_del (WL *head, WL elem)
1780{ 2195{
1781 while (*head) 2196 while (*head)
1782 { 2197 {
1783 if (*head == elem) 2198 if (*head == elem)
1788 2203
1789 head = &(*head)->next; 2204 head = &(*head)->next;
1790 } 2205 }
1791} 2206}
1792 2207
1793void inline_speed 2208/* internal, faster, version of ev_clear_pending */
2209inline_speed void
1794clear_pending (EV_P_ W w) 2210clear_pending (EV_P_ W w)
1795{ 2211{
1796 if (w->pending) 2212 if (w->pending)
1797 { 2213 {
1798 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2214 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1799 w->pending = 0; 2215 w->pending = 0;
1800 } 2216 }
1801} 2217}
1802 2218
1803int 2219int
1807 int pending = w_->pending; 2223 int pending = w_->pending;
1808 2224
1809 if (expect_true (pending)) 2225 if (expect_true (pending))
1810 { 2226 {
1811 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2227 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2228 p->w = (W)&pending_w;
1812 w_->pending = 0; 2229 w_->pending = 0;
1813 p->w = 0;
1814 return p->events; 2230 return p->events;
1815 } 2231 }
1816 else 2232 else
1817 return 0; 2233 return 0;
1818} 2234}
1819 2235
1820void inline_size 2236inline_size void
1821pri_adjust (EV_P_ W w) 2237pri_adjust (EV_P_ W w)
1822{ 2238{
1823 int pri = w->priority; 2239 int pri = w->priority;
1824 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2240 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1825 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2241 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1826 w->priority = pri; 2242 w->priority = pri;
1827} 2243}
1828 2244
1829void inline_speed 2245inline_speed void
1830ev_start (EV_P_ W w, int active) 2246ev_start (EV_P_ W w, int active)
1831{ 2247{
1832 pri_adjust (EV_A_ w); 2248 pri_adjust (EV_A_ w);
1833 w->active = active; 2249 w->active = active;
1834 ev_ref (EV_A); 2250 ev_ref (EV_A);
1835} 2251}
1836 2252
1837void inline_size 2253inline_size void
1838ev_stop (EV_P_ W w) 2254ev_stop (EV_P_ W w)
1839{ 2255{
1840 ev_unref (EV_A); 2256 ev_unref (EV_A);
1841 w->active = 0; 2257 w->active = 0;
1842} 2258}
1849 int fd = w->fd; 2265 int fd = w->fd;
1850 2266
1851 if (expect_false (ev_is_active (w))) 2267 if (expect_false (ev_is_active (w)))
1852 return; 2268 return;
1853 2269
1854 assert (("ev_io_start called with negative fd", fd >= 0)); 2270 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2271 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2272
2273 EV_FREQUENT_CHECK;
1855 2274
1856 ev_start (EV_A_ (W)w, 1); 2275 ev_start (EV_A_ (W)w, 1);
1857 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2276 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1858 wlist_add (&anfds[fd].head, (WL)w); 2277 wlist_add (&anfds[fd].head, (WL)w);
1859 2278
1860 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2279 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1861 w->events &= ~EV_IOFDSET; 2280 w->events &= ~EV__IOFDSET;
2281
2282 EV_FREQUENT_CHECK;
1862} 2283}
1863 2284
1864void noinline 2285void noinline
1865ev_io_stop (EV_P_ ev_io *w) 2286ev_io_stop (EV_P_ ev_io *w)
1866{ 2287{
1867 clear_pending (EV_A_ (W)w); 2288 clear_pending (EV_A_ (W)w);
1868 if (expect_false (!ev_is_active (w))) 2289 if (expect_false (!ev_is_active (w)))
1869 return; 2290 return;
1870 2291
1871 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2292 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2293
2294 EV_FREQUENT_CHECK;
1872 2295
1873 wlist_del (&anfds[w->fd].head, (WL)w); 2296 wlist_del (&anfds[w->fd].head, (WL)w);
1874 ev_stop (EV_A_ (W)w); 2297 ev_stop (EV_A_ (W)w);
1875 2298
1876 fd_change (EV_A_ w->fd, 1); 2299 fd_change (EV_A_ w->fd, 1);
2300
2301 EV_FREQUENT_CHECK;
1877} 2302}
1878 2303
1879void noinline 2304void noinline
1880ev_timer_start (EV_P_ ev_timer *w) 2305ev_timer_start (EV_P_ ev_timer *w)
1881{ 2306{
1882 if (expect_false (ev_is_active (w))) 2307 if (expect_false (ev_is_active (w)))
1883 return; 2308 return;
1884 2309
1885 ((WT)w)->at += mn_now; 2310 ev_at (w) += mn_now;
1886 2311
1887 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2312 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1888 2313
2314 EV_FREQUENT_CHECK;
2315
2316 ++timercnt;
1889 ev_start (EV_A_ (W)w, ++timercnt); 2317 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1890 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2318 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1891 timers [timercnt - 1] = (WT)w; 2319 ANHE_w (timers [ev_active (w)]) = (WT)w;
1892 upheap (timers, timercnt - 1); 2320 ANHE_at_cache (timers [ev_active (w)]);
2321 upheap (timers, ev_active (w));
1893 2322
2323 EV_FREQUENT_CHECK;
2324
1894 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2325 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1895} 2326}
1896 2327
1897void noinline 2328void noinline
1898ev_timer_stop (EV_P_ ev_timer *w) 2329ev_timer_stop (EV_P_ ev_timer *w)
1899{ 2330{
1900 clear_pending (EV_A_ (W)w); 2331 clear_pending (EV_A_ (W)w);
1901 if (expect_false (!ev_is_active (w))) 2332 if (expect_false (!ev_is_active (w)))
1902 return; 2333 return;
1903 2334
1904 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2335 EV_FREQUENT_CHECK;
1905 2336
1906 { 2337 {
1907 int active = ((W)w)->active; 2338 int active = ev_active (w);
1908 2339
2340 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2341
2342 --timercnt;
2343
1909 if (expect_true (--active < --timercnt)) 2344 if (expect_true (active < timercnt + HEAP0))
1910 { 2345 {
1911 timers [active] = timers [timercnt]; 2346 timers [active] = timers [timercnt + HEAP0];
1912 adjustheap (timers, timercnt, active); 2347 adjustheap (timers, timercnt, active);
1913 } 2348 }
1914 } 2349 }
1915 2350
1916 ((WT)w)->at -= mn_now; 2351 EV_FREQUENT_CHECK;
2352
2353 ev_at (w) -= mn_now;
1917 2354
1918 ev_stop (EV_A_ (W)w); 2355 ev_stop (EV_A_ (W)w);
1919} 2356}
1920 2357
1921void noinline 2358void noinline
1922ev_timer_again (EV_P_ ev_timer *w) 2359ev_timer_again (EV_P_ ev_timer *w)
1923{ 2360{
2361 EV_FREQUENT_CHECK;
2362
1924 if (ev_is_active (w)) 2363 if (ev_is_active (w))
1925 { 2364 {
1926 if (w->repeat) 2365 if (w->repeat)
1927 { 2366 {
1928 ((WT)w)->at = mn_now + w->repeat; 2367 ev_at (w) = mn_now + w->repeat;
2368 ANHE_at_cache (timers [ev_active (w)]);
1929 adjustheap (timers, timercnt, ((W)w)->active - 1); 2369 adjustheap (timers, timercnt, ev_active (w));
1930 } 2370 }
1931 else 2371 else
1932 ev_timer_stop (EV_A_ w); 2372 ev_timer_stop (EV_A_ w);
1933 } 2373 }
1934 else if (w->repeat) 2374 else if (w->repeat)
1935 { 2375 {
1936 w->at = w->repeat; 2376 ev_at (w) = w->repeat;
1937 ev_timer_start (EV_A_ w); 2377 ev_timer_start (EV_A_ w);
1938 } 2378 }
2379
2380 EV_FREQUENT_CHECK;
1939} 2381}
1940 2382
1941#if EV_PERIODIC_ENABLE 2383#if EV_PERIODIC_ENABLE
1942void noinline 2384void noinline
1943ev_periodic_start (EV_P_ ev_periodic *w) 2385ev_periodic_start (EV_P_ ev_periodic *w)
1944{ 2386{
1945 if (expect_false (ev_is_active (w))) 2387 if (expect_false (ev_is_active (w)))
1946 return; 2388 return;
1947 2389
1948 if (w->reschedule_cb) 2390 if (w->reschedule_cb)
1949 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2391 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1950 else if (w->interval) 2392 else if (w->interval)
1951 { 2393 {
1952 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2394 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1953 /* this formula differs from the one in periodic_reify because we do not always round up */ 2395 /* this formula differs from the one in periodic_reify because we do not always round up */
1954 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2396 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1955 } 2397 }
1956 else 2398 else
1957 ((WT)w)->at = w->offset; 2399 ev_at (w) = w->offset;
1958 2400
2401 EV_FREQUENT_CHECK;
2402
2403 ++periodiccnt;
1959 ev_start (EV_A_ (W)w, ++periodiccnt); 2404 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1960 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2405 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1961 periodics [periodiccnt - 1] = (WT)w; 2406 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1962 upheap (periodics, periodiccnt - 1); 2407 ANHE_at_cache (periodics [ev_active (w)]);
2408 upheap (periodics, ev_active (w));
1963 2409
2410 EV_FREQUENT_CHECK;
2411
1964 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2412 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1965} 2413}
1966 2414
1967void noinline 2415void noinline
1968ev_periodic_stop (EV_P_ ev_periodic *w) 2416ev_periodic_stop (EV_P_ ev_periodic *w)
1969{ 2417{
1970 clear_pending (EV_A_ (W)w); 2418 clear_pending (EV_A_ (W)w);
1971 if (expect_false (!ev_is_active (w))) 2419 if (expect_false (!ev_is_active (w)))
1972 return; 2420 return;
1973 2421
1974 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2422 EV_FREQUENT_CHECK;
1975 2423
1976 { 2424 {
1977 int active = ((W)w)->active; 2425 int active = ev_active (w);
1978 2426
2427 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2428
2429 --periodiccnt;
2430
1979 if (expect_true (--active < --periodiccnt)) 2431 if (expect_true (active < periodiccnt + HEAP0))
1980 { 2432 {
1981 periodics [active] = periodics [periodiccnt]; 2433 periodics [active] = periodics [periodiccnt + HEAP0];
1982 adjustheap (periodics, periodiccnt, active); 2434 adjustheap (periodics, periodiccnt, active);
1983 } 2435 }
1984 } 2436 }
1985 2437
2438 EV_FREQUENT_CHECK;
2439
1986 ev_stop (EV_A_ (W)w); 2440 ev_stop (EV_A_ (W)w);
1987} 2441}
1988 2442
1989void noinline 2443void noinline
1990ev_periodic_again (EV_P_ ev_periodic *w) 2444ev_periodic_again (EV_P_ ev_periodic *w)
2001 2455
2002void noinline 2456void noinline
2003ev_signal_start (EV_P_ ev_signal *w) 2457ev_signal_start (EV_P_ ev_signal *w)
2004{ 2458{
2005#if EV_MULTIPLICITY 2459#if EV_MULTIPLICITY
2006 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2460 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2007#endif 2461#endif
2008 if (expect_false (ev_is_active (w))) 2462 if (expect_false (ev_is_active (w)))
2009 return; 2463 return;
2010 2464
2011 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2465 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2012 2466
2013 evpipe_init (EV_A); 2467 evpipe_init (EV_A);
2468
2469 EV_FREQUENT_CHECK;
2014 2470
2015 { 2471 {
2016#ifndef _WIN32 2472#ifndef _WIN32
2017 sigset_t full, prev; 2473 sigset_t full, prev;
2018 sigfillset (&full); 2474 sigfillset (&full);
2019 sigprocmask (SIG_SETMASK, &full, &prev); 2475 sigprocmask (SIG_SETMASK, &full, &prev);
2020#endif 2476#endif
2021 2477
2022 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2478 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2023 2479
2024#ifndef _WIN32 2480#ifndef _WIN32
2025 sigprocmask (SIG_SETMASK, &prev, 0); 2481 sigprocmask (SIG_SETMASK, &prev, 0);
2026#endif 2482#endif
2027 } 2483 }
2039 sigfillset (&sa.sa_mask); 2495 sigfillset (&sa.sa_mask);
2040 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2496 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2041 sigaction (w->signum, &sa, 0); 2497 sigaction (w->signum, &sa, 0);
2042#endif 2498#endif
2043 } 2499 }
2500
2501 EV_FREQUENT_CHECK;
2044} 2502}
2045 2503
2046void noinline 2504void noinline
2047ev_signal_stop (EV_P_ ev_signal *w) 2505ev_signal_stop (EV_P_ ev_signal *w)
2048{ 2506{
2049 clear_pending (EV_A_ (W)w); 2507 clear_pending (EV_A_ (W)w);
2050 if (expect_false (!ev_is_active (w))) 2508 if (expect_false (!ev_is_active (w)))
2051 return; 2509 return;
2052 2510
2511 EV_FREQUENT_CHECK;
2512
2053 wlist_del (&signals [w->signum - 1].head, (WL)w); 2513 wlist_del (&signals [w->signum - 1].head, (WL)w);
2054 ev_stop (EV_A_ (W)w); 2514 ev_stop (EV_A_ (W)w);
2055 2515
2056 if (!signals [w->signum - 1].head) 2516 if (!signals [w->signum - 1].head)
2057 signal (w->signum, SIG_DFL); 2517 signal (w->signum, SIG_DFL);
2518
2519 EV_FREQUENT_CHECK;
2058} 2520}
2059 2521
2060void 2522void
2061ev_child_start (EV_P_ ev_child *w) 2523ev_child_start (EV_P_ ev_child *w)
2062{ 2524{
2063#if EV_MULTIPLICITY 2525#if EV_MULTIPLICITY
2064 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2526 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2065#endif 2527#endif
2066 if (expect_false (ev_is_active (w))) 2528 if (expect_false (ev_is_active (w)))
2067 return; 2529 return;
2068 2530
2531 EV_FREQUENT_CHECK;
2532
2069 ev_start (EV_A_ (W)w, 1); 2533 ev_start (EV_A_ (W)w, 1);
2070 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2534 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2535
2536 EV_FREQUENT_CHECK;
2071} 2537}
2072 2538
2073void 2539void
2074ev_child_stop (EV_P_ ev_child *w) 2540ev_child_stop (EV_P_ ev_child *w)
2075{ 2541{
2076 clear_pending (EV_A_ (W)w); 2542 clear_pending (EV_A_ (W)w);
2077 if (expect_false (!ev_is_active (w))) 2543 if (expect_false (!ev_is_active (w)))
2078 return; 2544 return;
2079 2545
2546 EV_FREQUENT_CHECK;
2547
2080 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2548 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2081 ev_stop (EV_A_ (W)w); 2549 ev_stop (EV_A_ (W)w);
2550
2551 EV_FREQUENT_CHECK;
2082} 2552}
2083 2553
2084#if EV_STAT_ENABLE 2554#if EV_STAT_ENABLE
2085 2555
2086# ifdef _WIN32 2556# ifdef _WIN32
2087# undef lstat 2557# undef lstat
2088# define lstat(a,b) _stati64 (a,b) 2558# define lstat(a,b) _stati64 (a,b)
2089# endif 2559# endif
2090 2560
2091#define DEF_STAT_INTERVAL 5.0074891 2561#define DEF_STAT_INTERVAL 5.0074891
2562#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2092#define MIN_STAT_INTERVAL 0.1074891 2563#define MIN_STAT_INTERVAL 0.1074891
2093 2564
2094static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2565static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2095 2566
2096#if EV_USE_INOTIFY 2567#if EV_USE_INOTIFY
2097# define EV_INOTIFY_BUFSIZE 8192 2568# define EV_INOTIFY_BUFSIZE 8192
2101{ 2572{
2102 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2573 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2103 2574
2104 if (w->wd < 0) 2575 if (w->wd < 0)
2105 { 2576 {
2577 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2106 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2578 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2107 2579
2108 /* monitor some parent directory for speedup hints */ 2580 /* monitor some parent directory for speedup hints */
2581 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2582 /* but an efficiency issue only */
2109 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2583 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2110 { 2584 {
2111 char path [4096]; 2585 char path [4096];
2112 strcpy (path, w->path); 2586 strcpy (path, w->path);
2113 2587
2116 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2590 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2117 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2591 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2118 2592
2119 char *pend = strrchr (path, '/'); 2593 char *pend = strrchr (path, '/');
2120 2594
2121 if (!pend) 2595 if (!pend || pend == path)
2122 break; /* whoops, no '/', complain to your admin */ 2596 break;
2123 2597
2124 *pend = 0; 2598 *pend = 0;
2125 w->wd = inotify_add_watch (fs_fd, path, mask); 2599 w->wd = inotify_add_watch (fs_fd, path, mask);
2126 } 2600 }
2127 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2601 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2128 } 2602 }
2129 } 2603 }
2130 else
2131 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2132 2604
2133 if (w->wd >= 0) 2605 if (w->wd >= 0)
2606 {
2134 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2607 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2608
2609 /* now local changes will be tracked by inotify, but remote changes won't */
2610 /* unless the filesystem it known to be local, we therefore still poll */
2611 /* also do poll on <2.6.25, but with normal frequency */
2612 struct statfs sfs;
2613
2614 if (fs_2625 && !statfs (w->path, &sfs))
2615 if (sfs.f_type == 0x1373 /* devfs */
2616 || sfs.f_type == 0xEF53 /* ext2/3 */
2617 || sfs.f_type == 0x3153464a /* jfs */
2618 || sfs.f_type == 0x52654973 /* reiser3 */
2619 || sfs.f_type == 0x01021994 /* tempfs */
2620 || sfs.f_type == 0x58465342 /* xfs */)
2621 return;
2622
2623 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2624 ev_timer_again (EV_A_ &w->timer);
2625 }
2135} 2626}
2136 2627
2137static void noinline 2628static void noinline
2138infy_del (EV_P_ ev_stat *w) 2629infy_del (EV_P_ ev_stat *w)
2139{ 2630{
2153 2644
2154static void noinline 2645static void noinline
2155infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2646infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2156{ 2647{
2157 if (slot < 0) 2648 if (slot < 0)
2158 /* overflow, need to check for all hahs slots */ 2649 /* overflow, need to check for all hash slots */
2159 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2650 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2160 infy_wd (EV_A_ slot, wd, ev); 2651 infy_wd (EV_A_ slot, wd, ev);
2161 else 2652 else
2162 { 2653 {
2163 WL w_; 2654 WL w_;
2169 2660
2170 if (w->wd == wd || wd == -1) 2661 if (w->wd == wd || wd == -1)
2171 { 2662 {
2172 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2663 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2173 { 2664 {
2665 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2174 w->wd = -1; 2666 w->wd = -1;
2175 infy_add (EV_A_ w); /* re-add, no matter what */ 2667 infy_add (EV_A_ w); /* re-add, no matter what */
2176 } 2668 }
2177 2669
2178 stat_timer_cb (EV_A_ &w->timer, 0); 2670 stat_timer_cb (EV_A_ &w->timer, 0);
2191 2683
2192 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2684 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2193 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2685 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2194} 2686}
2195 2687
2196void inline_size 2688inline_size void
2689check_2625 (EV_P)
2690{
2691 /* kernels < 2.6.25 are borked
2692 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2693 */
2694 struct utsname buf;
2695 int major, minor, micro;
2696
2697 if (uname (&buf))
2698 return;
2699
2700 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2701 return;
2702
2703 if (major < 2
2704 || (major == 2 && minor < 6)
2705 || (major == 2 && minor == 6 && micro < 25))
2706 return;
2707
2708 fs_2625 = 1;
2709}
2710
2711inline_size void
2197infy_init (EV_P) 2712infy_init (EV_P)
2198{ 2713{
2199 if (fs_fd != -2) 2714 if (fs_fd != -2)
2200 return; 2715 return;
2716
2717 fs_fd = -1;
2718
2719 check_2625 (EV_A);
2201 2720
2202 fs_fd = inotify_init (); 2721 fs_fd = inotify_init ();
2203 2722
2204 if (fs_fd >= 0) 2723 if (fs_fd >= 0)
2205 { 2724 {
2207 ev_set_priority (&fs_w, EV_MAXPRI); 2726 ev_set_priority (&fs_w, EV_MAXPRI);
2208 ev_io_start (EV_A_ &fs_w); 2727 ev_io_start (EV_A_ &fs_w);
2209 } 2728 }
2210} 2729}
2211 2730
2212void inline_size 2731inline_size void
2213infy_fork (EV_P) 2732infy_fork (EV_P)
2214{ 2733{
2215 int slot; 2734 int slot;
2216 2735
2217 if (fs_fd < 0) 2736 if (fs_fd < 0)
2233 w->wd = -1; 2752 w->wd = -1;
2234 2753
2235 if (fs_fd >= 0) 2754 if (fs_fd >= 0)
2236 infy_add (EV_A_ w); /* re-add, no matter what */ 2755 infy_add (EV_A_ w); /* re-add, no matter what */
2237 else 2756 else
2238 ev_timer_start (EV_A_ &w->timer); 2757 ev_timer_again (EV_A_ &w->timer);
2239 } 2758 }
2240
2241 } 2759 }
2242} 2760}
2243 2761
2762#endif
2763
2764#ifdef _WIN32
2765# define EV_LSTAT(p,b) _stati64 (p, b)
2766#else
2767# define EV_LSTAT(p,b) lstat (p, b)
2244#endif 2768#endif
2245 2769
2246void 2770void
2247ev_stat_stat (EV_P_ ev_stat *w) 2771ev_stat_stat (EV_P_ ev_stat *w)
2248{ 2772{
2275 || w->prev.st_atime != w->attr.st_atime 2799 || w->prev.st_atime != w->attr.st_atime
2276 || w->prev.st_mtime != w->attr.st_mtime 2800 || w->prev.st_mtime != w->attr.st_mtime
2277 || w->prev.st_ctime != w->attr.st_ctime 2801 || w->prev.st_ctime != w->attr.st_ctime
2278 ) { 2802 ) {
2279 #if EV_USE_INOTIFY 2803 #if EV_USE_INOTIFY
2804 if (fs_fd >= 0)
2805 {
2280 infy_del (EV_A_ w); 2806 infy_del (EV_A_ w);
2281 infy_add (EV_A_ w); 2807 infy_add (EV_A_ w);
2282 ev_stat_stat (EV_A_ w); /* avoid race... */ 2808 ev_stat_stat (EV_A_ w); /* avoid race... */
2809 }
2283 #endif 2810 #endif
2284 2811
2285 ev_feed_event (EV_A_ w, EV_STAT); 2812 ev_feed_event (EV_A_ w, EV_STAT);
2286 } 2813 }
2287} 2814}
2290ev_stat_start (EV_P_ ev_stat *w) 2817ev_stat_start (EV_P_ ev_stat *w)
2291{ 2818{
2292 if (expect_false (ev_is_active (w))) 2819 if (expect_false (ev_is_active (w)))
2293 return; 2820 return;
2294 2821
2295 /* since we use memcmp, we need to clear any padding data etc. */
2296 memset (&w->prev, 0, sizeof (ev_statdata));
2297 memset (&w->attr, 0, sizeof (ev_statdata));
2298
2299 ev_stat_stat (EV_A_ w); 2822 ev_stat_stat (EV_A_ w);
2300 2823
2824 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2301 if (w->interval < MIN_STAT_INTERVAL) 2825 w->interval = MIN_STAT_INTERVAL;
2302 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2303 2826
2304 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2827 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2305 ev_set_priority (&w->timer, ev_priority (w)); 2828 ev_set_priority (&w->timer, ev_priority (w));
2306 2829
2307#if EV_USE_INOTIFY 2830#if EV_USE_INOTIFY
2308 infy_init (EV_A); 2831 infy_init (EV_A);
2309 2832
2310 if (fs_fd >= 0) 2833 if (fs_fd >= 0)
2311 infy_add (EV_A_ w); 2834 infy_add (EV_A_ w);
2312 else 2835 else
2313#endif 2836#endif
2314 ev_timer_start (EV_A_ &w->timer); 2837 ev_timer_again (EV_A_ &w->timer);
2315 2838
2316 ev_start (EV_A_ (W)w, 1); 2839 ev_start (EV_A_ (W)w, 1);
2840
2841 EV_FREQUENT_CHECK;
2317} 2842}
2318 2843
2319void 2844void
2320ev_stat_stop (EV_P_ ev_stat *w) 2845ev_stat_stop (EV_P_ ev_stat *w)
2321{ 2846{
2322 clear_pending (EV_A_ (W)w); 2847 clear_pending (EV_A_ (W)w);
2323 if (expect_false (!ev_is_active (w))) 2848 if (expect_false (!ev_is_active (w)))
2324 return; 2849 return;
2325 2850
2851 EV_FREQUENT_CHECK;
2852
2326#if EV_USE_INOTIFY 2853#if EV_USE_INOTIFY
2327 infy_del (EV_A_ w); 2854 infy_del (EV_A_ w);
2328#endif 2855#endif
2329 ev_timer_stop (EV_A_ &w->timer); 2856 ev_timer_stop (EV_A_ &w->timer);
2330 2857
2331 ev_stop (EV_A_ (W)w); 2858 ev_stop (EV_A_ (W)w);
2859
2860 EV_FREQUENT_CHECK;
2332} 2861}
2333#endif 2862#endif
2334 2863
2335#if EV_IDLE_ENABLE 2864#if EV_IDLE_ENABLE
2336void 2865void
2338{ 2867{
2339 if (expect_false (ev_is_active (w))) 2868 if (expect_false (ev_is_active (w)))
2340 return; 2869 return;
2341 2870
2342 pri_adjust (EV_A_ (W)w); 2871 pri_adjust (EV_A_ (W)w);
2872
2873 EV_FREQUENT_CHECK;
2343 2874
2344 { 2875 {
2345 int active = ++idlecnt [ABSPRI (w)]; 2876 int active = ++idlecnt [ABSPRI (w)];
2346 2877
2347 ++idleall; 2878 ++idleall;
2348 ev_start (EV_A_ (W)w, active); 2879 ev_start (EV_A_ (W)w, active);
2349 2880
2350 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2881 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2351 idles [ABSPRI (w)][active - 1] = w; 2882 idles [ABSPRI (w)][active - 1] = w;
2352 } 2883 }
2884
2885 EV_FREQUENT_CHECK;
2353} 2886}
2354 2887
2355void 2888void
2356ev_idle_stop (EV_P_ ev_idle *w) 2889ev_idle_stop (EV_P_ ev_idle *w)
2357{ 2890{
2358 clear_pending (EV_A_ (W)w); 2891 clear_pending (EV_A_ (W)w);
2359 if (expect_false (!ev_is_active (w))) 2892 if (expect_false (!ev_is_active (w)))
2360 return; 2893 return;
2361 2894
2895 EV_FREQUENT_CHECK;
2896
2362 { 2897 {
2363 int active = ((W)w)->active; 2898 int active = ev_active (w);
2364 2899
2365 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2900 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2366 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2901 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2367 2902
2368 ev_stop (EV_A_ (W)w); 2903 ev_stop (EV_A_ (W)w);
2369 --idleall; 2904 --idleall;
2370 } 2905 }
2906
2907 EV_FREQUENT_CHECK;
2371} 2908}
2372#endif 2909#endif
2373 2910
2374void 2911void
2375ev_prepare_start (EV_P_ ev_prepare *w) 2912ev_prepare_start (EV_P_ ev_prepare *w)
2376{ 2913{
2377 if (expect_false (ev_is_active (w))) 2914 if (expect_false (ev_is_active (w)))
2378 return; 2915 return;
2916
2917 EV_FREQUENT_CHECK;
2379 2918
2380 ev_start (EV_A_ (W)w, ++preparecnt); 2919 ev_start (EV_A_ (W)w, ++preparecnt);
2381 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2920 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2382 prepares [preparecnt - 1] = w; 2921 prepares [preparecnt - 1] = w;
2922
2923 EV_FREQUENT_CHECK;
2383} 2924}
2384 2925
2385void 2926void
2386ev_prepare_stop (EV_P_ ev_prepare *w) 2927ev_prepare_stop (EV_P_ ev_prepare *w)
2387{ 2928{
2388 clear_pending (EV_A_ (W)w); 2929 clear_pending (EV_A_ (W)w);
2389 if (expect_false (!ev_is_active (w))) 2930 if (expect_false (!ev_is_active (w)))
2390 return; 2931 return;
2391 2932
2933 EV_FREQUENT_CHECK;
2934
2392 { 2935 {
2393 int active = ((W)w)->active; 2936 int active = ev_active (w);
2937
2394 prepares [active - 1] = prepares [--preparecnt]; 2938 prepares [active - 1] = prepares [--preparecnt];
2395 ((W)prepares [active - 1])->active = active; 2939 ev_active (prepares [active - 1]) = active;
2396 } 2940 }
2397 2941
2398 ev_stop (EV_A_ (W)w); 2942 ev_stop (EV_A_ (W)w);
2943
2944 EV_FREQUENT_CHECK;
2399} 2945}
2400 2946
2401void 2947void
2402ev_check_start (EV_P_ ev_check *w) 2948ev_check_start (EV_P_ ev_check *w)
2403{ 2949{
2404 if (expect_false (ev_is_active (w))) 2950 if (expect_false (ev_is_active (w)))
2405 return; 2951 return;
2952
2953 EV_FREQUENT_CHECK;
2406 2954
2407 ev_start (EV_A_ (W)w, ++checkcnt); 2955 ev_start (EV_A_ (W)w, ++checkcnt);
2408 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2956 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2409 checks [checkcnt - 1] = w; 2957 checks [checkcnt - 1] = w;
2958
2959 EV_FREQUENT_CHECK;
2410} 2960}
2411 2961
2412void 2962void
2413ev_check_stop (EV_P_ ev_check *w) 2963ev_check_stop (EV_P_ ev_check *w)
2414{ 2964{
2415 clear_pending (EV_A_ (W)w); 2965 clear_pending (EV_A_ (W)w);
2416 if (expect_false (!ev_is_active (w))) 2966 if (expect_false (!ev_is_active (w)))
2417 return; 2967 return;
2418 2968
2969 EV_FREQUENT_CHECK;
2970
2419 { 2971 {
2420 int active = ((W)w)->active; 2972 int active = ev_active (w);
2973
2421 checks [active - 1] = checks [--checkcnt]; 2974 checks [active - 1] = checks [--checkcnt];
2422 ((W)checks [active - 1])->active = active; 2975 ev_active (checks [active - 1]) = active;
2423 } 2976 }
2424 2977
2425 ev_stop (EV_A_ (W)w); 2978 ev_stop (EV_A_ (W)w);
2979
2980 EV_FREQUENT_CHECK;
2426} 2981}
2427 2982
2428#if EV_EMBED_ENABLE 2983#if EV_EMBED_ENABLE
2429void noinline 2984void noinline
2430ev_embed_sweep (EV_P_ ev_embed *w) 2985ev_embed_sweep (EV_P_ ev_embed *w)
2457 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3012 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2458 } 3013 }
2459 } 3014 }
2460} 3015}
2461 3016
3017static void
3018embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3019{
3020 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3021
3022 ev_embed_stop (EV_A_ w);
3023
3024 {
3025 struct ev_loop *loop = w->other;
3026
3027 ev_loop_fork (EV_A);
3028 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3029 }
3030
3031 ev_embed_start (EV_A_ w);
3032}
3033
2462#if 0 3034#if 0
2463static void 3035static void
2464embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3036embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2465{ 3037{
2466 ev_idle_stop (EV_A_ idle); 3038 ev_idle_stop (EV_A_ idle);
2473 if (expect_false (ev_is_active (w))) 3045 if (expect_false (ev_is_active (w)))
2474 return; 3046 return;
2475 3047
2476 { 3048 {
2477 struct ev_loop *loop = w->other; 3049 struct ev_loop *loop = w->other;
2478 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3050 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2479 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3051 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2480 } 3052 }
3053
3054 EV_FREQUENT_CHECK;
2481 3055
2482 ev_set_priority (&w->io, ev_priority (w)); 3056 ev_set_priority (&w->io, ev_priority (w));
2483 ev_io_start (EV_A_ &w->io); 3057 ev_io_start (EV_A_ &w->io);
2484 3058
2485 ev_prepare_init (&w->prepare, embed_prepare_cb); 3059 ev_prepare_init (&w->prepare, embed_prepare_cb);
2486 ev_set_priority (&w->prepare, EV_MINPRI); 3060 ev_set_priority (&w->prepare, EV_MINPRI);
2487 ev_prepare_start (EV_A_ &w->prepare); 3061 ev_prepare_start (EV_A_ &w->prepare);
2488 3062
3063 ev_fork_init (&w->fork, embed_fork_cb);
3064 ev_fork_start (EV_A_ &w->fork);
3065
2489 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3066 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2490 3067
2491 ev_start (EV_A_ (W)w, 1); 3068 ev_start (EV_A_ (W)w, 1);
3069
3070 EV_FREQUENT_CHECK;
2492} 3071}
2493 3072
2494void 3073void
2495ev_embed_stop (EV_P_ ev_embed *w) 3074ev_embed_stop (EV_P_ ev_embed *w)
2496{ 3075{
2497 clear_pending (EV_A_ (W)w); 3076 clear_pending (EV_A_ (W)w);
2498 if (expect_false (!ev_is_active (w))) 3077 if (expect_false (!ev_is_active (w)))
2499 return; 3078 return;
2500 3079
3080 EV_FREQUENT_CHECK;
3081
2501 ev_io_stop (EV_A_ &w->io); 3082 ev_io_stop (EV_A_ &w->io);
2502 ev_prepare_stop (EV_A_ &w->prepare); 3083 ev_prepare_stop (EV_A_ &w->prepare);
3084 ev_fork_stop (EV_A_ &w->fork);
2503 3085
2504 ev_stop (EV_A_ (W)w); 3086 EV_FREQUENT_CHECK;
2505} 3087}
2506#endif 3088#endif
2507 3089
2508#if EV_FORK_ENABLE 3090#if EV_FORK_ENABLE
2509void 3091void
2510ev_fork_start (EV_P_ ev_fork *w) 3092ev_fork_start (EV_P_ ev_fork *w)
2511{ 3093{
2512 if (expect_false (ev_is_active (w))) 3094 if (expect_false (ev_is_active (w)))
2513 return; 3095 return;
3096
3097 EV_FREQUENT_CHECK;
2514 3098
2515 ev_start (EV_A_ (W)w, ++forkcnt); 3099 ev_start (EV_A_ (W)w, ++forkcnt);
2516 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3100 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2517 forks [forkcnt - 1] = w; 3101 forks [forkcnt - 1] = w;
3102
3103 EV_FREQUENT_CHECK;
2518} 3104}
2519 3105
2520void 3106void
2521ev_fork_stop (EV_P_ ev_fork *w) 3107ev_fork_stop (EV_P_ ev_fork *w)
2522{ 3108{
2523 clear_pending (EV_A_ (W)w); 3109 clear_pending (EV_A_ (W)w);
2524 if (expect_false (!ev_is_active (w))) 3110 if (expect_false (!ev_is_active (w)))
2525 return; 3111 return;
2526 3112
3113 EV_FREQUENT_CHECK;
3114
2527 { 3115 {
2528 int active = ((W)w)->active; 3116 int active = ev_active (w);
3117
2529 forks [active - 1] = forks [--forkcnt]; 3118 forks [active - 1] = forks [--forkcnt];
2530 ((W)forks [active - 1])->active = active; 3119 ev_active (forks [active - 1]) = active;
2531 } 3120 }
2532 3121
2533 ev_stop (EV_A_ (W)w); 3122 ev_stop (EV_A_ (W)w);
3123
3124 EV_FREQUENT_CHECK;
2534} 3125}
2535#endif 3126#endif
2536 3127
2537#if EV_ASYNC_ENABLE 3128#if EV_ASYNC_ENABLE
2538void 3129void
2540{ 3131{
2541 if (expect_false (ev_is_active (w))) 3132 if (expect_false (ev_is_active (w)))
2542 return; 3133 return;
2543 3134
2544 evpipe_init (EV_A); 3135 evpipe_init (EV_A);
3136
3137 EV_FREQUENT_CHECK;
2545 3138
2546 ev_start (EV_A_ (W)w, ++asynccnt); 3139 ev_start (EV_A_ (W)w, ++asynccnt);
2547 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3140 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2548 asyncs [asynccnt - 1] = w; 3141 asyncs [asynccnt - 1] = w;
3142
3143 EV_FREQUENT_CHECK;
2549} 3144}
2550 3145
2551void 3146void
2552ev_async_stop (EV_P_ ev_async *w) 3147ev_async_stop (EV_P_ ev_async *w)
2553{ 3148{
2554 clear_pending (EV_A_ (W)w); 3149 clear_pending (EV_A_ (W)w);
2555 if (expect_false (!ev_is_active (w))) 3150 if (expect_false (!ev_is_active (w)))
2556 return; 3151 return;
2557 3152
3153 EV_FREQUENT_CHECK;
3154
2558 { 3155 {
2559 int active = ((W)w)->active; 3156 int active = ev_active (w);
3157
2560 asyncs [active - 1] = asyncs [--asynccnt]; 3158 asyncs [active - 1] = asyncs [--asynccnt];
2561 ((W)asyncs [active - 1])->active = active; 3159 ev_active (asyncs [active - 1]) = active;
2562 } 3160 }
2563 3161
2564 ev_stop (EV_A_ (W)w); 3162 ev_stop (EV_A_ (W)w);
3163
3164 EV_FREQUENT_CHECK;
2565} 3165}
2566 3166
2567void 3167void
2568ev_async_send (EV_P_ ev_async *w) 3168ev_async_send (EV_P_ ev_async *w)
2569{ 3169{
2586once_cb (EV_P_ struct ev_once *once, int revents) 3186once_cb (EV_P_ struct ev_once *once, int revents)
2587{ 3187{
2588 void (*cb)(int revents, void *arg) = once->cb; 3188 void (*cb)(int revents, void *arg) = once->cb;
2589 void *arg = once->arg; 3189 void *arg = once->arg;
2590 3190
2591 ev_io_stop (EV_A_ &once->io); 3191 ev_io_stop (EV_A_ &once->io);
2592 ev_timer_stop (EV_A_ &once->to); 3192 ev_timer_stop (EV_A_ &once->to);
2593 ev_free (once); 3193 ev_free (once);
2594 3194
2595 cb (revents, arg); 3195 cb (revents, arg);
2596} 3196}
2597 3197
2598static void 3198static void
2599once_cb_io (EV_P_ ev_io *w, int revents) 3199once_cb_io (EV_P_ ev_io *w, int revents)
2600{ 3200{
2601 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3201 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3202
3203 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2602} 3204}
2603 3205
2604static void 3206static void
2605once_cb_to (EV_P_ ev_timer *w, int revents) 3207once_cb_to (EV_P_ ev_timer *w, int revents)
2606{ 3208{
2607 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3209 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3210
3211 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2608} 3212}
2609 3213
2610void 3214void
2611ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3215ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2612{ 3216{
2634 ev_timer_set (&once->to, timeout, 0.); 3238 ev_timer_set (&once->to, timeout, 0.);
2635 ev_timer_start (EV_A_ &once->to); 3239 ev_timer_start (EV_A_ &once->to);
2636 } 3240 }
2637} 3241}
2638 3242
3243/*****************************************************************************/
3244
3245#if EV_WALK_ENABLE
3246void
3247ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3248{
3249 int i, j;
3250 ev_watcher_list *wl, *wn;
3251
3252 if (types & (EV_IO | EV_EMBED))
3253 for (i = 0; i < anfdmax; ++i)
3254 for (wl = anfds [i].head; wl; )
3255 {
3256 wn = wl->next;
3257
3258#if EV_EMBED_ENABLE
3259 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3260 {
3261 if (types & EV_EMBED)
3262 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3263 }
3264 else
3265#endif
3266#if EV_USE_INOTIFY
3267 if (ev_cb ((ev_io *)wl) == infy_cb)
3268 ;
3269 else
3270#endif
3271 if ((ev_io *)wl != &pipe_w)
3272 if (types & EV_IO)
3273 cb (EV_A_ EV_IO, wl);
3274
3275 wl = wn;
3276 }
3277
3278 if (types & (EV_TIMER | EV_STAT))
3279 for (i = timercnt + HEAP0; i-- > HEAP0; )
3280#if EV_STAT_ENABLE
3281 /*TODO: timer is not always active*/
3282 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3283 {
3284 if (types & EV_STAT)
3285 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3286 }
3287 else
3288#endif
3289 if (types & EV_TIMER)
3290 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3291
3292#if EV_PERIODIC_ENABLE
3293 if (types & EV_PERIODIC)
3294 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3295 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3296#endif
3297
3298#if EV_IDLE_ENABLE
3299 if (types & EV_IDLE)
3300 for (j = NUMPRI; i--; )
3301 for (i = idlecnt [j]; i--; )
3302 cb (EV_A_ EV_IDLE, idles [j][i]);
3303#endif
3304
3305#if EV_FORK_ENABLE
3306 if (types & EV_FORK)
3307 for (i = forkcnt; i--; )
3308 if (ev_cb (forks [i]) != embed_fork_cb)
3309 cb (EV_A_ EV_FORK, forks [i]);
3310#endif
3311
3312#if EV_ASYNC_ENABLE
3313 if (types & EV_ASYNC)
3314 for (i = asynccnt; i--; )
3315 cb (EV_A_ EV_ASYNC, asyncs [i]);
3316#endif
3317
3318 if (types & EV_PREPARE)
3319 for (i = preparecnt; i--; )
3320#if EV_EMBED_ENABLE
3321 if (ev_cb (prepares [i]) != embed_prepare_cb)
3322#endif
3323 cb (EV_A_ EV_PREPARE, prepares [i]);
3324
3325 if (types & EV_CHECK)
3326 for (i = checkcnt; i--; )
3327 cb (EV_A_ EV_CHECK, checks [i]);
3328
3329 if (types & EV_SIGNAL)
3330 for (i = 0; i < signalmax; ++i)
3331 for (wl = signals [i].head; wl; )
3332 {
3333 wn = wl->next;
3334 cb (EV_A_ EV_SIGNAL, wl);
3335 wl = wn;
3336 }
3337
3338 if (types & EV_CHILD)
3339 for (i = EV_PID_HASHSIZE; i--; )
3340 for (wl = childs [i]; wl; )
3341 {
3342 wn = wl->next;
3343 cb (EV_A_ EV_CHILD, wl);
3344 wl = wn;
3345 }
3346/* EV_STAT 0x00001000 /* stat data changed */
3347/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3348}
3349#endif
3350
2639#if EV_MULTIPLICITY 3351#if EV_MULTIPLICITY
2640 #include "ev_wrap.h" 3352 #include "ev_wrap.h"
2641#endif 3353#endif
2642 3354
2643#ifdef __cplusplus 3355#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines