ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.228 by root, Fri May 2 08:07:37 2008 UTC vs.
Revision 1.288 by root, Sat Apr 25 14:12:48 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
63
52# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
55# endif 67# endif
56# ifndef EV_USE_REALTIME 68# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 0
58# endif 70# endif
59# else 71# else
60# ifndef EV_USE_MONOTONIC 72# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 73# define EV_USE_MONOTONIC 0
62# endif 74# endif
126# define EV_USE_EVENTFD 1 138# define EV_USE_EVENTFD 1
127# else 139# else
128# define EV_USE_EVENTFD 0 140# define EV_USE_EVENTFD 0
129# endif 141# endif
130# endif 142# endif
131 143
132#endif 144#endif
133 145
134#include <math.h> 146#include <math.h>
135#include <stdlib.h> 147#include <stdlib.h>
136#include <fcntl.h> 148#include <fcntl.h>
154#ifndef _WIN32 166#ifndef _WIN32
155# include <sys/time.h> 167# include <sys/time.h>
156# include <sys/wait.h> 168# include <sys/wait.h>
157# include <unistd.h> 169# include <unistd.h>
158#else 170#else
171# include <io.h>
159# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 173# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
163# endif 176# endif
164#endif 177#endif
165 178
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
167 180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
188
168#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
169# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif
170#endif 195#endif
171 196
172#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 199#endif
175 200
176#ifndef EV_USE_NANOSLEEP 201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
177# define EV_USE_NANOSLEEP 0 205# define EV_USE_NANOSLEEP 0
206# endif
178#endif 207#endif
179 208
180#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
182#endif 211#endif
235# else 264# else
236# define EV_USE_EVENTFD 0 265# define EV_USE_EVENTFD 0
237# endif 266# endif
238#endif 267#endif
239 268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 288
242#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
259# include <sys/select.h> 306# include <sys/select.h>
260# endif 307# endif
261#endif 308#endif
262 309
263#if EV_USE_INOTIFY 310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
264# include <sys/inotify.h> 313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
265#endif 319#endif
266 320
267#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 322# include <winsock.h>
323#endif
324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
269#endif 332#endif
270 333
271#if EV_USE_EVENTFD 334#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 336# include <stdint.h>
279} 342}
280# endif 343# endif
281#endif 344#endif
282 345
283/**/ 346/**/
347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
284 353
285/* 354/*
286 * This is used to avoid floating point rounding problems. 355 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 356 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 357 * to ensure progress, time-wise, even when rounding
325 394
326typedef ev_watcher *W; 395typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
329 398
399#define ev_active(w) ((W)(w))->active
330#define ev_at(w) ((WT)(w))->at 400#define ev_at(w) ((WT)(w))->at
331 401
332#if EV_USE_MONOTONIC 402#if EV_USE_REALTIME
333/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
334/* giving it a reasonably high chance of working on typical architetcures */ 404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
335static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
336#endif 410#endif
337 411
338#ifdef _WIN32 412#ifdef _WIN32
339# include "ev_win32.c" 413# include "ev_win32.c"
348{ 422{
349 syserr_cb = cb; 423 syserr_cb = cb;
350} 424}
351 425
352static void noinline 426static void noinline
353syserr (const char *msg) 427ev_syserr (const char *msg)
354{ 428{
355 if (!msg) 429 if (!msg)
356 msg = "(libev) system error"; 430 msg = "(libev) system error";
357 431
358 if (syserr_cb) 432 if (syserr_cb)
404#define ev_malloc(size) ev_realloc (0, (size)) 478#define ev_malloc(size) ev_realloc (0, (size))
405#define ev_free(ptr) ev_realloc ((ptr), 0) 479#define ev_free(ptr) ev_realloc ((ptr), 0)
406 480
407/*****************************************************************************/ 481/*****************************************************************************/
408 482
483/* file descriptor info structure */
409typedef struct 484typedef struct
410{ 485{
411 WL head; 486 WL head;
412 unsigned char events; 487 unsigned char events; /* the events watched for */
488 unsigned char reify; /* flag set when this ANFD needs reification */
489 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
413 unsigned char reify; 490 unsigned char unused;
491#if EV_USE_EPOLL
492 unsigned int egen; /* generation counter to counter epoll bugs */
493#endif
414#if EV_SELECT_IS_WINSOCKET 494#if EV_SELECT_IS_WINSOCKET
415 SOCKET handle; 495 SOCKET handle;
416#endif 496#endif
417} ANFD; 497} ANFD;
418 498
499/* stores the pending event set for a given watcher */
419typedef struct 500typedef struct
420{ 501{
421 W w; 502 W w;
422 int events; 503 int events; /* the pending event set for the given watcher */
423} ANPENDING; 504} ANPENDING;
424 505
425#if EV_USE_INOTIFY 506#if EV_USE_INOTIFY
507/* hash table entry per inotify-id */
426typedef struct 508typedef struct
427{ 509{
428 WL head; 510 WL head;
429} ANFS; 511} ANFS;
512#endif
513
514/* Heap Entry */
515#if EV_HEAP_CACHE_AT
516 /* a heap element */
517 typedef struct {
518 ev_tstamp at;
519 WT w;
520 } ANHE;
521
522 #define ANHE_w(he) (he).w /* access watcher, read-write */
523 #define ANHE_at(he) (he).at /* access cached at, read-only */
524 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
525#else
526 /* a heap element */
527 typedef WT ANHE;
528
529 #define ANHE_w(he) (he)
530 #define ANHE_at(he) (he)->at
531 #define ANHE_at_cache(he)
430#endif 532#endif
431 533
432#if EV_MULTIPLICITY 534#if EV_MULTIPLICITY
433 535
434 struct ev_loop 536 struct ev_loop
459 561
460ev_tstamp 562ev_tstamp
461ev_time (void) 563ev_time (void)
462{ 564{
463#if EV_USE_REALTIME 565#if EV_USE_REALTIME
566 if (expect_true (have_realtime))
567 {
464 struct timespec ts; 568 struct timespec ts;
465 clock_gettime (CLOCK_REALTIME, &ts); 569 clock_gettime (CLOCK_REALTIME, &ts);
466 return ts.tv_sec + ts.tv_nsec * 1e-9; 570 return ts.tv_sec + ts.tv_nsec * 1e-9;
467#else 571 }
572#endif
573
468 struct timeval tv; 574 struct timeval tv;
469 gettimeofday (&tv, 0); 575 gettimeofday (&tv, 0);
470 return tv.tv_sec + tv.tv_usec * 1e-6; 576 return tv.tv_sec + tv.tv_usec * 1e-6;
471#endif
472} 577}
473 578
474ev_tstamp inline_size 579inline_size ev_tstamp
475get_clock (void) 580get_clock (void)
476{ 581{
477#if EV_USE_MONOTONIC 582#if EV_USE_MONOTONIC
478 if (expect_true (have_monotonic)) 583 if (expect_true (have_monotonic))
479 { 584 {
512 struct timeval tv; 617 struct timeval tv;
513 618
514 tv.tv_sec = (time_t)delay; 619 tv.tv_sec = (time_t)delay;
515 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 620 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
516 621
622 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
623 /* somehting nto guaranteed by newer posix versions, but guaranteed */
624 /* by older ones */
517 select (0, 0, 0, 0, &tv); 625 select (0, 0, 0, 0, &tv);
518#endif 626#endif
519 } 627 }
520} 628}
521 629
522/*****************************************************************************/ 630/*****************************************************************************/
523 631
524int inline_size 632#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
633
634/* find a suitable new size for the given array, */
635/* hopefully by rounding to a ncie-to-malloc size */
636inline_size int
525array_nextsize (int elem, int cur, int cnt) 637array_nextsize (int elem, int cur, int cnt)
526{ 638{
527 int ncur = cur + 1; 639 int ncur = cur + 1;
528 640
529 do 641 do
530 ncur <<= 1; 642 ncur <<= 1;
531 while (cnt > ncur); 643 while (cnt > ncur);
532 644
533 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 645 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
534 if (elem * ncur > 4096) 646 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
535 { 647 {
536 ncur *= elem; 648 ncur *= elem;
537 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 649 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
538 ncur = ncur - sizeof (void *) * 4; 650 ncur = ncur - sizeof (void *) * 4;
539 ncur /= elem; 651 ncur /= elem;
540 } 652 }
541 653
542 return ncur; 654 return ncur;
546array_realloc (int elem, void *base, int *cur, int cnt) 658array_realloc (int elem, void *base, int *cur, int cnt)
547{ 659{
548 *cur = array_nextsize (elem, *cur, cnt); 660 *cur = array_nextsize (elem, *cur, cnt);
549 return ev_realloc (base, elem * *cur); 661 return ev_realloc (base, elem * *cur);
550} 662}
663
664#define array_init_zero(base,count) \
665 memset ((void *)(base), 0, sizeof (*(base)) * (count))
551 666
552#define array_needsize(type,base,cur,cnt,init) \ 667#define array_needsize(type,base,cur,cnt,init) \
553 if (expect_false ((cnt) > (cur))) \ 668 if (expect_false ((cnt) > (cur))) \
554 { \ 669 { \
555 int ocur_ = (cur); \ 670 int ocur_ = (cur); \
567 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 682 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
568 } 683 }
569#endif 684#endif
570 685
571#define array_free(stem, idx) \ 686#define array_free(stem, idx) \
572 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 687 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
573 688
574/*****************************************************************************/ 689/*****************************************************************************/
690
691/* dummy callback for pending events */
692static void noinline
693pendingcb (EV_P_ ev_prepare *w, int revents)
694{
695}
575 696
576void noinline 697void noinline
577ev_feed_event (EV_P_ void *w, int revents) 698ev_feed_event (EV_P_ void *w, int revents)
578{ 699{
579 W w_ = (W)w; 700 W w_ = (W)w;
588 pendings [pri][w_->pending - 1].w = w_; 709 pendings [pri][w_->pending - 1].w = w_;
589 pendings [pri][w_->pending - 1].events = revents; 710 pendings [pri][w_->pending - 1].events = revents;
590 } 711 }
591} 712}
592 713
593void inline_speed 714inline_speed void
715feed_reverse (EV_P_ W w)
716{
717 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
718 rfeeds [rfeedcnt++] = w;
719}
720
721inline_size void
722feed_reverse_done (EV_P_ int revents)
723{
724 do
725 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
726 while (rfeedcnt);
727}
728
729inline_speed void
594queue_events (EV_P_ W *events, int eventcnt, int type) 730queue_events (EV_P_ W *events, int eventcnt, int type)
595{ 731{
596 int i; 732 int i;
597 733
598 for (i = 0; i < eventcnt; ++i) 734 for (i = 0; i < eventcnt; ++i)
599 ev_feed_event (EV_A_ events [i], type); 735 ev_feed_event (EV_A_ events [i], type);
600} 736}
601 737
602/*****************************************************************************/ 738/*****************************************************************************/
603 739
604void inline_size 740inline_speed void
605anfds_init (ANFD *base, int count)
606{
607 while (count--)
608 {
609 base->head = 0;
610 base->events = EV_NONE;
611 base->reify = 0;
612
613 ++base;
614 }
615}
616
617void inline_speed
618fd_event (EV_P_ int fd, int revents) 741fd_event (EV_P_ int fd, int revents)
619{ 742{
620 ANFD *anfd = anfds + fd; 743 ANFD *anfd = anfds + fd;
621 ev_io *w; 744 ev_io *w;
622 745
634{ 757{
635 if (fd >= 0 && fd < anfdmax) 758 if (fd >= 0 && fd < anfdmax)
636 fd_event (EV_A_ fd, revents); 759 fd_event (EV_A_ fd, revents);
637} 760}
638 761
639void inline_size 762/* make sure the external fd watch events are in-sync */
763/* with the kernel/libev internal state */
764inline_size void
640fd_reify (EV_P) 765fd_reify (EV_P)
641{ 766{
642 int i; 767 int i;
643 768
644 for (i = 0; i < fdchangecnt; ++i) 769 for (i = 0; i < fdchangecnt; ++i)
653 events |= (unsigned char)w->events; 778 events |= (unsigned char)w->events;
654 779
655#if EV_SELECT_IS_WINSOCKET 780#if EV_SELECT_IS_WINSOCKET
656 if (events) 781 if (events)
657 { 782 {
658 unsigned long argp; 783 unsigned long arg;
659 #ifdef EV_FD_TO_WIN32_HANDLE 784 #ifdef EV_FD_TO_WIN32_HANDLE
660 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 785 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
661 #else 786 #else
662 anfd->handle = _get_osfhandle (fd); 787 anfd->handle = _get_osfhandle (fd);
663 #endif 788 #endif
664 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 789 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
665 } 790 }
666#endif 791#endif
667 792
668 { 793 {
669 unsigned char o_events = anfd->events; 794 unsigned char o_events = anfd->events;
670 unsigned char o_reify = anfd->reify; 795 unsigned char o_reify = anfd->reify;
671 796
672 anfd->reify = 0; 797 anfd->reify = 0;
673 anfd->events = events; 798 anfd->events = events;
674 799
675 if (o_events != events || o_reify & EV_IOFDSET) 800 if (o_events != events || o_reify & EV__IOFDSET)
676 backend_modify (EV_A_ fd, o_events, events); 801 backend_modify (EV_A_ fd, o_events, events);
677 } 802 }
678 } 803 }
679 804
680 fdchangecnt = 0; 805 fdchangecnt = 0;
681} 806}
682 807
683void inline_size 808/* something about the given fd changed */
809inline_size void
684fd_change (EV_P_ int fd, int flags) 810fd_change (EV_P_ int fd, int flags)
685{ 811{
686 unsigned char reify = anfds [fd].reify; 812 unsigned char reify = anfds [fd].reify;
687 anfds [fd].reify |= flags; 813 anfds [fd].reify |= flags;
688 814
692 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 818 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
693 fdchanges [fdchangecnt - 1] = fd; 819 fdchanges [fdchangecnt - 1] = fd;
694 } 820 }
695} 821}
696 822
697void inline_speed 823/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
824inline_speed void
698fd_kill (EV_P_ int fd) 825fd_kill (EV_P_ int fd)
699{ 826{
700 ev_io *w; 827 ev_io *w;
701 828
702 while ((w = (ev_io *)anfds [fd].head)) 829 while ((w = (ev_io *)anfds [fd].head))
704 ev_io_stop (EV_A_ w); 831 ev_io_stop (EV_A_ w);
705 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 832 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
706 } 833 }
707} 834}
708 835
709int inline_size 836/* check whether the given fd is atcually valid, for error recovery */
837inline_size int
710fd_valid (int fd) 838fd_valid (int fd)
711{ 839{
712#ifdef _WIN32 840#ifdef _WIN32
713 return _get_osfhandle (fd) != -1; 841 return _get_osfhandle (fd) != -1;
714#else 842#else
722{ 850{
723 int fd; 851 int fd;
724 852
725 for (fd = 0; fd < anfdmax; ++fd) 853 for (fd = 0; fd < anfdmax; ++fd)
726 if (anfds [fd].events) 854 if (anfds [fd].events)
727 if (!fd_valid (fd) == -1 && errno == EBADF) 855 if (!fd_valid (fd) && errno == EBADF)
728 fd_kill (EV_A_ fd); 856 fd_kill (EV_A_ fd);
729} 857}
730 858
731/* called on ENOMEM in select/poll to kill some fds and retry */ 859/* called on ENOMEM in select/poll to kill some fds and retry */
732static void noinline 860static void noinline
750 878
751 for (fd = 0; fd < anfdmax; ++fd) 879 for (fd = 0; fd < anfdmax; ++fd)
752 if (anfds [fd].events) 880 if (anfds [fd].events)
753 { 881 {
754 anfds [fd].events = 0; 882 anfds [fd].events = 0;
883 anfds [fd].emask = 0;
755 fd_change (EV_A_ fd, EV_IOFDSET | 1); 884 fd_change (EV_A_ fd, EV__IOFDSET | 1);
756 } 885 }
757} 886}
758 887
759/*****************************************************************************/ 888/*****************************************************************************/
760 889
890/*
891 * the heap functions want a real array index. array index 0 uis guaranteed to not
892 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
893 * the branching factor of the d-tree.
894 */
895
896/*
897 * at the moment we allow libev the luxury of two heaps,
898 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
899 * which is more cache-efficient.
900 * the difference is about 5% with 50000+ watchers.
901 */
902#if EV_USE_4HEAP
903
904#define DHEAP 4
905#define HEAP0 (DHEAP - 1) /* index of first element in heap */
906#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
907#define UPHEAP_DONE(p,k) ((p) == (k))
908
909/* away from the root */
910inline_speed void
911downheap (ANHE *heap, int N, int k)
912{
913 ANHE he = heap [k];
914 ANHE *E = heap + N + HEAP0;
915
916 for (;;)
917 {
918 ev_tstamp minat;
919 ANHE *minpos;
920 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
921
922 /* find minimum child */
923 if (expect_true (pos + DHEAP - 1 < E))
924 {
925 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
926 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
927 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
928 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
929 }
930 else if (pos < E)
931 {
932 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
933 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
934 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
935 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
936 }
937 else
938 break;
939
940 if (ANHE_at (he) <= minat)
941 break;
942
943 heap [k] = *minpos;
944 ev_active (ANHE_w (*minpos)) = k;
945
946 k = minpos - heap;
947 }
948
949 heap [k] = he;
950 ev_active (ANHE_w (he)) = k;
951}
952
953#else /* 4HEAP */
954
955#define HEAP0 1
956#define HPARENT(k) ((k) >> 1)
957#define UPHEAP_DONE(p,k) (!(p))
958
959/* away from the root */
960inline_speed void
961downheap (ANHE *heap, int N, int k)
962{
963 ANHE he = heap [k];
964
965 for (;;)
966 {
967 int c = k << 1;
968
969 if (c > N + HEAP0 - 1)
970 break;
971
972 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
973 ? 1 : 0;
974
975 if (ANHE_at (he) <= ANHE_at (heap [c]))
976 break;
977
978 heap [k] = heap [c];
979 ev_active (ANHE_w (heap [k])) = k;
980
981 k = c;
982 }
983
984 heap [k] = he;
985 ev_active (ANHE_w (he)) = k;
986}
987#endif
988
761/* towards the root */ 989/* towards the root */
762void inline_speed 990inline_speed void
763upheap (WT *heap, int k) 991upheap (ANHE *heap, int k)
764{ 992{
765 WT w = heap [k]; 993 ANHE he = heap [k];
766 994
767 for (;;) 995 for (;;)
768 { 996 {
769 int p = k >> 1; 997 int p = HPARENT (k);
770 998
771 /* maybe we could use a dummy element at heap [0]? */ 999 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
772 if (!p || heap [p]->at <= w->at)
773 break; 1000 break;
774 1001
775 heap [k] = heap [p]; 1002 heap [k] = heap [p];
776 ((W)heap [k])->active = k; 1003 ev_active (ANHE_w (heap [k])) = k;
777 k = p; 1004 k = p;
778 } 1005 }
779 1006
780 heap [k] = w; 1007 heap [k] = he;
781 ((W)heap [k])->active = k; 1008 ev_active (ANHE_w (he)) = k;
782} 1009}
783 1010
784/* away from the root */ 1011/* move an element suitably so it is in a correct place */
785void inline_speed 1012inline_size void
786downheap (WT *heap, int N, int k)
787{
788 WT w = heap [k];
789
790 for (;;)
791 {
792 int c = k << 1;
793
794 if (c > N)
795 break;
796
797 c += c < N && heap [c]->at > heap [c + 1]->at
798 ? 1 : 0;
799
800 if (w->at <= heap [c]->at)
801 break;
802
803 heap [k] = heap [c];
804 ((W)heap [k])->active = k;
805
806 k = c;
807 }
808
809 heap [k] = w;
810 ((W)heap [k])->active = k;
811}
812
813void inline_size
814adjustheap (WT *heap, int N, int k) 1013adjustheap (ANHE *heap, int N, int k)
815{ 1014{
1015 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
816 upheap (heap, k); 1016 upheap (heap, k);
1017 else
817 downheap (heap, N, k); 1018 downheap (heap, N, k);
1019}
1020
1021/* rebuild the heap: this function is used only once and executed rarely */
1022inline_size void
1023reheap (ANHE *heap, int N)
1024{
1025 int i;
1026
1027 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1028 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1029 for (i = 0; i < N; ++i)
1030 upheap (heap, i + HEAP0);
818} 1031}
819 1032
820/*****************************************************************************/ 1033/*****************************************************************************/
821 1034
1035/* associate signal watchers to a signal signal */
822typedef struct 1036typedef struct
823{ 1037{
824 WL head; 1038 WL head;
825 EV_ATOMIC_T gotsig; 1039 EV_ATOMIC_T gotsig;
826} ANSIG; 1040} ANSIG;
828static ANSIG *signals; 1042static ANSIG *signals;
829static int signalmax; 1043static int signalmax;
830 1044
831static EV_ATOMIC_T gotsig; 1045static EV_ATOMIC_T gotsig;
832 1046
833void inline_size
834signals_init (ANSIG *base, int count)
835{
836 while (count--)
837 {
838 base->head = 0;
839 base->gotsig = 0;
840
841 ++base;
842 }
843}
844
845/*****************************************************************************/ 1047/*****************************************************************************/
846 1048
847void inline_speed 1049/* used to prepare libev internal fd's */
1050/* this is not fork-safe */
1051inline_speed void
848fd_intern (int fd) 1052fd_intern (int fd)
849{ 1053{
850#ifdef _WIN32 1054#ifdef _WIN32
851 int arg = 1; 1055 unsigned long arg = 1;
852 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1056 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
853#else 1057#else
854 fcntl (fd, F_SETFD, FD_CLOEXEC); 1058 fcntl (fd, F_SETFD, FD_CLOEXEC);
855 fcntl (fd, F_SETFL, O_NONBLOCK); 1059 fcntl (fd, F_SETFL, O_NONBLOCK);
856#endif 1060#endif
857} 1061}
858 1062
859static void noinline 1063static void noinline
860evpipe_init (EV_P) 1064evpipe_init (EV_P)
861{ 1065{
862 if (!ev_is_active (&pipeev)) 1066 if (!ev_is_active (&pipe_w))
863 { 1067 {
864#if EV_USE_EVENTFD 1068#if EV_USE_EVENTFD
865 if ((evfd = eventfd (0, 0)) >= 0) 1069 if ((evfd = eventfd (0, 0)) >= 0)
866 { 1070 {
867 evpipe [0] = -1; 1071 evpipe [0] = -1;
868 fd_intern (evfd); 1072 fd_intern (evfd);
869 ev_io_set (&pipeev, evfd, EV_READ); 1073 ev_io_set (&pipe_w, evfd, EV_READ);
870 } 1074 }
871 else 1075 else
872#endif 1076#endif
873 { 1077 {
874 while (pipe (evpipe)) 1078 while (pipe (evpipe))
875 syserr ("(libev) error creating signal/async pipe"); 1079 ev_syserr ("(libev) error creating signal/async pipe");
876 1080
877 fd_intern (evpipe [0]); 1081 fd_intern (evpipe [0]);
878 fd_intern (evpipe [1]); 1082 fd_intern (evpipe [1]);
879 ev_io_set (&pipeev, evpipe [0], EV_READ); 1083 ev_io_set (&pipe_w, evpipe [0], EV_READ);
880 } 1084 }
881 1085
882 ev_io_start (EV_A_ &pipeev); 1086 ev_io_start (EV_A_ &pipe_w);
883 ev_unref (EV_A); /* watcher should not keep loop alive */ 1087 ev_unref (EV_A); /* watcher should not keep loop alive */
884 } 1088 }
885} 1089}
886 1090
887void inline_size 1091inline_size void
888evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1092evpipe_write (EV_P_ EV_ATOMIC_T *flag)
889{ 1093{
890 if (!*flag) 1094 if (!*flag)
891 { 1095 {
892 int old_errno = errno; /* save errno because write might clobber it */ 1096 int old_errno = errno; /* save errno because write might clobber it */
905 1109
906 errno = old_errno; 1110 errno = old_errno;
907 } 1111 }
908} 1112}
909 1113
1114/* called whenever the libev signal pipe */
1115/* got some events (signal, async) */
910static void 1116static void
911pipecb (EV_P_ ev_io *iow, int revents) 1117pipecb (EV_P_ ev_io *iow, int revents)
912{ 1118{
913#if EV_USE_EVENTFD 1119#if EV_USE_EVENTFD
914 if (evfd >= 0) 1120 if (evfd >= 0)
915 { 1121 {
916 uint64_t counter = 1; 1122 uint64_t counter;
917 read (evfd, &counter, sizeof (uint64_t)); 1123 read (evfd, &counter, sizeof (uint64_t));
918 } 1124 }
919 else 1125 else
920#endif 1126#endif
921 { 1127 {
970ev_feed_signal_event (EV_P_ int signum) 1176ev_feed_signal_event (EV_P_ int signum)
971{ 1177{
972 WL w; 1178 WL w;
973 1179
974#if EV_MULTIPLICITY 1180#if EV_MULTIPLICITY
975 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1181 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
976#endif 1182#endif
977 1183
978 --signum; 1184 --signum;
979 1185
980 if (signum < 0 || signum >= signalmax) 1186 if (signum < 0 || signum >= signalmax)
996 1202
997#ifndef WIFCONTINUED 1203#ifndef WIFCONTINUED
998# define WIFCONTINUED(status) 0 1204# define WIFCONTINUED(status) 0
999#endif 1205#endif
1000 1206
1001void inline_speed 1207/* handle a single child status event */
1208inline_speed void
1002child_reap (EV_P_ int chain, int pid, int status) 1209child_reap (EV_P_ int chain, int pid, int status)
1003{ 1210{
1004 ev_child *w; 1211 ev_child *w;
1005 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1212 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1006 1213
1019 1226
1020#ifndef WCONTINUED 1227#ifndef WCONTINUED
1021# define WCONTINUED 0 1228# define WCONTINUED 0
1022#endif 1229#endif
1023 1230
1231/* called on sigchld etc., calls waitpid */
1024static void 1232static void
1025childcb (EV_P_ ev_signal *sw, int revents) 1233childcb (EV_P_ ev_signal *sw, int revents)
1026{ 1234{
1027 int pid, status; 1235 int pid, status;
1028 1236
1109 /* kqueue is borked on everything but netbsd apparently */ 1317 /* kqueue is borked on everything but netbsd apparently */
1110 /* it usually doesn't work correctly on anything but sockets and pipes */ 1318 /* it usually doesn't work correctly on anything but sockets and pipes */
1111 flags &= ~EVBACKEND_KQUEUE; 1319 flags &= ~EVBACKEND_KQUEUE;
1112#endif 1320#endif
1113#ifdef __APPLE__ 1321#ifdef __APPLE__
1114 // flags &= ~EVBACKEND_KQUEUE; for documentation 1322 /* only select works correctly on that "unix-certified" platform */
1115 flags &= ~EVBACKEND_POLL; 1323 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1324 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1116#endif 1325#endif
1117 1326
1118 return flags; 1327 return flags;
1119} 1328}
1120 1329
1152ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1361ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1153{ 1362{
1154 timeout_blocktime = interval; 1363 timeout_blocktime = interval;
1155} 1364}
1156 1365
1366/* initialise a loop structure, must be zero-initialised */
1157static void noinline 1367static void noinline
1158loop_init (EV_P_ unsigned int flags) 1368loop_init (EV_P_ unsigned int flags)
1159{ 1369{
1160 if (!backend) 1370 if (!backend)
1161 { 1371 {
1372#if EV_USE_REALTIME
1373 if (!have_realtime)
1374 {
1375 struct timespec ts;
1376
1377 if (!clock_gettime (CLOCK_REALTIME, &ts))
1378 have_realtime = 1;
1379 }
1380#endif
1381
1162#if EV_USE_MONOTONIC 1382#if EV_USE_MONOTONIC
1383 if (!have_monotonic)
1163 { 1384 {
1164 struct timespec ts; 1385 struct timespec ts;
1386
1165 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1387 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1166 have_monotonic = 1; 1388 have_monotonic = 1;
1167 } 1389 }
1168#endif 1390#endif
1169 1391
1170 ev_rt_now = ev_time (); 1392 ev_rt_now = ev_time ();
1171 mn_now = get_clock (); 1393 mn_now = get_clock ();
1172 now_floor = mn_now; 1394 now_floor = mn_now;
1209#endif 1431#endif
1210#if EV_USE_SELECT 1432#if EV_USE_SELECT
1211 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1433 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1212#endif 1434#endif
1213 1435
1436 ev_prepare_init (&pending_w, pendingcb);
1437
1214 ev_init (&pipeev, pipecb); 1438 ev_init (&pipe_w, pipecb);
1215 ev_set_priority (&pipeev, EV_MAXPRI); 1439 ev_set_priority (&pipe_w, EV_MAXPRI);
1216 } 1440 }
1217} 1441}
1218 1442
1443/* free up a loop structure */
1219static void noinline 1444static void noinline
1220loop_destroy (EV_P) 1445loop_destroy (EV_P)
1221{ 1446{
1222 int i; 1447 int i;
1223 1448
1224 if (ev_is_active (&pipeev)) 1449 if (ev_is_active (&pipe_w))
1225 { 1450 {
1226 ev_ref (EV_A); /* signal watcher */ 1451 ev_ref (EV_A); /* signal watcher */
1227 ev_io_stop (EV_A_ &pipeev); 1452 ev_io_stop (EV_A_ &pipe_w);
1228 1453
1229#if EV_USE_EVENTFD 1454#if EV_USE_EVENTFD
1230 if (evfd >= 0) 1455 if (evfd >= 0)
1231 close (evfd); 1456 close (evfd);
1232#endif 1457#endif
1271 } 1496 }
1272 1497
1273 ev_free (anfds); anfdmax = 0; 1498 ev_free (anfds); anfdmax = 0;
1274 1499
1275 /* have to use the microsoft-never-gets-it-right macro */ 1500 /* have to use the microsoft-never-gets-it-right macro */
1501 array_free (rfeed, EMPTY);
1276 array_free (fdchange, EMPTY); 1502 array_free (fdchange, EMPTY);
1277 array_free (timer, EMPTY); 1503 array_free (timer, EMPTY);
1278#if EV_PERIODIC_ENABLE 1504#if EV_PERIODIC_ENABLE
1279 array_free (periodic, EMPTY); 1505 array_free (periodic, EMPTY);
1280#endif 1506#endif
1289 1515
1290 backend = 0; 1516 backend = 0;
1291} 1517}
1292 1518
1293#if EV_USE_INOTIFY 1519#if EV_USE_INOTIFY
1294void inline_size infy_fork (EV_P); 1520inline_size void infy_fork (EV_P);
1295#endif 1521#endif
1296 1522
1297void inline_size 1523inline_size void
1298loop_fork (EV_P) 1524loop_fork (EV_P)
1299{ 1525{
1300#if EV_USE_PORT 1526#if EV_USE_PORT
1301 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1527 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1302#endif 1528#endif
1308#endif 1534#endif
1309#if EV_USE_INOTIFY 1535#if EV_USE_INOTIFY
1310 infy_fork (EV_A); 1536 infy_fork (EV_A);
1311#endif 1537#endif
1312 1538
1313 if (ev_is_active (&pipeev)) 1539 if (ev_is_active (&pipe_w))
1314 { 1540 {
1315 /* this "locks" the handlers against writing to the pipe */ 1541 /* this "locks" the handlers against writing to the pipe */
1316 /* while we modify the fd vars */ 1542 /* while we modify the fd vars */
1317 gotsig = 1; 1543 gotsig = 1;
1318#if EV_ASYNC_ENABLE 1544#if EV_ASYNC_ENABLE
1319 gotasync = 1; 1545 gotasync = 1;
1320#endif 1546#endif
1321 1547
1322 ev_ref (EV_A); 1548 ev_ref (EV_A);
1323 ev_io_stop (EV_A_ &pipeev); 1549 ev_io_stop (EV_A_ &pipe_w);
1324 1550
1325#if EV_USE_EVENTFD 1551#if EV_USE_EVENTFD
1326 if (evfd >= 0) 1552 if (evfd >= 0)
1327 close (evfd); 1553 close (evfd);
1328#endif 1554#endif
1333 close (evpipe [1]); 1559 close (evpipe [1]);
1334 } 1560 }
1335 1561
1336 evpipe_init (EV_A); 1562 evpipe_init (EV_A);
1337 /* now iterate over everything, in case we missed something */ 1563 /* now iterate over everything, in case we missed something */
1338 pipecb (EV_A_ &pipeev, EV_READ); 1564 pipecb (EV_A_ &pipe_w, EV_READ);
1339 } 1565 }
1340 1566
1341 postfork = 0; 1567 postfork = 0;
1342} 1568}
1343 1569
1344#if EV_MULTIPLICITY 1570#if EV_MULTIPLICITY
1571
1345struct ev_loop * 1572struct ev_loop *
1346ev_loop_new (unsigned int flags) 1573ev_loop_new (unsigned int flags)
1347{ 1574{
1348 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1575 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1349 1576
1368ev_loop_fork (EV_P) 1595ev_loop_fork (EV_P)
1369{ 1596{
1370 postfork = 1; /* must be in line with ev_default_fork */ 1597 postfork = 1; /* must be in line with ev_default_fork */
1371} 1598}
1372 1599
1600#if EV_VERIFY
1601static void noinline
1602verify_watcher (EV_P_ W w)
1603{
1604 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1605
1606 if (w->pending)
1607 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1608}
1609
1610static void noinline
1611verify_heap (EV_P_ ANHE *heap, int N)
1612{
1613 int i;
1614
1615 for (i = HEAP0; i < N + HEAP0; ++i)
1616 {
1617 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1618 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1619 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1620
1621 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1622 }
1623}
1624
1625static void noinline
1626array_verify (EV_P_ W *ws, int cnt)
1627{
1628 while (cnt--)
1629 {
1630 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1631 verify_watcher (EV_A_ ws [cnt]);
1632 }
1633}
1634#endif
1635
1636void
1637ev_loop_verify (EV_P)
1638{
1639#if EV_VERIFY
1640 int i;
1641 WL w;
1642
1643 assert (activecnt >= -1);
1644
1645 assert (fdchangemax >= fdchangecnt);
1646 for (i = 0; i < fdchangecnt; ++i)
1647 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1648
1649 assert (anfdmax >= 0);
1650 for (i = 0; i < anfdmax; ++i)
1651 for (w = anfds [i].head; w; w = w->next)
1652 {
1653 verify_watcher (EV_A_ (W)w);
1654 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1655 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1656 }
1657
1658 assert (timermax >= timercnt);
1659 verify_heap (EV_A_ timers, timercnt);
1660
1661#if EV_PERIODIC_ENABLE
1662 assert (periodicmax >= periodiccnt);
1663 verify_heap (EV_A_ periodics, periodiccnt);
1664#endif
1665
1666 for (i = NUMPRI; i--; )
1667 {
1668 assert (pendingmax [i] >= pendingcnt [i]);
1669#if EV_IDLE_ENABLE
1670 assert (idleall >= 0);
1671 assert (idlemax [i] >= idlecnt [i]);
1672 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1673#endif
1674 }
1675
1676#if EV_FORK_ENABLE
1677 assert (forkmax >= forkcnt);
1678 array_verify (EV_A_ (W *)forks, forkcnt);
1679#endif
1680
1681#if EV_ASYNC_ENABLE
1682 assert (asyncmax >= asynccnt);
1683 array_verify (EV_A_ (W *)asyncs, asynccnt);
1684#endif
1685
1686 assert (preparemax >= preparecnt);
1687 array_verify (EV_A_ (W *)prepares, preparecnt);
1688
1689 assert (checkmax >= checkcnt);
1690 array_verify (EV_A_ (W *)checks, checkcnt);
1691
1692# if 0
1693 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1694 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1373#endif 1695# endif
1696#endif
1697}
1698
1699#endif /* multiplicity */
1374 1700
1375#if EV_MULTIPLICITY 1701#if EV_MULTIPLICITY
1376struct ev_loop * 1702struct ev_loop *
1377ev_default_loop_init (unsigned int flags) 1703ev_default_loop_init (unsigned int flags)
1378#else 1704#else
1411{ 1737{
1412#if EV_MULTIPLICITY 1738#if EV_MULTIPLICITY
1413 struct ev_loop *loop = ev_default_loop_ptr; 1739 struct ev_loop *loop = ev_default_loop_ptr;
1414#endif 1740#endif
1415 1741
1742 ev_default_loop_ptr = 0;
1743
1416#ifndef _WIN32 1744#ifndef _WIN32
1417 ev_ref (EV_A); /* child watcher */ 1745 ev_ref (EV_A); /* child watcher */
1418 ev_signal_stop (EV_A_ &childev); 1746 ev_signal_stop (EV_A_ &childev);
1419#endif 1747#endif
1420 1748
1426{ 1754{
1427#if EV_MULTIPLICITY 1755#if EV_MULTIPLICITY
1428 struct ev_loop *loop = ev_default_loop_ptr; 1756 struct ev_loop *loop = ev_default_loop_ptr;
1429#endif 1757#endif
1430 1758
1431 if (backend)
1432 postfork = 1; /* must be in line with ev_loop_fork */ 1759 postfork = 1; /* must be in line with ev_loop_fork */
1433} 1760}
1434 1761
1435/*****************************************************************************/ 1762/*****************************************************************************/
1436 1763
1437void 1764void
1438ev_invoke (EV_P_ void *w, int revents) 1765ev_invoke (EV_P_ void *w, int revents)
1439{ 1766{
1440 EV_CB_INVOKE ((W)w, revents); 1767 EV_CB_INVOKE ((W)w, revents);
1441} 1768}
1442 1769
1443void inline_speed 1770inline_speed void
1444call_pending (EV_P) 1771call_pending (EV_P)
1445{ 1772{
1446 int pri; 1773 int pri;
1447 1774
1448 for (pri = NUMPRI; pri--; ) 1775 for (pri = NUMPRI; pri--; )
1449 while (pendingcnt [pri]) 1776 while (pendingcnt [pri])
1450 { 1777 {
1451 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1778 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1452 1779
1453 if (expect_true (p->w))
1454 {
1455 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1780 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1781 /* ^ this is no longer true, as pending_w could be here */
1456 1782
1457 p->w->pending = 0; 1783 p->w->pending = 0;
1458 EV_CB_INVOKE (p->w, p->events); 1784 EV_CB_INVOKE (p->w, p->events);
1459 } 1785 EV_FREQUENT_CHECK;
1460 } 1786 }
1461} 1787}
1462 1788
1463void inline_size
1464timers_reify (EV_P)
1465{
1466 while (timercnt && ev_at (timers [1]) <= mn_now)
1467 {
1468 ev_timer *w = (ev_timer *)timers [1];
1469
1470 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1471
1472 /* first reschedule or stop timer */
1473 if (w->repeat)
1474 {
1475 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1476
1477 ev_at (w) += w->repeat;
1478 if (ev_at (w) < mn_now)
1479 ev_at (w) = mn_now;
1480
1481 downheap (timers, timercnt, 1);
1482 }
1483 else
1484 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1485
1486 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1487 }
1488}
1489
1490#if EV_PERIODIC_ENABLE
1491void inline_size
1492periodics_reify (EV_P)
1493{
1494 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1495 {
1496 ev_periodic *w = (ev_periodic *)periodics [1];
1497
1498 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1499
1500 /* first reschedule or stop timer */
1501 if (w->reschedule_cb)
1502 {
1503 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1504 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1505 downheap (periodics, periodiccnt, 1);
1506 }
1507 else if (w->interval)
1508 {
1509 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1510 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1511 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1512 downheap (periodics, periodiccnt, 1);
1513 }
1514 else
1515 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1516
1517 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1518 }
1519}
1520
1521static void noinline
1522periodics_reschedule (EV_P)
1523{
1524 int i;
1525
1526 /* adjust periodics after time jump */
1527 for (i = 0; i < periodiccnt; ++i)
1528 {
1529 ev_periodic *w = (ev_periodic *)periodics [i];
1530
1531 if (w->reschedule_cb)
1532 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1533 else if (w->interval)
1534 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1535 }
1536
1537 /* now rebuild the heap */
1538 for (i = periodiccnt >> 1; i--; )
1539 downheap (periodics, periodiccnt, i);
1540}
1541#endif
1542
1543#if EV_IDLE_ENABLE 1789#if EV_IDLE_ENABLE
1544void inline_size 1790/* make idle watchers pending. this handles the "call-idle */
1791/* only when higher priorities are idle" logic */
1792inline_size void
1545idle_reify (EV_P) 1793idle_reify (EV_P)
1546{ 1794{
1547 if (expect_false (idleall)) 1795 if (expect_false (idleall))
1548 { 1796 {
1549 int pri; 1797 int pri;
1561 } 1809 }
1562 } 1810 }
1563} 1811}
1564#endif 1812#endif
1565 1813
1566void inline_speed 1814/* make timers pending */
1815inline_size void
1816timers_reify (EV_P)
1817{
1818 EV_FREQUENT_CHECK;
1819
1820 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1821 {
1822 do
1823 {
1824 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1825
1826 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1827
1828 /* first reschedule or stop timer */
1829 if (w->repeat)
1830 {
1831 ev_at (w) += w->repeat;
1832 if (ev_at (w) < mn_now)
1833 ev_at (w) = mn_now;
1834
1835 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1836
1837 ANHE_at_cache (timers [HEAP0]);
1838 downheap (timers, timercnt, HEAP0);
1839 }
1840 else
1841 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1842
1843 EV_FREQUENT_CHECK;
1844 feed_reverse (EV_A_ (W)w);
1845 }
1846 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1847
1848 feed_reverse_done (EV_A_ EV_TIMEOUT);
1849 }
1850}
1851
1852#if EV_PERIODIC_ENABLE
1853/* make periodics pending */
1854inline_size void
1855periodics_reify (EV_P)
1856{
1857 EV_FREQUENT_CHECK;
1858
1859 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1860 {
1861 int feed_count = 0;
1862
1863 do
1864 {
1865 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1866
1867 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1868
1869 /* first reschedule or stop timer */
1870 if (w->reschedule_cb)
1871 {
1872 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1873
1874 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1875
1876 ANHE_at_cache (periodics [HEAP0]);
1877 downheap (periodics, periodiccnt, HEAP0);
1878 }
1879 else if (w->interval)
1880 {
1881 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1882 /* if next trigger time is not sufficiently in the future, put it there */
1883 /* this might happen because of floating point inexactness */
1884 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1885 {
1886 ev_at (w) += w->interval;
1887
1888 /* if interval is unreasonably low we might still have a time in the past */
1889 /* so correct this. this will make the periodic very inexact, but the user */
1890 /* has effectively asked to get triggered more often than possible */
1891 if (ev_at (w) < ev_rt_now)
1892 ev_at (w) = ev_rt_now;
1893 }
1894
1895 ANHE_at_cache (periodics [HEAP0]);
1896 downheap (periodics, periodiccnt, HEAP0);
1897 }
1898 else
1899 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1900
1901 EV_FREQUENT_CHECK;
1902 feed_reverse (EV_A_ (W)w);
1903 }
1904 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1905
1906 feed_reverse_done (EV_A_ EV_PERIODIC);
1907 }
1908}
1909
1910/* simply recalculate all periodics */
1911/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1912static void noinline
1913periodics_reschedule (EV_P)
1914{
1915 int i;
1916
1917 /* adjust periodics after time jump */
1918 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1919 {
1920 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1921
1922 if (w->reschedule_cb)
1923 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1924 else if (w->interval)
1925 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1926
1927 ANHE_at_cache (periodics [i]);
1928 }
1929
1930 reheap (periodics, periodiccnt);
1931}
1932#endif
1933
1934/* adjust all timers by a given offset */
1935static void noinline
1936timers_reschedule (EV_P_ ev_tstamp adjust)
1937{
1938 int i;
1939
1940 for (i = 0; i < timercnt; ++i)
1941 {
1942 ANHE *he = timers + i + HEAP0;
1943 ANHE_w (*he)->at += adjust;
1944 ANHE_at_cache (*he);
1945 }
1946}
1947
1948/* fetch new monotonic and realtime times from the kernel */
1949/* also detetc if there was a timejump, and act accordingly */
1950inline_speed void
1567time_update (EV_P_ ev_tstamp max_block) 1951time_update (EV_P_ ev_tstamp max_block)
1568{ 1952{
1569 int i; 1953 int i;
1570 1954
1571#if EV_USE_MONOTONIC 1955#if EV_USE_MONOTONIC
1596 */ 1980 */
1597 for (i = 4; --i; ) 1981 for (i = 4; --i; )
1598 { 1982 {
1599 rtmn_diff = ev_rt_now - mn_now; 1983 rtmn_diff = ev_rt_now - mn_now;
1600 1984
1601 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1985 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1602 return; /* all is well */ 1986 return; /* all is well */
1603 1987
1604 ev_rt_now = ev_time (); 1988 ev_rt_now = ev_time ();
1605 mn_now = get_clock (); 1989 mn_now = get_clock ();
1606 now_floor = mn_now; 1990 now_floor = mn_now;
1607 } 1991 }
1608 1992
1993 /* no timer adjustment, as the monotonic clock doesn't jump */
1994 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1609# if EV_PERIODIC_ENABLE 1995# if EV_PERIODIC_ENABLE
1610 periodics_reschedule (EV_A); 1996 periodics_reschedule (EV_A);
1611# endif 1997# endif
1612 /* no timer adjustment, as the monotonic clock doesn't jump */
1613 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1614 } 1998 }
1615 else 1999 else
1616#endif 2000#endif
1617 { 2001 {
1618 ev_rt_now = ev_time (); 2002 ev_rt_now = ev_time ();
1619 2003
1620 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2004 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1621 { 2005 {
2006 /* adjust timers. this is easy, as the offset is the same for all of them */
2007 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1622#if EV_PERIODIC_ENABLE 2008#if EV_PERIODIC_ENABLE
1623 periodics_reschedule (EV_A); 2009 periodics_reschedule (EV_A);
1624#endif 2010#endif
1625 /* adjust timers. this is easy, as the offset is the same for all of them */
1626 for (i = 1; i <= timercnt; ++i)
1627 ev_at (timers [i]) += ev_rt_now - mn_now;
1628 } 2011 }
1629 2012
1630 mn_now = ev_rt_now; 2013 mn_now = ev_rt_now;
1631 } 2014 }
1632} 2015}
1633 2016
1634void
1635ev_ref (EV_P)
1636{
1637 ++activecnt;
1638}
1639
1640void
1641ev_unref (EV_P)
1642{
1643 --activecnt;
1644}
1645
1646static int loop_done; 2017static int loop_done;
1647 2018
1648void 2019void
1649ev_loop (EV_P_ int flags) 2020ev_loop (EV_P_ int flags)
1650{ 2021{
1652 2023
1653 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2024 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1654 2025
1655 do 2026 do
1656 { 2027 {
2028#if EV_VERIFY >= 2
2029 ev_loop_verify (EV_A);
2030#endif
2031
1657#ifndef _WIN32 2032#ifndef _WIN32
1658 if (expect_false (curpid)) /* penalise the forking check even more */ 2033 if (expect_false (curpid)) /* penalise the forking check even more */
1659 if (expect_false (getpid () != curpid)) 2034 if (expect_false (getpid () != curpid))
1660 { 2035 {
1661 curpid = getpid (); 2036 curpid = getpid ();
1678 { 2053 {
1679 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2054 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1680 call_pending (EV_A); 2055 call_pending (EV_A);
1681 } 2056 }
1682 2057
1683 if (expect_false (!activecnt))
1684 break;
1685
1686 /* we might have forked, so reify kernel state if necessary */ 2058 /* we might have forked, so reify kernel state if necessary */
1687 if (expect_false (postfork)) 2059 if (expect_false (postfork))
1688 loop_fork (EV_A); 2060 loop_fork (EV_A);
1689 2061
1690 /* update fd-related kernel structures */ 2062 /* update fd-related kernel structures */
1702 2074
1703 waittime = MAX_BLOCKTIME; 2075 waittime = MAX_BLOCKTIME;
1704 2076
1705 if (timercnt) 2077 if (timercnt)
1706 { 2078 {
1707 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge; 2079 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1708 if (waittime > to) waittime = to; 2080 if (waittime > to) waittime = to;
1709 } 2081 }
1710 2082
1711#if EV_PERIODIC_ENABLE 2083#if EV_PERIODIC_ENABLE
1712 if (periodiccnt) 2084 if (periodiccnt)
1713 { 2085 {
1714 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge; 2086 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1715 if (waittime > to) waittime = to; 2087 if (waittime > to) waittime = to;
1716 } 2088 }
1717#endif 2089#endif
1718 2090
1719 if (expect_false (waittime < timeout_blocktime)) 2091 if (expect_false (waittime < timeout_blocktime))
1769ev_unloop (EV_P_ int how) 2141ev_unloop (EV_P_ int how)
1770{ 2142{
1771 loop_done = how; 2143 loop_done = how;
1772} 2144}
1773 2145
2146void
2147ev_ref (EV_P)
2148{
2149 ++activecnt;
2150}
2151
2152void
2153ev_unref (EV_P)
2154{
2155 --activecnt;
2156}
2157
2158void
2159ev_now_update (EV_P)
2160{
2161 time_update (EV_A_ 1e100);
2162}
2163
2164void
2165ev_suspend (EV_P)
2166{
2167 ev_now_update (EV_A);
2168}
2169
2170void
2171ev_resume (EV_P)
2172{
2173 ev_tstamp mn_prev = mn_now;
2174
2175 ev_now_update (EV_A);
2176 timers_reschedule (EV_A_ mn_now - mn_prev);
2177#if EV_PERIODIC_ENABLE
2178 /* TODO: really do this? */
2179 periodics_reschedule (EV_A);
2180#endif
2181}
2182
1774/*****************************************************************************/ 2183/*****************************************************************************/
2184/* singly-linked list management, used when the expected list length is short */
1775 2185
1776void inline_size 2186inline_size void
1777wlist_add (WL *head, WL elem) 2187wlist_add (WL *head, WL elem)
1778{ 2188{
1779 elem->next = *head; 2189 elem->next = *head;
1780 *head = elem; 2190 *head = elem;
1781} 2191}
1782 2192
1783void inline_size 2193inline_size void
1784wlist_del (WL *head, WL elem) 2194wlist_del (WL *head, WL elem)
1785{ 2195{
1786 while (*head) 2196 while (*head)
1787 { 2197 {
1788 if (*head == elem) 2198 if (*head == elem)
1793 2203
1794 head = &(*head)->next; 2204 head = &(*head)->next;
1795 } 2205 }
1796} 2206}
1797 2207
1798void inline_speed 2208/* internal, faster, version of ev_clear_pending */
2209inline_speed void
1799clear_pending (EV_P_ W w) 2210clear_pending (EV_P_ W w)
1800{ 2211{
1801 if (w->pending) 2212 if (w->pending)
1802 { 2213 {
1803 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2214 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1804 w->pending = 0; 2215 w->pending = 0;
1805 } 2216 }
1806} 2217}
1807 2218
1808int 2219int
1812 int pending = w_->pending; 2223 int pending = w_->pending;
1813 2224
1814 if (expect_true (pending)) 2225 if (expect_true (pending))
1815 { 2226 {
1816 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2227 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2228 p->w = (W)&pending_w;
1817 w_->pending = 0; 2229 w_->pending = 0;
1818 p->w = 0;
1819 return p->events; 2230 return p->events;
1820 } 2231 }
1821 else 2232 else
1822 return 0; 2233 return 0;
1823} 2234}
1824 2235
1825void inline_size 2236inline_size void
1826pri_adjust (EV_P_ W w) 2237pri_adjust (EV_P_ W w)
1827{ 2238{
1828 int pri = w->priority; 2239 int pri = w->priority;
1829 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2240 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1830 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2241 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1831 w->priority = pri; 2242 w->priority = pri;
1832} 2243}
1833 2244
1834void inline_speed 2245inline_speed void
1835ev_start (EV_P_ W w, int active) 2246ev_start (EV_P_ W w, int active)
1836{ 2247{
1837 pri_adjust (EV_A_ w); 2248 pri_adjust (EV_A_ w);
1838 w->active = active; 2249 w->active = active;
1839 ev_ref (EV_A); 2250 ev_ref (EV_A);
1840} 2251}
1841 2252
1842void inline_size 2253inline_size void
1843ev_stop (EV_P_ W w) 2254ev_stop (EV_P_ W w)
1844{ 2255{
1845 ev_unref (EV_A); 2256 ev_unref (EV_A);
1846 w->active = 0; 2257 w->active = 0;
1847} 2258}
1854 int fd = w->fd; 2265 int fd = w->fd;
1855 2266
1856 if (expect_false (ev_is_active (w))) 2267 if (expect_false (ev_is_active (w)))
1857 return; 2268 return;
1858 2269
1859 assert (("ev_io_start called with negative fd", fd >= 0)); 2270 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2271 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2272
2273 EV_FREQUENT_CHECK;
1860 2274
1861 ev_start (EV_A_ (W)w, 1); 2275 ev_start (EV_A_ (W)w, 1);
1862 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2276 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1863 wlist_add (&anfds[fd].head, (WL)w); 2277 wlist_add (&anfds[fd].head, (WL)w);
1864 2278
1865 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2279 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1866 w->events &= ~EV_IOFDSET; 2280 w->events &= ~EV__IOFDSET;
2281
2282 EV_FREQUENT_CHECK;
1867} 2283}
1868 2284
1869void noinline 2285void noinline
1870ev_io_stop (EV_P_ ev_io *w) 2286ev_io_stop (EV_P_ ev_io *w)
1871{ 2287{
1872 clear_pending (EV_A_ (W)w); 2288 clear_pending (EV_A_ (W)w);
1873 if (expect_false (!ev_is_active (w))) 2289 if (expect_false (!ev_is_active (w)))
1874 return; 2290 return;
1875 2291
1876 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2292 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2293
2294 EV_FREQUENT_CHECK;
1877 2295
1878 wlist_del (&anfds[w->fd].head, (WL)w); 2296 wlist_del (&anfds[w->fd].head, (WL)w);
1879 ev_stop (EV_A_ (W)w); 2297 ev_stop (EV_A_ (W)w);
1880 2298
1881 fd_change (EV_A_ w->fd, 1); 2299 fd_change (EV_A_ w->fd, 1);
2300
2301 EV_FREQUENT_CHECK;
1882} 2302}
1883 2303
1884void noinline 2304void noinline
1885ev_timer_start (EV_P_ ev_timer *w) 2305ev_timer_start (EV_P_ ev_timer *w)
1886{ 2306{
1887 if (expect_false (ev_is_active (w))) 2307 if (expect_false (ev_is_active (w)))
1888 return; 2308 return;
1889 2309
1890 ev_at (w) += mn_now; 2310 ev_at (w) += mn_now;
1891 2311
1892 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2312 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1893 2313
2314 EV_FREQUENT_CHECK;
2315
2316 ++timercnt;
1894 ev_start (EV_A_ (W)w, ++timercnt); 2317 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1895 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2); 2318 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1896 timers [timercnt] = (WT)w; 2319 ANHE_w (timers [ev_active (w)]) = (WT)w;
2320 ANHE_at_cache (timers [ev_active (w)]);
1897 upheap (timers, timercnt); 2321 upheap (timers, ev_active (w));
1898 2322
2323 EV_FREQUENT_CHECK;
2324
1899 /*assert (("internal timer heap corruption", timers [((W)w)->active] == w));*/ 2325 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1900} 2326}
1901 2327
1902void noinline 2328void noinline
1903ev_timer_stop (EV_P_ ev_timer *w) 2329ev_timer_stop (EV_P_ ev_timer *w)
1904{ 2330{
1905 clear_pending (EV_A_ (W)w); 2331 clear_pending (EV_A_ (W)w);
1906 if (expect_false (!ev_is_active (w))) 2332 if (expect_false (!ev_is_active (w)))
1907 return; 2333 return;
1908 2334
1909 assert (("internal timer heap corruption", timers [((W)w)->active] == (WT)w)); 2335 EV_FREQUENT_CHECK;
1910 2336
1911 { 2337 {
1912 int active = ((W)w)->active; 2338 int active = ev_active (w);
1913 2339
2340 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2341
2342 --timercnt;
2343
1914 if (expect_true (active < timercnt)) 2344 if (expect_true (active < timercnt + HEAP0))
1915 { 2345 {
1916 timers [active] = timers [timercnt]; 2346 timers [active] = timers [timercnt + HEAP0];
1917 adjustheap (timers, timercnt, active); 2347 adjustheap (timers, timercnt, active);
1918 } 2348 }
1919
1920 --timercnt;
1921 } 2349 }
2350
2351 EV_FREQUENT_CHECK;
1922 2352
1923 ev_at (w) -= mn_now; 2353 ev_at (w) -= mn_now;
1924 2354
1925 ev_stop (EV_A_ (W)w); 2355 ev_stop (EV_A_ (W)w);
1926} 2356}
1927 2357
1928void noinline 2358void noinline
1929ev_timer_again (EV_P_ ev_timer *w) 2359ev_timer_again (EV_P_ ev_timer *w)
1930{ 2360{
2361 EV_FREQUENT_CHECK;
2362
1931 if (ev_is_active (w)) 2363 if (ev_is_active (w))
1932 { 2364 {
1933 if (w->repeat) 2365 if (w->repeat)
1934 { 2366 {
1935 ev_at (w) = mn_now + w->repeat; 2367 ev_at (w) = mn_now + w->repeat;
2368 ANHE_at_cache (timers [ev_active (w)]);
1936 adjustheap (timers, timercnt, ((W)w)->active); 2369 adjustheap (timers, timercnt, ev_active (w));
1937 } 2370 }
1938 else 2371 else
1939 ev_timer_stop (EV_A_ w); 2372 ev_timer_stop (EV_A_ w);
1940 } 2373 }
1941 else if (w->repeat) 2374 else if (w->repeat)
1942 { 2375 {
1943 w->at = w->repeat; 2376 ev_at (w) = w->repeat;
1944 ev_timer_start (EV_A_ w); 2377 ev_timer_start (EV_A_ w);
1945 } 2378 }
2379
2380 EV_FREQUENT_CHECK;
1946} 2381}
1947 2382
1948#if EV_PERIODIC_ENABLE 2383#if EV_PERIODIC_ENABLE
1949void noinline 2384void noinline
1950ev_periodic_start (EV_P_ ev_periodic *w) 2385ev_periodic_start (EV_P_ ev_periodic *w)
1954 2389
1955 if (w->reschedule_cb) 2390 if (w->reschedule_cb)
1956 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2391 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1957 else if (w->interval) 2392 else if (w->interval)
1958 { 2393 {
1959 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2394 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1960 /* this formula differs from the one in periodic_reify because we do not always round up */ 2395 /* this formula differs from the one in periodic_reify because we do not always round up */
1961 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2396 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1962 } 2397 }
1963 else 2398 else
1964 ev_at (w) = w->offset; 2399 ev_at (w) = w->offset;
1965 2400
2401 EV_FREQUENT_CHECK;
2402
2403 ++periodiccnt;
1966 ev_start (EV_A_ (W)w, ++periodiccnt); 2404 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1967 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2); 2405 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1968 periodics [periodiccnt] = (WT)w; 2406 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1969 upheap (periodics, periodiccnt); 2407 ANHE_at_cache (periodics [ev_active (w)]);
2408 upheap (periodics, ev_active (w));
1970 2409
2410 EV_FREQUENT_CHECK;
2411
1971 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2412 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1972} 2413}
1973 2414
1974void noinline 2415void noinline
1975ev_periodic_stop (EV_P_ ev_periodic *w) 2416ev_periodic_stop (EV_P_ ev_periodic *w)
1976{ 2417{
1977 clear_pending (EV_A_ (W)w); 2418 clear_pending (EV_A_ (W)w);
1978 if (expect_false (!ev_is_active (w))) 2419 if (expect_false (!ev_is_active (w)))
1979 return; 2420 return;
1980 2421
1981 assert (("internal periodic heap corruption", periodics [((W)w)->active] == (WT)w)); 2422 EV_FREQUENT_CHECK;
1982 2423
1983 { 2424 {
1984 int active = ((W)w)->active; 2425 int active = ev_active (w);
1985 2426
2427 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2428
2429 --periodiccnt;
2430
1986 if (expect_true (active < periodiccnt)) 2431 if (expect_true (active < periodiccnt + HEAP0))
1987 { 2432 {
1988 periodics [active] = periodics [periodiccnt]; 2433 periodics [active] = periodics [periodiccnt + HEAP0];
1989 adjustheap (periodics, periodiccnt, active); 2434 adjustheap (periodics, periodiccnt, active);
1990 } 2435 }
1991
1992 --periodiccnt;
1993 } 2436 }
2437
2438 EV_FREQUENT_CHECK;
1994 2439
1995 ev_stop (EV_A_ (W)w); 2440 ev_stop (EV_A_ (W)w);
1996} 2441}
1997 2442
1998void noinline 2443void noinline
2010 2455
2011void noinline 2456void noinline
2012ev_signal_start (EV_P_ ev_signal *w) 2457ev_signal_start (EV_P_ ev_signal *w)
2013{ 2458{
2014#if EV_MULTIPLICITY 2459#if EV_MULTIPLICITY
2015 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2460 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2016#endif 2461#endif
2017 if (expect_false (ev_is_active (w))) 2462 if (expect_false (ev_is_active (w)))
2018 return; 2463 return;
2019 2464
2020 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2465 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2021 2466
2022 evpipe_init (EV_A); 2467 evpipe_init (EV_A);
2468
2469 EV_FREQUENT_CHECK;
2023 2470
2024 { 2471 {
2025#ifndef _WIN32 2472#ifndef _WIN32
2026 sigset_t full, prev; 2473 sigset_t full, prev;
2027 sigfillset (&full); 2474 sigfillset (&full);
2028 sigprocmask (SIG_SETMASK, &full, &prev); 2475 sigprocmask (SIG_SETMASK, &full, &prev);
2029#endif 2476#endif
2030 2477
2031 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2478 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2032 2479
2033#ifndef _WIN32 2480#ifndef _WIN32
2034 sigprocmask (SIG_SETMASK, &prev, 0); 2481 sigprocmask (SIG_SETMASK, &prev, 0);
2035#endif 2482#endif
2036 } 2483 }
2048 sigfillset (&sa.sa_mask); 2495 sigfillset (&sa.sa_mask);
2049 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2496 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2050 sigaction (w->signum, &sa, 0); 2497 sigaction (w->signum, &sa, 0);
2051#endif 2498#endif
2052 } 2499 }
2500
2501 EV_FREQUENT_CHECK;
2053} 2502}
2054 2503
2055void noinline 2504void noinline
2056ev_signal_stop (EV_P_ ev_signal *w) 2505ev_signal_stop (EV_P_ ev_signal *w)
2057{ 2506{
2058 clear_pending (EV_A_ (W)w); 2507 clear_pending (EV_A_ (W)w);
2059 if (expect_false (!ev_is_active (w))) 2508 if (expect_false (!ev_is_active (w)))
2060 return; 2509 return;
2061 2510
2511 EV_FREQUENT_CHECK;
2512
2062 wlist_del (&signals [w->signum - 1].head, (WL)w); 2513 wlist_del (&signals [w->signum - 1].head, (WL)w);
2063 ev_stop (EV_A_ (W)w); 2514 ev_stop (EV_A_ (W)w);
2064 2515
2065 if (!signals [w->signum - 1].head) 2516 if (!signals [w->signum - 1].head)
2066 signal (w->signum, SIG_DFL); 2517 signal (w->signum, SIG_DFL);
2518
2519 EV_FREQUENT_CHECK;
2067} 2520}
2068 2521
2069void 2522void
2070ev_child_start (EV_P_ ev_child *w) 2523ev_child_start (EV_P_ ev_child *w)
2071{ 2524{
2072#if EV_MULTIPLICITY 2525#if EV_MULTIPLICITY
2073 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2526 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2074#endif 2527#endif
2075 if (expect_false (ev_is_active (w))) 2528 if (expect_false (ev_is_active (w)))
2076 return; 2529 return;
2077 2530
2531 EV_FREQUENT_CHECK;
2532
2078 ev_start (EV_A_ (W)w, 1); 2533 ev_start (EV_A_ (W)w, 1);
2079 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2534 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2535
2536 EV_FREQUENT_CHECK;
2080} 2537}
2081 2538
2082void 2539void
2083ev_child_stop (EV_P_ ev_child *w) 2540ev_child_stop (EV_P_ ev_child *w)
2084{ 2541{
2085 clear_pending (EV_A_ (W)w); 2542 clear_pending (EV_A_ (W)w);
2086 if (expect_false (!ev_is_active (w))) 2543 if (expect_false (!ev_is_active (w)))
2087 return; 2544 return;
2088 2545
2546 EV_FREQUENT_CHECK;
2547
2089 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2548 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2090 ev_stop (EV_A_ (W)w); 2549 ev_stop (EV_A_ (W)w);
2550
2551 EV_FREQUENT_CHECK;
2091} 2552}
2092 2553
2093#if EV_STAT_ENABLE 2554#if EV_STAT_ENABLE
2094 2555
2095# ifdef _WIN32 2556# ifdef _WIN32
2096# undef lstat 2557# undef lstat
2097# define lstat(a,b) _stati64 (a,b) 2558# define lstat(a,b) _stati64 (a,b)
2098# endif 2559# endif
2099 2560
2100#define DEF_STAT_INTERVAL 5.0074891 2561#define DEF_STAT_INTERVAL 5.0074891
2562#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2101#define MIN_STAT_INTERVAL 0.1074891 2563#define MIN_STAT_INTERVAL 0.1074891
2102 2564
2103static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2565static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2104 2566
2105#if EV_USE_INOTIFY 2567#if EV_USE_INOTIFY
2106# define EV_INOTIFY_BUFSIZE 8192 2568# define EV_INOTIFY_BUFSIZE 8192
2110{ 2572{
2111 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2573 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2112 2574
2113 if (w->wd < 0) 2575 if (w->wd < 0)
2114 { 2576 {
2577 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2115 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2578 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2116 2579
2117 /* monitor some parent directory for speedup hints */ 2580 /* monitor some parent directory for speedup hints */
2581 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2582 /* but an efficiency issue only */
2118 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2583 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2119 { 2584 {
2120 char path [4096]; 2585 char path [4096];
2121 strcpy (path, w->path); 2586 strcpy (path, w->path);
2122 2587
2125 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2590 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2126 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2591 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2127 2592
2128 char *pend = strrchr (path, '/'); 2593 char *pend = strrchr (path, '/');
2129 2594
2130 if (!pend) 2595 if (!pend || pend == path)
2131 break; /* whoops, no '/', complain to your admin */ 2596 break;
2132 2597
2133 *pend = 0; 2598 *pend = 0;
2134 w->wd = inotify_add_watch (fs_fd, path, mask); 2599 w->wd = inotify_add_watch (fs_fd, path, mask);
2135 } 2600 }
2136 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2601 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2137 } 2602 }
2138 } 2603 }
2139 else
2140 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2141 2604
2142 if (w->wd >= 0) 2605 if (w->wd >= 0)
2606 {
2143 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2607 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2608
2609 /* now local changes will be tracked by inotify, but remote changes won't */
2610 /* unless the filesystem it known to be local, we therefore still poll */
2611 /* also do poll on <2.6.25, but with normal frequency */
2612 struct statfs sfs;
2613
2614 if (fs_2625 && !statfs (w->path, &sfs))
2615 if (sfs.f_type == 0x1373 /* devfs */
2616 || sfs.f_type == 0xEF53 /* ext2/3 */
2617 || sfs.f_type == 0x3153464a /* jfs */
2618 || sfs.f_type == 0x52654973 /* reiser3 */
2619 || sfs.f_type == 0x01021994 /* tempfs */
2620 || sfs.f_type == 0x58465342 /* xfs */)
2621 return;
2622
2623 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2624 ev_timer_again (EV_A_ &w->timer);
2625 }
2144} 2626}
2145 2627
2146static void noinline 2628static void noinline
2147infy_del (EV_P_ ev_stat *w) 2629infy_del (EV_P_ ev_stat *w)
2148{ 2630{
2162 2644
2163static void noinline 2645static void noinline
2164infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2646infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2165{ 2647{
2166 if (slot < 0) 2648 if (slot < 0)
2167 /* overflow, need to check for all hahs slots */ 2649 /* overflow, need to check for all hash slots */
2168 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2650 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2169 infy_wd (EV_A_ slot, wd, ev); 2651 infy_wd (EV_A_ slot, wd, ev);
2170 else 2652 else
2171 { 2653 {
2172 WL w_; 2654 WL w_;
2178 2660
2179 if (w->wd == wd || wd == -1) 2661 if (w->wd == wd || wd == -1)
2180 { 2662 {
2181 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2663 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2182 { 2664 {
2665 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2183 w->wd = -1; 2666 w->wd = -1;
2184 infy_add (EV_A_ w); /* re-add, no matter what */ 2667 infy_add (EV_A_ w); /* re-add, no matter what */
2185 } 2668 }
2186 2669
2187 stat_timer_cb (EV_A_ &w->timer, 0); 2670 stat_timer_cb (EV_A_ &w->timer, 0);
2200 2683
2201 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2684 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2202 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2685 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2203} 2686}
2204 2687
2205void inline_size 2688inline_size void
2689check_2625 (EV_P)
2690{
2691 /* kernels < 2.6.25 are borked
2692 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2693 */
2694 struct utsname buf;
2695 int major, minor, micro;
2696
2697 if (uname (&buf))
2698 return;
2699
2700 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2701 return;
2702
2703 if (major < 2
2704 || (major == 2 && minor < 6)
2705 || (major == 2 && minor == 6 && micro < 25))
2706 return;
2707
2708 fs_2625 = 1;
2709}
2710
2711inline_size void
2206infy_init (EV_P) 2712infy_init (EV_P)
2207{ 2713{
2208 if (fs_fd != -2) 2714 if (fs_fd != -2)
2209 return; 2715 return;
2716
2717 fs_fd = -1;
2718
2719 check_2625 (EV_A);
2210 2720
2211 fs_fd = inotify_init (); 2721 fs_fd = inotify_init ();
2212 2722
2213 if (fs_fd >= 0) 2723 if (fs_fd >= 0)
2214 { 2724 {
2216 ev_set_priority (&fs_w, EV_MAXPRI); 2726 ev_set_priority (&fs_w, EV_MAXPRI);
2217 ev_io_start (EV_A_ &fs_w); 2727 ev_io_start (EV_A_ &fs_w);
2218 } 2728 }
2219} 2729}
2220 2730
2221void inline_size 2731inline_size void
2222infy_fork (EV_P) 2732infy_fork (EV_P)
2223{ 2733{
2224 int slot; 2734 int slot;
2225 2735
2226 if (fs_fd < 0) 2736 if (fs_fd < 0)
2242 w->wd = -1; 2752 w->wd = -1;
2243 2753
2244 if (fs_fd >= 0) 2754 if (fs_fd >= 0)
2245 infy_add (EV_A_ w); /* re-add, no matter what */ 2755 infy_add (EV_A_ w); /* re-add, no matter what */
2246 else 2756 else
2247 ev_timer_start (EV_A_ &w->timer); 2757 ev_timer_again (EV_A_ &w->timer);
2248 } 2758 }
2249
2250 } 2759 }
2251} 2760}
2252 2761
2762#endif
2763
2764#ifdef _WIN32
2765# define EV_LSTAT(p,b) _stati64 (p, b)
2766#else
2767# define EV_LSTAT(p,b) lstat (p, b)
2253#endif 2768#endif
2254 2769
2255void 2770void
2256ev_stat_stat (EV_P_ ev_stat *w) 2771ev_stat_stat (EV_P_ ev_stat *w)
2257{ 2772{
2284 || w->prev.st_atime != w->attr.st_atime 2799 || w->prev.st_atime != w->attr.st_atime
2285 || w->prev.st_mtime != w->attr.st_mtime 2800 || w->prev.st_mtime != w->attr.st_mtime
2286 || w->prev.st_ctime != w->attr.st_ctime 2801 || w->prev.st_ctime != w->attr.st_ctime
2287 ) { 2802 ) {
2288 #if EV_USE_INOTIFY 2803 #if EV_USE_INOTIFY
2804 if (fs_fd >= 0)
2805 {
2289 infy_del (EV_A_ w); 2806 infy_del (EV_A_ w);
2290 infy_add (EV_A_ w); 2807 infy_add (EV_A_ w);
2291 ev_stat_stat (EV_A_ w); /* avoid race... */ 2808 ev_stat_stat (EV_A_ w); /* avoid race... */
2809 }
2292 #endif 2810 #endif
2293 2811
2294 ev_feed_event (EV_A_ w, EV_STAT); 2812 ev_feed_event (EV_A_ w, EV_STAT);
2295 } 2813 }
2296} 2814}
2299ev_stat_start (EV_P_ ev_stat *w) 2817ev_stat_start (EV_P_ ev_stat *w)
2300{ 2818{
2301 if (expect_false (ev_is_active (w))) 2819 if (expect_false (ev_is_active (w)))
2302 return; 2820 return;
2303 2821
2304 /* since we use memcmp, we need to clear any padding data etc. */
2305 memset (&w->prev, 0, sizeof (ev_statdata));
2306 memset (&w->attr, 0, sizeof (ev_statdata));
2307
2308 ev_stat_stat (EV_A_ w); 2822 ev_stat_stat (EV_A_ w);
2309 2823
2824 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2310 if (w->interval < MIN_STAT_INTERVAL) 2825 w->interval = MIN_STAT_INTERVAL;
2311 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2312 2826
2313 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2827 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2314 ev_set_priority (&w->timer, ev_priority (w)); 2828 ev_set_priority (&w->timer, ev_priority (w));
2315 2829
2316#if EV_USE_INOTIFY 2830#if EV_USE_INOTIFY
2317 infy_init (EV_A); 2831 infy_init (EV_A);
2318 2832
2319 if (fs_fd >= 0) 2833 if (fs_fd >= 0)
2320 infy_add (EV_A_ w); 2834 infy_add (EV_A_ w);
2321 else 2835 else
2322#endif 2836#endif
2323 ev_timer_start (EV_A_ &w->timer); 2837 ev_timer_again (EV_A_ &w->timer);
2324 2838
2325 ev_start (EV_A_ (W)w, 1); 2839 ev_start (EV_A_ (W)w, 1);
2840
2841 EV_FREQUENT_CHECK;
2326} 2842}
2327 2843
2328void 2844void
2329ev_stat_stop (EV_P_ ev_stat *w) 2845ev_stat_stop (EV_P_ ev_stat *w)
2330{ 2846{
2331 clear_pending (EV_A_ (W)w); 2847 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w))) 2848 if (expect_false (!ev_is_active (w)))
2333 return; 2849 return;
2334 2850
2851 EV_FREQUENT_CHECK;
2852
2335#if EV_USE_INOTIFY 2853#if EV_USE_INOTIFY
2336 infy_del (EV_A_ w); 2854 infy_del (EV_A_ w);
2337#endif 2855#endif
2338 ev_timer_stop (EV_A_ &w->timer); 2856 ev_timer_stop (EV_A_ &w->timer);
2339 2857
2340 ev_stop (EV_A_ (W)w); 2858 ev_stop (EV_A_ (W)w);
2859
2860 EV_FREQUENT_CHECK;
2341} 2861}
2342#endif 2862#endif
2343 2863
2344#if EV_IDLE_ENABLE 2864#if EV_IDLE_ENABLE
2345void 2865void
2347{ 2867{
2348 if (expect_false (ev_is_active (w))) 2868 if (expect_false (ev_is_active (w)))
2349 return; 2869 return;
2350 2870
2351 pri_adjust (EV_A_ (W)w); 2871 pri_adjust (EV_A_ (W)w);
2872
2873 EV_FREQUENT_CHECK;
2352 2874
2353 { 2875 {
2354 int active = ++idlecnt [ABSPRI (w)]; 2876 int active = ++idlecnt [ABSPRI (w)];
2355 2877
2356 ++idleall; 2878 ++idleall;
2357 ev_start (EV_A_ (W)w, active); 2879 ev_start (EV_A_ (W)w, active);
2358 2880
2359 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2881 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2360 idles [ABSPRI (w)][active - 1] = w; 2882 idles [ABSPRI (w)][active - 1] = w;
2361 } 2883 }
2884
2885 EV_FREQUENT_CHECK;
2362} 2886}
2363 2887
2364void 2888void
2365ev_idle_stop (EV_P_ ev_idle *w) 2889ev_idle_stop (EV_P_ ev_idle *w)
2366{ 2890{
2367 clear_pending (EV_A_ (W)w); 2891 clear_pending (EV_A_ (W)w);
2368 if (expect_false (!ev_is_active (w))) 2892 if (expect_false (!ev_is_active (w)))
2369 return; 2893 return;
2370 2894
2895 EV_FREQUENT_CHECK;
2896
2371 { 2897 {
2372 int active = ((W)w)->active; 2898 int active = ev_active (w);
2373 2899
2374 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2900 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2375 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2901 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2376 2902
2377 ev_stop (EV_A_ (W)w); 2903 ev_stop (EV_A_ (W)w);
2378 --idleall; 2904 --idleall;
2379 } 2905 }
2906
2907 EV_FREQUENT_CHECK;
2380} 2908}
2381#endif 2909#endif
2382 2910
2383void 2911void
2384ev_prepare_start (EV_P_ ev_prepare *w) 2912ev_prepare_start (EV_P_ ev_prepare *w)
2385{ 2913{
2386 if (expect_false (ev_is_active (w))) 2914 if (expect_false (ev_is_active (w)))
2387 return; 2915 return;
2916
2917 EV_FREQUENT_CHECK;
2388 2918
2389 ev_start (EV_A_ (W)w, ++preparecnt); 2919 ev_start (EV_A_ (W)w, ++preparecnt);
2390 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2920 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2391 prepares [preparecnt - 1] = w; 2921 prepares [preparecnt - 1] = w;
2922
2923 EV_FREQUENT_CHECK;
2392} 2924}
2393 2925
2394void 2926void
2395ev_prepare_stop (EV_P_ ev_prepare *w) 2927ev_prepare_stop (EV_P_ ev_prepare *w)
2396{ 2928{
2397 clear_pending (EV_A_ (W)w); 2929 clear_pending (EV_A_ (W)w);
2398 if (expect_false (!ev_is_active (w))) 2930 if (expect_false (!ev_is_active (w)))
2399 return; 2931 return;
2400 2932
2933 EV_FREQUENT_CHECK;
2934
2401 { 2935 {
2402 int active = ((W)w)->active; 2936 int active = ev_active (w);
2937
2403 prepares [active - 1] = prepares [--preparecnt]; 2938 prepares [active - 1] = prepares [--preparecnt];
2404 ((W)prepares [active - 1])->active = active; 2939 ev_active (prepares [active - 1]) = active;
2405 } 2940 }
2406 2941
2407 ev_stop (EV_A_ (W)w); 2942 ev_stop (EV_A_ (W)w);
2943
2944 EV_FREQUENT_CHECK;
2408} 2945}
2409 2946
2410void 2947void
2411ev_check_start (EV_P_ ev_check *w) 2948ev_check_start (EV_P_ ev_check *w)
2412{ 2949{
2413 if (expect_false (ev_is_active (w))) 2950 if (expect_false (ev_is_active (w)))
2414 return; 2951 return;
2952
2953 EV_FREQUENT_CHECK;
2415 2954
2416 ev_start (EV_A_ (W)w, ++checkcnt); 2955 ev_start (EV_A_ (W)w, ++checkcnt);
2417 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2956 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2418 checks [checkcnt - 1] = w; 2957 checks [checkcnt - 1] = w;
2958
2959 EV_FREQUENT_CHECK;
2419} 2960}
2420 2961
2421void 2962void
2422ev_check_stop (EV_P_ ev_check *w) 2963ev_check_stop (EV_P_ ev_check *w)
2423{ 2964{
2424 clear_pending (EV_A_ (W)w); 2965 clear_pending (EV_A_ (W)w);
2425 if (expect_false (!ev_is_active (w))) 2966 if (expect_false (!ev_is_active (w)))
2426 return; 2967 return;
2427 2968
2969 EV_FREQUENT_CHECK;
2970
2428 { 2971 {
2429 int active = ((W)w)->active; 2972 int active = ev_active (w);
2973
2430 checks [active - 1] = checks [--checkcnt]; 2974 checks [active - 1] = checks [--checkcnt];
2431 ((W)checks [active - 1])->active = active; 2975 ev_active (checks [active - 1]) = active;
2432 } 2976 }
2433 2977
2434 ev_stop (EV_A_ (W)w); 2978 ev_stop (EV_A_ (W)w);
2979
2980 EV_FREQUENT_CHECK;
2435} 2981}
2436 2982
2437#if EV_EMBED_ENABLE 2983#if EV_EMBED_ENABLE
2438void noinline 2984void noinline
2439ev_embed_sweep (EV_P_ ev_embed *w) 2985ev_embed_sweep (EV_P_ ev_embed *w)
2466 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3012 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2467 } 3013 }
2468 } 3014 }
2469} 3015}
2470 3016
3017static void
3018embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3019{
3020 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3021
3022 ev_embed_stop (EV_A_ w);
3023
3024 {
3025 struct ev_loop *loop = w->other;
3026
3027 ev_loop_fork (EV_A);
3028 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3029 }
3030
3031 ev_embed_start (EV_A_ w);
3032}
3033
2471#if 0 3034#if 0
2472static void 3035static void
2473embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3036embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2474{ 3037{
2475 ev_idle_stop (EV_A_ idle); 3038 ev_idle_stop (EV_A_ idle);
2482 if (expect_false (ev_is_active (w))) 3045 if (expect_false (ev_is_active (w)))
2483 return; 3046 return;
2484 3047
2485 { 3048 {
2486 struct ev_loop *loop = w->other; 3049 struct ev_loop *loop = w->other;
2487 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3050 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2488 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3051 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2489 } 3052 }
3053
3054 EV_FREQUENT_CHECK;
2490 3055
2491 ev_set_priority (&w->io, ev_priority (w)); 3056 ev_set_priority (&w->io, ev_priority (w));
2492 ev_io_start (EV_A_ &w->io); 3057 ev_io_start (EV_A_ &w->io);
2493 3058
2494 ev_prepare_init (&w->prepare, embed_prepare_cb); 3059 ev_prepare_init (&w->prepare, embed_prepare_cb);
2495 ev_set_priority (&w->prepare, EV_MINPRI); 3060 ev_set_priority (&w->prepare, EV_MINPRI);
2496 ev_prepare_start (EV_A_ &w->prepare); 3061 ev_prepare_start (EV_A_ &w->prepare);
2497 3062
3063 ev_fork_init (&w->fork, embed_fork_cb);
3064 ev_fork_start (EV_A_ &w->fork);
3065
2498 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3066 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2499 3067
2500 ev_start (EV_A_ (W)w, 1); 3068 ev_start (EV_A_ (W)w, 1);
3069
3070 EV_FREQUENT_CHECK;
2501} 3071}
2502 3072
2503void 3073void
2504ev_embed_stop (EV_P_ ev_embed *w) 3074ev_embed_stop (EV_P_ ev_embed *w)
2505{ 3075{
2506 clear_pending (EV_A_ (W)w); 3076 clear_pending (EV_A_ (W)w);
2507 if (expect_false (!ev_is_active (w))) 3077 if (expect_false (!ev_is_active (w)))
2508 return; 3078 return;
2509 3079
3080 EV_FREQUENT_CHECK;
3081
2510 ev_io_stop (EV_A_ &w->io); 3082 ev_io_stop (EV_A_ &w->io);
2511 ev_prepare_stop (EV_A_ &w->prepare); 3083 ev_prepare_stop (EV_A_ &w->prepare);
3084 ev_fork_stop (EV_A_ &w->fork);
2512 3085
2513 ev_stop (EV_A_ (W)w); 3086 EV_FREQUENT_CHECK;
2514} 3087}
2515#endif 3088#endif
2516 3089
2517#if EV_FORK_ENABLE 3090#if EV_FORK_ENABLE
2518void 3091void
2519ev_fork_start (EV_P_ ev_fork *w) 3092ev_fork_start (EV_P_ ev_fork *w)
2520{ 3093{
2521 if (expect_false (ev_is_active (w))) 3094 if (expect_false (ev_is_active (w)))
2522 return; 3095 return;
3096
3097 EV_FREQUENT_CHECK;
2523 3098
2524 ev_start (EV_A_ (W)w, ++forkcnt); 3099 ev_start (EV_A_ (W)w, ++forkcnt);
2525 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3100 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2526 forks [forkcnt - 1] = w; 3101 forks [forkcnt - 1] = w;
3102
3103 EV_FREQUENT_CHECK;
2527} 3104}
2528 3105
2529void 3106void
2530ev_fork_stop (EV_P_ ev_fork *w) 3107ev_fork_stop (EV_P_ ev_fork *w)
2531{ 3108{
2532 clear_pending (EV_A_ (W)w); 3109 clear_pending (EV_A_ (W)w);
2533 if (expect_false (!ev_is_active (w))) 3110 if (expect_false (!ev_is_active (w)))
2534 return; 3111 return;
2535 3112
3113 EV_FREQUENT_CHECK;
3114
2536 { 3115 {
2537 int active = ((W)w)->active; 3116 int active = ev_active (w);
3117
2538 forks [active - 1] = forks [--forkcnt]; 3118 forks [active - 1] = forks [--forkcnt];
2539 ((W)forks [active - 1])->active = active; 3119 ev_active (forks [active - 1]) = active;
2540 } 3120 }
2541 3121
2542 ev_stop (EV_A_ (W)w); 3122 ev_stop (EV_A_ (W)w);
3123
3124 EV_FREQUENT_CHECK;
2543} 3125}
2544#endif 3126#endif
2545 3127
2546#if EV_ASYNC_ENABLE 3128#if EV_ASYNC_ENABLE
2547void 3129void
2549{ 3131{
2550 if (expect_false (ev_is_active (w))) 3132 if (expect_false (ev_is_active (w)))
2551 return; 3133 return;
2552 3134
2553 evpipe_init (EV_A); 3135 evpipe_init (EV_A);
3136
3137 EV_FREQUENT_CHECK;
2554 3138
2555 ev_start (EV_A_ (W)w, ++asynccnt); 3139 ev_start (EV_A_ (W)w, ++asynccnt);
2556 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3140 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2557 asyncs [asynccnt - 1] = w; 3141 asyncs [asynccnt - 1] = w;
3142
3143 EV_FREQUENT_CHECK;
2558} 3144}
2559 3145
2560void 3146void
2561ev_async_stop (EV_P_ ev_async *w) 3147ev_async_stop (EV_P_ ev_async *w)
2562{ 3148{
2563 clear_pending (EV_A_ (W)w); 3149 clear_pending (EV_A_ (W)w);
2564 if (expect_false (!ev_is_active (w))) 3150 if (expect_false (!ev_is_active (w)))
2565 return; 3151 return;
2566 3152
3153 EV_FREQUENT_CHECK;
3154
2567 { 3155 {
2568 int active = ((W)w)->active; 3156 int active = ev_active (w);
3157
2569 asyncs [active - 1] = asyncs [--asynccnt]; 3158 asyncs [active - 1] = asyncs [--asynccnt];
2570 ((W)asyncs [active - 1])->active = active; 3159 ev_active (asyncs [active - 1]) = active;
2571 } 3160 }
2572 3161
2573 ev_stop (EV_A_ (W)w); 3162 ev_stop (EV_A_ (W)w);
3163
3164 EV_FREQUENT_CHECK;
2574} 3165}
2575 3166
2576void 3167void
2577ev_async_send (EV_P_ ev_async *w) 3168ev_async_send (EV_P_ ev_async *w)
2578{ 3169{
2595once_cb (EV_P_ struct ev_once *once, int revents) 3186once_cb (EV_P_ struct ev_once *once, int revents)
2596{ 3187{
2597 void (*cb)(int revents, void *arg) = once->cb; 3188 void (*cb)(int revents, void *arg) = once->cb;
2598 void *arg = once->arg; 3189 void *arg = once->arg;
2599 3190
2600 ev_io_stop (EV_A_ &once->io); 3191 ev_io_stop (EV_A_ &once->io);
2601 ev_timer_stop (EV_A_ &once->to); 3192 ev_timer_stop (EV_A_ &once->to);
2602 ev_free (once); 3193 ev_free (once);
2603 3194
2604 cb (revents, arg); 3195 cb (revents, arg);
2605} 3196}
2606 3197
2607static void 3198static void
2608once_cb_io (EV_P_ ev_io *w, int revents) 3199once_cb_io (EV_P_ ev_io *w, int revents)
2609{ 3200{
2610 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3201 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3202
3203 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2611} 3204}
2612 3205
2613static void 3206static void
2614once_cb_to (EV_P_ ev_timer *w, int revents) 3207once_cb_to (EV_P_ ev_timer *w, int revents)
2615{ 3208{
2616 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3209 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3210
3211 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2617} 3212}
2618 3213
2619void 3214void
2620ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3215ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2621{ 3216{
2643 ev_timer_set (&once->to, timeout, 0.); 3238 ev_timer_set (&once->to, timeout, 0.);
2644 ev_timer_start (EV_A_ &once->to); 3239 ev_timer_start (EV_A_ &once->to);
2645 } 3240 }
2646} 3241}
2647 3242
3243/*****************************************************************************/
3244
3245#if EV_WALK_ENABLE
3246void
3247ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3248{
3249 int i, j;
3250 ev_watcher_list *wl, *wn;
3251
3252 if (types & (EV_IO | EV_EMBED))
3253 for (i = 0; i < anfdmax; ++i)
3254 for (wl = anfds [i].head; wl; )
3255 {
3256 wn = wl->next;
3257
3258#if EV_EMBED_ENABLE
3259 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3260 {
3261 if (types & EV_EMBED)
3262 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3263 }
3264 else
3265#endif
3266#if EV_USE_INOTIFY
3267 if (ev_cb ((ev_io *)wl) == infy_cb)
3268 ;
3269 else
3270#endif
3271 if ((ev_io *)wl != &pipe_w)
3272 if (types & EV_IO)
3273 cb (EV_A_ EV_IO, wl);
3274
3275 wl = wn;
3276 }
3277
3278 if (types & (EV_TIMER | EV_STAT))
3279 for (i = timercnt + HEAP0; i-- > HEAP0; )
3280#if EV_STAT_ENABLE
3281 /*TODO: timer is not always active*/
3282 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3283 {
3284 if (types & EV_STAT)
3285 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3286 }
3287 else
3288#endif
3289 if (types & EV_TIMER)
3290 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3291
3292#if EV_PERIODIC_ENABLE
3293 if (types & EV_PERIODIC)
3294 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3295 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3296#endif
3297
3298#if EV_IDLE_ENABLE
3299 if (types & EV_IDLE)
3300 for (j = NUMPRI; i--; )
3301 for (i = idlecnt [j]; i--; )
3302 cb (EV_A_ EV_IDLE, idles [j][i]);
3303#endif
3304
3305#if EV_FORK_ENABLE
3306 if (types & EV_FORK)
3307 for (i = forkcnt; i--; )
3308 if (ev_cb (forks [i]) != embed_fork_cb)
3309 cb (EV_A_ EV_FORK, forks [i]);
3310#endif
3311
3312#if EV_ASYNC_ENABLE
3313 if (types & EV_ASYNC)
3314 for (i = asynccnt; i--; )
3315 cb (EV_A_ EV_ASYNC, asyncs [i]);
3316#endif
3317
3318 if (types & EV_PREPARE)
3319 for (i = preparecnt; i--; )
3320#if EV_EMBED_ENABLE
3321 if (ev_cb (prepares [i]) != embed_prepare_cb)
3322#endif
3323 cb (EV_A_ EV_PREPARE, prepares [i]);
3324
3325 if (types & EV_CHECK)
3326 for (i = checkcnt; i--; )
3327 cb (EV_A_ EV_CHECK, checks [i]);
3328
3329 if (types & EV_SIGNAL)
3330 for (i = 0; i < signalmax; ++i)
3331 for (wl = signals [i].head; wl; )
3332 {
3333 wn = wl->next;
3334 cb (EV_A_ EV_SIGNAL, wl);
3335 wl = wn;
3336 }
3337
3338 if (types & EV_CHILD)
3339 for (i = EV_PID_HASHSIZE; i--; )
3340 for (wl = childs [i]; wl; )
3341 {
3342 wn = wl->next;
3343 cb (EV_A_ EV_CHILD, wl);
3344 wl = wn;
3345 }
3346/* EV_STAT 0x00001000 /* stat data changed */
3347/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3348}
3349#endif
3350
2648#if EV_MULTIPLICITY 3351#if EV_MULTIPLICITY
2649 #include "ev_wrap.h" 3352 #include "ev_wrap.h"
2650#endif 3353#endif
2651 3354
2652#ifdef __cplusplus 3355#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines