ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.250 by root, Thu May 22 02:44:57 2008 UTC vs.
Revision 1.288 by root, Sat Apr 25 14:12:48 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
63
52# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
55# endif 67# endif
56# ifndef EV_USE_REALTIME 68# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 0
58# endif 70# endif
59# else 71# else
60# ifndef EV_USE_MONOTONIC 72# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 73# define EV_USE_MONOTONIC 0
62# endif 74# endif
154#ifndef _WIN32 166#ifndef _WIN32
155# include <sys/time.h> 167# include <sys/time.h>
156# include <sys/wait.h> 168# include <sys/wait.h>
157# include <unistd.h> 169# include <unistd.h>
158#else 170#else
171# include <io.h>
159# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 173# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
163# endif 176# endif
164#endif 177#endif
165 178
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
167 180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
188
168#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
169# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif
170#endif 195#endif
171 196
172#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 199#endif
175 200
176#ifndef EV_USE_NANOSLEEP 201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
177# define EV_USE_NANOSLEEP 0 205# define EV_USE_NANOSLEEP 0
206# endif
178#endif 207#endif
179 208
180#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
182#endif 211#endif
277# include <sys/select.h> 306# include <sys/select.h>
278# endif 307# endif
279#endif 308#endif
280 309
281#if EV_USE_INOTIFY 310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
282# include <sys/inotify.h> 313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
283#endif 319#endif
284 320
285#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
286# include <winsock.h> 322# include <winsock.h>
323#endif
324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
287#endif 332#endif
288 333
289#if EV_USE_EVENTFD 334#if EV_USE_EVENTFD
290/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
291# include <stdint.h> 336# include <stdint.h>
352typedef ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
353 398
354#define ev_active(w) ((W)(w))->active 399#define ev_active(w) ((W)(w))->active
355#define ev_at(w) ((WT)(w))->at 400#define ev_at(w) ((WT)(w))->at
356 401
357#if EV_USE_MONOTONIC 402#if EV_USE_REALTIME
358/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
359/* giving it a reasonably high chance of working on typical architetcures */ 404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
360static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
361#endif 410#endif
362 411
363#ifdef _WIN32 412#ifdef _WIN32
364# include "ev_win32.c" 413# include "ev_win32.c"
373{ 422{
374 syserr_cb = cb; 423 syserr_cb = cb;
375} 424}
376 425
377static void noinline 426static void noinline
378syserr (const char *msg) 427ev_syserr (const char *msg)
379{ 428{
380 if (!msg) 429 if (!msg)
381 msg = "(libev) system error"; 430 msg = "(libev) system error";
382 431
383 if (syserr_cb) 432 if (syserr_cb)
429#define ev_malloc(size) ev_realloc (0, (size)) 478#define ev_malloc(size) ev_realloc (0, (size))
430#define ev_free(ptr) ev_realloc ((ptr), 0) 479#define ev_free(ptr) ev_realloc ((ptr), 0)
431 480
432/*****************************************************************************/ 481/*****************************************************************************/
433 482
483/* file descriptor info structure */
434typedef struct 484typedef struct
435{ 485{
436 WL head; 486 WL head;
437 unsigned char events; 487 unsigned char events; /* the events watched for */
488 unsigned char reify; /* flag set when this ANFD needs reification */
489 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
438 unsigned char reify; 490 unsigned char unused;
491#if EV_USE_EPOLL
492 unsigned int egen; /* generation counter to counter epoll bugs */
493#endif
439#if EV_SELECT_IS_WINSOCKET 494#if EV_SELECT_IS_WINSOCKET
440 SOCKET handle; 495 SOCKET handle;
441#endif 496#endif
442} ANFD; 497} ANFD;
443 498
499/* stores the pending event set for a given watcher */
444typedef struct 500typedef struct
445{ 501{
446 W w; 502 W w;
447 int events; 503 int events; /* the pending event set for the given watcher */
448} ANPENDING; 504} ANPENDING;
449 505
450#if EV_USE_INOTIFY 506#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */ 507/* hash table entry per inotify-id */
452typedef struct 508typedef struct
455} ANFS; 511} ANFS;
456#endif 512#endif
457 513
458/* Heap Entry */ 514/* Heap Entry */
459#if EV_HEAP_CACHE_AT 515#if EV_HEAP_CACHE_AT
516 /* a heap element */
460 typedef struct { 517 typedef struct {
461 ev_tstamp at; 518 ev_tstamp at;
462 WT w; 519 WT w;
463 } ANHE; 520 } ANHE;
464 521
465 #define ANHE_w(he) (he).w /* access watcher, read-write */ 522 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */ 523 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 524 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else 525#else
526 /* a heap element */
469 typedef WT ANHE; 527 typedef WT ANHE;
470 528
471 #define ANHE_w(he) (he) 529 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at 530 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he) 531 #define ANHE_at_cache(he)
503 561
504ev_tstamp 562ev_tstamp
505ev_time (void) 563ev_time (void)
506{ 564{
507#if EV_USE_REALTIME 565#if EV_USE_REALTIME
566 if (expect_true (have_realtime))
567 {
508 struct timespec ts; 568 struct timespec ts;
509 clock_gettime (CLOCK_REALTIME, &ts); 569 clock_gettime (CLOCK_REALTIME, &ts);
510 return ts.tv_sec + ts.tv_nsec * 1e-9; 570 return ts.tv_sec + ts.tv_nsec * 1e-9;
511#else 571 }
572#endif
573
512 struct timeval tv; 574 struct timeval tv;
513 gettimeofday (&tv, 0); 575 gettimeofday (&tv, 0);
514 return tv.tv_sec + tv.tv_usec * 1e-6; 576 return tv.tv_sec + tv.tv_usec * 1e-6;
515#endif
516} 577}
517 578
518ev_tstamp inline_size 579inline_size ev_tstamp
519get_clock (void) 580get_clock (void)
520{ 581{
521#if EV_USE_MONOTONIC 582#if EV_USE_MONOTONIC
522 if (expect_true (have_monotonic)) 583 if (expect_true (have_monotonic))
523 { 584 {
556 struct timeval tv; 617 struct timeval tv;
557 618
558 tv.tv_sec = (time_t)delay; 619 tv.tv_sec = (time_t)delay;
559 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 620 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
560 621
622 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
623 /* somehting nto guaranteed by newer posix versions, but guaranteed */
624 /* by older ones */
561 select (0, 0, 0, 0, &tv); 625 select (0, 0, 0, 0, &tv);
562#endif 626#endif
563 } 627 }
564} 628}
565 629
566/*****************************************************************************/ 630/*****************************************************************************/
567 631
568#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 632#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
569 633
570int inline_size 634/* find a suitable new size for the given array, */
635/* hopefully by rounding to a ncie-to-malloc size */
636inline_size int
571array_nextsize (int elem, int cur, int cnt) 637array_nextsize (int elem, int cur, int cnt)
572{ 638{
573 int ncur = cur + 1; 639 int ncur = cur + 1;
574 640
575 do 641 do
592array_realloc (int elem, void *base, int *cur, int cnt) 658array_realloc (int elem, void *base, int *cur, int cnt)
593{ 659{
594 *cur = array_nextsize (elem, *cur, cnt); 660 *cur = array_nextsize (elem, *cur, cnt);
595 return ev_realloc (base, elem * *cur); 661 return ev_realloc (base, elem * *cur);
596} 662}
663
664#define array_init_zero(base,count) \
665 memset ((void *)(base), 0, sizeof (*(base)) * (count))
597 666
598#define array_needsize(type,base,cur,cnt,init) \ 667#define array_needsize(type,base,cur,cnt,init) \
599 if (expect_false ((cnt) > (cur))) \ 668 if (expect_false ((cnt) > (cur))) \
600 { \ 669 { \
601 int ocur_ = (cur); \ 670 int ocur_ = (cur); \
613 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 682 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
614 } 683 }
615#endif 684#endif
616 685
617#define array_free(stem, idx) \ 686#define array_free(stem, idx) \
618 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 687 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
619 688
620/*****************************************************************************/ 689/*****************************************************************************/
690
691/* dummy callback for pending events */
692static void noinline
693pendingcb (EV_P_ ev_prepare *w, int revents)
694{
695}
621 696
622void noinline 697void noinline
623ev_feed_event (EV_P_ void *w, int revents) 698ev_feed_event (EV_P_ void *w, int revents)
624{ 699{
625 W w_ = (W)w; 700 W w_ = (W)w;
634 pendings [pri][w_->pending - 1].w = w_; 709 pendings [pri][w_->pending - 1].w = w_;
635 pendings [pri][w_->pending - 1].events = revents; 710 pendings [pri][w_->pending - 1].events = revents;
636 } 711 }
637} 712}
638 713
639void inline_speed 714inline_speed void
715feed_reverse (EV_P_ W w)
716{
717 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
718 rfeeds [rfeedcnt++] = w;
719}
720
721inline_size void
722feed_reverse_done (EV_P_ int revents)
723{
724 do
725 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
726 while (rfeedcnt);
727}
728
729inline_speed void
640queue_events (EV_P_ W *events, int eventcnt, int type) 730queue_events (EV_P_ W *events, int eventcnt, int type)
641{ 731{
642 int i; 732 int i;
643 733
644 for (i = 0; i < eventcnt; ++i) 734 for (i = 0; i < eventcnt; ++i)
645 ev_feed_event (EV_A_ events [i], type); 735 ev_feed_event (EV_A_ events [i], type);
646} 736}
647 737
648/*****************************************************************************/ 738/*****************************************************************************/
649 739
650void inline_size 740inline_speed void
651anfds_init (ANFD *base, int count)
652{
653 while (count--)
654 {
655 base->head = 0;
656 base->events = EV_NONE;
657 base->reify = 0;
658
659 ++base;
660 }
661}
662
663void inline_speed
664fd_event (EV_P_ int fd, int revents) 741fd_event (EV_P_ int fd, int revents)
665{ 742{
666 ANFD *anfd = anfds + fd; 743 ANFD *anfd = anfds + fd;
667 ev_io *w; 744 ev_io *w;
668 745
680{ 757{
681 if (fd >= 0 && fd < anfdmax) 758 if (fd >= 0 && fd < anfdmax)
682 fd_event (EV_A_ fd, revents); 759 fd_event (EV_A_ fd, revents);
683} 760}
684 761
685void inline_size 762/* make sure the external fd watch events are in-sync */
763/* with the kernel/libev internal state */
764inline_size void
686fd_reify (EV_P) 765fd_reify (EV_P)
687{ 766{
688 int i; 767 int i;
689 768
690 for (i = 0; i < fdchangecnt; ++i) 769 for (i = 0; i < fdchangecnt; ++i)
699 events |= (unsigned char)w->events; 778 events |= (unsigned char)w->events;
700 779
701#if EV_SELECT_IS_WINSOCKET 780#if EV_SELECT_IS_WINSOCKET
702 if (events) 781 if (events)
703 { 782 {
704 unsigned long argp; 783 unsigned long arg;
705 #ifdef EV_FD_TO_WIN32_HANDLE 784 #ifdef EV_FD_TO_WIN32_HANDLE
706 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 785 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
707 #else 786 #else
708 anfd->handle = _get_osfhandle (fd); 787 anfd->handle = _get_osfhandle (fd);
709 #endif 788 #endif
710 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 789 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
711 } 790 }
712#endif 791#endif
713 792
714 { 793 {
715 unsigned char o_events = anfd->events; 794 unsigned char o_events = anfd->events;
716 unsigned char o_reify = anfd->reify; 795 unsigned char o_reify = anfd->reify;
717 796
718 anfd->reify = 0; 797 anfd->reify = 0;
719 anfd->events = events; 798 anfd->events = events;
720 799
721 if (o_events != events || o_reify & EV_IOFDSET) 800 if (o_events != events || o_reify & EV__IOFDSET)
722 backend_modify (EV_A_ fd, o_events, events); 801 backend_modify (EV_A_ fd, o_events, events);
723 } 802 }
724 } 803 }
725 804
726 fdchangecnt = 0; 805 fdchangecnt = 0;
727} 806}
728 807
729void inline_size 808/* something about the given fd changed */
809inline_size void
730fd_change (EV_P_ int fd, int flags) 810fd_change (EV_P_ int fd, int flags)
731{ 811{
732 unsigned char reify = anfds [fd].reify; 812 unsigned char reify = anfds [fd].reify;
733 anfds [fd].reify |= flags; 813 anfds [fd].reify |= flags;
734 814
738 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 818 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
739 fdchanges [fdchangecnt - 1] = fd; 819 fdchanges [fdchangecnt - 1] = fd;
740 } 820 }
741} 821}
742 822
743void inline_speed 823/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
824inline_speed void
744fd_kill (EV_P_ int fd) 825fd_kill (EV_P_ int fd)
745{ 826{
746 ev_io *w; 827 ev_io *w;
747 828
748 while ((w = (ev_io *)anfds [fd].head)) 829 while ((w = (ev_io *)anfds [fd].head))
750 ev_io_stop (EV_A_ w); 831 ev_io_stop (EV_A_ w);
751 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 832 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
752 } 833 }
753} 834}
754 835
755int inline_size 836/* check whether the given fd is atcually valid, for error recovery */
837inline_size int
756fd_valid (int fd) 838fd_valid (int fd)
757{ 839{
758#ifdef _WIN32 840#ifdef _WIN32
759 return _get_osfhandle (fd) != -1; 841 return _get_osfhandle (fd) != -1;
760#else 842#else
768{ 850{
769 int fd; 851 int fd;
770 852
771 for (fd = 0; fd < anfdmax; ++fd) 853 for (fd = 0; fd < anfdmax; ++fd)
772 if (anfds [fd].events) 854 if (anfds [fd].events)
773 if (!fd_valid (fd) == -1 && errno == EBADF) 855 if (!fd_valid (fd) && errno == EBADF)
774 fd_kill (EV_A_ fd); 856 fd_kill (EV_A_ fd);
775} 857}
776 858
777/* called on ENOMEM in select/poll to kill some fds and retry */ 859/* called on ENOMEM in select/poll to kill some fds and retry */
778static void noinline 860static void noinline
796 878
797 for (fd = 0; fd < anfdmax; ++fd) 879 for (fd = 0; fd < anfdmax; ++fd)
798 if (anfds [fd].events) 880 if (anfds [fd].events)
799 { 881 {
800 anfds [fd].events = 0; 882 anfds [fd].events = 0;
883 anfds [fd].emask = 0;
801 fd_change (EV_A_ fd, EV_IOFDSET | 1); 884 fd_change (EV_A_ fd, EV__IOFDSET | 1);
802 } 885 }
803} 886}
804 887
805/*****************************************************************************/ 888/*****************************************************************************/
806 889
822#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 905#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 906#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k)) 907#define UPHEAP_DONE(p,k) ((p) == (k))
825 908
826/* away from the root */ 909/* away from the root */
827void inline_speed 910inline_speed void
828downheap (ANHE *heap, int N, int k) 911downheap (ANHE *heap, int N, int k)
829{ 912{
830 ANHE he = heap [k]; 913 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0; 914 ANHE *E = heap + N + HEAP0;
832 915
872#define HEAP0 1 955#define HEAP0 1
873#define HPARENT(k) ((k) >> 1) 956#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p)) 957#define UPHEAP_DONE(p,k) (!(p))
875 958
876/* away from the root */ 959/* away from the root */
877void inline_speed 960inline_speed void
878downheap (ANHE *heap, int N, int k) 961downheap (ANHE *heap, int N, int k)
879{ 962{
880 ANHE he = heap [k]; 963 ANHE he = heap [k];
881 964
882 for (;;) 965 for (;;)
902 ev_active (ANHE_w (he)) = k; 985 ev_active (ANHE_w (he)) = k;
903} 986}
904#endif 987#endif
905 988
906/* towards the root */ 989/* towards the root */
907void inline_speed 990inline_speed void
908upheap (ANHE *heap, int k) 991upheap (ANHE *heap, int k)
909{ 992{
910 ANHE he = heap [k]; 993 ANHE he = heap [k];
911 994
912 for (;;) 995 for (;;)
923 1006
924 heap [k] = he; 1007 heap [k] = he;
925 ev_active (ANHE_w (he)) = k; 1008 ev_active (ANHE_w (he)) = k;
926} 1009}
927 1010
928void inline_size 1011/* move an element suitably so it is in a correct place */
1012inline_size void
929adjustheap (ANHE *heap, int N, int k) 1013adjustheap (ANHE *heap, int N, int k)
930{ 1014{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1015 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
932 upheap (heap, k); 1016 upheap (heap, k);
933 else 1017 else
934 downheap (heap, N, k); 1018 downheap (heap, N, k);
935} 1019}
936 1020
937/* rebuild the heap: this function is used only once and executed rarely */ 1021/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size 1022inline_size void
939reheap (ANHE *heap, int N) 1023reheap (ANHE *heap, int N)
940{ 1024{
941 int i; 1025 int i;
1026
942 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1027 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
943 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */ 1028 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
944 for (i = 0; i < N; ++i) 1029 for (i = 0; i < N; ++i)
945 upheap (heap, i + HEAP0); 1030 upheap (heap, i + HEAP0);
946} 1031}
947 1032
948#if EV_VERIFY
949static void
950checkheap (ANHE *heap, int N)
951{
952 int i;
953
954 for (i = HEAP0; i < N + HEAP0; ++i)
955 {
956 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
957 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
958 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
959 }
960}
961#endif
962
963/*****************************************************************************/ 1033/*****************************************************************************/
964 1034
1035/* associate signal watchers to a signal signal */
965typedef struct 1036typedef struct
966{ 1037{
967 WL head; 1038 WL head;
968 EV_ATOMIC_T gotsig; 1039 EV_ATOMIC_T gotsig;
969} ANSIG; 1040} ANSIG;
971static ANSIG *signals; 1042static ANSIG *signals;
972static int signalmax; 1043static int signalmax;
973 1044
974static EV_ATOMIC_T gotsig; 1045static EV_ATOMIC_T gotsig;
975 1046
976void inline_size
977signals_init (ANSIG *base, int count)
978{
979 while (count--)
980 {
981 base->head = 0;
982 base->gotsig = 0;
983
984 ++base;
985 }
986}
987
988/*****************************************************************************/ 1047/*****************************************************************************/
989 1048
990void inline_speed 1049/* used to prepare libev internal fd's */
1050/* this is not fork-safe */
1051inline_speed void
991fd_intern (int fd) 1052fd_intern (int fd)
992{ 1053{
993#ifdef _WIN32 1054#ifdef _WIN32
994 int arg = 1; 1055 unsigned long arg = 1;
995 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1056 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
996#else 1057#else
997 fcntl (fd, F_SETFD, FD_CLOEXEC); 1058 fcntl (fd, F_SETFD, FD_CLOEXEC);
998 fcntl (fd, F_SETFL, O_NONBLOCK); 1059 fcntl (fd, F_SETFL, O_NONBLOCK);
999#endif 1060#endif
1000} 1061}
1001 1062
1002static void noinline 1063static void noinline
1003evpipe_init (EV_P) 1064evpipe_init (EV_P)
1004{ 1065{
1005 if (!ev_is_active (&pipeev)) 1066 if (!ev_is_active (&pipe_w))
1006 { 1067 {
1007#if EV_USE_EVENTFD 1068#if EV_USE_EVENTFD
1008 if ((evfd = eventfd (0, 0)) >= 0) 1069 if ((evfd = eventfd (0, 0)) >= 0)
1009 { 1070 {
1010 evpipe [0] = -1; 1071 evpipe [0] = -1;
1011 fd_intern (evfd); 1072 fd_intern (evfd);
1012 ev_io_set (&pipeev, evfd, EV_READ); 1073 ev_io_set (&pipe_w, evfd, EV_READ);
1013 } 1074 }
1014 else 1075 else
1015#endif 1076#endif
1016 { 1077 {
1017 while (pipe (evpipe)) 1078 while (pipe (evpipe))
1018 syserr ("(libev) error creating signal/async pipe"); 1079 ev_syserr ("(libev) error creating signal/async pipe");
1019 1080
1020 fd_intern (evpipe [0]); 1081 fd_intern (evpipe [0]);
1021 fd_intern (evpipe [1]); 1082 fd_intern (evpipe [1]);
1022 ev_io_set (&pipeev, evpipe [0], EV_READ); 1083 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1023 } 1084 }
1024 1085
1025 ev_io_start (EV_A_ &pipeev); 1086 ev_io_start (EV_A_ &pipe_w);
1026 ev_unref (EV_A); /* watcher should not keep loop alive */ 1087 ev_unref (EV_A); /* watcher should not keep loop alive */
1027 } 1088 }
1028} 1089}
1029 1090
1030void inline_size 1091inline_size void
1031evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1092evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1032{ 1093{
1033 if (!*flag) 1094 if (!*flag)
1034 { 1095 {
1035 int old_errno = errno; /* save errno because write might clobber it */ 1096 int old_errno = errno; /* save errno because write might clobber it */
1048 1109
1049 errno = old_errno; 1110 errno = old_errno;
1050 } 1111 }
1051} 1112}
1052 1113
1114/* called whenever the libev signal pipe */
1115/* got some events (signal, async) */
1053static void 1116static void
1054pipecb (EV_P_ ev_io *iow, int revents) 1117pipecb (EV_P_ ev_io *iow, int revents)
1055{ 1118{
1056#if EV_USE_EVENTFD 1119#if EV_USE_EVENTFD
1057 if (evfd >= 0) 1120 if (evfd >= 0)
1113ev_feed_signal_event (EV_P_ int signum) 1176ev_feed_signal_event (EV_P_ int signum)
1114{ 1177{
1115 WL w; 1178 WL w;
1116 1179
1117#if EV_MULTIPLICITY 1180#if EV_MULTIPLICITY
1118 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1181 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1119#endif 1182#endif
1120 1183
1121 --signum; 1184 --signum;
1122 1185
1123 if (signum < 0 || signum >= signalmax) 1186 if (signum < 0 || signum >= signalmax)
1139 1202
1140#ifndef WIFCONTINUED 1203#ifndef WIFCONTINUED
1141# define WIFCONTINUED(status) 0 1204# define WIFCONTINUED(status) 0
1142#endif 1205#endif
1143 1206
1144void inline_speed 1207/* handle a single child status event */
1208inline_speed void
1145child_reap (EV_P_ int chain, int pid, int status) 1209child_reap (EV_P_ int chain, int pid, int status)
1146{ 1210{
1147 ev_child *w; 1211 ev_child *w;
1148 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1212 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1149 1213
1162 1226
1163#ifndef WCONTINUED 1227#ifndef WCONTINUED
1164# define WCONTINUED 0 1228# define WCONTINUED 0
1165#endif 1229#endif
1166 1230
1231/* called on sigchld etc., calls waitpid */
1167static void 1232static void
1168childcb (EV_P_ ev_signal *sw, int revents) 1233childcb (EV_P_ ev_signal *sw, int revents)
1169{ 1234{
1170 int pid, status; 1235 int pid, status;
1171 1236
1252 /* kqueue is borked on everything but netbsd apparently */ 1317 /* kqueue is borked on everything but netbsd apparently */
1253 /* it usually doesn't work correctly on anything but sockets and pipes */ 1318 /* it usually doesn't work correctly on anything but sockets and pipes */
1254 flags &= ~EVBACKEND_KQUEUE; 1319 flags &= ~EVBACKEND_KQUEUE;
1255#endif 1320#endif
1256#ifdef __APPLE__ 1321#ifdef __APPLE__
1257 // flags &= ~EVBACKEND_KQUEUE; for documentation 1322 /* only select works correctly on that "unix-certified" platform */
1258 flags &= ~EVBACKEND_POLL; 1323 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1324 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1259#endif 1325#endif
1260 1326
1261 return flags; 1327 return flags;
1262} 1328}
1263 1329
1295ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1361ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1296{ 1362{
1297 timeout_blocktime = interval; 1363 timeout_blocktime = interval;
1298} 1364}
1299 1365
1366/* initialise a loop structure, must be zero-initialised */
1300static void noinline 1367static void noinline
1301loop_init (EV_P_ unsigned int flags) 1368loop_init (EV_P_ unsigned int flags)
1302{ 1369{
1303 if (!backend) 1370 if (!backend)
1304 { 1371 {
1372#if EV_USE_REALTIME
1373 if (!have_realtime)
1374 {
1375 struct timespec ts;
1376
1377 if (!clock_gettime (CLOCK_REALTIME, &ts))
1378 have_realtime = 1;
1379 }
1380#endif
1381
1305#if EV_USE_MONOTONIC 1382#if EV_USE_MONOTONIC
1383 if (!have_monotonic)
1306 { 1384 {
1307 struct timespec ts; 1385 struct timespec ts;
1386
1308 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1387 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1309 have_monotonic = 1; 1388 have_monotonic = 1;
1310 } 1389 }
1311#endif 1390#endif
1312 1391
1313 ev_rt_now = ev_time (); 1392 ev_rt_now = ev_time ();
1314 mn_now = get_clock (); 1393 mn_now = get_clock ();
1315 now_floor = mn_now; 1394 now_floor = mn_now;
1352#endif 1431#endif
1353#if EV_USE_SELECT 1432#if EV_USE_SELECT
1354 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1433 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1355#endif 1434#endif
1356 1435
1436 ev_prepare_init (&pending_w, pendingcb);
1437
1357 ev_init (&pipeev, pipecb); 1438 ev_init (&pipe_w, pipecb);
1358 ev_set_priority (&pipeev, EV_MAXPRI); 1439 ev_set_priority (&pipe_w, EV_MAXPRI);
1359 } 1440 }
1360} 1441}
1361 1442
1443/* free up a loop structure */
1362static void noinline 1444static void noinline
1363loop_destroy (EV_P) 1445loop_destroy (EV_P)
1364{ 1446{
1365 int i; 1447 int i;
1366 1448
1367 if (ev_is_active (&pipeev)) 1449 if (ev_is_active (&pipe_w))
1368 { 1450 {
1369 ev_ref (EV_A); /* signal watcher */ 1451 ev_ref (EV_A); /* signal watcher */
1370 ev_io_stop (EV_A_ &pipeev); 1452 ev_io_stop (EV_A_ &pipe_w);
1371 1453
1372#if EV_USE_EVENTFD 1454#if EV_USE_EVENTFD
1373 if (evfd >= 0) 1455 if (evfd >= 0)
1374 close (evfd); 1456 close (evfd);
1375#endif 1457#endif
1414 } 1496 }
1415 1497
1416 ev_free (anfds); anfdmax = 0; 1498 ev_free (anfds); anfdmax = 0;
1417 1499
1418 /* have to use the microsoft-never-gets-it-right macro */ 1500 /* have to use the microsoft-never-gets-it-right macro */
1501 array_free (rfeed, EMPTY);
1419 array_free (fdchange, EMPTY); 1502 array_free (fdchange, EMPTY);
1420 array_free (timer, EMPTY); 1503 array_free (timer, EMPTY);
1421#if EV_PERIODIC_ENABLE 1504#if EV_PERIODIC_ENABLE
1422 array_free (periodic, EMPTY); 1505 array_free (periodic, EMPTY);
1423#endif 1506#endif
1432 1515
1433 backend = 0; 1516 backend = 0;
1434} 1517}
1435 1518
1436#if EV_USE_INOTIFY 1519#if EV_USE_INOTIFY
1437void inline_size infy_fork (EV_P); 1520inline_size void infy_fork (EV_P);
1438#endif 1521#endif
1439 1522
1440void inline_size 1523inline_size void
1441loop_fork (EV_P) 1524loop_fork (EV_P)
1442{ 1525{
1443#if EV_USE_PORT 1526#if EV_USE_PORT
1444 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1527 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1445#endif 1528#endif
1451#endif 1534#endif
1452#if EV_USE_INOTIFY 1535#if EV_USE_INOTIFY
1453 infy_fork (EV_A); 1536 infy_fork (EV_A);
1454#endif 1537#endif
1455 1538
1456 if (ev_is_active (&pipeev)) 1539 if (ev_is_active (&pipe_w))
1457 { 1540 {
1458 /* this "locks" the handlers against writing to the pipe */ 1541 /* this "locks" the handlers against writing to the pipe */
1459 /* while we modify the fd vars */ 1542 /* while we modify the fd vars */
1460 gotsig = 1; 1543 gotsig = 1;
1461#if EV_ASYNC_ENABLE 1544#if EV_ASYNC_ENABLE
1462 gotasync = 1; 1545 gotasync = 1;
1463#endif 1546#endif
1464 1547
1465 ev_ref (EV_A); 1548 ev_ref (EV_A);
1466 ev_io_stop (EV_A_ &pipeev); 1549 ev_io_stop (EV_A_ &pipe_w);
1467 1550
1468#if EV_USE_EVENTFD 1551#if EV_USE_EVENTFD
1469 if (evfd >= 0) 1552 if (evfd >= 0)
1470 close (evfd); 1553 close (evfd);
1471#endif 1554#endif
1476 close (evpipe [1]); 1559 close (evpipe [1]);
1477 } 1560 }
1478 1561
1479 evpipe_init (EV_A); 1562 evpipe_init (EV_A);
1480 /* now iterate over everything, in case we missed something */ 1563 /* now iterate over everything, in case we missed something */
1481 pipecb (EV_A_ &pipeev, EV_READ); 1564 pipecb (EV_A_ &pipe_w, EV_READ);
1482 } 1565 }
1483 1566
1484 postfork = 0; 1567 postfork = 0;
1485} 1568}
1486 1569
1513{ 1596{
1514 postfork = 1; /* must be in line with ev_default_fork */ 1597 postfork = 1; /* must be in line with ev_default_fork */
1515} 1598}
1516 1599
1517#if EV_VERIFY 1600#if EV_VERIFY
1518static void 1601static void noinline
1602verify_watcher (EV_P_ W w)
1603{
1604 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1605
1606 if (w->pending)
1607 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1608}
1609
1610static void noinline
1611verify_heap (EV_P_ ANHE *heap, int N)
1612{
1613 int i;
1614
1615 for (i = HEAP0; i < N + HEAP0; ++i)
1616 {
1617 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1618 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1619 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1620
1621 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1622 }
1623}
1624
1625static void noinline
1519array_check (W **ws, int cnt) 1626array_verify (EV_P_ W *ws, int cnt)
1520{ 1627{
1521 while (cnt--) 1628 while (cnt--)
1629 {
1522 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 1630 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1631 verify_watcher (EV_A_ ws [cnt]);
1632 }
1523} 1633}
1524#endif 1634#endif
1525 1635
1526void 1636void
1527ev_loop_verify (EV_P) 1637ev_loop_verify (EV_P)
1528{ 1638{
1529#if EV_VERIFY 1639#if EV_VERIFY
1530 int i; 1640 int i;
1641 WL w;
1531 1642
1643 assert (activecnt >= -1);
1644
1645 assert (fdchangemax >= fdchangecnt);
1646 for (i = 0; i < fdchangecnt; ++i)
1647 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1648
1649 assert (anfdmax >= 0);
1650 for (i = 0; i < anfdmax; ++i)
1651 for (w = anfds [i].head; w; w = w->next)
1652 {
1653 verify_watcher (EV_A_ (W)w);
1654 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1655 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1656 }
1657
1658 assert (timermax >= timercnt);
1532 checkheap (timers, timercnt); 1659 verify_heap (EV_A_ timers, timercnt);
1660
1533#if EV_PERIODIC_ENABLE 1661#if EV_PERIODIC_ENABLE
1662 assert (periodicmax >= periodiccnt);
1534 checkheap (periodics, periodiccnt); 1663 verify_heap (EV_A_ periodics, periodiccnt);
1535#endif 1664#endif
1536 1665
1666 for (i = NUMPRI; i--; )
1667 {
1668 assert (pendingmax [i] >= pendingcnt [i]);
1537#if EV_IDLE_ENABLE 1669#if EV_IDLE_ENABLE
1538 for (i = NUMPRI; i--; ) 1670 assert (idleall >= 0);
1671 assert (idlemax [i] >= idlecnt [i]);
1539 array_check ((W **)idles [i], idlecnt [i]); 1672 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1540#endif 1673#endif
1674 }
1675
1541#if EV_FORK_ENABLE 1676#if EV_FORK_ENABLE
1677 assert (forkmax >= forkcnt);
1542 array_check ((W **)forks, forkcnt); 1678 array_verify (EV_A_ (W *)forks, forkcnt);
1543#endif 1679#endif
1680
1544#if EV_ASYNC_ENABLE 1681#if EV_ASYNC_ENABLE
1682 assert (asyncmax >= asynccnt);
1545 array_check ((W **)asyncs, asynccnt); 1683 array_verify (EV_A_ (W *)asyncs, asynccnt);
1684#endif
1685
1686 assert (preparemax >= preparecnt);
1687 array_verify (EV_A_ (W *)prepares, preparecnt);
1688
1689 assert (checkmax >= checkcnt);
1690 array_verify (EV_A_ (W *)checks, checkcnt);
1691
1692# if 0
1693 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1694 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1546#endif 1695# endif
1547 array_check ((W **)prepares, preparecnt);
1548 array_check ((W **)checks, checkcnt);
1549#endif 1696#endif
1550} 1697}
1551 1698
1552#endif /* multiplicity */ 1699#endif /* multiplicity */
1553 1700
1590{ 1737{
1591#if EV_MULTIPLICITY 1738#if EV_MULTIPLICITY
1592 struct ev_loop *loop = ev_default_loop_ptr; 1739 struct ev_loop *loop = ev_default_loop_ptr;
1593#endif 1740#endif
1594 1741
1742 ev_default_loop_ptr = 0;
1743
1595#ifndef _WIN32 1744#ifndef _WIN32
1596 ev_ref (EV_A); /* child watcher */ 1745 ev_ref (EV_A); /* child watcher */
1597 ev_signal_stop (EV_A_ &childev); 1746 ev_signal_stop (EV_A_ &childev);
1598#endif 1747#endif
1599 1748
1605{ 1754{
1606#if EV_MULTIPLICITY 1755#if EV_MULTIPLICITY
1607 struct ev_loop *loop = ev_default_loop_ptr; 1756 struct ev_loop *loop = ev_default_loop_ptr;
1608#endif 1757#endif
1609 1758
1610 if (backend)
1611 postfork = 1; /* must be in line with ev_loop_fork */ 1759 postfork = 1; /* must be in line with ev_loop_fork */
1612} 1760}
1613 1761
1614/*****************************************************************************/ 1762/*****************************************************************************/
1615 1763
1616void 1764void
1617ev_invoke (EV_P_ void *w, int revents) 1765ev_invoke (EV_P_ void *w, int revents)
1618{ 1766{
1619 EV_CB_INVOKE ((W)w, revents); 1767 EV_CB_INVOKE ((W)w, revents);
1620} 1768}
1621 1769
1622void inline_speed 1770inline_speed void
1623call_pending (EV_P) 1771call_pending (EV_P)
1624{ 1772{
1625 int pri; 1773 int pri;
1626 1774
1627 for (pri = NUMPRI; pri--; ) 1775 for (pri = NUMPRI; pri--; )
1628 while (pendingcnt [pri]) 1776 while (pendingcnt [pri])
1629 { 1777 {
1630 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1778 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1631 1779
1632 if (expect_true (p->w))
1633 {
1634 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1780 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1781 /* ^ this is no longer true, as pending_w could be here */
1635 1782
1636 p->w->pending = 0; 1783 p->w->pending = 0;
1637 EV_CB_INVOKE (p->w, p->events); 1784 EV_CB_INVOKE (p->w, p->events);
1638 EV_FREQUENT_CHECK; 1785 EV_FREQUENT_CHECK;
1639 }
1640 } 1786 }
1641} 1787}
1642 1788
1643#if EV_IDLE_ENABLE 1789#if EV_IDLE_ENABLE
1644void inline_size 1790/* make idle watchers pending. this handles the "call-idle */
1791/* only when higher priorities are idle" logic */
1792inline_size void
1645idle_reify (EV_P) 1793idle_reify (EV_P)
1646{ 1794{
1647 if (expect_false (idleall)) 1795 if (expect_false (idleall))
1648 { 1796 {
1649 int pri; 1797 int pri;
1661 } 1809 }
1662 } 1810 }
1663} 1811}
1664#endif 1812#endif
1665 1813
1666void inline_size 1814/* make timers pending */
1815inline_size void
1667timers_reify (EV_P) 1816timers_reify (EV_P)
1668{ 1817{
1669 EV_FREQUENT_CHECK; 1818 EV_FREQUENT_CHECK;
1670 1819
1671 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 1820 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1672 { 1821 {
1673 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 1822 do
1674
1675 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1676
1677 /* first reschedule or stop timer */
1678 if (w->repeat)
1679 { 1823 {
1824 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1825
1826 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1827
1828 /* first reschedule or stop timer */
1829 if (w->repeat)
1830 {
1680 ev_at (w) += w->repeat; 1831 ev_at (w) += w->repeat;
1681 if (ev_at (w) < mn_now) 1832 if (ev_at (w) < mn_now)
1682 ev_at (w) = mn_now; 1833 ev_at (w) = mn_now;
1683 1834
1684 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1835 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1685 1836
1686 ANHE_at_cache (timers [HEAP0]); 1837 ANHE_at_cache (timers [HEAP0]);
1687 downheap (timers, timercnt, HEAP0); 1838 downheap (timers, timercnt, HEAP0);
1839 }
1840 else
1841 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1842
1843 EV_FREQUENT_CHECK;
1844 feed_reverse (EV_A_ (W)w);
1688 } 1845 }
1689 else 1846 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1690 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1691 1847
1692 EV_FREQUENT_CHECK;
1693 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1848 feed_reverse_done (EV_A_ EV_TIMEOUT);
1694 } 1849 }
1695} 1850}
1696 1851
1697#if EV_PERIODIC_ENABLE 1852#if EV_PERIODIC_ENABLE
1698void inline_size 1853/* make periodics pending */
1854inline_size void
1699periodics_reify (EV_P) 1855periodics_reify (EV_P)
1700{ 1856{
1701 EV_FREQUENT_CHECK; 1857 EV_FREQUENT_CHECK;
1702 1858
1703 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 1859 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1704 { 1860 {
1705 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 1861 int feed_count = 0;
1706 1862
1707 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1863 do
1708
1709 /* first reschedule or stop timer */
1710 if (w->reschedule_cb)
1711 { 1864 {
1865 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1866
1867 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1868
1869 /* first reschedule or stop timer */
1870 if (w->reschedule_cb)
1871 {
1712 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1872 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1713 1873
1714 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 1874 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1715 1875
1716 ANHE_at_cache (periodics [HEAP0]); 1876 ANHE_at_cache (periodics [HEAP0]);
1717 downheap (periodics, periodiccnt, HEAP0); 1877 downheap (periodics, periodiccnt, HEAP0);
1878 }
1879 else if (w->interval)
1880 {
1881 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1882 /* if next trigger time is not sufficiently in the future, put it there */
1883 /* this might happen because of floating point inexactness */
1884 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1885 {
1886 ev_at (w) += w->interval;
1887
1888 /* if interval is unreasonably low we might still have a time in the past */
1889 /* so correct this. this will make the periodic very inexact, but the user */
1890 /* has effectively asked to get triggered more often than possible */
1891 if (ev_at (w) < ev_rt_now)
1892 ev_at (w) = ev_rt_now;
1893 }
1894
1895 ANHE_at_cache (periodics [HEAP0]);
1896 downheap (periodics, periodiccnt, HEAP0);
1897 }
1898 else
1899 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1900
1901 EV_FREQUENT_CHECK;
1902 feed_reverse (EV_A_ (W)w);
1718 } 1903 }
1719 else if (w->interval) 1904 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1720 {
1721 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1722 /* if next trigger time is not sufficiently in the future, put it there */
1723 /* this might happen because of floating point inexactness */
1724 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1725 {
1726 ev_at (w) += w->interval;
1727 1905
1728 /* if interval is unreasonably low we might still have a time in the past */
1729 /* so correct this. this will make the periodic very inexact, but the user */
1730 /* has effectively asked to get triggered more often than possible */
1731 if (ev_at (w) < ev_rt_now)
1732 ev_at (w) = ev_rt_now;
1733 }
1734
1735 ANHE_at_cache (periodics [HEAP0]);
1736 downheap (periodics, periodiccnt, HEAP0);
1737 }
1738 else
1739 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1740
1741 EV_FREQUENT_CHECK;
1742 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1906 feed_reverse_done (EV_A_ EV_PERIODIC);
1743 } 1907 }
1744} 1908}
1745 1909
1910/* simply recalculate all periodics */
1911/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1746static void noinline 1912static void noinline
1747periodics_reschedule (EV_P) 1913periodics_reschedule (EV_P)
1748{ 1914{
1749 int i; 1915 int i;
1750 1916
1763 1929
1764 reheap (periodics, periodiccnt); 1930 reheap (periodics, periodiccnt);
1765} 1931}
1766#endif 1932#endif
1767 1933
1768void inline_speed 1934/* adjust all timers by a given offset */
1935static void noinline
1936timers_reschedule (EV_P_ ev_tstamp adjust)
1937{
1938 int i;
1939
1940 for (i = 0; i < timercnt; ++i)
1941 {
1942 ANHE *he = timers + i + HEAP0;
1943 ANHE_w (*he)->at += adjust;
1944 ANHE_at_cache (*he);
1945 }
1946}
1947
1948/* fetch new monotonic and realtime times from the kernel */
1949/* also detetc if there was a timejump, and act accordingly */
1950inline_speed void
1769time_update (EV_P_ ev_tstamp max_block) 1951time_update (EV_P_ ev_tstamp max_block)
1770{ 1952{
1771 int i; 1953 int i;
1772 1954
1773#if EV_USE_MONOTONIC 1955#if EV_USE_MONOTONIC
1806 ev_rt_now = ev_time (); 1988 ev_rt_now = ev_time ();
1807 mn_now = get_clock (); 1989 mn_now = get_clock ();
1808 now_floor = mn_now; 1990 now_floor = mn_now;
1809 } 1991 }
1810 1992
1993 /* no timer adjustment, as the monotonic clock doesn't jump */
1994 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1811# if EV_PERIODIC_ENABLE 1995# if EV_PERIODIC_ENABLE
1812 periodics_reschedule (EV_A); 1996 periodics_reschedule (EV_A);
1813# endif 1997# endif
1814 /* no timer adjustment, as the monotonic clock doesn't jump */
1815 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1816 } 1998 }
1817 else 1999 else
1818#endif 2000#endif
1819 { 2001 {
1820 ev_rt_now = ev_time (); 2002 ev_rt_now = ev_time ();
1821 2003
1822 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2004 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1823 { 2005 {
2006 /* adjust timers. this is easy, as the offset is the same for all of them */
2007 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1824#if EV_PERIODIC_ENABLE 2008#if EV_PERIODIC_ENABLE
1825 periodics_reschedule (EV_A); 2009 periodics_reschedule (EV_A);
1826#endif 2010#endif
1827 /* adjust timers. this is easy, as the offset is the same for all of them */
1828 for (i = 0; i < timercnt; ++i)
1829 {
1830 ANHE *he = timers + i + HEAP0;
1831 ANHE_w (*he)->at += ev_rt_now - mn_now;
1832 ANHE_at_cache (*he);
1833 }
1834 } 2011 }
1835 2012
1836 mn_now = ev_rt_now; 2013 mn_now = ev_rt_now;
1837 } 2014 }
1838}
1839
1840void
1841ev_ref (EV_P)
1842{
1843 ++activecnt;
1844}
1845
1846void
1847ev_unref (EV_P)
1848{
1849 --activecnt;
1850} 2015}
1851 2016
1852static int loop_done; 2017static int loop_done;
1853 2018
1854void 2019void
1888 { 2053 {
1889 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2054 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1890 call_pending (EV_A); 2055 call_pending (EV_A);
1891 } 2056 }
1892 2057
1893 if (expect_false (!activecnt))
1894 break;
1895
1896 /* we might have forked, so reify kernel state if necessary */ 2058 /* we might have forked, so reify kernel state if necessary */
1897 if (expect_false (postfork)) 2059 if (expect_false (postfork))
1898 loop_fork (EV_A); 2060 loop_fork (EV_A);
1899 2061
1900 /* update fd-related kernel structures */ 2062 /* update fd-related kernel structures */
1979ev_unloop (EV_P_ int how) 2141ev_unloop (EV_P_ int how)
1980{ 2142{
1981 loop_done = how; 2143 loop_done = how;
1982} 2144}
1983 2145
2146void
2147ev_ref (EV_P)
2148{
2149 ++activecnt;
2150}
2151
2152void
2153ev_unref (EV_P)
2154{
2155 --activecnt;
2156}
2157
2158void
2159ev_now_update (EV_P)
2160{
2161 time_update (EV_A_ 1e100);
2162}
2163
2164void
2165ev_suspend (EV_P)
2166{
2167 ev_now_update (EV_A);
2168}
2169
2170void
2171ev_resume (EV_P)
2172{
2173 ev_tstamp mn_prev = mn_now;
2174
2175 ev_now_update (EV_A);
2176 timers_reschedule (EV_A_ mn_now - mn_prev);
2177#if EV_PERIODIC_ENABLE
2178 /* TODO: really do this? */
2179 periodics_reschedule (EV_A);
2180#endif
2181}
2182
1984/*****************************************************************************/ 2183/*****************************************************************************/
2184/* singly-linked list management, used when the expected list length is short */
1985 2185
1986void inline_size 2186inline_size void
1987wlist_add (WL *head, WL elem) 2187wlist_add (WL *head, WL elem)
1988{ 2188{
1989 elem->next = *head; 2189 elem->next = *head;
1990 *head = elem; 2190 *head = elem;
1991} 2191}
1992 2192
1993void inline_size 2193inline_size void
1994wlist_del (WL *head, WL elem) 2194wlist_del (WL *head, WL elem)
1995{ 2195{
1996 while (*head) 2196 while (*head)
1997 { 2197 {
1998 if (*head == elem) 2198 if (*head == elem)
2003 2203
2004 head = &(*head)->next; 2204 head = &(*head)->next;
2005 } 2205 }
2006} 2206}
2007 2207
2008void inline_speed 2208/* internal, faster, version of ev_clear_pending */
2209inline_speed void
2009clear_pending (EV_P_ W w) 2210clear_pending (EV_P_ W w)
2010{ 2211{
2011 if (w->pending) 2212 if (w->pending)
2012 { 2213 {
2013 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2214 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2014 w->pending = 0; 2215 w->pending = 0;
2015 } 2216 }
2016} 2217}
2017 2218
2018int 2219int
2022 int pending = w_->pending; 2223 int pending = w_->pending;
2023 2224
2024 if (expect_true (pending)) 2225 if (expect_true (pending))
2025 { 2226 {
2026 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2227 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2228 p->w = (W)&pending_w;
2027 w_->pending = 0; 2229 w_->pending = 0;
2028 p->w = 0;
2029 return p->events; 2230 return p->events;
2030 } 2231 }
2031 else 2232 else
2032 return 0; 2233 return 0;
2033} 2234}
2034 2235
2035void inline_size 2236inline_size void
2036pri_adjust (EV_P_ W w) 2237pri_adjust (EV_P_ W w)
2037{ 2238{
2038 int pri = w->priority; 2239 int pri = w->priority;
2039 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2240 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2040 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2241 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2041 w->priority = pri; 2242 w->priority = pri;
2042} 2243}
2043 2244
2044void inline_speed 2245inline_speed void
2045ev_start (EV_P_ W w, int active) 2246ev_start (EV_P_ W w, int active)
2046{ 2247{
2047 pri_adjust (EV_A_ w); 2248 pri_adjust (EV_A_ w);
2048 w->active = active; 2249 w->active = active;
2049 ev_ref (EV_A); 2250 ev_ref (EV_A);
2050} 2251}
2051 2252
2052void inline_size 2253inline_size void
2053ev_stop (EV_P_ W w) 2254ev_stop (EV_P_ W w)
2054{ 2255{
2055 ev_unref (EV_A); 2256 ev_unref (EV_A);
2056 w->active = 0; 2257 w->active = 0;
2057} 2258}
2064 int fd = w->fd; 2265 int fd = w->fd;
2065 2266
2066 if (expect_false (ev_is_active (w))) 2267 if (expect_false (ev_is_active (w)))
2067 return; 2268 return;
2068 2269
2069 assert (("ev_io_start called with negative fd", fd >= 0)); 2270 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2271 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2070 2272
2071 EV_FREQUENT_CHECK; 2273 EV_FREQUENT_CHECK;
2072 2274
2073 ev_start (EV_A_ (W)w, 1); 2275 ev_start (EV_A_ (W)w, 1);
2074 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2276 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2075 wlist_add (&anfds[fd].head, (WL)w); 2277 wlist_add (&anfds[fd].head, (WL)w);
2076 2278
2077 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2279 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
2078 w->events &= ~EV_IOFDSET; 2280 w->events &= ~EV__IOFDSET;
2079 2281
2080 EV_FREQUENT_CHECK; 2282 EV_FREQUENT_CHECK;
2081} 2283}
2082 2284
2083void noinline 2285void noinline
2085{ 2287{
2086 clear_pending (EV_A_ (W)w); 2288 clear_pending (EV_A_ (W)w);
2087 if (expect_false (!ev_is_active (w))) 2289 if (expect_false (!ev_is_active (w)))
2088 return; 2290 return;
2089 2291
2090 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2292 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2091 2293
2092 EV_FREQUENT_CHECK; 2294 EV_FREQUENT_CHECK;
2093 2295
2094 wlist_del (&anfds[w->fd].head, (WL)w); 2296 wlist_del (&anfds[w->fd].head, (WL)w);
2095 ev_stop (EV_A_ (W)w); 2297 ev_stop (EV_A_ (W)w);
2105 if (expect_false (ev_is_active (w))) 2307 if (expect_false (ev_is_active (w)))
2106 return; 2308 return;
2107 2309
2108 ev_at (w) += mn_now; 2310 ev_at (w) += mn_now;
2109 2311
2110 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2312 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2111 2313
2112 EV_FREQUENT_CHECK; 2314 EV_FREQUENT_CHECK;
2113 2315
2114 ++timercnt; 2316 ++timercnt;
2115 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 2317 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2118 ANHE_at_cache (timers [ev_active (w)]); 2320 ANHE_at_cache (timers [ev_active (w)]);
2119 upheap (timers, ev_active (w)); 2321 upheap (timers, ev_active (w));
2120 2322
2121 EV_FREQUENT_CHECK; 2323 EV_FREQUENT_CHECK;
2122 2324
2123 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2325 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2124} 2326}
2125 2327
2126void noinline 2328void noinline
2127ev_timer_stop (EV_P_ ev_timer *w) 2329ev_timer_stop (EV_P_ ev_timer *w)
2128{ 2330{
2133 EV_FREQUENT_CHECK; 2335 EV_FREQUENT_CHECK;
2134 2336
2135 { 2337 {
2136 int active = ev_active (w); 2338 int active = ev_active (w);
2137 2339
2138 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2340 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2139 2341
2140 --timercnt; 2342 --timercnt;
2141 2343
2142 if (expect_true (active < timercnt + HEAP0)) 2344 if (expect_true (active < timercnt + HEAP0))
2143 { 2345 {
2187 2389
2188 if (w->reschedule_cb) 2390 if (w->reschedule_cb)
2189 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2391 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2190 else if (w->interval) 2392 else if (w->interval)
2191 { 2393 {
2192 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2394 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2193 /* this formula differs from the one in periodic_reify because we do not always round up */ 2395 /* this formula differs from the one in periodic_reify because we do not always round up */
2194 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2396 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2195 } 2397 }
2196 else 2398 else
2197 ev_at (w) = w->offset; 2399 ev_at (w) = w->offset;
2205 ANHE_at_cache (periodics [ev_active (w)]); 2407 ANHE_at_cache (periodics [ev_active (w)]);
2206 upheap (periodics, ev_active (w)); 2408 upheap (periodics, ev_active (w));
2207 2409
2208 EV_FREQUENT_CHECK; 2410 EV_FREQUENT_CHECK;
2209 2411
2210 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2412 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2211} 2413}
2212 2414
2213void noinline 2415void noinline
2214ev_periodic_stop (EV_P_ ev_periodic *w) 2416ev_periodic_stop (EV_P_ ev_periodic *w)
2215{ 2417{
2220 EV_FREQUENT_CHECK; 2422 EV_FREQUENT_CHECK;
2221 2423
2222 { 2424 {
2223 int active = ev_active (w); 2425 int active = ev_active (w);
2224 2426
2225 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2427 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2226 2428
2227 --periodiccnt; 2429 --periodiccnt;
2228 2430
2229 if (expect_true (active < periodiccnt + HEAP0)) 2431 if (expect_true (active < periodiccnt + HEAP0))
2230 { 2432 {
2253 2455
2254void noinline 2456void noinline
2255ev_signal_start (EV_P_ ev_signal *w) 2457ev_signal_start (EV_P_ ev_signal *w)
2256{ 2458{
2257#if EV_MULTIPLICITY 2459#if EV_MULTIPLICITY
2258 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2460 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2259#endif 2461#endif
2260 if (expect_false (ev_is_active (w))) 2462 if (expect_false (ev_is_active (w)))
2261 return; 2463 return;
2262 2464
2263 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2465 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2264 2466
2265 evpipe_init (EV_A); 2467 evpipe_init (EV_A);
2266 2468
2267 EV_FREQUENT_CHECK; 2469 EV_FREQUENT_CHECK;
2268 2470
2271 sigset_t full, prev; 2473 sigset_t full, prev;
2272 sigfillset (&full); 2474 sigfillset (&full);
2273 sigprocmask (SIG_SETMASK, &full, &prev); 2475 sigprocmask (SIG_SETMASK, &full, &prev);
2274#endif 2476#endif
2275 2477
2276 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2478 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2277 2479
2278#ifndef _WIN32 2480#ifndef _WIN32
2279 sigprocmask (SIG_SETMASK, &prev, 0); 2481 sigprocmask (SIG_SETMASK, &prev, 0);
2280#endif 2482#endif
2281 } 2483 }
2319 2521
2320void 2522void
2321ev_child_start (EV_P_ ev_child *w) 2523ev_child_start (EV_P_ ev_child *w)
2322{ 2524{
2323#if EV_MULTIPLICITY 2525#if EV_MULTIPLICITY
2324 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2526 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2325#endif 2527#endif
2326 if (expect_false (ev_is_active (w))) 2528 if (expect_false (ev_is_active (w)))
2327 return; 2529 return;
2328 2530
2329 EV_FREQUENT_CHECK; 2531 EV_FREQUENT_CHECK;
2354# ifdef _WIN32 2556# ifdef _WIN32
2355# undef lstat 2557# undef lstat
2356# define lstat(a,b) _stati64 (a,b) 2558# define lstat(a,b) _stati64 (a,b)
2357# endif 2559# endif
2358 2560
2359#define DEF_STAT_INTERVAL 5.0074891 2561#define DEF_STAT_INTERVAL 5.0074891
2562#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2360#define MIN_STAT_INTERVAL 0.1074891 2563#define MIN_STAT_INTERVAL 0.1074891
2361 2564
2362static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2565static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2363 2566
2364#if EV_USE_INOTIFY 2567#if EV_USE_INOTIFY
2365# define EV_INOTIFY_BUFSIZE 8192 2568# define EV_INOTIFY_BUFSIZE 8192
2369{ 2572{
2370 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2573 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2371 2574
2372 if (w->wd < 0) 2575 if (w->wd < 0)
2373 { 2576 {
2577 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2374 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2578 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2375 2579
2376 /* monitor some parent directory for speedup hints */ 2580 /* monitor some parent directory for speedup hints */
2377 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2581 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2378 /* but an efficiency issue only */ 2582 /* but an efficiency issue only */
2379 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2583 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2380 { 2584 {
2381 char path [4096]; 2585 char path [4096];
2382 strcpy (path, w->path); 2586 strcpy (path, w->path);
2386 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2590 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2387 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2591 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2388 2592
2389 char *pend = strrchr (path, '/'); 2593 char *pend = strrchr (path, '/');
2390 2594
2391 if (!pend) 2595 if (!pend || pend == path)
2392 break; /* whoops, no '/', complain to your admin */ 2596 break;
2393 2597
2394 *pend = 0; 2598 *pend = 0;
2395 w->wd = inotify_add_watch (fs_fd, path, mask); 2599 w->wd = inotify_add_watch (fs_fd, path, mask);
2396 } 2600 }
2397 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2601 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2398 } 2602 }
2399 } 2603 }
2400 else
2401 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2402 2604
2403 if (w->wd >= 0) 2605 if (w->wd >= 0)
2606 {
2404 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2607 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2608
2609 /* now local changes will be tracked by inotify, but remote changes won't */
2610 /* unless the filesystem it known to be local, we therefore still poll */
2611 /* also do poll on <2.6.25, but with normal frequency */
2612 struct statfs sfs;
2613
2614 if (fs_2625 && !statfs (w->path, &sfs))
2615 if (sfs.f_type == 0x1373 /* devfs */
2616 || sfs.f_type == 0xEF53 /* ext2/3 */
2617 || sfs.f_type == 0x3153464a /* jfs */
2618 || sfs.f_type == 0x52654973 /* reiser3 */
2619 || sfs.f_type == 0x01021994 /* tempfs */
2620 || sfs.f_type == 0x58465342 /* xfs */)
2621 return;
2622
2623 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2624 ev_timer_again (EV_A_ &w->timer);
2625 }
2405} 2626}
2406 2627
2407static void noinline 2628static void noinline
2408infy_del (EV_P_ ev_stat *w) 2629infy_del (EV_P_ ev_stat *w)
2409{ 2630{
2423 2644
2424static void noinline 2645static void noinline
2425infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2646infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2426{ 2647{
2427 if (slot < 0) 2648 if (slot < 0)
2428 /* overflow, need to check for all hahs slots */ 2649 /* overflow, need to check for all hash slots */
2429 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2650 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2430 infy_wd (EV_A_ slot, wd, ev); 2651 infy_wd (EV_A_ slot, wd, ev);
2431 else 2652 else
2432 { 2653 {
2433 WL w_; 2654 WL w_;
2439 2660
2440 if (w->wd == wd || wd == -1) 2661 if (w->wd == wd || wd == -1)
2441 { 2662 {
2442 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2663 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2443 { 2664 {
2665 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2444 w->wd = -1; 2666 w->wd = -1;
2445 infy_add (EV_A_ w); /* re-add, no matter what */ 2667 infy_add (EV_A_ w); /* re-add, no matter what */
2446 } 2668 }
2447 2669
2448 stat_timer_cb (EV_A_ &w->timer, 0); 2670 stat_timer_cb (EV_A_ &w->timer, 0);
2461 2683
2462 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2684 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2463 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2685 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2464} 2686}
2465 2687
2466void inline_size 2688inline_size void
2689check_2625 (EV_P)
2690{
2691 /* kernels < 2.6.25 are borked
2692 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2693 */
2694 struct utsname buf;
2695 int major, minor, micro;
2696
2697 if (uname (&buf))
2698 return;
2699
2700 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2701 return;
2702
2703 if (major < 2
2704 || (major == 2 && minor < 6)
2705 || (major == 2 && minor == 6 && micro < 25))
2706 return;
2707
2708 fs_2625 = 1;
2709}
2710
2711inline_size void
2467infy_init (EV_P) 2712infy_init (EV_P)
2468{ 2713{
2469 if (fs_fd != -2) 2714 if (fs_fd != -2)
2470 return; 2715 return;
2716
2717 fs_fd = -1;
2718
2719 check_2625 (EV_A);
2471 2720
2472 fs_fd = inotify_init (); 2721 fs_fd = inotify_init ();
2473 2722
2474 if (fs_fd >= 0) 2723 if (fs_fd >= 0)
2475 { 2724 {
2477 ev_set_priority (&fs_w, EV_MAXPRI); 2726 ev_set_priority (&fs_w, EV_MAXPRI);
2478 ev_io_start (EV_A_ &fs_w); 2727 ev_io_start (EV_A_ &fs_w);
2479 } 2728 }
2480} 2729}
2481 2730
2482void inline_size 2731inline_size void
2483infy_fork (EV_P) 2732infy_fork (EV_P)
2484{ 2733{
2485 int slot; 2734 int slot;
2486 2735
2487 if (fs_fd < 0) 2736 if (fs_fd < 0)
2503 w->wd = -1; 2752 w->wd = -1;
2504 2753
2505 if (fs_fd >= 0) 2754 if (fs_fd >= 0)
2506 infy_add (EV_A_ w); /* re-add, no matter what */ 2755 infy_add (EV_A_ w); /* re-add, no matter what */
2507 else 2756 else
2508 ev_timer_start (EV_A_ &w->timer); 2757 ev_timer_again (EV_A_ &w->timer);
2509 } 2758 }
2510
2511 } 2759 }
2512} 2760}
2513 2761
2762#endif
2763
2764#ifdef _WIN32
2765# define EV_LSTAT(p,b) _stati64 (p, b)
2766#else
2767# define EV_LSTAT(p,b) lstat (p, b)
2514#endif 2768#endif
2515 2769
2516void 2770void
2517ev_stat_stat (EV_P_ ev_stat *w) 2771ev_stat_stat (EV_P_ ev_stat *w)
2518{ 2772{
2545 || w->prev.st_atime != w->attr.st_atime 2799 || w->prev.st_atime != w->attr.st_atime
2546 || w->prev.st_mtime != w->attr.st_mtime 2800 || w->prev.st_mtime != w->attr.st_mtime
2547 || w->prev.st_ctime != w->attr.st_ctime 2801 || w->prev.st_ctime != w->attr.st_ctime
2548 ) { 2802 ) {
2549 #if EV_USE_INOTIFY 2803 #if EV_USE_INOTIFY
2804 if (fs_fd >= 0)
2805 {
2550 infy_del (EV_A_ w); 2806 infy_del (EV_A_ w);
2551 infy_add (EV_A_ w); 2807 infy_add (EV_A_ w);
2552 ev_stat_stat (EV_A_ w); /* avoid race... */ 2808 ev_stat_stat (EV_A_ w); /* avoid race... */
2809 }
2553 #endif 2810 #endif
2554 2811
2555 ev_feed_event (EV_A_ w, EV_STAT); 2812 ev_feed_event (EV_A_ w, EV_STAT);
2556 } 2813 }
2557} 2814}
2560ev_stat_start (EV_P_ ev_stat *w) 2817ev_stat_start (EV_P_ ev_stat *w)
2561{ 2818{
2562 if (expect_false (ev_is_active (w))) 2819 if (expect_false (ev_is_active (w)))
2563 return; 2820 return;
2564 2821
2565 /* since we use memcmp, we need to clear any padding data etc. */
2566 memset (&w->prev, 0, sizeof (ev_statdata));
2567 memset (&w->attr, 0, sizeof (ev_statdata));
2568
2569 ev_stat_stat (EV_A_ w); 2822 ev_stat_stat (EV_A_ w);
2570 2823
2824 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2571 if (w->interval < MIN_STAT_INTERVAL) 2825 w->interval = MIN_STAT_INTERVAL;
2572 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2573 2826
2574 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2827 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2575 ev_set_priority (&w->timer, ev_priority (w)); 2828 ev_set_priority (&w->timer, ev_priority (w));
2576 2829
2577#if EV_USE_INOTIFY 2830#if EV_USE_INOTIFY
2578 infy_init (EV_A); 2831 infy_init (EV_A);
2579 2832
2580 if (fs_fd >= 0) 2833 if (fs_fd >= 0)
2581 infy_add (EV_A_ w); 2834 infy_add (EV_A_ w);
2582 else 2835 else
2583#endif 2836#endif
2584 ev_timer_start (EV_A_ &w->timer); 2837 ev_timer_again (EV_A_ &w->timer);
2585 2838
2586 ev_start (EV_A_ (W)w, 1); 2839 ev_start (EV_A_ (W)w, 1);
2587 2840
2588 EV_FREQUENT_CHECK; 2841 EV_FREQUENT_CHECK;
2589} 2842}
2759 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3012 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2760 } 3013 }
2761 } 3014 }
2762} 3015}
2763 3016
3017static void
3018embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3019{
3020 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3021
3022 ev_embed_stop (EV_A_ w);
3023
3024 {
3025 struct ev_loop *loop = w->other;
3026
3027 ev_loop_fork (EV_A);
3028 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3029 }
3030
3031 ev_embed_start (EV_A_ w);
3032}
3033
2764#if 0 3034#if 0
2765static void 3035static void
2766embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3036embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2767{ 3037{
2768 ev_idle_stop (EV_A_ idle); 3038 ev_idle_stop (EV_A_ idle);
2775 if (expect_false (ev_is_active (w))) 3045 if (expect_false (ev_is_active (w)))
2776 return; 3046 return;
2777 3047
2778 { 3048 {
2779 struct ev_loop *loop = w->other; 3049 struct ev_loop *loop = w->other;
2780 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3050 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2781 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3051 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2782 } 3052 }
2783 3053
2784 EV_FREQUENT_CHECK; 3054 EV_FREQUENT_CHECK;
2785 3055
2788 3058
2789 ev_prepare_init (&w->prepare, embed_prepare_cb); 3059 ev_prepare_init (&w->prepare, embed_prepare_cb);
2790 ev_set_priority (&w->prepare, EV_MINPRI); 3060 ev_set_priority (&w->prepare, EV_MINPRI);
2791 ev_prepare_start (EV_A_ &w->prepare); 3061 ev_prepare_start (EV_A_ &w->prepare);
2792 3062
3063 ev_fork_init (&w->fork, embed_fork_cb);
3064 ev_fork_start (EV_A_ &w->fork);
3065
2793 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3066 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2794 3067
2795 ev_start (EV_A_ (W)w, 1); 3068 ev_start (EV_A_ (W)w, 1);
2796 3069
2797 EV_FREQUENT_CHECK; 3070 EV_FREQUENT_CHECK;
2804 if (expect_false (!ev_is_active (w))) 3077 if (expect_false (!ev_is_active (w)))
2805 return; 3078 return;
2806 3079
2807 EV_FREQUENT_CHECK; 3080 EV_FREQUENT_CHECK;
2808 3081
2809 ev_io_stop (EV_A_ &w->io); 3082 ev_io_stop (EV_A_ &w->io);
2810 ev_prepare_stop (EV_A_ &w->prepare); 3083 ev_prepare_stop (EV_A_ &w->prepare);
2811 3084 ev_fork_stop (EV_A_ &w->fork);
2812 ev_stop (EV_A_ (W)w);
2813 3085
2814 EV_FREQUENT_CHECK; 3086 EV_FREQUENT_CHECK;
2815} 3087}
2816#endif 3088#endif
2817 3089
2914once_cb (EV_P_ struct ev_once *once, int revents) 3186once_cb (EV_P_ struct ev_once *once, int revents)
2915{ 3187{
2916 void (*cb)(int revents, void *arg) = once->cb; 3188 void (*cb)(int revents, void *arg) = once->cb;
2917 void *arg = once->arg; 3189 void *arg = once->arg;
2918 3190
2919 ev_io_stop (EV_A_ &once->io); 3191 ev_io_stop (EV_A_ &once->io);
2920 ev_timer_stop (EV_A_ &once->to); 3192 ev_timer_stop (EV_A_ &once->to);
2921 ev_free (once); 3193 ev_free (once);
2922 3194
2923 cb (revents, arg); 3195 cb (revents, arg);
2924} 3196}
2925 3197
2926static void 3198static void
2927once_cb_io (EV_P_ ev_io *w, int revents) 3199once_cb_io (EV_P_ ev_io *w, int revents)
2928{ 3200{
2929 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3201 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3202
3203 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2930} 3204}
2931 3205
2932static void 3206static void
2933once_cb_to (EV_P_ ev_timer *w, int revents) 3207once_cb_to (EV_P_ ev_timer *w, int revents)
2934{ 3208{
2935 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3209 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3210
3211 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2936} 3212}
2937 3213
2938void 3214void
2939ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3215ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2940{ 3216{
2962 ev_timer_set (&once->to, timeout, 0.); 3238 ev_timer_set (&once->to, timeout, 0.);
2963 ev_timer_start (EV_A_ &once->to); 3239 ev_timer_start (EV_A_ &once->to);
2964 } 3240 }
2965} 3241}
2966 3242
3243/*****************************************************************************/
3244
3245#if EV_WALK_ENABLE
3246void
3247ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3248{
3249 int i, j;
3250 ev_watcher_list *wl, *wn;
3251
3252 if (types & (EV_IO | EV_EMBED))
3253 for (i = 0; i < anfdmax; ++i)
3254 for (wl = anfds [i].head; wl; )
3255 {
3256 wn = wl->next;
3257
3258#if EV_EMBED_ENABLE
3259 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3260 {
3261 if (types & EV_EMBED)
3262 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3263 }
3264 else
3265#endif
3266#if EV_USE_INOTIFY
3267 if (ev_cb ((ev_io *)wl) == infy_cb)
3268 ;
3269 else
3270#endif
3271 if ((ev_io *)wl != &pipe_w)
3272 if (types & EV_IO)
3273 cb (EV_A_ EV_IO, wl);
3274
3275 wl = wn;
3276 }
3277
3278 if (types & (EV_TIMER | EV_STAT))
3279 for (i = timercnt + HEAP0; i-- > HEAP0; )
3280#if EV_STAT_ENABLE
3281 /*TODO: timer is not always active*/
3282 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3283 {
3284 if (types & EV_STAT)
3285 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3286 }
3287 else
3288#endif
3289 if (types & EV_TIMER)
3290 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3291
3292#if EV_PERIODIC_ENABLE
3293 if (types & EV_PERIODIC)
3294 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3295 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3296#endif
3297
3298#if EV_IDLE_ENABLE
3299 if (types & EV_IDLE)
3300 for (j = NUMPRI; i--; )
3301 for (i = idlecnt [j]; i--; )
3302 cb (EV_A_ EV_IDLE, idles [j][i]);
3303#endif
3304
3305#if EV_FORK_ENABLE
3306 if (types & EV_FORK)
3307 for (i = forkcnt; i--; )
3308 if (ev_cb (forks [i]) != embed_fork_cb)
3309 cb (EV_A_ EV_FORK, forks [i]);
3310#endif
3311
3312#if EV_ASYNC_ENABLE
3313 if (types & EV_ASYNC)
3314 for (i = asynccnt; i--; )
3315 cb (EV_A_ EV_ASYNC, asyncs [i]);
3316#endif
3317
3318 if (types & EV_PREPARE)
3319 for (i = preparecnt; i--; )
3320#if EV_EMBED_ENABLE
3321 if (ev_cb (prepares [i]) != embed_prepare_cb)
3322#endif
3323 cb (EV_A_ EV_PREPARE, prepares [i]);
3324
3325 if (types & EV_CHECK)
3326 for (i = checkcnt; i--; )
3327 cb (EV_A_ EV_CHECK, checks [i]);
3328
3329 if (types & EV_SIGNAL)
3330 for (i = 0; i < signalmax; ++i)
3331 for (wl = signals [i].head; wl; )
3332 {
3333 wn = wl->next;
3334 cb (EV_A_ EV_SIGNAL, wl);
3335 wl = wn;
3336 }
3337
3338 if (types & EV_CHILD)
3339 for (i = EV_PID_HASHSIZE; i--; )
3340 for (wl = childs [i]; wl; )
3341 {
3342 wn = wl->next;
3343 cb (EV_A_ EV_CHILD, wl);
3344 wl = wn;
3345 }
3346/* EV_STAT 0x00001000 /* stat data changed */
3347/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3348}
3349#endif
3350
2967#if EV_MULTIPLICITY 3351#if EV_MULTIPLICITY
2968 #include "ev_wrap.h" 3352 #include "ev_wrap.h"
2969#endif 3353#endif
2970 3354
2971#ifdef __cplusplus 3355#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines