ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.278 by root, Tue Jan 6 19:46:56 2009 UTC vs.
Revision 1.288 by root, Sat Apr 25 14:12:48 2009 UTC

64# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
67# endif 67# endif
68# ifndef EV_USE_REALTIME 68# ifndef EV_USE_REALTIME
69# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 0
70# endif 70# endif
71# else 71# else
72# ifndef EV_USE_MONOTONIC 72# ifndef EV_USE_MONOTONIC
73# define EV_USE_MONOTONIC 0 73# define EV_USE_MONOTONIC 0
74# endif 74# endif
193# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif 194# endif
195#endif 195#endif
196 196
197#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
198# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif 199#endif
200 200
201#ifndef EV_USE_NANOSLEEP 201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L 202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1 203# define EV_USE_NANOSLEEP 1
397typedef ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
398 398
399#define ev_active(w) ((W)(w))->active 399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at 400#define ev_at(w) ((WT)(w))->at
401 401
402#if EV_USE_MONOTONIC 402#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */ 404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
405static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
406#endif 410#endif
407 411
408#ifdef _WIN32 412#ifdef _WIN32
409# include "ev_win32.c" 413# include "ev_win32.c"
474#define ev_malloc(size) ev_realloc (0, (size)) 478#define ev_malloc(size) ev_realloc (0, (size))
475#define ev_free(ptr) ev_realloc ((ptr), 0) 479#define ev_free(ptr) ev_realloc ((ptr), 0)
476 480
477/*****************************************************************************/ 481/*****************************************************************************/
478 482
483/* file descriptor info structure */
479typedef struct 484typedef struct
480{ 485{
481 WL head; 486 WL head;
482 unsigned char events; 487 unsigned char events; /* the events watched for */
483 unsigned char reify; 488 unsigned char reify; /* flag set when this ANFD needs reification */
484 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 489 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
485 unsigned char unused; 490 unsigned char unused;
486#if EV_USE_EPOLL 491#if EV_USE_EPOLL
487 unsigned int egen; /* generation counter to counter epoll bugs */ 492 unsigned int egen; /* generation counter to counter epoll bugs */
488#endif 493#endif
489#if EV_SELECT_IS_WINSOCKET 494#if EV_SELECT_IS_WINSOCKET
490 SOCKET handle; 495 SOCKET handle;
491#endif 496#endif
492} ANFD; 497} ANFD;
493 498
499/* stores the pending event set for a given watcher */
494typedef struct 500typedef struct
495{ 501{
496 W w; 502 W w;
497 int events; 503 int events; /* the pending event set for the given watcher */
498} ANPENDING; 504} ANPENDING;
499 505
500#if EV_USE_INOTIFY 506#if EV_USE_INOTIFY
501/* hash table entry per inotify-id */ 507/* hash table entry per inotify-id */
502typedef struct 508typedef struct
505} ANFS; 511} ANFS;
506#endif 512#endif
507 513
508/* Heap Entry */ 514/* Heap Entry */
509#if EV_HEAP_CACHE_AT 515#if EV_HEAP_CACHE_AT
516 /* a heap element */
510 typedef struct { 517 typedef struct {
511 ev_tstamp at; 518 ev_tstamp at;
512 WT w; 519 WT w;
513 } ANHE; 520 } ANHE;
514 521
515 #define ANHE_w(he) (he).w /* access watcher, read-write */ 522 #define ANHE_w(he) (he).w /* access watcher, read-write */
516 #define ANHE_at(he) (he).at /* access cached at, read-only */ 523 #define ANHE_at(he) (he).at /* access cached at, read-only */
517 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 524 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
518#else 525#else
526 /* a heap element */
519 typedef WT ANHE; 527 typedef WT ANHE;
520 528
521 #define ANHE_w(he) (he) 529 #define ANHE_w(he) (he)
522 #define ANHE_at(he) (he)->at 530 #define ANHE_at(he) (he)->at
523 #define ANHE_at_cache(he) 531 #define ANHE_at_cache(he)
553 561
554ev_tstamp 562ev_tstamp
555ev_time (void) 563ev_time (void)
556{ 564{
557#if EV_USE_REALTIME 565#if EV_USE_REALTIME
566 if (expect_true (have_realtime))
567 {
558 struct timespec ts; 568 struct timespec ts;
559 clock_gettime (CLOCK_REALTIME, &ts); 569 clock_gettime (CLOCK_REALTIME, &ts);
560 return ts.tv_sec + ts.tv_nsec * 1e-9; 570 return ts.tv_sec + ts.tv_nsec * 1e-9;
561#else 571 }
572#endif
573
562 struct timeval tv; 574 struct timeval tv;
563 gettimeofday (&tv, 0); 575 gettimeofday (&tv, 0);
564 return tv.tv_sec + tv.tv_usec * 1e-6; 576 return tv.tv_sec + tv.tv_usec * 1e-6;
565#endif
566} 577}
567 578
568ev_tstamp inline_size 579inline_size ev_tstamp
569get_clock (void) 580get_clock (void)
570{ 581{
571#if EV_USE_MONOTONIC 582#if EV_USE_MONOTONIC
572 if (expect_true (have_monotonic)) 583 if (expect_true (have_monotonic))
573 { 584 {
618 629
619/*****************************************************************************/ 630/*****************************************************************************/
620 631
621#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 632#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
622 633
623int inline_size 634/* find a suitable new size for the given array, */
635/* hopefully by rounding to a ncie-to-malloc size */
636inline_size int
624array_nextsize (int elem, int cur, int cnt) 637array_nextsize (int elem, int cur, int cnt)
625{ 638{
626 int ncur = cur + 1; 639 int ncur = cur + 1;
627 640
628 do 641 do
669 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 682 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
670 } 683 }
671#endif 684#endif
672 685
673#define array_free(stem, idx) \ 686#define array_free(stem, idx) \
674 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 687 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
675 688
676/*****************************************************************************/ 689/*****************************************************************************/
690
691/* dummy callback for pending events */
692static void noinline
693pendingcb (EV_P_ ev_prepare *w, int revents)
694{
695}
677 696
678void noinline 697void noinline
679ev_feed_event (EV_P_ void *w, int revents) 698ev_feed_event (EV_P_ void *w, int revents)
680{ 699{
681 W w_ = (W)w; 700 W w_ = (W)w;
690 pendings [pri][w_->pending - 1].w = w_; 709 pendings [pri][w_->pending - 1].w = w_;
691 pendings [pri][w_->pending - 1].events = revents; 710 pendings [pri][w_->pending - 1].events = revents;
692 } 711 }
693} 712}
694 713
695void inline_speed 714inline_speed void
715feed_reverse (EV_P_ W w)
716{
717 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
718 rfeeds [rfeedcnt++] = w;
719}
720
721inline_size void
722feed_reverse_done (EV_P_ int revents)
723{
724 do
725 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
726 while (rfeedcnt);
727}
728
729inline_speed void
696queue_events (EV_P_ W *events, int eventcnt, int type) 730queue_events (EV_P_ W *events, int eventcnt, int type)
697{ 731{
698 int i; 732 int i;
699 733
700 for (i = 0; i < eventcnt; ++i) 734 for (i = 0; i < eventcnt; ++i)
701 ev_feed_event (EV_A_ events [i], type); 735 ev_feed_event (EV_A_ events [i], type);
702} 736}
703 737
704/*****************************************************************************/ 738/*****************************************************************************/
705 739
706void inline_speed 740inline_speed void
707fd_event (EV_P_ int fd, int revents) 741fd_event (EV_P_ int fd, int revents)
708{ 742{
709 ANFD *anfd = anfds + fd; 743 ANFD *anfd = anfds + fd;
710 ev_io *w; 744 ev_io *w;
711 745
723{ 757{
724 if (fd >= 0 && fd < anfdmax) 758 if (fd >= 0 && fd < anfdmax)
725 fd_event (EV_A_ fd, revents); 759 fd_event (EV_A_ fd, revents);
726} 760}
727 761
728void inline_size 762/* make sure the external fd watch events are in-sync */
763/* with the kernel/libev internal state */
764inline_size void
729fd_reify (EV_P) 765fd_reify (EV_P)
730{ 766{
731 int i; 767 int i;
732 768
733 for (i = 0; i < fdchangecnt; ++i) 769 for (i = 0; i < fdchangecnt; ++i)
759 unsigned char o_reify = anfd->reify; 795 unsigned char o_reify = anfd->reify;
760 796
761 anfd->reify = 0; 797 anfd->reify = 0;
762 anfd->events = events; 798 anfd->events = events;
763 799
764 if (o_events != events || o_reify & EV_IOFDSET) 800 if (o_events != events || o_reify & EV__IOFDSET)
765 backend_modify (EV_A_ fd, o_events, events); 801 backend_modify (EV_A_ fd, o_events, events);
766 } 802 }
767 } 803 }
768 804
769 fdchangecnt = 0; 805 fdchangecnt = 0;
770} 806}
771 807
772void inline_size 808/* something about the given fd changed */
809inline_size void
773fd_change (EV_P_ int fd, int flags) 810fd_change (EV_P_ int fd, int flags)
774{ 811{
775 unsigned char reify = anfds [fd].reify; 812 unsigned char reify = anfds [fd].reify;
776 anfds [fd].reify |= flags; 813 anfds [fd].reify |= flags;
777 814
781 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 818 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
782 fdchanges [fdchangecnt - 1] = fd; 819 fdchanges [fdchangecnt - 1] = fd;
783 } 820 }
784} 821}
785 822
786void inline_speed 823/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
824inline_speed void
787fd_kill (EV_P_ int fd) 825fd_kill (EV_P_ int fd)
788{ 826{
789 ev_io *w; 827 ev_io *w;
790 828
791 while ((w = (ev_io *)anfds [fd].head)) 829 while ((w = (ev_io *)anfds [fd].head))
793 ev_io_stop (EV_A_ w); 831 ev_io_stop (EV_A_ w);
794 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 832 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
795 } 833 }
796} 834}
797 835
798int inline_size 836/* check whether the given fd is atcually valid, for error recovery */
837inline_size int
799fd_valid (int fd) 838fd_valid (int fd)
800{ 839{
801#ifdef _WIN32 840#ifdef _WIN32
802 return _get_osfhandle (fd) != -1; 841 return _get_osfhandle (fd) != -1;
803#else 842#else
840 for (fd = 0; fd < anfdmax; ++fd) 879 for (fd = 0; fd < anfdmax; ++fd)
841 if (anfds [fd].events) 880 if (anfds [fd].events)
842 { 881 {
843 anfds [fd].events = 0; 882 anfds [fd].events = 0;
844 anfds [fd].emask = 0; 883 anfds [fd].emask = 0;
845 fd_change (EV_A_ fd, EV_IOFDSET | 1); 884 fd_change (EV_A_ fd, EV__IOFDSET | 1);
846 } 885 }
847} 886}
848 887
849/*****************************************************************************/ 888/*****************************************************************************/
850 889
866#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 905#define HEAP0 (DHEAP - 1) /* index of first element in heap */
867#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 906#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
868#define UPHEAP_DONE(p,k) ((p) == (k)) 907#define UPHEAP_DONE(p,k) ((p) == (k))
869 908
870/* away from the root */ 909/* away from the root */
871void inline_speed 910inline_speed void
872downheap (ANHE *heap, int N, int k) 911downheap (ANHE *heap, int N, int k)
873{ 912{
874 ANHE he = heap [k]; 913 ANHE he = heap [k];
875 ANHE *E = heap + N + HEAP0; 914 ANHE *E = heap + N + HEAP0;
876 915
916#define HEAP0 1 955#define HEAP0 1
917#define HPARENT(k) ((k) >> 1) 956#define HPARENT(k) ((k) >> 1)
918#define UPHEAP_DONE(p,k) (!(p)) 957#define UPHEAP_DONE(p,k) (!(p))
919 958
920/* away from the root */ 959/* away from the root */
921void inline_speed 960inline_speed void
922downheap (ANHE *heap, int N, int k) 961downheap (ANHE *heap, int N, int k)
923{ 962{
924 ANHE he = heap [k]; 963 ANHE he = heap [k];
925 964
926 for (;;) 965 for (;;)
946 ev_active (ANHE_w (he)) = k; 985 ev_active (ANHE_w (he)) = k;
947} 986}
948#endif 987#endif
949 988
950/* towards the root */ 989/* towards the root */
951void inline_speed 990inline_speed void
952upheap (ANHE *heap, int k) 991upheap (ANHE *heap, int k)
953{ 992{
954 ANHE he = heap [k]; 993 ANHE he = heap [k];
955 994
956 for (;;) 995 for (;;)
967 1006
968 heap [k] = he; 1007 heap [k] = he;
969 ev_active (ANHE_w (he)) = k; 1008 ev_active (ANHE_w (he)) = k;
970} 1009}
971 1010
972void inline_size 1011/* move an element suitably so it is in a correct place */
1012inline_size void
973adjustheap (ANHE *heap, int N, int k) 1013adjustheap (ANHE *heap, int N, int k)
974{ 1014{
975 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1015 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
976 upheap (heap, k); 1016 upheap (heap, k);
977 else 1017 else
978 downheap (heap, N, k); 1018 downheap (heap, N, k);
979} 1019}
980 1020
981/* rebuild the heap: this function is used only once and executed rarely */ 1021/* rebuild the heap: this function is used only once and executed rarely */
982void inline_size 1022inline_size void
983reheap (ANHE *heap, int N) 1023reheap (ANHE *heap, int N)
984{ 1024{
985 int i; 1025 int i;
986 1026
987 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1027 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
990 upheap (heap, i + HEAP0); 1030 upheap (heap, i + HEAP0);
991} 1031}
992 1032
993/*****************************************************************************/ 1033/*****************************************************************************/
994 1034
1035/* associate signal watchers to a signal signal */
995typedef struct 1036typedef struct
996{ 1037{
997 WL head; 1038 WL head;
998 EV_ATOMIC_T gotsig; 1039 EV_ATOMIC_T gotsig;
999} ANSIG; 1040} ANSIG;
1003 1044
1004static EV_ATOMIC_T gotsig; 1045static EV_ATOMIC_T gotsig;
1005 1046
1006/*****************************************************************************/ 1047/*****************************************************************************/
1007 1048
1008void inline_speed 1049/* used to prepare libev internal fd's */
1050/* this is not fork-safe */
1051inline_speed void
1009fd_intern (int fd) 1052fd_intern (int fd)
1010{ 1053{
1011#ifdef _WIN32 1054#ifdef _WIN32
1012 unsigned long arg = 1; 1055 unsigned long arg = 1;
1013 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1056 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1018} 1061}
1019 1062
1020static void noinline 1063static void noinline
1021evpipe_init (EV_P) 1064evpipe_init (EV_P)
1022{ 1065{
1023 if (!ev_is_active (&pipeev)) 1066 if (!ev_is_active (&pipe_w))
1024 { 1067 {
1025#if EV_USE_EVENTFD 1068#if EV_USE_EVENTFD
1026 if ((evfd = eventfd (0, 0)) >= 0) 1069 if ((evfd = eventfd (0, 0)) >= 0)
1027 { 1070 {
1028 evpipe [0] = -1; 1071 evpipe [0] = -1;
1029 fd_intern (evfd); 1072 fd_intern (evfd);
1030 ev_io_set (&pipeev, evfd, EV_READ); 1073 ev_io_set (&pipe_w, evfd, EV_READ);
1031 } 1074 }
1032 else 1075 else
1033#endif 1076#endif
1034 { 1077 {
1035 while (pipe (evpipe)) 1078 while (pipe (evpipe))
1036 ev_syserr ("(libev) error creating signal/async pipe"); 1079 ev_syserr ("(libev) error creating signal/async pipe");
1037 1080
1038 fd_intern (evpipe [0]); 1081 fd_intern (evpipe [0]);
1039 fd_intern (evpipe [1]); 1082 fd_intern (evpipe [1]);
1040 ev_io_set (&pipeev, evpipe [0], EV_READ); 1083 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1041 } 1084 }
1042 1085
1043 ev_io_start (EV_A_ &pipeev); 1086 ev_io_start (EV_A_ &pipe_w);
1044 ev_unref (EV_A); /* watcher should not keep loop alive */ 1087 ev_unref (EV_A); /* watcher should not keep loop alive */
1045 } 1088 }
1046} 1089}
1047 1090
1048void inline_size 1091inline_size void
1049evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1092evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1050{ 1093{
1051 if (!*flag) 1094 if (!*flag)
1052 { 1095 {
1053 int old_errno = errno; /* save errno because write might clobber it */ 1096 int old_errno = errno; /* save errno because write might clobber it */
1066 1109
1067 errno = old_errno; 1110 errno = old_errno;
1068 } 1111 }
1069} 1112}
1070 1113
1114/* called whenever the libev signal pipe */
1115/* got some events (signal, async) */
1071static void 1116static void
1072pipecb (EV_P_ ev_io *iow, int revents) 1117pipecb (EV_P_ ev_io *iow, int revents)
1073{ 1118{
1074#if EV_USE_EVENTFD 1119#if EV_USE_EVENTFD
1075 if (evfd >= 0) 1120 if (evfd >= 0)
1157 1202
1158#ifndef WIFCONTINUED 1203#ifndef WIFCONTINUED
1159# define WIFCONTINUED(status) 0 1204# define WIFCONTINUED(status) 0
1160#endif 1205#endif
1161 1206
1162void inline_speed 1207/* handle a single child status event */
1208inline_speed void
1163child_reap (EV_P_ int chain, int pid, int status) 1209child_reap (EV_P_ int chain, int pid, int status)
1164{ 1210{
1165 ev_child *w; 1211 ev_child *w;
1166 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1212 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1167 1213
1180 1226
1181#ifndef WCONTINUED 1227#ifndef WCONTINUED
1182# define WCONTINUED 0 1228# define WCONTINUED 0
1183#endif 1229#endif
1184 1230
1231/* called on sigchld etc., calls waitpid */
1185static void 1232static void
1186childcb (EV_P_ ev_signal *sw, int revents) 1233childcb (EV_P_ ev_signal *sw, int revents)
1187{ 1234{
1188 int pid, status; 1235 int pid, status;
1189 1236
1314ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1361ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1315{ 1362{
1316 timeout_blocktime = interval; 1363 timeout_blocktime = interval;
1317} 1364}
1318 1365
1366/* initialise a loop structure, must be zero-initialised */
1319static void noinline 1367static void noinline
1320loop_init (EV_P_ unsigned int flags) 1368loop_init (EV_P_ unsigned int flags)
1321{ 1369{
1322 if (!backend) 1370 if (!backend)
1323 { 1371 {
1372#if EV_USE_REALTIME
1373 if (!have_realtime)
1374 {
1375 struct timespec ts;
1376
1377 if (!clock_gettime (CLOCK_REALTIME, &ts))
1378 have_realtime = 1;
1379 }
1380#endif
1381
1324#if EV_USE_MONOTONIC 1382#if EV_USE_MONOTONIC
1383 if (!have_monotonic)
1325 { 1384 {
1326 struct timespec ts; 1385 struct timespec ts;
1386
1327 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1387 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1328 have_monotonic = 1; 1388 have_monotonic = 1;
1329 } 1389 }
1330#endif 1390#endif
1331 1391
1332 ev_rt_now = ev_time (); 1392 ev_rt_now = ev_time ();
1333 mn_now = get_clock (); 1393 mn_now = get_clock ();
1334 now_floor = mn_now; 1394 now_floor = mn_now;
1371#endif 1431#endif
1372#if EV_USE_SELECT 1432#if EV_USE_SELECT
1373 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1433 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1374#endif 1434#endif
1375 1435
1436 ev_prepare_init (&pending_w, pendingcb);
1437
1376 ev_init (&pipeev, pipecb); 1438 ev_init (&pipe_w, pipecb);
1377 ev_set_priority (&pipeev, EV_MAXPRI); 1439 ev_set_priority (&pipe_w, EV_MAXPRI);
1378 } 1440 }
1379} 1441}
1380 1442
1443/* free up a loop structure */
1381static void noinline 1444static void noinline
1382loop_destroy (EV_P) 1445loop_destroy (EV_P)
1383{ 1446{
1384 int i; 1447 int i;
1385 1448
1386 if (ev_is_active (&pipeev)) 1449 if (ev_is_active (&pipe_w))
1387 { 1450 {
1388 ev_ref (EV_A); /* signal watcher */ 1451 ev_ref (EV_A); /* signal watcher */
1389 ev_io_stop (EV_A_ &pipeev); 1452 ev_io_stop (EV_A_ &pipe_w);
1390 1453
1391#if EV_USE_EVENTFD 1454#if EV_USE_EVENTFD
1392 if (evfd >= 0) 1455 if (evfd >= 0)
1393 close (evfd); 1456 close (evfd);
1394#endif 1457#endif
1433 } 1496 }
1434 1497
1435 ev_free (anfds); anfdmax = 0; 1498 ev_free (anfds); anfdmax = 0;
1436 1499
1437 /* have to use the microsoft-never-gets-it-right macro */ 1500 /* have to use the microsoft-never-gets-it-right macro */
1501 array_free (rfeed, EMPTY);
1438 array_free (fdchange, EMPTY); 1502 array_free (fdchange, EMPTY);
1439 array_free (timer, EMPTY); 1503 array_free (timer, EMPTY);
1440#if EV_PERIODIC_ENABLE 1504#if EV_PERIODIC_ENABLE
1441 array_free (periodic, EMPTY); 1505 array_free (periodic, EMPTY);
1442#endif 1506#endif
1451 1515
1452 backend = 0; 1516 backend = 0;
1453} 1517}
1454 1518
1455#if EV_USE_INOTIFY 1519#if EV_USE_INOTIFY
1456void inline_size infy_fork (EV_P); 1520inline_size void infy_fork (EV_P);
1457#endif 1521#endif
1458 1522
1459void inline_size 1523inline_size void
1460loop_fork (EV_P) 1524loop_fork (EV_P)
1461{ 1525{
1462#if EV_USE_PORT 1526#if EV_USE_PORT
1463 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1527 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1464#endif 1528#endif
1470#endif 1534#endif
1471#if EV_USE_INOTIFY 1535#if EV_USE_INOTIFY
1472 infy_fork (EV_A); 1536 infy_fork (EV_A);
1473#endif 1537#endif
1474 1538
1475 if (ev_is_active (&pipeev)) 1539 if (ev_is_active (&pipe_w))
1476 { 1540 {
1477 /* this "locks" the handlers against writing to the pipe */ 1541 /* this "locks" the handlers against writing to the pipe */
1478 /* while we modify the fd vars */ 1542 /* while we modify the fd vars */
1479 gotsig = 1; 1543 gotsig = 1;
1480#if EV_ASYNC_ENABLE 1544#if EV_ASYNC_ENABLE
1481 gotasync = 1; 1545 gotasync = 1;
1482#endif 1546#endif
1483 1547
1484 ev_ref (EV_A); 1548 ev_ref (EV_A);
1485 ev_io_stop (EV_A_ &pipeev); 1549 ev_io_stop (EV_A_ &pipe_w);
1486 1550
1487#if EV_USE_EVENTFD 1551#if EV_USE_EVENTFD
1488 if (evfd >= 0) 1552 if (evfd >= 0)
1489 close (evfd); 1553 close (evfd);
1490#endif 1554#endif
1495 close (evpipe [1]); 1559 close (evpipe [1]);
1496 } 1560 }
1497 1561
1498 evpipe_init (EV_A); 1562 evpipe_init (EV_A);
1499 /* now iterate over everything, in case we missed something */ 1563 /* now iterate over everything, in case we missed something */
1500 pipecb (EV_A_ &pipeev, EV_READ); 1564 pipecb (EV_A_ &pipe_w, EV_READ);
1501 } 1565 }
1502 1566
1503 postfork = 0; 1567 postfork = 0;
1504} 1568}
1505 1569
1701ev_invoke (EV_P_ void *w, int revents) 1765ev_invoke (EV_P_ void *w, int revents)
1702{ 1766{
1703 EV_CB_INVOKE ((W)w, revents); 1767 EV_CB_INVOKE ((W)w, revents);
1704} 1768}
1705 1769
1706void inline_speed 1770inline_speed void
1707call_pending (EV_P) 1771call_pending (EV_P)
1708{ 1772{
1709 int pri; 1773 int pri;
1710 1774
1711 for (pri = NUMPRI; pri--; ) 1775 for (pri = NUMPRI; pri--; )
1712 while (pendingcnt [pri]) 1776 while (pendingcnt [pri])
1713 { 1777 {
1714 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1778 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1715 1779
1716 if (expect_true (p->w))
1717 {
1718 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/ 1780 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1781 /* ^ this is no longer true, as pending_w could be here */
1719 1782
1720 p->w->pending = 0; 1783 p->w->pending = 0;
1721 EV_CB_INVOKE (p->w, p->events); 1784 EV_CB_INVOKE (p->w, p->events);
1722 EV_FREQUENT_CHECK; 1785 EV_FREQUENT_CHECK;
1723 }
1724 } 1786 }
1725} 1787}
1726 1788
1727#if EV_IDLE_ENABLE 1789#if EV_IDLE_ENABLE
1728void inline_size 1790/* make idle watchers pending. this handles the "call-idle */
1791/* only when higher priorities are idle" logic */
1792inline_size void
1729idle_reify (EV_P) 1793idle_reify (EV_P)
1730{ 1794{
1731 if (expect_false (idleall)) 1795 if (expect_false (idleall))
1732 { 1796 {
1733 int pri; 1797 int pri;
1745 } 1809 }
1746 } 1810 }
1747} 1811}
1748#endif 1812#endif
1749 1813
1750void inline_size 1814/* make timers pending */
1815inline_size void
1751timers_reify (EV_P) 1816timers_reify (EV_P)
1752{ 1817{
1753 EV_FREQUENT_CHECK; 1818 EV_FREQUENT_CHECK;
1754 1819
1755 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 1820 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1756 { 1821 {
1757 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 1822 do
1758
1759 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1760
1761 /* first reschedule or stop timer */
1762 if (w->repeat)
1763 { 1823 {
1824 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1825
1826 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1827
1828 /* first reschedule or stop timer */
1829 if (w->repeat)
1830 {
1764 ev_at (w) += w->repeat; 1831 ev_at (w) += w->repeat;
1765 if (ev_at (w) < mn_now) 1832 if (ev_at (w) < mn_now)
1766 ev_at (w) = mn_now; 1833 ev_at (w) = mn_now;
1767 1834
1768 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1835 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1769 1836
1770 ANHE_at_cache (timers [HEAP0]); 1837 ANHE_at_cache (timers [HEAP0]);
1771 downheap (timers, timercnt, HEAP0); 1838 downheap (timers, timercnt, HEAP0);
1839 }
1840 else
1841 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1842
1843 EV_FREQUENT_CHECK;
1844 feed_reverse (EV_A_ (W)w);
1772 } 1845 }
1773 else 1846 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1774 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1775 1847
1776 EV_FREQUENT_CHECK;
1777 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1848 feed_reverse_done (EV_A_ EV_TIMEOUT);
1778 } 1849 }
1779} 1850}
1780 1851
1781#if EV_PERIODIC_ENABLE 1852#if EV_PERIODIC_ENABLE
1782void inline_size 1853/* make periodics pending */
1854inline_size void
1783periodics_reify (EV_P) 1855periodics_reify (EV_P)
1784{ 1856{
1785 EV_FREQUENT_CHECK; 1857 EV_FREQUENT_CHECK;
1786 1858
1787 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 1859 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1788 { 1860 {
1789 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 1861 int feed_count = 0;
1790 1862
1791 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/ 1863 do
1792
1793 /* first reschedule or stop timer */
1794 if (w->reschedule_cb)
1795 { 1864 {
1865 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1866
1867 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1868
1869 /* first reschedule or stop timer */
1870 if (w->reschedule_cb)
1871 {
1796 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1872 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1797 1873
1798 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 1874 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1799 1875
1800 ANHE_at_cache (periodics [HEAP0]); 1876 ANHE_at_cache (periodics [HEAP0]);
1801 downheap (periodics, periodiccnt, HEAP0); 1877 downheap (periodics, periodiccnt, HEAP0);
1878 }
1879 else if (w->interval)
1880 {
1881 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1882 /* if next trigger time is not sufficiently in the future, put it there */
1883 /* this might happen because of floating point inexactness */
1884 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1885 {
1886 ev_at (w) += w->interval;
1887
1888 /* if interval is unreasonably low we might still have a time in the past */
1889 /* so correct this. this will make the periodic very inexact, but the user */
1890 /* has effectively asked to get triggered more often than possible */
1891 if (ev_at (w) < ev_rt_now)
1892 ev_at (w) = ev_rt_now;
1893 }
1894
1895 ANHE_at_cache (periodics [HEAP0]);
1896 downheap (periodics, periodiccnt, HEAP0);
1897 }
1898 else
1899 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1900
1901 EV_FREQUENT_CHECK;
1902 feed_reverse (EV_A_ (W)w);
1802 } 1903 }
1803 else if (w->interval) 1904 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1804 {
1805 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1806 /* if next trigger time is not sufficiently in the future, put it there */
1807 /* this might happen because of floating point inexactness */
1808 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1809 {
1810 ev_at (w) += w->interval;
1811 1905
1812 /* if interval is unreasonably low we might still have a time in the past */
1813 /* so correct this. this will make the periodic very inexact, but the user */
1814 /* has effectively asked to get triggered more often than possible */
1815 if (ev_at (w) < ev_rt_now)
1816 ev_at (w) = ev_rt_now;
1817 }
1818
1819 ANHE_at_cache (periodics [HEAP0]);
1820 downheap (periodics, periodiccnt, HEAP0);
1821 }
1822 else
1823 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1824
1825 EV_FREQUENT_CHECK;
1826 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1906 feed_reverse_done (EV_A_ EV_PERIODIC);
1827 } 1907 }
1828} 1908}
1829 1909
1910/* simply recalculate all periodics */
1911/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1830static void noinline 1912static void noinline
1831periodics_reschedule (EV_P) 1913periodics_reschedule (EV_P)
1832{ 1914{
1833 int i; 1915 int i;
1834 1916
1847 1929
1848 reheap (periodics, periodiccnt); 1930 reheap (periodics, periodiccnt);
1849} 1931}
1850#endif 1932#endif
1851 1933
1852void inline_speed 1934/* adjust all timers by a given offset */
1935static void noinline
1936timers_reschedule (EV_P_ ev_tstamp adjust)
1937{
1938 int i;
1939
1940 for (i = 0; i < timercnt; ++i)
1941 {
1942 ANHE *he = timers + i + HEAP0;
1943 ANHE_w (*he)->at += adjust;
1944 ANHE_at_cache (*he);
1945 }
1946}
1947
1948/* fetch new monotonic and realtime times from the kernel */
1949/* also detetc if there was a timejump, and act accordingly */
1950inline_speed void
1853time_update (EV_P_ ev_tstamp max_block) 1951time_update (EV_P_ ev_tstamp max_block)
1854{ 1952{
1855 int i; 1953 int i;
1856 1954
1857#if EV_USE_MONOTONIC 1955#if EV_USE_MONOTONIC
1890 ev_rt_now = ev_time (); 1988 ev_rt_now = ev_time ();
1891 mn_now = get_clock (); 1989 mn_now = get_clock ();
1892 now_floor = mn_now; 1990 now_floor = mn_now;
1893 } 1991 }
1894 1992
1993 /* no timer adjustment, as the monotonic clock doesn't jump */
1994 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1895# if EV_PERIODIC_ENABLE 1995# if EV_PERIODIC_ENABLE
1896 periodics_reschedule (EV_A); 1996 periodics_reschedule (EV_A);
1897# endif 1997# endif
1898 /* no timer adjustment, as the monotonic clock doesn't jump */
1899 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1900 } 1998 }
1901 else 1999 else
1902#endif 2000#endif
1903 { 2001 {
1904 ev_rt_now = ev_time (); 2002 ev_rt_now = ev_time ();
1905 2003
1906 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2004 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1907 { 2005 {
2006 /* adjust timers. this is easy, as the offset is the same for all of them */
2007 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1908#if EV_PERIODIC_ENABLE 2008#if EV_PERIODIC_ENABLE
1909 periodics_reschedule (EV_A); 2009 periodics_reschedule (EV_A);
1910#endif 2010#endif
1911 /* adjust timers. this is easy, as the offset is the same for all of them */
1912 for (i = 0; i < timercnt; ++i)
1913 {
1914 ANHE *he = timers + i + HEAP0;
1915 ANHE_w (*he)->at += ev_rt_now - mn_now;
1916 ANHE_at_cache (*he);
1917 }
1918 } 2011 }
1919 2012
1920 mn_now = ev_rt_now; 2013 mn_now = ev_rt_now;
1921 } 2014 }
1922}
1923
1924void
1925ev_ref (EV_P)
1926{
1927 ++activecnt;
1928}
1929
1930void
1931ev_unref (EV_P)
1932{
1933 --activecnt;
1934}
1935
1936void
1937ev_now_update (EV_P)
1938{
1939 time_update (EV_A_ 1e100);
1940} 2015}
1941 2016
1942static int loop_done; 2017static int loop_done;
1943 2018
1944void 2019void
1978 { 2053 {
1979 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2054 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1980 call_pending (EV_A); 2055 call_pending (EV_A);
1981 } 2056 }
1982 2057
1983 if (expect_false (!activecnt))
1984 break;
1985
1986 /* we might have forked, so reify kernel state if necessary */ 2058 /* we might have forked, so reify kernel state if necessary */
1987 if (expect_false (postfork)) 2059 if (expect_false (postfork))
1988 loop_fork (EV_A); 2060 loop_fork (EV_A);
1989 2061
1990 /* update fd-related kernel structures */ 2062 /* update fd-related kernel structures */
2069ev_unloop (EV_P_ int how) 2141ev_unloop (EV_P_ int how)
2070{ 2142{
2071 loop_done = how; 2143 loop_done = how;
2072} 2144}
2073 2145
2146void
2147ev_ref (EV_P)
2148{
2149 ++activecnt;
2150}
2151
2152void
2153ev_unref (EV_P)
2154{
2155 --activecnt;
2156}
2157
2158void
2159ev_now_update (EV_P)
2160{
2161 time_update (EV_A_ 1e100);
2162}
2163
2164void
2165ev_suspend (EV_P)
2166{
2167 ev_now_update (EV_A);
2168}
2169
2170void
2171ev_resume (EV_P)
2172{
2173 ev_tstamp mn_prev = mn_now;
2174
2175 ev_now_update (EV_A);
2176 timers_reschedule (EV_A_ mn_now - mn_prev);
2177#if EV_PERIODIC_ENABLE
2178 /* TODO: really do this? */
2179 periodics_reschedule (EV_A);
2180#endif
2181}
2182
2074/*****************************************************************************/ 2183/*****************************************************************************/
2184/* singly-linked list management, used when the expected list length is short */
2075 2185
2076void inline_size 2186inline_size void
2077wlist_add (WL *head, WL elem) 2187wlist_add (WL *head, WL elem)
2078{ 2188{
2079 elem->next = *head; 2189 elem->next = *head;
2080 *head = elem; 2190 *head = elem;
2081} 2191}
2082 2192
2083void inline_size 2193inline_size void
2084wlist_del (WL *head, WL elem) 2194wlist_del (WL *head, WL elem)
2085{ 2195{
2086 while (*head) 2196 while (*head)
2087 { 2197 {
2088 if (*head == elem) 2198 if (*head == elem)
2093 2203
2094 head = &(*head)->next; 2204 head = &(*head)->next;
2095 } 2205 }
2096} 2206}
2097 2207
2098void inline_speed 2208/* internal, faster, version of ev_clear_pending */
2209inline_speed void
2099clear_pending (EV_P_ W w) 2210clear_pending (EV_P_ W w)
2100{ 2211{
2101 if (w->pending) 2212 if (w->pending)
2102 { 2213 {
2103 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2214 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2104 w->pending = 0; 2215 w->pending = 0;
2105 } 2216 }
2106} 2217}
2107 2218
2108int 2219int
2112 int pending = w_->pending; 2223 int pending = w_->pending;
2113 2224
2114 if (expect_true (pending)) 2225 if (expect_true (pending))
2115 { 2226 {
2116 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2227 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2228 p->w = (W)&pending_w;
2117 w_->pending = 0; 2229 w_->pending = 0;
2118 p->w = 0;
2119 return p->events; 2230 return p->events;
2120 } 2231 }
2121 else 2232 else
2122 return 0; 2233 return 0;
2123} 2234}
2124 2235
2125void inline_size 2236inline_size void
2126pri_adjust (EV_P_ W w) 2237pri_adjust (EV_P_ W w)
2127{ 2238{
2128 int pri = w->priority; 2239 int pri = w->priority;
2129 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2240 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2130 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2241 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2131 w->priority = pri; 2242 w->priority = pri;
2132} 2243}
2133 2244
2134void inline_speed 2245inline_speed void
2135ev_start (EV_P_ W w, int active) 2246ev_start (EV_P_ W w, int active)
2136{ 2247{
2137 pri_adjust (EV_A_ w); 2248 pri_adjust (EV_A_ w);
2138 w->active = active; 2249 w->active = active;
2139 ev_ref (EV_A); 2250 ev_ref (EV_A);
2140} 2251}
2141 2252
2142void inline_size 2253inline_size void
2143ev_stop (EV_P_ W w) 2254ev_stop (EV_P_ W w)
2144{ 2255{
2145 ev_unref (EV_A); 2256 ev_unref (EV_A);
2146 w->active = 0; 2257 w->active = 0;
2147} 2258}
2155 2266
2156 if (expect_false (ev_is_active (w))) 2267 if (expect_false (ev_is_active (w)))
2157 return; 2268 return;
2158 2269
2159 assert (("libev: ev_io_start called with negative fd", fd >= 0)); 2270 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2160 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE)))); 2271 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2161 2272
2162 EV_FREQUENT_CHECK; 2273 EV_FREQUENT_CHECK;
2163 2274
2164 ev_start (EV_A_ (W)w, 1); 2275 ev_start (EV_A_ (W)w, 1);
2165 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 2276 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2166 wlist_add (&anfds[fd].head, (WL)w); 2277 wlist_add (&anfds[fd].head, (WL)w);
2167 2278
2168 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2279 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
2169 w->events &= ~EV_IOFDSET; 2280 w->events &= ~EV__IOFDSET;
2170 2281
2171 EV_FREQUENT_CHECK; 2282 EV_FREQUENT_CHECK;
2172} 2283}
2173 2284
2174void noinline 2285void noinline
2572 2683
2573 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2684 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2574 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2685 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2575} 2686}
2576 2687
2577void inline_size 2688inline_size void
2578check_2625 (EV_P) 2689check_2625 (EV_P)
2579{ 2690{
2580 /* kernels < 2.6.25 are borked 2691 /* kernels < 2.6.25 are borked
2581 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 2692 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2582 */ 2693 */
2595 return; 2706 return;
2596 2707
2597 fs_2625 = 1; 2708 fs_2625 = 1;
2598} 2709}
2599 2710
2600void inline_size 2711inline_size void
2601infy_init (EV_P) 2712infy_init (EV_P)
2602{ 2713{
2603 if (fs_fd != -2) 2714 if (fs_fd != -2)
2604 return; 2715 return;
2605 2716
2615 ev_set_priority (&fs_w, EV_MAXPRI); 2726 ev_set_priority (&fs_w, EV_MAXPRI);
2616 ev_io_start (EV_A_ &fs_w); 2727 ev_io_start (EV_A_ &fs_w);
2617 } 2728 }
2618} 2729}
2619 2730
2620void inline_size 2731inline_size void
2621infy_fork (EV_P) 2732infy_fork (EV_P)
2622{ 2733{
2623 int slot; 2734 int slot;
2624 2735
2625 if (fs_fd < 0) 2736 if (fs_fd < 0)
3127 ev_timer_set (&once->to, timeout, 0.); 3238 ev_timer_set (&once->to, timeout, 0.);
3128 ev_timer_start (EV_A_ &once->to); 3239 ev_timer_start (EV_A_ &once->to);
3129 } 3240 }
3130} 3241}
3131 3242
3243/*****************************************************************************/
3244
3245#if EV_WALK_ENABLE
3246void
3247ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3248{
3249 int i, j;
3250 ev_watcher_list *wl, *wn;
3251
3252 if (types & (EV_IO | EV_EMBED))
3253 for (i = 0; i < anfdmax; ++i)
3254 for (wl = anfds [i].head; wl; )
3255 {
3256 wn = wl->next;
3257
3258#if EV_EMBED_ENABLE
3259 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3260 {
3261 if (types & EV_EMBED)
3262 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3263 }
3264 else
3265#endif
3266#if EV_USE_INOTIFY
3267 if (ev_cb ((ev_io *)wl) == infy_cb)
3268 ;
3269 else
3270#endif
3271 if ((ev_io *)wl != &pipe_w)
3272 if (types & EV_IO)
3273 cb (EV_A_ EV_IO, wl);
3274
3275 wl = wn;
3276 }
3277
3278 if (types & (EV_TIMER | EV_STAT))
3279 for (i = timercnt + HEAP0; i-- > HEAP0; )
3280#if EV_STAT_ENABLE
3281 /*TODO: timer is not always active*/
3282 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3283 {
3284 if (types & EV_STAT)
3285 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3286 }
3287 else
3288#endif
3289 if (types & EV_TIMER)
3290 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3291
3292#if EV_PERIODIC_ENABLE
3293 if (types & EV_PERIODIC)
3294 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3295 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3296#endif
3297
3298#if EV_IDLE_ENABLE
3299 if (types & EV_IDLE)
3300 for (j = NUMPRI; i--; )
3301 for (i = idlecnt [j]; i--; )
3302 cb (EV_A_ EV_IDLE, idles [j][i]);
3303#endif
3304
3305#if EV_FORK_ENABLE
3306 if (types & EV_FORK)
3307 for (i = forkcnt; i--; )
3308 if (ev_cb (forks [i]) != embed_fork_cb)
3309 cb (EV_A_ EV_FORK, forks [i]);
3310#endif
3311
3312#if EV_ASYNC_ENABLE
3313 if (types & EV_ASYNC)
3314 for (i = asynccnt; i--; )
3315 cb (EV_A_ EV_ASYNC, asyncs [i]);
3316#endif
3317
3318 if (types & EV_PREPARE)
3319 for (i = preparecnt; i--; )
3320#if EV_EMBED_ENABLE
3321 if (ev_cb (prepares [i]) != embed_prepare_cb)
3322#endif
3323 cb (EV_A_ EV_PREPARE, prepares [i]);
3324
3325 if (types & EV_CHECK)
3326 for (i = checkcnt; i--; )
3327 cb (EV_A_ EV_CHECK, checks [i]);
3328
3329 if (types & EV_SIGNAL)
3330 for (i = 0; i < signalmax; ++i)
3331 for (wl = signals [i].head; wl; )
3332 {
3333 wn = wl->next;
3334 cb (EV_A_ EV_SIGNAL, wl);
3335 wl = wn;
3336 }
3337
3338 if (types & EV_CHILD)
3339 for (i = EV_PID_HASHSIZE; i--; )
3340 for (wl = childs [i]; wl; )
3341 {
3342 wn = wl->next;
3343 cb (EV_A_ EV_CHILD, wl);
3344 wl = wn;
3345 }
3346/* EV_STAT 0x00001000 /* stat data changed */
3347/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3348}
3349#endif
3350
3132#if EV_MULTIPLICITY 3351#if EV_MULTIPLICITY
3133 #include "ev_wrap.h" 3352 #include "ev_wrap.h"
3134#endif 3353#endif
3135 3354
3136#ifdef __cplusplus 3355#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines