ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.280 by root, Sat Mar 14 04:45:39 2009 UTC vs.
Revision 1.288 by root, Sat Apr 25 14:12:48 2009 UTC

478#define ev_malloc(size) ev_realloc (0, (size)) 478#define ev_malloc(size) ev_realloc (0, (size))
479#define ev_free(ptr) ev_realloc ((ptr), 0) 479#define ev_free(ptr) ev_realloc ((ptr), 0)
480 480
481/*****************************************************************************/ 481/*****************************************************************************/
482 482
483/* file descriptor info structure */
483typedef struct 484typedef struct
484{ 485{
485 WL head; 486 WL head;
486 unsigned char events; 487 unsigned char events; /* the events watched for */
487 unsigned char reify; 488 unsigned char reify; /* flag set when this ANFD needs reification */
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 489 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused; 490 unsigned char unused;
490#if EV_USE_EPOLL 491#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */ 492 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif 493#endif
493#if EV_SELECT_IS_WINSOCKET 494#if EV_SELECT_IS_WINSOCKET
494 SOCKET handle; 495 SOCKET handle;
495#endif 496#endif
496} ANFD; 497} ANFD;
497 498
499/* stores the pending event set for a given watcher */
498typedef struct 500typedef struct
499{ 501{
500 W w; 502 W w;
501 int events; 503 int events; /* the pending event set for the given watcher */
502} ANPENDING; 504} ANPENDING;
503 505
504#if EV_USE_INOTIFY 506#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */ 507/* hash table entry per inotify-id */
506typedef struct 508typedef struct
509} ANFS; 511} ANFS;
510#endif 512#endif
511 513
512/* Heap Entry */ 514/* Heap Entry */
513#if EV_HEAP_CACHE_AT 515#if EV_HEAP_CACHE_AT
516 /* a heap element */
514 typedef struct { 517 typedef struct {
515 ev_tstamp at; 518 ev_tstamp at;
516 WT w; 519 WT w;
517 } ANHE; 520 } ANHE;
518 521
519 #define ANHE_w(he) (he).w /* access watcher, read-write */ 522 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */ 523 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 524 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else 525#else
526 /* a heap element */
523 typedef WT ANHE; 527 typedef WT ANHE;
524 528
525 #define ANHE_w(he) (he) 529 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at 530 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he) 531 #define ANHE_at_cache(he)
570 struct timeval tv; 574 struct timeval tv;
571 gettimeofday (&tv, 0); 575 gettimeofday (&tv, 0);
572 return tv.tv_sec + tv.tv_usec * 1e-6; 576 return tv.tv_sec + tv.tv_usec * 1e-6;
573} 577}
574 578
575ev_tstamp inline_size 579inline_size ev_tstamp
576get_clock (void) 580get_clock (void)
577{ 581{
578#if EV_USE_MONOTONIC 582#if EV_USE_MONOTONIC
579 if (expect_true (have_monotonic)) 583 if (expect_true (have_monotonic))
580 { 584 {
625 629
626/*****************************************************************************/ 630/*****************************************************************************/
627 631
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 632#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629 633
630int inline_size 634/* find a suitable new size for the given array, */
635/* hopefully by rounding to a ncie-to-malloc size */
636inline_size int
631array_nextsize (int elem, int cur, int cnt) 637array_nextsize (int elem, int cur, int cnt)
632{ 638{
633 int ncur = cur + 1; 639 int ncur = cur + 1;
634 640
635 do 641 do
680#define array_free(stem, idx) \ 686#define array_free(stem, idx) \
681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0 687 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
682 688
683/*****************************************************************************/ 689/*****************************************************************************/
684 690
691/* dummy callback for pending events */
692static void noinline
693pendingcb (EV_P_ ev_prepare *w, int revents)
694{
695}
696
685void noinline 697void noinline
686ev_feed_event (EV_P_ void *w, int revents) 698ev_feed_event (EV_P_ void *w, int revents)
687{ 699{
688 W w_ = (W)w; 700 W w_ = (W)w;
689 int pri = ABSPRI (w_); 701 int pri = ABSPRI (w_);
697 pendings [pri][w_->pending - 1].w = w_; 709 pendings [pri][w_->pending - 1].w = w_;
698 pendings [pri][w_->pending - 1].events = revents; 710 pendings [pri][w_->pending - 1].events = revents;
699 } 711 }
700} 712}
701 713
702void inline_speed 714inline_speed void
715feed_reverse (EV_P_ W w)
716{
717 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
718 rfeeds [rfeedcnt++] = w;
719}
720
721inline_size void
722feed_reverse_done (EV_P_ int revents)
723{
724 do
725 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
726 while (rfeedcnt);
727}
728
729inline_speed void
703queue_events (EV_P_ W *events, int eventcnt, int type) 730queue_events (EV_P_ W *events, int eventcnt, int type)
704{ 731{
705 int i; 732 int i;
706 733
707 for (i = 0; i < eventcnt; ++i) 734 for (i = 0; i < eventcnt; ++i)
708 ev_feed_event (EV_A_ events [i], type); 735 ev_feed_event (EV_A_ events [i], type);
709} 736}
710 737
711/*****************************************************************************/ 738/*****************************************************************************/
712 739
713void inline_speed 740inline_speed void
714fd_event (EV_P_ int fd, int revents) 741fd_event (EV_P_ int fd, int revents)
715{ 742{
716 ANFD *anfd = anfds + fd; 743 ANFD *anfd = anfds + fd;
717 ev_io *w; 744 ev_io *w;
718 745
730{ 757{
731 if (fd >= 0 && fd < anfdmax) 758 if (fd >= 0 && fd < anfdmax)
732 fd_event (EV_A_ fd, revents); 759 fd_event (EV_A_ fd, revents);
733} 760}
734 761
735void inline_size 762/* make sure the external fd watch events are in-sync */
763/* with the kernel/libev internal state */
764inline_size void
736fd_reify (EV_P) 765fd_reify (EV_P)
737{ 766{
738 int i; 767 int i;
739 768
740 for (i = 0; i < fdchangecnt; ++i) 769 for (i = 0; i < fdchangecnt; ++i)
766 unsigned char o_reify = anfd->reify; 795 unsigned char o_reify = anfd->reify;
767 796
768 anfd->reify = 0; 797 anfd->reify = 0;
769 anfd->events = events; 798 anfd->events = events;
770 799
771 if (o_events != events || o_reify & EV_IOFDSET) 800 if (o_events != events || o_reify & EV__IOFDSET)
772 backend_modify (EV_A_ fd, o_events, events); 801 backend_modify (EV_A_ fd, o_events, events);
773 } 802 }
774 } 803 }
775 804
776 fdchangecnt = 0; 805 fdchangecnt = 0;
777} 806}
778 807
779void inline_size 808/* something about the given fd changed */
809inline_size void
780fd_change (EV_P_ int fd, int flags) 810fd_change (EV_P_ int fd, int flags)
781{ 811{
782 unsigned char reify = anfds [fd].reify; 812 unsigned char reify = anfds [fd].reify;
783 anfds [fd].reify |= flags; 813 anfds [fd].reify |= flags;
784 814
788 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 818 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
789 fdchanges [fdchangecnt - 1] = fd; 819 fdchanges [fdchangecnt - 1] = fd;
790 } 820 }
791} 821}
792 822
793void inline_speed 823/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
824inline_speed void
794fd_kill (EV_P_ int fd) 825fd_kill (EV_P_ int fd)
795{ 826{
796 ev_io *w; 827 ev_io *w;
797 828
798 while ((w = (ev_io *)anfds [fd].head)) 829 while ((w = (ev_io *)anfds [fd].head))
800 ev_io_stop (EV_A_ w); 831 ev_io_stop (EV_A_ w);
801 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 832 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
802 } 833 }
803} 834}
804 835
805int inline_size 836/* check whether the given fd is atcually valid, for error recovery */
837inline_size int
806fd_valid (int fd) 838fd_valid (int fd)
807{ 839{
808#ifdef _WIN32 840#ifdef _WIN32
809 return _get_osfhandle (fd) != -1; 841 return _get_osfhandle (fd) != -1;
810#else 842#else
847 for (fd = 0; fd < anfdmax; ++fd) 879 for (fd = 0; fd < anfdmax; ++fd)
848 if (anfds [fd].events) 880 if (anfds [fd].events)
849 { 881 {
850 anfds [fd].events = 0; 882 anfds [fd].events = 0;
851 anfds [fd].emask = 0; 883 anfds [fd].emask = 0;
852 fd_change (EV_A_ fd, EV_IOFDSET | 1); 884 fd_change (EV_A_ fd, EV__IOFDSET | 1);
853 } 885 }
854} 886}
855 887
856/*****************************************************************************/ 888/*****************************************************************************/
857 889
873#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 905#define HEAP0 (DHEAP - 1) /* index of first element in heap */
874#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 906#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
875#define UPHEAP_DONE(p,k) ((p) == (k)) 907#define UPHEAP_DONE(p,k) ((p) == (k))
876 908
877/* away from the root */ 909/* away from the root */
878void inline_speed 910inline_speed void
879downheap (ANHE *heap, int N, int k) 911downheap (ANHE *heap, int N, int k)
880{ 912{
881 ANHE he = heap [k]; 913 ANHE he = heap [k];
882 ANHE *E = heap + N + HEAP0; 914 ANHE *E = heap + N + HEAP0;
883 915
923#define HEAP0 1 955#define HEAP0 1
924#define HPARENT(k) ((k) >> 1) 956#define HPARENT(k) ((k) >> 1)
925#define UPHEAP_DONE(p,k) (!(p)) 957#define UPHEAP_DONE(p,k) (!(p))
926 958
927/* away from the root */ 959/* away from the root */
928void inline_speed 960inline_speed void
929downheap (ANHE *heap, int N, int k) 961downheap (ANHE *heap, int N, int k)
930{ 962{
931 ANHE he = heap [k]; 963 ANHE he = heap [k];
932 964
933 for (;;) 965 for (;;)
953 ev_active (ANHE_w (he)) = k; 985 ev_active (ANHE_w (he)) = k;
954} 986}
955#endif 987#endif
956 988
957/* towards the root */ 989/* towards the root */
958void inline_speed 990inline_speed void
959upheap (ANHE *heap, int k) 991upheap (ANHE *heap, int k)
960{ 992{
961 ANHE he = heap [k]; 993 ANHE he = heap [k];
962 994
963 for (;;) 995 for (;;)
974 1006
975 heap [k] = he; 1007 heap [k] = he;
976 ev_active (ANHE_w (he)) = k; 1008 ev_active (ANHE_w (he)) = k;
977} 1009}
978 1010
979void inline_size 1011/* move an element suitably so it is in a correct place */
1012inline_size void
980adjustheap (ANHE *heap, int N, int k) 1013adjustheap (ANHE *heap, int N, int k)
981{ 1014{
982 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1015 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
983 upheap (heap, k); 1016 upheap (heap, k);
984 else 1017 else
985 downheap (heap, N, k); 1018 downheap (heap, N, k);
986} 1019}
987 1020
988/* rebuild the heap: this function is used only once and executed rarely */ 1021/* rebuild the heap: this function is used only once and executed rarely */
989void inline_size 1022inline_size void
990reheap (ANHE *heap, int N) 1023reheap (ANHE *heap, int N)
991{ 1024{
992 int i; 1025 int i;
993 1026
994 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1027 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
997 upheap (heap, i + HEAP0); 1030 upheap (heap, i + HEAP0);
998} 1031}
999 1032
1000/*****************************************************************************/ 1033/*****************************************************************************/
1001 1034
1035/* associate signal watchers to a signal signal */
1002typedef struct 1036typedef struct
1003{ 1037{
1004 WL head; 1038 WL head;
1005 EV_ATOMIC_T gotsig; 1039 EV_ATOMIC_T gotsig;
1006} ANSIG; 1040} ANSIG;
1010 1044
1011static EV_ATOMIC_T gotsig; 1045static EV_ATOMIC_T gotsig;
1012 1046
1013/*****************************************************************************/ 1047/*****************************************************************************/
1014 1048
1015void inline_speed 1049/* used to prepare libev internal fd's */
1050/* this is not fork-safe */
1051inline_speed void
1016fd_intern (int fd) 1052fd_intern (int fd)
1017{ 1053{
1018#ifdef _WIN32 1054#ifdef _WIN32
1019 unsigned long arg = 1; 1055 unsigned long arg = 1;
1020 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1056 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1025} 1061}
1026 1062
1027static void noinline 1063static void noinline
1028evpipe_init (EV_P) 1064evpipe_init (EV_P)
1029{ 1065{
1030 if (!ev_is_active (&pipeev)) 1066 if (!ev_is_active (&pipe_w))
1031 { 1067 {
1032#if EV_USE_EVENTFD 1068#if EV_USE_EVENTFD
1033 if ((evfd = eventfd (0, 0)) >= 0) 1069 if ((evfd = eventfd (0, 0)) >= 0)
1034 { 1070 {
1035 evpipe [0] = -1; 1071 evpipe [0] = -1;
1036 fd_intern (evfd); 1072 fd_intern (evfd);
1037 ev_io_set (&pipeev, evfd, EV_READ); 1073 ev_io_set (&pipe_w, evfd, EV_READ);
1038 } 1074 }
1039 else 1075 else
1040#endif 1076#endif
1041 { 1077 {
1042 while (pipe (evpipe)) 1078 while (pipe (evpipe))
1043 ev_syserr ("(libev) error creating signal/async pipe"); 1079 ev_syserr ("(libev) error creating signal/async pipe");
1044 1080
1045 fd_intern (evpipe [0]); 1081 fd_intern (evpipe [0]);
1046 fd_intern (evpipe [1]); 1082 fd_intern (evpipe [1]);
1047 ev_io_set (&pipeev, evpipe [0], EV_READ); 1083 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1048 } 1084 }
1049 1085
1050 ev_io_start (EV_A_ &pipeev); 1086 ev_io_start (EV_A_ &pipe_w);
1051 ev_unref (EV_A); /* watcher should not keep loop alive */ 1087 ev_unref (EV_A); /* watcher should not keep loop alive */
1052 } 1088 }
1053} 1089}
1054 1090
1055void inline_size 1091inline_size void
1056evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1092evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1057{ 1093{
1058 if (!*flag) 1094 if (!*flag)
1059 { 1095 {
1060 int old_errno = errno; /* save errno because write might clobber it */ 1096 int old_errno = errno; /* save errno because write might clobber it */
1073 1109
1074 errno = old_errno; 1110 errno = old_errno;
1075 } 1111 }
1076} 1112}
1077 1113
1114/* called whenever the libev signal pipe */
1115/* got some events (signal, async) */
1078static void 1116static void
1079pipecb (EV_P_ ev_io *iow, int revents) 1117pipecb (EV_P_ ev_io *iow, int revents)
1080{ 1118{
1081#if EV_USE_EVENTFD 1119#if EV_USE_EVENTFD
1082 if (evfd >= 0) 1120 if (evfd >= 0)
1164 1202
1165#ifndef WIFCONTINUED 1203#ifndef WIFCONTINUED
1166# define WIFCONTINUED(status) 0 1204# define WIFCONTINUED(status) 0
1167#endif 1205#endif
1168 1206
1169void inline_speed 1207/* handle a single child status event */
1208inline_speed void
1170child_reap (EV_P_ int chain, int pid, int status) 1209child_reap (EV_P_ int chain, int pid, int status)
1171{ 1210{
1172 ev_child *w; 1211 ev_child *w;
1173 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1212 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1174 1213
1187 1226
1188#ifndef WCONTINUED 1227#ifndef WCONTINUED
1189# define WCONTINUED 0 1228# define WCONTINUED 0
1190#endif 1229#endif
1191 1230
1231/* called on sigchld etc., calls waitpid */
1192static void 1232static void
1193childcb (EV_P_ ev_signal *sw, int revents) 1233childcb (EV_P_ ev_signal *sw, int revents)
1194{ 1234{
1195 int pid, status; 1235 int pid, status;
1196 1236
1321ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1361ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1322{ 1362{
1323 timeout_blocktime = interval; 1363 timeout_blocktime = interval;
1324} 1364}
1325 1365
1366/* initialise a loop structure, must be zero-initialised */
1326static void noinline 1367static void noinline
1327loop_init (EV_P_ unsigned int flags) 1368loop_init (EV_P_ unsigned int flags)
1328{ 1369{
1329 if (!backend) 1370 if (!backend)
1330 { 1371 {
1390#endif 1431#endif
1391#if EV_USE_SELECT 1432#if EV_USE_SELECT
1392 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1433 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1393#endif 1434#endif
1394 1435
1436 ev_prepare_init (&pending_w, pendingcb);
1437
1395 ev_init (&pipeev, pipecb); 1438 ev_init (&pipe_w, pipecb);
1396 ev_set_priority (&pipeev, EV_MAXPRI); 1439 ev_set_priority (&pipe_w, EV_MAXPRI);
1397 } 1440 }
1398} 1441}
1399 1442
1443/* free up a loop structure */
1400static void noinline 1444static void noinline
1401loop_destroy (EV_P) 1445loop_destroy (EV_P)
1402{ 1446{
1403 int i; 1447 int i;
1404 1448
1405 if (ev_is_active (&pipeev)) 1449 if (ev_is_active (&pipe_w))
1406 { 1450 {
1407 ev_ref (EV_A); /* signal watcher */ 1451 ev_ref (EV_A); /* signal watcher */
1408 ev_io_stop (EV_A_ &pipeev); 1452 ev_io_stop (EV_A_ &pipe_w);
1409 1453
1410#if EV_USE_EVENTFD 1454#if EV_USE_EVENTFD
1411 if (evfd >= 0) 1455 if (evfd >= 0)
1412 close (evfd); 1456 close (evfd);
1413#endif 1457#endif
1452 } 1496 }
1453 1497
1454 ev_free (anfds); anfdmax = 0; 1498 ev_free (anfds); anfdmax = 0;
1455 1499
1456 /* have to use the microsoft-never-gets-it-right macro */ 1500 /* have to use the microsoft-never-gets-it-right macro */
1501 array_free (rfeed, EMPTY);
1457 array_free (fdchange, EMPTY); 1502 array_free (fdchange, EMPTY);
1458 array_free (timer, EMPTY); 1503 array_free (timer, EMPTY);
1459#if EV_PERIODIC_ENABLE 1504#if EV_PERIODIC_ENABLE
1460 array_free (periodic, EMPTY); 1505 array_free (periodic, EMPTY);
1461#endif 1506#endif
1470 1515
1471 backend = 0; 1516 backend = 0;
1472} 1517}
1473 1518
1474#if EV_USE_INOTIFY 1519#if EV_USE_INOTIFY
1475void inline_size infy_fork (EV_P); 1520inline_size void infy_fork (EV_P);
1476#endif 1521#endif
1477 1522
1478void inline_size 1523inline_size void
1479loop_fork (EV_P) 1524loop_fork (EV_P)
1480{ 1525{
1481#if EV_USE_PORT 1526#if EV_USE_PORT
1482 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1527 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1483#endif 1528#endif
1489#endif 1534#endif
1490#if EV_USE_INOTIFY 1535#if EV_USE_INOTIFY
1491 infy_fork (EV_A); 1536 infy_fork (EV_A);
1492#endif 1537#endif
1493 1538
1494 if (ev_is_active (&pipeev)) 1539 if (ev_is_active (&pipe_w))
1495 { 1540 {
1496 /* this "locks" the handlers against writing to the pipe */ 1541 /* this "locks" the handlers against writing to the pipe */
1497 /* while we modify the fd vars */ 1542 /* while we modify the fd vars */
1498 gotsig = 1; 1543 gotsig = 1;
1499#if EV_ASYNC_ENABLE 1544#if EV_ASYNC_ENABLE
1500 gotasync = 1; 1545 gotasync = 1;
1501#endif 1546#endif
1502 1547
1503 ev_ref (EV_A); 1548 ev_ref (EV_A);
1504 ev_io_stop (EV_A_ &pipeev); 1549 ev_io_stop (EV_A_ &pipe_w);
1505 1550
1506#if EV_USE_EVENTFD 1551#if EV_USE_EVENTFD
1507 if (evfd >= 0) 1552 if (evfd >= 0)
1508 close (evfd); 1553 close (evfd);
1509#endif 1554#endif
1514 close (evpipe [1]); 1559 close (evpipe [1]);
1515 } 1560 }
1516 1561
1517 evpipe_init (EV_A); 1562 evpipe_init (EV_A);
1518 /* now iterate over everything, in case we missed something */ 1563 /* now iterate over everything, in case we missed something */
1519 pipecb (EV_A_ &pipeev, EV_READ); 1564 pipecb (EV_A_ &pipe_w, EV_READ);
1520 } 1565 }
1521 1566
1522 postfork = 0; 1567 postfork = 0;
1523} 1568}
1524 1569
1720ev_invoke (EV_P_ void *w, int revents) 1765ev_invoke (EV_P_ void *w, int revents)
1721{ 1766{
1722 EV_CB_INVOKE ((W)w, revents); 1767 EV_CB_INVOKE ((W)w, revents);
1723} 1768}
1724 1769
1725void inline_speed 1770inline_speed void
1726call_pending (EV_P) 1771call_pending (EV_P)
1727{ 1772{
1728 int pri; 1773 int pri;
1729 1774
1730 for (pri = NUMPRI; pri--; ) 1775 for (pri = NUMPRI; pri--; )
1731 while (pendingcnt [pri]) 1776 while (pendingcnt [pri])
1732 { 1777 {
1733 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1778 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1734 1779
1735 if (expect_true (p->w))
1736 {
1737 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/ 1780 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1781 /* ^ this is no longer true, as pending_w could be here */
1738 1782
1739 p->w->pending = 0; 1783 p->w->pending = 0;
1740 EV_CB_INVOKE (p->w, p->events); 1784 EV_CB_INVOKE (p->w, p->events);
1741 EV_FREQUENT_CHECK; 1785 EV_FREQUENT_CHECK;
1742 }
1743 } 1786 }
1744} 1787}
1745 1788
1746#if EV_IDLE_ENABLE 1789#if EV_IDLE_ENABLE
1747void inline_size 1790/* make idle watchers pending. this handles the "call-idle */
1791/* only when higher priorities are idle" logic */
1792inline_size void
1748idle_reify (EV_P) 1793idle_reify (EV_P)
1749{ 1794{
1750 if (expect_false (idleall)) 1795 if (expect_false (idleall))
1751 { 1796 {
1752 int pri; 1797 int pri;
1764 } 1809 }
1765 } 1810 }
1766} 1811}
1767#endif 1812#endif
1768 1813
1769void inline_size 1814/* make timers pending */
1815inline_size void
1770timers_reify (EV_P) 1816timers_reify (EV_P)
1771{ 1817{
1772 EV_FREQUENT_CHECK; 1818 EV_FREQUENT_CHECK;
1773 1819
1774 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 1820 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1775 { 1821 {
1776 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 1822 do
1777
1778 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1779
1780 /* first reschedule or stop timer */
1781 if (w->repeat)
1782 { 1823 {
1824 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1825
1826 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1827
1828 /* first reschedule or stop timer */
1829 if (w->repeat)
1830 {
1783 ev_at (w) += w->repeat; 1831 ev_at (w) += w->repeat;
1784 if (ev_at (w) < mn_now) 1832 if (ev_at (w) < mn_now)
1785 ev_at (w) = mn_now; 1833 ev_at (w) = mn_now;
1786 1834
1787 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1835 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1788 1836
1789 ANHE_at_cache (timers [HEAP0]); 1837 ANHE_at_cache (timers [HEAP0]);
1790 downheap (timers, timercnt, HEAP0); 1838 downheap (timers, timercnt, HEAP0);
1839 }
1840 else
1841 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1842
1843 EV_FREQUENT_CHECK;
1844 feed_reverse (EV_A_ (W)w);
1791 } 1845 }
1792 else 1846 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1793 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1794 1847
1795 EV_FREQUENT_CHECK;
1796 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1848 feed_reverse_done (EV_A_ EV_TIMEOUT);
1797 } 1849 }
1798} 1850}
1799 1851
1800#if EV_PERIODIC_ENABLE 1852#if EV_PERIODIC_ENABLE
1801void inline_size 1853/* make periodics pending */
1854inline_size void
1802periodics_reify (EV_P) 1855periodics_reify (EV_P)
1803{ 1856{
1804 EV_FREQUENT_CHECK; 1857 EV_FREQUENT_CHECK;
1805 1858
1806 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 1859 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1807 { 1860 {
1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 1861 int feed_count = 0;
1809 1862
1810 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/ 1863 do
1811
1812 /* first reschedule or stop timer */
1813 if (w->reschedule_cb)
1814 { 1864 {
1865 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1866
1867 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1868
1869 /* first reschedule or stop timer */
1870 if (w->reschedule_cb)
1871 {
1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1872 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816 1873
1817 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 1874 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1818 1875
1819 ANHE_at_cache (periodics [HEAP0]); 1876 ANHE_at_cache (periodics [HEAP0]);
1820 downheap (periodics, periodiccnt, HEAP0); 1877 downheap (periodics, periodiccnt, HEAP0);
1878 }
1879 else if (w->interval)
1880 {
1881 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1882 /* if next trigger time is not sufficiently in the future, put it there */
1883 /* this might happen because of floating point inexactness */
1884 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1885 {
1886 ev_at (w) += w->interval;
1887
1888 /* if interval is unreasonably low we might still have a time in the past */
1889 /* so correct this. this will make the periodic very inexact, but the user */
1890 /* has effectively asked to get triggered more often than possible */
1891 if (ev_at (w) < ev_rt_now)
1892 ev_at (w) = ev_rt_now;
1893 }
1894
1895 ANHE_at_cache (periodics [HEAP0]);
1896 downheap (periodics, periodiccnt, HEAP0);
1897 }
1898 else
1899 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1900
1901 EV_FREQUENT_CHECK;
1902 feed_reverse (EV_A_ (W)w);
1821 } 1903 }
1822 else if (w->interval) 1904 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1823 {
1824 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1825 /* if next trigger time is not sufficiently in the future, put it there */
1826 /* this might happen because of floating point inexactness */
1827 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1828 {
1829 ev_at (w) += w->interval;
1830 1905
1831 /* if interval is unreasonably low we might still have a time in the past */
1832 /* so correct this. this will make the periodic very inexact, but the user */
1833 /* has effectively asked to get triggered more often than possible */
1834 if (ev_at (w) < ev_rt_now)
1835 ev_at (w) = ev_rt_now;
1836 }
1837
1838 ANHE_at_cache (periodics [HEAP0]);
1839 downheap (periodics, periodiccnt, HEAP0);
1840 }
1841 else
1842 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1843
1844 EV_FREQUENT_CHECK;
1845 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1906 feed_reverse_done (EV_A_ EV_PERIODIC);
1846 } 1907 }
1847} 1908}
1848 1909
1910/* simply recalculate all periodics */
1911/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1849static void noinline 1912static void noinline
1850periodics_reschedule (EV_P) 1913periodics_reschedule (EV_P)
1851{ 1914{
1852 int i; 1915 int i;
1853 1916
1866 1929
1867 reheap (periodics, periodiccnt); 1930 reheap (periodics, periodiccnt);
1868} 1931}
1869#endif 1932#endif
1870 1933
1871void inline_speed 1934/* adjust all timers by a given offset */
1935static void noinline
1936timers_reschedule (EV_P_ ev_tstamp adjust)
1937{
1938 int i;
1939
1940 for (i = 0; i < timercnt; ++i)
1941 {
1942 ANHE *he = timers + i + HEAP0;
1943 ANHE_w (*he)->at += adjust;
1944 ANHE_at_cache (*he);
1945 }
1946}
1947
1948/* fetch new monotonic and realtime times from the kernel */
1949/* also detetc if there was a timejump, and act accordingly */
1950inline_speed void
1872time_update (EV_P_ ev_tstamp max_block) 1951time_update (EV_P_ ev_tstamp max_block)
1873{ 1952{
1874 int i; 1953 int i;
1875 1954
1876#if EV_USE_MONOTONIC 1955#if EV_USE_MONOTONIC
1909 ev_rt_now = ev_time (); 1988 ev_rt_now = ev_time ();
1910 mn_now = get_clock (); 1989 mn_now = get_clock ();
1911 now_floor = mn_now; 1990 now_floor = mn_now;
1912 } 1991 }
1913 1992
1993 /* no timer adjustment, as the monotonic clock doesn't jump */
1994 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1914# if EV_PERIODIC_ENABLE 1995# if EV_PERIODIC_ENABLE
1915 periodics_reschedule (EV_A); 1996 periodics_reschedule (EV_A);
1916# endif 1997# endif
1917 /* no timer adjustment, as the monotonic clock doesn't jump */
1918 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1919 } 1998 }
1920 else 1999 else
1921#endif 2000#endif
1922 { 2001 {
1923 ev_rt_now = ev_time (); 2002 ev_rt_now = ev_time ();
1924 2003
1925 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2004 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1926 { 2005 {
2006 /* adjust timers. this is easy, as the offset is the same for all of them */
2007 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1927#if EV_PERIODIC_ENABLE 2008#if EV_PERIODIC_ENABLE
1928 periodics_reschedule (EV_A); 2009 periodics_reschedule (EV_A);
1929#endif 2010#endif
1930 /* adjust timers. this is easy, as the offset is the same for all of them */
1931 for (i = 0; i < timercnt; ++i)
1932 {
1933 ANHE *he = timers + i + HEAP0;
1934 ANHE_w (*he)->at += ev_rt_now - mn_now;
1935 ANHE_at_cache (*he);
1936 }
1937 } 2011 }
1938 2012
1939 mn_now = ev_rt_now; 2013 mn_now = ev_rt_now;
1940 } 2014 }
1941}
1942
1943void
1944ev_ref (EV_P)
1945{
1946 ++activecnt;
1947}
1948
1949void
1950ev_unref (EV_P)
1951{
1952 --activecnt;
1953}
1954
1955void
1956ev_now_update (EV_P)
1957{
1958 time_update (EV_A_ 1e100);
1959} 2015}
1960 2016
1961static int loop_done; 2017static int loop_done;
1962 2018
1963void 2019void
1997 { 2053 {
1998 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2054 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1999 call_pending (EV_A); 2055 call_pending (EV_A);
2000 } 2056 }
2001 2057
2002 if (expect_false (!activecnt))
2003 break;
2004
2005 /* we might have forked, so reify kernel state if necessary */ 2058 /* we might have forked, so reify kernel state if necessary */
2006 if (expect_false (postfork)) 2059 if (expect_false (postfork))
2007 loop_fork (EV_A); 2060 loop_fork (EV_A);
2008 2061
2009 /* update fd-related kernel structures */ 2062 /* update fd-related kernel structures */
2088ev_unloop (EV_P_ int how) 2141ev_unloop (EV_P_ int how)
2089{ 2142{
2090 loop_done = how; 2143 loop_done = how;
2091} 2144}
2092 2145
2146void
2147ev_ref (EV_P)
2148{
2149 ++activecnt;
2150}
2151
2152void
2153ev_unref (EV_P)
2154{
2155 --activecnt;
2156}
2157
2158void
2159ev_now_update (EV_P)
2160{
2161 time_update (EV_A_ 1e100);
2162}
2163
2164void
2165ev_suspend (EV_P)
2166{
2167 ev_now_update (EV_A);
2168}
2169
2170void
2171ev_resume (EV_P)
2172{
2173 ev_tstamp mn_prev = mn_now;
2174
2175 ev_now_update (EV_A);
2176 timers_reschedule (EV_A_ mn_now - mn_prev);
2177#if EV_PERIODIC_ENABLE
2178 /* TODO: really do this? */
2179 periodics_reschedule (EV_A);
2180#endif
2181}
2182
2093/*****************************************************************************/ 2183/*****************************************************************************/
2184/* singly-linked list management, used when the expected list length is short */
2094 2185
2095void inline_size 2186inline_size void
2096wlist_add (WL *head, WL elem) 2187wlist_add (WL *head, WL elem)
2097{ 2188{
2098 elem->next = *head; 2189 elem->next = *head;
2099 *head = elem; 2190 *head = elem;
2100} 2191}
2101 2192
2102void inline_size 2193inline_size void
2103wlist_del (WL *head, WL elem) 2194wlist_del (WL *head, WL elem)
2104{ 2195{
2105 while (*head) 2196 while (*head)
2106 { 2197 {
2107 if (*head == elem) 2198 if (*head == elem)
2112 2203
2113 head = &(*head)->next; 2204 head = &(*head)->next;
2114 } 2205 }
2115} 2206}
2116 2207
2117void inline_speed 2208/* internal, faster, version of ev_clear_pending */
2209inline_speed void
2118clear_pending (EV_P_ W w) 2210clear_pending (EV_P_ W w)
2119{ 2211{
2120 if (w->pending) 2212 if (w->pending)
2121 { 2213 {
2122 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2214 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2123 w->pending = 0; 2215 w->pending = 0;
2124 } 2216 }
2125} 2217}
2126 2218
2127int 2219int
2131 int pending = w_->pending; 2223 int pending = w_->pending;
2132 2224
2133 if (expect_true (pending)) 2225 if (expect_true (pending))
2134 { 2226 {
2135 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2227 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2228 p->w = (W)&pending_w;
2136 w_->pending = 0; 2229 w_->pending = 0;
2137 p->w = 0;
2138 return p->events; 2230 return p->events;
2139 } 2231 }
2140 else 2232 else
2141 return 0; 2233 return 0;
2142} 2234}
2143 2235
2144void inline_size 2236inline_size void
2145pri_adjust (EV_P_ W w) 2237pri_adjust (EV_P_ W w)
2146{ 2238{
2147 int pri = w->priority; 2239 int pri = w->priority;
2148 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2240 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2149 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2241 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2150 w->priority = pri; 2242 w->priority = pri;
2151} 2243}
2152 2244
2153void inline_speed 2245inline_speed void
2154ev_start (EV_P_ W w, int active) 2246ev_start (EV_P_ W w, int active)
2155{ 2247{
2156 pri_adjust (EV_A_ w); 2248 pri_adjust (EV_A_ w);
2157 w->active = active; 2249 w->active = active;
2158 ev_ref (EV_A); 2250 ev_ref (EV_A);
2159} 2251}
2160 2252
2161void inline_size 2253inline_size void
2162ev_stop (EV_P_ W w) 2254ev_stop (EV_P_ W w)
2163{ 2255{
2164 ev_unref (EV_A); 2256 ev_unref (EV_A);
2165 w->active = 0; 2257 w->active = 0;
2166} 2258}
2174 2266
2175 if (expect_false (ev_is_active (w))) 2267 if (expect_false (ev_is_active (w)))
2176 return; 2268 return;
2177 2269
2178 assert (("libev: ev_io_start called with negative fd", fd >= 0)); 2270 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2179 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE)))); 2271 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2180 2272
2181 EV_FREQUENT_CHECK; 2273 EV_FREQUENT_CHECK;
2182 2274
2183 ev_start (EV_A_ (W)w, 1); 2275 ev_start (EV_A_ (W)w, 1);
2184 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 2276 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2185 wlist_add (&anfds[fd].head, (WL)w); 2277 wlist_add (&anfds[fd].head, (WL)w);
2186 2278
2187 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2279 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
2188 w->events &= ~EV_IOFDSET; 2280 w->events &= ~EV__IOFDSET;
2189 2281
2190 EV_FREQUENT_CHECK; 2282 EV_FREQUENT_CHECK;
2191} 2283}
2192 2284
2193void noinline 2285void noinline
2591 2683
2592 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2684 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2593 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2685 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2594} 2686}
2595 2687
2596void inline_size 2688inline_size void
2597check_2625 (EV_P) 2689check_2625 (EV_P)
2598{ 2690{
2599 /* kernels < 2.6.25 are borked 2691 /* kernels < 2.6.25 are borked
2600 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 2692 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2601 */ 2693 */
2614 return; 2706 return;
2615 2707
2616 fs_2625 = 1; 2708 fs_2625 = 1;
2617} 2709}
2618 2710
2619void inline_size 2711inline_size void
2620infy_init (EV_P) 2712infy_init (EV_P)
2621{ 2713{
2622 if (fs_fd != -2) 2714 if (fs_fd != -2)
2623 return; 2715 return;
2624 2716
2634 ev_set_priority (&fs_w, EV_MAXPRI); 2726 ev_set_priority (&fs_w, EV_MAXPRI);
2635 ev_io_start (EV_A_ &fs_w); 2727 ev_io_start (EV_A_ &fs_w);
2636 } 2728 }
2637} 2729}
2638 2730
2639void inline_size 2731inline_size void
2640infy_fork (EV_P) 2732infy_fork (EV_P)
2641{ 2733{
2642 int slot; 2734 int slot;
2643 2735
2644 if (fs_fd < 0) 2736 if (fs_fd < 0)
3146 ev_timer_set (&once->to, timeout, 0.); 3238 ev_timer_set (&once->to, timeout, 0.);
3147 ev_timer_start (EV_A_ &once->to); 3239 ev_timer_start (EV_A_ &once->to);
3148 } 3240 }
3149} 3241}
3150 3242
3243/*****************************************************************************/
3244
3245#if EV_WALK_ENABLE
3246void
3247ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3248{
3249 int i, j;
3250 ev_watcher_list *wl, *wn;
3251
3252 if (types & (EV_IO | EV_EMBED))
3253 for (i = 0; i < anfdmax; ++i)
3254 for (wl = anfds [i].head; wl; )
3255 {
3256 wn = wl->next;
3257
3258#if EV_EMBED_ENABLE
3259 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3260 {
3261 if (types & EV_EMBED)
3262 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3263 }
3264 else
3265#endif
3266#if EV_USE_INOTIFY
3267 if (ev_cb ((ev_io *)wl) == infy_cb)
3268 ;
3269 else
3270#endif
3271 if ((ev_io *)wl != &pipe_w)
3272 if (types & EV_IO)
3273 cb (EV_A_ EV_IO, wl);
3274
3275 wl = wn;
3276 }
3277
3278 if (types & (EV_TIMER | EV_STAT))
3279 for (i = timercnt + HEAP0; i-- > HEAP0; )
3280#if EV_STAT_ENABLE
3281 /*TODO: timer is not always active*/
3282 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3283 {
3284 if (types & EV_STAT)
3285 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3286 }
3287 else
3288#endif
3289 if (types & EV_TIMER)
3290 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3291
3292#if EV_PERIODIC_ENABLE
3293 if (types & EV_PERIODIC)
3294 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3295 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3296#endif
3297
3298#if EV_IDLE_ENABLE
3299 if (types & EV_IDLE)
3300 for (j = NUMPRI; i--; )
3301 for (i = idlecnt [j]; i--; )
3302 cb (EV_A_ EV_IDLE, idles [j][i]);
3303#endif
3304
3305#if EV_FORK_ENABLE
3306 if (types & EV_FORK)
3307 for (i = forkcnt; i--; )
3308 if (ev_cb (forks [i]) != embed_fork_cb)
3309 cb (EV_A_ EV_FORK, forks [i]);
3310#endif
3311
3312#if EV_ASYNC_ENABLE
3313 if (types & EV_ASYNC)
3314 for (i = asynccnt; i--; )
3315 cb (EV_A_ EV_ASYNC, asyncs [i]);
3316#endif
3317
3318 if (types & EV_PREPARE)
3319 for (i = preparecnt; i--; )
3320#if EV_EMBED_ENABLE
3321 if (ev_cb (prepares [i]) != embed_prepare_cb)
3322#endif
3323 cb (EV_A_ EV_PREPARE, prepares [i]);
3324
3325 if (types & EV_CHECK)
3326 for (i = checkcnt; i--; )
3327 cb (EV_A_ EV_CHECK, checks [i]);
3328
3329 if (types & EV_SIGNAL)
3330 for (i = 0; i < signalmax; ++i)
3331 for (wl = signals [i].head; wl; )
3332 {
3333 wn = wl->next;
3334 cb (EV_A_ EV_SIGNAL, wl);
3335 wl = wn;
3336 }
3337
3338 if (types & EV_CHILD)
3339 for (i = EV_PID_HASHSIZE; i--; )
3340 for (wl = childs [i]; wl; )
3341 {
3342 wn = wl->next;
3343 cb (EV_A_ EV_CHILD, wl);
3344 wl = wn;
3345 }
3346/* EV_STAT 0x00001000 /* stat data changed */
3347/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3348}
3349#endif
3350
3151#if EV_MULTIPLICITY 3351#if EV_MULTIPLICITY
3152 #include "ev_wrap.h" 3352 #include "ev_wrap.h"
3153#endif 3353#endif
3154 3354
3155#ifdef __cplusplus 3355#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines