ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.80 by root, Fri Nov 9 15:30:59 2007 UTC vs.
Revision 1.288 by root, Sat Apr 25 14:12:48 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
33 63
34# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
67# endif
68# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 0
70# endif
71# else
72# ifndef EV_USE_MONOTONIC
73# define EV_USE_MONOTONIC 0
74# endif
75# ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 0
77# endif
37# endif 78# endif
38 79
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 80# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 82# define EV_USE_NANOSLEEP 1
83# else
84# define EV_USE_NANOSLEEP 0
85# endif
41# endif 86# endif
42 87
43# if HAVE_POLL && HAVE_POLL_H 88# ifndef EV_USE_SELECT
89# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 90# define EV_USE_SELECT 1
91# else
92# define EV_USE_SELECT 0
93# endif
45# endif 94# endif
46 95
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 96# ifndef EV_USE_POLL
97# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 98# define EV_USE_POLL 1
99# else
100# define EV_USE_POLL 0
101# endif
49# endif 102# endif
50 103
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 104# ifndef EV_USE_EPOLL
105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
52# define EV_USE_KQUEUE 1 106# define EV_USE_EPOLL 1
107# else
108# define EV_USE_EPOLL 0
109# endif
53# endif 110# endif
111
112# ifndef EV_USE_KQUEUE
113# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
114# define EV_USE_KQUEUE 1
115# else
116# define EV_USE_KQUEUE 0
117# endif
118# endif
119
120# ifndef EV_USE_PORT
121# if HAVE_PORT_H && HAVE_PORT_CREATE
122# define EV_USE_PORT 1
123# else
124# define EV_USE_PORT 0
125# endif
126# endif
54 127
128# ifndef EV_USE_INOTIFY
129# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130# define EV_USE_INOTIFY 1
131# else
132# define EV_USE_INOTIFY 0
133# endif
134# endif
135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
55#endif 144#endif
56 145
57#include <math.h> 146#include <math.h>
58#include <stdlib.h> 147#include <stdlib.h>
59#include <fcntl.h> 148#include <fcntl.h>
66#include <sys/types.h> 155#include <sys/types.h>
67#include <time.h> 156#include <time.h>
68 157
69#include <signal.h> 158#include <signal.h>
70 159
160#ifdef EV_H
161# include EV_H
162#else
163# include "ev.h"
164#endif
165
71#ifndef WIN32 166#ifndef _WIN32
72# include <unistd.h>
73# include <sys/time.h> 167# include <sys/time.h>
74# include <sys/wait.h> 168# include <sys/wait.h>
169# include <unistd.h>
170#else
171# include <io.h>
172# define WIN32_LEAN_AND_MEAN
173# include <windows.h>
174# ifndef EV_SELECT_IS_WINSOCKET
175# define EV_SELECT_IS_WINSOCKET 1
75#endif 176# endif
76/**/ 177#endif
178
179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
77 188
78#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
79# define EV_USE_MONOTONIC 1 191# define EV_USE_MONOTONIC 1
192# else
193# define EV_USE_MONOTONIC 0
194# endif
195#endif
196
197#ifndef EV_USE_REALTIME
198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif
200
201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
205# define EV_USE_NANOSLEEP 0
206# endif
80#endif 207#endif
81 208
82#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
84#endif 211#endif
85 212
86#ifndef EV_USE_POLL 213#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 214# ifdef _WIN32
215# define EV_USE_POLL 0
216# else
217# define EV_USE_POLL 1
218# endif
88#endif 219#endif
89 220
90#ifndef EV_USE_EPOLL 221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
91# define EV_USE_EPOLL 0 225# define EV_USE_EPOLL 0
226# endif
92#endif 227#endif
93 228
94#ifndef EV_USE_KQUEUE 229#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0 230# define EV_USE_KQUEUE 0
96#endif 231#endif
97 232
233#ifndef EV_USE_PORT
234# define EV_USE_PORT 0
235#endif
236
98#ifndef EV_USE_WIN32 237#ifndef EV_USE_INOTIFY
99# ifdef WIN32 238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1 239# define EV_USE_INOTIFY 1
103# else 240# else
104# define EV_USE_WIN32 0 241# define EV_USE_INOTIFY 0
105# endif 242# endif
106#endif 243#endif
107 244
108#ifndef EV_USE_REALTIME 245#ifndef EV_PID_HASHSIZE
109# define EV_USE_REALTIME 1 246# if EV_MINIMAL
247# define EV_PID_HASHSIZE 1
248# else
249# define EV_PID_HASHSIZE 16
110#endif 250# endif
251#endif
111 252
112/**/ 253#ifndef EV_INOTIFY_HASHSIZE
254# if EV_MINIMAL
255# define EV_INOTIFY_HASHSIZE 1
256# else
257# define EV_INOTIFY_HASHSIZE 16
258# endif
259#endif
260
261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
113 288
114#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
117#endif 292#endif
119#ifndef CLOCK_REALTIME 294#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME 295# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0 296# define EV_USE_REALTIME 0
122#endif 297#endif
123 298
299#if !EV_STAT_ENABLE
300# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0
302#endif
303
304#if !EV_USE_NANOSLEEP
305# ifndef _WIN32
306# include <sys/select.h>
307# endif
308#endif
309
310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
319#endif
320
321#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h>
323#endif
324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
339# endif
340int eventfd (unsigned int initval, int flags);
341# ifdef __cplusplus
342}
343# endif
344#endif
345
124/**/ 346/**/
125 347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
353
354/*
355 * This is used to avoid floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
363
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
130 367
131#include "ev.h"
132
133#if __GNUC__ >= 3 368#if __GNUC__ >= 4
134# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline 370# define noinline __attribute__ ((noinline))
136#else 371#else
137# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
138# define inline static 373# define noinline
374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
375# define inline
376# endif
139#endif 377#endif
140 378
141#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
142#define expect_true(expr) expect ((expr) != 0, 1) 380#define expect_true(expr) expect ((expr) != 0, 1)
381#define inline_size static inline
382
383#if EV_MINIMAL
384# define inline_speed static noinline
385#else
386# define inline_speed static inline
387#endif
143 388
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
145#define ABSPRI(w) ((w)->priority - EV_MINPRI) 390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
146 391
392#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */
394
147typedef struct ev_watcher *W; 395typedef ev_watcher *W;
148typedef struct ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
149typedef struct ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
150 398
399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif
152 411
412#ifdef _WIN32
153#include "ev_win32.c" 413# include "ev_win32.c"
414#endif
154 415
155/*****************************************************************************/ 416/*****************************************************************************/
156 417
157static void (*syserr_cb)(const char *msg); 418static void (*syserr_cb)(const char *msg);
158 419
420void
159void ev_set_syserr_cb (void (*cb)(const char *msg)) 421ev_set_syserr_cb (void (*cb)(const char *msg))
160{ 422{
161 syserr_cb = cb; 423 syserr_cb = cb;
162} 424}
163 425
164static void 426static void noinline
165syserr (const char *msg) 427ev_syserr (const char *msg)
166{ 428{
167 if (!msg) 429 if (!msg)
168 msg = "(libev) system error"; 430 msg = "(libev) system error";
169 431
170 if (syserr_cb) 432 if (syserr_cb)
174 perror (msg); 436 perror (msg);
175 abort (); 437 abort ();
176 } 438 }
177} 439}
178 440
441static void *
442ev_realloc_emul (void *ptr, long size)
443{
444 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and
446 * the single unix specification, so work around them here.
447 */
448
449 if (size)
450 return realloc (ptr, size);
451
452 free (ptr);
453 return 0;
454}
455
179static void *(*alloc)(void *ptr, long size); 456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
180 457
458void
181void ev_set_allocator (void *(*cb)(void *ptr, long size)) 459ev_set_allocator (void *(*cb)(void *ptr, long size))
182{ 460{
183 alloc = cb; 461 alloc = cb;
184} 462}
185 463
186static void * 464inline_speed void *
187ev_realloc (void *ptr, long size) 465ev_realloc (void *ptr, long size)
188{ 466{
189 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 467 ptr = alloc (ptr, size);
190 468
191 if (!ptr && size) 469 if (!ptr && size)
192 { 470 {
193 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
194 abort (); 472 abort ();
200#define ev_malloc(size) ev_realloc (0, (size)) 478#define ev_malloc(size) ev_realloc (0, (size))
201#define ev_free(ptr) ev_realloc ((ptr), 0) 479#define ev_free(ptr) ev_realloc ((ptr), 0)
202 480
203/*****************************************************************************/ 481/*****************************************************************************/
204 482
483/* file descriptor info structure */
205typedef struct 484typedef struct
206{ 485{
207 WL head; 486 WL head;
208 unsigned char events; 487 unsigned char events; /* the events watched for */
488 unsigned char reify; /* flag set when this ANFD needs reification */
489 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
209 unsigned char reify; 490 unsigned char unused;
491#if EV_USE_EPOLL
492 unsigned int egen; /* generation counter to counter epoll bugs */
493#endif
494#if EV_SELECT_IS_WINSOCKET
495 SOCKET handle;
496#endif
210} ANFD; 497} ANFD;
211 498
499/* stores the pending event set for a given watcher */
212typedef struct 500typedef struct
213{ 501{
214 W w; 502 W w;
215 int events; 503 int events; /* the pending event set for the given watcher */
216} ANPENDING; 504} ANPENDING;
505
506#if EV_USE_INOTIFY
507/* hash table entry per inotify-id */
508typedef struct
509{
510 WL head;
511} ANFS;
512#endif
513
514/* Heap Entry */
515#if EV_HEAP_CACHE_AT
516 /* a heap element */
517 typedef struct {
518 ev_tstamp at;
519 WT w;
520 } ANHE;
521
522 #define ANHE_w(he) (he).w /* access watcher, read-write */
523 #define ANHE_at(he) (he).at /* access cached at, read-only */
524 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
525#else
526 /* a heap element */
527 typedef WT ANHE;
528
529 #define ANHE_w(he) (he)
530 #define ANHE_at(he) (he)->at
531 #define ANHE_at_cache(he)
532#endif
217 533
218#if EV_MULTIPLICITY 534#if EV_MULTIPLICITY
219 535
220 struct ev_loop 536 struct ev_loop
221 { 537 {
538 ev_tstamp ev_rt_now;
539 #define ev_rt_now ((loop)->ev_rt_now)
222 #define VAR(name,decl) decl; 540 #define VAR(name,decl) decl;
223 #include "ev_vars.h" 541 #include "ev_vars.h"
224 #undef VAR 542 #undef VAR
225 }; 543 };
226 #include "ev_wrap.h" 544 #include "ev_wrap.h"
227 545
228 struct ev_loop default_loop_struct; 546 static struct ev_loop default_loop_struct;
229 static struct ev_loop *default_loop; 547 struct ev_loop *ev_default_loop_ptr;
230 548
231#else 549#else
232 550
551 ev_tstamp ev_rt_now;
233 #define VAR(name,decl) static decl; 552 #define VAR(name,decl) static decl;
234 #include "ev_vars.h" 553 #include "ev_vars.h"
235 #undef VAR 554 #undef VAR
236 555
237 static int default_loop; 556 static int ev_default_loop_ptr;
238 557
239#endif 558#endif
240 559
241/*****************************************************************************/ 560/*****************************************************************************/
242 561
243inline ev_tstamp 562ev_tstamp
244ev_time (void) 563ev_time (void)
245{ 564{
246#if EV_USE_REALTIME 565#if EV_USE_REALTIME
566 if (expect_true (have_realtime))
567 {
247 struct timespec ts; 568 struct timespec ts;
248 clock_gettime (CLOCK_REALTIME, &ts); 569 clock_gettime (CLOCK_REALTIME, &ts);
249 return ts.tv_sec + ts.tv_nsec * 1e-9; 570 return ts.tv_sec + ts.tv_nsec * 1e-9;
250#else 571 }
572#endif
573
251 struct timeval tv; 574 struct timeval tv;
252 gettimeofday (&tv, 0); 575 gettimeofday (&tv, 0);
253 return tv.tv_sec + tv.tv_usec * 1e-6; 576 return tv.tv_sec + tv.tv_usec * 1e-6;
254#endif
255} 577}
256 578
257inline ev_tstamp 579inline_size ev_tstamp
258get_clock (void) 580get_clock (void)
259{ 581{
260#if EV_USE_MONOTONIC 582#if EV_USE_MONOTONIC
261 if (expect_true (have_monotonic)) 583 if (expect_true (have_monotonic))
262 { 584 {
267#endif 589#endif
268 590
269 return ev_time (); 591 return ev_time ();
270} 592}
271 593
594#if EV_MULTIPLICITY
272ev_tstamp 595ev_tstamp
273ev_now (EV_P) 596ev_now (EV_P)
274{ 597{
275 return rt_now; 598 return ev_rt_now;
276} 599}
600#endif
277 601
278#define array_roundsize(type,n) ((n) | 4 & ~3) 602void
603ev_sleep (ev_tstamp delay)
604{
605 if (delay > 0.)
606 {
607#if EV_USE_NANOSLEEP
608 struct timespec ts;
609
610 ts.tv_sec = (time_t)delay;
611 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
612
613 nanosleep (&ts, 0);
614#elif defined(_WIN32)
615 Sleep ((unsigned long)(delay * 1e3));
616#else
617 struct timeval tv;
618
619 tv.tv_sec = (time_t)delay;
620 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
621
622 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
623 /* somehting nto guaranteed by newer posix versions, but guaranteed */
624 /* by older ones */
625 select (0, 0, 0, 0, &tv);
626#endif
627 }
628}
629
630/*****************************************************************************/
631
632#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
633
634/* find a suitable new size for the given array, */
635/* hopefully by rounding to a ncie-to-malloc size */
636inline_size int
637array_nextsize (int elem, int cur, int cnt)
638{
639 int ncur = cur + 1;
640
641 do
642 ncur <<= 1;
643 while (cnt > ncur);
644
645 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
646 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
647 {
648 ncur *= elem;
649 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
650 ncur = ncur - sizeof (void *) * 4;
651 ncur /= elem;
652 }
653
654 return ncur;
655}
656
657static noinline void *
658array_realloc (int elem, void *base, int *cur, int cnt)
659{
660 *cur = array_nextsize (elem, *cur, cnt);
661 return ev_realloc (base, elem * *cur);
662}
663
664#define array_init_zero(base,count) \
665 memset ((void *)(base), 0, sizeof (*(base)) * (count))
279 666
280#define array_needsize(type,base,cur,cnt,init) \ 667#define array_needsize(type,base,cur,cnt,init) \
281 if (expect_false ((cnt) > cur)) \ 668 if (expect_false ((cnt) > (cur))) \
282 { \ 669 { \
283 int newcnt = cur; \ 670 int ocur_ = (cur); \
284 do \ 671 (base) = (type *)array_realloc \
285 { \ 672 (sizeof (type), (base), &(cur), (cnt)); \
286 newcnt = array_roundsize (type, newcnt << 1); \ 673 init ((base) + (ocur_), (cur) - ocur_); \
287 } \
288 while ((cnt) > newcnt); \
289 \
290 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
291 init (base + cur, newcnt - cur); \
292 cur = newcnt; \
293 } 674 }
294 675
676#if 0
295#define array_slim(type,stem) \ 677#define array_slim(type,stem) \
296 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 678 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
297 { \ 679 { \
298 stem ## max = array_roundsize (stem ## cnt >> 1); \ 680 stem ## max = array_roundsize (stem ## cnt >> 1); \
299 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 681 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
300 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 682 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
301 } 683 }
302 684#endif
303/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
304/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
305#define array_free_microshit(stem) \
306 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
307 685
308#define array_free(stem, idx) \ 686#define array_free(stem, idx) \
309 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 687 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
310 688
311/*****************************************************************************/ 689/*****************************************************************************/
312 690
313static void 691/* dummy callback for pending events */
314anfds_init (ANFD *base, int count) 692static void noinline
693pendingcb (EV_P_ ev_prepare *w, int revents)
315{ 694{
316 while (count--)
317 {
318 base->head = 0;
319 base->events = EV_NONE;
320 base->reify = 0;
321
322 ++base;
323 }
324} 695}
325 696
326void 697void noinline
327ev_feed_event (EV_P_ void *w, int revents) 698ev_feed_event (EV_P_ void *w, int revents)
328{ 699{
329 W w_ = (W)w; 700 W w_ = (W)w;
701 int pri = ABSPRI (w_);
330 702
331 if (w_->pending) 703 if (expect_false (w_->pending))
704 pendings [pri][w_->pending - 1].events |= revents;
705 else
332 { 706 {
707 w_->pending = ++pendingcnt [pri];
708 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
709 pendings [pri][w_->pending - 1].w = w_;
333 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 710 pendings [pri][w_->pending - 1].events = revents;
334 return;
335 } 711 }
336
337 w_->pending = ++pendingcnt [ABSPRI (w_)];
338 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
339 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
340 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
341} 712}
342 713
343static void 714inline_speed void
715feed_reverse (EV_P_ W w)
716{
717 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
718 rfeeds [rfeedcnt++] = w;
719}
720
721inline_size void
722feed_reverse_done (EV_P_ int revents)
723{
724 do
725 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
726 while (rfeedcnt);
727}
728
729inline_speed void
344queue_events (EV_P_ W *events, int eventcnt, int type) 730queue_events (EV_P_ W *events, int eventcnt, int type)
345{ 731{
346 int i; 732 int i;
347 733
348 for (i = 0; i < eventcnt; ++i) 734 for (i = 0; i < eventcnt; ++i)
349 ev_feed_event (EV_A_ events [i], type); 735 ev_feed_event (EV_A_ events [i], type);
350} 736}
351 737
738/*****************************************************************************/
739
352inline void 740inline_speed void
353fd_event (EV_P_ int fd, int revents) 741fd_event (EV_P_ int fd, int revents)
354{ 742{
355 ANFD *anfd = anfds + fd; 743 ANFD *anfd = anfds + fd;
356 struct ev_io *w; 744 ev_io *w;
357 745
358 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 746 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
359 { 747 {
360 int ev = w->events & revents; 748 int ev = w->events & revents;
361 749
362 if (ev) 750 if (ev)
363 ev_feed_event (EV_A_ (W)w, ev); 751 ev_feed_event (EV_A_ (W)w, ev);
365} 753}
366 754
367void 755void
368ev_feed_fd_event (EV_P_ int fd, int revents) 756ev_feed_fd_event (EV_P_ int fd, int revents)
369{ 757{
758 if (fd >= 0 && fd < anfdmax)
370 fd_event (EV_A_ fd, revents); 759 fd_event (EV_A_ fd, revents);
371} 760}
372 761
373/*****************************************************************************/ 762/* make sure the external fd watch events are in-sync */
374 763/* with the kernel/libev internal state */
375static void 764inline_size void
376fd_reify (EV_P) 765fd_reify (EV_P)
377{ 766{
378 int i; 767 int i;
379 768
380 for (i = 0; i < fdchangecnt; ++i) 769 for (i = 0; i < fdchangecnt; ++i)
381 { 770 {
382 int fd = fdchanges [i]; 771 int fd = fdchanges [i];
383 ANFD *anfd = anfds + fd; 772 ANFD *anfd = anfds + fd;
384 struct ev_io *w; 773 ev_io *w;
385 774
386 int events = 0; 775 unsigned char events = 0;
387 776
388 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 777 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
389 events |= w->events; 778 events |= (unsigned char)w->events;
390 779
780#if EV_SELECT_IS_WINSOCKET
781 if (events)
782 {
783 unsigned long arg;
784 #ifdef EV_FD_TO_WIN32_HANDLE
785 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
786 #else
787 anfd->handle = _get_osfhandle (fd);
788 #endif
789 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
790 }
791#endif
792
793 {
794 unsigned char o_events = anfd->events;
795 unsigned char o_reify = anfd->reify;
796
391 anfd->reify = 0; 797 anfd->reify = 0;
392
393 method_modify (EV_A_ fd, anfd->events, events);
394 anfd->events = events; 798 anfd->events = events;
799
800 if (o_events != events || o_reify & EV__IOFDSET)
801 backend_modify (EV_A_ fd, o_events, events);
802 }
395 } 803 }
396 804
397 fdchangecnt = 0; 805 fdchangecnt = 0;
398} 806}
399 807
400static void 808/* something about the given fd changed */
809inline_size void
401fd_change (EV_P_ int fd) 810fd_change (EV_P_ int fd, int flags)
402{ 811{
403 if (anfds [fd].reify) 812 unsigned char reify = anfds [fd].reify;
404 return;
405
406 anfds [fd].reify = 1; 813 anfds [fd].reify |= flags;
407 814
815 if (expect_true (!reify))
816 {
408 ++fdchangecnt; 817 ++fdchangecnt;
409 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 818 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
410 fdchanges [fdchangecnt - 1] = fd; 819 fdchanges [fdchangecnt - 1] = fd;
820 }
411} 821}
412 822
413static void 823/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
824inline_speed void
414fd_kill (EV_P_ int fd) 825fd_kill (EV_P_ int fd)
415{ 826{
416 struct ev_io *w; 827 ev_io *w;
417 828
418 while ((w = (struct ev_io *)anfds [fd].head)) 829 while ((w = (ev_io *)anfds [fd].head))
419 { 830 {
420 ev_io_stop (EV_A_ w); 831 ev_io_stop (EV_A_ w);
421 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 832 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
422 } 833 }
423} 834}
424 835
425static int 836/* check whether the given fd is atcually valid, for error recovery */
837inline_size int
426fd_valid (int fd) 838fd_valid (int fd)
427{ 839{
428#ifdef WIN32 840#ifdef _WIN32
429 return !!win32_get_osfhandle (fd); 841 return _get_osfhandle (fd) != -1;
430#else 842#else
431 return fcntl (fd, F_GETFD) != -1; 843 return fcntl (fd, F_GETFD) != -1;
432#endif 844#endif
433} 845}
434 846
435/* called on EBADF to verify fds */ 847/* called on EBADF to verify fds */
436static void 848static void noinline
437fd_ebadf (EV_P) 849fd_ebadf (EV_P)
438{ 850{
439 int fd; 851 int fd;
440 852
441 for (fd = 0; fd < anfdmax; ++fd) 853 for (fd = 0; fd < anfdmax; ++fd)
442 if (anfds [fd].events) 854 if (anfds [fd].events)
443 if (!fd_valid (fd) == -1 && errno == EBADF) 855 if (!fd_valid (fd) && errno == EBADF)
444 fd_kill (EV_A_ fd); 856 fd_kill (EV_A_ fd);
445} 857}
446 858
447/* called on ENOMEM in select/poll to kill some fds and retry */ 859/* called on ENOMEM in select/poll to kill some fds and retry */
448static void 860static void noinline
449fd_enomem (EV_P) 861fd_enomem (EV_P)
450{ 862{
451 int fd; 863 int fd;
452 864
453 for (fd = anfdmax; fd--; ) 865 for (fd = anfdmax; fd--; )
456 fd_kill (EV_A_ fd); 868 fd_kill (EV_A_ fd);
457 return; 869 return;
458 } 870 }
459} 871}
460 872
461/* usually called after fork if method needs to re-arm all fds from scratch */ 873/* usually called after fork if backend needs to re-arm all fds from scratch */
462static void 874static void noinline
463fd_rearm_all (EV_P) 875fd_rearm_all (EV_P)
464{ 876{
465 int fd; 877 int fd;
466 878
467 /* this should be highly optimised to not do anything but set a flag */
468 for (fd = 0; fd < anfdmax; ++fd) 879 for (fd = 0; fd < anfdmax; ++fd)
469 if (anfds [fd].events) 880 if (anfds [fd].events)
470 { 881 {
471 anfds [fd].events = 0; 882 anfds [fd].events = 0;
883 anfds [fd].emask = 0;
472 fd_change (EV_A_ fd); 884 fd_change (EV_A_ fd, EV__IOFDSET | 1);
473 } 885 }
474} 886}
475 887
476/*****************************************************************************/ 888/*****************************************************************************/
477 889
478static void 890/*
479upheap (WT *heap, int k) 891 * the heap functions want a real array index. array index 0 uis guaranteed to not
480{ 892 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
481 WT w = heap [k]; 893 * the branching factor of the d-tree.
894 */
482 895
483 while (k && heap [k >> 1]->at > w->at) 896/*
484 { 897 * at the moment we allow libev the luxury of two heaps,
485 heap [k] = heap [k >> 1]; 898 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
486 ((W)heap [k])->active = k + 1; 899 * which is more cache-efficient.
487 k >>= 1; 900 * the difference is about 5% with 50000+ watchers.
488 } 901 */
902#if EV_USE_4HEAP
489 903
490 heap [k] = w; 904#define DHEAP 4
491 ((W)heap [k])->active = k + 1; 905#define HEAP0 (DHEAP - 1) /* index of first element in heap */
906#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
907#define UPHEAP_DONE(p,k) ((p) == (k))
492 908
493} 909/* away from the root */
494 910inline_speed void
495static void
496downheap (WT *heap, int N, int k) 911downheap (ANHE *heap, int N, int k)
497{ 912{
498 WT w = heap [k]; 913 ANHE he = heap [k];
914 ANHE *E = heap + N + HEAP0;
499 915
500 while (k < (N >> 1)) 916 for (;;)
501 { 917 {
502 int j = k << 1; 918 ev_tstamp minat;
919 ANHE *minpos;
920 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
503 921
504 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 922 /* find minimum child */
923 if (expect_true (pos + DHEAP - 1 < E))
505 ++j; 924 {
506 925 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
507 if (w->at <= heap [j]->at) 926 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
927 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
928 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
929 }
930 else if (pos < E)
931 {
932 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
933 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
934 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
935 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
936 }
937 else
508 break; 938 break;
509 939
940 if (ANHE_at (he) <= minat)
941 break;
942
943 heap [k] = *minpos;
944 ev_active (ANHE_w (*minpos)) = k;
945
946 k = minpos - heap;
947 }
948
949 heap [k] = he;
950 ev_active (ANHE_w (he)) = k;
951}
952
953#else /* 4HEAP */
954
955#define HEAP0 1
956#define HPARENT(k) ((k) >> 1)
957#define UPHEAP_DONE(p,k) (!(p))
958
959/* away from the root */
960inline_speed void
961downheap (ANHE *heap, int N, int k)
962{
963 ANHE he = heap [k];
964
965 for (;;)
966 {
967 int c = k << 1;
968
969 if (c > N + HEAP0 - 1)
970 break;
971
972 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
973 ? 1 : 0;
974
975 if (ANHE_at (he) <= ANHE_at (heap [c]))
976 break;
977
510 heap [k] = heap [j]; 978 heap [k] = heap [c];
511 ((W)heap [k])->active = k + 1; 979 ev_active (ANHE_w (heap [k])) = k;
980
512 k = j; 981 k = c;
513 } 982 }
514 983
515 heap [k] = w; 984 heap [k] = he;
516 ((W)heap [k])->active = k + 1; 985 ev_active (ANHE_w (he)) = k;
986}
987#endif
988
989/* towards the root */
990inline_speed void
991upheap (ANHE *heap, int k)
992{
993 ANHE he = heap [k];
994
995 for (;;)
996 {
997 int p = HPARENT (k);
998
999 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1000 break;
1001
1002 heap [k] = heap [p];
1003 ev_active (ANHE_w (heap [k])) = k;
1004 k = p;
1005 }
1006
1007 heap [k] = he;
1008 ev_active (ANHE_w (he)) = k;
1009}
1010
1011/* move an element suitably so it is in a correct place */
1012inline_size void
1013adjustheap (ANHE *heap, int N, int k)
1014{
1015 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
1016 upheap (heap, k);
1017 else
1018 downheap (heap, N, k);
1019}
1020
1021/* rebuild the heap: this function is used only once and executed rarely */
1022inline_size void
1023reheap (ANHE *heap, int N)
1024{
1025 int i;
1026
1027 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1028 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1029 for (i = 0; i < N; ++i)
1030 upheap (heap, i + HEAP0);
517} 1031}
518 1032
519/*****************************************************************************/ 1033/*****************************************************************************/
520 1034
1035/* associate signal watchers to a signal signal */
521typedef struct 1036typedef struct
522{ 1037{
523 WL head; 1038 WL head;
524 sig_atomic_t volatile gotsig; 1039 EV_ATOMIC_T gotsig;
525} ANSIG; 1040} ANSIG;
526 1041
527static ANSIG *signals; 1042static ANSIG *signals;
528static int signalmax; 1043static int signalmax;
529 1044
530static int sigpipe [2]; 1045static EV_ATOMIC_T gotsig;
531static sig_atomic_t volatile gotsig;
532static struct ev_io sigev;
533 1046
1047/*****************************************************************************/
1048
1049/* used to prepare libev internal fd's */
1050/* this is not fork-safe */
1051inline_speed void
1052fd_intern (int fd)
1053{
1054#ifdef _WIN32
1055 unsigned long arg = 1;
1056 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1057#else
1058 fcntl (fd, F_SETFD, FD_CLOEXEC);
1059 fcntl (fd, F_SETFL, O_NONBLOCK);
1060#endif
1061}
1062
1063static void noinline
1064evpipe_init (EV_P)
1065{
1066 if (!ev_is_active (&pipe_w))
1067 {
1068#if EV_USE_EVENTFD
1069 if ((evfd = eventfd (0, 0)) >= 0)
1070 {
1071 evpipe [0] = -1;
1072 fd_intern (evfd);
1073 ev_io_set (&pipe_w, evfd, EV_READ);
1074 }
1075 else
1076#endif
1077 {
1078 while (pipe (evpipe))
1079 ev_syserr ("(libev) error creating signal/async pipe");
1080
1081 fd_intern (evpipe [0]);
1082 fd_intern (evpipe [1]);
1083 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1084 }
1085
1086 ev_io_start (EV_A_ &pipe_w);
1087 ev_unref (EV_A); /* watcher should not keep loop alive */
1088 }
1089}
1090
1091inline_size void
1092evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1093{
1094 if (!*flag)
1095 {
1096 int old_errno = errno; /* save errno because write might clobber it */
1097
1098 *flag = 1;
1099
1100#if EV_USE_EVENTFD
1101 if (evfd >= 0)
1102 {
1103 uint64_t counter = 1;
1104 write (evfd, &counter, sizeof (uint64_t));
1105 }
1106 else
1107#endif
1108 write (evpipe [1], &old_errno, 1);
1109
1110 errno = old_errno;
1111 }
1112}
1113
1114/* called whenever the libev signal pipe */
1115/* got some events (signal, async) */
534static void 1116static void
535signals_init (ANSIG *base, int count) 1117pipecb (EV_P_ ev_io *iow, int revents)
536{ 1118{
537 while (count--) 1119#if EV_USE_EVENTFD
1120 if (evfd >= 0)
1121 {
1122 uint64_t counter;
1123 read (evfd, &counter, sizeof (uint64_t));
538 { 1124 }
539 base->head = 0; 1125 else
1126#endif
1127 {
1128 char dummy;
1129 read (evpipe [0], &dummy, 1);
1130 }
1131
1132 if (gotsig && ev_is_default_loop (EV_A))
1133 {
1134 int signum;
540 base->gotsig = 0; 1135 gotsig = 0;
541 1136
542 ++base; 1137 for (signum = signalmax; signum--; )
1138 if (signals [signum].gotsig)
1139 ev_feed_signal_event (EV_A_ signum + 1);
1140 }
1141
1142#if EV_ASYNC_ENABLE
1143 if (gotasync)
543 } 1144 {
1145 int i;
1146 gotasync = 0;
1147
1148 for (i = asynccnt; i--; )
1149 if (asyncs [i]->sent)
1150 {
1151 asyncs [i]->sent = 0;
1152 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1153 }
1154 }
1155#endif
544} 1156}
1157
1158/*****************************************************************************/
545 1159
546static void 1160static void
547sighandler (int signum) 1161ev_sighandler (int signum)
548{ 1162{
1163#if EV_MULTIPLICITY
1164 struct ev_loop *loop = &default_loop_struct;
1165#endif
1166
549#if WIN32 1167#if _WIN32
550 signal (signum, sighandler); 1168 signal (signum, ev_sighandler);
551#endif 1169#endif
552 1170
553 signals [signum - 1].gotsig = 1; 1171 signals [signum - 1].gotsig = 1;
554 1172 evpipe_write (EV_A_ &gotsig);
555 if (!gotsig)
556 {
557 int old_errno = errno;
558 gotsig = 1;
559#ifdef WIN32
560 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
561#else
562 write (sigpipe [1], &signum, 1);
563#endif
564 errno = old_errno;
565 }
566} 1173}
567 1174
568void 1175void noinline
569ev_feed_signal_event (EV_P_ int signum) 1176ev_feed_signal_event (EV_P_ int signum)
570{ 1177{
571 WL w; 1178 WL w;
572 1179
573#if EV_MULTIPLICITY 1180#if EV_MULTIPLICITY
574 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 1181 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
575#endif 1182#endif
576 1183
577 --signum; 1184 --signum;
578 1185
579 if (signum < 0 || signum >= signalmax) 1186 if (signum < 0 || signum >= signalmax)
583 1190
584 for (w = signals [signum].head; w; w = w->next) 1191 for (w = signals [signum].head; w; w = w->next)
585 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1192 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
586} 1193}
587 1194
588static void
589sigcb (EV_P_ struct ev_io *iow, int revents)
590{
591 int signum;
592
593#ifdef WIN32
594 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
595#else
596 read (sigpipe [0], &revents, 1);
597#endif
598 gotsig = 0;
599
600 for (signum = signalmax; signum--; )
601 if (signals [signum].gotsig)
602 ev_feed_signal_event (EV_A_ signum + 1);
603}
604
605static void
606siginit (EV_P)
607{
608#ifndef WIN32
609 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
610 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
611
612 /* rather than sort out wether we really need nb, set it */
613 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
614 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
615#endif
616
617 ev_io_set (&sigev, sigpipe [0], EV_READ);
618 ev_io_start (EV_A_ &sigev);
619 ev_unref (EV_A); /* child watcher should not keep loop alive */
620}
621
622/*****************************************************************************/ 1195/*****************************************************************************/
623 1196
624static struct ev_child *childs [PID_HASHSIZE]; 1197static WL childs [EV_PID_HASHSIZE];
625 1198
626#ifndef WIN32 1199#ifndef _WIN32
627 1200
628static struct ev_signal childev; 1201static ev_signal childev;
1202
1203#ifndef WIFCONTINUED
1204# define WIFCONTINUED(status) 0
1205#endif
1206
1207/* handle a single child status event */
1208inline_speed void
1209child_reap (EV_P_ int chain, int pid, int status)
1210{
1211 ev_child *w;
1212 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1213
1214 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1215 {
1216 if ((w->pid == pid || !w->pid)
1217 && (!traced || (w->flags & 1)))
1218 {
1219 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1220 w->rpid = pid;
1221 w->rstatus = status;
1222 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1223 }
1224 }
1225}
629 1226
630#ifndef WCONTINUED 1227#ifndef WCONTINUED
631# define WCONTINUED 0 1228# define WCONTINUED 0
632#endif 1229#endif
633 1230
1231/* called on sigchld etc., calls waitpid */
634static void 1232static void
635child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
636{
637 struct ev_child *w;
638
639 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
640 if (w->pid == pid || !w->pid)
641 {
642 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
643 w->rpid = pid;
644 w->rstatus = status;
645 ev_feed_event (EV_A_ (W)w, EV_CHILD);
646 }
647}
648
649static void
650childcb (EV_P_ struct ev_signal *sw, int revents) 1233childcb (EV_P_ ev_signal *sw, int revents)
651{ 1234{
652 int pid, status; 1235 int pid, status;
653 1236
1237 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
654 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1238 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
655 { 1239 if (!WCONTINUED
1240 || errno != EINVAL
1241 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1242 return;
1243
656 /* make sure we are called again until all childs have been reaped */ 1244 /* make sure we are called again until all children have been reaped */
1245 /* we need to do it this way so that the callback gets called before we continue */
657 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1246 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
658 1247
659 child_reap (EV_A_ sw, pid, pid, status); 1248 child_reap (EV_A_ pid, pid, status);
1249 if (EV_PID_HASHSIZE > 1)
660 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1250 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
661 }
662} 1251}
663 1252
664#endif 1253#endif
665 1254
666/*****************************************************************************/ 1255/*****************************************************************************/
667 1256
1257#if EV_USE_PORT
1258# include "ev_port.c"
1259#endif
668#if EV_USE_KQUEUE 1260#if EV_USE_KQUEUE
669# include "ev_kqueue.c" 1261# include "ev_kqueue.c"
670#endif 1262#endif
671#if EV_USE_EPOLL 1263#if EV_USE_EPOLL
672# include "ev_epoll.c" 1264# include "ev_epoll.c"
689{ 1281{
690 return EV_VERSION_MINOR; 1282 return EV_VERSION_MINOR;
691} 1283}
692 1284
693/* return true if we are running with elevated privileges and should ignore env variables */ 1285/* return true if we are running with elevated privileges and should ignore env variables */
694static int 1286int inline_size
695enable_secure (void) 1287enable_secure (void)
696{ 1288{
697#ifdef WIN32 1289#ifdef _WIN32
698 return 0; 1290 return 0;
699#else 1291#else
700 return getuid () != geteuid () 1292 return getuid () != geteuid ()
701 || getgid () != getegid (); 1293 || getgid () != getegid ();
702#endif 1294#endif
703} 1295}
704 1296
705int 1297unsigned int
706ev_method (EV_P) 1298ev_supported_backends (void)
707{ 1299{
708 return method; 1300 unsigned int flags = 0;
709}
710 1301
711static void 1302 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
712loop_init (EV_P_ int methods) 1303 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1304 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1305 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1306 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1307
1308 return flags;
1309}
1310
1311unsigned int
1312ev_recommended_backends (void)
713{ 1313{
714 if (!method) 1314 unsigned int flags = ev_supported_backends ();
1315
1316#ifndef __NetBSD__
1317 /* kqueue is borked on everything but netbsd apparently */
1318 /* it usually doesn't work correctly on anything but sockets and pipes */
1319 flags &= ~EVBACKEND_KQUEUE;
1320#endif
1321#ifdef __APPLE__
1322 /* only select works correctly on that "unix-certified" platform */
1323 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1324 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1325#endif
1326
1327 return flags;
1328}
1329
1330unsigned int
1331ev_embeddable_backends (void)
1332{
1333 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1334
1335 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1336 /* please fix it and tell me how to detect the fix */
1337 flags &= ~EVBACKEND_EPOLL;
1338
1339 return flags;
1340}
1341
1342unsigned int
1343ev_backend (EV_P)
1344{
1345 return backend;
1346}
1347
1348unsigned int
1349ev_loop_count (EV_P)
1350{
1351 return loop_count;
1352}
1353
1354void
1355ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1356{
1357 io_blocktime = interval;
1358}
1359
1360void
1361ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1362{
1363 timeout_blocktime = interval;
1364}
1365
1366/* initialise a loop structure, must be zero-initialised */
1367static void noinline
1368loop_init (EV_P_ unsigned int flags)
1369{
1370 if (!backend)
715 { 1371 {
1372#if EV_USE_REALTIME
1373 if (!have_realtime)
1374 {
1375 struct timespec ts;
1376
1377 if (!clock_gettime (CLOCK_REALTIME, &ts))
1378 have_realtime = 1;
1379 }
1380#endif
1381
716#if EV_USE_MONOTONIC 1382#if EV_USE_MONOTONIC
1383 if (!have_monotonic)
1384 {
1385 struct timespec ts;
1386
1387 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1388 have_monotonic = 1;
1389 }
1390#endif
1391
1392 ev_rt_now = ev_time ();
1393 mn_now = get_clock ();
1394 now_floor = mn_now;
1395 rtmn_diff = ev_rt_now - mn_now;
1396
1397 io_blocktime = 0.;
1398 timeout_blocktime = 0.;
1399 backend = 0;
1400 backend_fd = -1;
1401 gotasync = 0;
1402#if EV_USE_INOTIFY
1403 fs_fd = -2;
1404#endif
1405
1406 /* pid check not overridable via env */
1407#ifndef _WIN32
1408 if (flags & EVFLAG_FORKCHECK)
1409 curpid = getpid ();
1410#endif
1411
1412 if (!(flags & EVFLAG_NOENV)
1413 && !enable_secure ()
1414 && getenv ("LIBEV_FLAGS"))
1415 flags = atoi (getenv ("LIBEV_FLAGS"));
1416
1417 if (!(flags & 0x0000ffffU))
1418 flags |= ev_recommended_backends ();
1419
1420#if EV_USE_PORT
1421 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1422#endif
1423#if EV_USE_KQUEUE
1424 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1425#endif
1426#if EV_USE_EPOLL
1427 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1428#endif
1429#if EV_USE_POLL
1430 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1431#endif
1432#if EV_USE_SELECT
1433 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1434#endif
1435
1436 ev_prepare_init (&pending_w, pendingcb);
1437
1438 ev_init (&pipe_w, pipecb);
1439 ev_set_priority (&pipe_w, EV_MAXPRI);
1440 }
1441}
1442
1443/* free up a loop structure */
1444static void noinline
1445loop_destroy (EV_P)
1446{
1447 int i;
1448
1449 if (ev_is_active (&pipe_w))
1450 {
1451 ev_ref (EV_A); /* signal watcher */
1452 ev_io_stop (EV_A_ &pipe_w);
1453
1454#if EV_USE_EVENTFD
1455 if (evfd >= 0)
1456 close (evfd);
1457#endif
1458
1459 if (evpipe [0] >= 0)
1460 {
1461 close (evpipe [0]);
1462 close (evpipe [1]);
1463 }
1464 }
1465
1466#if EV_USE_INOTIFY
1467 if (fs_fd >= 0)
1468 close (fs_fd);
1469#endif
1470
1471 if (backend_fd >= 0)
1472 close (backend_fd);
1473
1474#if EV_USE_PORT
1475 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1476#endif
1477#if EV_USE_KQUEUE
1478 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1479#endif
1480#if EV_USE_EPOLL
1481 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1482#endif
1483#if EV_USE_POLL
1484 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1485#endif
1486#if EV_USE_SELECT
1487 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1488#endif
1489
1490 for (i = NUMPRI; i--; )
1491 {
1492 array_free (pending, [i]);
1493#if EV_IDLE_ENABLE
1494 array_free (idle, [i]);
1495#endif
1496 }
1497
1498 ev_free (anfds); anfdmax = 0;
1499
1500 /* have to use the microsoft-never-gets-it-right macro */
1501 array_free (rfeed, EMPTY);
1502 array_free (fdchange, EMPTY);
1503 array_free (timer, EMPTY);
1504#if EV_PERIODIC_ENABLE
1505 array_free (periodic, EMPTY);
1506#endif
1507#if EV_FORK_ENABLE
1508 array_free (fork, EMPTY);
1509#endif
1510 array_free (prepare, EMPTY);
1511 array_free (check, EMPTY);
1512#if EV_ASYNC_ENABLE
1513 array_free (async, EMPTY);
1514#endif
1515
1516 backend = 0;
1517}
1518
1519#if EV_USE_INOTIFY
1520inline_size void infy_fork (EV_P);
1521#endif
1522
1523inline_size void
1524loop_fork (EV_P)
1525{
1526#if EV_USE_PORT
1527 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1528#endif
1529#if EV_USE_KQUEUE
1530 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1531#endif
1532#if EV_USE_EPOLL
1533 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1534#endif
1535#if EV_USE_INOTIFY
1536 infy_fork (EV_A);
1537#endif
1538
1539 if (ev_is_active (&pipe_w))
1540 {
1541 /* this "locks" the handlers against writing to the pipe */
1542 /* while we modify the fd vars */
1543 gotsig = 1;
1544#if EV_ASYNC_ENABLE
1545 gotasync = 1;
1546#endif
1547
1548 ev_ref (EV_A);
1549 ev_io_stop (EV_A_ &pipe_w);
1550
1551#if EV_USE_EVENTFD
1552 if (evfd >= 0)
1553 close (evfd);
1554#endif
1555
1556 if (evpipe [0] >= 0)
1557 {
1558 close (evpipe [0]);
1559 close (evpipe [1]);
1560 }
1561
1562 evpipe_init (EV_A);
1563 /* now iterate over everything, in case we missed something */
1564 pipecb (EV_A_ &pipe_w, EV_READ);
1565 }
1566
1567 postfork = 0;
1568}
1569
1570#if EV_MULTIPLICITY
1571
1572struct ev_loop *
1573ev_loop_new (unsigned int flags)
1574{
1575 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1576
1577 memset (loop, 0, sizeof (struct ev_loop));
1578
1579 loop_init (EV_A_ flags);
1580
1581 if (ev_backend (EV_A))
1582 return loop;
1583
1584 return 0;
1585}
1586
1587void
1588ev_loop_destroy (EV_P)
1589{
1590 loop_destroy (EV_A);
1591 ev_free (loop);
1592}
1593
1594void
1595ev_loop_fork (EV_P)
1596{
1597 postfork = 1; /* must be in line with ev_default_fork */
1598}
1599
1600#if EV_VERIFY
1601static void noinline
1602verify_watcher (EV_P_ W w)
1603{
1604 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1605
1606 if (w->pending)
1607 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1608}
1609
1610static void noinline
1611verify_heap (EV_P_ ANHE *heap, int N)
1612{
1613 int i;
1614
1615 for (i = HEAP0; i < N + HEAP0; ++i)
1616 {
1617 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1618 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1619 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1620
1621 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1622 }
1623}
1624
1625static void noinline
1626array_verify (EV_P_ W *ws, int cnt)
1627{
1628 while (cnt--)
1629 {
1630 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1631 verify_watcher (EV_A_ ws [cnt]);
1632 }
1633}
1634#endif
1635
1636void
1637ev_loop_verify (EV_P)
1638{
1639#if EV_VERIFY
1640 int i;
1641 WL w;
1642
1643 assert (activecnt >= -1);
1644
1645 assert (fdchangemax >= fdchangecnt);
1646 for (i = 0; i < fdchangecnt; ++i)
1647 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1648
1649 assert (anfdmax >= 0);
1650 for (i = 0; i < anfdmax; ++i)
1651 for (w = anfds [i].head; w; w = w->next)
717 { 1652 {
718 struct timespec ts; 1653 verify_watcher (EV_A_ (W)w);
719 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1654 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
720 have_monotonic = 1; 1655 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
721 } 1656 }
722#endif
723 1657
724 rt_now = ev_time (); 1658 assert (timermax >= timercnt);
725 mn_now = get_clock (); 1659 verify_heap (EV_A_ timers, timercnt);
726 now_floor = mn_now;
727 rtmn_diff = rt_now - mn_now;
728 1660
729 if (methods == EVMETHOD_AUTO) 1661#if EV_PERIODIC_ENABLE
730 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1662 assert (periodicmax >= periodiccnt);
731 methods = atoi (getenv ("LIBEV_METHODS")); 1663 verify_heap (EV_A_ periodics, periodiccnt);
732 else
733 methods = EVMETHOD_ANY;
734
735 method = 0;
736#if EV_USE_WIN32
737 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
738#endif
739#if EV_USE_KQUEUE
740 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
741#endif
742#if EV_USE_EPOLL
743 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
744#endif
745#if EV_USE_POLL
746 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
747#endif
748#if EV_USE_SELECT
749 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
750#endif
751
752 ev_watcher_init (&sigev, sigcb);
753 ev_set_priority (&sigev, EV_MAXPRI);
754 }
755}
756
757void
758loop_destroy (EV_P)
759{
760 int i;
761
762#if EV_USE_WIN32
763 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
764#endif
765#if EV_USE_KQUEUE
766 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
767#endif
768#if EV_USE_EPOLL
769 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
770#endif
771#if EV_USE_POLL
772 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
773#endif
774#if EV_USE_SELECT
775 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
776#endif 1664#endif
777 1665
778 for (i = NUMPRI; i--; ) 1666 for (i = NUMPRI; i--; )
779 array_free (pending, [i]); 1667 {
1668 assert (pendingmax [i] >= pendingcnt [i]);
1669#if EV_IDLE_ENABLE
1670 assert (idleall >= 0);
1671 assert (idlemax [i] >= idlecnt [i]);
1672 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1673#endif
1674 }
780 1675
781 /* have to use the microsoft-never-gets-it-right macro */ 1676#if EV_FORK_ENABLE
782 array_free_microshit (fdchange); 1677 assert (forkmax >= forkcnt);
783 array_free_microshit (timer); 1678 array_verify (EV_A_ (W *)forks, forkcnt);
784 array_free_microshit (periodic); 1679#endif
785 array_free_microshit (idle);
786 array_free_microshit (prepare);
787 array_free_microshit (check);
788 1680
789 method = 0; 1681#if EV_ASYNC_ENABLE
790} 1682 assert (asyncmax >= asynccnt);
1683 array_verify (EV_A_ (W *)asyncs, asynccnt);
1684#endif
791 1685
792static void 1686 assert (preparemax >= preparecnt);
793loop_fork (EV_P) 1687 array_verify (EV_A_ (W *)prepares, preparecnt);
794{ 1688
795#if EV_USE_EPOLL 1689 assert (checkmax >= checkcnt);
796 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1690 array_verify (EV_A_ (W *)checks, checkcnt);
1691
1692# if 0
1693 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1694 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
797#endif 1695# endif
798#if EV_USE_KQUEUE
799 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
800#endif 1696#endif
801
802 if (ev_is_active (&sigev))
803 {
804 /* default loop */
805
806 ev_ref (EV_A);
807 ev_io_stop (EV_A_ &sigev);
808 close (sigpipe [0]);
809 close (sigpipe [1]);
810
811 while (pipe (sigpipe))
812 syserr ("(libev) error creating pipe");
813
814 siginit (EV_A);
815 }
816
817 postfork = 0;
818} 1697}
1698
1699#endif /* multiplicity */
819 1700
820#if EV_MULTIPLICITY 1701#if EV_MULTIPLICITY
821struct ev_loop * 1702struct ev_loop *
822ev_loop_new (int methods) 1703ev_default_loop_init (unsigned int flags)
823{
824 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
825
826 memset (loop, 0, sizeof (struct ev_loop));
827
828 loop_init (EV_A_ methods);
829
830 if (ev_method (EV_A))
831 return loop;
832
833 return 0;
834}
835
836void
837ev_loop_destroy (EV_P)
838{
839 loop_destroy (EV_A);
840 ev_free (loop);
841}
842
843void
844ev_loop_fork (EV_P)
845{
846 postfork = 1;
847}
848
849#endif
850
851#if EV_MULTIPLICITY
852struct ev_loop *
853#else 1704#else
854int 1705int
1706ev_default_loop (unsigned int flags)
855#endif 1707#endif
856ev_default_loop (int methods)
857{ 1708{
858 if (sigpipe [0] == sigpipe [1])
859 if (pipe (sigpipe))
860 return 0;
861
862 if (!default_loop) 1709 if (!ev_default_loop_ptr)
863 { 1710 {
864#if EV_MULTIPLICITY 1711#if EV_MULTIPLICITY
865 struct ev_loop *loop = default_loop = &default_loop_struct; 1712 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
866#else 1713#else
867 default_loop = 1; 1714 ev_default_loop_ptr = 1;
868#endif 1715#endif
869 1716
870 loop_init (EV_A_ methods); 1717 loop_init (EV_A_ flags);
871 1718
872 if (ev_method (EV_A)) 1719 if (ev_backend (EV_A))
873 { 1720 {
874 siginit (EV_A);
875
876#ifndef WIN32 1721#ifndef _WIN32
877 ev_signal_init (&childev, childcb, SIGCHLD); 1722 ev_signal_init (&childev, childcb, SIGCHLD);
878 ev_set_priority (&childev, EV_MAXPRI); 1723 ev_set_priority (&childev, EV_MAXPRI);
879 ev_signal_start (EV_A_ &childev); 1724 ev_signal_start (EV_A_ &childev);
880 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1725 ev_unref (EV_A); /* child watcher should not keep loop alive */
881#endif 1726#endif
882 } 1727 }
883 else 1728 else
884 default_loop = 0; 1729 ev_default_loop_ptr = 0;
885 } 1730 }
886 1731
887 return default_loop; 1732 return ev_default_loop_ptr;
888} 1733}
889 1734
890void 1735void
891ev_default_destroy (void) 1736ev_default_destroy (void)
892{ 1737{
893#if EV_MULTIPLICITY 1738#if EV_MULTIPLICITY
894 struct ev_loop *loop = default_loop; 1739 struct ev_loop *loop = ev_default_loop_ptr;
895#endif 1740#endif
896 1741
1742 ev_default_loop_ptr = 0;
1743
897#ifndef WIN32 1744#ifndef _WIN32
898 ev_ref (EV_A); /* child watcher */ 1745 ev_ref (EV_A); /* child watcher */
899 ev_signal_stop (EV_A_ &childev); 1746 ev_signal_stop (EV_A_ &childev);
900#endif 1747#endif
901 1748
902 ev_ref (EV_A); /* signal watcher */
903 ev_io_stop (EV_A_ &sigev);
904
905 close (sigpipe [0]); sigpipe [0] = 0;
906 close (sigpipe [1]); sigpipe [1] = 0;
907
908 loop_destroy (EV_A); 1749 loop_destroy (EV_A);
909} 1750}
910 1751
911void 1752void
912ev_default_fork (void) 1753ev_default_fork (void)
913{ 1754{
914#if EV_MULTIPLICITY 1755#if EV_MULTIPLICITY
915 struct ev_loop *loop = default_loop; 1756 struct ev_loop *loop = ev_default_loop_ptr;
916#endif 1757#endif
917 1758
918 if (method) 1759 postfork = 1; /* must be in line with ev_loop_fork */
919 postfork = 1;
920} 1760}
921 1761
922/*****************************************************************************/ 1762/*****************************************************************************/
923 1763
924static int 1764void
925any_pending (EV_P) 1765ev_invoke (EV_P_ void *w, int revents)
926{ 1766{
927 int pri; 1767 EV_CB_INVOKE ((W)w, revents);
928
929 for (pri = NUMPRI; pri--; )
930 if (pendingcnt [pri])
931 return 1;
932
933 return 0;
934} 1768}
935 1769
936static void 1770inline_speed void
937call_pending (EV_P) 1771call_pending (EV_P)
938{ 1772{
939 int pri; 1773 int pri;
940 1774
941 for (pri = NUMPRI; pri--; ) 1775 for (pri = NUMPRI; pri--; )
942 while (pendingcnt [pri]) 1776 while (pendingcnt [pri])
943 { 1777 {
944 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1778 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
945 1779
946 if (p->w) 1780 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
947 { 1781 /* ^ this is no longer true, as pending_w could be here */
1782
948 p->w->pending = 0; 1783 p->w->pending = 0;
949 p->w->cb (EV_A_ p->w, p->events); 1784 EV_CB_INVOKE (p->w, p->events);
950 } 1785 EV_FREQUENT_CHECK;
951 } 1786 }
952} 1787}
953 1788
954static void 1789#if EV_IDLE_ENABLE
1790/* make idle watchers pending. this handles the "call-idle */
1791/* only when higher priorities are idle" logic */
1792inline_size void
1793idle_reify (EV_P)
1794{
1795 if (expect_false (idleall))
1796 {
1797 int pri;
1798
1799 for (pri = NUMPRI; pri--; )
1800 {
1801 if (pendingcnt [pri])
1802 break;
1803
1804 if (idlecnt [pri])
1805 {
1806 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1807 break;
1808 }
1809 }
1810 }
1811}
1812#endif
1813
1814/* make timers pending */
1815inline_size void
955timers_reify (EV_P) 1816timers_reify (EV_P)
956{ 1817{
1818 EV_FREQUENT_CHECK;
1819
957 while (timercnt && ((WT)timers [0])->at <= mn_now) 1820 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
958 { 1821 {
959 struct ev_timer *w = timers [0]; 1822 do
960
961 assert (("inactive timer on timer heap detected", ev_is_active (w)));
962
963 /* first reschedule or stop timer */
964 if (w->repeat)
965 { 1823 {
1824 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1825
1826 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1827
1828 /* first reschedule or stop timer */
1829 if (w->repeat)
1830 {
1831 ev_at (w) += w->repeat;
1832 if (ev_at (w) < mn_now)
1833 ev_at (w) = mn_now;
1834
966 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1835 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
967 ((WT)w)->at = mn_now + w->repeat; 1836
1837 ANHE_at_cache (timers [HEAP0]);
968 downheap ((WT *)timers, timercnt, 0); 1838 downheap (timers, timercnt, HEAP0);
1839 }
1840 else
1841 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1842
1843 EV_FREQUENT_CHECK;
1844 feed_reverse (EV_A_ (W)w);
969 } 1845 }
970 else 1846 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
971 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
972 1847
973 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1848 feed_reverse_done (EV_A_ EV_TIMEOUT);
974 } 1849 }
975} 1850}
976 1851
977static void 1852#if EV_PERIODIC_ENABLE
1853/* make periodics pending */
1854inline_size void
978periodics_reify (EV_P) 1855periodics_reify (EV_P)
979{ 1856{
1857 EV_FREQUENT_CHECK;
1858
980 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1859 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
981 { 1860 {
982 struct ev_periodic *w = periodics [0]; 1861 int feed_count = 0;
983 1862
1863 do
1864 {
1865 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1866
984 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1867 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
985 1868
986 /* first reschedule or stop timer */ 1869 /* first reschedule or stop timer */
1870 if (w->reschedule_cb)
1871 {
1872 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1873
1874 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1875
1876 ANHE_at_cache (periodics [HEAP0]);
1877 downheap (periodics, periodiccnt, HEAP0);
1878 }
1879 else if (w->interval)
1880 {
1881 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1882 /* if next trigger time is not sufficiently in the future, put it there */
1883 /* this might happen because of floating point inexactness */
1884 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1885 {
1886 ev_at (w) += w->interval;
1887
1888 /* if interval is unreasonably low we might still have a time in the past */
1889 /* so correct this. this will make the periodic very inexact, but the user */
1890 /* has effectively asked to get triggered more often than possible */
1891 if (ev_at (w) < ev_rt_now)
1892 ev_at (w) = ev_rt_now;
1893 }
1894
1895 ANHE_at_cache (periodics [HEAP0]);
1896 downheap (periodics, periodiccnt, HEAP0);
1897 }
1898 else
1899 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1900
1901 EV_FREQUENT_CHECK;
1902 feed_reverse (EV_A_ (W)w);
1903 }
1904 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1905
1906 feed_reverse_done (EV_A_ EV_PERIODIC);
1907 }
1908}
1909
1910/* simply recalculate all periodics */
1911/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1912static void noinline
1913periodics_reschedule (EV_P)
1914{
1915 int i;
1916
1917 /* adjust periodics after time jump */
1918 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1919 {
1920 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1921
987 if (w->reschedule_cb) 1922 if (w->reschedule_cb)
988 {
989 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001); 1923 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
990
991 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now));
992 downheap ((WT *)periodics, periodiccnt, 0);
993 }
994 else if (w->interval) 1924 else if (w->interval)
995 { 1925 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
996 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
997 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
998 downheap ((WT *)periodics, periodiccnt, 0);
999 }
1000 else
1001 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1002 1926
1003 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1927 ANHE_at_cache (periodics [i]);
1004 } 1928 }
1005}
1006 1929
1007static void 1930 reheap (periodics, periodiccnt);
1008periodics_reschedule (EV_P) 1931}
1932#endif
1933
1934/* adjust all timers by a given offset */
1935static void noinline
1936timers_reschedule (EV_P_ ev_tstamp adjust)
1009{ 1937{
1010 int i; 1938 int i;
1011 1939
1012 /* adjust periodics after time jump */
1013 for (i = 0; i < periodiccnt; ++i) 1940 for (i = 0; i < timercnt; ++i)
1014 {
1015 struct ev_periodic *w = periodics [i];
1016
1017 if (w->reschedule_cb)
1018 ((WT)w)->at = w->reschedule_cb (w, rt_now);
1019 else if (w->interval)
1020 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1021 } 1941 {
1022 1942 ANHE *he = timers + i + HEAP0;
1023 /* now rebuild the heap */ 1943 ANHE_w (*he)->at += adjust;
1024 for (i = periodiccnt >> 1; i--; ) 1944 ANHE_at_cache (*he);
1025 downheap ((WT *)periodics, periodiccnt, i);
1026}
1027
1028inline int
1029time_update_monotonic (EV_P)
1030{
1031 mn_now = get_clock ();
1032
1033 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1034 { 1945 }
1035 rt_now = rtmn_diff + mn_now;
1036 return 0;
1037 }
1038 else
1039 {
1040 now_floor = mn_now;
1041 rt_now = ev_time ();
1042 return 1;
1043 }
1044} 1946}
1045 1947
1046static void 1948/* fetch new monotonic and realtime times from the kernel */
1047time_update (EV_P) 1949/* also detetc if there was a timejump, and act accordingly */
1950inline_speed void
1951time_update (EV_P_ ev_tstamp max_block)
1048{ 1952{
1049 int i; 1953 int i;
1050 1954
1051#if EV_USE_MONOTONIC 1955#if EV_USE_MONOTONIC
1052 if (expect_true (have_monotonic)) 1956 if (expect_true (have_monotonic))
1053 { 1957 {
1054 if (time_update_monotonic (EV_A)) 1958 ev_tstamp odiff = rtmn_diff;
1959
1960 mn_now = get_clock ();
1961
1962 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1963 /* interpolate in the meantime */
1964 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1055 { 1965 {
1056 ev_tstamp odiff = rtmn_diff; 1966 ev_rt_now = rtmn_diff + mn_now;
1967 return;
1968 }
1057 1969
1970 now_floor = mn_now;
1971 ev_rt_now = ev_time ();
1972
1058 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1973 /* loop a few times, before making important decisions.
1974 * on the choice of "4": one iteration isn't enough,
1975 * in case we get preempted during the calls to
1976 * ev_time and get_clock. a second call is almost guaranteed
1977 * to succeed in that case, though. and looping a few more times
1978 * doesn't hurt either as we only do this on time-jumps or
1979 * in the unlikely event of having been preempted here.
1980 */
1981 for (i = 4; --i; )
1059 { 1982 {
1060 rtmn_diff = rt_now - mn_now; 1983 rtmn_diff = ev_rt_now - mn_now;
1061 1984
1062 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1985 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1063 return; /* all is well */ 1986 return; /* all is well */
1064 1987
1065 rt_now = ev_time (); 1988 ev_rt_now = ev_time ();
1066 mn_now = get_clock (); 1989 mn_now = get_clock ();
1067 now_floor = mn_now; 1990 now_floor = mn_now;
1068 } 1991 }
1069 1992
1993 /* no timer adjustment, as the monotonic clock doesn't jump */
1994 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1995# if EV_PERIODIC_ENABLE
1996 periodics_reschedule (EV_A);
1997# endif
1998 }
1999 else
2000#endif
2001 {
2002 ev_rt_now = ev_time ();
2003
2004 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2005 {
2006 /* adjust timers. this is easy, as the offset is the same for all of them */
2007 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2008#if EV_PERIODIC_ENABLE
1070 periodics_reschedule (EV_A); 2009 periodics_reschedule (EV_A);
1071 /* no timer adjustment, as the monotonic clock doesn't jump */ 2010#endif
1072 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1073 } 2011 }
1074 }
1075 else
1076#endif
1077 {
1078 rt_now = ev_time ();
1079 2012
1080 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1081 {
1082 periodics_reschedule (EV_A);
1083
1084 /* adjust timers. this is easy, as the offset is the same for all */
1085 for (i = 0; i < timercnt; ++i)
1086 ((WT)timers [i])->at += rt_now - mn_now;
1087 }
1088
1089 mn_now = rt_now; 2013 mn_now = ev_rt_now;
1090 } 2014 }
1091}
1092
1093void
1094ev_ref (EV_P)
1095{
1096 ++activecnt;
1097}
1098
1099void
1100ev_unref (EV_P)
1101{
1102 --activecnt;
1103} 2015}
1104 2016
1105static int loop_done; 2017static int loop_done;
1106 2018
1107void 2019void
1108ev_loop (EV_P_ int flags) 2020ev_loop (EV_P_ int flags)
1109{ 2021{
1110 double block; 2022 loop_done = EVUNLOOP_CANCEL;
1111 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2023
2024 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1112 2025
1113 do 2026 do
1114 { 2027 {
2028#if EV_VERIFY >= 2
2029 ev_loop_verify (EV_A);
2030#endif
2031
2032#ifndef _WIN32
2033 if (expect_false (curpid)) /* penalise the forking check even more */
2034 if (expect_false (getpid () != curpid))
2035 {
2036 curpid = getpid ();
2037 postfork = 1;
2038 }
2039#endif
2040
2041#if EV_FORK_ENABLE
2042 /* we might have forked, so queue fork handlers */
2043 if (expect_false (postfork))
2044 if (forkcnt)
2045 {
2046 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2047 call_pending (EV_A);
2048 }
2049#endif
2050
1115 /* queue check watchers (and execute them) */ 2051 /* queue prepare watchers (and execute them) */
1116 if (expect_false (preparecnt)) 2052 if (expect_false (preparecnt))
1117 { 2053 {
1118 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2054 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1119 call_pending (EV_A); 2055 call_pending (EV_A);
1120 } 2056 }
1125 2061
1126 /* update fd-related kernel structures */ 2062 /* update fd-related kernel structures */
1127 fd_reify (EV_A); 2063 fd_reify (EV_A);
1128 2064
1129 /* calculate blocking time */ 2065 /* calculate blocking time */
2066 {
2067 ev_tstamp waittime = 0.;
2068 ev_tstamp sleeptime = 0.;
1130 2069
1131 /* we only need this for !monotonic clock or timers, but as we basically 2070 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1132 always have timers, we just calculate it always */
1133#if EV_USE_MONOTONIC
1134 if (expect_true (have_monotonic))
1135 time_update_monotonic (EV_A);
1136 else
1137#endif
1138 { 2071 {
1139 rt_now = ev_time (); 2072 /* update time to cancel out callback processing overhead */
1140 mn_now = rt_now; 2073 time_update (EV_A_ 1e100);
1141 }
1142 2074
1143 if (flags & EVLOOP_NONBLOCK || idlecnt)
1144 block = 0.;
1145 else
1146 {
1147 block = MAX_BLOCKTIME; 2075 waittime = MAX_BLOCKTIME;
1148 2076
1149 if (timercnt) 2077 if (timercnt)
1150 { 2078 {
1151 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2079 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1152 if (block > to) block = to; 2080 if (waittime > to) waittime = to;
1153 } 2081 }
1154 2082
2083#if EV_PERIODIC_ENABLE
1155 if (periodiccnt) 2084 if (periodiccnt)
1156 { 2085 {
1157 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 2086 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1158 if (block > to) block = to; 2087 if (waittime > to) waittime = to;
1159 } 2088 }
2089#endif
1160 2090
1161 if (block < 0.) block = 0.; 2091 if (expect_false (waittime < timeout_blocktime))
2092 waittime = timeout_blocktime;
2093
2094 sleeptime = waittime - backend_fudge;
2095
2096 if (expect_true (sleeptime > io_blocktime))
2097 sleeptime = io_blocktime;
2098
2099 if (sleeptime)
2100 {
2101 ev_sleep (sleeptime);
2102 waittime -= sleeptime;
2103 }
1162 } 2104 }
1163 2105
1164 method_poll (EV_A_ block); 2106 ++loop_count;
2107 backend_poll (EV_A_ waittime);
1165 2108
1166 /* update rt_now, do magic */ 2109 /* update ev_rt_now, do magic */
1167 time_update (EV_A); 2110 time_update (EV_A_ waittime + sleeptime);
2111 }
1168 2112
1169 /* queue pending timers and reschedule them */ 2113 /* queue pending timers and reschedule them */
1170 timers_reify (EV_A); /* relative timers called last */ 2114 timers_reify (EV_A); /* relative timers called last */
2115#if EV_PERIODIC_ENABLE
1171 periodics_reify (EV_A); /* absolute timers called first */ 2116 periodics_reify (EV_A); /* absolute timers called first */
2117#endif
1172 2118
2119#if EV_IDLE_ENABLE
1173 /* queue idle watchers unless io or timers are pending */ 2120 /* queue idle watchers unless other events are pending */
1174 if (idlecnt && !any_pending (EV_A)) 2121 idle_reify (EV_A);
1175 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2122#endif
1176 2123
1177 /* queue check watchers, to be executed first */ 2124 /* queue check watchers, to be executed first */
1178 if (checkcnt) 2125 if (expect_false (checkcnt))
1179 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2126 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1180 2127
1181 call_pending (EV_A); 2128 call_pending (EV_A);
1182 } 2129 }
1183 while (activecnt && !loop_done); 2130 while (expect_true (
2131 activecnt
2132 && !loop_done
2133 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2134 ));
1184 2135
1185 if (loop_done != 2) 2136 if (loop_done == EVUNLOOP_ONE)
1186 loop_done = 0; 2137 loop_done = EVUNLOOP_CANCEL;
1187} 2138}
1188 2139
1189void 2140void
1190ev_unloop (EV_P_ int how) 2141ev_unloop (EV_P_ int how)
1191{ 2142{
1192 loop_done = how; 2143 loop_done = how;
1193} 2144}
1194 2145
2146void
2147ev_ref (EV_P)
2148{
2149 ++activecnt;
2150}
2151
2152void
2153ev_unref (EV_P)
2154{
2155 --activecnt;
2156}
2157
2158void
2159ev_now_update (EV_P)
2160{
2161 time_update (EV_A_ 1e100);
2162}
2163
2164void
2165ev_suspend (EV_P)
2166{
2167 ev_now_update (EV_A);
2168}
2169
2170void
2171ev_resume (EV_P)
2172{
2173 ev_tstamp mn_prev = mn_now;
2174
2175 ev_now_update (EV_A);
2176 timers_reschedule (EV_A_ mn_now - mn_prev);
2177#if EV_PERIODIC_ENABLE
2178 /* TODO: really do this? */
2179 periodics_reschedule (EV_A);
2180#endif
2181}
2182
1195/*****************************************************************************/ 2183/*****************************************************************************/
2184/* singly-linked list management, used when the expected list length is short */
1196 2185
1197inline void 2186inline_size void
1198wlist_add (WL *head, WL elem) 2187wlist_add (WL *head, WL elem)
1199{ 2188{
1200 elem->next = *head; 2189 elem->next = *head;
1201 *head = elem; 2190 *head = elem;
1202} 2191}
1203 2192
1204inline void 2193inline_size void
1205wlist_del (WL *head, WL elem) 2194wlist_del (WL *head, WL elem)
1206{ 2195{
1207 while (*head) 2196 while (*head)
1208 { 2197 {
1209 if (*head == elem) 2198 if (*head == elem)
1214 2203
1215 head = &(*head)->next; 2204 head = &(*head)->next;
1216 } 2205 }
1217} 2206}
1218 2207
2208/* internal, faster, version of ev_clear_pending */
1219inline void 2209inline_speed void
1220ev_clear_pending (EV_P_ W w) 2210clear_pending (EV_P_ W w)
1221{ 2211{
1222 if (w->pending) 2212 if (w->pending)
1223 { 2213 {
1224 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2214 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1225 w->pending = 0; 2215 w->pending = 0;
1226 } 2216 }
1227} 2217}
1228 2218
2219int
2220ev_clear_pending (EV_P_ void *w)
2221{
2222 W w_ = (W)w;
2223 int pending = w_->pending;
2224
2225 if (expect_true (pending))
2226 {
2227 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2228 p->w = (W)&pending_w;
2229 w_->pending = 0;
2230 return p->events;
2231 }
2232 else
2233 return 0;
2234}
2235
1229inline void 2236inline_size void
2237pri_adjust (EV_P_ W w)
2238{
2239 int pri = w->priority;
2240 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2241 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2242 w->priority = pri;
2243}
2244
2245inline_speed void
1230ev_start (EV_P_ W w, int active) 2246ev_start (EV_P_ W w, int active)
1231{ 2247{
1232 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2248 pri_adjust (EV_A_ w);
1233 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1234
1235 w->active = active; 2249 w->active = active;
1236 ev_ref (EV_A); 2250 ev_ref (EV_A);
1237} 2251}
1238 2252
1239inline void 2253inline_size void
1240ev_stop (EV_P_ W w) 2254ev_stop (EV_P_ W w)
1241{ 2255{
1242 ev_unref (EV_A); 2256 ev_unref (EV_A);
1243 w->active = 0; 2257 w->active = 0;
1244} 2258}
1245 2259
1246/*****************************************************************************/ 2260/*****************************************************************************/
1247 2261
1248void 2262void noinline
1249ev_io_start (EV_P_ struct ev_io *w) 2263ev_io_start (EV_P_ ev_io *w)
1250{ 2264{
1251 int fd = w->fd; 2265 int fd = w->fd;
1252 2266
1253 if (ev_is_active (w)) 2267 if (expect_false (ev_is_active (w)))
1254 return; 2268 return;
1255 2269
1256 assert (("ev_io_start called with negative fd", fd >= 0)); 2270 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2271 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2272
2273 EV_FREQUENT_CHECK;
1257 2274
1258 ev_start (EV_A_ (W)w, 1); 2275 ev_start (EV_A_ (W)w, 1);
1259 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2276 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1260 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2277 wlist_add (&anfds[fd].head, (WL)w);
1261 2278
1262 fd_change (EV_A_ fd); 2279 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1263} 2280 w->events &= ~EV__IOFDSET;
1264 2281
1265void 2282 EV_FREQUENT_CHECK;
2283}
2284
2285void noinline
1266ev_io_stop (EV_P_ struct ev_io *w) 2286ev_io_stop (EV_P_ ev_io *w)
1267{ 2287{
1268 ev_clear_pending (EV_A_ (W)w); 2288 clear_pending (EV_A_ (W)w);
1269 if (!ev_is_active (w)) 2289 if (expect_false (!ev_is_active (w)))
1270 return; 2290 return;
1271 2291
2292 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2293
2294 EV_FREQUENT_CHECK;
2295
1272 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2296 wlist_del (&anfds[w->fd].head, (WL)w);
1273 ev_stop (EV_A_ (W)w); 2297 ev_stop (EV_A_ (W)w);
1274 2298
1275 fd_change (EV_A_ w->fd); 2299 fd_change (EV_A_ w->fd, 1);
1276}
1277 2300
1278void 2301 EV_FREQUENT_CHECK;
2302}
2303
2304void noinline
1279ev_timer_start (EV_P_ struct ev_timer *w) 2305ev_timer_start (EV_P_ ev_timer *w)
1280{ 2306{
1281 if (ev_is_active (w)) 2307 if (expect_false (ev_is_active (w)))
1282 return; 2308 return;
1283 2309
1284 ((WT)w)->at += mn_now; 2310 ev_at (w) += mn_now;
1285 2311
1286 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2312 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1287 2313
2314 EV_FREQUENT_CHECK;
2315
2316 ++timercnt;
1288 ev_start (EV_A_ (W)w, ++timercnt); 2317 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1289 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 2318 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1290 timers [timercnt - 1] = w; 2319 ANHE_w (timers [ev_active (w)]) = (WT)w;
1291 upheap ((WT *)timers, timercnt - 1); 2320 ANHE_at_cache (timers [ev_active (w)]);
2321 upheap (timers, ev_active (w));
1292 2322
2323 EV_FREQUENT_CHECK;
2324
1293 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2325 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1294} 2326}
1295 2327
1296void 2328void noinline
1297ev_timer_stop (EV_P_ struct ev_timer *w) 2329ev_timer_stop (EV_P_ ev_timer *w)
1298{ 2330{
1299 ev_clear_pending (EV_A_ (W)w); 2331 clear_pending (EV_A_ (W)w);
1300 if (!ev_is_active (w)) 2332 if (expect_false (!ev_is_active (w)))
1301 return; 2333 return;
1302 2334
2335 EV_FREQUENT_CHECK;
2336
2337 {
2338 int active = ev_active (w);
2339
1303 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2340 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1304 2341
1305 if (((W)w)->active < timercnt--) 2342 --timercnt;
2343
2344 if (expect_true (active < timercnt + HEAP0))
1306 { 2345 {
1307 timers [((W)w)->active - 1] = timers [timercnt]; 2346 timers [active] = timers [timercnt + HEAP0];
1308 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2347 adjustheap (timers, timercnt, active);
1309 } 2348 }
2349 }
1310 2350
1311 ((WT)w)->at = w->repeat; 2351 EV_FREQUENT_CHECK;
2352
2353 ev_at (w) -= mn_now;
1312 2354
1313 ev_stop (EV_A_ (W)w); 2355 ev_stop (EV_A_ (W)w);
1314} 2356}
1315 2357
1316void 2358void noinline
1317ev_timer_again (EV_P_ struct ev_timer *w) 2359ev_timer_again (EV_P_ ev_timer *w)
1318{ 2360{
2361 EV_FREQUENT_CHECK;
2362
1319 if (ev_is_active (w)) 2363 if (ev_is_active (w))
1320 { 2364 {
1321 if (w->repeat) 2365 if (w->repeat)
1322 { 2366 {
1323 ((WT)w)->at = mn_now + w->repeat; 2367 ev_at (w) = mn_now + w->repeat;
1324 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2368 ANHE_at_cache (timers [ev_active (w)]);
2369 adjustheap (timers, timercnt, ev_active (w));
1325 } 2370 }
1326 else 2371 else
1327 ev_timer_stop (EV_A_ w); 2372 ev_timer_stop (EV_A_ w);
1328 } 2373 }
1329 else if (w->repeat) 2374 else if (w->repeat)
2375 {
2376 ev_at (w) = w->repeat;
1330 ev_timer_start (EV_A_ w); 2377 ev_timer_start (EV_A_ w);
1331} 2378 }
1332 2379
1333void 2380 EV_FREQUENT_CHECK;
2381}
2382
2383#if EV_PERIODIC_ENABLE
2384void noinline
1334ev_periodic_start (EV_P_ struct ev_periodic *w) 2385ev_periodic_start (EV_P_ ev_periodic *w)
1335{ 2386{
1336 if (ev_is_active (w)) 2387 if (expect_false (ev_is_active (w)))
1337 return; 2388 return;
1338 2389
1339 if (w->reschedule_cb) 2390 if (w->reschedule_cb)
1340 ((WT)w)->at = w->reschedule_cb (w, rt_now); 2391 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1341 else if (w->interval) 2392 else if (w->interval)
1342 { 2393 {
1343 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2394 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1344 /* this formula differs from the one in periodic_reify because we do not always round up */ 2395 /* this formula differs from the one in periodic_reify because we do not always round up */
1345 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 2396 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1346 } 2397 }
2398 else
2399 ev_at (w) = w->offset;
1347 2400
2401 EV_FREQUENT_CHECK;
2402
2403 ++periodiccnt;
1348 ev_start (EV_A_ (W)w, ++periodiccnt); 2404 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1349 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 2405 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1350 periodics [periodiccnt - 1] = w; 2406 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1351 upheap ((WT *)periodics, periodiccnt - 1); 2407 ANHE_at_cache (periodics [ev_active (w)]);
2408 upheap (periodics, ev_active (w));
1352 2409
2410 EV_FREQUENT_CHECK;
2411
1353 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2412 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1354} 2413}
1355 2414
1356void 2415void noinline
1357ev_periodic_stop (EV_P_ struct ev_periodic *w) 2416ev_periodic_stop (EV_P_ ev_periodic *w)
1358{ 2417{
1359 ev_clear_pending (EV_A_ (W)w); 2418 clear_pending (EV_A_ (W)w);
1360 if (!ev_is_active (w)) 2419 if (expect_false (!ev_is_active (w)))
1361 return; 2420 return;
1362 2421
2422 EV_FREQUENT_CHECK;
2423
2424 {
2425 int active = ev_active (w);
2426
1363 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2427 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1364 2428
1365 if (((W)w)->active < periodiccnt--) 2429 --periodiccnt;
2430
2431 if (expect_true (active < periodiccnt + HEAP0))
1366 { 2432 {
1367 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2433 periodics [active] = periodics [periodiccnt + HEAP0];
1368 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2434 adjustheap (periodics, periodiccnt, active);
1369 } 2435 }
2436 }
2437
2438 EV_FREQUENT_CHECK;
1370 2439
1371 ev_stop (EV_A_ (W)w); 2440 ev_stop (EV_A_ (W)w);
1372} 2441}
1373 2442
1374void 2443void noinline
1375ev_periodic_again (EV_P_ struct ev_periodic *w) 2444ev_periodic_again (EV_P_ ev_periodic *w)
1376{ 2445{
2446 /* TODO: use adjustheap and recalculation */
1377 ev_periodic_stop (EV_A_ w); 2447 ev_periodic_stop (EV_A_ w);
1378 ev_periodic_start (EV_A_ w); 2448 ev_periodic_start (EV_A_ w);
1379} 2449}
1380 2450#endif
1381void
1382ev_idle_start (EV_P_ struct ev_idle *w)
1383{
1384 if (ev_is_active (w))
1385 return;
1386
1387 ev_start (EV_A_ (W)w, ++idlecnt);
1388 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1389 idles [idlecnt - 1] = w;
1390}
1391
1392void
1393ev_idle_stop (EV_P_ struct ev_idle *w)
1394{
1395 ev_clear_pending (EV_A_ (W)w);
1396 if (ev_is_active (w))
1397 return;
1398
1399 idles [((W)w)->active - 1] = idles [--idlecnt];
1400 ev_stop (EV_A_ (W)w);
1401}
1402
1403void
1404ev_prepare_start (EV_P_ struct ev_prepare *w)
1405{
1406 if (ev_is_active (w))
1407 return;
1408
1409 ev_start (EV_A_ (W)w, ++preparecnt);
1410 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1411 prepares [preparecnt - 1] = w;
1412}
1413
1414void
1415ev_prepare_stop (EV_P_ struct ev_prepare *w)
1416{
1417 ev_clear_pending (EV_A_ (W)w);
1418 if (ev_is_active (w))
1419 return;
1420
1421 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1422 ev_stop (EV_A_ (W)w);
1423}
1424
1425void
1426ev_check_start (EV_P_ struct ev_check *w)
1427{
1428 if (ev_is_active (w))
1429 return;
1430
1431 ev_start (EV_A_ (W)w, ++checkcnt);
1432 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1433 checks [checkcnt - 1] = w;
1434}
1435
1436void
1437ev_check_stop (EV_P_ struct ev_check *w)
1438{
1439 ev_clear_pending (EV_A_ (W)w);
1440 if (ev_is_active (w))
1441 return;
1442
1443 checks [((W)w)->active - 1] = checks [--checkcnt];
1444 ev_stop (EV_A_ (W)w);
1445}
1446 2451
1447#ifndef SA_RESTART 2452#ifndef SA_RESTART
1448# define SA_RESTART 0 2453# define SA_RESTART 0
1449#endif 2454#endif
1450 2455
1451void 2456void noinline
1452ev_signal_start (EV_P_ struct ev_signal *w) 2457ev_signal_start (EV_P_ ev_signal *w)
1453{ 2458{
1454#if EV_MULTIPLICITY 2459#if EV_MULTIPLICITY
1455 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2460 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1456#endif 2461#endif
1457 if (ev_is_active (w)) 2462 if (expect_false (ev_is_active (w)))
1458 return; 2463 return;
1459 2464
1460 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2465 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2466
2467 evpipe_init (EV_A);
2468
2469 EV_FREQUENT_CHECK;
2470
2471 {
2472#ifndef _WIN32
2473 sigset_t full, prev;
2474 sigfillset (&full);
2475 sigprocmask (SIG_SETMASK, &full, &prev);
2476#endif
2477
2478 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2479
2480#ifndef _WIN32
2481 sigprocmask (SIG_SETMASK, &prev, 0);
2482#endif
2483 }
1461 2484
1462 ev_start (EV_A_ (W)w, 1); 2485 ev_start (EV_A_ (W)w, 1);
1463 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1464 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2486 wlist_add (&signals [w->signum - 1].head, (WL)w);
1465 2487
1466 if (!((WL)w)->next) 2488 if (!((WL)w)->next)
1467 { 2489 {
1468#if WIN32 2490#if _WIN32
1469 signal (w->signum, sighandler); 2491 signal (w->signum, ev_sighandler);
1470#else 2492#else
1471 struct sigaction sa; 2493 struct sigaction sa;
1472 sa.sa_handler = sighandler; 2494 sa.sa_handler = ev_sighandler;
1473 sigfillset (&sa.sa_mask); 2495 sigfillset (&sa.sa_mask);
1474 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2496 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1475 sigaction (w->signum, &sa, 0); 2497 sigaction (w->signum, &sa, 0);
1476#endif 2498#endif
1477 } 2499 }
1478}
1479 2500
1480void 2501 EV_FREQUENT_CHECK;
2502}
2503
2504void noinline
1481ev_signal_stop (EV_P_ struct ev_signal *w) 2505ev_signal_stop (EV_P_ ev_signal *w)
1482{ 2506{
1483 ev_clear_pending (EV_A_ (W)w); 2507 clear_pending (EV_A_ (W)w);
1484 if (!ev_is_active (w)) 2508 if (expect_false (!ev_is_active (w)))
1485 return; 2509 return;
1486 2510
2511 EV_FREQUENT_CHECK;
2512
1487 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2513 wlist_del (&signals [w->signum - 1].head, (WL)w);
1488 ev_stop (EV_A_ (W)w); 2514 ev_stop (EV_A_ (W)w);
1489 2515
1490 if (!signals [w->signum - 1].head) 2516 if (!signals [w->signum - 1].head)
1491 signal (w->signum, SIG_DFL); 2517 signal (w->signum, SIG_DFL);
1492}
1493 2518
2519 EV_FREQUENT_CHECK;
2520}
2521
1494void 2522void
1495ev_child_start (EV_P_ struct ev_child *w) 2523ev_child_start (EV_P_ ev_child *w)
1496{ 2524{
1497#if EV_MULTIPLICITY 2525#if EV_MULTIPLICITY
1498 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2526 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1499#endif 2527#endif
1500 if (ev_is_active (w)) 2528 if (expect_false (ev_is_active (w)))
1501 return; 2529 return;
1502 2530
2531 EV_FREQUENT_CHECK;
2532
1503 ev_start (EV_A_ (W)w, 1); 2533 ev_start (EV_A_ (W)w, 1);
1504 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2534 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1505}
1506 2535
2536 EV_FREQUENT_CHECK;
2537}
2538
1507void 2539void
1508ev_child_stop (EV_P_ struct ev_child *w) 2540ev_child_stop (EV_P_ ev_child *w)
1509{ 2541{
1510 ev_clear_pending (EV_A_ (W)w); 2542 clear_pending (EV_A_ (W)w);
1511 if (ev_is_active (w)) 2543 if (expect_false (!ev_is_active (w)))
1512 return; 2544 return;
1513 2545
2546 EV_FREQUENT_CHECK;
2547
1514 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2548 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1515 ev_stop (EV_A_ (W)w); 2549 ev_stop (EV_A_ (W)w);
2550
2551 EV_FREQUENT_CHECK;
1516} 2552}
2553
2554#if EV_STAT_ENABLE
2555
2556# ifdef _WIN32
2557# undef lstat
2558# define lstat(a,b) _stati64 (a,b)
2559# endif
2560
2561#define DEF_STAT_INTERVAL 5.0074891
2562#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2563#define MIN_STAT_INTERVAL 0.1074891
2564
2565static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2566
2567#if EV_USE_INOTIFY
2568# define EV_INOTIFY_BUFSIZE 8192
2569
2570static void noinline
2571infy_add (EV_P_ ev_stat *w)
2572{
2573 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2574
2575 if (w->wd < 0)
2576 {
2577 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2578 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2579
2580 /* monitor some parent directory for speedup hints */
2581 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2582 /* but an efficiency issue only */
2583 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2584 {
2585 char path [4096];
2586 strcpy (path, w->path);
2587
2588 do
2589 {
2590 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2591 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2592
2593 char *pend = strrchr (path, '/');
2594
2595 if (!pend || pend == path)
2596 break;
2597
2598 *pend = 0;
2599 w->wd = inotify_add_watch (fs_fd, path, mask);
2600 }
2601 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2602 }
2603 }
2604
2605 if (w->wd >= 0)
2606 {
2607 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2608
2609 /* now local changes will be tracked by inotify, but remote changes won't */
2610 /* unless the filesystem it known to be local, we therefore still poll */
2611 /* also do poll on <2.6.25, but with normal frequency */
2612 struct statfs sfs;
2613
2614 if (fs_2625 && !statfs (w->path, &sfs))
2615 if (sfs.f_type == 0x1373 /* devfs */
2616 || sfs.f_type == 0xEF53 /* ext2/3 */
2617 || sfs.f_type == 0x3153464a /* jfs */
2618 || sfs.f_type == 0x52654973 /* reiser3 */
2619 || sfs.f_type == 0x01021994 /* tempfs */
2620 || sfs.f_type == 0x58465342 /* xfs */)
2621 return;
2622
2623 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2624 ev_timer_again (EV_A_ &w->timer);
2625 }
2626}
2627
2628static void noinline
2629infy_del (EV_P_ ev_stat *w)
2630{
2631 int slot;
2632 int wd = w->wd;
2633
2634 if (wd < 0)
2635 return;
2636
2637 w->wd = -2;
2638 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2639 wlist_del (&fs_hash [slot].head, (WL)w);
2640
2641 /* remove this watcher, if others are watching it, they will rearm */
2642 inotify_rm_watch (fs_fd, wd);
2643}
2644
2645static void noinline
2646infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2647{
2648 if (slot < 0)
2649 /* overflow, need to check for all hash slots */
2650 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2651 infy_wd (EV_A_ slot, wd, ev);
2652 else
2653 {
2654 WL w_;
2655
2656 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2657 {
2658 ev_stat *w = (ev_stat *)w_;
2659 w_ = w_->next; /* lets us remove this watcher and all before it */
2660
2661 if (w->wd == wd || wd == -1)
2662 {
2663 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2664 {
2665 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2666 w->wd = -1;
2667 infy_add (EV_A_ w); /* re-add, no matter what */
2668 }
2669
2670 stat_timer_cb (EV_A_ &w->timer, 0);
2671 }
2672 }
2673 }
2674}
2675
2676static void
2677infy_cb (EV_P_ ev_io *w, int revents)
2678{
2679 char buf [EV_INOTIFY_BUFSIZE];
2680 struct inotify_event *ev = (struct inotify_event *)buf;
2681 int ofs;
2682 int len = read (fs_fd, buf, sizeof (buf));
2683
2684 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2685 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2686}
2687
2688inline_size void
2689check_2625 (EV_P)
2690{
2691 /* kernels < 2.6.25 are borked
2692 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2693 */
2694 struct utsname buf;
2695 int major, minor, micro;
2696
2697 if (uname (&buf))
2698 return;
2699
2700 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2701 return;
2702
2703 if (major < 2
2704 || (major == 2 && minor < 6)
2705 || (major == 2 && minor == 6 && micro < 25))
2706 return;
2707
2708 fs_2625 = 1;
2709}
2710
2711inline_size void
2712infy_init (EV_P)
2713{
2714 if (fs_fd != -2)
2715 return;
2716
2717 fs_fd = -1;
2718
2719 check_2625 (EV_A);
2720
2721 fs_fd = inotify_init ();
2722
2723 if (fs_fd >= 0)
2724 {
2725 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2726 ev_set_priority (&fs_w, EV_MAXPRI);
2727 ev_io_start (EV_A_ &fs_w);
2728 }
2729}
2730
2731inline_size void
2732infy_fork (EV_P)
2733{
2734 int slot;
2735
2736 if (fs_fd < 0)
2737 return;
2738
2739 close (fs_fd);
2740 fs_fd = inotify_init ();
2741
2742 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2743 {
2744 WL w_ = fs_hash [slot].head;
2745 fs_hash [slot].head = 0;
2746
2747 while (w_)
2748 {
2749 ev_stat *w = (ev_stat *)w_;
2750 w_ = w_->next; /* lets us add this watcher */
2751
2752 w->wd = -1;
2753
2754 if (fs_fd >= 0)
2755 infy_add (EV_A_ w); /* re-add, no matter what */
2756 else
2757 ev_timer_again (EV_A_ &w->timer);
2758 }
2759 }
2760}
2761
2762#endif
2763
2764#ifdef _WIN32
2765# define EV_LSTAT(p,b) _stati64 (p, b)
2766#else
2767# define EV_LSTAT(p,b) lstat (p, b)
2768#endif
2769
2770void
2771ev_stat_stat (EV_P_ ev_stat *w)
2772{
2773 if (lstat (w->path, &w->attr) < 0)
2774 w->attr.st_nlink = 0;
2775 else if (!w->attr.st_nlink)
2776 w->attr.st_nlink = 1;
2777}
2778
2779static void noinline
2780stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2781{
2782 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2783
2784 /* we copy this here each the time so that */
2785 /* prev has the old value when the callback gets invoked */
2786 w->prev = w->attr;
2787 ev_stat_stat (EV_A_ w);
2788
2789 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2790 if (
2791 w->prev.st_dev != w->attr.st_dev
2792 || w->prev.st_ino != w->attr.st_ino
2793 || w->prev.st_mode != w->attr.st_mode
2794 || w->prev.st_nlink != w->attr.st_nlink
2795 || w->prev.st_uid != w->attr.st_uid
2796 || w->prev.st_gid != w->attr.st_gid
2797 || w->prev.st_rdev != w->attr.st_rdev
2798 || w->prev.st_size != w->attr.st_size
2799 || w->prev.st_atime != w->attr.st_atime
2800 || w->prev.st_mtime != w->attr.st_mtime
2801 || w->prev.st_ctime != w->attr.st_ctime
2802 ) {
2803 #if EV_USE_INOTIFY
2804 if (fs_fd >= 0)
2805 {
2806 infy_del (EV_A_ w);
2807 infy_add (EV_A_ w);
2808 ev_stat_stat (EV_A_ w); /* avoid race... */
2809 }
2810 #endif
2811
2812 ev_feed_event (EV_A_ w, EV_STAT);
2813 }
2814}
2815
2816void
2817ev_stat_start (EV_P_ ev_stat *w)
2818{
2819 if (expect_false (ev_is_active (w)))
2820 return;
2821
2822 ev_stat_stat (EV_A_ w);
2823
2824 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2825 w->interval = MIN_STAT_INTERVAL;
2826
2827 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2828 ev_set_priority (&w->timer, ev_priority (w));
2829
2830#if EV_USE_INOTIFY
2831 infy_init (EV_A);
2832
2833 if (fs_fd >= 0)
2834 infy_add (EV_A_ w);
2835 else
2836#endif
2837 ev_timer_again (EV_A_ &w->timer);
2838
2839 ev_start (EV_A_ (W)w, 1);
2840
2841 EV_FREQUENT_CHECK;
2842}
2843
2844void
2845ev_stat_stop (EV_P_ ev_stat *w)
2846{
2847 clear_pending (EV_A_ (W)w);
2848 if (expect_false (!ev_is_active (w)))
2849 return;
2850
2851 EV_FREQUENT_CHECK;
2852
2853#if EV_USE_INOTIFY
2854 infy_del (EV_A_ w);
2855#endif
2856 ev_timer_stop (EV_A_ &w->timer);
2857
2858 ev_stop (EV_A_ (W)w);
2859
2860 EV_FREQUENT_CHECK;
2861}
2862#endif
2863
2864#if EV_IDLE_ENABLE
2865void
2866ev_idle_start (EV_P_ ev_idle *w)
2867{
2868 if (expect_false (ev_is_active (w)))
2869 return;
2870
2871 pri_adjust (EV_A_ (W)w);
2872
2873 EV_FREQUENT_CHECK;
2874
2875 {
2876 int active = ++idlecnt [ABSPRI (w)];
2877
2878 ++idleall;
2879 ev_start (EV_A_ (W)w, active);
2880
2881 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2882 idles [ABSPRI (w)][active - 1] = w;
2883 }
2884
2885 EV_FREQUENT_CHECK;
2886}
2887
2888void
2889ev_idle_stop (EV_P_ ev_idle *w)
2890{
2891 clear_pending (EV_A_ (W)w);
2892 if (expect_false (!ev_is_active (w)))
2893 return;
2894
2895 EV_FREQUENT_CHECK;
2896
2897 {
2898 int active = ev_active (w);
2899
2900 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2901 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2902
2903 ev_stop (EV_A_ (W)w);
2904 --idleall;
2905 }
2906
2907 EV_FREQUENT_CHECK;
2908}
2909#endif
2910
2911void
2912ev_prepare_start (EV_P_ ev_prepare *w)
2913{
2914 if (expect_false (ev_is_active (w)))
2915 return;
2916
2917 EV_FREQUENT_CHECK;
2918
2919 ev_start (EV_A_ (W)w, ++preparecnt);
2920 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2921 prepares [preparecnt - 1] = w;
2922
2923 EV_FREQUENT_CHECK;
2924}
2925
2926void
2927ev_prepare_stop (EV_P_ ev_prepare *w)
2928{
2929 clear_pending (EV_A_ (W)w);
2930 if (expect_false (!ev_is_active (w)))
2931 return;
2932
2933 EV_FREQUENT_CHECK;
2934
2935 {
2936 int active = ev_active (w);
2937
2938 prepares [active - 1] = prepares [--preparecnt];
2939 ev_active (prepares [active - 1]) = active;
2940 }
2941
2942 ev_stop (EV_A_ (W)w);
2943
2944 EV_FREQUENT_CHECK;
2945}
2946
2947void
2948ev_check_start (EV_P_ ev_check *w)
2949{
2950 if (expect_false (ev_is_active (w)))
2951 return;
2952
2953 EV_FREQUENT_CHECK;
2954
2955 ev_start (EV_A_ (W)w, ++checkcnt);
2956 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2957 checks [checkcnt - 1] = w;
2958
2959 EV_FREQUENT_CHECK;
2960}
2961
2962void
2963ev_check_stop (EV_P_ ev_check *w)
2964{
2965 clear_pending (EV_A_ (W)w);
2966 if (expect_false (!ev_is_active (w)))
2967 return;
2968
2969 EV_FREQUENT_CHECK;
2970
2971 {
2972 int active = ev_active (w);
2973
2974 checks [active - 1] = checks [--checkcnt];
2975 ev_active (checks [active - 1]) = active;
2976 }
2977
2978 ev_stop (EV_A_ (W)w);
2979
2980 EV_FREQUENT_CHECK;
2981}
2982
2983#if EV_EMBED_ENABLE
2984void noinline
2985ev_embed_sweep (EV_P_ ev_embed *w)
2986{
2987 ev_loop (w->other, EVLOOP_NONBLOCK);
2988}
2989
2990static void
2991embed_io_cb (EV_P_ ev_io *io, int revents)
2992{
2993 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2994
2995 if (ev_cb (w))
2996 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2997 else
2998 ev_loop (w->other, EVLOOP_NONBLOCK);
2999}
3000
3001static void
3002embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3003{
3004 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3005
3006 {
3007 struct ev_loop *loop = w->other;
3008
3009 while (fdchangecnt)
3010 {
3011 fd_reify (EV_A);
3012 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3013 }
3014 }
3015}
3016
3017static void
3018embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3019{
3020 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3021
3022 ev_embed_stop (EV_A_ w);
3023
3024 {
3025 struct ev_loop *loop = w->other;
3026
3027 ev_loop_fork (EV_A);
3028 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3029 }
3030
3031 ev_embed_start (EV_A_ w);
3032}
3033
3034#if 0
3035static void
3036embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3037{
3038 ev_idle_stop (EV_A_ idle);
3039}
3040#endif
3041
3042void
3043ev_embed_start (EV_P_ ev_embed *w)
3044{
3045 if (expect_false (ev_is_active (w)))
3046 return;
3047
3048 {
3049 struct ev_loop *loop = w->other;
3050 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3051 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3052 }
3053
3054 EV_FREQUENT_CHECK;
3055
3056 ev_set_priority (&w->io, ev_priority (w));
3057 ev_io_start (EV_A_ &w->io);
3058
3059 ev_prepare_init (&w->prepare, embed_prepare_cb);
3060 ev_set_priority (&w->prepare, EV_MINPRI);
3061 ev_prepare_start (EV_A_ &w->prepare);
3062
3063 ev_fork_init (&w->fork, embed_fork_cb);
3064 ev_fork_start (EV_A_ &w->fork);
3065
3066 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3067
3068 ev_start (EV_A_ (W)w, 1);
3069
3070 EV_FREQUENT_CHECK;
3071}
3072
3073void
3074ev_embed_stop (EV_P_ ev_embed *w)
3075{
3076 clear_pending (EV_A_ (W)w);
3077 if (expect_false (!ev_is_active (w)))
3078 return;
3079
3080 EV_FREQUENT_CHECK;
3081
3082 ev_io_stop (EV_A_ &w->io);
3083 ev_prepare_stop (EV_A_ &w->prepare);
3084 ev_fork_stop (EV_A_ &w->fork);
3085
3086 EV_FREQUENT_CHECK;
3087}
3088#endif
3089
3090#if EV_FORK_ENABLE
3091void
3092ev_fork_start (EV_P_ ev_fork *w)
3093{
3094 if (expect_false (ev_is_active (w)))
3095 return;
3096
3097 EV_FREQUENT_CHECK;
3098
3099 ev_start (EV_A_ (W)w, ++forkcnt);
3100 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3101 forks [forkcnt - 1] = w;
3102
3103 EV_FREQUENT_CHECK;
3104}
3105
3106void
3107ev_fork_stop (EV_P_ ev_fork *w)
3108{
3109 clear_pending (EV_A_ (W)w);
3110 if (expect_false (!ev_is_active (w)))
3111 return;
3112
3113 EV_FREQUENT_CHECK;
3114
3115 {
3116 int active = ev_active (w);
3117
3118 forks [active - 1] = forks [--forkcnt];
3119 ev_active (forks [active - 1]) = active;
3120 }
3121
3122 ev_stop (EV_A_ (W)w);
3123
3124 EV_FREQUENT_CHECK;
3125}
3126#endif
3127
3128#if EV_ASYNC_ENABLE
3129void
3130ev_async_start (EV_P_ ev_async *w)
3131{
3132 if (expect_false (ev_is_active (w)))
3133 return;
3134
3135 evpipe_init (EV_A);
3136
3137 EV_FREQUENT_CHECK;
3138
3139 ev_start (EV_A_ (W)w, ++asynccnt);
3140 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3141 asyncs [asynccnt - 1] = w;
3142
3143 EV_FREQUENT_CHECK;
3144}
3145
3146void
3147ev_async_stop (EV_P_ ev_async *w)
3148{
3149 clear_pending (EV_A_ (W)w);
3150 if (expect_false (!ev_is_active (w)))
3151 return;
3152
3153 EV_FREQUENT_CHECK;
3154
3155 {
3156 int active = ev_active (w);
3157
3158 asyncs [active - 1] = asyncs [--asynccnt];
3159 ev_active (asyncs [active - 1]) = active;
3160 }
3161
3162 ev_stop (EV_A_ (W)w);
3163
3164 EV_FREQUENT_CHECK;
3165}
3166
3167void
3168ev_async_send (EV_P_ ev_async *w)
3169{
3170 w->sent = 1;
3171 evpipe_write (EV_A_ &gotasync);
3172}
3173#endif
1517 3174
1518/*****************************************************************************/ 3175/*****************************************************************************/
1519 3176
1520struct ev_once 3177struct ev_once
1521{ 3178{
1522 struct ev_io io; 3179 ev_io io;
1523 struct ev_timer to; 3180 ev_timer to;
1524 void (*cb)(int revents, void *arg); 3181 void (*cb)(int revents, void *arg);
1525 void *arg; 3182 void *arg;
1526}; 3183};
1527 3184
1528static void 3185static void
1529once_cb (EV_P_ struct ev_once *once, int revents) 3186once_cb (EV_P_ struct ev_once *once, int revents)
1530{ 3187{
1531 void (*cb)(int revents, void *arg) = once->cb; 3188 void (*cb)(int revents, void *arg) = once->cb;
1532 void *arg = once->arg; 3189 void *arg = once->arg;
1533 3190
1534 ev_io_stop (EV_A_ &once->io); 3191 ev_io_stop (EV_A_ &once->io);
1535 ev_timer_stop (EV_A_ &once->to); 3192 ev_timer_stop (EV_A_ &once->to);
1536 ev_free (once); 3193 ev_free (once);
1537 3194
1538 cb (revents, arg); 3195 cb (revents, arg);
1539} 3196}
1540 3197
1541static void 3198static void
1542once_cb_io (EV_P_ struct ev_io *w, int revents) 3199once_cb_io (EV_P_ ev_io *w, int revents)
1543{ 3200{
1544 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3201 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3202
3203 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1545} 3204}
1546 3205
1547static void 3206static void
1548once_cb_to (EV_P_ struct ev_timer *w, int revents) 3207once_cb_to (EV_P_ ev_timer *w, int revents)
1549{ 3208{
1550 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3209 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3210
3211 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1551} 3212}
1552 3213
1553void 3214void
1554ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3215ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1555{ 3216{
1556 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3217 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1557 3218
1558 if (!once) 3219 if (expect_false (!once))
3220 {
1559 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3221 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1560 else 3222 return;
1561 { 3223 }
3224
1562 once->cb = cb; 3225 once->cb = cb;
1563 once->arg = arg; 3226 once->arg = arg;
1564 3227
1565 ev_watcher_init (&once->io, once_cb_io); 3228 ev_init (&once->io, once_cb_io);
1566 if (fd >= 0) 3229 if (fd >= 0)
3230 {
3231 ev_io_set (&once->io, fd, events);
3232 ev_io_start (EV_A_ &once->io);
3233 }
3234
3235 ev_init (&once->to, once_cb_to);
3236 if (timeout >= 0.)
3237 {
3238 ev_timer_set (&once->to, timeout, 0.);
3239 ev_timer_start (EV_A_ &once->to);
3240 }
3241}
3242
3243/*****************************************************************************/
3244
3245#if EV_WALK_ENABLE
3246void
3247ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3248{
3249 int i, j;
3250 ev_watcher_list *wl, *wn;
3251
3252 if (types & (EV_IO | EV_EMBED))
3253 for (i = 0; i < anfdmax; ++i)
3254 for (wl = anfds [i].head; wl; )
1567 { 3255 {
1568 ev_io_set (&once->io, fd, events); 3256 wn = wl->next;
1569 ev_io_start (EV_A_ &once->io); 3257
3258#if EV_EMBED_ENABLE
3259 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3260 {
3261 if (types & EV_EMBED)
3262 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3263 }
3264 else
3265#endif
3266#if EV_USE_INOTIFY
3267 if (ev_cb ((ev_io *)wl) == infy_cb)
3268 ;
3269 else
3270#endif
3271 if ((ev_io *)wl != &pipe_w)
3272 if (types & EV_IO)
3273 cb (EV_A_ EV_IO, wl);
3274
3275 wl = wn;
1570 } 3276 }
1571 3277
1572 ev_watcher_init (&once->to, once_cb_to); 3278 if (types & (EV_TIMER | EV_STAT))
1573 if (timeout >= 0.) 3279 for (i = timercnt + HEAP0; i-- > HEAP0; )
3280#if EV_STAT_ENABLE
3281 /*TODO: timer is not always active*/
3282 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1574 { 3283 {
1575 ev_timer_set (&once->to, timeout, 0.); 3284 if (types & EV_STAT)
1576 ev_timer_start (EV_A_ &once->to); 3285 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1577 } 3286 }
1578 } 3287 else
1579} 3288#endif
3289 if (types & EV_TIMER)
3290 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1580 3291
3292#if EV_PERIODIC_ENABLE
3293 if (types & EV_PERIODIC)
3294 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3295 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3296#endif
3297
3298#if EV_IDLE_ENABLE
3299 if (types & EV_IDLE)
3300 for (j = NUMPRI; i--; )
3301 for (i = idlecnt [j]; i--; )
3302 cb (EV_A_ EV_IDLE, idles [j][i]);
3303#endif
3304
3305#if EV_FORK_ENABLE
3306 if (types & EV_FORK)
3307 for (i = forkcnt; i--; )
3308 if (ev_cb (forks [i]) != embed_fork_cb)
3309 cb (EV_A_ EV_FORK, forks [i]);
3310#endif
3311
3312#if EV_ASYNC_ENABLE
3313 if (types & EV_ASYNC)
3314 for (i = asynccnt; i--; )
3315 cb (EV_A_ EV_ASYNC, asyncs [i]);
3316#endif
3317
3318 if (types & EV_PREPARE)
3319 for (i = preparecnt; i--; )
3320#if EV_EMBED_ENABLE
3321 if (ev_cb (prepares [i]) != embed_prepare_cb)
3322#endif
3323 cb (EV_A_ EV_PREPARE, prepares [i]);
3324
3325 if (types & EV_CHECK)
3326 for (i = checkcnt; i--; )
3327 cb (EV_A_ EV_CHECK, checks [i]);
3328
3329 if (types & EV_SIGNAL)
3330 for (i = 0; i < signalmax; ++i)
3331 for (wl = signals [i].head; wl; )
3332 {
3333 wn = wl->next;
3334 cb (EV_A_ EV_SIGNAL, wl);
3335 wl = wn;
3336 }
3337
3338 if (types & EV_CHILD)
3339 for (i = EV_PID_HASHSIZE; i--; )
3340 for (wl = childs [i]; wl; )
3341 {
3342 wn = wl->next;
3343 cb (EV_A_ EV_CHILD, wl);
3344 wl = wn;
3345 }
3346/* EV_STAT 0x00001000 /* stat data changed */
3347/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3348}
3349#endif
3350
3351#if EV_MULTIPLICITY
3352 #include "ev_wrap.h"
3353#endif
3354
3355#ifdef __cplusplus
3356}
3357#endif
3358

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines