ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.146 by root, Tue Nov 27 09:17:51 2007 UTC vs.
Revision 1.289 by root, Sat Jun 6 11:13:16 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
63
43# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
46# endif 67# endif
47# ifndef EV_USE_REALTIME 68# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 0
49# endif 70# endif
50# else 71# else
51# ifndef EV_USE_MONOTONIC 72# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 73# define EV_USE_MONOTONIC 0
53# endif 74# endif
54# ifndef EV_USE_REALTIME 75# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 76# define EV_USE_REALTIME 0
77# endif
78# endif
79
80# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1
83# else
84# define EV_USE_NANOSLEEP 0
56# endif 85# endif
57# endif 86# endif
58 87
59# ifndef EV_USE_SELECT 88# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 89# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# else 123# else
95# define EV_USE_PORT 0 124# define EV_USE_PORT 0
96# endif 125# endif
97# endif 126# endif
98 127
128# ifndef EV_USE_INOTIFY
129# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130# define EV_USE_INOTIFY 1
131# else
132# define EV_USE_INOTIFY 0
133# endif
134# endif
135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
99#endif 144#endif
100 145
101#include <math.h> 146#include <math.h>
102#include <stdlib.h> 147#include <stdlib.h>
103#include <fcntl.h> 148#include <fcntl.h>
109#include <errno.h> 154#include <errno.h>
110#include <sys/types.h> 155#include <sys/types.h>
111#include <time.h> 156#include <time.h>
112 157
113#include <signal.h> 158#include <signal.h>
159
160#ifdef EV_H
161# include EV_H
162#else
163# include "ev.h"
164#endif
114 165
115#ifndef _WIN32 166#ifndef _WIN32
116# include <sys/time.h> 167# include <sys/time.h>
117# include <sys/wait.h> 168# include <sys/wait.h>
118# include <unistd.h> 169# include <unistd.h>
119#else 170#else
171# include <io.h>
120# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 173# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
124# endif 176# endif
125#endif 177#endif
126 178
127/**/ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
128 188
129#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
130# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif
131#endif 195#endif
132 196
133#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif
200
201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
205# define EV_USE_NANOSLEEP 0
206# endif
135#endif 207#endif
136 208
137#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
139#endif 211#endif
145# define EV_USE_POLL 1 217# define EV_USE_POLL 1
146# endif 218# endif
147#endif 219#endif
148 220
149#ifndef EV_USE_EPOLL 221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
150# define EV_USE_EPOLL 0 225# define EV_USE_EPOLL 0
226# endif
151#endif 227#endif
152 228
153#ifndef EV_USE_KQUEUE 229#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 230# define EV_USE_KQUEUE 0
155#endif 231#endif
156 232
157#ifndef EV_USE_PORT 233#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 234# define EV_USE_PORT 0
159#endif 235#endif
160 236
161/**/ 237#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1
240# else
241# define EV_USE_INOTIFY 0
242# endif
243#endif
244
245#ifndef EV_PID_HASHSIZE
246# if EV_MINIMAL
247# define EV_PID_HASHSIZE 1
248# else
249# define EV_PID_HASHSIZE 16
250# endif
251#endif
252
253#ifndef EV_INOTIFY_HASHSIZE
254# if EV_MINIMAL
255# define EV_INOTIFY_HASHSIZE 1
256# else
257# define EV_INOTIFY_HASHSIZE 16
258# endif
259#endif
260
261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
162 288
163#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
166#endif 292#endif
168#ifndef CLOCK_REALTIME 294#ifndef CLOCK_REALTIME
169# undef EV_USE_REALTIME 295# undef EV_USE_REALTIME
170# define EV_USE_REALTIME 0 296# define EV_USE_REALTIME 0
171#endif 297#endif
172 298
299#if !EV_STAT_ENABLE
300# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0
302#endif
303
304#if !EV_USE_NANOSLEEP
305# ifndef _WIN32
306# include <sys/select.h>
307# endif
308#endif
309
310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
319#endif
320
173#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 322# include <winsock.h>
175#endif 323#endif
176 324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
339# endif
340int eventfd (unsigned int initval, int flags);
341# ifdef __cplusplus
342}
343# endif
344#endif
345
177/**/ 346/**/
347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
353
354/*
355 * This is used to avoid floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
178 363
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
183 367
184#ifdef EV_H
185# include EV_H
186#else
187# include "ev.h"
188#endif
189
190#if __GNUC__ >= 3 368#if __GNUC__ >= 4
191# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline_size static inline /* inline for codesize */
193# if EV_MINIMAL
194# define noinline __attribute__ ((noinline)) 370# define noinline __attribute__ ((noinline))
195# define inline_speed static noinline
196# else
197# define noinline
198# define inline_speed static inline
199# endif
200#else 371#else
201# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
202# define inline_speed static
203# define inline_size static
204# define noinline 373# define noinline
374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
375# define inline
376# endif
205#endif 377#endif
206 378
207#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
208#define expect_true(expr) expect ((expr) != 0, 1) 380#define expect_true(expr) expect ((expr) != 0, 1)
381#define inline_size static inline
382
383#if EV_MINIMAL
384# define inline_speed static noinline
385#else
386# define inline_speed static inline
387#endif
209 388
210#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
211#define ABSPRI(w) ((w)->priority - EV_MINPRI) 390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
212 391
213#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 392#define EMPTY /* required for microsofts broken pseudo-c compiler */
214#define EMPTY2(a,b) /* used to suppress some warnings */ 393#define EMPTY2(a,b) /* used to suppress some warnings */
215 394
216typedef ev_watcher *W; 395typedef ev_watcher *W;
217typedef ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
218typedef ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
219 398
399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
220static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif
221 411
222#ifdef _WIN32 412#ifdef _WIN32
223# include "ev_win32.c" 413# include "ev_win32.c"
224#endif 414#endif
225 415
232{ 422{
233 syserr_cb = cb; 423 syserr_cb = cb;
234} 424}
235 425
236static void noinline 426static void noinline
237syserr (const char *msg) 427ev_syserr (const char *msg)
238{ 428{
239 if (!msg) 429 if (!msg)
240 msg = "(libev) system error"; 430 msg = "(libev) system error";
241 431
242 if (syserr_cb) 432 if (syserr_cb)
246 perror (msg); 436 perror (msg);
247 abort (); 437 abort ();
248 } 438 }
249} 439}
250 440
441static void *
442ev_realloc_emul (void *ptr, long size)
443{
444 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and
446 * the single unix specification, so work around them here.
447 */
448
449 if (size)
450 return realloc (ptr, size);
451
452 free (ptr);
453 return 0;
454}
455
251static void *(*alloc)(void *ptr, long size); 456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
252 457
253void 458void
254ev_set_allocator (void *(*cb)(void *ptr, long size)) 459ev_set_allocator (void *(*cb)(void *ptr, long size))
255{ 460{
256 alloc = cb; 461 alloc = cb;
257} 462}
258 463
259static void * 464inline_speed void *
260ev_realloc (void *ptr, long size) 465ev_realloc (void *ptr, long size)
261{ 466{
262 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 467 ptr = alloc (ptr, size);
263 468
264 if (!ptr && size) 469 if (!ptr && size)
265 { 470 {
266 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
267 abort (); 472 abort ();
273#define ev_malloc(size) ev_realloc (0, (size)) 478#define ev_malloc(size) ev_realloc (0, (size))
274#define ev_free(ptr) ev_realloc ((ptr), 0) 479#define ev_free(ptr) ev_realloc ((ptr), 0)
275 480
276/*****************************************************************************/ 481/*****************************************************************************/
277 482
483/* file descriptor info structure */
278typedef struct 484typedef struct
279{ 485{
280 WL head; 486 WL head;
281 unsigned char events; 487 unsigned char events; /* the events watched for */
488 unsigned char reify; /* flag set when this ANFD needs reification */
489 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
282 unsigned char reify; 490 unsigned char unused;
491#if EV_USE_EPOLL
492 unsigned int egen; /* generation counter to counter epoll bugs */
493#endif
283#if EV_SELECT_IS_WINSOCKET 494#if EV_SELECT_IS_WINSOCKET
284 SOCKET handle; 495 SOCKET handle;
285#endif 496#endif
286} ANFD; 497} ANFD;
287 498
499/* stores the pending event set for a given watcher */
288typedef struct 500typedef struct
289{ 501{
290 W w; 502 W w;
291 int events; 503 int events; /* the pending event set for the given watcher */
292} ANPENDING; 504} ANPENDING;
505
506#if EV_USE_INOTIFY
507/* hash table entry per inotify-id */
508typedef struct
509{
510 WL head;
511} ANFS;
512#endif
513
514/* Heap Entry */
515#if EV_HEAP_CACHE_AT
516 /* a heap element */
517 typedef struct {
518 ev_tstamp at;
519 WT w;
520 } ANHE;
521
522 #define ANHE_w(he) (he).w /* access watcher, read-write */
523 #define ANHE_at(he) (he).at /* access cached at, read-only */
524 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
525#else
526 /* a heap element */
527 typedef WT ANHE;
528
529 #define ANHE_w(he) (he)
530 #define ANHE_at(he) (he)->at
531 #define ANHE_at_cache(he)
532#endif
293 533
294#if EV_MULTIPLICITY 534#if EV_MULTIPLICITY
295 535
296 struct ev_loop 536 struct ev_loop
297 { 537 {
321 561
322ev_tstamp 562ev_tstamp
323ev_time (void) 563ev_time (void)
324{ 564{
325#if EV_USE_REALTIME 565#if EV_USE_REALTIME
566 if (expect_true (have_realtime))
567 {
326 struct timespec ts; 568 struct timespec ts;
327 clock_gettime (CLOCK_REALTIME, &ts); 569 clock_gettime (CLOCK_REALTIME, &ts);
328 return ts.tv_sec + ts.tv_nsec * 1e-9; 570 return ts.tv_sec + ts.tv_nsec * 1e-9;
329#else 571 }
572#endif
573
330 struct timeval tv; 574 struct timeval tv;
331 gettimeofday (&tv, 0); 575 gettimeofday (&tv, 0);
332 return tv.tv_sec + tv.tv_usec * 1e-6; 576 return tv.tv_sec + tv.tv_usec * 1e-6;
333#endif
334} 577}
335 578
336ev_tstamp inline_size 579inline_size ev_tstamp
337get_clock (void) 580get_clock (void)
338{ 581{
339#if EV_USE_MONOTONIC 582#if EV_USE_MONOTONIC
340 if (expect_true (have_monotonic)) 583 if (expect_true (have_monotonic))
341 { 584 {
354{ 597{
355 return ev_rt_now; 598 return ev_rt_now;
356} 599}
357#endif 600#endif
358 601
359#define array_roundsize(type,n) (((n) | 4) & ~3) 602void
603ev_sleep (ev_tstamp delay)
604{
605 if (delay > 0.)
606 {
607#if EV_USE_NANOSLEEP
608 struct timespec ts;
609
610 ts.tv_sec = (time_t)delay;
611 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
612
613 nanosleep (&ts, 0);
614#elif defined(_WIN32)
615 Sleep ((unsigned long)(delay * 1e3));
616#else
617 struct timeval tv;
618
619 tv.tv_sec = (time_t)delay;
620 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
621
622 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
623 /* somehting nto guaranteed by newer posix versions, but guaranteed */
624 /* by older ones */
625 select (0, 0, 0, 0, &tv);
626#endif
627 }
628}
629
630/*****************************************************************************/
631
632#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
633
634/* find a suitable new size for the given array, */
635/* hopefully by rounding to a ncie-to-malloc size */
636inline_size int
637array_nextsize (int elem, int cur, int cnt)
638{
639 int ncur = cur + 1;
640
641 do
642 ncur <<= 1;
643 while (cnt > ncur);
644
645 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
646 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
647 {
648 ncur *= elem;
649 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
650 ncur = ncur - sizeof (void *) * 4;
651 ncur /= elem;
652 }
653
654 return ncur;
655}
656
657static noinline void *
658array_realloc (int elem, void *base, int *cur, int cnt)
659{
660 *cur = array_nextsize (elem, *cur, cnt);
661 return ev_realloc (base, elem * *cur);
662}
663
664#define array_init_zero(base,count) \
665 memset ((void *)(base), 0, sizeof (*(base)) * (count))
360 666
361#define array_needsize(type,base,cur,cnt,init) \ 667#define array_needsize(type,base,cur,cnt,init) \
362 if (expect_false ((cnt) > cur)) \ 668 if (expect_false ((cnt) > (cur))) \
363 { \ 669 { \
364 int newcnt = cur; \ 670 int ocur_ = (cur); \
365 do \ 671 (base) = (type *)array_realloc \
366 { \ 672 (sizeof (type), (base), &(cur), (cnt)); \
367 newcnt = array_roundsize (type, newcnt << 1); \ 673 init ((base) + (ocur_), (cur) - ocur_); \
368 } \
369 while ((cnt) > newcnt); \
370 \
371 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
372 init (base + cur, newcnt - cur); \
373 cur = newcnt; \
374 } 674 }
375 675
676#if 0
376#define array_slim(type,stem) \ 677#define array_slim(type,stem) \
377 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 678 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
378 { \ 679 { \
379 stem ## max = array_roundsize (stem ## cnt >> 1); \ 680 stem ## max = array_roundsize (stem ## cnt >> 1); \
380 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 681 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
381 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 682 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
382 } 683 }
684#endif
383 685
384#define array_free(stem, idx) \ 686#define array_free(stem, idx) \
385 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 687 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
386 688
387/*****************************************************************************/ 689/*****************************************************************************/
690
691/* dummy callback for pending events */
692static void noinline
693pendingcb (EV_P_ ev_prepare *w, int revents)
694{
695}
388 696
389void noinline 697void noinline
390ev_feed_event (EV_P_ void *w, int revents) 698ev_feed_event (EV_P_ void *w, int revents)
391{ 699{
392 W w_ = (W)w; 700 W w_ = (W)w;
701 int pri = ABSPRI (w_);
393 702
394 if (expect_false (w_->pending)) 703 if (expect_false (w_->pending))
704 pendings [pri][w_->pending - 1].events |= revents;
705 else
395 { 706 {
707 w_->pending = ++pendingcnt [pri];
708 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
709 pendings [pri][w_->pending - 1].w = w_;
396 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 710 pendings [pri][w_->pending - 1].events = revents;
397 return;
398 } 711 }
399
400 w_->pending = ++pendingcnt [ABSPRI (w_)];
401 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
402 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
403 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
404} 712}
405 713
406void inline_size 714inline_speed void
715feed_reverse (EV_P_ W w)
716{
717 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
718 rfeeds [rfeedcnt++] = w;
719}
720
721inline_size void
722feed_reverse_done (EV_P_ int revents)
723{
724 do
725 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
726 while (rfeedcnt);
727}
728
729inline_speed void
407queue_events (EV_P_ W *events, int eventcnt, int type) 730queue_events (EV_P_ W *events, int eventcnt, int type)
408{ 731{
409 int i; 732 int i;
410 733
411 for (i = 0; i < eventcnt; ++i) 734 for (i = 0; i < eventcnt; ++i)
412 ev_feed_event (EV_A_ events [i], type); 735 ev_feed_event (EV_A_ events [i], type);
413} 736}
414 737
415/*****************************************************************************/ 738/*****************************************************************************/
416 739
417void inline_size 740inline_speed void
418anfds_init (ANFD *base, int count)
419{
420 while (count--)
421 {
422 base->head = 0;
423 base->events = EV_NONE;
424 base->reify = 0;
425
426 ++base;
427 }
428}
429
430void inline_speed
431fd_event (EV_P_ int fd, int revents) 741fd_event (EV_P_ int fd, int revents)
432{ 742{
433 ANFD *anfd = anfds + fd; 743 ANFD *anfd = anfds + fd;
434 ev_io *w; 744 ev_io *w;
435 745
443} 753}
444 754
445void 755void
446ev_feed_fd_event (EV_P_ int fd, int revents) 756ev_feed_fd_event (EV_P_ int fd, int revents)
447{ 757{
758 if (fd >= 0 && fd < anfdmax)
448 fd_event (EV_A_ fd, revents); 759 fd_event (EV_A_ fd, revents);
449} 760}
450 761
451void inline_size 762/* make sure the external fd watch events are in-sync */
763/* with the kernel/libev internal state */
764inline_size void
452fd_reify (EV_P) 765fd_reify (EV_P)
453{ 766{
454 int i; 767 int i;
455 768
456 for (i = 0; i < fdchangecnt; ++i) 769 for (i = 0; i < fdchangecnt; ++i)
457 { 770 {
458 int fd = fdchanges [i]; 771 int fd = fdchanges [i];
459 ANFD *anfd = anfds + fd; 772 ANFD *anfd = anfds + fd;
460 ev_io *w; 773 ev_io *w;
461 774
462 int events = 0; 775 unsigned char events = 0;
463 776
464 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 777 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
465 events |= w->events; 778 events |= (unsigned char)w->events;
466 779
467#if EV_SELECT_IS_WINSOCKET 780#if EV_SELECT_IS_WINSOCKET
468 if (events) 781 if (events)
469 { 782 {
470 unsigned long argp; 783 unsigned long arg;
784 #ifdef EV_FD_TO_WIN32_HANDLE
785 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
786 #else
471 anfd->handle = _get_osfhandle (fd); 787 anfd->handle = _get_osfhandle (fd);
788 #endif
472 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 789 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
473 } 790 }
474#endif 791#endif
475 792
793 {
794 unsigned char o_events = anfd->events;
795 unsigned char o_reify = anfd->reify;
796
476 anfd->reify = 0; 797 anfd->reify = 0;
477
478 backend_modify (EV_A_ fd, anfd->events, events);
479 anfd->events = events; 798 anfd->events = events;
799
800 if (o_events != events || o_reify & EV__IOFDSET)
801 backend_modify (EV_A_ fd, o_events, events);
802 }
480 } 803 }
481 804
482 fdchangecnt = 0; 805 fdchangecnt = 0;
483} 806}
484 807
485void inline_size 808/* something about the given fd changed */
809inline_size void
486fd_change (EV_P_ int fd) 810fd_change (EV_P_ int fd, int flags)
487{ 811{
488 if (expect_false (anfds [fd].reify)) 812 unsigned char reify = anfds [fd].reify;
489 return;
490
491 anfds [fd].reify = 1; 813 anfds [fd].reify |= flags;
492 814
815 if (expect_true (!reify))
816 {
493 ++fdchangecnt; 817 ++fdchangecnt;
494 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 818 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
495 fdchanges [fdchangecnt - 1] = fd; 819 fdchanges [fdchangecnt - 1] = fd;
820 }
496} 821}
497 822
498void inline_speed 823/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
824inline_speed void
499fd_kill (EV_P_ int fd) 825fd_kill (EV_P_ int fd)
500{ 826{
501 ev_io *w; 827 ev_io *w;
502 828
503 while ((w = (ev_io *)anfds [fd].head)) 829 while ((w = (ev_io *)anfds [fd].head))
505 ev_io_stop (EV_A_ w); 831 ev_io_stop (EV_A_ w);
506 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 832 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
507 } 833 }
508} 834}
509 835
510int inline_size 836/* check whether the given fd is atcually valid, for error recovery */
837inline_size int
511fd_valid (int fd) 838fd_valid (int fd)
512{ 839{
513#ifdef _WIN32 840#ifdef _WIN32
514 return _get_osfhandle (fd) != -1; 841 return _get_osfhandle (fd) != -1;
515#else 842#else
523{ 850{
524 int fd; 851 int fd;
525 852
526 for (fd = 0; fd < anfdmax; ++fd) 853 for (fd = 0; fd < anfdmax; ++fd)
527 if (anfds [fd].events) 854 if (anfds [fd].events)
528 if (!fd_valid (fd) == -1 && errno == EBADF) 855 if (!fd_valid (fd) && errno == EBADF)
529 fd_kill (EV_A_ fd); 856 fd_kill (EV_A_ fd);
530} 857}
531 858
532/* called on ENOMEM in select/poll to kill some fds and retry */ 859/* called on ENOMEM in select/poll to kill some fds and retry */
533static void noinline 860static void noinline
547static void noinline 874static void noinline
548fd_rearm_all (EV_P) 875fd_rearm_all (EV_P)
549{ 876{
550 int fd; 877 int fd;
551 878
552 /* this should be highly optimised to not do anything but set a flag */
553 for (fd = 0; fd < anfdmax; ++fd) 879 for (fd = 0; fd < anfdmax; ++fd)
554 if (anfds [fd].events) 880 if (anfds [fd].events)
555 { 881 {
556 anfds [fd].events = 0; 882 anfds [fd].events = 0;
883 anfds [fd].emask = 0;
557 fd_change (EV_A_ fd); 884 fd_change (EV_A_ fd, EV__IOFDSET | 1);
558 } 885 }
559} 886}
560 887
561/*****************************************************************************/ 888/*****************************************************************************/
562 889
563void inline_speed 890/*
564upheap (WT *heap, int k) 891 * the heap functions want a real array index. array index 0 uis guaranteed to not
565{ 892 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
566 WT w = heap [k]; 893 * the branching factor of the d-tree.
894 */
567 895
568 while (k && heap [k >> 1]->at > w->at) 896/*
569 { 897 * at the moment we allow libev the luxury of two heaps,
570 heap [k] = heap [k >> 1]; 898 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
571 ((W)heap [k])->active = k + 1; 899 * which is more cache-efficient.
572 k >>= 1; 900 * the difference is about 5% with 50000+ watchers.
573 } 901 */
902#if EV_USE_4HEAP
574 903
575 heap [k] = w; 904#define DHEAP 4
576 ((W)heap [k])->active = k + 1; 905#define HEAP0 (DHEAP - 1) /* index of first element in heap */
906#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
907#define UPHEAP_DONE(p,k) ((p) == (k))
577 908
578} 909/* away from the root */
579 910inline_speed void
580void inline_speed
581downheap (WT *heap, int N, int k) 911downheap (ANHE *heap, int N, int k)
582{ 912{
583 WT w = heap [k]; 913 ANHE he = heap [k];
914 ANHE *E = heap + N + HEAP0;
584 915
585 while (k < (N >> 1)) 916 for (;;)
586 { 917 {
587 int j = k << 1; 918 ev_tstamp minat;
919 ANHE *minpos;
920 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
588 921
589 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 922 /* find minimum child */
923 if (expect_true (pos + DHEAP - 1 < E))
590 ++j; 924 {
591 925 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
592 if (w->at <= heap [j]->at) 926 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
927 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
928 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
929 }
930 else if (pos < E)
931 {
932 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
933 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
934 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
935 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
936 }
937 else
593 break; 938 break;
594 939
940 if (ANHE_at (he) <= minat)
941 break;
942
943 heap [k] = *minpos;
944 ev_active (ANHE_w (*minpos)) = k;
945
946 k = minpos - heap;
947 }
948
949 heap [k] = he;
950 ev_active (ANHE_w (he)) = k;
951}
952
953#else /* 4HEAP */
954
955#define HEAP0 1
956#define HPARENT(k) ((k) >> 1)
957#define UPHEAP_DONE(p,k) (!(p))
958
959/* away from the root */
960inline_speed void
961downheap (ANHE *heap, int N, int k)
962{
963 ANHE he = heap [k];
964
965 for (;;)
966 {
967 int c = k << 1;
968
969 if (c > N + HEAP0 - 1)
970 break;
971
972 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
973 ? 1 : 0;
974
975 if (ANHE_at (he) <= ANHE_at (heap [c]))
976 break;
977
595 heap [k] = heap [j]; 978 heap [k] = heap [c];
596 ((W)heap [k])->active = k + 1; 979 ev_active (ANHE_w (heap [k])) = k;
980
597 k = j; 981 k = c;
598 } 982 }
599 983
600 heap [k] = w; 984 heap [k] = he;
601 ((W)heap [k])->active = k + 1; 985 ev_active (ANHE_w (he)) = k;
602} 986}
987#endif
603 988
604void inline_size 989/* towards the root */
990inline_speed void
991upheap (ANHE *heap, int k)
992{
993 ANHE he = heap [k];
994
995 for (;;)
996 {
997 int p = HPARENT (k);
998
999 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1000 break;
1001
1002 heap [k] = heap [p];
1003 ev_active (ANHE_w (heap [k])) = k;
1004 k = p;
1005 }
1006
1007 heap [k] = he;
1008 ev_active (ANHE_w (he)) = k;
1009}
1010
1011/* move an element suitably so it is in a correct place */
1012inline_size void
605adjustheap (WT *heap, int N, int k) 1013adjustheap (ANHE *heap, int N, int k)
606{ 1014{
1015 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
607 upheap (heap, k); 1016 upheap (heap, k);
1017 else
608 downheap (heap, N, k); 1018 downheap (heap, N, k);
1019}
1020
1021/* rebuild the heap: this function is used only once and executed rarely */
1022inline_size void
1023reheap (ANHE *heap, int N)
1024{
1025 int i;
1026
1027 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1028 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1029 for (i = 0; i < N; ++i)
1030 upheap (heap, i + HEAP0);
609} 1031}
610 1032
611/*****************************************************************************/ 1033/*****************************************************************************/
612 1034
1035/* associate signal watchers to a signal signal */
613typedef struct 1036typedef struct
614{ 1037{
615 WL head; 1038 WL head;
616 sig_atomic_t volatile gotsig; 1039 EV_ATOMIC_T gotsig;
617} ANSIG; 1040} ANSIG;
618 1041
619static ANSIG *signals; 1042static ANSIG *signals;
620static int signalmax; 1043static int signalmax;
621 1044
622static int sigpipe [2]; 1045static EV_ATOMIC_T gotsig;
623static sig_atomic_t volatile gotsig;
624static ev_io sigev;
625 1046
626void inline_size 1047/*****************************************************************************/
627signals_init (ANSIG *base, int count)
628{
629 while (count--)
630 {
631 base->head = 0;
632 base->gotsig = 0;
633 1048
634 ++base; 1049/* used to prepare libev internal fd's */
635 } 1050/* this is not fork-safe */
636} 1051inline_speed void
637
638static void
639sighandler (int signum)
640{
641#if _WIN32
642 signal (signum, sighandler);
643#endif
644
645 signals [signum - 1].gotsig = 1;
646
647 if (!gotsig)
648 {
649 int old_errno = errno;
650 gotsig = 1;
651 write (sigpipe [1], &signum, 1);
652 errno = old_errno;
653 }
654}
655
656void noinline
657ev_feed_signal_event (EV_P_ int signum)
658{
659 WL w;
660
661#if EV_MULTIPLICITY
662 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
663#endif
664
665 --signum;
666
667 if (signum < 0 || signum >= signalmax)
668 return;
669
670 signals [signum].gotsig = 0;
671
672 for (w = signals [signum].head; w; w = w->next)
673 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
674}
675
676static void
677sigcb (EV_P_ ev_io *iow, int revents)
678{
679 int signum;
680
681 read (sigpipe [0], &revents, 1);
682 gotsig = 0;
683
684 for (signum = signalmax; signum--; )
685 if (signals [signum].gotsig)
686 ev_feed_signal_event (EV_A_ signum + 1);
687}
688
689void inline_size
690fd_intern (int fd) 1052fd_intern (int fd)
691{ 1053{
692#ifdef _WIN32 1054#ifdef _WIN32
693 int arg = 1; 1055 unsigned long arg = 1;
694 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1056 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
695#else 1057#else
696 fcntl (fd, F_SETFD, FD_CLOEXEC); 1058 fcntl (fd, F_SETFD, FD_CLOEXEC);
697 fcntl (fd, F_SETFL, O_NONBLOCK); 1059 fcntl (fd, F_SETFL, O_NONBLOCK);
698#endif 1060#endif
699} 1061}
700 1062
701static void noinline 1063static void noinline
702siginit (EV_P) 1064evpipe_init (EV_P)
703{ 1065{
1066 if (!ev_is_active (&pipe_w))
1067 {
1068#if EV_USE_EVENTFD
1069 if ((evfd = eventfd (0, 0)) >= 0)
1070 {
1071 evpipe [0] = -1;
1072 fd_intern (evfd);
1073 ev_io_set (&pipe_w, evfd, EV_READ);
1074 }
1075 else
1076#endif
1077 {
1078 while (pipe (evpipe))
1079 ev_syserr ("(libev) error creating signal/async pipe");
1080
704 fd_intern (sigpipe [0]); 1081 fd_intern (evpipe [0]);
705 fd_intern (sigpipe [1]); 1082 fd_intern (evpipe [1]);
1083 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1084 }
706 1085
707 ev_io_set (&sigev, sigpipe [0], EV_READ);
708 ev_io_start (EV_A_ &sigev); 1086 ev_io_start (EV_A_ &pipe_w);
709 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1087 ev_unref (EV_A); /* watcher should not keep loop alive */
1088 }
1089}
1090
1091inline_size void
1092evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1093{
1094 if (!*flag)
1095 {
1096 int old_errno = errno; /* save errno because write might clobber it */
1097
1098 *flag = 1;
1099
1100#if EV_USE_EVENTFD
1101 if (evfd >= 0)
1102 {
1103 uint64_t counter = 1;
1104 write (evfd, &counter, sizeof (uint64_t));
1105 }
1106 else
1107#endif
1108 write (evpipe [1], &old_errno, 1);
1109
1110 errno = old_errno;
1111 }
1112}
1113
1114/* called whenever the libev signal pipe */
1115/* got some events (signal, async) */
1116static void
1117pipecb (EV_P_ ev_io *iow, int revents)
1118{
1119#if EV_USE_EVENTFD
1120 if (evfd >= 0)
1121 {
1122 uint64_t counter;
1123 read (evfd, &counter, sizeof (uint64_t));
1124 }
1125 else
1126#endif
1127 {
1128 char dummy;
1129 read (evpipe [0], &dummy, 1);
1130 }
1131
1132 if (gotsig && ev_is_default_loop (EV_A))
1133 {
1134 int signum;
1135 gotsig = 0;
1136
1137 for (signum = signalmax; signum--; )
1138 if (signals [signum].gotsig)
1139 ev_feed_signal_event (EV_A_ signum + 1);
1140 }
1141
1142#if EV_ASYNC_ENABLE
1143 if (gotasync)
1144 {
1145 int i;
1146 gotasync = 0;
1147
1148 for (i = asynccnt; i--; )
1149 if (asyncs [i]->sent)
1150 {
1151 asyncs [i]->sent = 0;
1152 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1153 }
1154 }
1155#endif
710} 1156}
711 1157
712/*****************************************************************************/ 1158/*****************************************************************************/
713 1159
1160static void
1161ev_sighandler (int signum)
1162{
1163#if EV_MULTIPLICITY
1164 struct ev_loop *loop = &default_loop_struct;
1165#endif
1166
1167#if _WIN32
1168 signal (signum, ev_sighandler);
1169#endif
1170
1171 signals [signum - 1].gotsig = 1;
1172 evpipe_write (EV_A_ &gotsig);
1173}
1174
1175void noinline
1176ev_feed_signal_event (EV_P_ int signum)
1177{
1178 WL w;
1179
1180#if EV_MULTIPLICITY
1181 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1182#endif
1183
1184 --signum;
1185
1186 if (signum < 0 || signum >= signalmax)
1187 return;
1188
1189 signals [signum].gotsig = 0;
1190
1191 for (w = signals [signum].head; w; w = w->next)
1192 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1193}
1194
1195/*****************************************************************************/
1196
714static ev_child *childs [PID_HASHSIZE]; 1197static WL childs [EV_PID_HASHSIZE];
715 1198
716#ifndef _WIN32 1199#ifndef _WIN32
717 1200
718static ev_signal childev; 1201static ev_signal childev;
719 1202
720void inline_speed 1203#ifndef WIFCONTINUED
1204# define WIFCONTINUED(status) 0
1205#endif
1206
1207/* handle a single child status event */
1208inline_speed void
721child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1209child_reap (EV_P_ int chain, int pid, int status)
722{ 1210{
723 ev_child *w; 1211 ev_child *w;
1212 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
724 1213
725 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1214 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1215 {
726 if (w->pid == pid || !w->pid) 1216 if ((w->pid == pid || !w->pid)
1217 && (!traced || (w->flags & 1)))
727 { 1218 {
728 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1219 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
729 w->rpid = pid; 1220 w->rpid = pid;
730 w->rstatus = status; 1221 w->rstatus = status;
731 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1222 ev_feed_event (EV_A_ (W)w, EV_CHILD);
732 } 1223 }
1224 }
733} 1225}
734 1226
735#ifndef WCONTINUED 1227#ifndef WCONTINUED
736# define WCONTINUED 0 1228# define WCONTINUED 0
737#endif 1229#endif
738 1230
1231/* called on sigchld etc., calls waitpid */
739static void 1232static void
740childcb (EV_P_ ev_signal *sw, int revents) 1233childcb (EV_P_ ev_signal *sw, int revents)
741{ 1234{
742 int pid, status; 1235 int pid, status;
743 1236
746 if (!WCONTINUED 1239 if (!WCONTINUED
747 || errno != EINVAL 1240 || errno != EINVAL
748 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1241 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
749 return; 1242 return;
750 1243
751 /* make sure we are called again until all childs have been reaped */ 1244 /* make sure we are called again until all children have been reaped */
752 /* we need to do it this way so that the callback gets called before we continue */ 1245 /* we need to do it this way so that the callback gets called before we continue */
753 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1246 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
754 1247
755 child_reap (EV_A_ sw, pid, pid, status); 1248 child_reap (EV_A_ pid, pid, status);
1249 if (EV_PID_HASHSIZE > 1)
756 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1250 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
757} 1251}
758 1252
759#endif 1253#endif
760 1254
761/*****************************************************************************/ 1255/*****************************************************************************/
823 /* kqueue is borked on everything but netbsd apparently */ 1317 /* kqueue is borked on everything but netbsd apparently */
824 /* it usually doesn't work correctly on anything but sockets and pipes */ 1318 /* it usually doesn't work correctly on anything but sockets and pipes */
825 flags &= ~EVBACKEND_KQUEUE; 1319 flags &= ~EVBACKEND_KQUEUE;
826#endif 1320#endif
827#ifdef __APPLE__ 1321#ifdef __APPLE__
828 // flags &= ~EVBACKEND_KQUEUE; for documentation 1322 /* only select works correctly on that "unix-certified" platform */
829 flags &= ~EVBACKEND_POLL; 1323 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1324 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
830#endif 1325#endif
831 1326
832 return flags; 1327 return flags;
833} 1328}
834 1329
835unsigned int 1330unsigned int
836ev_embeddable_backends (void) 1331ev_embeddable_backends (void)
837{ 1332{
838 return EVBACKEND_EPOLL 1333 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
839 | EVBACKEND_KQUEUE 1334
840 | EVBACKEND_PORT; 1335 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1336 /* please fix it and tell me how to detect the fix */
1337 flags &= ~EVBACKEND_EPOLL;
1338
1339 return flags;
841} 1340}
842 1341
843unsigned int 1342unsigned int
844ev_backend (EV_P) 1343ev_backend (EV_P)
845{ 1344{
846 return backend; 1345 return backend;
847} 1346}
848 1347
849static void 1348unsigned int
1349ev_loop_count (EV_P)
1350{
1351 return loop_count;
1352}
1353
1354void
1355ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1356{
1357 io_blocktime = interval;
1358}
1359
1360void
1361ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1362{
1363 timeout_blocktime = interval;
1364}
1365
1366/* initialise a loop structure, must be zero-initialised */
1367static void noinline
850loop_init (EV_P_ unsigned int flags) 1368loop_init (EV_P_ unsigned int flags)
851{ 1369{
852 if (!backend) 1370 if (!backend)
853 { 1371 {
1372#if EV_USE_REALTIME
1373 if (!have_realtime)
1374 {
1375 struct timespec ts;
1376
1377 if (!clock_gettime (CLOCK_REALTIME, &ts))
1378 have_realtime = 1;
1379 }
1380#endif
1381
854#if EV_USE_MONOTONIC 1382#if EV_USE_MONOTONIC
1383 if (!have_monotonic)
855 { 1384 {
856 struct timespec ts; 1385 struct timespec ts;
1386
857 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1387 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
858 have_monotonic = 1; 1388 have_monotonic = 1;
859 } 1389 }
860#endif 1390#endif
861 1391
862 ev_rt_now = ev_time (); 1392 ev_rt_now = ev_time ();
863 mn_now = get_clock (); 1393 mn_now = get_clock ();
864 now_floor = mn_now; 1394 now_floor = mn_now;
865 rtmn_diff = ev_rt_now - mn_now; 1395 rtmn_diff = ev_rt_now - mn_now;
1396
1397 io_blocktime = 0.;
1398 timeout_blocktime = 0.;
1399 backend = 0;
1400 backend_fd = -1;
1401 gotasync = 0;
1402#if EV_USE_INOTIFY
1403 fs_fd = -2;
1404#endif
1405
1406 /* pid check not overridable via env */
1407#ifndef _WIN32
1408 if (flags & EVFLAG_FORKCHECK)
1409 curpid = getpid ();
1410#endif
866 1411
867 if (!(flags & EVFLAG_NOENV) 1412 if (!(flags & EVFLAG_NOENV)
868 && !enable_secure () 1413 && !enable_secure ()
869 && getenv ("LIBEV_FLAGS")) 1414 && getenv ("LIBEV_FLAGS"))
870 flags = atoi (getenv ("LIBEV_FLAGS")); 1415 flags = atoi (getenv ("LIBEV_FLAGS"));
871 1416
872 if (!(flags & 0x0000ffffUL)) 1417 if (!(flags & 0x0000ffffU))
873 flags |= ev_recommended_backends (); 1418 flags |= ev_recommended_backends ();
874 1419
875 backend = 0;
876#if EV_USE_PORT 1420#if EV_USE_PORT
877 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1421 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
878#endif 1422#endif
879#if EV_USE_KQUEUE 1423#if EV_USE_KQUEUE
880 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1424 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
887#endif 1431#endif
888#if EV_USE_SELECT 1432#if EV_USE_SELECT
889 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1433 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
890#endif 1434#endif
891 1435
1436 ev_prepare_init (&pending_w, pendingcb);
1437
892 ev_init (&sigev, sigcb); 1438 ev_init (&pipe_w, pipecb);
893 ev_set_priority (&sigev, EV_MAXPRI); 1439 ev_set_priority (&pipe_w, EV_MAXPRI);
894 } 1440 }
895} 1441}
896 1442
897static void 1443/* free up a loop structure */
1444static void noinline
898loop_destroy (EV_P) 1445loop_destroy (EV_P)
899{ 1446{
900 int i; 1447 int i;
1448
1449 if (ev_is_active (&pipe_w))
1450 {
1451 ev_ref (EV_A); /* signal watcher */
1452 ev_io_stop (EV_A_ &pipe_w);
1453
1454#if EV_USE_EVENTFD
1455 if (evfd >= 0)
1456 close (evfd);
1457#endif
1458
1459 if (evpipe [0] >= 0)
1460 {
1461 close (evpipe [0]);
1462 close (evpipe [1]);
1463 }
1464 }
1465
1466#if EV_USE_INOTIFY
1467 if (fs_fd >= 0)
1468 close (fs_fd);
1469#endif
1470
1471 if (backend_fd >= 0)
1472 close (backend_fd);
901 1473
902#if EV_USE_PORT 1474#if EV_USE_PORT
903 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1475 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
904#endif 1476#endif
905#if EV_USE_KQUEUE 1477#if EV_USE_KQUEUE
914#if EV_USE_SELECT 1486#if EV_USE_SELECT
915 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1487 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
916#endif 1488#endif
917 1489
918 for (i = NUMPRI; i--; ) 1490 for (i = NUMPRI; i--; )
1491 {
919 array_free (pending, [i]); 1492 array_free (pending, [i]);
1493#if EV_IDLE_ENABLE
1494 array_free (idle, [i]);
1495#endif
1496 }
1497
1498 ev_free (anfds); anfdmax = 0;
920 1499
921 /* have to use the microsoft-never-gets-it-right macro */ 1500 /* have to use the microsoft-never-gets-it-right macro */
1501 array_free (rfeed, EMPTY);
922 array_free (fdchange, EMPTY0); 1502 array_free (fdchange, EMPTY);
923 array_free (timer, EMPTY0); 1503 array_free (timer, EMPTY);
924#if EV_PERIODIC_ENABLE 1504#if EV_PERIODIC_ENABLE
925 array_free (periodic, EMPTY0); 1505 array_free (periodic, EMPTY);
926#endif 1506#endif
1507#if EV_FORK_ENABLE
927 array_free (idle, EMPTY0); 1508 array_free (fork, EMPTY);
1509#endif
928 array_free (prepare, EMPTY0); 1510 array_free (prepare, EMPTY);
929 array_free (check, EMPTY0); 1511 array_free (check, EMPTY);
1512#if EV_ASYNC_ENABLE
1513 array_free (async, EMPTY);
1514#endif
930 1515
931 backend = 0; 1516 backend = 0;
932} 1517}
933 1518
934static void 1519#if EV_USE_INOTIFY
1520inline_size void infy_fork (EV_P);
1521#endif
1522
1523inline_size void
935loop_fork (EV_P) 1524loop_fork (EV_P)
936{ 1525{
937#if EV_USE_PORT 1526#if EV_USE_PORT
938 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1527 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
939#endif 1528#endif
941 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1530 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
942#endif 1531#endif
943#if EV_USE_EPOLL 1532#if EV_USE_EPOLL
944 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1533 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
945#endif 1534#endif
1535#if EV_USE_INOTIFY
1536 infy_fork (EV_A);
1537#endif
946 1538
947 if (ev_is_active (&sigev)) 1539 if (ev_is_active (&pipe_w))
948 { 1540 {
949 /* default loop */ 1541 /* this "locks" the handlers against writing to the pipe */
1542 /* while we modify the fd vars */
1543 gotsig = 1;
1544#if EV_ASYNC_ENABLE
1545 gotasync = 1;
1546#endif
950 1547
951 ev_ref (EV_A); 1548 ev_ref (EV_A);
952 ev_io_stop (EV_A_ &sigev); 1549 ev_io_stop (EV_A_ &pipe_w);
1550
1551#if EV_USE_EVENTFD
1552 if (evfd >= 0)
1553 close (evfd);
1554#endif
1555
1556 if (evpipe [0] >= 0)
1557 {
953 close (sigpipe [0]); 1558 close (evpipe [0]);
954 close (sigpipe [1]); 1559 close (evpipe [1]);
1560 }
955 1561
956 while (pipe (sigpipe))
957 syserr ("(libev) error creating pipe");
958
959 siginit (EV_A); 1562 evpipe_init (EV_A);
1563 /* now iterate over everything, in case we missed something */
1564 pipecb (EV_A_ &pipe_w, EV_READ);
960 } 1565 }
961 1566
962 postfork = 0; 1567 postfork = 0;
963} 1568}
964 1569
965#if EV_MULTIPLICITY 1570#if EV_MULTIPLICITY
1571
966struct ev_loop * 1572struct ev_loop *
967ev_loop_new (unsigned int flags) 1573ev_loop_new (unsigned int flags)
968{ 1574{
969 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1575 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
970 1576
986} 1592}
987 1593
988void 1594void
989ev_loop_fork (EV_P) 1595ev_loop_fork (EV_P)
990{ 1596{
991 postfork = 1; 1597 postfork = 1; /* must be in line with ev_default_fork */
992} 1598}
993 1599
1600#if EV_VERIFY
1601static void noinline
1602verify_watcher (EV_P_ W w)
1603{
1604 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1605
1606 if (w->pending)
1607 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1608}
1609
1610static void noinline
1611verify_heap (EV_P_ ANHE *heap, int N)
1612{
1613 int i;
1614
1615 for (i = HEAP0; i < N + HEAP0; ++i)
1616 {
1617 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1618 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1619 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1620
1621 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1622 }
1623}
1624
1625static void noinline
1626array_verify (EV_P_ W *ws, int cnt)
1627{
1628 while (cnt--)
1629 {
1630 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1631 verify_watcher (EV_A_ ws [cnt]);
1632 }
1633}
1634#endif
1635
1636void
1637ev_loop_verify (EV_P)
1638{
1639#if EV_VERIFY
1640 int i;
1641 WL w;
1642
1643 assert (activecnt >= -1);
1644
1645 assert (fdchangemax >= fdchangecnt);
1646 for (i = 0; i < fdchangecnt; ++i)
1647 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1648
1649 assert (anfdmax >= 0);
1650 for (i = 0; i < anfdmax; ++i)
1651 for (w = anfds [i].head; w; w = w->next)
1652 {
1653 verify_watcher (EV_A_ (W)w);
1654 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1655 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1656 }
1657
1658 assert (timermax >= timercnt);
1659 verify_heap (EV_A_ timers, timercnt);
1660
1661#if EV_PERIODIC_ENABLE
1662 assert (periodicmax >= periodiccnt);
1663 verify_heap (EV_A_ periodics, periodiccnt);
1664#endif
1665
1666 for (i = NUMPRI; i--; )
1667 {
1668 assert (pendingmax [i] >= pendingcnt [i]);
1669#if EV_IDLE_ENABLE
1670 assert (idleall >= 0);
1671 assert (idlemax [i] >= idlecnt [i]);
1672 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1673#endif
1674 }
1675
1676#if EV_FORK_ENABLE
1677 assert (forkmax >= forkcnt);
1678 array_verify (EV_A_ (W *)forks, forkcnt);
1679#endif
1680
1681#if EV_ASYNC_ENABLE
1682 assert (asyncmax >= asynccnt);
1683 array_verify (EV_A_ (W *)asyncs, asynccnt);
1684#endif
1685
1686 assert (preparemax >= preparecnt);
1687 array_verify (EV_A_ (W *)prepares, preparecnt);
1688
1689 assert (checkmax >= checkcnt);
1690 array_verify (EV_A_ (W *)checks, checkcnt);
1691
1692# if 0
1693 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1694 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
994#endif 1695# endif
1696#endif
1697}
1698
1699#endif /* multiplicity */
995 1700
996#if EV_MULTIPLICITY 1701#if EV_MULTIPLICITY
997struct ev_loop * 1702struct ev_loop *
998ev_default_loop_init (unsigned int flags) 1703ev_default_loop_init (unsigned int flags)
999#else 1704#else
1000int 1705int
1001ev_default_loop (unsigned int flags) 1706ev_default_loop (unsigned int flags)
1002#endif 1707#endif
1003{ 1708{
1004 if (sigpipe [0] == sigpipe [1])
1005 if (pipe (sigpipe))
1006 return 0;
1007
1008 if (!ev_default_loop_ptr) 1709 if (!ev_default_loop_ptr)
1009 { 1710 {
1010#if EV_MULTIPLICITY 1711#if EV_MULTIPLICITY
1011 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1712 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1012#else 1713#else
1015 1716
1016 loop_init (EV_A_ flags); 1717 loop_init (EV_A_ flags);
1017 1718
1018 if (ev_backend (EV_A)) 1719 if (ev_backend (EV_A))
1019 { 1720 {
1020 siginit (EV_A);
1021
1022#ifndef _WIN32 1721#ifndef _WIN32
1023 ev_signal_init (&childev, childcb, SIGCHLD); 1722 ev_signal_init (&childev, childcb, SIGCHLD);
1024 ev_set_priority (&childev, EV_MAXPRI); 1723 ev_set_priority (&childev, EV_MAXPRI);
1025 ev_signal_start (EV_A_ &childev); 1724 ev_signal_start (EV_A_ &childev);
1026 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1725 ev_unref (EV_A); /* child watcher should not keep loop alive */
1038{ 1737{
1039#if EV_MULTIPLICITY 1738#if EV_MULTIPLICITY
1040 struct ev_loop *loop = ev_default_loop_ptr; 1739 struct ev_loop *loop = ev_default_loop_ptr;
1041#endif 1740#endif
1042 1741
1742 ev_default_loop_ptr = 0;
1743
1043#ifndef _WIN32 1744#ifndef _WIN32
1044 ev_ref (EV_A); /* child watcher */ 1745 ev_ref (EV_A); /* child watcher */
1045 ev_signal_stop (EV_A_ &childev); 1746 ev_signal_stop (EV_A_ &childev);
1046#endif 1747#endif
1047 1748
1048 ev_ref (EV_A); /* signal watcher */
1049 ev_io_stop (EV_A_ &sigev);
1050
1051 close (sigpipe [0]); sigpipe [0] = 0;
1052 close (sigpipe [1]); sigpipe [1] = 0;
1053
1054 loop_destroy (EV_A); 1749 loop_destroy (EV_A);
1055} 1750}
1056 1751
1057void 1752void
1058ev_default_fork (void) 1753ev_default_fork (void)
1059{ 1754{
1060#if EV_MULTIPLICITY 1755#if EV_MULTIPLICITY
1061 struct ev_loop *loop = ev_default_loop_ptr; 1756 struct ev_loop *loop = ev_default_loop_ptr;
1062#endif 1757#endif
1063 1758
1064 if (backend) 1759 postfork = 1; /* must be in line with ev_loop_fork */
1065 postfork = 1;
1066} 1760}
1067 1761
1068/*****************************************************************************/ 1762/*****************************************************************************/
1069 1763
1070int inline_size 1764void
1071any_pending (EV_P) 1765ev_invoke (EV_P_ void *w, int revents)
1072{ 1766{
1073 int pri; 1767 EV_CB_INVOKE ((W)w, revents);
1074
1075 for (pri = NUMPRI; pri--; )
1076 if (pendingcnt [pri])
1077 return 1;
1078
1079 return 0;
1080} 1768}
1081 1769
1082void inline_speed 1770inline_speed void
1083call_pending (EV_P) 1771call_pending (EV_P)
1084{ 1772{
1085 int pri; 1773 int pri;
1086 1774
1087 for (pri = NUMPRI; pri--; ) 1775 for (pri = NUMPRI; pri--; )
1088 while (pendingcnt [pri]) 1776 while (pendingcnt [pri])
1089 { 1777 {
1090 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1778 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1091 1779
1092 if (expect_true (p->w))
1093 {
1094 assert (("non-pending watcher on pending list", p->w->pending)); 1780 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1781 /* ^ this is no longer true, as pending_w could be here */
1095 1782
1096 p->w->pending = 0; 1783 p->w->pending = 0;
1097 EV_CB_INVOKE (p->w, p->events); 1784 EV_CB_INVOKE (p->w, p->events);
1098 } 1785 EV_FREQUENT_CHECK;
1099 } 1786 }
1100} 1787}
1101 1788
1102void inline_size 1789#if EV_IDLE_ENABLE
1790/* make idle watchers pending. this handles the "call-idle */
1791/* only when higher priorities are idle" logic */
1792inline_size void
1793idle_reify (EV_P)
1794{
1795 if (expect_false (idleall))
1796 {
1797 int pri;
1798
1799 for (pri = NUMPRI; pri--; )
1800 {
1801 if (pendingcnt [pri])
1802 break;
1803
1804 if (idlecnt [pri])
1805 {
1806 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1807 break;
1808 }
1809 }
1810 }
1811}
1812#endif
1813
1814/* make timers pending */
1815inline_size void
1103timers_reify (EV_P) 1816timers_reify (EV_P)
1104{ 1817{
1818 EV_FREQUENT_CHECK;
1819
1105 while (timercnt && ((WT)timers [0])->at <= mn_now) 1820 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1106 { 1821 {
1107 ev_timer *w = timers [0]; 1822 do
1108
1109 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1110
1111 /* first reschedule or stop timer */
1112 if (w->repeat)
1113 { 1823 {
1824 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1825
1826 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1827
1828 /* first reschedule or stop timer */
1829 if (w->repeat)
1830 {
1831 ev_at (w) += w->repeat;
1832 if (ev_at (w) < mn_now)
1833 ev_at (w) = mn_now;
1834
1114 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1835 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1115 1836
1116 ((WT)w)->at += w->repeat; 1837 ANHE_at_cache (timers [HEAP0]);
1117 if (((WT)w)->at < mn_now)
1118 ((WT)w)->at = mn_now;
1119
1120 downheap ((WT *)timers, timercnt, 0); 1838 downheap (timers, timercnt, HEAP0);
1839 }
1840 else
1841 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1842
1843 EV_FREQUENT_CHECK;
1844 feed_reverse (EV_A_ (W)w);
1121 } 1845 }
1122 else 1846 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1123 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1124 1847
1125 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1848 feed_reverse_done (EV_A_ EV_TIMEOUT);
1126 } 1849 }
1127} 1850}
1128 1851
1129#if EV_PERIODIC_ENABLE 1852#if EV_PERIODIC_ENABLE
1130void inline_size 1853/* make periodics pending */
1854inline_size void
1131periodics_reify (EV_P) 1855periodics_reify (EV_P)
1132{ 1856{
1857 EV_FREQUENT_CHECK;
1858
1133 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1859 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1134 { 1860 {
1135 ev_periodic *w = periodics [0]; 1861 int feed_count = 0;
1136 1862
1137 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1863 do
1138
1139 /* first reschedule or stop timer */
1140 if (w->reschedule_cb)
1141 { 1864 {
1865 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1866
1867 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1868
1869 /* first reschedule or stop timer */
1870 if (w->reschedule_cb)
1871 {
1142 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1872 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1873
1143 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1874 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1875
1876 ANHE_at_cache (periodics [HEAP0]);
1144 downheap ((WT *)periodics, periodiccnt, 0); 1877 downheap (periodics, periodiccnt, HEAP0);
1878 }
1879 else if (w->interval)
1880 {
1881 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1882 /* if next trigger time is not sufficiently in the future, put it there */
1883 /* this might happen because of floating point inexactness */
1884 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1885 {
1886 ev_at (w) += w->interval;
1887
1888 /* if interval is unreasonably low we might still have a time in the past */
1889 /* so correct this. this will make the periodic very inexact, but the user */
1890 /* has effectively asked to get triggered more often than possible */
1891 if (ev_at (w) < ev_rt_now)
1892 ev_at (w) = ev_rt_now;
1893 }
1894
1895 ANHE_at_cache (periodics [HEAP0]);
1896 downheap (periodics, periodiccnt, HEAP0);
1897 }
1898 else
1899 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1900
1901 EV_FREQUENT_CHECK;
1902 feed_reverse (EV_A_ (W)w);
1145 } 1903 }
1146 else if (w->interval) 1904 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1147 {
1148 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1149 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1150 downheap ((WT *)periodics, periodiccnt, 0);
1151 }
1152 else
1153 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1154 1905
1155 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1906 feed_reverse_done (EV_A_ EV_PERIODIC);
1156 } 1907 }
1157} 1908}
1158 1909
1910/* simply recalculate all periodics */
1911/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1159static void noinline 1912static void noinline
1160periodics_reschedule (EV_P) 1913periodics_reschedule (EV_P)
1161{ 1914{
1162 int i; 1915 int i;
1163 1916
1164 /* adjust periodics after time jump */ 1917 /* adjust periodics after time jump */
1165 for (i = 0; i < periodiccnt; ++i) 1918 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1166 { 1919 {
1167 ev_periodic *w = periodics [i]; 1920 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1168 1921
1169 if (w->reschedule_cb) 1922 if (w->reschedule_cb)
1170 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1923 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1171 else if (w->interval) 1924 else if (w->interval)
1172 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1925 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1926
1927 ANHE_at_cache (periodics [i]);
1928 }
1929
1930 reheap (periodics, periodiccnt);
1931}
1932#endif
1933
1934/* adjust all timers by a given offset */
1935static void noinline
1936timers_reschedule (EV_P_ ev_tstamp adjust)
1937{
1938 int i;
1939
1940 for (i = 0; i < timercnt; ++i)
1173 } 1941 {
1174 1942 ANHE *he = timers + i + HEAP0;
1175 /* now rebuild the heap */ 1943 ANHE_w (*he)->at += adjust;
1176 for (i = periodiccnt >> 1; i--; ) 1944 ANHE_at_cache (*he);
1177 downheap ((WT *)periodics, periodiccnt, i); 1945 }
1178} 1946}
1179#endif
1180 1947
1181int inline_size 1948/* fetch new monotonic and realtime times from the kernel */
1182time_update_monotonic (EV_P) 1949/* also detetc if there was a timejump, and act accordingly */
1950inline_speed void
1951time_update (EV_P_ ev_tstamp max_block)
1183{ 1952{
1953#if EV_USE_MONOTONIC
1954 if (expect_true (have_monotonic))
1955 {
1956 int i;
1957 ev_tstamp odiff = rtmn_diff;
1958
1184 mn_now = get_clock (); 1959 mn_now = get_clock ();
1185 1960
1961 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1962 /* interpolate in the meantime */
1186 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1963 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1187 { 1964 {
1188 ev_rt_now = rtmn_diff + mn_now; 1965 ev_rt_now = rtmn_diff + mn_now;
1189 return 0; 1966 return;
1190 } 1967 }
1191 else 1968
1192 {
1193 now_floor = mn_now; 1969 now_floor = mn_now;
1194 ev_rt_now = ev_time (); 1970 ev_rt_now = ev_time ();
1195 return 1;
1196 }
1197}
1198 1971
1199void inline_size 1972 /* loop a few times, before making important decisions.
1200time_update (EV_P) 1973 * on the choice of "4": one iteration isn't enough,
1201{ 1974 * in case we get preempted during the calls to
1202 int i; 1975 * ev_time and get_clock. a second call is almost guaranteed
1203 1976 * to succeed in that case, though. and looping a few more times
1204#if EV_USE_MONOTONIC 1977 * doesn't hurt either as we only do this on time-jumps or
1205 if (expect_true (have_monotonic)) 1978 * in the unlikely event of having been preempted here.
1206 { 1979 */
1207 if (time_update_monotonic (EV_A)) 1980 for (i = 4; --i; )
1208 { 1981 {
1209 ev_tstamp odiff = rtmn_diff;
1210
1211 /* loop a few times, before making important decisions.
1212 * on the choice of "4": one iteration isn't enough,
1213 * in case we get preempted during the calls to
1214 * ev_time and get_clock. a second call is almost guarenteed
1215 * to succeed in that case, though. and looping a few more times
1216 * doesn't hurt either as we only do this on time-jumps or
1217 * in the unlikely event of getting preempted here.
1218 */
1219 for (i = 4; --i; )
1220 {
1221 rtmn_diff = ev_rt_now - mn_now; 1982 rtmn_diff = ev_rt_now - mn_now;
1222 1983
1223 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1984 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1224 return; /* all is well */ 1985 return; /* all is well */
1225 1986
1226 ev_rt_now = ev_time (); 1987 ev_rt_now = ev_time ();
1227 mn_now = get_clock (); 1988 mn_now = get_clock ();
1228 now_floor = mn_now; 1989 now_floor = mn_now;
1229 } 1990 }
1230 1991
1992 /* no timer adjustment, as the monotonic clock doesn't jump */
1993 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1231# if EV_PERIODIC_ENABLE 1994# if EV_PERIODIC_ENABLE
1232 periodics_reschedule (EV_A); 1995 periodics_reschedule (EV_A);
1233# endif 1996# endif
1234 /* no timer adjustment, as the monotonic clock doesn't jump */
1235 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1236 }
1237 } 1997 }
1238 else 1998 else
1239#endif 1999#endif
1240 { 2000 {
1241 ev_rt_now = ev_time (); 2001 ev_rt_now = ev_time ();
1242 2002
1243 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2003 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1244 { 2004 {
2005 /* adjust timers. this is easy, as the offset is the same for all of them */
2006 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1245#if EV_PERIODIC_ENABLE 2007#if EV_PERIODIC_ENABLE
1246 periodics_reschedule (EV_A); 2008 periodics_reschedule (EV_A);
1247#endif 2009#endif
1248
1249 /* adjust timers. this is easy, as the offset is the same for all */
1250 for (i = 0; i < timercnt; ++i)
1251 ((WT)timers [i])->at += ev_rt_now - mn_now;
1252 } 2010 }
1253 2011
1254 mn_now = ev_rt_now; 2012 mn_now = ev_rt_now;
1255 } 2013 }
1256} 2014}
1257 2015
1258void
1259ev_ref (EV_P)
1260{
1261 ++activecnt;
1262}
1263
1264void
1265ev_unref (EV_P)
1266{
1267 --activecnt;
1268}
1269
1270static int loop_done; 2016static int loop_done;
1271 2017
1272void 2018void
1273ev_loop (EV_P_ int flags) 2019ev_loop (EV_P_ int flags)
1274{ 2020{
1275 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2021 loop_done = EVUNLOOP_CANCEL;
1276 ? EVUNLOOP_ONE
1277 : EVUNLOOP_CANCEL;
1278 2022
1279 while (activecnt) 2023 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
2024
2025 do
1280 { 2026 {
2027#if EV_VERIFY >= 2
2028 ev_loop_verify (EV_A);
2029#endif
2030
2031#ifndef _WIN32
2032 if (expect_false (curpid)) /* penalise the forking check even more */
2033 if (expect_false (getpid () != curpid))
2034 {
2035 curpid = getpid ();
2036 postfork = 1;
2037 }
2038#endif
2039
2040#if EV_FORK_ENABLE
2041 /* we might have forked, so queue fork handlers */
2042 if (expect_false (postfork))
2043 if (forkcnt)
2044 {
2045 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2046 call_pending (EV_A);
2047 }
2048#endif
2049
1281 /* queue check watchers (and execute them) */ 2050 /* queue prepare watchers (and execute them) */
1282 if (expect_false (preparecnt)) 2051 if (expect_false (preparecnt))
1283 { 2052 {
1284 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2053 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1285 call_pending (EV_A); 2054 call_pending (EV_A);
1286 } 2055 }
1292 /* update fd-related kernel structures */ 2061 /* update fd-related kernel structures */
1293 fd_reify (EV_A); 2062 fd_reify (EV_A);
1294 2063
1295 /* calculate blocking time */ 2064 /* calculate blocking time */
1296 { 2065 {
1297 double block; 2066 ev_tstamp waittime = 0.;
2067 ev_tstamp sleeptime = 0.;
1298 2068
1299 if (flags & EVLOOP_NONBLOCK || idlecnt) 2069 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1300 block = 0.; /* do not block at all */
1301 else
1302 { 2070 {
1303 /* update time to cancel out callback processing overhead */ 2071 /* update time to cancel out callback processing overhead */
1304#if EV_USE_MONOTONIC
1305 if (expect_true (have_monotonic))
1306 time_update_monotonic (EV_A); 2072 time_update (EV_A_ 1e100);
1307 else
1308#endif
1309 {
1310 ev_rt_now = ev_time ();
1311 mn_now = ev_rt_now;
1312 }
1313 2073
1314 block = MAX_BLOCKTIME; 2074 waittime = MAX_BLOCKTIME;
1315 2075
1316 if (timercnt) 2076 if (timercnt)
1317 { 2077 {
1318 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2078 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1319 if (block > to) block = to; 2079 if (waittime > to) waittime = to;
1320 } 2080 }
1321 2081
1322#if EV_PERIODIC_ENABLE 2082#if EV_PERIODIC_ENABLE
1323 if (periodiccnt) 2083 if (periodiccnt)
1324 { 2084 {
1325 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2085 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1326 if (block > to) block = to; 2086 if (waittime > to) waittime = to;
1327 } 2087 }
1328#endif 2088#endif
1329 2089
1330 if (expect_false (block < 0.)) block = 0.; 2090 if (expect_false (waittime < timeout_blocktime))
2091 waittime = timeout_blocktime;
2092
2093 sleeptime = waittime - backend_fudge;
2094
2095 if (expect_true (sleeptime > io_blocktime))
2096 sleeptime = io_blocktime;
2097
2098 if (sleeptime)
2099 {
2100 ev_sleep (sleeptime);
2101 waittime -= sleeptime;
2102 }
1331 } 2103 }
1332 2104
2105 ++loop_count;
1333 backend_poll (EV_A_ block); 2106 backend_poll (EV_A_ waittime);
2107
2108 /* update ev_rt_now, do magic */
2109 time_update (EV_A_ waittime + sleeptime);
1334 } 2110 }
1335
1336 /* update ev_rt_now, do magic */
1337 time_update (EV_A);
1338 2111
1339 /* queue pending timers and reschedule them */ 2112 /* queue pending timers and reschedule them */
1340 timers_reify (EV_A); /* relative timers called last */ 2113 timers_reify (EV_A); /* relative timers called last */
1341#if EV_PERIODIC_ENABLE 2114#if EV_PERIODIC_ENABLE
1342 periodics_reify (EV_A); /* absolute timers called first */ 2115 periodics_reify (EV_A); /* absolute timers called first */
1343#endif 2116#endif
1344 2117
2118#if EV_IDLE_ENABLE
1345 /* queue idle watchers unless other events are pending */ 2119 /* queue idle watchers unless other events are pending */
1346 if (idlecnt && !any_pending (EV_A)) 2120 idle_reify (EV_A);
1347 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2121#endif
1348 2122
1349 /* queue check watchers, to be executed first */ 2123 /* queue check watchers, to be executed first */
1350 if (expect_false (checkcnt)) 2124 if (expect_false (checkcnt))
1351 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2125 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1352 2126
1353 call_pending (EV_A); 2127 call_pending (EV_A);
1354
1355 if (expect_false (loop_done))
1356 break;
1357 } 2128 }
2129 while (expect_true (
2130 activecnt
2131 && !loop_done
2132 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2133 ));
1358 2134
1359 if (loop_done == EVUNLOOP_ONE) 2135 if (loop_done == EVUNLOOP_ONE)
1360 loop_done = EVUNLOOP_CANCEL; 2136 loop_done = EVUNLOOP_CANCEL;
1361} 2137}
1362 2138
1364ev_unloop (EV_P_ int how) 2140ev_unloop (EV_P_ int how)
1365{ 2141{
1366 loop_done = how; 2142 loop_done = how;
1367} 2143}
1368 2144
2145void
2146ev_ref (EV_P)
2147{
2148 ++activecnt;
2149}
2150
2151void
2152ev_unref (EV_P)
2153{
2154 --activecnt;
2155}
2156
2157void
2158ev_now_update (EV_P)
2159{
2160 time_update (EV_A_ 1e100);
2161}
2162
2163void
2164ev_suspend (EV_P)
2165{
2166 ev_now_update (EV_A);
2167}
2168
2169void
2170ev_resume (EV_P)
2171{
2172 ev_tstamp mn_prev = mn_now;
2173
2174 ev_now_update (EV_A);
2175 timers_reschedule (EV_A_ mn_now - mn_prev);
2176#if EV_PERIODIC_ENABLE
2177 /* TODO: really do this? */
2178 periodics_reschedule (EV_A);
2179#endif
2180}
2181
1369/*****************************************************************************/ 2182/*****************************************************************************/
2183/* singly-linked list management, used when the expected list length is short */
1370 2184
1371void inline_size 2185inline_size void
1372wlist_add (WL *head, WL elem) 2186wlist_add (WL *head, WL elem)
1373{ 2187{
1374 elem->next = *head; 2188 elem->next = *head;
1375 *head = elem; 2189 *head = elem;
1376} 2190}
1377 2191
1378void inline_size 2192inline_size void
1379wlist_del (WL *head, WL elem) 2193wlist_del (WL *head, WL elem)
1380{ 2194{
1381 while (*head) 2195 while (*head)
1382 { 2196 {
1383 if (*head == elem) 2197 if (*head == elem)
1388 2202
1389 head = &(*head)->next; 2203 head = &(*head)->next;
1390 } 2204 }
1391} 2205}
1392 2206
1393void inline_speed 2207/* internal, faster, version of ev_clear_pending */
2208inline_speed void
1394ev_clear_pending (EV_P_ W w) 2209clear_pending (EV_P_ W w)
1395{ 2210{
1396 if (w->pending) 2211 if (w->pending)
1397 { 2212 {
1398 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2213 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1399 w->pending = 0; 2214 w->pending = 0;
1400 } 2215 }
1401} 2216}
1402 2217
1403void inline_speed 2218int
2219ev_clear_pending (EV_P_ void *w)
2220{
2221 W w_ = (W)w;
2222 int pending = w_->pending;
2223
2224 if (expect_true (pending))
2225 {
2226 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2227 p->w = (W)&pending_w;
2228 w_->pending = 0;
2229 return p->events;
2230 }
2231 else
2232 return 0;
2233}
2234
2235inline_size void
2236pri_adjust (EV_P_ W w)
2237{
2238 int pri = w->priority;
2239 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2240 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2241 w->priority = pri;
2242}
2243
2244inline_speed void
1404ev_start (EV_P_ W w, int active) 2245ev_start (EV_P_ W w, int active)
1405{ 2246{
1406 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2247 pri_adjust (EV_A_ w);
1407 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1408
1409 w->active = active; 2248 w->active = active;
1410 ev_ref (EV_A); 2249 ev_ref (EV_A);
1411} 2250}
1412 2251
1413void inline_size 2252inline_size void
1414ev_stop (EV_P_ W w) 2253ev_stop (EV_P_ W w)
1415{ 2254{
1416 ev_unref (EV_A); 2255 ev_unref (EV_A);
1417 w->active = 0; 2256 w->active = 0;
1418} 2257}
1419 2258
1420/*****************************************************************************/ 2259/*****************************************************************************/
1421 2260
1422void 2261void noinline
1423ev_io_start (EV_P_ ev_io *w) 2262ev_io_start (EV_P_ ev_io *w)
1424{ 2263{
1425 int fd = w->fd; 2264 int fd = w->fd;
1426 2265
1427 if (expect_false (ev_is_active (w))) 2266 if (expect_false (ev_is_active (w)))
1428 return; 2267 return;
1429 2268
1430 assert (("ev_io_start called with negative fd", fd >= 0)); 2269 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2270 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2271
2272 EV_FREQUENT_CHECK;
1431 2273
1432 ev_start (EV_A_ (W)w, 1); 2274 ev_start (EV_A_ (W)w, 1);
1433 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2275 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1434 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2276 wlist_add (&anfds[fd].head, (WL)w);
1435 2277
1436 fd_change (EV_A_ fd); 2278 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1437} 2279 w->events &= ~EV__IOFDSET;
1438 2280
1439void 2281 EV_FREQUENT_CHECK;
2282}
2283
2284void noinline
1440ev_io_stop (EV_P_ ev_io *w) 2285ev_io_stop (EV_P_ ev_io *w)
1441{ 2286{
1442 ev_clear_pending (EV_A_ (W)w); 2287 clear_pending (EV_A_ (W)w);
1443 if (expect_false (!ev_is_active (w))) 2288 if (expect_false (!ev_is_active (w)))
1444 return; 2289 return;
1445 2290
1446 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2291 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1447 2292
2293 EV_FREQUENT_CHECK;
2294
1448 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2295 wlist_del (&anfds[w->fd].head, (WL)w);
1449 ev_stop (EV_A_ (W)w); 2296 ev_stop (EV_A_ (W)w);
1450 2297
1451 fd_change (EV_A_ w->fd); 2298 fd_change (EV_A_ w->fd, 1);
1452}
1453 2299
1454void 2300 EV_FREQUENT_CHECK;
2301}
2302
2303void noinline
1455ev_timer_start (EV_P_ ev_timer *w) 2304ev_timer_start (EV_P_ ev_timer *w)
1456{ 2305{
1457 if (expect_false (ev_is_active (w))) 2306 if (expect_false (ev_is_active (w)))
1458 return; 2307 return;
1459 2308
1460 ((WT)w)->at += mn_now; 2309 ev_at (w) += mn_now;
1461 2310
1462 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2311 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1463 2312
2313 EV_FREQUENT_CHECK;
2314
2315 ++timercnt;
1464 ev_start (EV_A_ (W)w, ++timercnt); 2316 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1465 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2317 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1466 timers [timercnt - 1] = w; 2318 ANHE_w (timers [ev_active (w)]) = (WT)w;
1467 upheap ((WT *)timers, timercnt - 1); 2319 ANHE_at_cache (timers [ev_active (w)]);
2320 upheap (timers, ev_active (w));
1468 2321
2322 EV_FREQUENT_CHECK;
2323
1469 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2324 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1470} 2325}
1471 2326
1472void 2327void noinline
1473ev_timer_stop (EV_P_ ev_timer *w) 2328ev_timer_stop (EV_P_ ev_timer *w)
1474{ 2329{
1475 ev_clear_pending (EV_A_ (W)w); 2330 clear_pending (EV_A_ (W)w);
1476 if (expect_false (!ev_is_active (w))) 2331 if (expect_false (!ev_is_active (w)))
1477 return; 2332 return;
1478 2333
2334 EV_FREQUENT_CHECK;
2335
2336 {
2337 int active = ev_active (w);
2338
1479 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2339 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1480 2340
2341 --timercnt;
2342
1481 if (expect_true (((W)w)->active < timercnt--)) 2343 if (expect_true (active < timercnt + HEAP0))
1482 { 2344 {
1483 timers [((W)w)->active - 1] = timers [timercnt]; 2345 timers [active] = timers [timercnt + HEAP0];
1484 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2346 adjustheap (timers, timercnt, active);
1485 } 2347 }
2348 }
1486 2349
1487 ((WT)w)->at -= mn_now; 2350 EV_FREQUENT_CHECK;
2351
2352 ev_at (w) -= mn_now;
1488 2353
1489 ev_stop (EV_A_ (W)w); 2354 ev_stop (EV_A_ (W)w);
1490} 2355}
1491 2356
1492void 2357void noinline
1493ev_timer_again (EV_P_ ev_timer *w) 2358ev_timer_again (EV_P_ ev_timer *w)
1494{ 2359{
2360 EV_FREQUENT_CHECK;
2361
1495 if (ev_is_active (w)) 2362 if (ev_is_active (w))
1496 { 2363 {
1497 if (w->repeat) 2364 if (w->repeat)
1498 { 2365 {
1499 ((WT)w)->at = mn_now + w->repeat; 2366 ev_at (w) = mn_now + w->repeat;
2367 ANHE_at_cache (timers [ev_active (w)]);
1500 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2368 adjustheap (timers, timercnt, ev_active (w));
1501 } 2369 }
1502 else 2370 else
1503 ev_timer_stop (EV_A_ w); 2371 ev_timer_stop (EV_A_ w);
1504 } 2372 }
1505 else if (w->repeat) 2373 else if (w->repeat)
1506 { 2374 {
1507 w->at = w->repeat; 2375 ev_at (w) = w->repeat;
1508 ev_timer_start (EV_A_ w); 2376 ev_timer_start (EV_A_ w);
1509 } 2377 }
2378
2379 EV_FREQUENT_CHECK;
1510} 2380}
1511 2381
1512#if EV_PERIODIC_ENABLE 2382#if EV_PERIODIC_ENABLE
1513void 2383void noinline
1514ev_periodic_start (EV_P_ ev_periodic *w) 2384ev_periodic_start (EV_P_ ev_periodic *w)
1515{ 2385{
1516 if (expect_false (ev_is_active (w))) 2386 if (expect_false (ev_is_active (w)))
1517 return; 2387 return;
1518 2388
1519 if (w->reschedule_cb) 2389 if (w->reschedule_cb)
1520 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2390 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1521 else if (w->interval) 2391 else if (w->interval)
1522 { 2392 {
1523 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2393 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1524 /* this formula differs from the one in periodic_reify because we do not always round up */ 2394 /* this formula differs from the one in periodic_reify because we do not always round up */
1525 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2395 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1526 } 2396 }
2397 else
2398 ev_at (w) = w->offset;
1527 2399
2400 EV_FREQUENT_CHECK;
2401
2402 ++periodiccnt;
1528 ev_start (EV_A_ (W)w, ++periodiccnt); 2403 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1529 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2404 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1530 periodics [periodiccnt - 1] = w; 2405 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1531 upheap ((WT *)periodics, periodiccnt - 1); 2406 ANHE_at_cache (periodics [ev_active (w)]);
2407 upheap (periodics, ev_active (w));
1532 2408
2409 EV_FREQUENT_CHECK;
2410
1533 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2411 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1534} 2412}
1535 2413
1536void 2414void noinline
1537ev_periodic_stop (EV_P_ ev_periodic *w) 2415ev_periodic_stop (EV_P_ ev_periodic *w)
1538{ 2416{
1539 ev_clear_pending (EV_A_ (W)w); 2417 clear_pending (EV_A_ (W)w);
1540 if (expect_false (!ev_is_active (w))) 2418 if (expect_false (!ev_is_active (w)))
1541 return; 2419 return;
1542 2420
2421 EV_FREQUENT_CHECK;
2422
2423 {
2424 int active = ev_active (w);
2425
1543 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2426 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1544 2427
2428 --periodiccnt;
2429
1545 if (expect_true (((W)w)->active < periodiccnt--)) 2430 if (expect_true (active < periodiccnt + HEAP0))
1546 { 2431 {
1547 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2432 periodics [active] = periodics [periodiccnt + HEAP0];
1548 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2433 adjustheap (periodics, periodiccnt, active);
1549 } 2434 }
2435 }
2436
2437 EV_FREQUENT_CHECK;
1550 2438
1551 ev_stop (EV_A_ (W)w); 2439 ev_stop (EV_A_ (W)w);
1552} 2440}
1553 2441
1554void 2442void noinline
1555ev_periodic_again (EV_P_ ev_periodic *w) 2443ev_periodic_again (EV_P_ ev_periodic *w)
1556{ 2444{
1557 /* TODO: use adjustheap and recalculation */ 2445 /* TODO: use adjustheap and recalculation */
1558 ev_periodic_stop (EV_A_ w); 2446 ev_periodic_stop (EV_A_ w);
1559 ev_periodic_start (EV_A_ w); 2447 ev_periodic_start (EV_A_ w);
1562 2450
1563#ifndef SA_RESTART 2451#ifndef SA_RESTART
1564# define SA_RESTART 0 2452# define SA_RESTART 0
1565#endif 2453#endif
1566 2454
1567void 2455void noinline
1568ev_signal_start (EV_P_ ev_signal *w) 2456ev_signal_start (EV_P_ ev_signal *w)
1569{ 2457{
1570#if EV_MULTIPLICITY 2458#if EV_MULTIPLICITY
1571 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2459 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1572#endif 2460#endif
1573 if (expect_false (ev_is_active (w))) 2461 if (expect_false (ev_is_active (w)))
1574 return; 2462 return;
1575 2463
1576 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2464 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2465
2466 evpipe_init (EV_A);
2467
2468 EV_FREQUENT_CHECK;
2469
2470 {
2471#ifndef _WIN32
2472 sigset_t full, prev;
2473 sigfillset (&full);
2474 sigprocmask (SIG_SETMASK, &full, &prev);
2475#endif
2476
2477 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2478
2479#ifndef _WIN32
2480 sigprocmask (SIG_SETMASK, &prev, 0);
2481#endif
2482 }
1577 2483
1578 ev_start (EV_A_ (W)w, 1); 2484 ev_start (EV_A_ (W)w, 1);
1579 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1580 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2485 wlist_add (&signals [w->signum - 1].head, (WL)w);
1581 2486
1582 if (!((WL)w)->next) 2487 if (!((WL)w)->next)
1583 { 2488 {
1584#if _WIN32 2489#if _WIN32
1585 signal (w->signum, sighandler); 2490 signal (w->signum, ev_sighandler);
1586#else 2491#else
1587 struct sigaction sa; 2492 struct sigaction sa;
1588 sa.sa_handler = sighandler; 2493 sa.sa_handler = ev_sighandler;
1589 sigfillset (&sa.sa_mask); 2494 sigfillset (&sa.sa_mask);
1590 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2495 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1591 sigaction (w->signum, &sa, 0); 2496 sigaction (w->signum, &sa, 0);
1592#endif 2497#endif
1593 } 2498 }
1594}
1595 2499
1596void 2500 EV_FREQUENT_CHECK;
2501}
2502
2503void noinline
1597ev_signal_stop (EV_P_ ev_signal *w) 2504ev_signal_stop (EV_P_ ev_signal *w)
1598{ 2505{
1599 ev_clear_pending (EV_A_ (W)w); 2506 clear_pending (EV_A_ (W)w);
1600 if (expect_false (!ev_is_active (w))) 2507 if (expect_false (!ev_is_active (w)))
1601 return; 2508 return;
1602 2509
2510 EV_FREQUENT_CHECK;
2511
1603 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2512 wlist_del (&signals [w->signum - 1].head, (WL)w);
1604 ev_stop (EV_A_ (W)w); 2513 ev_stop (EV_A_ (W)w);
1605 2514
1606 if (!signals [w->signum - 1].head) 2515 if (!signals [w->signum - 1].head)
1607 signal (w->signum, SIG_DFL); 2516 signal (w->signum, SIG_DFL);
2517
2518 EV_FREQUENT_CHECK;
1608} 2519}
1609 2520
1610void 2521void
1611ev_child_start (EV_P_ ev_child *w) 2522ev_child_start (EV_P_ ev_child *w)
1612{ 2523{
1613#if EV_MULTIPLICITY 2524#if EV_MULTIPLICITY
1614 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2525 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1615#endif 2526#endif
1616 if (expect_false (ev_is_active (w))) 2527 if (expect_false (ev_is_active (w)))
1617 return; 2528 return;
1618 2529
2530 EV_FREQUENT_CHECK;
2531
1619 ev_start (EV_A_ (W)w, 1); 2532 ev_start (EV_A_ (W)w, 1);
1620 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2533 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2534
2535 EV_FREQUENT_CHECK;
1621} 2536}
1622 2537
1623void 2538void
1624ev_child_stop (EV_P_ ev_child *w) 2539ev_child_stop (EV_P_ ev_child *w)
1625{ 2540{
1626 ev_clear_pending (EV_A_ (W)w); 2541 clear_pending (EV_A_ (W)w);
1627 if (expect_false (!ev_is_active (w))) 2542 if (expect_false (!ev_is_active (w)))
1628 return; 2543 return;
1629 2544
2545 EV_FREQUENT_CHECK;
2546
1630 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2547 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1631 ev_stop (EV_A_ (W)w); 2548 ev_stop (EV_A_ (W)w);
2549
2550 EV_FREQUENT_CHECK;
1632} 2551}
1633 2552
1634#if EV_STAT_ENABLE 2553#if EV_STAT_ENABLE
1635 2554
1636# ifdef _WIN32 2555# ifdef _WIN32
1637# undef lstat 2556# undef lstat
1638# define lstat(a,b) _stati64 (a,b) 2557# define lstat(a,b) _stati64 (a,b)
1639# endif 2558# endif
1640 2559
1641#define DEF_STAT_INTERVAL 5.0074891 2560#define DEF_STAT_INTERVAL 5.0074891
2561#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1642#define MIN_STAT_INTERVAL 0.1074891 2562#define MIN_STAT_INTERVAL 0.1074891
2563
2564static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2565
2566#if EV_USE_INOTIFY
2567# define EV_INOTIFY_BUFSIZE 8192
2568
2569static void noinline
2570infy_add (EV_P_ ev_stat *w)
2571{
2572 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2573
2574 if (w->wd < 0)
2575 {
2576 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2577 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2578
2579 /* monitor some parent directory for speedup hints */
2580 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2581 /* but an efficiency issue only */
2582 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2583 {
2584 char path [4096];
2585 strcpy (path, w->path);
2586
2587 do
2588 {
2589 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2590 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2591
2592 char *pend = strrchr (path, '/');
2593
2594 if (!pend || pend == path)
2595 break;
2596
2597 *pend = 0;
2598 w->wd = inotify_add_watch (fs_fd, path, mask);
2599 }
2600 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2601 }
2602 }
2603
2604 if (w->wd >= 0)
2605 {
2606 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2607
2608 /* now local changes will be tracked by inotify, but remote changes won't */
2609 /* unless the filesystem it known to be local, we therefore still poll */
2610 /* also do poll on <2.6.25, but with normal frequency */
2611 struct statfs sfs;
2612
2613 if (fs_2625 && !statfs (w->path, &sfs))
2614 if (sfs.f_type == 0x1373 /* devfs */
2615 || sfs.f_type == 0xEF53 /* ext2/3 */
2616 || sfs.f_type == 0x3153464a /* jfs */
2617 || sfs.f_type == 0x52654973 /* reiser3 */
2618 || sfs.f_type == 0x01021994 /* tempfs */
2619 || sfs.f_type == 0x58465342 /* xfs */)
2620 return;
2621
2622 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2623 ev_timer_again (EV_A_ &w->timer);
2624 }
2625}
2626
2627static void noinline
2628infy_del (EV_P_ ev_stat *w)
2629{
2630 int slot;
2631 int wd = w->wd;
2632
2633 if (wd < 0)
2634 return;
2635
2636 w->wd = -2;
2637 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2638 wlist_del (&fs_hash [slot].head, (WL)w);
2639
2640 /* remove this watcher, if others are watching it, they will rearm */
2641 inotify_rm_watch (fs_fd, wd);
2642}
2643
2644static void noinline
2645infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2646{
2647 if (slot < 0)
2648 /* overflow, need to check for all hash slots */
2649 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2650 infy_wd (EV_A_ slot, wd, ev);
2651 else
2652 {
2653 WL w_;
2654
2655 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2656 {
2657 ev_stat *w = (ev_stat *)w_;
2658 w_ = w_->next; /* lets us remove this watcher and all before it */
2659
2660 if (w->wd == wd || wd == -1)
2661 {
2662 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2663 {
2664 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2665 w->wd = -1;
2666 infy_add (EV_A_ w); /* re-add, no matter what */
2667 }
2668
2669 stat_timer_cb (EV_A_ &w->timer, 0);
2670 }
2671 }
2672 }
2673}
2674
2675static void
2676infy_cb (EV_P_ ev_io *w, int revents)
2677{
2678 char buf [EV_INOTIFY_BUFSIZE];
2679 struct inotify_event *ev = (struct inotify_event *)buf;
2680 int ofs;
2681 int len = read (fs_fd, buf, sizeof (buf));
2682
2683 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2684 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2685}
2686
2687inline_size void
2688check_2625 (EV_P)
2689{
2690 /* kernels < 2.6.25 are borked
2691 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2692 */
2693 struct utsname buf;
2694 int major, minor, micro;
2695
2696 if (uname (&buf))
2697 return;
2698
2699 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2700 return;
2701
2702 if (major < 2
2703 || (major == 2 && minor < 6)
2704 || (major == 2 && minor == 6 && micro < 25))
2705 return;
2706
2707 fs_2625 = 1;
2708}
2709
2710inline_size void
2711infy_init (EV_P)
2712{
2713 if (fs_fd != -2)
2714 return;
2715
2716 fs_fd = -1;
2717
2718 check_2625 (EV_A);
2719
2720 fs_fd = inotify_init ();
2721
2722 if (fs_fd >= 0)
2723 {
2724 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2725 ev_set_priority (&fs_w, EV_MAXPRI);
2726 ev_io_start (EV_A_ &fs_w);
2727 }
2728}
2729
2730inline_size void
2731infy_fork (EV_P)
2732{
2733 int slot;
2734
2735 if (fs_fd < 0)
2736 return;
2737
2738 close (fs_fd);
2739 fs_fd = inotify_init ();
2740
2741 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2742 {
2743 WL w_ = fs_hash [slot].head;
2744 fs_hash [slot].head = 0;
2745
2746 while (w_)
2747 {
2748 ev_stat *w = (ev_stat *)w_;
2749 w_ = w_->next; /* lets us add this watcher */
2750
2751 w->wd = -1;
2752
2753 if (fs_fd >= 0)
2754 infy_add (EV_A_ w); /* re-add, no matter what */
2755 else
2756 ev_timer_again (EV_A_ &w->timer);
2757 }
2758 }
2759}
2760
2761#endif
2762
2763#ifdef _WIN32
2764# define EV_LSTAT(p,b) _stati64 (p, b)
2765#else
2766# define EV_LSTAT(p,b) lstat (p, b)
2767#endif
1643 2768
1644void 2769void
1645ev_stat_stat (EV_P_ ev_stat *w) 2770ev_stat_stat (EV_P_ ev_stat *w)
1646{ 2771{
1647 if (lstat (w->path, &w->attr) < 0) 2772 if (lstat (w->path, &w->attr) < 0)
1648 w->attr.st_nlink = 0; 2773 w->attr.st_nlink = 0;
1649 else if (!w->attr.st_nlink) 2774 else if (!w->attr.st_nlink)
1650 w->attr.st_nlink = 1; 2775 w->attr.st_nlink = 1;
1651} 2776}
1652 2777
1653static void 2778static void noinline
1654stat_timer_cb (EV_P_ ev_timer *w_, int revents) 2779stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1655{ 2780{
1656 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 2781 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1657 2782
1658 /* we copy this here each the time so that */ 2783 /* we copy this here each the time so that */
1659 /* prev has the old value when the callback gets invoked */ 2784 /* prev has the old value when the callback gets invoked */
1660 w->prev = w->attr; 2785 w->prev = w->attr;
1661 ev_stat_stat (EV_A_ w); 2786 ev_stat_stat (EV_A_ w);
1662 2787
1663 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 2788 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2789 if (
2790 w->prev.st_dev != w->attr.st_dev
2791 || w->prev.st_ino != w->attr.st_ino
2792 || w->prev.st_mode != w->attr.st_mode
2793 || w->prev.st_nlink != w->attr.st_nlink
2794 || w->prev.st_uid != w->attr.st_uid
2795 || w->prev.st_gid != w->attr.st_gid
2796 || w->prev.st_rdev != w->attr.st_rdev
2797 || w->prev.st_size != w->attr.st_size
2798 || w->prev.st_atime != w->attr.st_atime
2799 || w->prev.st_mtime != w->attr.st_mtime
2800 || w->prev.st_ctime != w->attr.st_ctime
2801 ) {
2802 #if EV_USE_INOTIFY
2803 if (fs_fd >= 0)
2804 {
2805 infy_del (EV_A_ w);
2806 infy_add (EV_A_ w);
2807 ev_stat_stat (EV_A_ w); /* avoid race... */
2808 }
2809 #endif
2810
1664 ev_feed_event (EV_A_ w, EV_STAT); 2811 ev_feed_event (EV_A_ w, EV_STAT);
2812 }
1665} 2813}
1666 2814
1667void 2815void
1668ev_stat_start (EV_P_ ev_stat *w) 2816ev_stat_start (EV_P_ ev_stat *w)
1669{ 2817{
1670 if (expect_false (ev_is_active (w))) 2818 if (expect_false (ev_is_active (w)))
1671 return; 2819 return;
1672 2820
1673 /* since we use memcmp, we need to clear any padding data etc. */
1674 memset (&w->prev, 0, sizeof (ev_statdata));
1675 memset (&w->attr, 0, sizeof (ev_statdata));
1676
1677 ev_stat_stat (EV_A_ w); 2821 ev_stat_stat (EV_A_ w);
1678 2822
2823 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1679 if (w->interval < MIN_STAT_INTERVAL) 2824 w->interval = MIN_STAT_INTERVAL;
1680 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1681 2825
1682 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2826 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1683 ev_set_priority (&w->timer, ev_priority (w)); 2827 ev_set_priority (&w->timer, ev_priority (w));
2828
2829#if EV_USE_INOTIFY
2830 infy_init (EV_A);
2831
2832 if (fs_fd >= 0)
2833 infy_add (EV_A_ w);
2834 else
2835#endif
1684 ev_timer_start (EV_A_ &w->timer); 2836 ev_timer_again (EV_A_ &w->timer);
1685 2837
1686 ev_start (EV_A_ (W)w, 1); 2838 ev_start (EV_A_ (W)w, 1);
2839
2840 EV_FREQUENT_CHECK;
1687} 2841}
1688 2842
1689void 2843void
1690ev_stat_stop (EV_P_ ev_stat *w) 2844ev_stat_stop (EV_P_ ev_stat *w)
1691{ 2845{
1692 ev_clear_pending (EV_A_ (W)w); 2846 clear_pending (EV_A_ (W)w);
1693 if (expect_false (!ev_is_active (w))) 2847 if (expect_false (!ev_is_active (w)))
1694 return; 2848 return;
1695 2849
2850 EV_FREQUENT_CHECK;
2851
2852#if EV_USE_INOTIFY
2853 infy_del (EV_A_ w);
2854#endif
1696 ev_timer_stop (EV_A_ &w->timer); 2855 ev_timer_stop (EV_A_ &w->timer);
1697 2856
1698 ev_stop (EV_A_ (W)w); 2857 ev_stop (EV_A_ (W)w);
1699}
1700#endif
1701 2858
2859 EV_FREQUENT_CHECK;
2860}
2861#endif
2862
2863#if EV_IDLE_ENABLE
1702void 2864void
1703ev_idle_start (EV_P_ ev_idle *w) 2865ev_idle_start (EV_P_ ev_idle *w)
1704{ 2866{
1705 if (expect_false (ev_is_active (w))) 2867 if (expect_false (ev_is_active (w)))
1706 return; 2868 return;
1707 2869
2870 pri_adjust (EV_A_ (W)w);
2871
2872 EV_FREQUENT_CHECK;
2873
2874 {
2875 int active = ++idlecnt [ABSPRI (w)];
2876
2877 ++idleall;
1708 ev_start (EV_A_ (W)w, ++idlecnt); 2878 ev_start (EV_A_ (W)w, active);
2879
1709 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2880 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1710 idles [idlecnt - 1] = w; 2881 idles [ABSPRI (w)][active - 1] = w;
2882 }
2883
2884 EV_FREQUENT_CHECK;
1711} 2885}
1712 2886
1713void 2887void
1714ev_idle_stop (EV_P_ ev_idle *w) 2888ev_idle_stop (EV_P_ ev_idle *w)
1715{ 2889{
1716 ev_clear_pending (EV_A_ (W)w); 2890 clear_pending (EV_A_ (W)w);
1717 if (expect_false (!ev_is_active (w))) 2891 if (expect_false (!ev_is_active (w)))
1718 return; 2892 return;
1719 2893
2894 EV_FREQUENT_CHECK;
2895
1720 { 2896 {
1721 int active = ((W)w)->active; 2897 int active = ev_active (w);
1722 idles [active - 1] = idles [--idlecnt]; 2898
1723 ((W)idles [active - 1])->active = active; 2899 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2900 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2901
2902 ev_stop (EV_A_ (W)w);
2903 --idleall;
1724 } 2904 }
1725 2905
1726 ev_stop (EV_A_ (W)w); 2906 EV_FREQUENT_CHECK;
1727} 2907}
2908#endif
1728 2909
1729void 2910void
1730ev_prepare_start (EV_P_ ev_prepare *w) 2911ev_prepare_start (EV_P_ ev_prepare *w)
1731{ 2912{
1732 if (expect_false (ev_is_active (w))) 2913 if (expect_false (ev_is_active (w)))
1733 return; 2914 return;
2915
2916 EV_FREQUENT_CHECK;
1734 2917
1735 ev_start (EV_A_ (W)w, ++preparecnt); 2918 ev_start (EV_A_ (W)w, ++preparecnt);
1736 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2919 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1737 prepares [preparecnt - 1] = w; 2920 prepares [preparecnt - 1] = w;
2921
2922 EV_FREQUENT_CHECK;
1738} 2923}
1739 2924
1740void 2925void
1741ev_prepare_stop (EV_P_ ev_prepare *w) 2926ev_prepare_stop (EV_P_ ev_prepare *w)
1742{ 2927{
1743 ev_clear_pending (EV_A_ (W)w); 2928 clear_pending (EV_A_ (W)w);
1744 if (expect_false (!ev_is_active (w))) 2929 if (expect_false (!ev_is_active (w)))
1745 return; 2930 return;
1746 2931
2932 EV_FREQUENT_CHECK;
2933
1747 { 2934 {
1748 int active = ((W)w)->active; 2935 int active = ev_active (w);
2936
1749 prepares [active - 1] = prepares [--preparecnt]; 2937 prepares [active - 1] = prepares [--preparecnt];
1750 ((W)prepares [active - 1])->active = active; 2938 ev_active (prepares [active - 1]) = active;
1751 } 2939 }
1752 2940
1753 ev_stop (EV_A_ (W)w); 2941 ev_stop (EV_A_ (W)w);
2942
2943 EV_FREQUENT_CHECK;
1754} 2944}
1755 2945
1756void 2946void
1757ev_check_start (EV_P_ ev_check *w) 2947ev_check_start (EV_P_ ev_check *w)
1758{ 2948{
1759 if (expect_false (ev_is_active (w))) 2949 if (expect_false (ev_is_active (w)))
1760 return; 2950 return;
2951
2952 EV_FREQUENT_CHECK;
1761 2953
1762 ev_start (EV_A_ (W)w, ++checkcnt); 2954 ev_start (EV_A_ (W)w, ++checkcnt);
1763 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2955 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1764 checks [checkcnt - 1] = w; 2956 checks [checkcnt - 1] = w;
2957
2958 EV_FREQUENT_CHECK;
1765} 2959}
1766 2960
1767void 2961void
1768ev_check_stop (EV_P_ ev_check *w) 2962ev_check_stop (EV_P_ ev_check *w)
1769{ 2963{
1770 ev_clear_pending (EV_A_ (W)w); 2964 clear_pending (EV_A_ (W)w);
1771 if (expect_false (!ev_is_active (w))) 2965 if (expect_false (!ev_is_active (w)))
1772 return; 2966 return;
1773 2967
2968 EV_FREQUENT_CHECK;
2969
1774 { 2970 {
1775 int active = ((W)w)->active; 2971 int active = ev_active (w);
2972
1776 checks [active - 1] = checks [--checkcnt]; 2973 checks [active - 1] = checks [--checkcnt];
1777 ((W)checks [active - 1])->active = active; 2974 ev_active (checks [active - 1]) = active;
1778 } 2975 }
1779 2976
1780 ev_stop (EV_A_ (W)w); 2977 ev_stop (EV_A_ (W)w);
2978
2979 EV_FREQUENT_CHECK;
1781} 2980}
1782 2981
1783#if EV_EMBED_ENABLE 2982#if EV_EMBED_ENABLE
1784void noinline 2983void noinline
1785ev_embed_sweep (EV_P_ ev_embed *w) 2984ev_embed_sweep (EV_P_ ev_embed *w)
1786{ 2985{
1787 ev_loop (w->loop, EVLOOP_NONBLOCK); 2986 ev_loop (w->other, EVLOOP_NONBLOCK);
1788} 2987}
1789 2988
1790static void 2989static void
1791embed_cb (EV_P_ ev_io *io, int revents) 2990embed_io_cb (EV_P_ ev_io *io, int revents)
1792{ 2991{
1793 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2992 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1794 2993
1795 if (ev_cb (w)) 2994 if (ev_cb (w))
1796 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2995 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1797 else 2996 else
1798 ev_embed_sweep (loop, w); 2997 ev_loop (w->other, EVLOOP_NONBLOCK);
1799} 2998}
2999
3000static void
3001embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3002{
3003 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3004
3005 {
3006 struct ev_loop *loop = w->other;
3007
3008 while (fdchangecnt)
3009 {
3010 fd_reify (EV_A);
3011 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3012 }
3013 }
3014}
3015
3016static void
3017embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3018{
3019 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3020
3021 ev_embed_stop (EV_A_ w);
3022
3023 {
3024 struct ev_loop *loop = w->other;
3025
3026 ev_loop_fork (EV_A);
3027 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3028 }
3029
3030 ev_embed_start (EV_A_ w);
3031}
3032
3033#if 0
3034static void
3035embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3036{
3037 ev_idle_stop (EV_A_ idle);
3038}
3039#endif
1800 3040
1801void 3041void
1802ev_embed_start (EV_P_ ev_embed *w) 3042ev_embed_start (EV_P_ ev_embed *w)
1803{ 3043{
1804 if (expect_false (ev_is_active (w))) 3044 if (expect_false (ev_is_active (w)))
1805 return; 3045 return;
1806 3046
1807 { 3047 {
1808 struct ev_loop *loop = w->loop; 3048 struct ev_loop *loop = w->other;
1809 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3049 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1810 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3050 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
1811 } 3051 }
3052
3053 EV_FREQUENT_CHECK;
1812 3054
1813 ev_set_priority (&w->io, ev_priority (w)); 3055 ev_set_priority (&w->io, ev_priority (w));
1814 ev_io_start (EV_A_ &w->io); 3056 ev_io_start (EV_A_ &w->io);
1815 3057
3058 ev_prepare_init (&w->prepare, embed_prepare_cb);
3059 ev_set_priority (&w->prepare, EV_MINPRI);
3060 ev_prepare_start (EV_A_ &w->prepare);
3061
3062 ev_fork_init (&w->fork, embed_fork_cb);
3063 ev_fork_start (EV_A_ &w->fork);
3064
3065 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3066
1816 ev_start (EV_A_ (W)w, 1); 3067 ev_start (EV_A_ (W)w, 1);
3068
3069 EV_FREQUENT_CHECK;
1817} 3070}
1818 3071
1819void 3072void
1820ev_embed_stop (EV_P_ ev_embed *w) 3073ev_embed_stop (EV_P_ ev_embed *w)
1821{ 3074{
1822 ev_clear_pending (EV_A_ (W)w); 3075 clear_pending (EV_A_ (W)w);
1823 if (expect_false (!ev_is_active (w))) 3076 if (expect_false (!ev_is_active (w)))
1824 return; 3077 return;
1825 3078
3079 EV_FREQUENT_CHECK;
3080
1826 ev_io_stop (EV_A_ &w->io); 3081 ev_io_stop (EV_A_ &w->io);
3082 ev_prepare_stop (EV_A_ &w->prepare);
3083 ev_fork_stop (EV_A_ &w->fork);
3084
3085 EV_FREQUENT_CHECK;
3086}
3087#endif
3088
3089#if EV_FORK_ENABLE
3090void
3091ev_fork_start (EV_P_ ev_fork *w)
3092{
3093 if (expect_false (ev_is_active (w)))
3094 return;
3095
3096 EV_FREQUENT_CHECK;
3097
3098 ev_start (EV_A_ (W)w, ++forkcnt);
3099 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3100 forks [forkcnt - 1] = w;
3101
3102 EV_FREQUENT_CHECK;
3103}
3104
3105void
3106ev_fork_stop (EV_P_ ev_fork *w)
3107{
3108 clear_pending (EV_A_ (W)w);
3109 if (expect_false (!ev_is_active (w)))
3110 return;
3111
3112 EV_FREQUENT_CHECK;
3113
3114 {
3115 int active = ev_active (w);
3116
3117 forks [active - 1] = forks [--forkcnt];
3118 ev_active (forks [active - 1]) = active;
3119 }
1827 3120
1828 ev_stop (EV_A_ (W)w); 3121 ev_stop (EV_A_ (W)w);
3122
3123 EV_FREQUENT_CHECK;
3124}
3125#endif
3126
3127#if EV_ASYNC_ENABLE
3128void
3129ev_async_start (EV_P_ ev_async *w)
3130{
3131 if (expect_false (ev_is_active (w)))
3132 return;
3133
3134 evpipe_init (EV_A);
3135
3136 EV_FREQUENT_CHECK;
3137
3138 ev_start (EV_A_ (W)w, ++asynccnt);
3139 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3140 asyncs [asynccnt - 1] = w;
3141
3142 EV_FREQUENT_CHECK;
3143}
3144
3145void
3146ev_async_stop (EV_P_ ev_async *w)
3147{
3148 clear_pending (EV_A_ (W)w);
3149 if (expect_false (!ev_is_active (w)))
3150 return;
3151
3152 EV_FREQUENT_CHECK;
3153
3154 {
3155 int active = ev_active (w);
3156
3157 asyncs [active - 1] = asyncs [--asynccnt];
3158 ev_active (asyncs [active - 1]) = active;
3159 }
3160
3161 ev_stop (EV_A_ (W)w);
3162
3163 EV_FREQUENT_CHECK;
3164}
3165
3166void
3167ev_async_send (EV_P_ ev_async *w)
3168{
3169 w->sent = 1;
3170 evpipe_write (EV_A_ &gotasync);
1829} 3171}
1830#endif 3172#endif
1831 3173
1832/*****************************************************************************/ 3174/*****************************************************************************/
1833 3175
1843once_cb (EV_P_ struct ev_once *once, int revents) 3185once_cb (EV_P_ struct ev_once *once, int revents)
1844{ 3186{
1845 void (*cb)(int revents, void *arg) = once->cb; 3187 void (*cb)(int revents, void *arg) = once->cb;
1846 void *arg = once->arg; 3188 void *arg = once->arg;
1847 3189
1848 ev_io_stop (EV_A_ &once->io); 3190 ev_io_stop (EV_A_ &once->io);
1849 ev_timer_stop (EV_A_ &once->to); 3191 ev_timer_stop (EV_A_ &once->to);
1850 ev_free (once); 3192 ev_free (once);
1851 3193
1852 cb (revents, arg); 3194 cb (revents, arg);
1853} 3195}
1854 3196
1855static void 3197static void
1856once_cb_io (EV_P_ ev_io *w, int revents) 3198once_cb_io (EV_P_ ev_io *w, int revents)
1857{ 3199{
1858 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3200 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3201
3202 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1859} 3203}
1860 3204
1861static void 3205static void
1862once_cb_to (EV_P_ ev_timer *w, int revents) 3206once_cb_to (EV_P_ ev_timer *w, int revents)
1863{ 3207{
1864 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3208 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3209
3210 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1865} 3211}
1866 3212
1867void 3213void
1868ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3214ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1869{ 3215{
1891 ev_timer_set (&once->to, timeout, 0.); 3237 ev_timer_set (&once->to, timeout, 0.);
1892 ev_timer_start (EV_A_ &once->to); 3238 ev_timer_start (EV_A_ &once->to);
1893 } 3239 }
1894} 3240}
1895 3241
3242/*****************************************************************************/
3243
3244#if EV_WALK_ENABLE
3245void
3246ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3247{
3248 int i, j;
3249 ev_watcher_list *wl, *wn;
3250
3251 if (types & (EV_IO | EV_EMBED))
3252 for (i = 0; i < anfdmax; ++i)
3253 for (wl = anfds [i].head; wl; )
3254 {
3255 wn = wl->next;
3256
3257#if EV_EMBED_ENABLE
3258 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3259 {
3260 if (types & EV_EMBED)
3261 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3262 }
3263 else
3264#endif
3265#if EV_USE_INOTIFY
3266 if (ev_cb ((ev_io *)wl) == infy_cb)
3267 ;
3268 else
3269#endif
3270 if ((ev_io *)wl != &pipe_w)
3271 if (types & EV_IO)
3272 cb (EV_A_ EV_IO, wl);
3273
3274 wl = wn;
3275 }
3276
3277 if (types & (EV_TIMER | EV_STAT))
3278 for (i = timercnt + HEAP0; i-- > HEAP0; )
3279#if EV_STAT_ENABLE
3280 /*TODO: timer is not always active*/
3281 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3282 {
3283 if (types & EV_STAT)
3284 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3285 }
3286 else
3287#endif
3288 if (types & EV_TIMER)
3289 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3290
3291#if EV_PERIODIC_ENABLE
3292 if (types & EV_PERIODIC)
3293 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3294 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3295#endif
3296
3297#if EV_IDLE_ENABLE
3298 if (types & EV_IDLE)
3299 for (j = NUMPRI; i--; )
3300 for (i = idlecnt [j]; i--; )
3301 cb (EV_A_ EV_IDLE, idles [j][i]);
3302#endif
3303
3304#if EV_FORK_ENABLE
3305 if (types & EV_FORK)
3306 for (i = forkcnt; i--; )
3307 if (ev_cb (forks [i]) != embed_fork_cb)
3308 cb (EV_A_ EV_FORK, forks [i]);
3309#endif
3310
3311#if EV_ASYNC_ENABLE
3312 if (types & EV_ASYNC)
3313 for (i = asynccnt; i--; )
3314 cb (EV_A_ EV_ASYNC, asyncs [i]);
3315#endif
3316
3317 if (types & EV_PREPARE)
3318 for (i = preparecnt; i--; )
3319#if EV_EMBED_ENABLE
3320 if (ev_cb (prepares [i]) != embed_prepare_cb)
3321#endif
3322 cb (EV_A_ EV_PREPARE, prepares [i]);
3323
3324 if (types & EV_CHECK)
3325 for (i = checkcnt; i--; )
3326 cb (EV_A_ EV_CHECK, checks [i]);
3327
3328 if (types & EV_SIGNAL)
3329 for (i = 0; i < signalmax; ++i)
3330 for (wl = signals [i].head; wl; )
3331 {
3332 wn = wl->next;
3333 cb (EV_A_ EV_SIGNAL, wl);
3334 wl = wn;
3335 }
3336
3337 if (types & EV_CHILD)
3338 for (i = EV_PID_HASHSIZE; i--; )
3339 for (wl = childs [i]; wl; )
3340 {
3341 wn = wl->next;
3342 cb (EV_A_ EV_CHILD, wl);
3343 wl = wn;
3344 }
3345/* EV_STAT 0x00001000 /* stat data changed */
3346/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3347}
3348#endif
3349
3350#if EV_MULTIPLICITY
3351 #include "ev_wrap.h"
3352#endif
3353
1896#ifdef __cplusplus 3354#ifdef __cplusplus
1897} 3355}
1898#endif 3356#endif
1899 3357

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines