ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.196 by root, Sat Dec 22 12:43:28 2007 UTC vs.
Revision 1.289 by root, Sat Jun 6 11:13:16 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
63
43# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
46# endif 67# endif
47# ifndef EV_USE_REALTIME 68# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 0
49# endif 70# endif
50# else 71# else
51# ifndef EV_USE_MONOTONIC 72# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 73# define EV_USE_MONOTONIC 0
53# endif 74# endif
110# else 131# else
111# define EV_USE_INOTIFY 0 132# define EV_USE_INOTIFY 0
112# endif 133# endif
113# endif 134# endif
114 135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
115#endif 144#endif
116 145
117#include <math.h> 146#include <math.h>
118#include <stdlib.h> 147#include <stdlib.h>
119#include <fcntl.h> 148#include <fcntl.h>
137#ifndef _WIN32 166#ifndef _WIN32
138# include <sys/time.h> 167# include <sys/time.h>
139# include <sys/wait.h> 168# include <sys/wait.h>
140# include <unistd.h> 169# include <unistd.h>
141#else 170#else
171# include <io.h>
142# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
143# include <windows.h> 173# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
146# endif 176# endif
147#endif 177#endif
148 178
149/**/ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
150 188
151#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
152# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif
153#endif 195#endif
154 196
155#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
157#endif 199#endif
158 200
159#ifndef EV_USE_NANOSLEEP 201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
160# define EV_USE_NANOSLEEP 0 205# define EV_USE_NANOSLEEP 0
206# endif
161#endif 207#endif
162 208
163#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
164# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
165#endif 211#endif
171# define EV_USE_POLL 1 217# define EV_USE_POLL 1
172# endif 218# endif
173#endif 219#endif
174 220
175#ifndef EV_USE_EPOLL 221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
176# define EV_USE_EPOLL 0 225# define EV_USE_EPOLL 0
226# endif
177#endif 227#endif
178 228
179#ifndef EV_USE_KQUEUE 229#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 230# define EV_USE_KQUEUE 0
181#endif 231#endif
183#ifndef EV_USE_PORT 233#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 234# define EV_USE_PORT 0
185#endif 235#endif
186 236
187#ifndef EV_USE_INOTIFY 237#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1
240# else
188# define EV_USE_INOTIFY 0 241# define EV_USE_INOTIFY 0
242# endif
189#endif 243#endif
190 244
191#ifndef EV_PID_HASHSIZE 245#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 246# if EV_MINIMAL
193# define EV_PID_HASHSIZE 1 247# define EV_PID_HASHSIZE 1
202# else 256# else
203# define EV_INOTIFY_HASHSIZE 16 257# define EV_INOTIFY_HASHSIZE 16
204# endif 258# endif
205#endif 259#endif
206 260
207/**/ 261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
208 288
209#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
212#endif 292#endif
226# include <sys/select.h> 306# include <sys/select.h>
227# endif 307# endif
228#endif 308#endif
229 309
230#if EV_USE_INOTIFY 310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
231# include <sys/inotify.h> 313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
232#endif 319#endif
233 320
234#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h> 322# include <winsock.h>
236#endif 323#endif
237 324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
339# endif
340int eventfd (unsigned int initval, int flags);
341# ifdef __cplusplus
342}
343# endif
344#endif
345
238/**/ 346/**/
347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
239 353
240/* 354/*
241 * This is used to avoid floating point rounding problems. 355 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics 356 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding 357 * to ensure progress, time-wise, even when rounding
255# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
256# define noinline __attribute__ ((noinline)) 370# define noinline __attribute__ ((noinline))
257#else 371#else
258# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
259# define noinline 373# define noinline
260# if __STDC_VERSION__ < 199901L 374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
261# define inline 375# define inline
262# endif 376# endif
263#endif 377#endif
264 378
265#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
280 394
281typedef ev_watcher *W; 395typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
284 398
399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_REALTIME
285/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
286/* giving it a reasonably high chance of working on typical architetcures */ 404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
287static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif
288 411
289#ifdef _WIN32 412#ifdef _WIN32
290# include "ev_win32.c" 413# include "ev_win32.c"
291#endif 414#endif
292 415
299{ 422{
300 syserr_cb = cb; 423 syserr_cb = cb;
301} 424}
302 425
303static void noinline 426static void noinline
304syserr (const char *msg) 427ev_syserr (const char *msg)
305{ 428{
306 if (!msg) 429 if (!msg)
307 msg = "(libev) system error"; 430 msg = "(libev) system error";
308 431
309 if (syserr_cb) 432 if (syserr_cb)
313 perror (msg); 436 perror (msg);
314 abort (); 437 abort ();
315 } 438 }
316} 439}
317 440
441static void *
442ev_realloc_emul (void *ptr, long size)
443{
444 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and
446 * the single unix specification, so work around them here.
447 */
448
449 if (size)
450 return realloc (ptr, size);
451
452 free (ptr);
453 return 0;
454}
455
318static void *(*alloc)(void *ptr, long size); 456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
319 457
320void 458void
321ev_set_allocator (void *(*cb)(void *ptr, long size)) 459ev_set_allocator (void *(*cb)(void *ptr, long size))
322{ 460{
323 alloc = cb; 461 alloc = cb;
324} 462}
325 463
326inline_speed void * 464inline_speed void *
327ev_realloc (void *ptr, long size) 465ev_realloc (void *ptr, long size)
328{ 466{
329 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 467 ptr = alloc (ptr, size);
330 468
331 if (!ptr && size) 469 if (!ptr && size)
332 { 470 {
333 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
334 abort (); 472 abort ();
340#define ev_malloc(size) ev_realloc (0, (size)) 478#define ev_malloc(size) ev_realloc (0, (size))
341#define ev_free(ptr) ev_realloc ((ptr), 0) 479#define ev_free(ptr) ev_realloc ((ptr), 0)
342 480
343/*****************************************************************************/ 481/*****************************************************************************/
344 482
483/* file descriptor info structure */
345typedef struct 484typedef struct
346{ 485{
347 WL head; 486 WL head;
348 unsigned char events; 487 unsigned char events; /* the events watched for */
488 unsigned char reify; /* flag set when this ANFD needs reification */
489 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
349 unsigned char reify; 490 unsigned char unused;
491#if EV_USE_EPOLL
492 unsigned int egen; /* generation counter to counter epoll bugs */
493#endif
350#if EV_SELECT_IS_WINSOCKET 494#if EV_SELECT_IS_WINSOCKET
351 SOCKET handle; 495 SOCKET handle;
352#endif 496#endif
353} ANFD; 497} ANFD;
354 498
499/* stores the pending event set for a given watcher */
355typedef struct 500typedef struct
356{ 501{
357 W w; 502 W w;
358 int events; 503 int events; /* the pending event set for the given watcher */
359} ANPENDING; 504} ANPENDING;
360 505
361#if EV_USE_INOTIFY 506#if EV_USE_INOTIFY
507/* hash table entry per inotify-id */
362typedef struct 508typedef struct
363{ 509{
364 WL head; 510 WL head;
365} ANFS; 511} ANFS;
512#endif
513
514/* Heap Entry */
515#if EV_HEAP_CACHE_AT
516 /* a heap element */
517 typedef struct {
518 ev_tstamp at;
519 WT w;
520 } ANHE;
521
522 #define ANHE_w(he) (he).w /* access watcher, read-write */
523 #define ANHE_at(he) (he).at /* access cached at, read-only */
524 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
525#else
526 /* a heap element */
527 typedef WT ANHE;
528
529 #define ANHE_w(he) (he)
530 #define ANHE_at(he) (he)->at
531 #define ANHE_at_cache(he)
366#endif 532#endif
367 533
368#if EV_MULTIPLICITY 534#if EV_MULTIPLICITY
369 535
370 struct ev_loop 536 struct ev_loop
395 561
396ev_tstamp 562ev_tstamp
397ev_time (void) 563ev_time (void)
398{ 564{
399#if EV_USE_REALTIME 565#if EV_USE_REALTIME
566 if (expect_true (have_realtime))
567 {
400 struct timespec ts; 568 struct timespec ts;
401 clock_gettime (CLOCK_REALTIME, &ts); 569 clock_gettime (CLOCK_REALTIME, &ts);
402 return ts.tv_sec + ts.tv_nsec * 1e-9; 570 return ts.tv_sec + ts.tv_nsec * 1e-9;
403#else 571 }
572#endif
573
404 struct timeval tv; 574 struct timeval tv;
405 gettimeofday (&tv, 0); 575 gettimeofday (&tv, 0);
406 return tv.tv_sec + tv.tv_usec * 1e-6; 576 return tv.tv_sec + tv.tv_usec * 1e-6;
407#endif
408} 577}
409 578
410ev_tstamp inline_size 579inline_size ev_tstamp
411get_clock (void) 580get_clock (void)
412{ 581{
413#if EV_USE_MONOTONIC 582#if EV_USE_MONOTONIC
414 if (expect_true (have_monotonic)) 583 if (expect_true (have_monotonic))
415 { 584 {
441 ts.tv_sec = (time_t)delay; 610 ts.tv_sec = (time_t)delay;
442 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 611 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
443 612
444 nanosleep (&ts, 0); 613 nanosleep (&ts, 0);
445#elif defined(_WIN32) 614#elif defined(_WIN32)
446 Sleep (delay * 1e3); 615 Sleep ((unsigned long)(delay * 1e3));
447#else 616#else
448 struct timeval tv; 617 struct timeval tv;
449 618
450 tv.tv_sec = (time_t)delay; 619 tv.tv_sec = (time_t)delay;
451 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 620 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
452 621
622 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
623 /* somehting nto guaranteed by newer posix versions, but guaranteed */
624 /* by older ones */
453 select (0, 0, 0, 0, &tv); 625 select (0, 0, 0, 0, &tv);
454#endif 626#endif
455 } 627 }
456} 628}
457 629
458/*****************************************************************************/ 630/*****************************************************************************/
459 631
460int inline_size 632#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
633
634/* find a suitable new size for the given array, */
635/* hopefully by rounding to a ncie-to-malloc size */
636inline_size int
461array_nextsize (int elem, int cur, int cnt) 637array_nextsize (int elem, int cur, int cnt)
462{ 638{
463 int ncur = cur + 1; 639 int ncur = cur + 1;
464 640
465 do 641 do
466 ncur <<= 1; 642 ncur <<= 1;
467 while (cnt > ncur); 643 while (cnt > ncur);
468 644
469 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 645 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
470 if (elem * ncur > 4096) 646 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
471 { 647 {
472 ncur *= elem; 648 ncur *= elem;
473 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 649 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
474 ncur = ncur - sizeof (void *) * 4; 650 ncur = ncur - sizeof (void *) * 4;
475 ncur /= elem; 651 ncur /= elem;
476 } 652 }
477 653
478 return ncur; 654 return ncur;
482array_realloc (int elem, void *base, int *cur, int cnt) 658array_realloc (int elem, void *base, int *cur, int cnt)
483{ 659{
484 *cur = array_nextsize (elem, *cur, cnt); 660 *cur = array_nextsize (elem, *cur, cnt);
485 return ev_realloc (base, elem * *cur); 661 return ev_realloc (base, elem * *cur);
486} 662}
663
664#define array_init_zero(base,count) \
665 memset ((void *)(base), 0, sizeof (*(base)) * (count))
487 666
488#define array_needsize(type,base,cur,cnt,init) \ 667#define array_needsize(type,base,cur,cnt,init) \
489 if (expect_false ((cnt) > (cur))) \ 668 if (expect_false ((cnt) > (cur))) \
490 { \ 669 { \
491 int ocur_ = (cur); \ 670 int ocur_ = (cur); \
503 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 682 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
504 } 683 }
505#endif 684#endif
506 685
507#define array_free(stem, idx) \ 686#define array_free(stem, idx) \
508 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 687 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
509 688
510/*****************************************************************************/ 689/*****************************************************************************/
690
691/* dummy callback for pending events */
692static void noinline
693pendingcb (EV_P_ ev_prepare *w, int revents)
694{
695}
511 696
512void noinline 697void noinline
513ev_feed_event (EV_P_ void *w, int revents) 698ev_feed_event (EV_P_ void *w, int revents)
514{ 699{
515 W w_ = (W)w; 700 W w_ = (W)w;
524 pendings [pri][w_->pending - 1].w = w_; 709 pendings [pri][w_->pending - 1].w = w_;
525 pendings [pri][w_->pending - 1].events = revents; 710 pendings [pri][w_->pending - 1].events = revents;
526 } 711 }
527} 712}
528 713
529void inline_speed 714inline_speed void
715feed_reverse (EV_P_ W w)
716{
717 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
718 rfeeds [rfeedcnt++] = w;
719}
720
721inline_size void
722feed_reverse_done (EV_P_ int revents)
723{
724 do
725 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
726 while (rfeedcnt);
727}
728
729inline_speed void
530queue_events (EV_P_ W *events, int eventcnt, int type) 730queue_events (EV_P_ W *events, int eventcnt, int type)
531{ 731{
532 int i; 732 int i;
533 733
534 for (i = 0; i < eventcnt; ++i) 734 for (i = 0; i < eventcnt; ++i)
535 ev_feed_event (EV_A_ events [i], type); 735 ev_feed_event (EV_A_ events [i], type);
536} 736}
537 737
538/*****************************************************************************/ 738/*****************************************************************************/
539 739
540void inline_size 740inline_speed void
541anfds_init (ANFD *base, int count)
542{
543 while (count--)
544 {
545 base->head = 0;
546 base->events = EV_NONE;
547 base->reify = 0;
548
549 ++base;
550 }
551}
552
553void inline_speed
554fd_event (EV_P_ int fd, int revents) 741fd_event (EV_P_ int fd, int revents)
555{ 742{
556 ANFD *anfd = anfds + fd; 743 ANFD *anfd = anfds + fd;
557 ev_io *w; 744 ev_io *w;
558 745
570{ 757{
571 if (fd >= 0 && fd < anfdmax) 758 if (fd >= 0 && fd < anfdmax)
572 fd_event (EV_A_ fd, revents); 759 fd_event (EV_A_ fd, revents);
573} 760}
574 761
575void inline_size 762/* make sure the external fd watch events are in-sync */
763/* with the kernel/libev internal state */
764inline_size void
576fd_reify (EV_P) 765fd_reify (EV_P)
577{ 766{
578 int i; 767 int i;
579 768
580 for (i = 0; i < fdchangecnt; ++i) 769 for (i = 0; i < fdchangecnt; ++i)
589 events |= (unsigned char)w->events; 778 events |= (unsigned char)w->events;
590 779
591#if EV_SELECT_IS_WINSOCKET 780#if EV_SELECT_IS_WINSOCKET
592 if (events) 781 if (events)
593 { 782 {
594 unsigned long argp; 783 unsigned long arg;
784 #ifdef EV_FD_TO_WIN32_HANDLE
785 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
786 #else
595 anfd->handle = _get_osfhandle (fd); 787 anfd->handle = _get_osfhandle (fd);
788 #endif
596 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 789 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
597 } 790 }
598#endif 791#endif
599 792
600 { 793 {
601 unsigned char o_events = anfd->events; 794 unsigned char o_events = anfd->events;
602 unsigned char o_reify = anfd->reify; 795 unsigned char o_reify = anfd->reify;
603 796
604 anfd->reify = 0; 797 anfd->reify = 0;
605 anfd->events = events; 798 anfd->events = events;
606 799
607 if (o_events != events || o_reify & EV_IOFDSET) 800 if (o_events != events || o_reify & EV__IOFDSET)
608 backend_modify (EV_A_ fd, o_events, events); 801 backend_modify (EV_A_ fd, o_events, events);
609 } 802 }
610 } 803 }
611 804
612 fdchangecnt = 0; 805 fdchangecnt = 0;
613} 806}
614 807
615void inline_size 808/* something about the given fd changed */
809inline_size void
616fd_change (EV_P_ int fd, int flags) 810fd_change (EV_P_ int fd, int flags)
617{ 811{
618 unsigned char reify = anfds [fd].reify; 812 unsigned char reify = anfds [fd].reify;
619 anfds [fd].reify |= flags; 813 anfds [fd].reify |= flags;
620 814
624 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 818 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
625 fdchanges [fdchangecnt - 1] = fd; 819 fdchanges [fdchangecnt - 1] = fd;
626 } 820 }
627} 821}
628 822
629void inline_speed 823/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
824inline_speed void
630fd_kill (EV_P_ int fd) 825fd_kill (EV_P_ int fd)
631{ 826{
632 ev_io *w; 827 ev_io *w;
633 828
634 while ((w = (ev_io *)anfds [fd].head)) 829 while ((w = (ev_io *)anfds [fd].head))
636 ev_io_stop (EV_A_ w); 831 ev_io_stop (EV_A_ w);
637 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 832 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
638 } 833 }
639} 834}
640 835
641int inline_size 836/* check whether the given fd is atcually valid, for error recovery */
837inline_size int
642fd_valid (int fd) 838fd_valid (int fd)
643{ 839{
644#ifdef _WIN32 840#ifdef _WIN32
645 return _get_osfhandle (fd) != -1; 841 return _get_osfhandle (fd) != -1;
646#else 842#else
654{ 850{
655 int fd; 851 int fd;
656 852
657 for (fd = 0; fd < anfdmax; ++fd) 853 for (fd = 0; fd < anfdmax; ++fd)
658 if (anfds [fd].events) 854 if (anfds [fd].events)
659 if (!fd_valid (fd) == -1 && errno == EBADF) 855 if (!fd_valid (fd) && errno == EBADF)
660 fd_kill (EV_A_ fd); 856 fd_kill (EV_A_ fd);
661} 857}
662 858
663/* called on ENOMEM in select/poll to kill some fds and retry */ 859/* called on ENOMEM in select/poll to kill some fds and retry */
664static void noinline 860static void noinline
682 878
683 for (fd = 0; fd < anfdmax; ++fd) 879 for (fd = 0; fd < anfdmax; ++fd)
684 if (anfds [fd].events) 880 if (anfds [fd].events)
685 { 881 {
686 anfds [fd].events = 0; 882 anfds [fd].events = 0;
883 anfds [fd].emask = 0;
687 fd_change (EV_A_ fd, EV_IOFDSET | 1); 884 fd_change (EV_A_ fd, EV__IOFDSET | 1);
688 } 885 }
689} 886}
690 887
691/*****************************************************************************/ 888/*****************************************************************************/
692 889
693void inline_speed 890/*
694upheap (WT *heap, int k) 891 * the heap functions want a real array index. array index 0 uis guaranteed to not
695{ 892 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
696 WT w = heap [k]; 893 * the branching factor of the d-tree.
894 */
697 895
698 while (k) 896/*
699 { 897 * at the moment we allow libev the luxury of two heaps,
700 int p = (k - 1) >> 1; 898 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
899 * which is more cache-efficient.
900 * the difference is about 5% with 50000+ watchers.
901 */
902#if EV_USE_4HEAP
701 903
702 if (heap [p]->at <= w->at) 904#define DHEAP 4
905#define HEAP0 (DHEAP - 1) /* index of first element in heap */
906#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
907#define UPHEAP_DONE(p,k) ((p) == (k))
908
909/* away from the root */
910inline_speed void
911downheap (ANHE *heap, int N, int k)
912{
913 ANHE he = heap [k];
914 ANHE *E = heap + N + HEAP0;
915
916 for (;;)
917 {
918 ev_tstamp minat;
919 ANHE *minpos;
920 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
921
922 /* find minimum child */
923 if (expect_true (pos + DHEAP - 1 < E))
924 {
925 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
926 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
927 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
928 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
929 }
930 else if (pos < E)
931 {
932 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
933 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
934 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
935 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
936 }
937 else
703 break; 938 break;
704 939
940 if (ANHE_at (he) <= minat)
941 break;
942
943 heap [k] = *minpos;
944 ev_active (ANHE_w (*minpos)) = k;
945
946 k = minpos - heap;
947 }
948
949 heap [k] = he;
950 ev_active (ANHE_w (he)) = k;
951}
952
953#else /* 4HEAP */
954
955#define HEAP0 1
956#define HPARENT(k) ((k) >> 1)
957#define UPHEAP_DONE(p,k) (!(p))
958
959/* away from the root */
960inline_speed void
961downheap (ANHE *heap, int N, int k)
962{
963 ANHE he = heap [k];
964
965 for (;;)
966 {
967 int c = k << 1;
968
969 if (c > N + HEAP0 - 1)
970 break;
971
972 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
973 ? 1 : 0;
974
975 if (ANHE_at (he) <= ANHE_at (heap [c]))
976 break;
977
978 heap [k] = heap [c];
979 ev_active (ANHE_w (heap [k])) = k;
980
981 k = c;
982 }
983
984 heap [k] = he;
985 ev_active (ANHE_w (he)) = k;
986}
987#endif
988
989/* towards the root */
990inline_speed void
991upheap (ANHE *heap, int k)
992{
993 ANHE he = heap [k];
994
995 for (;;)
996 {
997 int p = HPARENT (k);
998
999 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1000 break;
1001
705 heap [k] = heap [p]; 1002 heap [k] = heap [p];
706 ((W)heap [k])->active = k + 1; 1003 ev_active (ANHE_w (heap [k])) = k;
707 k = p; 1004 k = p;
708 } 1005 }
709 1006
710 heap [k] = w; 1007 heap [k] = he;
711 ((W)heap [k])->active = k + 1; 1008 ev_active (ANHE_w (he)) = k;
712} 1009}
713 1010
714void inline_speed 1011/* move an element suitably so it is in a correct place */
715downheap (WT *heap, int N, int k) 1012inline_size void
716{
717 WT w = heap [k];
718
719 for (;;)
720 {
721 int c = (k << 1) + 1;
722
723 if (c >= N)
724 break;
725
726 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
727 ? 1 : 0;
728
729 if (w->at <= heap [c]->at)
730 break;
731
732 heap [k] = heap [c];
733 ((W)heap [k])->active = k + 1;
734
735 k = c;
736 }
737
738 heap [k] = w;
739 ((W)heap [k])->active = k + 1;
740}
741
742void inline_size
743adjustheap (WT *heap, int N, int k) 1013adjustheap (ANHE *heap, int N, int k)
744{ 1014{
1015 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
745 upheap (heap, k); 1016 upheap (heap, k);
1017 else
746 downheap (heap, N, k); 1018 downheap (heap, N, k);
1019}
1020
1021/* rebuild the heap: this function is used only once and executed rarely */
1022inline_size void
1023reheap (ANHE *heap, int N)
1024{
1025 int i;
1026
1027 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1028 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1029 for (i = 0; i < N; ++i)
1030 upheap (heap, i + HEAP0);
747} 1031}
748 1032
749/*****************************************************************************/ 1033/*****************************************************************************/
750 1034
1035/* associate signal watchers to a signal signal */
751typedef struct 1036typedef struct
752{ 1037{
753 WL head; 1038 WL head;
754 sig_atomic_t volatile gotsig; 1039 EV_ATOMIC_T gotsig;
755} ANSIG; 1040} ANSIG;
756 1041
757static ANSIG *signals; 1042static ANSIG *signals;
758static int signalmax; 1043static int signalmax;
759 1044
760static int sigpipe [2]; 1045static EV_ATOMIC_T gotsig;
761static sig_atomic_t volatile gotsig;
762static ev_io sigev;
763 1046
764void inline_size 1047/*****************************************************************************/
765signals_init (ANSIG *base, int count)
766{
767 while (count--)
768 {
769 base->head = 0;
770 base->gotsig = 0;
771 1048
772 ++base; 1049/* used to prepare libev internal fd's */
773 } 1050/* this is not fork-safe */
774} 1051inline_speed void
775
776static void
777sighandler (int signum)
778{
779#if _WIN32
780 signal (signum, sighandler);
781#endif
782
783 signals [signum - 1].gotsig = 1;
784
785 if (!gotsig)
786 {
787 int old_errno = errno;
788 gotsig = 1;
789 write (sigpipe [1], &signum, 1);
790 errno = old_errno;
791 }
792}
793
794void noinline
795ev_feed_signal_event (EV_P_ int signum)
796{
797 WL w;
798
799#if EV_MULTIPLICITY
800 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
801#endif
802
803 --signum;
804
805 if (signum < 0 || signum >= signalmax)
806 return;
807
808 signals [signum].gotsig = 0;
809
810 for (w = signals [signum].head; w; w = w->next)
811 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
812}
813
814static void
815sigcb (EV_P_ ev_io *iow, int revents)
816{
817 int signum;
818
819 read (sigpipe [0], &revents, 1);
820 gotsig = 0;
821
822 for (signum = signalmax; signum--; )
823 if (signals [signum].gotsig)
824 ev_feed_signal_event (EV_A_ signum + 1);
825}
826
827void inline_speed
828fd_intern (int fd) 1052fd_intern (int fd)
829{ 1053{
830#ifdef _WIN32 1054#ifdef _WIN32
831 int arg = 1; 1055 unsigned long arg = 1;
832 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1056 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
833#else 1057#else
834 fcntl (fd, F_SETFD, FD_CLOEXEC); 1058 fcntl (fd, F_SETFD, FD_CLOEXEC);
835 fcntl (fd, F_SETFL, O_NONBLOCK); 1059 fcntl (fd, F_SETFL, O_NONBLOCK);
836#endif 1060#endif
837} 1061}
838 1062
839static void noinline 1063static void noinline
840siginit (EV_P) 1064evpipe_init (EV_P)
841{ 1065{
1066 if (!ev_is_active (&pipe_w))
1067 {
1068#if EV_USE_EVENTFD
1069 if ((evfd = eventfd (0, 0)) >= 0)
1070 {
1071 evpipe [0] = -1;
1072 fd_intern (evfd);
1073 ev_io_set (&pipe_w, evfd, EV_READ);
1074 }
1075 else
1076#endif
1077 {
1078 while (pipe (evpipe))
1079 ev_syserr ("(libev) error creating signal/async pipe");
1080
842 fd_intern (sigpipe [0]); 1081 fd_intern (evpipe [0]);
843 fd_intern (sigpipe [1]); 1082 fd_intern (evpipe [1]);
1083 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1084 }
844 1085
845 ev_io_set (&sigev, sigpipe [0], EV_READ);
846 ev_io_start (EV_A_ &sigev); 1086 ev_io_start (EV_A_ &pipe_w);
847 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1087 ev_unref (EV_A); /* watcher should not keep loop alive */
1088 }
1089}
1090
1091inline_size void
1092evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1093{
1094 if (!*flag)
1095 {
1096 int old_errno = errno; /* save errno because write might clobber it */
1097
1098 *flag = 1;
1099
1100#if EV_USE_EVENTFD
1101 if (evfd >= 0)
1102 {
1103 uint64_t counter = 1;
1104 write (evfd, &counter, sizeof (uint64_t));
1105 }
1106 else
1107#endif
1108 write (evpipe [1], &old_errno, 1);
1109
1110 errno = old_errno;
1111 }
1112}
1113
1114/* called whenever the libev signal pipe */
1115/* got some events (signal, async) */
1116static void
1117pipecb (EV_P_ ev_io *iow, int revents)
1118{
1119#if EV_USE_EVENTFD
1120 if (evfd >= 0)
1121 {
1122 uint64_t counter;
1123 read (evfd, &counter, sizeof (uint64_t));
1124 }
1125 else
1126#endif
1127 {
1128 char dummy;
1129 read (evpipe [0], &dummy, 1);
1130 }
1131
1132 if (gotsig && ev_is_default_loop (EV_A))
1133 {
1134 int signum;
1135 gotsig = 0;
1136
1137 for (signum = signalmax; signum--; )
1138 if (signals [signum].gotsig)
1139 ev_feed_signal_event (EV_A_ signum + 1);
1140 }
1141
1142#if EV_ASYNC_ENABLE
1143 if (gotasync)
1144 {
1145 int i;
1146 gotasync = 0;
1147
1148 for (i = asynccnt; i--; )
1149 if (asyncs [i]->sent)
1150 {
1151 asyncs [i]->sent = 0;
1152 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1153 }
1154 }
1155#endif
848} 1156}
849 1157
850/*****************************************************************************/ 1158/*****************************************************************************/
851 1159
1160static void
1161ev_sighandler (int signum)
1162{
1163#if EV_MULTIPLICITY
1164 struct ev_loop *loop = &default_loop_struct;
1165#endif
1166
1167#if _WIN32
1168 signal (signum, ev_sighandler);
1169#endif
1170
1171 signals [signum - 1].gotsig = 1;
1172 evpipe_write (EV_A_ &gotsig);
1173}
1174
1175void noinline
1176ev_feed_signal_event (EV_P_ int signum)
1177{
1178 WL w;
1179
1180#if EV_MULTIPLICITY
1181 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1182#endif
1183
1184 --signum;
1185
1186 if (signum < 0 || signum >= signalmax)
1187 return;
1188
1189 signals [signum].gotsig = 0;
1190
1191 for (w = signals [signum].head; w; w = w->next)
1192 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1193}
1194
1195/*****************************************************************************/
1196
852static WL childs [EV_PID_HASHSIZE]; 1197static WL childs [EV_PID_HASHSIZE];
853 1198
854#ifndef _WIN32 1199#ifndef _WIN32
855 1200
856static ev_signal childev; 1201static ev_signal childev;
857 1202
858void inline_speed 1203#ifndef WIFCONTINUED
1204# define WIFCONTINUED(status) 0
1205#endif
1206
1207/* handle a single child status event */
1208inline_speed void
859child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1209child_reap (EV_P_ int chain, int pid, int status)
860{ 1210{
861 ev_child *w; 1211 ev_child *w;
1212 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
862 1213
863 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1214 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1215 {
864 if (w->pid == pid || !w->pid) 1216 if ((w->pid == pid || !w->pid)
1217 && (!traced || (w->flags & 1)))
865 { 1218 {
866 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1219 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
867 w->rpid = pid; 1220 w->rpid = pid;
868 w->rstatus = status; 1221 w->rstatus = status;
869 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1222 ev_feed_event (EV_A_ (W)w, EV_CHILD);
870 } 1223 }
1224 }
871} 1225}
872 1226
873#ifndef WCONTINUED 1227#ifndef WCONTINUED
874# define WCONTINUED 0 1228# define WCONTINUED 0
875#endif 1229#endif
876 1230
1231/* called on sigchld etc., calls waitpid */
877static void 1232static void
878childcb (EV_P_ ev_signal *sw, int revents) 1233childcb (EV_P_ ev_signal *sw, int revents)
879{ 1234{
880 int pid, status; 1235 int pid, status;
881 1236
884 if (!WCONTINUED 1239 if (!WCONTINUED
885 || errno != EINVAL 1240 || errno != EINVAL
886 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1241 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
887 return; 1242 return;
888 1243
889 /* make sure we are called again until all childs have been reaped */ 1244 /* make sure we are called again until all children have been reaped */
890 /* we need to do it this way so that the callback gets called before we continue */ 1245 /* we need to do it this way so that the callback gets called before we continue */
891 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1246 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
892 1247
893 child_reap (EV_A_ sw, pid, pid, status); 1248 child_reap (EV_A_ pid, pid, status);
894 if (EV_PID_HASHSIZE > 1) 1249 if (EV_PID_HASHSIZE > 1)
895 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1250 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
896} 1251}
897 1252
898#endif 1253#endif
899 1254
900/*****************************************************************************/ 1255/*****************************************************************************/
962 /* kqueue is borked on everything but netbsd apparently */ 1317 /* kqueue is borked on everything but netbsd apparently */
963 /* it usually doesn't work correctly on anything but sockets and pipes */ 1318 /* it usually doesn't work correctly on anything but sockets and pipes */
964 flags &= ~EVBACKEND_KQUEUE; 1319 flags &= ~EVBACKEND_KQUEUE;
965#endif 1320#endif
966#ifdef __APPLE__ 1321#ifdef __APPLE__
967 // flags &= ~EVBACKEND_KQUEUE; for documentation 1322 /* only select works correctly on that "unix-certified" platform */
968 flags &= ~EVBACKEND_POLL; 1323 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1324 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
969#endif 1325#endif
970 1326
971 return flags; 1327 return flags;
972} 1328}
973 1329
978 1334
979 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1335 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
980 /* please fix it and tell me how to detect the fix */ 1336 /* please fix it and tell me how to detect the fix */
981 flags &= ~EVBACKEND_EPOLL; 1337 flags &= ~EVBACKEND_EPOLL;
982 1338
983#ifdef __APPLE__
984 /* is there anything thats not broken on darwin? */
985 flags &= ~EVBACKEND_KQUEUE;
986#endif
987
988 return flags; 1339 return flags;
989} 1340}
990 1341
991unsigned int 1342unsigned int
992ev_backend (EV_P) 1343ev_backend (EV_P)
1010ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1361ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1011{ 1362{
1012 timeout_blocktime = interval; 1363 timeout_blocktime = interval;
1013} 1364}
1014 1365
1366/* initialise a loop structure, must be zero-initialised */
1015static void noinline 1367static void noinline
1016loop_init (EV_P_ unsigned int flags) 1368loop_init (EV_P_ unsigned int flags)
1017{ 1369{
1018 if (!backend) 1370 if (!backend)
1019 { 1371 {
1372#if EV_USE_REALTIME
1373 if (!have_realtime)
1374 {
1375 struct timespec ts;
1376
1377 if (!clock_gettime (CLOCK_REALTIME, &ts))
1378 have_realtime = 1;
1379 }
1380#endif
1381
1020#if EV_USE_MONOTONIC 1382#if EV_USE_MONOTONIC
1383 if (!have_monotonic)
1021 { 1384 {
1022 struct timespec ts; 1385 struct timespec ts;
1386
1023 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1387 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1024 have_monotonic = 1; 1388 have_monotonic = 1;
1025 } 1389 }
1026#endif 1390#endif
1027 1391
1028 ev_rt_now = ev_time (); 1392 ev_rt_now = ev_time ();
1029 mn_now = get_clock (); 1393 mn_now = get_clock ();
1030 now_floor = mn_now; 1394 now_floor = mn_now;
1031 rtmn_diff = ev_rt_now - mn_now; 1395 rtmn_diff = ev_rt_now - mn_now;
1032 1396
1033 io_blocktime = 0.; 1397 io_blocktime = 0.;
1034 timeout_blocktime = 0.; 1398 timeout_blocktime = 0.;
1399 backend = 0;
1400 backend_fd = -1;
1401 gotasync = 0;
1402#if EV_USE_INOTIFY
1403 fs_fd = -2;
1404#endif
1035 1405
1036 /* pid check not overridable via env */ 1406 /* pid check not overridable via env */
1037#ifndef _WIN32 1407#ifndef _WIN32
1038 if (flags & EVFLAG_FORKCHECK) 1408 if (flags & EVFLAG_FORKCHECK)
1039 curpid = getpid (); 1409 curpid = getpid ();
1042 if (!(flags & EVFLAG_NOENV) 1412 if (!(flags & EVFLAG_NOENV)
1043 && !enable_secure () 1413 && !enable_secure ()
1044 && getenv ("LIBEV_FLAGS")) 1414 && getenv ("LIBEV_FLAGS"))
1045 flags = atoi (getenv ("LIBEV_FLAGS")); 1415 flags = atoi (getenv ("LIBEV_FLAGS"));
1046 1416
1047 if (!(flags & 0x0000ffffUL)) 1417 if (!(flags & 0x0000ffffU))
1048 flags |= ev_recommended_backends (); 1418 flags |= ev_recommended_backends ();
1049
1050 backend = 0;
1051 backend_fd = -1;
1052#if EV_USE_INOTIFY
1053 fs_fd = -2;
1054#endif
1055 1419
1056#if EV_USE_PORT 1420#if EV_USE_PORT
1057 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1421 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1058#endif 1422#endif
1059#if EV_USE_KQUEUE 1423#if EV_USE_KQUEUE
1067#endif 1431#endif
1068#if EV_USE_SELECT 1432#if EV_USE_SELECT
1069 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1433 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1070#endif 1434#endif
1071 1435
1436 ev_prepare_init (&pending_w, pendingcb);
1437
1072 ev_init (&sigev, sigcb); 1438 ev_init (&pipe_w, pipecb);
1073 ev_set_priority (&sigev, EV_MAXPRI); 1439 ev_set_priority (&pipe_w, EV_MAXPRI);
1074 } 1440 }
1075} 1441}
1076 1442
1443/* free up a loop structure */
1077static void noinline 1444static void noinline
1078loop_destroy (EV_P) 1445loop_destroy (EV_P)
1079{ 1446{
1080 int i; 1447 int i;
1448
1449 if (ev_is_active (&pipe_w))
1450 {
1451 ev_ref (EV_A); /* signal watcher */
1452 ev_io_stop (EV_A_ &pipe_w);
1453
1454#if EV_USE_EVENTFD
1455 if (evfd >= 0)
1456 close (evfd);
1457#endif
1458
1459 if (evpipe [0] >= 0)
1460 {
1461 close (evpipe [0]);
1462 close (evpipe [1]);
1463 }
1464 }
1081 1465
1082#if EV_USE_INOTIFY 1466#if EV_USE_INOTIFY
1083 if (fs_fd >= 0) 1467 if (fs_fd >= 0)
1084 close (fs_fd); 1468 close (fs_fd);
1085#endif 1469#endif
1112 } 1496 }
1113 1497
1114 ev_free (anfds); anfdmax = 0; 1498 ev_free (anfds); anfdmax = 0;
1115 1499
1116 /* have to use the microsoft-never-gets-it-right macro */ 1500 /* have to use the microsoft-never-gets-it-right macro */
1501 array_free (rfeed, EMPTY);
1117 array_free (fdchange, EMPTY); 1502 array_free (fdchange, EMPTY);
1118 array_free (timer, EMPTY); 1503 array_free (timer, EMPTY);
1119#if EV_PERIODIC_ENABLE 1504#if EV_PERIODIC_ENABLE
1120 array_free (periodic, EMPTY); 1505 array_free (periodic, EMPTY);
1121#endif 1506#endif
1122#if EV_FORK_ENABLE 1507#if EV_FORK_ENABLE
1123 array_free (fork, EMPTY); 1508 array_free (fork, EMPTY);
1124#endif 1509#endif
1125 array_free (prepare, EMPTY); 1510 array_free (prepare, EMPTY);
1126 array_free (check, EMPTY); 1511 array_free (check, EMPTY);
1512#if EV_ASYNC_ENABLE
1513 array_free (async, EMPTY);
1514#endif
1127 1515
1128 backend = 0; 1516 backend = 0;
1129} 1517}
1130 1518
1519#if EV_USE_INOTIFY
1131void inline_size infy_fork (EV_P); 1520inline_size void infy_fork (EV_P);
1521#endif
1132 1522
1133void inline_size 1523inline_size void
1134loop_fork (EV_P) 1524loop_fork (EV_P)
1135{ 1525{
1136#if EV_USE_PORT 1526#if EV_USE_PORT
1137 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1527 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1138#endif 1528#endif
1144#endif 1534#endif
1145#if EV_USE_INOTIFY 1535#if EV_USE_INOTIFY
1146 infy_fork (EV_A); 1536 infy_fork (EV_A);
1147#endif 1537#endif
1148 1538
1149 if (ev_is_active (&sigev)) 1539 if (ev_is_active (&pipe_w))
1150 { 1540 {
1151 /* default loop */ 1541 /* this "locks" the handlers against writing to the pipe */
1542 /* while we modify the fd vars */
1543 gotsig = 1;
1544#if EV_ASYNC_ENABLE
1545 gotasync = 1;
1546#endif
1152 1547
1153 ev_ref (EV_A); 1548 ev_ref (EV_A);
1154 ev_io_stop (EV_A_ &sigev); 1549 ev_io_stop (EV_A_ &pipe_w);
1550
1551#if EV_USE_EVENTFD
1552 if (evfd >= 0)
1553 close (evfd);
1554#endif
1555
1556 if (evpipe [0] >= 0)
1557 {
1155 close (sigpipe [0]); 1558 close (evpipe [0]);
1156 close (sigpipe [1]); 1559 close (evpipe [1]);
1560 }
1157 1561
1158 while (pipe (sigpipe))
1159 syserr ("(libev) error creating pipe");
1160
1161 siginit (EV_A); 1562 evpipe_init (EV_A);
1563 /* now iterate over everything, in case we missed something */
1564 pipecb (EV_A_ &pipe_w, EV_READ);
1162 } 1565 }
1163 1566
1164 postfork = 0; 1567 postfork = 0;
1165} 1568}
1166 1569
1167#if EV_MULTIPLICITY 1570#if EV_MULTIPLICITY
1571
1168struct ev_loop * 1572struct ev_loop *
1169ev_loop_new (unsigned int flags) 1573ev_loop_new (unsigned int flags)
1170{ 1574{
1171 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1575 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1172 1576
1188} 1592}
1189 1593
1190void 1594void
1191ev_loop_fork (EV_P) 1595ev_loop_fork (EV_P)
1192{ 1596{
1193 postfork = 1; 1597 postfork = 1; /* must be in line with ev_default_fork */
1194} 1598}
1195 1599
1600#if EV_VERIFY
1601static void noinline
1602verify_watcher (EV_P_ W w)
1603{
1604 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1605
1606 if (w->pending)
1607 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1608}
1609
1610static void noinline
1611verify_heap (EV_P_ ANHE *heap, int N)
1612{
1613 int i;
1614
1615 for (i = HEAP0; i < N + HEAP0; ++i)
1616 {
1617 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1618 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1619 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1620
1621 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1622 }
1623}
1624
1625static void noinline
1626array_verify (EV_P_ W *ws, int cnt)
1627{
1628 while (cnt--)
1629 {
1630 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1631 verify_watcher (EV_A_ ws [cnt]);
1632 }
1633}
1634#endif
1635
1636void
1637ev_loop_verify (EV_P)
1638{
1639#if EV_VERIFY
1640 int i;
1641 WL w;
1642
1643 assert (activecnt >= -1);
1644
1645 assert (fdchangemax >= fdchangecnt);
1646 for (i = 0; i < fdchangecnt; ++i)
1647 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1648
1649 assert (anfdmax >= 0);
1650 for (i = 0; i < anfdmax; ++i)
1651 for (w = anfds [i].head; w; w = w->next)
1652 {
1653 verify_watcher (EV_A_ (W)w);
1654 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1655 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1656 }
1657
1658 assert (timermax >= timercnt);
1659 verify_heap (EV_A_ timers, timercnt);
1660
1661#if EV_PERIODIC_ENABLE
1662 assert (periodicmax >= periodiccnt);
1663 verify_heap (EV_A_ periodics, periodiccnt);
1664#endif
1665
1666 for (i = NUMPRI; i--; )
1667 {
1668 assert (pendingmax [i] >= pendingcnt [i]);
1669#if EV_IDLE_ENABLE
1670 assert (idleall >= 0);
1671 assert (idlemax [i] >= idlecnt [i]);
1672 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1673#endif
1674 }
1675
1676#if EV_FORK_ENABLE
1677 assert (forkmax >= forkcnt);
1678 array_verify (EV_A_ (W *)forks, forkcnt);
1679#endif
1680
1681#if EV_ASYNC_ENABLE
1682 assert (asyncmax >= asynccnt);
1683 array_verify (EV_A_ (W *)asyncs, asynccnt);
1684#endif
1685
1686 assert (preparemax >= preparecnt);
1687 array_verify (EV_A_ (W *)prepares, preparecnt);
1688
1689 assert (checkmax >= checkcnt);
1690 array_verify (EV_A_ (W *)checks, checkcnt);
1691
1692# if 0
1693 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1694 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1196#endif 1695# endif
1696#endif
1697}
1698
1699#endif /* multiplicity */
1197 1700
1198#if EV_MULTIPLICITY 1701#if EV_MULTIPLICITY
1199struct ev_loop * 1702struct ev_loop *
1200ev_default_loop_init (unsigned int flags) 1703ev_default_loop_init (unsigned int flags)
1201#else 1704#else
1202int 1705int
1203ev_default_loop (unsigned int flags) 1706ev_default_loop (unsigned int flags)
1204#endif 1707#endif
1205{ 1708{
1206 if (sigpipe [0] == sigpipe [1])
1207 if (pipe (sigpipe))
1208 return 0;
1209
1210 if (!ev_default_loop_ptr) 1709 if (!ev_default_loop_ptr)
1211 { 1710 {
1212#if EV_MULTIPLICITY 1711#if EV_MULTIPLICITY
1213 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1712 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1214#else 1713#else
1217 1716
1218 loop_init (EV_A_ flags); 1717 loop_init (EV_A_ flags);
1219 1718
1220 if (ev_backend (EV_A)) 1719 if (ev_backend (EV_A))
1221 { 1720 {
1222 siginit (EV_A);
1223
1224#ifndef _WIN32 1721#ifndef _WIN32
1225 ev_signal_init (&childev, childcb, SIGCHLD); 1722 ev_signal_init (&childev, childcb, SIGCHLD);
1226 ev_set_priority (&childev, EV_MAXPRI); 1723 ev_set_priority (&childev, EV_MAXPRI);
1227 ev_signal_start (EV_A_ &childev); 1724 ev_signal_start (EV_A_ &childev);
1228 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1725 ev_unref (EV_A); /* child watcher should not keep loop alive */
1240{ 1737{
1241#if EV_MULTIPLICITY 1738#if EV_MULTIPLICITY
1242 struct ev_loop *loop = ev_default_loop_ptr; 1739 struct ev_loop *loop = ev_default_loop_ptr;
1243#endif 1740#endif
1244 1741
1742 ev_default_loop_ptr = 0;
1743
1245#ifndef _WIN32 1744#ifndef _WIN32
1246 ev_ref (EV_A); /* child watcher */ 1745 ev_ref (EV_A); /* child watcher */
1247 ev_signal_stop (EV_A_ &childev); 1746 ev_signal_stop (EV_A_ &childev);
1248#endif 1747#endif
1249 1748
1250 ev_ref (EV_A); /* signal watcher */
1251 ev_io_stop (EV_A_ &sigev);
1252
1253 close (sigpipe [0]); sigpipe [0] = 0;
1254 close (sigpipe [1]); sigpipe [1] = 0;
1255
1256 loop_destroy (EV_A); 1749 loop_destroy (EV_A);
1257} 1750}
1258 1751
1259void 1752void
1260ev_default_fork (void) 1753ev_default_fork (void)
1261{ 1754{
1262#if EV_MULTIPLICITY 1755#if EV_MULTIPLICITY
1263 struct ev_loop *loop = ev_default_loop_ptr; 1756 struct ev_loop *loop = ev_default_loop_ptr;
1264#endif 1757#endif
1265 1758
1266 if (backend) 1759 postfork = 1; /* must be in line with ev_loop_fork */
1267 postfork = 1;
1268} 1760}
1269 1761
1270/*****************************************************************************/ 1762/*****************************************************************************/
1271 1763
1272void 1764void
1273ev_invoke (EV_P_ void *w, int revents) 1765ev_invoke (EV_P_ void *w, int revents)
1274{ 1766{
1275 EV_CB_INVOKE ((W)w, revents); 1767 EV_CB_INVOKE ((W)w, revents);
1276} 1768}
1277 1769
1278void inline_speed 1770inline_speed void
1279call_pending (EV_P) 1771call_pending (EV_P)
1280{ 1772{
1281 int pri; 1773 int pri;
1282 1774
1283 for (pri = NUMPRI; pri--; ) 1775 for (pri = NUMPRI; pri--; )
1284 while (pendingcnt [pri]) 1776 while (pendingcnt [pri])
1285 { 1777 {
1286 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1778 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1287 1779
1288 if (expect_true (p->w))
1289 {
1290 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1780 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1781 /* ^ this is no longer true, as pending_w could be here */
1291 1782
1292 p->w->pending = 0; 1783 p->w->pending = 0;
1293 EV_CB_INVOKE (p->w, p->events); 1784 EV_CB_INVOKE (p->w, p->events);
1294 } 1785 EV_FREQUENT_CHECK;
1295 } 1786 }
1296} 1787}
1297 1788
1298void inline_size
1299timers_reify (EV_P)
1300{
1301 while (timercnt && ((WT)timers [0])->at <= mn_now)
1302 {
1303 ev_timer *w = (ev_timer *)timers [0];
1304
1305 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1306
1307 /* first reschedule or stop timer */
1308 if (w->repeat)
1309 {
1310 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1311
1312 ((WT)w)->at += w->repeat;
1313 if (((WT)w)->at < mn_now)
1314 ((WT)w)->at = mn_now;
1315
1316 downheap (timers, timercnt, 0);
1317 }
1318 else
1319 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1320
1321 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1322 }
1323}
1324
1325#if EV_PERIODIC_ENABLE
1326void inline_size
1327periodics_reify (EV_P)
1328{
1329 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1330 {
1331 ev_periodic *w = (ev_periodic *)periodics [0];
1332
1333 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1334
1335 /* first reschedule or stop timer */
1336 if (w->reschedule_cb)
1337 {
1338 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1339 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1340 downheap (periodics, periodiccnt, 0);
1341 }
1342 else if (w->interval)
1343 {
1344 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1345 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1346 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1347 downheap (periodics, periodiccnt, 0);
1348 }
1349 else
1350 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1351
1352 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1353 }
1354}
1355
1356static void noinline
1357periodics_reschedule (EV_P)
1358{
1359 int i;
1360
1361 /* adjust periodics after time jump */
1362 for (i = 0; i < periodiccnt; ++i)
1363 {
1364 ev_periodic *w = (ev_periodic *)periodics [i];
1365
1366 if (w->reschedule_cb)
1367 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1368 else if (w->interval)
1369 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1370 }
1371
1372 /* now rebuild the heap */
1373 for (i = periodiccnt >> 1; i--; )
1374 downheap (periodics, periodiccnt, i);
1375}
1376#endif
1377
1378#if EV_IDLE_ENABLE 1789#if EV_IDLE_ENABLE
1379void inline_size 1790/* make idle watchers pending. this handles the "call-idle */
1791/* only when higher priorities are idle" logic */
1792inline_size void
1380idle_reify (EV_P) 1793idle_reify (EV_P)
1381{ 1794{
1382 if (expect_false (idleall)) 1795 if (expect_false (idleall))
1383 { 1796 {
1384 int pri; 1797 int pri;
1396 } 1809 }
1397 } 1810 }
1398} 1811}
1399#endif 1812#endif
1400 1813
1401void inline_speed 1814/* make timers pending */
1815inline_size void
1816timers_reify (EV_P)
1817{
1818 EV_FREQUENT_CHECK;
1819
1820 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1821 {
1822 do
1823 {
1824 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1825
1826 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1827
1828 /* first reschedule or stop timer */
1829 if (w->repeat)
1830 {
1831 ev_at (w) += w->repeat;
1832 if (ev_at (w) < mn_now)
1833 ev_at (w) = mn_now;
1834
1835 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1836
1837 ANHE_at_cache (timers [HEAP0]);
1838 downheap (timers, timercnt, HEAP0);
1839 }
1840 else
1841 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1842
1843 EV_FREQUENT_CHECK;
1844 feed_reverse (EV_A_ (W)w);
1845 }
1846 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1847
1848 feed_reverse_done (EV_A_ EV_TIMEOUT);
1849 }
1850}
1851
1852#if EV_PERIODIC_ENABLE
1853/* make periodics pending */
1854inline_size void
1855periodics_reify (EV_P)
1856{
1857 EV_FREQUENT_CHECK;
1858
1859 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1860 {
1861 int feed_count = 0;
1862
1863 do
1864 {
1865 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1866
1867 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1868
1869 /* first reschedule or stop timer */
1870 if (w->reschedule_cb)
1871 {
1872 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1873
1874 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1875
1876 ANHE_at_cache (periodics [HEAP0]);
1877 downheap (periodics, periodiccnt, HEAP0);
1878 }
1879 else if (w->interval)
1880 {
1881 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1882 /* if next trigger time is not sufficiently in the future, put it there */
1883 /* this might happen because of floating point inexactness */
1884 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1885 {
1886 ev_at (w) += w->interval;
1887
1888 /* if interval is unreasonably low we might still have a time in the past */
1889 /* so correct this. this will make the periodic very inexact, but the user */
1890 /* has effectively asked to get triggered more often than possible */
1891 if (ev_at (w) < ev_rt_now)
1892 ev_at (w) = ev_rt_now;
1893 }
1894
1895 ANHE_at_cache (periodics [HEAP0]);
1896 downheap (periodics, periodiccnt, HEAP0);
1897 }
1898 else
1899 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1900
1901 EV_FREQUENT_CHECK;
1902 feed_reverse (EV_A_ (W)w);
1903 }
1904 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1905
1906 feed_reverse_done (EV_A_ EV_PERIODIC);
1907 }
1908}
1909
1910/* simply recalculate all periodics */
1911/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1912static void noinline
1913periodics_reschedule (EV_P)
1914{
1915 int i;
1916
1917 /* adjust periodics after time jump */
1918 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1919 {
1920 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1921
1922 if (w->reschedule_cb)
1923 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1924 else if (w->interval)
1925 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1926
1927 ANHE_at_cache (periodics [i]);
1928 }
1929
1930 reheap (periodics, periodiccnt);
1931}
1932#endif
1933
1934/* adjust all timers by a given offset */
1935static void noinline
1936timers_reschedule (EV_P_ ev_tstamp adjust)
1937{
1938 int i;
1939
1940 for (i = 0; i < timercnt; ++i)
1941 {
1942 ANHE *he = timers + i + HEAP0;
1943 ANHE_w (*he)->at += adjust;
1944 ANHE_at_cache (*he);
1945 }
1946}
1947
1948/* fetch new monotonic and realtime times from the kernel */
1949/* also detetc if there was a timejump, and act accordingly */
1950inline_speed void
1402time_update (EV_P_ ev_tstamp max_block) 1951time_update (EV_P_ ev_tstamp max_block)
1403{ 1952{
1404 int i;
1405
1406#if EV_USE_MONOTONIC 1953#if EV_USE_MONOTONIC
1407 if (expect_true (have_monotonic)) 1954 if (expect_true (have_monotonic))
1408 { 1955 {
1956 int i;
1409 ev_tstamp odiff = rtmn_diff; 1957 ev_tstamp odiff = rtmn_diff;
1410 1958
1411 mn_now = get_clock (); 1959 mn_now = get_clock ();
1412 1960
1413 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 1961 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1431 */ 1979 */
1432 for (i = 4; --i; ) 1980 for (i = 4; --i; )
1433 { 1981 {
1434 rtmn_diff = ev_rt_now - mn_now; 1982 rtmn_diff = ev_rt_now - mn_now;
1435 1983
1436 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1984 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1437 return; /* all is well */ 1985 return; /* all is well */
1438 1986
1439 ev_rt_now = ev_time (); 1987 ev_rt_now = ev_time ();
1440 mn_now = get_clock (); 1988 mn_now = get_clock ();
1441 now_floor = mn_now; 1989 now_floor = mn_now;
1442 } 1990 }
1443 1991
1992 /* no timer adjustment, as the monotonic clock doesn't jump */
1993 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1444# if EV_PERIODIC_ENABLE 1994# if EV_PERIODIC_ENABLE
1445 periodics_reschedule (EV_A); 1995 periodics_reschedule (EV_A);
1446# endif 1996# endif
1447 /* no timer adjustment, as the monotonic clock doesn't jump */
1448 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1449 } 1997 }
1450 else 1998 else
1451#endif 1999#endif
1452 { 2000 {
1453 ev_rt_now = ev_time (); 2001 ev_rt_now = ev_time ();
1454 2002
1455 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2003 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1456 { 2004 {
2005 /* adjust timers. this is easy, as the offset is the same for all of them */
2006 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1457#if EV_PERIODIC_ENABLE 2007#if EV_PERIODIC_ENABLE
1458 periodics_reschedule (EV_A); 2008 periodics_reschedule (EV_A);
1459#endif 2009#endif
1460 /* adjust timers. this is easy, as the offset is the same for all of them */
1461 for (i = 0; i < timercnt; ++i)
1462 ((WT)timers [i])->at += ev_rt_now - mn_now;
1463 } 2010 }
1464 2011
1465 mn_now = ev_rt_now; 2012 mn_now = ev_rt_now;
1466 } 2013 }
1467} 2014}
1468 2015
1469void
1470ev_ref (EV_P)
1471{
1472 ++activecnt;
1473}
1474
1475void
1476ev_unref (EV_P)
1477{
1478 --activecnt;
1479}
1480
1481static int loop_done; 2016static int loop_done;
1482 2017
1483void 2018void
1484ev_loop (EV_P_ int flags) 2019ev_loop (EV_P_ int flags)
1485{ 2020{
1486 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2021 loop_done = EVUNLOOP_CANCEL;
1487 ? EVUNLOOP_ONE
1488 : EVUNLOOP_CANCEL;
1489 2022
1490 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2023 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1491 2024
1492 do 2025 do
1493 { 2026 {
2027#if EV_VERIFY >= 2
2028 ev_loop_verify (EV_A);
2029#endif
2030
1494#ifndef _WIN32 2031#ifndef _WIN32
1495 if (expect_false (curpid)) /* penalise the forking check even more */ 2032 if (expect_false (curpid)) /* penalise the forking check even more */
1496 if (expect_false (getpid () != curpid)) 2033 if (expect_false (getpid () != curpid))
1497 { 2034 {
1498 curpid = getpid (); 2035 curpid = getpid ();
1515 { 2052 {
1516 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2053 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1517 call_pending (EV_A); 2054 call_pending (EV_A);
1518 } 2055 }
1519 2056
1520 if (expect_false (!activecnt))
1521 break;
1522
1523 /* we might have forked, so reify kernel state if necessary */ 2057 /* we might have forked, so reify kernel state if necessary */
1524 if (expect_false (postfork)) 2058 if (expect_false (postfork))
1525 loop_fork (EV_A); 2059 loop_fork (EV_A);
1526 2060
1527 /* update fd-related kernel structures */ 2061 /* update fd-related kernel structures */
1539 2073
1540 waittime = MAX_BLOCKTIME; 2074 waittime = MAX_BLOCKTIME;
1541 2075
1542 if (timercnt) 2076 if (timercnt)
1543 { 2077 {
1544 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2078 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1545 if (waittime > to) waittime = to; 2079 if (waittime > to) waittime = to;
1546 } 2080 }
1547 2081
1548#if EV_PERIODIC_ENABLE 2082#if EV_PERIODIC_ENABLE
1549 if (periodiccnt) 2083 if (periodiccnt)
1550 { 2084 {
1551 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2085 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1552 if (waittime > to) waittime = to; 2086 if (waittime > to) waittime = to;
1553 } 2087 }
1554#endif 2088#endif
1555 2089
1556 if (expect_false (waittime < timeout_blocktime)) 2090 if (expect_false (waittime < timeout_blocktime))
1589 /* queue check watchers, to be executed first */ 2123 /* queue check watchers, to be executed first */
1590 if (expect_false (checkcnt)) 2124 if (expect_false (checkcnt))
1591 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2125 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1592 2126
1593 call_pending (EV_A); 2127 call_pending (EV_A);
1594
1595 } 2128 }
1596 while (expect_true (activecnt && !loop_done)); 2129 while (expect_true (
2130 activecnt
2131 && !loop_done
2132 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2133 ));
1597 2134
1598 if (loop_done == EVUNLOOP_ONE) 2135 if (loop_done == EVUNLOOP_ONE)
1599 loop_done = EVUNLOOP_CANCEL; 2136 loop_done = EVUNLOOP_CANCEL;
1600} 2137}
1601 2138
1603ev_unloop (EV_P_ int how) 2140ev_unloop (EV_P_ int how)
1604{ 2141{
1605 loop_done = how; 2142 loop_done = how;
1606} 2143}
1607 2144
2145void
2146ev_ref (EV_P)
2147{
2148 ++activecnt;
2149}
2150
2151void
2152ev_unref (EV_P)
2153{
2154 --activecnt;
2155}
2156
2157void
2158ev_now_update (EV_P)
2159{
2160 time_update (EV_A_ 1e100);
2161}
2162
2163void
2164ev_suspend (EV_P)
2165{
2166 ev_now_update (EV_A);
2167}
2168
2169void
2170ev_resume (EV_P)
2171{
2172 ev_tstamp mn_prev = mn_now;
2173
2174 ev_now_update (EV_A);
2175 timers_reschedule (EV_A_ mn_now - mn_prev);
2176#if EV_PERIODIC_ENABLE
2177 /* TODO: really do this? */
2178 periodics_reschedule (EV_A);
2179#endif
2180}
2181
1608/*****************************************************************************/ 2182/*****************************************************************************/
2183/* singly-linked list management, used when the expected list length is short */
1609 2184
1610void inline_size 2185inline_size void
1611wlist_add (WL *head, WL elem) 2186wlist_add (WL *head, WL elem)
1612{ 2187{
1613 elem->next = *head; 2188 elem->next = *head;
1614 *head = elem; 2189 *head = elem;
1615} 2190}
1616 2191
1617void inline_size 2192inline_size void
1618wlist_del (WL *head, WL elem) 2193wlist_del (WL *head, WL elem)
1619{ 2194{
1620 while (*head) 2195 while (*head)
1621 { 2196 {
1622 if (*head == elem) 2197 if (*head == elem)
1627 2202
1628 head = &(*head)->next; 2203 head = &(*head)->next;
1629 } 2204 }
1630} 2205}
1631 2206
1632void inline_speed 2207/* internal, faster, version of ev_clear_pending */
2208inline_speed void
1633clear_pending (EV_P_ W w) 2209clear_pending (EV_P_ W w)
1634{ 2210{
1635 if (w->pending) 2211 if (w->pending)
1636 { 2212 {
1637 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2213 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1638 w->pending = 0; 2214 w->pending = 0;
1639 } 2215 }
1640} 2216}
1641 2217
1642int 2218int
1646 int pending = w_->pending; 2222 int pending = w_->pending;
1647 2223
1648 if (expect_true (pending)) 2224 if (expect_true (pending))
1649 { 2225 {
1650 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2226 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2227 p->w = (W)&pending_w;
1651 w_->pending = 0; 2228 w_->pending = 0;
1652 p->w = 0;
1653 return p->events; 2229 return p->events;
1654 } 2230 }
1655 else 2231 else
1656 return 0; 2232 return 0;
1657} 2233}
1658 2234
1659void inline_size 2235inline_size void
1660pri_adjust (EV_P_ W w) 2236pri_adjust (EV_P_ W w)
1661{ 2237{
1662 int pri = w->priority; 2238 int pri = w->priority;
1663 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2239 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1664 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2240 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1665 w->priority = pri; 2241 w->priority = pri;
1666} 2242}
1667 2243
1668void inline_speed 2244inline_speed void
1669ev_start (EV_P_ W w, int active) 2245ev_start (EV_P_ W w, int active)
1670{ 2246{
1671 pri_adjust (EV_A_ w); 2247 pri_adjust (EV_A_ w);
1672 w->active = active; 2248 w->active = active;
1673 ev_ref (EV_A); 2249 ev_ref (EV_A);
1674} 2250}
1675 2251
1676void inline_size 2252inline_size void
1677ev_stop (EV_P_ W w) 2253ev_stop (EV_P_ W w)
1678{ 2254{
1679 ev_unref (EV_A); 2255 ev_unref (EV_A);
1680 w->active = 0; 2256 w->active = 0;
1681} 2257}
1688 int fd = w->fd; 2264 int fd = w->fd;
1689 2265
1690 if (expect_false (ev_is_active (w))) 2266 if (expect_false (ev_is_active (w)))
1691 return; 2267 return;
1692 2268
1693 assert (("ev_io_start called with negative fd", fd >= 0)); 2269 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2270 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2271
2272 EV_FREQUENT_CHECK;
1694 2273
1695 ev_start (EV_A_ (W)w, 1); 2274 ev_start (EV_A_ (W)w, 1);
1696 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2275 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1697 wlist_add (&anfds[fd].head, (WL)w); 2276 wlist_add (&anfds[fd].head, (WL)w);
1698 2277
1699 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2278 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1700 w->events &= ~EV_IOFDSET; 2279 w->events &= ~EV__IOFDSET;
2280
2281 EV_FREQUENT_CHECK;
1701} 2282}
1702 2283
1703void noinline 2284void noinline
1704ev_io_stop (EV_P_ ev_io *w) 2285ev_io_stop (EV_P_ ev_io *w)
1705{ 2286{
1706 clear_pending (EV_A_ (W)w); 2287 clear_pending (EV_A_ (W)w);
1707 if (expect_false (!ev_is_active (w))) 2288 if (expect_false (!ev_is_active (w)))
1708 return; 2289 return;
1709 2290
1710 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2291 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2292
2293 EV_FREQUENT_CHECK;
1711 2294
1712 wlist_del (&anfds[w->fd].head, (WL)w); 2295 wlist_del (&anfds[w->fd].head, (WL)w);
1713 ev_stop (EV_A_ (W)w); 2296 ev_stop (EV_A_ (W)w);
1714 2297
1715 fd_change (EV_A_ w->fd, 1); 2298 fd_change (EV_A_ w->fd, 1);
2299
2300 EV_FREQUENT_CHECK;
1716} 2301}
1717 2302
1718void noinline 2303void noinline
1719ev_timer_start (EV_P_ ev_timer *w) 2304ev_timer_start (EV_P_ ev_timer *w)
1720{ 2305{
1721 if (expect_false (ev_is_active (w))) 2306 if (expect_false (ev_is_active (w)))
1722 return; 2307 return;
1723 2308
1724 ((WT)w)->at += mn_now; 2309 ev_at (w) += mn_now;
1725 2310
1726 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2311 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1727 2312
2313 EV_FREQUENT_CHECK;
2314
2315 ++timercnt;
1728 ev_start (EV_A_ (W)w, ++timercnt); 2316 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1729 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2317 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1730 timers [timercnt - 1] = (WT)w; 2318 ANHE_w (timers [ev_active (w)]) = (WT)w;
1731 upheap (timers, timercnt - 1); 2319 ANHE_at_cache (timers [ev_active (w)]);
2320 upheap (timers, ev_active (w));
1732 2321
2322 EV_FREQUENT_CHECK;
2323
1733 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2324 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1734} 2325}
1735 2326
1736void noinline 2327void noinline
1737ev_timer_stop (EV_P_ ev_timer *w) 2328ev_timer_stop (EV_P_ ev_timer *w)
1738{ 2329{
1739 clear_pending (EV_A_ (W)w); 2330 clear_pending (EV_A_ (W)w);
1740 if (expect_false (!ev_is_active (w))) 2331 if (expect_false (!ev_is_active (w)))
1741 return; 2332 return;
1742 2333
1743 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2334 EV_FREQUENT_CHECK;
1744 2335
1745 { 2336 {
1746 int active = ((W)w)->active; 2337 int active = ev_active (w);
1747 2338
2339 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2340
2341 --timercnt;
2342
1748 if (expect_true (--active < --timercnt)) 2343 if (expect_true (active < timercnt + HEAP0))
1749 { 2344 {
1750 timers [active] = timers [timercnt]; 2345 timers [active] = timers [timercnt + HEAP0];
1751 adjustheap (timers, timercnt, active); 2346 adjustheap (timers, timercnt, active);
1752 } 2347 }
1753 } 2348 }
1754 2349
1755 ((WT)w)->at -= mn_now; 2350 EV_FREQUENT_CHECK;
2351
2352 ev_at (w) -= mn_now;
1756 2353
1757 ev_stop (EV_A_ (W)w); 2354 ev_stop (EV_A_ (W)w);
1758} 2355}
1759 2356
1760void noinline 2357void noinline
1761ev_timer_again (EV_P_ ev_timer *w) 2358ev_timer_again (EV_P_ ev_timer *w)
1762{ 2359{
2360 EV_FREQUENT_CHECK;
2361
1763 if (ev_is_active (w)) 2362 if (ev_is_active (w))
1764 { 2363 {
1765 if (w->repeat) 2364 if (w->repeat)
1766 { 2365 {
1767 ((WT)w)->at = mn_now + w->repeat; 2366 ev_at (w) = mn_now + w->repeat;
2367 ANHE_at_cache (timers [ev_active (w)]);
1768 adjustheap (timers, timercnt, ((W)w)->active - 1); 2368 adjustheap (timers, timercnt, ev_active (w));
1769 } 2369 }
1770 else 2370 else
1771 ev_timer_stop (EV_A_ w); 2371 ev_timer_stop (EV_A_ w);
1772 } 2372 }
1773 else if (w->repeat) 2373 else if (w->repeat)
1774 { 2374 {
1775 w->at = w->repeat; 2375 ev_at (w) = w->repeat;
1776 ev_timer_start (EV_A_ w); 2376 ev_timer_start (EV_A_ w);
1777 } 2377 }
2378
2379 EV_FREQUENT_CHECK;
1778} 2380}
1779 2381
1780#if EV_PERIODIC_ENABLE 2382#if EV_PERIODIC_ENABLE
1781void noinline 2383void noinline
1782ev_periodic_start (EV_P_ ev_periodic *w) 2384ev_periodic_start (EV_P_ ev_periodic *w)
1783{ 2385{
1784 if (expect_false (ev_is_active (w))) 2386 if (expect_false (ev_is_active (w)))
1785 return; 2387 return;
1786 2388
1787 if (w->reschedule_cb) 2389 if (w->reschedule_cb)
1788 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2390 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1789 else if (w->interval) 2391 else if (w->interval)
1790 { 2392 {
1791 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2393 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1792 /* this formula differs from the one in periodic_reify because we do not always round up */ 2394 /* this formula differs from the one in periodic_reify because we do not always round up */
1793 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2395 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1794 } 2396 }
1795 else 2397 else
1796 ((WT)w)->at = w->offset; 2398 ev_at (w) = w->offset;
1797 2399
2400 EV_FREQUENT_CHECK;
2401
2402 ++periodiccnt;
1798 ev_start (EV_A_ (W)w, ++periodiccnt); 2403 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1799 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2404 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1800 periodics [periodiccnt - 1] = (WT)w; 2405 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1801 upheap (periodics, periodiccnt - 1); 2406 ANHE_at_cache (periodics [ev_active (w)]);
2407 upheap (periodics, ev_active (w));
1802 2408
2409 EV_FREQUENT_CHECK;
2410
1803 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2411 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1804} 2412}
1805 2413
1806void noinline 2414void noinline
1807ev_periodic_stop (EV_P_ ev_periodic *w) 2415ev_periodic_stop (EV_P_ ev_periodic *w)
1808{ 2416{
1809 clear_pending (EV_A_ (W)w); 2417 clear_pending (EV_A_ (W)w);
1810 if (expect_false (!ev_is_active (w))) 2418 if (expect_false (!ev_is_active (w)))
1811 return; 2419 return;
1812 2420
1813 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2421 EV_FREQUENT_CHECK;
1814 2422
1815 { 2423 {
1816 int active = ((W)w)->active; 2424 int active = ev_active (w);
1817 2425
2426 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2427
2428 --periodiccnt;
2429
1818 if (expect_true (--active < --periodiccnt)) 2430 if (expect_true (active < periodiccnt + HEAP0))
1819 { 2431 {
1820 periodics [active] = periodics [periodiccnt]; 2432 periodics [active] = periodics [periodiccnt + HEAP0];
1821 adjustheap (periodics, periodiccnt, active); 2433 adjustheap (periodics, periodiccnt, active);
1822 } 2434 }
1823 } 2435 }
1824 2436
2437 EV_FREQUENT_CHECK;
2438
1825 ev_stop (EV_A_ (W)w); 2439 ev_stop (EV_A_ (W)w);
1826} 2440}
1827 2441
1828void noinline 2442void noinline
1829ev_periodic_again (EV_P_ ev_periodic *w) 2443ev_periodic_again (EV_P_ ev_periodic *w)
1840 2454
1841void noinline 2455void noinline
1842ev_signal_start (EV_P_ ev_signal *w) 2456ev_signal_start (EV_P_ ev_signal *w)
1843{ 2457{
1844#if EV_MULTIPLICITY 2458#if EV_MULTIPLICITY
1845 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2459 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1846#endif 2460#endif
1847 if (expect_false (ev_is_active (w))) 2461 if (expect_false (ev_is_active (w)))
1848 return; 2462 return;
1849 2463
1850 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2464 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2465
2466 evpipe_init (EV_A);
2467
2468 EV_FREQUENT_CHECK;
1851 2469
1852 { 2470 {
1853#ifndef _WIN32 2471#ifndef _WIN32
1854 sigset_t full, prev; 2472 sigset_t full, prev;
1855 sigfillset (&full); 2473 sigfillset (&full);
1856 sigprocmask (SIG_SETMASK, &full, &prev); 2474 sigprocmask (SIG_SETMASK, &full, &prev);
1857#endif 2475#endif
1858 2476
1859 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2477 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
1860 2478
1861#ifndef _WIN32 2479#ifndef _WIN32
1862 sigprocmask (SIG_SETMASK, &prev, 0); 2480 sigprocmask (SIG_SETMASK, &prev, 0);
1863#endif 2481#endif
1864 } 2482 }
1867 wlist_add (&signals [w->signum - 1].head, (WL)w); 2485 wlist_add (&signals [w->signum - 1].head, (WL)w);
1868 2486
1869 if (!((WL)w)->next) 2487 if (!((WL)w)->next)
1870 { 2488 {
1871#if _WIN32 2489#if _WIN32
1872 signal (w->signum, sighandler); 2490 signal (w->signum, ev_sighandler);
1873#else 2491#else
1874 struct sigaction sa; 2492 struct sigaction sa;
1875 sa.sa_handler = sighandler; 2493 sa.sa_handler = ev_sighandler;
1876 sigfillset (&sa.sa_mask); 2494 sigfillset (&sa.sa_mask);
1877 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2495 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1878 sigaction (w->signum, &sa, 0); 2496 sigaction (w->signum, &sa, 0);
1879#endif 2497#endif
1880 } 2498 }
2499
2500 EV_FREQUENT_CHECK;
1881} 2501}
1882 2502
1883void noinline 2503void noinline
1884ev_signal_stop (EV_P_ ev_signal *w) 2504ev_signal_stop (EV_P_ ev_signal *w)
1885{ 2505{
1886 clear_pending (EV_A_ (W)w); 2506 clear_pending (EV_A_ (W)w);
1887 if (expect_false (!ev_is_active (w))) 2507 if (expect_false (!ev_is_active (w)))
1888 return; 2508 return;
1889 2509
2510 EV_FREQUENT_CHECK;
2511
1890 wlist_del (&signals [w->signum - 1].head, (WL)w); 2512 wlist_del (&signals [w->signum - 1].head, (WL)w);
1891 ev_stop (EV_A_ (W)w); 2513 ev_stop (EV_A_ (W)w);
1892 2514
1893 if (!signals [w->signum - 1].head) 2515 if (!signals [w->signum - 1].head)
1894 signal (w->signum, SIG_DFL); 2516 signal (w->signum, SIG_DFL);
2517
2518 EV_FREQUENT_CHECK;
1895} 2519}
1896 2520
1897void 2521void
1898ev_child_start (EV_P_ ev_child *w) 2522ev_child_start (EV_P_ ev_child *w)
1899{ 2523{
1900#if EV_MULTIPLICITY 2524#if EV_MULTIPLICITY
1901 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2525 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1902#endif 2526#endif
1903 if (expect_false (ev_is_active (w))) 2527 if (expect_false (ev_is_active (w)))
1904 return; 2528 return;
1905 2529
2530 EV_FREQUENT_CHECK;
2531
1906 ev_start (EV_A_ (W)w, 1); 2532 ev_start (EV_A_ (W)w, 1);
1907 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2533 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2534
2535 EV_FREQUENT_CHECK;
1908} 2536}
1909 2537
1910void 2538void
1911ev_child_stop (EV_P_ ev_child *w) 2539ev_child_stop (EV_P_ ev_child *w)
1912{ 2540{
1913 clear_pending (EV_A_ (W)w); 2541 clear_pending (EV_A_ (W)w);
1914 if (expect_false (!ev_is_active (w))) 2542 if (expect_false (!ev_is_active (w)))
1915 return; 2543 return;
1916 2544
2545 EV_FREQUENT_CHECK;
2546
1917 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2547 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1918 ev_stop (EV_A_ (W)w); 2548 ev_stop (EV_A_ (W)w);
2549
2550 EV_FREQUENT_CHECK;
1919} 2551}
1920 2552
1921#if EV_STAT_ENABLE 2553#if EV_STAT_ENABLE
1922 2554
1923# ifdef _WIN32 2555# ifdef _WIN32
1924# undef lstat 2556# undef lstat
1925# define lstat(a,b) _stati64 (a,b) 2557# define lstat(a,b) _stati64 (a,b)
1926# endif 2558# endif
1927 2559
1928#define DEF_STAT_INTERVAL 5.0074891 2560#define DEF_STAT_INTERVAL 5.0074891
2561#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1929#define MIN_STAT_INTERVAL 0.1074891 2562#define MIN_STAT_INTERVAL 0.1074891
1930 2563
1931static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2564static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1932 2565
1933#if EV_USE_INOTIFY 2566#if EV_USE_INOTIFY
1934# define EV_INOTIFY_BUFSIZE 8192 2567# define EV_INOTIFY_BUFSIZE 8192
1938{ 2571{
1939 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2572 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1940 2573
1941 if (w->wd < 0) 2574 if (w->wd < 0)
1942 { 2575 {
2576 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1943 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2577 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1944 2578
1945 /* monitor some parent directory for speedup hints */ 2579 /* monitor some parent directory for speedup hints */
2580 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2581 /* but an efficiency issue only */
1946 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2582 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1947 { 2583 {
1948 char path [4096]; 2584 char path [4096];
1949 strcpy (path, w->path); 2585 strcpy (path, w->path);
1950 2586
1953 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2589 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1954 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2590 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1955 2591
1956 char *pend = strrchr (path, '/'); 2592 char *pend = strrchr (path, '/');
1957 2593
1958 if (!pend) 2594 if (!pend || pend == path)
1959 break; /* whoops, no '/', complain to your admin */ 2595 break;
1960 2596
1961 *pend = 0; 2597 *pend = 0;
1962 w->wd = inotify_add_watch (fs_fd, path, mask); 2598 w->wd = inotify_add_watch (fs_fd, path, mask);
1963 } 2599 }
1964 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2600 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1965 } 2601 }
1966 } 2602 }
1967 else
1968 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1969 2603
1970 if (w->wd >= 0) 2604 if (w->wd >= 0)
2605 {
1971 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2606 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2607
2608 /* now local changes will be tracked by inotify, but remote changes won't */
2609 /* unless the filesystem it known to be local, we therefore still poll */
2610 /* also do poll on <2.6.25, but with normal frequency */
2611 struct statfs sfs;
2612
2613 if (fs_2625 && !statfs (w->path, &sfs))
2614 if (sfs.f_type == 0x1373 /* devfs */
2615 || sfs.f_type == 0xEF53 /* ext2/3 */
2616 || sfs.f_type == 0x3153464a /* jfs */
2617 || sfs.f_type == 0x52654973 /* reiser3 */
2618 || sfs.f_type == 0x01021994 /* tempfs */
2619 || sfs.f_type == 0x58465342 /* xfs */)
2620 return;
2621
2622 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2623 ev_timer_again (EV_A_ &w->timer);
2624 }
1972} 2625}
1973 2626
1974static void noinline 2627static void noinline
1975infy_del (EV_P_ ev_stat *w) 2628infy_del (EV_P_ ev_stat *w)
1976{ 2629{
1990 2643
1991static void noinline 2644static void noinline
1992infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2645infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1993{ 2646{
1994 if (slot < 0) 2647 if (slot < 0)
1995 /* overflow, need to check for all hahs slots */ 2648 /* overflow, need to check for all hash slots */
1996 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2649 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1997 infy_wd (EV_A_ slot, wd, ev); 2650 infy_wd (EV_A_ slot, wd, ev);
1998 else 2651 else
1999 { 2652 {
2000 WL w_; 2653 WL w_;
2006 2659
2007 if (w->wd == wd || wd == -1) 2660 if (w->wd == wd || wd == -1)
2008 { 2661 {
2009 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2662 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2010 { 2663 {
2664 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2011 w->wd = -1; 2665 w->wd = -1;
2012 infy_add (EV_A_ w); /* re-add, no matter what */ 2666 infy_add (EV_A_ w); /* re-add, no matter what */
2013 } 2667 }
2014 2668
2015 stat_timer_cb (EV_A_ &w->timer, 0); 2669 stat_timer_cb (EV_A_ &w->timer, 0);
2028 2682
2029 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2683 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2030 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2684 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2031} 2685}
2032 2686
2033void inline_size 2687inline_size void
2688check_2625 (EV_P)
2689{
2690 /* kernels < 2.6.25 are borked
2691 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2692 */
2693 struct utsname buf;
2694 int major, minor, micro;
2695
2696 if (uname (&buf))
2697 return;
2698
2699 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2700 return;
2701
2702 if (major < 2
2703 || (major == 2 && minor < 6)
2704 || (major == 2 && minor == 6 && micro < 25))
2705 return;
2706
2707 fs_2625 = 1;
2708}
2709
2710inline_size void
2034infy_init (EV_P) 2711infy_init (EV_P)
2035{ 2712{
2036 if (fs_fd != -2) 2713 if (fs_fd != -2)
2037 return; 2714 return;
2715
2716 fs_fd = -1;
2717
2718 check_2625 (EV_A);
2038 2719
2039 fs_fd = inotify_init (); 2720 fs_fd = inotify_init ();
2040 2721
2041 if (fs_fd >= 0) 2722 if (fs_fd >= 0)
2042 { 2723 {
2044 ev_set_priority (&fs_w, EV_MAXPRI); 2725 ev_set_priority (&fs_w, EV_MAXPRI);
2045 ev_io_start (EV_A_ &fs_w); 2726 ev_io_start (EV_A_ &fs_w);
2046 } 2727 }
2047} 2728}
2048 2729
2049void inline_size 2730inline_size void
2050infy_fork (EV_P) 2731infy_fork (EV_P)
2051{ 2732{
2052 int slot; 2733 int slot;
2053 2734
2054 if (fs_fd < 0) 2735 if (fs_fd < 0)
2070 w->wd = -1; 2751 w->wd = -1;
2071 2752
2072 if (fs_fd >= 0) 2753 if (fs_fd >= 0)
2073 infy_add (EV_A_ w); /* re-add, no matter what */ 2754 infy_add (EV_A_ w); /* re-add, no matter what */
2074 else 2755 else
2075 ev_timer_start (EV_A_ &w->timer); 2756 ev_timer_again (EV_A_ &w->timer);
2076 } 2757 }
2077
2078 } 2758 }
2079} 2759}
2080 2760
2761#endif
2762
2763#ifdef _WIN32
2764# define EV_LSTAT(p,b) _stati64 (p, b)
2765#else
2766# define EV_LSTAT(p,b) lstat (p, b)
2081#endif 2767#endif
2082 2768
2083void 2769void
2084ev_stat_stat (EV_P_ ev_stat *w) 2770ev_stat_stat (EV_P_ ev_stat *w)
2085{ 2771{
2112 || w->prev.st_atime != w->attr.st_atime 2798 || w->prev.st_atime != w->attr.st_atime
2113 || w->prev.st_mtime != w->attr.st_mtime 2799 || w->prev.st_mtime != w->attr.st_mtime
2114 || w->prev.st_ctime != w->attr.st_ctime 2800 || w->prev.st_ctime != w->attr.st_ctime
2115 ) { 2801 ) {
2116 #if EV_USE_INOTIFY 2802 #if EV_USE_INOTIFY
2803 if (fs_fd >= 0)
2804 {
2117 infy_del (EV_A_ w); 2805 infy_del (EV_A_ w);
2118 infy_add (EV_A_ w); 2806 infy_add (EV_A_ w);
2119 ev_stat_stat (EV_A_ w); /* avoid race... */ 2807 ev_stat_stat (EV_A_ w); /* avoid race... */
2808 }
2120 #endif 2809 #endif
2121 2810
2122 ev_feed_event (EV_A_ w, EV_STAT); 2811 ev_feed_event (EV_A_ w, EV_STAT);
2123 } 2812 }
2124} 2813}
2127ev_stat_start (EV_P_ ev_stat *w) 2816ev_stat_start (EV_P_ ev_stat *w)
2128{ 2817{
2129 if (expect_false (ev_is_active (w))) 2818 if (expect_false (ev_is_active (w)))
2130 return; 2819 return;
2131 2820
2132 /* since we use memcmp, we need to clear any padding data etc. */
2133 memset (&w->prev, 0, sizeof (ev_statdata));
2134 memset (&w->attr, 0, sizeof (ev_statdata));
2135
2136 ev_stat_stat (EV_A_ w); 2821 ev_stat_stat (EV_A_ w);
2137 2822
2823 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2138 if (w->interval < MIN_STAT_INTERVAL) 2824 w->interval = MIN_STAT_INTERVAL;
2139 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2140 2825
2141 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2826 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2142 ev_set_priority (&w->timer, ev_priority (w)); 2827 ev_set_priority (&w->timer, ev_priority (w));
2143 2828
2144#if EV_USE_INOTIFY 2829#if EV_USE_INOTIFY
2145 infy_init (EV_A); 2830 infy_init (EV_A);
2146 2831
2147 if (fs_fd >= 0) 2832 if (fs_fd >= 0)
2148 infy_add (EV_A_ w); 2833 infy_add (EV_A_ w);
2149 else 2834 else
2150#endif 2835#endif
2151 ev_timer_start (EV_A_ &w->timer); 2836 ev_timer_again (EV_A_ &w->timer);
2152 2837
2153 ev_start (EV_A_ (W)w, 1); 2838 ev_start (EV_A_ (W)w, 1);
2839
2840 EV_FREQUENT_CHECK;
2154} 2841}
2155 2842
2156void 2843void
2157ev_stat_stop (EV_P_ ev_stat *w) 2844ev_stat_stop (EV_P_ ev_stat *w)
2158{ 2845{
2159 clear_pending (EV_A_ (W)w); 2846 clear_pending (EV_A_ (W)w);
2160 if (expect_false (!ev_is_active (w))) 2847 if (expect_false (!ev_is_active (w)))
2161 return; 2848 return;
2162 2849
2850 EV_FREQUENT_CHECK;
2851
2163#if EV_USE_INOTIFY 2852#if EV_USE_INOTIFY
2164 infy_del (EV_A_ w); 2853 infy_del (EV_A_ w);
2165#endif 2854#endif
2166 ev_timer_stop (EV_A_ &w->timer); 2855 ev_timer_stop (EV_A_ &w->timer);
2167 2856
2168 ev_stop (EV_A_ (W)w); 2857 ev_stop (EV_A_ (W)w);
2858
2859 EV_FREQUENT_CHECK;
2169} 2860}
2170#endif 2861#endif
2171 2862
2172#if EV_IDLE_ENABLE 2863#if EV_IDLE_ENABLE
2173void 2864void
2175{ 2866{
2176 if (expect_false (ev_is_active (w))) 2867 if (expect_false (ev_is_active (w)))
2177 return; 2868 return;
2178 2869
2179 pri_adjust (EV_A_ (W)w); 2870 pri_adjust (EV_A_ (W)w);
2871
2872 EV_FREQUENT_CHECK;
2180 2873
2181 { 2874 {
2182 int active = ++idlecnt [ABSPRI (w)]; 2875 int active = ++idlecnt [ABSPRI (w)];
2183 2876
2184 ++idleall; 2877 ++idleall;
2185 ev_start (EV_A_ (W)w, active); 2878 ev_start (EV_A_ (W)w, active);
2186 2879
2187 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2880 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2188 idles [ABSPRI (w)][active - 1] = w; 2881 idles [ABSPRI (w)][active - 1] = w;
2189 } 2882 }
2883
2884 EV_FREQUENT_CHECK;
2190} 2885}
2191 2886
2192void 2887void
2193ev_idle_stop (EV_P_ ev_idle *w) 2888ev_idle_stop (EV_P_ ev_idle *w)
2194{ 2889{
2195 clear_pending (EV_A_ (W)w); 2890 clear_pending (EV_A_ (W)w);
2196 if (expect_false (!ev_is_active (w))) 2891 if (expect_false (!ev_is_active (w)))
2197 return; 2892 return;
2198 2893
2894 EV_FREQUENT_CHECK;
2895
2199 { 2896 {
2200 int active = ((W)w)->active; 2897 int active = ev_active (w);
2201 2898
2202 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2899 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2203 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2900 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2204 2901
2205 ev_stop (EV_A_ (W)w); 2902 ev_stop (EV_A_ (W)w);
2206 --idleall; 2903 --idleall;
2207 } 2904 }
2905
2906 EV_FREQUENT_CHECK;
2208} 2907}
2209#endif 2908#endif
2210 2909
2211void 2910void
2212ev_prepare_start (EV_P_ ev_prepare *w) 2911ev_prepare_start (EV_P_ ev_prepare *w)
2213{ 2912{
2214 if (expect_false (ev_is_active (w))) 2913 if (expect_false (ev_is_active (w)))
2215 return; 2914 return;
2915
2916 EV_FREQUENT_CHECK;
2216 2917
2217 ev_start (EV_A_ (W)w, ++preparecnt); 2918 ev_start (EV_A_ (W)w, ++preparecnt);
2218 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2919 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2219 prepares [preparecnt - 1] = w; 2920 prepares [preparecnt - 1] = w;
2921
2922 EV_FREQUENT_CHECK;
2220} 2923}
2221 2924
2222void 2925void
2223ev_prepare_stop (EV_P_ ev_prepare *w) 2926ev_prepare_stop (EV_P_ ev_prepare *w)
2224{ 2927{
2225 clear_pending (EV_A_ (W)w); 2928 clear_pending (EV_A_ (W)w);
2226 if (expect_false (!ev_is_active (w))) 2929 if (expect_false (!ev_is_active (w)))
2227 return; 2930 return;
2228 2931
2932 EV_FREQUENT_CHECK;
2933
2229 { 2934 {
2230 int active = ((W)w)->active; 2935 int active = ev_active (w);
2936
2231 prepares [active - 1] = prepares [--preparecnt]; 2937 prepares [active - 1] = prepares [--preparecnt];
2232 ((W)prepares [active - 1])->active = active; 2938 ev_active (prepares [active - 1]) = active;
2233 } 2939 }
2234 2940
2235 ev_stop (EV_A_ (W)w); 2941 ev_stop (EV_A_ (W)w);
2942
2943 EV_FREQUENT_CHECK;
2236} 2944}
2237 2945
2238void 2946void
2239ev_check_start (EV_P_ ev_check *w) 2947ev_check_start (EV_P_ ev_check *w)
2240{ 2948{
2241 if (expect_false (ev_is_active (w))) 2949 if (expect_false (ev_is_active (w)))
2242 return; 2950 return;
2951
2952 EV_FREQUENT_CHECK;
2243 2953
2244 ev_start (EV_A_ (W)w, ++checkcnt); 2954 ev_start (EV_A_ (W)w, ++checkcnt);
2245 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2955 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2246 checks [checkcnt - 1] = w; 2956 checks [checkcnt - 1] = w;
2957
2958 EV_FREQUENT_CHECK;
2247} 2959}
2248 2960
2249void 2961void
2250ev_check_stop (EV_P_ ev_check *w) 2962ev_check_stop (EV_P_ ev_check *w)
2251{ 2963{
2252 clear_pending (EV_A_ (W)w); 2964 clear_pending (EV_A_ (W)w);
2253 if (expect_false (!ev_is_active (w))) 2965 if (expect_false (!ev_is_active (w)))
2254 return; 2966 return;
2255 2967
2968 EV_FREQUENT_CHECK;
2969
2256 { 2970 {
2257 int active = ((W)w)->active; 2971 int active = ev_active (w);
2972
2258 checks [active - 1] = checks [--checkcnt]; 2973 checks [active - 1] = checks [--checkcnt];
2259 ((W)checks [active - 1])->active = active; 2974 ev_active (checks [active - 1]) = active;
2260 } 2975 }
2261 2976
2262 ev_stop (EV_A_ (W)w); 2977 ev_stop (EV_A_ (W)w);
2978
2979 EV_FREQUENT_CHECK;
2263} 2980}
2264 2981
2265#if EV_EMBED_ENABLE 2982#if EV_EMBED_ENABLE
2266void noinline 2983void noinline
2267ev_embed_sweep (EV_P_ ev_embed *w) 2984ev_embed_sweep (EV_P_ ev_embed *w)
2294 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3011 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2295 } 3012 }
2296 } 3013 }
2297} 3014}
2298 3015
3016static void
3017embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3018{
3019 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3020
3021 ev_embed_stop (EV_A_ w);
3022
3023 {
3024 struct ev_loop *loop = w->other;
3025
3026 ev_loop_fork (EV_A);
3027 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3028 }
3029
3030 ev_embed_start (EV_A_ w);
3031}
3032
2299#if 0 3033#if 0
2300static void 3034static void
2301embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3035embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2302{ 3036{
2303 ev_idle_stop (EV_A_ idle); 3037 ev_idle_stop (EV_A_ idle);
2310 if (expect_false (ev_is_active (w))) 3044 if (expect_false (ev_is_active (w)))
2311 return; 3045 return;
2312 3046
2313 { 3047 {
2314 struct ev_loop *loop = w->other; 3048 struct ev_loop *loop = w->other;
2315 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3049 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2316 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3050 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2317 } 3051 }
3052
3053 EV_FREQUENT_CHECK;
2318 3054
2319 ev_set_priority (&w->io, ev_priority (w)); 3055 ev_set_priority (&w->io, ev_priority (w));
2320 ev_io_start (EV_A_ &w->io); 3056 ev_io_start (EV_A_ &w->io);
2321 3057
2322 ev_prepare_init (&w->prepare, embed_prepare_cb); 3058 ev_prepare_init (&w->prepare, embed_prepare_cb);
2323 ev_set_priority (&w->prepare, EV_MINPRI); 3059 ev_set_priority (&w->prepare, EV_MINPRI);
2324 ev_prepare_start (EV_A_ &w->prepare); 3060 ev_prepare_start (EV_A_ &w->prepare);
2325 3061
3062 ev_fork_init (&w->fork, embed_fork_cb);
3063 ev_fork_start (EV_A_ &w->fork);
3064
2326 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3065 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2327 3066
2328 ev_start (EV_A_ (W)w, 1); 3067 ev_start (EV_A_ (W)w, 1);
3068
3069 EV_FREQUENT_CHECK;
2329} 3070}
2330 3071
2331void 3072void
2332ev_embed_stop (EV_P_ ev_embed *w) 3073ev_embed_stop (EV_P_ ev_embed *w)
2333{ 3074{
2334 clear_pending (EV_A_ (W)w); 3075 clear_pending (EV_A_ (W)w);
2335 if (expect_false (!ev_is_active (w))) 3076 if (expect_false (!ev_is_active (w)))
2336 return; 3077 return;
2337 3078
3079 EV_FREQUENT_CHECK;
3080
2338 ev_io_stop (EV_A_ &w->io); 3081 ev_io_stop (EV_A_ &w->io);
2339 ev_prepare_stop (EV_A_ &w->prepare); 3082 ev_prepare_stop (EV_A_ &w->prepare);
3083 ev_fork_stop (EV_A_ &w->fork);
2340 3084
2341 ev_stop (EV_A_ (W)w); 3085 EV_FREQUENT_CHECK;
2342} 3086}
2343#endif 3087#endif
2344 3088
2345#if EV_FORK_ENABLE 3089#if EV_FORK_ENABLE
2346void 3090void
2347ev_fork_start (EV_P_ ev_fork *w) 3091ev_fork_start (EV_P_ ev_fork *w)
2348{ 3092{
2349 if (expect_false (ev_is_active (w))) 3093 if (expect_false (ev_is_active (w)))
2350 return; 3094 return;
3095
3096 EV_FREQUENT_CHECK;
2351 3097
2352 ev_start (EV_A_ (W)w, ++forkcnt); 3098 ev_start (EV_A_ (W)w, ++forkcnt);
2353 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3099 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2354 forks [forkcnt - 1] = w; 3100 forks [forkcnt - 1] = w;
3101
3102 EV_FREQUENT_CHECK;
2355} 3103}
2356 3104
2357void 3105void
2358ev_fork_stop (EV_P_ ev_fork *w) 3106ev_fork_stop (EV_P_ ev_fork *w)
2359{ 3107{
2360 clear_pending (EV_A_ (W)w); 3108 clear_pending (EV_A_ (W)w);
2361 if (expect_false (!ev_is_active (w))) 3109 if (expect_false (!ev_is_active (w)))
2362 return; 3110 return;
2363 3111
3112 EV_FREQUENT_CHECK;
3113
2364 { 3114 {
2365 int active = ((W)w)->active; 3115 int active = ev_active (w);
3116
2366 forks [active - 1] = forks [--forkcnt]; 3117 forks [active - 1] = forks [--forkcnt];
2367 ((W)forks [active - 1])->active = active; 3118 ev_active (forks [active - 1]) = active;
2368 } 3119 }
2369 3120
2370 ev_stop (EV_A_ (W)w); 3121 ev_stop (EV_A_ (W)w);
3122
3123 EV_FREQUENT_CHECK;
3124}
3125#endif
3126
3127#if EV_ASYNC_ENABLE
3128void
3129ev_async_start (EV_P_ ev_async *w)
3130{
3131 if (expect_false (ev_is_active (w)))
3132 return;
3133
3134 evpipe_init (EV_A);
3135
3136 EV_FREQUENT_CHECK;
3137
3138 ev_start (EV_A_ (W)w, ++asynccnt);
3139 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3140 asyncs [asynccnt - 1] = w;
3141
3142 EV_FREQUENT_CHECK;
3143}
3144
3145void
3146ev_async_stop (EV_P_ ev_async *w)
3147{
3148 clear_pending (EV_A_ (W)w);
3149 if (expect_false (!ev_is_active (w)))
3150 return;
3151
3152 EV_FREQUENT_CHECK;
3153
3154 {
3155 int active = ev_active (w);
3156
3157 asyncs [active - 1] = asyncs [--asynccnt];
3158 ev_active (asyncs [active - 1]) = active;
3159 }
3160
3161 ev_stop (EV_A_ (W)w);
3162
3163 EV_FREQUENT_CHECK;
3164}
3165
3166void
3167ev_async_send (EV_P_ ev_async *w)
3168{
3169 w->sent = 1;
3170 evpipe_write (EV_A_ &gotasync);
2371} 3171}
2372#endif 3172#endif
2373 3173
2374/*****************************************************************************/ 3174/*****************************************************************************/
2375 3175
2385once_cb (EV_P_ struct ev_once *once, int revents) 3185once_cb (EV_P_ struct ev_once *once, int revents)
2386{ 3186{
2387 void (*cb)(int revents, void *arg) = once->cb; 3187 void (*cb)(int revents, void *arg) = once->cb;
2388 void *arg = once->arg; 3188 void *arg = once->arg;
2389 3189
2390 ev_io_stop (EV_A_ &once->io); 3190 ev_io_stop (EV_A_ &once->io);
2391 ev_timer_stop (EV_A_ &once->to); 3191 ev_timer_stop (EV_A_ &once->to);
2392 ev_free (once); 3192 ev_free (once);
2393 3193
2394 cb (revents, arg); 3194 cb (revents, arg);
2395} 3195}
2396 3196
2397static void 3197static void
2398once_cb_io (EV_P_ ev_io *w, int revents) 3198once_cb_io (EV_P_ ev_io *w, int revents)
2399{ 3199{
2400 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3200 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3201
3202 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2401} 3203}
2402 3204
2403static void 3205static void
2404once_cb_to (EV_P_ ev_timer *w, int revents) 3206once_cb_to (EV_P_ ev_timer *w, int revents)
2405{ 3207{
2406 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3208 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3209
3210 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2407} 3211}
2408 3212
2409void 3213void
2410ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3214ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2411{ 3215{
2433 ev_timer_set (&once->to, timeout, 0.); 3237 ev_timer_set (&once->to, timeout, 0.);
2434 ev_timer_start (EV_A_ &once->to); 3238 ev_timer_start (EV_A_ &once->to);
2435 } 3239 }
2436} 3240}
2437 3241
3242/*****************************************************************************/
3243
3244#if EV_WALK_ENABLE
3245void
3246ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3247{
3248 int i, j;
3249 ev_watcher_list *wl, *wn;
3250
3251 if (types & (EV_IO | EV_EMBED))
3252 for (i = 0; i < anfdmax; ++i)
3253 for (wl = anfds [i].head; wl; )
3254 {
3255 wn = wl->next;
3256
3257#if EV_EMBED_ENABLE
3258 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3259 {
3260 if (types & EV_EMBED)
3261 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3262 }
3263 else
3264#endif
3265#if EV_USE_INOTIFY
3266 if (ev_cb ((ev_io *)wl) == infy_cb)
3267 ;
3268 else
3269#endif
3270 if ((ev_io *)wl != &pipe_w)
3271 if (types & EV_IO)
3272 cb (EV_A_ EV_IO, wl);
3273
3274 wl = wn;
3275 }
3276
3277 if (types & (EV_TIMER | EV_STAT))
3278 for (i = timercnt + HEAP0; i-- > HEAP0; )
3279#if EV_STAT_ENABLE
3280 /*TODO: timer is not always active*/
3281 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3282 {
3283 if (types & EV_STAT)
3284 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3285 }
3286 else
3287#endif
3288 if (types & EV_TIMER)
3289 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3290
3291#if EV_PERIODIC_ENABLE
3292 if (types & EV_PERIODIC)
3293 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3294 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3295#endif
3296
3297#if EV_IDLE_ENABLE
3298 if (types & EV_IDLE)
3299 for (j = NUMPRI; i--; )
3300 for (i = idlecnt [j]; i--; )
3301 cb (EV_A_ EV_IDLE, idles [j][i]);
3302#endif
3303
3304#if EV_FORK_ENABLE
3305 if (types & EV_FORK)
3306 for (i = forkcnt; i--; )
3307 if (ev_cb (forks [i]) != embed_fork_cb)
3308 cb (EV_A_ EV_FORK, forks [i]);
3309#endif
3310
3311#if EV_ASYNC_ENABLE
3312 if (types & EV_ASYNC)
3313 for (i = asynccnt; i--; )
3314 cb (EV_A_ EV_ASYNC, asyncs [i]);
3315#endif
3316
3317 if (types & EV_PREPARE)
3318 for (i = preparecnt; i--; )
3319#if EV_EMBED_ENABLE
3320 if (ev_cb (prepares [i]) != embed_prepare_cb)
3321#endif
3322 cb (EV_A_ EV_PREPARE, prepares [i]);
3323
3324 if (types & EV_CHECK)
3325 for (i = checkcnt; i--; )
3326 cb (EV_A_ EV_CHECK, checks [i]);
3327
3328 if (types & EV_SIGNAL)
3329 for (i = 0; i < signalmax; ++i)
3330 for (wl = signals [i].head; wl; )
3331 {
3332 wn = wl->next;
3333 cb (EV_A_ EV_SIGNAL, wl);
3334 wl = wn;
3335 }
3336
3337 if (types & EV_CHILD)
3338 for (i = EV_PID_HASHSIZE; i--; )
3339 for (wl = childs [i]; wl; )
3340 {
3341 wn = wl->next;
3342 cb (EV_A_ EV_CHILD, wl);
3343 wl = wn;
3344 }
3345/* EV_STAT 0x00001000 /* stat data changed */
3346/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3347}
3348#endif
3349
2438#if EV_MULTIPLICITY 3350#if EV_MULTIPLICITY
2439 #include "ev_wrap.h" 3351 #include "ev_wrap.h"
2440#endif 3352#endif
2441 3353
2442#ifdef __cplusplus 3354#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines