ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.220 by root, Sun Apr 6 09:53:17 2008 UTC vs.
Revision 1.289 by root, Sat Jun 6 11:13:16 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
63
52# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
55# endif 67# endif
56# ifndef EV_USE_REALTIME 68# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 0
58# endif 70# endif
59# else 71# else
60# ifndef EV_USE_MONOTONIC 72# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 73# define EV_USE_MONOTONIC 0
62# endif 74# endif
126# define EV_USE_EVENTFD 1 138# define EV_USE_EVENTFD 1
127# else 139# else
128# define EV_USE_EVENTFD 0 140# define EV_USE_EVENTFD 0
129# endif 141# endif
130# endif 142# endif
131 143
132#endif 144#endif
133 145
134#include <math.h> 146#include <math.h>
135#include <stdlib.h> 147#include <stdlib.h>
136#include <fcntl.h> 148#include <fcntl.h>
154#ifndef _WIN32 166#ifndef _WIN32
155# include <sys/time.h> 167# include <sys/time.h>
156# include <sys/wait.h> 168# include <sys/wait.h>
157# include <unistd.h> 169# include <unistd.h>
158#else 170#else
171# include <io.h>
159# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 173# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
163# endif 176# endif
164#endif 177#endif
165 178
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
167 180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
188
168#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
169# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif
170#endif 195#endif
171 196
172#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 199#endif
175 200
176#ifndef EV_USE_NANOSLEEP 201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
177# define EV_USE_NANOSLEEP 0 205# define EV_USE_NANOSLEEP 0
206# endif
178#endif 207#endif
179 208
180#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
182#endif 211#endif
235# else 264# else
236# define EV_USE_EVENTFD 0 265# define EV_USE_EVENTFD 0
237# endif 266# endif
238#endif 267#endif
239 268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 288
242#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
259# include <sys/select.h> 306# include <sys/select.h>
260# endif 307# endif
261#endif 308#endif
262 309
263#if EV_USE_INOTIFY 310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
264# include <sys/inotify.h> 313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
265#endif 319#endif
266 320
267#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 322# include <winsock.h>
269#endif 323#endif
270 324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
271#if EV_USE_EVENTFD 334#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
339# endif
273int eventfd (unsigned int initval, int flags); 340int eventfd (unsigned int initval, int flags);
341# ifdef __cplusplus
342}
343# endif
274#endif 344#endif
275 345
276/**/ 346/**/
347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
277 353
278/* 354/*
279 * This is used to avoid floating point rounding problems. 355 * This is used to avoid floating point rounding problems.
280 * It is added to ev_rt_now when scheduling periodics 356 * It is added to ev_rt_now when scheduling periodics
281 * to ensure progress, time-wise, even when rounding 357 * to ensure progress, time-wise, even when rounding
293# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
294# define noinline __attribute__ ((noinline)) 370# define noinline __attribute__ ((noinline))
295#else 371#else
296# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
297# define noinline 373# define noinline
298# if __STDC_VERSION__ < 199901L 374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
299# define inline 375# define inline
300# endif 376# endif
301#endif 377#endif
302 378
303#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
318 394
319typedef ev_watcher *W; 395typedef ev_watcher *W;
320typedef ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
321typedef ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
322 398
323#if EV_USE_MONOTONIC 399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_REALTIME
324/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
325/* giving it a reasonably high chance of working on typical architetcures */ 404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
326static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
327#endif 410#endif
328 411
329#ifdef _WIN32 412#ifdef _WIN32
330# include "ev_win32.c" 413# include "ev_win32.c"
339{ 422{
340 syserr_cb = cb; 423 syserr_cb = cb;
341} 424}
342 425
343static void noinline 426static void noinline
344syserr (const char *msg) 427ev_syserr (const char *msg)
345{ 428{
346 if (!msg) 429 if (!msg)
347 msg = "(libev) system error"; 430 msg = "(libev) system error";
348 431
349 if (syserr_cb) 432 if (syserr_cb)
353 perror (msg); 436 perror (msg);
354 abort (); 437 abort ();
355 } 438 }
356} 439}
357 440
441static void *
442ev_realloc_emul (void *ptr, long size)
443{
444 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and
446 * the single unix specification, so work around them here.
447 */
448
449 if (size)
450 return realloc (ptr, size);
451
452 free (ptr);
453 return 0;
454}
455
358static void *(*alloc)(void *ptr, long size); 456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
359 457
360void 458void
361ev_set_allocator (void *(*cb)(void *ptr, long size)) 459ev_set_allocator (void *(*cb)(void *ptr, long size))
362{ 460{
363 alloc = cb; 461 alloc = cb;
364} 462}
365 463
366inline_speed void * 464inline_speed void *
367ev_realloc (void *ptr, long size) 465ev_realloc (void *ptr, long size)
368{ 466{
369 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 467 ptr = alloc (ptr, size);
370 468
371 if (!ptr && size) 469 if (!ptr && size)
372 { 470 {
373 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
374 abort (); 472 abort ();
380#define ev_malloc(size) ev_realloc (0, (size)) 478#define ev_malloc(size) ev_realloc (0, (size))
381#define ev_free(ptr) ev_realloc ((ptr), 0) 479#define ev_free(ptr) ev_realloc ((ptr), 0)
382 480
383/*****************************************************************************/ 481/*****************************************************************************/
384 482
483/* file descriptor info structure */
385typedef struct 484typedef struct
386{ 485{
387 WL head; 486 WL head;
388 unsigned char events; 487 unsigned char events; /* the events watched for */
488 unsigned char reify; /* flag set when this ANFD needs reification */
489 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
389 unsigned char reify; 490 unsigned char unused;
491#if EV_USE_EPOLL
492 unsigned int egen; /* generation counter to counter epoll bugs */
493#endif
390#if EV_SELECT_IS_WINSOCKET 494#if EV_SELECT_IS_WINSOCKET
391 SOCKET handle; 495 SOCKET handle;
392#endif 496#endif
393} ANFD; 497} ANFD;
394 498
499/* stores the pending event set for a given watcher */
395typedef struct 500typedef struct
396{ 501{
397 W w; 502 W w;
398 int events; 503 int events; /* the pending event set for the given watcher */
399} ANPENDING; 504} ANPENDING;
400 505
401#if EV_USE_INOTIFY 506#if EV_USE_INOTIFY
507/* hash table entry per inotify-id */
402typedef struct 508typedef struct
403{ 509{
404 WL head; 510 WL head;
405} ANFS; 511} ANFS;
512#endif
513
514/* Heap Entry */
515#if EV_HEAP_CACHE_AT
516 /* a heap element */
517 typedef struct {
518 ev_tstamp at;
519 WT w;
520 } ANHE;
521
522 #define ANHE_w(he) (he).w /* access watcher, read-write */
523 #define ANHE_at(he) (he).at /* access cached at, read-only */
524 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
525#else
526 /* a heap element */
527 typedef WT ANHE;
528
529 #define ANHE_w(he) (he)
530 #define ANHE_at(he) (he)->at
531 #define ANHE_at_cache(he)
406#endif 532#endif
407 533
408#if EV_MULTIPLICITY 534#if EV_MULTIPLICITY
409 535
410 struct ev_loop 536 struct ev_loop
435 561
436ev_tstamp 562ev_tstamp
437ev_time (void) 563ev_time (void)
438{ 564{
439#if EV_USE_REALTIME 565#if EV_USE_REALTIME
566 if (expect_true (have_realtime))
567 {
440 struct timespec ts; 568 struct timespec ts;
441 clock_gettime (CLOCK_REALTIME, &ts); 569 clock_gettime (CLOCK_REALTIME, &ts);
442 return ts.tv_sec + ts.tv_nsec * 1e-9; 570 return ts.tv_sec + ts.tv_nsec * 1e-9;
443#else 571 }
572#endif
573
444 struct timeval tv; 574 struct timeval tv;
445 gettimeofday (&tv, 0); 575 gettimeofday (&tv, 0);
446 return tv.tv_sec + tv.tv_usec * 1e-6; 576 return tv.tv_sec + tv.tv_usec * 1e-6;
447#endif
448} 577}
449 578
450ev_tstamp inline_size 579inline_size ev_tstamp
451get_clock (void) 580get_clock (void)
452{ 581{
453#if EV_USE_MONOTONIC 582#if EV_USE_MONOTONIC
454 if (expect_true (have_monotonic)) 583 if (expect_true (have_monotonic))
455 { 584 {
488 struct timeval tv; 617 struct timeval tv;
489 618
490 tv.tv_sec = (time_t)delay; 619 tv.tv_sec = (time_t)delay;
491 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 620 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
492 621
622 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
623 /* somehting nto guaranteed by newer posix versions, but guaranteed */
624 /* by older ones */
493 select (0, 0, 0, 0, &tv); 625 select (0, 0, 0, 0, &tv);
494#endif 626#endif
495 } 627 }
496} 628}
497 629
498/*****************************************************************************/ 630/*****************************************************************************/
499 631
500int inline_size 632#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
633
634/* find a suitable new size for the given array, */
635/* hopefully by rounding to a ncie-to-malloc size */
636inline_size int
501array_nextsize (int elem, int cur, int cnt) 637array_nextsize (int elem, int cur, int cnt)
502{ 638{
503 int ncur = cur + 1; 639 int ncur = cur + 1;
504 640
505 do 641 do
506 ncur <<= 1; 642 ncur <<= 1;
507 while (cnt > ncur); 643 while (cnt > ncur);
508 644
509 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 645 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
510 if (elem * ncur > 4096) 646 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
511 { 647 {
512 ncur *= elem; 648 ncur *= elem;
513 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 649 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
514 ncur = ncur - sizeof (void *) * 4; 650 ncur = ncur - sizeof (void *) * 4;
515 ncur /= elem; 651 ncur /= elem;
516 } 652 }
517 653
518 return ncur; 654 return ncur;
522array_realloc (int elem, void *base, int *cur, int cnt) 658array_realloc (int elem, void *base, int *cur, int cnt)
523{ 659{
524 *cur = array_nextsize (elem, *cur, cnt); 660 *cur = array_nextsize (elem, *cur, cnt);
525 return ev_realloc (base, elem * *cur); 661 return ev_realloc (base, elem * *cur);
526} 662}
663
664#define array_init_zero(base,count) \
665 memset ((void *)(base), 0, sizeof (*(base)) * (count))
527 666
528#define array_needsize(type,base,cur,cnt,init) \ 667#define array_needsize(type,base,cur,cnt,init) \
529 if (expect_false ((cnt) > (cur))) \ 668 if (expect_false ((cnt) > (cur))) \
530 { \ 669 { \
531 int ocur_ = (cur); \ 670 int ocur_ = (cur); \
543 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 682 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
544 } 683 }
545#endif 684#endif
546 685
547#define array_free(stem, idx) \ 686#define array_free(stem, idx) \
548 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 687 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
549 688
550/*****************************************************************************/ 689/*****************************************************************************/
690
691/* dummy callback for pending events */
692static void noinline
693pendingcb (EV_P_ ev_prepare *w, int revents)
694{
695}
551 696
552void noinline 697void noinline
553ev_feed_event (EV_P_ void *w, int revents) 698ev_feed_event (EV_P_ void *w, int revents)
554{ 699{
555 W w_ = (W)w; 700 W w_ = (W)w;
564 pendings [pri][w_->pending - 1].w = w_; 709 pendings [pri][w_->pending - 1].w = w_;
565 pendings [pri][w_->pending - 1].events = revents; 710 pendings [pri][w_->pending - 1].events = revents;
566 } 711 }
567} 712}
568 713
569void inline_speed 714inline_speed void
715feed_reverse (EV_P_ W w)
716{
717 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
718 rfeeds [rfeedcnt++] = w;
719}
720
721inline_size void
722feed_reverse_done (EV_P_ int revents)
723{
724 do
725 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
726 while (rfeedcnt);
727}
728
729inline_speed void
570queue_events (EV_P_ W *events, int eventcnt, int type) 730queue_events (EV_P_ W *events, int eventcnt, int type)
571{ 731{
572 int i; 732 int i;
573 733
574 for (i = 0; i < eventcnt; ++i) 734 for (i = 0; i < eventcnt; ++i)
575 ev_feed_event (EV_A_ events [i], type); 735 ev_feed_event (EV_A_ events [i], type);
576} 736}
577 737
578/*****************************************************************************/ 738/*****************************************************************************/
579 739
580void inline_size 740inline_speed void
581anfds_init (ANFD *base, int count)
582{
583 while (count--)
584 {
585 base->head = 0;
586 base->events = EV_NONE;
587 base->reify = 0;
588
589 ++base;
590 }
591}
592
593void inline_speed
594fd_event (EV_P_ int fd, int revents) 741fd_event (EV_P_ int fd, int revents)
595{ 742{
596 ANFD *anfd = anfds + fd; 743 ANFD *anfd = anfds + fd;
597 ev_io *w; 744 ev_io *w;
598 745
610{ 757{
611 if (fd >= 0 && fd < anfdmax) 758 if (fd >= 0 && fd < anfdmax)
612 fd_event (EV_A_ fd, revents); 759 fd_event (EV_A_ fd, revents);
613} 760}
614 761
615void inline_size 762/* make sure the external fd watch events are in-sync */
763/* with the kernel/libev internal state */
764inline_size void
616fd_reify (EV_P) 765fd_reify (EV_P)
617{ 766{
618 int i; 767 int i;
619 768
620 for (i = 0; i < fdchangecnt; ++i) 769 for (i = 0; i < fdchangecnt; ++i)
629 events |= (unsigned char)w->events; 778 events |= (unsigned char)w->events;
630 779
631#if EV_SELECT_IS_WINSOCKET 780#if EV_SELECT_IS_WINSOCKET
632 if (events) 781 if (events)
633 { 782 {
634 unsigned long argp; 783 unsigned long arg;
635 #ifdef EV_FD_TO_WIN32_HANDLE 784 #ifdef EV_FD_TO_WIN32_HANDLE
636 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 785 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
637 #else 786 #else
638 anfd->handle = _get_osfhandle (fd); 787 anfd->handle = _get_osfhandle (fd);
639 #endif 788 #endif
640 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 789 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
641 } 790 }
642#endif 791#endif
643 792
644 { 793 {
645 unsigned char o_events = anfd->events; 794 unsigned char o_events = anfd->events;
646 unsigned char o_reify = anfd->reify; 795 unsigned char o_reify = anfd->reify;
647 796
648 anfd->reify = 0; 797 anfd->reify = 0;
649 anfd->events = events; 798 anfd->events = events;
650 799
651 if (o_events != events || o_reify & EV_IOFDSET) 800 if (o_events != events || o_reify & EV__IOFDSET)
652 backend_modify (EV_A_ fd, o_events, events); 801 backend_modify (EV_A_ fd, o_events, events);
653 } 802 }
654 } 803 }
655 804
656 fdchangecnt = 0; 805 fdchangecnt = 0;
657} 806}
658 807
659void inline_size 808/* something about the given fd changed */
809inline_size void
660fd_change (EV_P_ int fd, int flags) 810fd_change (EV_P_ int fd, int flags)
661{ 811{
662 unsigned char reify = anfds [fd].reify; 812 unsigned char reify = anfds [fd].reify;
663 anfds [fd].reify |= flags; 813 anfds [fd].reify |= flags;
664 814
668 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 818 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
669 fdchanges [fdchangecnt - 1] = fd; 819 fdchanges [fdchangecnt - 1] = fd;
670 } 820 }
671} 821}
672 822
673void inline_speed 823/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
824inline_speed void
674fd_kill (EV_P_ int fd) 825fd_kill (EV_P_ int fd)
675{ 826{
676 ev_io *w; 827 ev_io *w;
677 828
678 while ((w = (ev_io *)anfds [fd].head)) 829 while ((w = (ev_io *)anfds [fd].head))
680 ev_io_stop (EV_A_ w); 831 ev_io_stop (EV_A_ w);
681 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 832 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
682 } 833 }
683} 834}
684 835
685int inline_size 836/* check whether the given fd is atcually valid, for error recovery */
837inline_size int
686fd_valid (int fd) 838fd_valid (int fd)
687{ 839{
688#ifdef _WIN32 840#ifdef _WIN32
689 return _get_osfhandle (fd) != -1; 841 return _get_osfhandle (fd) != -1;
690#else 842#else
698{ 850{
699 int fd; 851 int fd;
700 852
701 for (fd = 0; fd < anfdmax; ++fd) 853 for (fd = 0; fd < anfdmax; ++fd)
702 if (anfds [fd].events) 854 if (anfds [fd].events)
703 if (!fd_valid (fd) == -1 && errno == EBADF) 855 if (!fd_valid (fd) && errno == EBADF)
704 fd_kill (EV_A_ fd); 856 fd_kill (EV_A_ fd);
705} 857}
706 858
707/* called on ENOMEM in select/poll to kill some fds and retry */ 859/* called on ENOMEM in select/poll to kill some fds and retry */
708static void noinline 860static void noinline
726 878
727 for (fd = 0; fd < anfdmax; ++fd) 879 for (fd = 0; fd < anfdmax; ++fd)
728 if (anfds [fd].events) 880 if (anfds [fd].events)
729 { 881 {
730 anfds [fd].events = 0; 882 anfds [fd].events = 0;
883 anfds [fd].emask = 0;
731 fd_change (EV_A_ fd, EV_IOFDSET | 1); 884 fd_change (EV_A_ fd, EV__IOFDSET | 1);
732 } 885 }
733} 886}
734 887
735/*****************************************************************************/ 888/*****************************************************************************/
736 889
737void inline_speed 890/*
738upheap (WT *heap, int k) 891 * the heap functions want a real array index. array index 0 uis guaranteed to not
739{ 892 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
740 WT w = heap [k]; 893 * the branching factor of the d-tree.
894 */
741 895
742 while (k) 896/*
743 { 897 * at the moment we allow libev the luxury of two heaps,
744 int p = (k - 1) >> 1; 898 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
899 * which is more cache-efficient.
900 * the difference is about 5% with 50000+ watchers.
901 */
902#if EV_USE_4HEAP
745 903
746 if (heap [p]->at <= w->at) 904#define DHEAP 4
905#define HEAP0 (DHEAP - 1) /* index of first element in heap */
906#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
907#define UPHEAP_DONE(p,k) ((p) == (k))
908
909/* away from the root */
910inline_speed void
911downheap (ANHE *heap, int N, int k)
912{
913 ANHE he = heap [k];
914 ANHE *E = heap + N + HEAP0;
915
916 for (;;)
917 {
918 ev_tstamp minat;
919 ANHE *minpos;
920 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
921
922 /* find minimum child */
923 if (expect_true (pos + DHEAP - 1 < E))
924 {
925 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
926 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
927 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
928 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
929 }
930 else if (pos < E)
931 {
932 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
933 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
934 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
935 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
936 }
937 else
747 break; 938 break;
748 939
940 if (ANHE_at (he) <= minat)
941 break;
942
943 heap [k] = *minpos;
944 ev_active (ANHE_w (*minpos)) = k;
945
946 k = minpos - heap;
947 }
948
949 heap [k] = he;
950 ev_active (ANHE_w (he)) = k;
951}
952
953#else /* 4HEAP */
954
955#define HEAP0 1
956#define HPARENT(k) ((k) >> 1)
957#define UPHEAP_DONE(p,k) (!(p))
958
959/* away from the root */
960inline_speed void
961downheap (ANHE *heap, int N, int k)
962{
963 ANHE he = heap [k];
964
965 for (;;)
966 {
967 int c = k << 1;
968
969 if (c > N + HEAP0 - 1)
970 break;
971
972 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
973 ? 1 : 0;
974
975 if (ANHE_at (he) <= ANHE_at (heap [c]))
976 break;
977
978 heap [k] = heap [c];
979 ev_active (ANHE_w (heap [k])) = k;
980
981 k = c;
982 }
983
984 heap [k] = he;
985 ev_active (ANHE_w (he)) = k;
986}
987#endif
988
989/* towards the root */
990inline_speed void
991upheap (ANHE *heap, int k)
992{
993 ANHE he = heap [k];
994
995 for (;;)
996 {
997 int p = HPARENT (k);
998
999 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1000 break;
1001
749 heap [k] = heap [p]; 1002 heap [k] = heap [p];
750 ((W)heap [k])->active = k + 1; 1003 ev_active (ANHE_w (heap [k])) = k;
751 k = p; 1004 k = p;
752 } 1005 }
753 1006
754 heap [k] = w; 1007 heap [k] = he;
755 ((W)heap [k])->active = k + 1; 1008 ev_active (ANHE_w (he)) = k;
756} 1009}
757 1010
758void inline_speed 1011/* move an element suitably so it is in a correct place */
759downheap (WT *heap, int N, int k) 1012inline_size void
760{
761 WT w = heap [k];
762
763 for (;;)
764 {
765 int c = (k << 1) + 1;
766
767 if (c >= N)
768 break;
769
770 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
771 ? 1 : 0;
772
773 if (w->at <= heap [c]->at)
774 break;
775
776 heap [k] = heap [c];
777 ((W)heap [k])->active = k + 1;
778
779 k = c;
780 }
781
782 heap [k] = w;
783 ((W)heap [k])->active = k + 1;
784}
785
786void inline_size
787adjustheap (WT *heap, int N, int k) 1013adjustheap (ANHE *heap, int N, int k)
788{ 1014{
1015 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
789 upheap (heap, k); 1016 upheap (heap, k);
1017 else
790 downheap (heap, N, k); 1018 downheap (heap, N, k);
1019}
1020
1021/* rebuild the heap: this function is used only once and executed rarely */
1022inline_size void
1023reheap (ANHE *heap, int N)
1024{
1025 int i;
1026
1027 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1028 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1029 for (i = 0; i < N; ++i)
1030 upheap (heap, i + HEAP0);
791} 1031}
792 1032
793/*****************************************************************************/ 1033/*****************************************************************************/
794 1034
1035/* associate signal watchers to a signal signal */
795typedef struct 1036typedef struct
796{ 1037{
797 WL head; 1038 WL head;
798 EV_ATOMIC_T gotsig; 1039 EV_ATOMIC_T gotsig;
799} ANSIG; 1040} ANSIG;
801static ANSIG *signals; 1042static ANSIG *signals;
802static int signalmax; 1043static int signalmax;
803 1044
804static EV_ATOMIC_T gotsig; 1045static EV_ATOMIC_T gotsig;
805 1046
806void inline_size
807signals_init (ANSIG *base, int count)
808{
809 while (count--)
810 {
811 base->head = 0;
812 base->gotsig = 0;
813
814 ++base;
815 }
816}
817
818/*****************************************************************************/ 1047/*****************************************************************************/
819 1048
820void inline_speed 1049/* used to prepare libev internal fd's */
1050/* this is not fork-safe */
1051inline_speed void
821fd_intern (int fd) 1052fd_intern (int fd)
822{ 1053{
823#ifdef _WIN32 1054#ifdef _WIN32
824 int arg = 1; 1055 unsigned long arg = 1;
825 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1056 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
826#else 1057#else
827 fcntl (fd, F_SETFD, FD_CLOEXEC); 1058 fcntl (fd, F_SETFD, FD_CLOEXEC);
828 fcntl (fd, F_SETFL, O_NONBLOCK); 1059 fcntl (fd, F_SETFL, O_NONBLOCK);
829#endif 1060#endif
830} 1061}
831 1062
832static void noinline 1063static void noinline
833evpipe_init (EV_P) 1064evpipe_init (EV_P)
834{ 1065{
835 if (!ev_is_active (&pipeev)) 1066 if (!ev_is_active (&pipe_w))
836 { 1067 {
837#if EV_USE_EVENTFD 1068#if EV_USE_EVENTFD
838 if ((evfd = eventfd (0, 0)) >= 0) 1069 if ((evfd = eventfd (0, 0)) >= 0)
839 { 1070 {
840 evpipe [0] = -1; 1071 evpipe [0] = -1;
841 fd_intern (evfd); 1072 fd_intern (evfd);
842 ev_io_set (&pipeev, evfd, EV_READ); 1073 ev_io_set (&pipe_w, evfd, EV_READ);
843 } 1074 }
844 else 1075 else
845#endif 1076#endif
846 { 1077 {
847 while (pipe (evpipe)) 1078 while (pipe (evpipe))
848 syserr ("(libev) error creating signal/async pipe"); 1079 ev_syserr ("(libev) error creating signal/async pipe");
849 1080
850 fd_intern (evpipe [0]); 1081 fd_intern (evpipe [0]);
851 fd_intern (evpipe [1]); 1082 fd_intern (evpipe [1]);
852 ev_io_set (&pipeev, evpipe [0], EV_READ); 1083 ev_io_set (&pipe_w, evpipe [0], EV_READ);
853 } 1084 }
854 1085
855 ev_io_start (EV_A_ &pipeev); 1086 ev_io_start (EV_A_ &pipe_w);
856 ev_unref (EV_A); /* watcher should not keep loop alive */ 1087 ev_unref (EV_A); /* watcher should not keep loop alive */
857 } 1088 }
858} 1089}
859 1090
860void inline_size 1091inline_size void
861evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1092evpipe_write (EV_P_ EV_ATOMIC_T *flag)
862{ 1093{
863 if (!*flag) 1094 if (!*flag)
864 { 1095 {
865 int old_errno = errno; /* save errno because write might clobber it */ 1096 int old_errno = errno; /* save errno because write might clobber it */
878 1109
879 errno = old_errno; 1110 errno = old_errno;
880 } 1111 }
881} 1112}
882 1113
1114/* called whenever the libev signal pipe */
1115/* got some events (signal, async) */
883static void 1116static void
884pipecb (EV_P_ ev_io *iow, int revents) 1117pipecb (EV_P_ ev_io *iow, int revents)
885{ 1118{
886#if EV_USE_EVENTFD 1119#if EV_USE_EVENTFD
887 if (evfd >= 0) 1120 if (evfd >= 0)
888 { 1121 {
889 uint64_t counter = 1; 1122 uint64_t counter;
890 read (evfd, &counter, sizeof (uint64_t)); 1123 read (evfd, &counter, sizeof (uint64_t));
891 } 1124 }
892 else 1125 else
893#endif 1126#endif
894 { 1127 {
943ev_feed_signal_event (EV_P_ int signum) 1176ev_feed_signal_event (EV_P_ int signum)
944{ 1177{
945 WL w; 1178 WL w;
946 1179
947#if EV_MULTIPLICITY 1180#if EV_MULTIPLICITY
948 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1181 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
949#endif 1182#endif
950 1183
951 --signum; 1184 --signum;
952 1185
953 if (signum < 0 || signum >= signalmax) 1186 if (signum < 0 || signum >= signalmax)
969 1202
970#ifndef WIFCONTINUED 1203#ifndef WIFCONTINUED
971# define WIFCONTINUED(status) 0 1204# define WIFCONTINUED(status) 0
972#endif 1205#endif
973 1206
974void inline_speed 1207/* handle a single child status event */
1208inline_speed void
975child_reap (EV_P_ int chain, int pid, int status) 1209child_reap (EV_P_ int chain, int pid, int status)
976{ 1210{
977 ev_child *w; 1211 ev_child *w;
978 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1212 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
979 1213
992 1226
993#ifndef WCONTINUED 1227#ifndef WCONTINUED
994# define WCONTINUED 0 1228# define WCONTINUED 0
995#endif 1229#endif
996 1230
1231/* called on sigchld etc., calls waitpid */
997static void 1232static void
998childcb (EV_P_ ev_signal *sw, int revents) 1233childcb (EV_P_ ev_signal *sw, int revents)
999{ 1234{
1000 int pid, status; 1235 int pid, status;
1001 1236
1082 /* kqueue is borked on everything but netbsd apparently */ 1317 /* kqueue is borked on everything but netbsd apparently */
1083 /* it usually doesn't work correctly on anything but sockets and pipes */ 1318 /* it usually doesn't work correctly on anything but sockets and pipes */
1084 flags &= ~EVBACKEND_KQUEUE; 1319 flags &= ~EVBACKEND_KQUEUE;
1085#endif 1320#endif
1086#ifdef __APPLE__ 1321#ifdef __APPLE__
1087 // flags &= ~EVBACKEND_KQUEUE; for documentation 1322 /* only select works correctly on that "unix-certified" platform */
1088 flags &= ~EVBACKEND_POLL; 1323 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1324 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1089#endif 1325#endif
1090 1326
1091 return flags; 1327 return flags;
1092} 1328}
1093 1329
1125ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1361ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1126{ 1362{
1127 timeout_blocktime = interval; 1363 timeout_blocktime = interval;
1128} 1364}
1129 1365
1366/* initialise a loop structure, must be zero-initialised */
1130static void noinline 1367static void noinline
1131loop_init (EV_P_ unsigned int flags) 1368loop_init (EV_P_ unsigned int flags)
1132{ 1369{
1133 if (!backend) 1370 if (!backend)
1134 { 1371 {
1372#if EV_USE_REALTIME
1373 if (!have_realtime)
1374 {
1375 struct timespec ts;
1376
1377 if (!clock_gettime (CLOCK_REALTIME, &ts))
1378 have_realtime = 1;
1379 }
1380#endif
1381
1135#if EV_USE_MONOTONIC 1382#if EV_USE_MONOTONIC
1383 if (!have_monotonic)
1136 { 1384 {
1137 struct timespec ts; 1385 struct timespec ts;
1386
1138 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1387 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1139 have_monotonic = 1; 1388 have_monotonic = 1;
1140 } 1389 }
1141#endif 1390#endif
1142 1391
1143 ev_rt_now = ev_time (); 1392 ev_rt_now = ev_time ();
1144 mn_now = get_clock (); 1393 mn_now = get_clock ();
1145 now_floor = mn_now; 1394 now_floor = mn_now;
1163 if (!(flags & EVFLAG_NOENV) 1412 if (!(flags & EVFLAG_NOENV)
1164 && !enable_secure () 1413 && !enable_secure ()
1165 && getenv ("LIBEV_FLAGS")) 1414 && getenv ("LIBEV_FLAGS"))
1166 flags = atoi (getenv ("LIBEV_FLAGS")); 1415 flags = atoi (getenv ("LIBEV_FLAGS"));
1167 1416
1168 if (!(flags & 0x0000ffffUL)) 1417 if (!(flags & 0x0000ffffU))
1169 flags |= ev_recommended_backends (); 1418 flags |= ev_recommended_backends ();
1170 1419
1171#if EV_USE_PORT 1420#if EV_USE_PORT
1172 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1421 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1173#endif 1422#endif
1182#endif 1431#endif
1183#if EV_USE_SELECT 1432#if EV_USE_SELECT
1184 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1433 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1185#endif 1434#endif
1186 1435
1436 ev_prepare_init (&pending_w, pendingcb);
1437
1187 ev_init (&pipeev, pipecb); 1438 ev_init (&pipe_w, pipecb);
1188 ev_set_priority (&pipeev, EV_MAXPRI); 1439 ev_set_priority (&pipe_w, EV_MAXPRI);
1189 } 1440 }
1190} 1441}
1191 1442
1443/* free up a loop structure */
1192static void noinline 1444static void noinline
1193loop_destroy (EV_P) 1445loop_destroy (EV_P)
1194{ 1446{
1195 int i; 1447 int i;
1196 1448
1197 if (ev_is_active (&pipeev)) 1449 if (ev_is_active (&pipe_w))
1198 { 1450 {
1199 ev_ref (EV_A); /* signal watcher */ 1451 ev_ref (EV_A); /* signal watcher */
1200 ev_io_stop (EV_A_ &pipeev); 1452 ev_io_stop (EV_A_ &pipe_w);
1201 1453
1202#if EV_USE_EVENTFD 1454#if EV_USE_EVENTFD
1203 if (evfd >= 0) 1455 if (evfd >= 0)
1204 close (evfd); 1456 close (evfd);
1205#endif 1457#endif
1244 } 1496 }
1245 1497
1246 ev_free (anfds); anfdmax = 0; 1498 ev_free (anfds); anfdmax = 0;
1247 1499
1248 /* have to use the microsoft-never-gets-it-right macro */ 1500 /* have to use the microsoft-never-gets-it-right macro */
1501 array_free (rfeed, EMPTY);
1249 array_free (fdchange, EMPTY); 1502 array_free (fdchange, EMPTY);
1250 array_free (timer, EMPTY); 1503 array_free (timer, EMPTY);
1251#if EV_PERIODIC_ENABLE 1504#if EV_PERIODIC_ENABLE
1252 array_free (periodic, EMPTY); 1505 array_free (periodic, EMPTY);
1253#endif 1506#endif
1261#endif 1514#endif
1262 1515
1263 backend = 0; 1516 backend = 0;
1264} 1517}
1265 1518
1519#if EV_USE_INOTIFY
1266void inline_size infy_fork (EV_P); 1520inline_size void infy_fork (EV_P);
1521#endif
1267 1522
1268void inline_size 1523inline_size void
1269loop_fork (EV_P) 1524loop_fork (EV_P)
1270{ 1525{
1271#if EV_USE_PORT 1526#if EV_USE_PORT
1272 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1527 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1273#endif 1528#endif
1279#endif 1534#endif
1280#if EV_USE_INOTIFY 1535#if EV_USE_INOTIFY
1281 infy_fork (EV_A); 1536 infy_fork (EV_A);
1282#endif 1537#endif
1283 1538
1284 if (ev_is_active (&pipeev)) 1539 if (ev_is_active (&pipe_w))
1285 { 1540 {
1286 /* this "locks" the handlers against writing to the pipe */ 1541 /* this "locks" the handlers against writing to the pipe */
1287 /* while we modify the fd vars */ 1542 /* while we modify the fd vars */
1288 gotsig = 1; 1543 gotsig = 1;
1289#if EV_ASYNC_ENABLE 1544#if EV_ASYNC_ENABLE
1290 gotasync = 1; 1545 gotasync = 1;
1291#endif 1546#endif
1292 1547
1293 ev_ref (EV_A); 1548 ev_ref (EV_A);
1294 ev_io_stop (EV_A_ &pipeev); 1549 ev_io_stop (EV_A_ &pipe_w);
1295 1550
1296#if EV_USE_EVENTFD 1551#if EV_USE_EVENTFD
1297 if (evfd >= 0) 1552 if (evfd >= 0)
1298 close (evfd); 1553 close (evfd);
1299#endif 1554#endif
1304 close (evpipe [1]); 1559 close (evpipe [1]);
1305 } 1560 }
1306 1561
1307 evpipe_init (EV_A); 1562 evpipe_init (EV_A);
1308 /* now iterate over everything, in case we missed something */ 1563 /* now iterate over everything, in case we missed something */
1309 pipecb (EV_A_ &pipeev, EV_READ); 1564 pipecb (EV_A_ &pipe_w, EV_READ);
1310 } 1565 }
1311 1566
1312 postfork = 0; 1567 postfork = 0;
1313} 1568}
1314 1569
1315#if EV_MULTIPLICITY 1570#if EV_MULTIPLICITY
1571
1316struct ev_loop * 1572struct ev_loop *
1317ev_loop_new (unsigned int flags) 1573ev_loop_new (unsigned int flags)
1318{ 1574{
1319 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1575 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1320 1576
1339ev_loop_fork (EV_P) 1595ev_loop_fork (EV_P)
1340{ 1596{
1341 postfork = 1; /* must be in line with ev_default_fork */ 1597 postfork = 1; /* must be in line with ev_default_fork */
1342} 1598}
1343 1599
1600#if EV_VERIFY
1601static void noinline
1602verify_watcher (EV_P_ W w)
1603{
1604 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1605
1606 if (w->pending)
1607 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1608}
1609
1610static void noinline
1611verify_heap (EV_P_ ANHE *heap, int N)
1612{
1613 int i;
1614
1615 for (i = HEAP0; i < N + HEAP0; ++i)
1616 {
1617 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1618 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1619 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1620
1621 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1622 }
1623}
1624
1625static void noinline
1626array_verify (EV_P_ W *ws, int cnt)
1627{
1628 while (cnt--)
1629 {
1630 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1631 verify_watcher (EV_A_ ws [cnt]);
1632 }
1633}
1634#endif
1635
1636void
1637ev_loop_verify (EV_P)
1638{
1639#if EV_VERIFY
1640 int i;
1641 WL w;
1642
1643 assert (activecnt >= -1);
1644
1645 assert (fdchangemax >= fdchangecnt);
1646 for (i = 0; i < fdchangecnt; ++i)
1647 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1648
1649 assert (anfdmax >= 0);
1650 for (i = 0; i < anfdmax; ++i)
1651 for (w = anfds [i].head; w; w = w->next)
1652 {
1653 verify_watcher (EV_A_ (W)w);
1654 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1655 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1656 }
1657
1658 assert (timermax >= timercnt);
1659 verify_heap (EV_A_ timers, timercnt);
1660
1661#if EV_PERIODIC_ENABLE
1662 assert (periodicmax >= periodiccnt);
1663 verify_heap (EV_A_ periodics, periodiccnt);
1664#endif
1665
1666 for (i = NUMPRI; i--; )
1667 {
1668 assert (pendingmax [i] >= pendingcnt [i]);
1669#if EV_IDLE_ENABLE
1670 assert (idleall >= 0);
1671 assert (idlemax [i] >= idlecnt [i]);
1672 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1673#endif
1674 }
1675
1676#if EV_FORK_ENABLE
1677 assert (forkmax >= forkcnt);
1678 array_verify (EV_A_ (W *)forks, forkcnt);
1679#endif
1680
1681#if EV_ASYNC_ENABLE
1682 assert (asyncmax >= asynccnt);
1683 array_verify (EV_A_ (W *)asyncs, asynccnt);
1684#endif
1685
1686 assert (preparemax >= preparecnt);
1687 array_verify (EV_A_ (W *)prepares, preparecnt);
1688
1689 assert (checkmax >= checkcnt);
1690 array_verify (EV_A_ (W *)checks, checkcnt);
1691
1692# if 0
1693 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1694 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1344#endif 1695# endif
1696#endif
1697}
1698
1699#endif /* multiplicity */
1345 1700
1346#if EV_MULTIPLICITY 1701#if EV_MULTIPLICITY
1347struct ev_loop * 1702struct ev_loop *
1348ev_default_loop_init (unsigned int flags) 1703ev_default_loop_init (unsigned int flags)
1349#else 1704#else
1382{ 1737{
1383#if EV_MULTIPLICITY 1738#if EV_MULTIPLICITY
1384 struct ev_loop *loop = ev_default_loop_ptr; 1739 struct ev_loop *loop = ev_default_loop_ptr;
1385#endif 1740#endif
1386 1741
1742 ev_default_loop_ptr = 0;
1743
1387#ifndef _WIN32 1744#ifndef _WIN32
1388 ev_ref (EV_A); /* child watcher */ 1745 ev_ref (EV_A); /* child watcher */
1389 ev_signal_stop (EV_A_ &childev); 1746 ev_signal_stop (EV_A_ &childev);
1390#endif 1747#endif
1391 1748
1397{ 1754{
1398#if EV_MULTIPLICITY 1755#if EV_MULTIPLICITY
1399 struct ev_loop *loop = ev_default_loop_ptr; 1756 struct ev_loop *loop = ev_default_loop_ptr;
1400#endif 1757#endif
1401 1758
1402 if (backend)
1403 postfork = 1; /* must be in line with ev_loop_fork */ 1759 postfork = 1; /* must be in line with ev_loop_fork */
1404} 1760}
1405 1761
1406/*****************************************************************************/ 1762/*****************************************************************************/
1407 1763
1408void 1764void
1409ev_invoke (EV_P_ void *w, int revents) 1765ev_invoke (EV_P_ void *w, int revents)
1410{ 1766{
1411 EV_CB_INVOKE ((W)w, revents); 1767 EV_CB_INVOKE ((W)w, revents);
1412} 1768}
1413 1769
1414void inline_speed 1770inline_speed void
1415call_pending (EV_P) 1771call_pending (EV_P)
1416{ 1772{
1417 int pri; 1773 int pri;
1418 1774
1419 for (pri = NUMPRI; pri--; ) 1775 for (pri = NUMPRI; pri--; )
1420 while (pendingcnt [pri]) 1776 while (pendingcnt [pri])
1421 { 1777 {
1422 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1778 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1423 1779
1424 if (expect_true (p->w))
1425 {
1426 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1780 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1781 /* ^ this is no longer true, as pending_w could be here */
1427 1782
1428 p->w->pending = 0; 1783 p->w->pending = 0;
1429 EV_CB_INVOKE (p->w, p->events); 1784 EV_CB_INVOKE (p->w, p->events);
1430 } 1785 EV_FREQUENT_CHECK;
1431 } 1786 }
1432} 1787}
1433 1788
1434void inline_size
1435timers_reify (EV_P)
1436{
1437 while (timercnt && ((WT)timers [0])->at <= mn_now)
1438 {
1439 ev_timer *w = (ev_timer *)timers [0];
1440
1441 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1442
1443 /* first reschedule or stop timer */
1444 if (w->repeat)
1445 {
1446 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1447
1448 ((WT)w)->at += w->repeat;
1449 if (((WT)w)->at < mn_now)
1450 ((WT)w)->at = mn_now;
1451
1452 downheap (timers, timercnt, 0);
1453 }
1454 else
1455 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1456
1457 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1458 }
1459}
1460
1461#if EV_PERIODIC_ENABLE
1462void inline_size
1463periodics_reify (EV_P)
1464{
1465 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1466 {
1467 ev_periodic *w = (ev_periodic *)periodics [0];
1468
1469 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1470
1471 /* first reschedule or stop timer */
1472 if (w->reschedule_cb)
1473 {
1474 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1475 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1476 downheap (periodics, periodiccnt, 0);
1477 }
1478 else if (w->interval)
1479 {
1480 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1481 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1482 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1483 downheap (periodics, periodiccnt, 0);
1484 }
1485 else
1486 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1487
1488 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1489 }
1490}
1491
1492static void noinline
1493periodics_reschedule (EV_P)
1494{
1495 int i;
1496
1497 /* adjust periodics after time jump */
1498 for (i = 0; i < periodiccnt; ++i)
1499 {
1500 ev_periodic *w = (ev_periodic *)periodics [i];
1501
1502 if (w->reschedule_cb)
1503 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1504 else if (w->interval)
1505 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1506 }
1507
1508 /* now rebuild the heap */
1509 for (i = periodiccnt >> 1; i--; )
1510 downheap (periodics, periodiccnt, i);
1511}
1512#endif
1513
1514#if EV_IDLE_ENABLE 1789#if EV_IDLE_ENABLE
1515void inline_size 1790/* make idle watchers pending. this handles the "call-idle */
1791/* only when higher priorities are idle" logic */
1792inline_size void
1516idle_reify (EV_P) 1793idle_reify (EV_P)
1517{ 1794{
1518 if (expect_false (idleall)) 1795 if (expect_false (idleall))
1519 { 1796 {
1520 int pri; 1797 int pri;
1532 } 1809 }
1533 } 1810 }
1534} 1811}
1535#endif 1812#endif
1536 1813
1537void inline_speed 1814/* make timers pending */
1815inline_size void
1816timers_reify (EV_P)
1817{
1818 EV_FREQUENT_CHECK;
1819
1820 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1821 {
1822 do
1823 {
1824 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1825
1826 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1827
1828 /* first reschedule or stop timer */
1829 if (w->repeat)
1830 {
1831 ev_at (w) += w->repeat;
1832 if (ev_at (w) < mn_now)
1833 ev_at (w) = mn_now;
1834
1835 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1836
1837 ANHE_at_cache (timers [HEAP0]);
1838 downheap (timers, timercnt, HEAP0);
1839 }
1840 else
1841 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1842
1843 EV_FREQUENT_CHECK;
1844 feed_reverse (EV_A_ (W)w);
1845 }
1846 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1847
1848 feed_reverse_done (EV_A_ EV_TIMEOUT);
1849 }
1850}
1851
1852#if EV_PERIODIC_ENABLE
1853/* make periodics pending */
1854inline_size void
1855periodics_reify (EV_P)
1856{
1857 EV_FREQUENT_CHECK;
1858
1859 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1860 {
1861 int feed_count = 0;
1862
1863 do
1864 {
1865 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1866
1867 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1868
1869 /* first reschedule or stop timer */
1870 if (w->reschedule_cb)
1871 {
1872 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1873
1874 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1875
1876 ANHE_at_cache (periodics [HEAP0]);
1877 downheap (periodics, periodiccnt, HEAP0);
1878 }
1879 else if (w->interval)
1880 {
1881 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1882 /* if next trigger time is not sufficiently in the future, put it there */
1883 /* this might happen because of floating point inexactness */
1884 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1885 {
1886 ev_at (w) += w->interval;
1887
1888 /* if interval is unreasonably low we might still have a time in the past */
1889 /* so correct this. this will make the periodic very inexact, but the user */
1890 /* has effectively asked to get triggered more often than possible */
1891 if (ev_at (w) < ev_rt_now)
1892 ev_at (w) = ev_rt_now;
1893 }
1894
1895 ANHE_at_cache (periodics [HEAP0]);
1896 downheap (periodics, periodiccnt, HEAP0);
1897 }
1898 else
1899 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1900
1901 EV_FREQUENT_CHECK;
1902 feed_reverse (EV_A_ (W)w);
1903 }
1904 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1905
1906 feed_reverse_done (EV_A_ EV_PERIODIC);
1907 }
1908}
1909
1910/* simply recalculate all periodics */
1911/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1912static void noinline
1913periodics_reschedule (EV_P)
1914{
1915 int i;
1916
1917 /* adjust periodics after time jump */
1918 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1919 {
1920 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1921
1922 if (w->reschedule_cb)
1923 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1924 else if (w->interval)
1925 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1926
1927 ANHE_at_cache (periodics [i]);
1928 }
1929
1930 reheap (periodics, periodiccnt);
1931}
1932#endif
1933
1934/* adjust all timers by a given offset */
1935static void noinline
1936timers_reschedule (EV_P_ ev_tstamp adjust)
1937{
1938 int i;
1939
1940 for (i = 0; i < timercnt; ++i)
1941 {
1942 ANHE *he = timers + i + HEAP0;
1943 ANHE_w (*he)->at += adjust;
1944 ANHE_at_cache (*he);
1945 }
1946}
1947
1948/* fetch new monotonic and realtime times from the kernel */
1949/* also detetc if there was a timejump, and act accordingly */
1950inline_speed void
1538time_update (EV_P_ ev_tstamp max_block) 1951time_update (EV_P_ ev_tstamp max_block)
1539{ 1952{
1540 int i;
1541
1542#if EV_USE_MONOTONIC 1953#if EV_USE_MONOTONIC
1543 if (expect_true (have_monotonic)) 1954 if (expect_true (have_monotonic))
1544 { 1955 {
1956 int i;
1545 ev_tstamp odiff = rtmn_diff; 1957 ev_tstamp odiff = rtmn_diff;
1546 1958
1547 mn_now = get_clock (); 1959 mn_now = get_clock ();
1548 1960
1549 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 1961 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1567 */ 1979 */
1568 for (i = 4; --i; ) 1980 for (i = 4; --i; )
1569 { 1981 {
1570 rtmn_diff = ev_rt_now - mn_now; 1982 rtmn_diff = ev_rt_now - mn_now;
1571 1983
1572 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1984 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1573 return; /* all is well */ 1985 return; /* all is well */
1574 1986
1575 ev_rt_now = ev_time (); 1987 ev_rt_now = ev_time ();
1576 mn_now = get_clock (); 1988 mn_now = get_clock ();
1577 now_floor = mn_now; 1989 now_floor = mn_now;
1578 } 1990 }
1579 1991
1992 /* no timer adjustment, as the monotonic clock doesn't jump */
1993 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1580# if EV_PERIODIC_ENABLE 1994# if EV_PERIODIC_ENABLE
1581 periodics_reschedule (EV_A); 1995 periodics_reschedule (EV_A);
1582# endif 1996# endif
1583 /* no timer adjustment, as the monotonic clock doesn't jump */
1584 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1585 } 1997 }
1586 else 1998 else
1587#endif 1999#endif
1588 { 2000 {
1589 ev_rt_now = ev_time (); 2001 ev_rt_now = ev_time ();
1590 2002
1591 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2003 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1592 { 2004 {
2005 /* adjust timers. this is easy, as the offset is the same for all of them */
2006 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1593#if EV_PERIODIC_ENABLE 2007#if EV_PERIODIC_ENABLE
1594 periodics_reschedule (EV_A); 2008 periodics_reschedule (EV_A);
1595#endif 2009#endif
1596 /* adjust timers. this is easy, as the offset is the same for all of them */
1597 for (i = 0; i < timercnt; ++i)
1598 ((WT)timers [i])->at += ev_rt_now - mn_now;
1599 } 2010 }
1600 2011
1601 mn_now = ev_rt_now; 2012 mn_now = ev_rt_now;
1602 } 2013 }
1603} 2014}
1604 2015
1605void
1606ev_ref (EV_P)
1607{
1608 ++activecnt;
1609}
1610
1611void
1612ev_unref (EV_P)
1613{
1614 --activecnt;
1615}
1616
1617static int loop_done; 2016static int loop_done;
1618 2017
1619void 2018void
1620ev_loop (EV_P_ int flags) 2019ev_loop (EV_P_ int flags)
1621{ 2020{
1623 2022
1624 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2023 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1625 2024
1626 do 2025 do
1627 { 2026 {
2027#if EV_VERIFY >= 2
2028 ev_loop_verify (EV_A);
2029#endif
2030
1628#ifndef _WIN32 2031#ifndef _WIN32
1629 if (expect_false (curpid)) /* penalise the forking check even more */ 2032 if (expect_false (curpid)) /* penalise the forking check even more */
1630 if (expect_false (getpid () != curpid)) 2033 if (expect_false (getpid () != curpid))
1631 { 2034 {
1632 curpid = getpid (); 2035 curpid = getpid ();
1649 { 2052 {
1650 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2053 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1651 call_pending (EV_A); 2054 call_pending (EV_A);
1652 } 2055 }
1653 2056
1654 if (expect_false (!activecnt))
1655 break;
1656
1657 /* we might have forked, so reify kernel state if necessary */ 2057 /* we might have forked, so reify kernel state if necessary */
1658 if (expect_false (postfork)) 2058 if (expect_false (postfork))
1659 loop_fork (EV_A); 2059 loop_fork (EV_A);
1660 2060
1661 /* update fd-related kernel structures */ 2061 /* update fd-related kernel structures */
1673 2073
1674 waittime = MAX_BLOCKTIME; 2074 waittime = MAX_BLOCKTIME;
1675 2075
1676 if (timercnt) 2076 if (timercnt)
1677 { 2077 {
1678 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2078 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1679 if (waittime > to) waittime = to; 2079 if (waittime > to) waittime = to;
1680 } 2080 }
1681 2081
1682#if EV_PERIODIC_ENABLE 2082#if EV_PERIODIC_ENABLE
1683 if (periodiccnt) 2083 if (periodiccnt)
1684 { 2084 {
1685 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2085 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1686 if (waittime > to) waittime = to; 2086 if (waittime > to) waittime = to;
1687 } 2087 }
1688#endif 2088#endif
1689 2089
1690 if (expect_false (waittime < timeout_blocktime)) 2090 if (expect_false (waittime < timeout_blocktime))
1740ev_unloop (EV_P_ int how) 2140ev_unloop (EV_P_ int how)
1741{ 2141{
1742 loop_done = how; 2142 loop_done = how;
1743} 2143}
1744 2144
2145void
2146ev_ref (EV_P)
2147{
2148 ++activecnt;
2149}
2150
2151void
2152ev_unref (EV_P)
2153{
2154 --activecnt;
2155}
2156
2157void
2158ev_now_update (EV_P)
2159{
2160 time_update (EV_A_ 1e100);
2161}
2162
2163void
2164ev_suspend (EV_P)
2165{
2166 ev_now_update (EV_A);
2167}
2168
2169void
2170ev_resume (EV_P)
2171{
2172 ev_tstamp mn_prev = mn_now;
2173
2174 ev_now_update (EV_A);
2175 timers_reschedule (EV_A_ mn_now - mn_prev);
2176#if EV_PERIODIC_ENABLE
2177 /* TODO: really do this? */
2178 periodics_reschedule (EV_A);
2179#endif
2180}
2181
1745/*****************************************************************************/ 2182/*****************************************************************************/
2183/* singly-linked list management, used when the expected list length is short */
1746 2184
1747void inline_size 2185inline_size void
1748wlist_add (WL *head, WL elem) 2186wlist_add (WL *head, WL elem)
1749{ 2187{
1750 elem->next = *head; 2188 elem->next = *head;
1751 *head = elem; 2189 *head = elem;
1752} 2190}
1753 2191
1754void inline_size 2192inline_size void
1755wlist_del (WL *head, WL elem) 2193wlist_del (WL *head, WL elem)
1756{ 2194{
1757 while (*head) 2195 while (*head)
1758 { 2196 {
1759 if (*head == elem) 2197 if (*head == elem)
1764 2202
1765 head = &(*head)->next; 2203 head = &(*head)->next;
1766 } 2204 }
1767} 2205}
1768 2206
1769void inline_speed 2207/* internal, faster, version of ev_clear_pending */
2208inline_speed void
1770clear_pending (EV_P_ W w) 2209clear_pending (EV_P_ W w)
1771{ 2210{
1772 if (w->pending) 2211 if (w->pending)
1773 { 2212 {
1774 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2213 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1775 w->pending = 0; 2214 w->pending = 0;
1776 } 2215 }
1777} 2216}
1778 2217
1779int 2218int
1783 int pending = w_->pending; 2222 int pending = w_->pending;
1784 2223
1785 if (expect_true (pending)) 2224 if (expect_true (pending))
1786 { 2225 {
1787 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2226 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2227 p->w = (W)&pending_w;
1788 w_->pending = 0; 2228 w_->pending = 0;
1789 p->w = 0;
1790 return p->events; 2229 return p->events;
1791 } 2230 }
1792 else 2231 else
1793 return 0; 2232 return 0;
1794} 2233}
1795 2234
1796void inline_size 2235inline_size void
1797pri_adjust (EV_P_ W w) 2236pri_adjust (EV_P_ W w)
1798{ 2237{
1799 int pri = w->priority; 2238 int pri = w->priority;
1800 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2239 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1801 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2240 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1802 w->priority = pri; 2241 w->priority = pri;
1803} 2242}
1804 2243
1805void inline_speed 2244inline_speed void
1806ev_start (EV_P_ W w, int active) 2245ev_start (EV_P_ W w, int active)
1807{ 2246{
1808 pri_adjust (EV_A_ w); 2247 pri_adjust (EV_A_ w);
1809 w->active = active; 2248 w->active = active;
1810 ev_ref (EV_A); 2249 ev_ref (EV_A);
1811} 2250}
1812 2251
1813void inline_size 2252inline_size void
1814ev_stop (EV_P_ W w) 2253ev_stop (EV_P_ W w)
1815{ 2254{
1816 ev_unref (EV_A); 2255 ev_unref (EV_A);
1817 w->active = 0; 2256 w->active = 0;
1818} 2257}
1825 int fd = w->fd; 2264 int fd = w->fd;
1826 2265
1827 if (expect_false (ev_is_active (w))) 2266 if (expect_false (ev_is_active (w)))
1828 return; 2267 return;
1829 2268
1830 assert (("ev_io_start called with negative fd", fd >= 0)); 2269 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2270 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2271
2272 EV_FREQUENT_CHECK;
1831 2273
1832 ev_start (EV_A_ (W)w, 1); 2274 ev_start (EV_A_ (W)w, 1);
1833 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2275 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1834 wlist_add (&anfds[fd].head, (WL)w); 2276 wlist_add (&anfds[fd].head, (WL)w);
1835 2277
1836 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2278 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1837 w->events &= ~EV_IOFDSET; 2279 w->events &= ~EV__IOFDSET;
2280
2281 EV_FREQUENT_CHECK;
1838} 2282}
1839 2283
1840void noinline 2284void noinline
1841ev_io_stop (EV_P_ ev_io *w) 2285ev_io_stop (EV_P_ ev_io *w)
1842{ 2286{
1843 clear_pending (EV_A_ (W)w); 2287 clear_pending (EV_A_ (W)w);
1844 if (expect_false (!ev_is_active (w))) 2288 if (expect_false (!ev_is_active (w)))
1845 return; 2289 return;
1846 2290
1847 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2291 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2292
2293 EV_FREQUENT_CHECK;
1848 2294
1849 wlist_del (&anfds[w->fd].head, (WL)w); 2295 wlist_del (&anfds[w->fd].head, (WL)w);
1850 ev_stop (EV_A_ (W)w); 2296 ev_stop (EV_A_ (W)w);
1851 2297
1852 fd_change (EV_A_ w->fd, 1); 2298 fd_change (EV_A_ w->fd, 1);
2299
2300 EV_FREQUENT_CHECK;
1853} 2301}
1854 2302
1855void noinline 2303void noinline
1856ev_timer_start (EV_P_ ev_timer *w) 2304ev_timer_start (EV_P_ ev_timer *w)
1857{ 2305{
1858 if (expect_false (ev_is_active (w))) 2306 if (expect_false (ev_is_active (w)))
1859 return; 2307 return;
1860 2308
1861 ((WT)w)->at += mn_now; 2309 ev_at (w) += mn_now;
1862 2310
1863 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2311 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1864 2312
2313 EV_FREQUENT_CHECK;
2314
2315 ++timercnt;
1865 ev_start (EV_A_ (W)w, ++timercnt); 2316 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1866 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2317 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1867 timers [timercnt - 1] = (WT)w; 2318 ANHE_w (timers [ev_active (w)]) = (WT)w;
1868 upheap (timers, timercnt - 1); 2319 ANHE_at_cache (timers [ev_active (w)]);
2320 upheap (timers, ev_active (w));
1869 2321
2322 EV_FREQUENT_CHECK;
2323
1870 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2324 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1871} 2325}
1872 2326
1873void noinline 2327void noinline
1874ev_timer_stop (EV_P_ ev_timer *w) 2328ev_timer_stop (EV_P_ ev_timer *w)
1875{ 2329{
1876 clear_pending (EV_A_ (W)w); 2330 clear_pending (EV_A_ (W)w);
1877 if (expect_false (!ev_is_active (w))) 2331 if (expect_false (!ev_is_active (w)))
1878 return; 2332 return;
1879 2333
1880 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2334 EV_FREQUENT_CHECK;
1881 2335
1882 { 2336 {
1883 int active = ((W)w)->active; 2337 int active = ev_active (w);
1884 2338
2339 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2340
2341 --timercnt;
2342
1885 if (expect_true (--active < --timercnt)) 2343 if (expect_true (active < timercnt + HEAP0))
1886 { 2344 {
1887 timers [active] = timers [timercnt]; 2345 timers [active] = timers [timercnt + HEAP0];
1888 adjustheap (timers, timercnt, active); 2346 adjustheap (timers, timercnt, active);
1889 } 2347 }
1890 } 2348 }
1891 2349
1892 ((WT)w)->at -= mn_now; 2350 EV_FREQUENT_CHECK;
2351
2352 ev_at (w) -= mn_now;
1893 2353
1894 ev_stop (EV_A_ (W)w); 2354 ev_stop (EV_A_ (W)w);
1895} 2355}
1896 2356
1897void noinline 2357void noinline
1898ev_timer_again (EV_P_ ev_timer *w) 2358ev_timer_again (EV_P_ ev_timer *w)
1899{ 2359{
2360 EV_FREQUENT_CHECK;
2361
1900 if (ev_is_active (w)) 2362 if (ev_is_active (w))
1901 { 2363 {
1902 if (w->repeat) 2364 if (w->repeat)
1903 { 2365 {
1904 ((WT)w)->at = mn_now + w->repeat; 2366 ev_at (w) = mn_now + w->repeat;
2367 ANHE_at_cache (timers [ev_active (w)]);
1905 adjustheap (timers, timercnt, ((W)w)->active - 1); 2368 adjustheap (timers, timercnt, ev_active (w));
1906 } 2369 }
1907 else 2370 else
1908 ev_timer_stop (EV_A_ w); 2371 ev_timer_stop (EV_A_ w);
1909 } 2372 }
1910 else if (w->repeat) 2373 else if (w->repeat)
1911 { 2374 {
1912 w->at = w->repeat; 2375 ev_at (w) = w->repeat;
1913 ev_timer_start (EV_A_ w); 2376 ev_timer_start (EV_A_ w);
1914 } 2377 }
2378
2379 EV_FREQUENT_CHECK;
1915} 2380}
1916 2381
1917#if EV_PERIODIC_ENABLE 2382#if EV_PERIODIC_ENABLE
1918void noinline 2383void noinline
1919ev_periodic_start (EV_P_ ev_periodic *w) 2384ev_periodic_start (EV_P_ ev_periodic *w)
1920{ 2385{
1921 if (expect_false (ev_is_active (w))) 2386 if (expect_false (ev_is_active (w)))
1922 return; 2387 return;
1923 2388
1924 if (w->reschedule_cb) 2389 if (w->reschedule_cb)
1925 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2390 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1926 else if (w->interval) 2391 else if (w->interval)
1927 { 2392 {
1928 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2393 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1929 /* this formula differs from the one in periodic_reify because we do not always round up */ 2394 /* this formula differs from the one in periodic_reify because we do not always round up */
1930 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2395 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1931 } 2396 }
1932 else 2397 else
1933 ((WT)w)->at = w->offset; 2398 ev_at (w) = w->offset;
1934 2399
2400 EV_FREQUENT_CHECK;
2401
2402 ++periodiccnt;
1935 ev_start (EV_A_ (W)w, ++periodiccnt); 2403 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1936 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2404 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1937 periodics [periodiccnt - 1] = (WT)w; 2405 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1938 upheap (periodics, periodiccnt - 1); 2406 ANHE_at_cache (periodics [ev_active (w)]);
2407 upheap (periodics, ev_active (w));
1939 2408
2409 EV_FREQUENT_CHECK;
2410
1940 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2411 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1941} 2412}
1942 2413
1943void noinline 2414void noinline
1944ev_periodic_stop (EV_P_ ev_periodic *w) 2415ev_periodic_stop (EV_P_ ev_periodic *w)
1945{ 2416{
1946 clear_pending (EV_A_ (W)w); 2417 clear_pending (EV_A_ (W)w);
1947 if (expect_false (!ev_is_active (w))) 2418 if (expect_false (!ev_is_active (w)))
1948 return; 2419 return;
1949 2420
1950 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2421 EV_FREQUENT_CHECK;
1951 2422
1952 { 2423 {
1953 int active = ((W)w)->active; 2424 int active = ev_active (w);
1954 2425
2426 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2427
2428 --periodiccnt;
2429
1955 if (expect_true (--active < --periodiccnt)) 2430 if (expect_true (active < periodiccnt + HEAP0))
1956 { 2431 {
1957 periodics [active] = periodics [periodiccnt]; 2432 periodics [active] = periodics [periodiccnt + HEAP0];
1958 adjustheap (periodics, periodiccnt, active); 2433 adjustheap (periodics, periodiccnt, active);
1959 } 2434 }
1960 } 2435 }
1961 2436
2437 EV_FREQUENT_CHECK;
2438
1962 ev_stop (EV_A_ (W)w); 2439 ev_stop (EV_A_ (W)w);
1963} 2440}
1964 2441
1965void noinline 2442void noinline
1966ev_periodic_again (EV_P_ ev_periodic *w) 2443ev_periodic_again (EV_P_ ev_periodic *w)
1977 2454
1978void noinline 2455void noinline
1979ev_signal_start (EV_P_ ev_signal *w) 2456ev_signal_start (EV_P_ ev_signal *w)
1980{ 2457{
1981#if EV_MULTIPLICITY 2458#if EV_MULTIPLICITY
1982 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2459 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1983#endif 2460#endif
1984 if (expect_false (ev_is_active (w))) 2461 if (expect_false (ev_is_active (w)))
1985 return; 2462 return;
1986 2463
1987 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2464 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
1988 2465
1989 evpipe_init (EV_A); 2466 evpipe_init (EV_A);
2467
2468 EV_FREQUENT_CHECK;
1990 2469
1991 { 2470 {
1992#ifndef _WIN32 2471#ifndef _WIN32
1993 sigset_t full, prev; 2472 sigset_t full, prev;
1994 sigfillset (&full); 2473 sigfillset (&full);
1995 sigprocmask (SIG_SETMASK, &full, &prev); 2474 sigprocmask (SIG_SETMASK, &full, &prev);
1996#endif 2475#endif
1997 2476
1998 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2477 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
1999 2478
2000#ifndef _WIN32 2479#ifndef _WIN32
2001 sigprocmask (SIG_SETMASK, &prev, 0); 2480 sigprocmask (SIG_SETMASK, &prev, 0);
2002#endif 2481#endif
2003 } 2482 }
2015 sigfillset (&sa.sa_mask); 2494 sigfillset (&sa.sa_mask);
2016 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2495 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2017 sigaction (w->signum, &sa, 0); 2496 sigaction (w->signum, &sa, 0);
2018#endif 2497#endif
2019 } 2498 }
2499
2500 EV_FREQUENT_CHECK;
2020} 2501}
2021 2502
2022void noinline 2503void noinline
2023ev_signal_stop (EV_P_ ev_signal *w) 2504ev_signal_stop (EV_P_ ev_signal *w)
2024{ 2505{
2025 clear_pending (EV_A_ (W)w); 2506 clear_pending (EV_A_ (W)w);
2026 if (expect_false (!ev_is_active (w))) 2507 if (expect_false (!ev_is_active (w)))
2027 return; 2508 return;
2028 2509
2510 EV_FREQUENT_CHECK;
2511
2029 wlist_del (&signals [w->signum - 1].head, (WL)w); 2512 wlist_del (&signals [w->signum - 1].head, (WL)w);
2030 ev_stop (EV_A_ (W)w); 2513 ev_stop (EV_A_ (W)w);
2031 2514
2032 if (!signals [w->signum - 1].head) 2515 if (!signals [w->signum - 1].head)
2033 signal (w->signum, SIG_DFL); 2516 signal (w->signum, SIG_DFL);
2517
2518 EV_FREQUENT_CHECK;
2034} 2519}
2035 2520
2036void 2521void
2037ev_child_start (EV_P_ ev_child *w) 2522ev_child_start (EV_P_ ev_child *w)
2038{ 2523{
2039#if EV_MULTIPLICITY 2524#if EV_MULTIPLICITY
2040 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2525 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2041#endif 2526#endif
2042 if (expect_false (ev_is_active (w))) 2527 if (expect_false (ev_is_active (w)))
2043 return; 2528 return;
2044 2529
2530 EV_FREQUENT_CHECK;
2531
2045 ev_start (EV_A_ (W)w, 1); 2532 ev_start (EV_A_ (W)w, 1);
2046 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2533 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2534
2535 EV_FREQUENT_CHECK;
2047} 2536}
2048 2537
2049void 2538void
2050ev_child_stop (EV_P_ ev_child *w) 2539ev_child_stop (EV_P_ ev_child *w)
2051{ 2540{
2052 clear_pending (EV_A_ (W)w); 2541 clear_pending (EV_A_ (W)w);
2053 if (expect_false (!ev_is_active (w))) 2542 if (expect_false (!ev_is_active (w)))
2054 return; 2543 return;
2055 2544
2545 EV_FREQUENT_CHECK;
2546
2056 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2547 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2057 ev_stop (EV_A_ (W)w); 2548 ev_stop (EV_A_ (W)w);
2549
2550 EV_FREQUENT_CHECK;
2058} 2551}
2059 2552
2060#if EV_STAT_ENABLE 2553#if EV_STAT_ENABLE
2061 2554
2062# ifdef _WIN32 2555# ifdef _WIN32
2063# undef lstat 2556# undef lstat
2064# define lstat(a,b) _stati64 (a,b) 2557# define lstat(a,b) _stati64 (a,b)
2065# endif 2558# endif
2066 2559
2067#define DEF_STAT_INTERVAL 5.0074891 2560#define DEF_STAT_INTERVAL 5.0074891
2561#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2068#define MIN_STAT_INTERVAL 0.1074891 2562#define MIN_STAT_INTERVAL 0.1074891
2069 2563
2070static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2564static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2071 2565
2072#if EV_USE_INOTIFY 2566#if EV_USE_INOTIFY
2073# define EV_INOTIFY_BUFSIZE 8192 2567# define EV_INOTIFY_BUFSIZE 8192
2077{ 2571{
2078 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2572 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2079 2573
2080 if (w->wd < 0) 2574 if (w->wd < 0)
2081 { 2575 {
2576 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2082 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2577 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2083 2578
2084 /* monitor some parent directory for speedup hints */ 2579 /* monitor some parent directory for speedup hints */
2580 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2581 /* but an efficiency issue only */
2085 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2582 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2086 { 2583 {
2087 char path [4096]; 2584 char path [4096];
2088 strcpy (path, w->path); 2585 strcpy (path, w->path);
2089 2586
2092 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2589 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2093 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2590 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2094 2591
2095 char *pend = strrchr (path, '/'); 2592 char *pend = strrchr (path, '/');
2096 2593
2097 if (!pend) 2594 if (!pend || pend == path)
2098 break; /* whoops, no '/', complain to your admin */ 2595 break;
2099 2596
2100 *pend = 0; 2597 *pend = 0;
2101 w->wd = inotify_add_watch (fs_fd, path, mask); 2598 w->wd = inotify_add_watch (fs_fd, path, mask);
2102 } 2599 }
2103 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2600 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2104 } 2601 }
2105 } 2602 }
2106 else
2107 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2108 2603
2109 if (w->wd >= 0) 2604 if (w->wd >= 0)
2605 {
2110 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2606 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2607
2608 /* now local changes will be tracked by inotify, but remote changes won't */
2609 /* unless the filesystem it known to be local, we therefore still poll */
2610 /* also do poll on <2.6.25, but with normal frequency */
2611 struct statfs sfs;
2612
2613 if (fs_2625 && !statfs (w->path, &sfs))
2614 if (sfs.f_type == 0x1373 /* devfs */
2615 || sfs.f_type == 0xEF53 /* ext2/3 */
2616 || sfs.f_type == 0x3153464a /* jfs */
2617 || sfs.f_type == 0x52654973 /* reiser3 */
2618 || sfs.f_type == 0x01021994 /* tempfs */
2619 || sfs.f_type == 0x58465342 /* xfs */)
2620 return;
2621
2622 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2623 ev_timer_again (EV_A_ &w->timer);
2624 }
2111} 2625}
2112 2626
2113static void noinline 2627static void noinline
2114infy_del (EV_P_ ev_stat *w) 2628infy_del (EV_P_ ev_stat *w)
2115{ 2629{
2129 2643
2130static void noinline 2644static void noinline
2131infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2645infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2132{ 2646{
2133 if (slot < 0) 2647 if (slot < 0)
2134 /* overflow, need to check for all hahs slots */ 2648 /* overflow, need to check for all hash slots */
2135 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2649 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2136 infy_wd (EV_A_ slot, wd, ev); 2650 infy_wd (EV_A_ slot, wd, ev);
2137 else 2651 else
2138 { 2652 {
2139 WL w_; 2653 WL w_;
2145 2659
2146 if (w->wd == wd || wd == -1) 2660 if (w->wd == wd || wd == -1)
2147 { 2661 {
2148 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2662 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2149 { 2663 {
2664 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2150 w->wd = -1; 2665 w->wd = -1;
2151 infy_add (EV_A_ w); /* re-add, no matter what */ 2666 infy_add (EV_A_ w); /* re-add, no matter what */
2152 } 2667 }
2153 2668
2154 stat_timer_cb (EV_A_ &w->timer, 0); 2669 stat_timer_cb (EV_A_ &w->timer, 0);
2167 2682
2168 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2683 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2169 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2684 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2170} 2685}
2171 2686
2172void inline_size 2687inline_size void
2688check_2625 (EV_P)
2689{
2690 /* kernels < 2.6.25 are borked
2691 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2692 */
2693 struct utsname buf;
2694 int major, minor, micro;
2695
2696 if (uname (&buf))
2697 return;
2698
2699 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2700 return;
2701
2702 if (major < 2
2703 || (major == 2 && minor < 6)
2704 || (major == 2 && minor == 6 && micro < 25))
2705 return;
2706
2707 fs_2625 = 1;
2708}
2709
2710inline_size void
2173infy_init (EV_P) 2711infy_init (EV_P)
2174{ 2712{
2175 if (fs_fd != -2) 2713 if (fs_fd != -2)
2176 return; 2714 return;
2715
2716 fs_fd = -1;
2717
2718 check_2625 (EV_A);
2177 2719
2178 fs_fd = inotify_init (); 2720 fs_fd = inotify_init ();
2179 2721
2180 if (fs_fd >= 0) 2722 if (fs_fd >= 0)
2181 { 2723 {
2183 ev_set_priority (&fs_w, EV_MAXPRI); 2725 ev_set_priority (&fs_w, EV_MAXPRI);
2184 ev_io_start (EV_A_ &fs_w); 2726 ev_io_start (EV_A_ &fs_w);
2185 } 2727 }
2186} 2728}
2187 2729
2188void inline_size 2730inline_size void
2189infy_fork (EV_P) 2731infy_fork (EV_P)
2190{ 2732{
2191 int slot; 2733 int slot;
2192 2734
2193 if (fs_fd < 0) 2735 if (fs_fd < 0)
2209 w->wd = -1; 2751 w->wd = -1;
2210 2752
2211 if (fs_fd >= 0) 2753 if (fs_fd >= 0)
2212 infy_add (EV_A_ w); /* re-add, no matter what */ 2754 infy_add (EV_A_ w); /* re-add, no matter what */
2213 else 2755 else
2214 ev_timer_start (EV_A_ &w->timer); 2756 ev_timer_again (EV_A_ &w->timer);
2215 } 2757 }
2216
2217 } 2758 }
2218} 2759}
2219 2760
2761#endif
2762
2763#ifdef _WIN32
2764# define EV_LSTAT(p,b) _stati64 (p, b)
2765#else
2766# define EV_LSTAT(p,b) lstat (p, b)
2220#endif 2767#endif
2221 2768
2222void 2769void
2223ev_stat_stat (EV_P_ ev_stat *w) 2770ev_stat_stat (EV_P_ ev_stat *w)
2224{ 2771{
2251 || w->prev.st_atime != w->attr.st_atime 2798 || w->prev.st_atime != w->attr.st_atime
2252 || w->prev.st_mtime != w->attr.st_mtime 2799 || w->prev.st_mtime != w->attr.st_mtime
2253 || w->prev.st_ctime != w->attr.st_ctime 2800 || w->prev.st_ctime != w->attr.st_ctime
2254 ) { 2801 ) {
2255 #if EV_USE_INOTIFY 2802 #if EV_USE_INOTIFY
2803 if (fs_fd >= 0)
2804 {
2256 infy_del (EV_A_ w); 2805 infy_del (EV_A_ w);
2257 infy_add (EV_A_ w); 2806 infy_add (EV_A_ w);
2258 ev_stat_stat (EV_A_ w); /* avoid race... */ 2807 ev_stat_stat (EV_A_ w); /* avoid race... */
2808 }
2259 #endif 2809 #endif
2260 2810
2261 ev_feed_event (EV_A_ w, EV_STAT); 2811 ev_feed_event (EV_A_ w, EV_STAT);
2262 } 2812 }
2263} 2813}
2266ev_stat_start (EV_P_ ev_stat *w) 2816ev_stat_start (EV_P_ ev_stat *w)
2267{ 2817{
2268 if (expect_false (ev_is_active (w))) 2818 if (expect_false (ev_is_active (w)))
2269 return; 2819 return;
2270 2820
2271 /* since we use memcmp, we need to clear any padding data etc. */
2272 memset (&w->prev, 0, sizeof (ev_statdata));
2273 memset (&w->attr, 0, sizeof (ev_statdata));
2274
2275 ev_stat_stat (EV_A_ w); 2821 ev_stat_stat (EV_A_ w);
2276 2822
2823 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2277 if (w->interval < MIN_STAT_INTERVAL) 2824 w->interval = MIN_STAT_INTERVAL;
2278 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2279 2825
2280 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2826 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2281 ev_set_priority (&w->timer, ev_priority (w)); 2827 ev_set_priority (&w->timer, ev_priority (w));
2282 2828
2283#if EV_USE_INOTIFY 2829#if EV_USE_INOTIFY
2284 infy_init (EV_A); 2830 infy_init (EV_A);
2285 2831
2286 if (fs_fd >= 0) 2832 if (fs_fd >= 0)
2287 infy_add (EV_A_ w); 2833 infy_add (EV_A_ w);
2288 else 2834 else
2289#endif 2835#endif
2290 ev_timer_start (EV_A_ &w->timer); 2836 ev_timer_again (EV_A_ &w->timer);
2291 2837
2292 ev_start (EV_A_ (W)w, 1); 2838 ev_start (EV_A_ (W)w, 1);
2839
2840 EV_FREQUENT_CHECK;
2293} 2841}
2294 2842
2295void 2843void
2296ev_stat_stop (EV_P_ ev_stat *w) 2844ev_stat_stop (EV_P_ ev_stat *w)
2297{ 2845{
2298 clear_pending (EV_A_ (W)w); 2846 clear_pending (EV_A_ (W)w);
2299 if (expect_false (!ev_is_active (w))) 2847 if (expect_false (!ev_is_active (w)))
2300 return; 2848 return;
2301 2849
2850 EV_FREQUENT_CHECK;
2851
2302#if EV_USE_INOTIFY 2852#if EV_USE_INOTIFY
2303 infy_del (EV_A_ w); 2853 infy_del (EV_A_ w);
2304#endif 2854#endif
2305 ev_timer_stop (EV_A_ &w->timer); 2855 ev_timer_stop (EV_A_ &w->timer);
2306 2856
2307 ev_stop (EV_A_ (W)w); 2857 ev_stop (EV_A_ (W)w);
2858
2859 EV_FREQUENT_CHECK;
2308} 2860}
2309#endif 2861#endif
2310 2862
2311#if EV_IDLE_ENABLE 2863#if EV_IDLE_ENABLE
2312void 2864void
2314{ 2866{
2315 if (expect_false (ev_is_active (w))) 2867 if (expect_false (ev_is_active (w)))
2316 return; 2868 return;
2317 2869
2318 pri_adjust (EV_A_ (W)w); 2870 pri_adjust (EV_A_ (W)w);
2871
2872 EV_FREQUENT_CHECK;
2319 2873
2320 { 2874 {
2321 int active = ++idlecnt [ABSPRI (w)]; 2875 int active = ++idlecnt [ABSPRI (w)];
2322 2876
2323 ++idleall; 2877 ++idleall;
2324 ev_start (EV_A_ (W)w, active); 2878 ev_start (EV_A_ (W)w, active);
2325 2879
2326 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2880 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2327 idles [ABSPRI (w)][active - 1] = w; 2881 idles [ABSPRI (w)][active - 1] = w;
2328 } 2882 }
2883
2884 EV_FREQUENT_CHECK;
2329} 2885}
2330 2886
2331void 2887void
2332ev_idle_stop (EV_P_ ev_idle *w) 2888ev_idle_stop (EV_P_ ev_idle *w)
2333{ 2889{
2334 clear_pending (EV_A_ (W)w); 2890 clear_pending (EV_A_ (W)w);
2335 if (expect_false (!ev_is_active (w))) 2891 if (expect_false (!ev_is_active (w)))
2336 return; 2892 return;
2337 2893
2894 EV_FREQUENT_CHECK;
2895
2338 { 2896 {
2339 int active = ((W)w)->active; 2897 int active = ev_active (w);
2340 2898
2341 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2899 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2342 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2900 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2343 2901
2344 ev_stop (EV_A_ (W)w); 2902 ev_stop (EV_A_ (W)w);
2345 --idleall; 2903 --idleall;
2346 } 2904 }
2905
2906 EV_FREQUENT_CHECK;
2347} 2907}
2348#endif 2908#endif
2349 2909
2350void 2910void
2351ev_prepare_start (EV_P_ ev_prepare *w) 2911ev_prepare_start (EV_P_ ev_prepare *w)
2352{ 2912{
2353 if (expect_false (ev_is_active (w))) 2913 if (expect_false (ev_is_active (w)))
2354 return; 2914 return;
2915
2916 EV_FREQUENT_CHECK;
2355 2917
2356 ev_start (EV_A_ (W)w, ++preparecnt); 2918 ev_start (EV_A_ (W)w, ++preparecnt);
2357 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2919 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2358 prepares [preparecnt - 1] = w; 2920 prepares [preparecnt - 1] = w;
2921
2922 EV_FREQUENT_CHECK;
2359} 2923}
2360 2924
2361void 2925void
2362ev_prepare_stop (EV_P_ ev_prepare *w) 2926ev_prepare_stop (EV_P_ ev_prepare *w)
2363{ 2927{
2364 clear_pending (EV_A_ (W)w); 2928 clear_pending (EV_A_ (W)w);
2365 if (expect_false (!ev_is_active (w))) 2929 if (expect_false (!ev_is_active (w)))
2366 return; 2930 return;
2367 2931
2932 EV_FREQUENT_CHECK;
2933
2368 { 2934 {
2369 int active = ((W)w)->active; 2935 int active = ev_active (w);
2936
2370 prepares [active - 1] = prepares [--preparecnt]; 2937 prepares [active - 1] = prepares [--preparecnt];
2371 ((W)prepares [active - 1])->active = active; 2938 ev_active (prepares [active - 1]) = active;
2372 } 2939 }
2373 2940
2374 ev_stop (EV_A_ (W)w); 2941 ev_stop (EV_A_ (W)w);
2942
2943 EV_FREQUENT_CHECK;
2375} 2944}
2376 2945
2377void 2946void
2378ev_check_start (EV_P_ ev_check *w) 2947ev_check_start (EV_P_ ev_check *w)
2379{ 2948{
2380 if (expect_false (ev_is_active (w))) 2949 if (expect_false (ev_is_active (w)))
2381 return; 2950 return;
2951
2952 EV_FREQUENT_CHECK;
2382 2953
2383 ev_start (EV_A_ (W)w, ++checkcnt); 2954 ev_start (EV_A_ (W)w, ++checkcnt);
2384 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2955 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2385 checks [checkcnt - 1] = w; 2956 checks [checkcnt - 1] = w;
2957
2958 EV_FREQUENT_CHECK;
2386} 2959}
2387 2960
2388void 2961void
2389ev_check_stop (EV_P_ ev_check *w) 2962ev_check_stop (EV_P_ ev_check *w)
2390{ 2963{
2391 clear_pending (EV_A_ (W)w); 2964 clear_pending (EV_A_ (W)w);
2392 if (expect_false (!ev_is_active (w))) 2965 if (expect_false (!ev_is_active (w)))
2393 return; 2966 return;
2394 2967
2968 EV_FREQUENT_CHECK;
2969
2395 { 2970 {
2396 int active = ((W)w)->active; 2971 int active = ev_active (w);
2972
2397 checks [active - 1] = checks [--checkcnt]; 2973 checks [active - 1] = checks [--checkcnt];
2398 ((W)checks [active - 1])->active = active; 2974 ev_active (checks [active - 1]) = active;
2399 } 2975 }
2400 2976
2401 ev_stop (EV_A_ (W)w); 2977 ev_stop (EV_A_ (W)w);
2978
2979 EV_FREQUENT_CHECK;
2402} 2980}
2403 2981
2404#if EV_EMBED_ENABLE 2982#if EV_EMBED_ENABLE
2405void noinline 2983void noinline
2406ev_embed_sweep (EV_P_ ev_embed *w) 2984ev_embed_sweep (EV_P_ ev_embed *w)
2433 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3011 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2434 } 3012 }
2435 } 3013 }
2436} 3014}
2437 3015
3016static void
3017embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3018{
3019 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3020
3021 ev_embed_stop (EV_A_ w);
3022
3023 {
3024 struct ev_loop *loop = w->other;
3025
3026 ev_loop_fork (EV_A);
3027 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3028 }
3029
3030 ev_embed_start (EV_A_ w);
3031}
3032
2438#if 0 3033#if 0
2439static void 3034static void
2440embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3035embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2441{ 3036{
2442 ev_idle_stop (EV_A_ idle); 3037 ev_idle_stop (EV_A_ idle);
2449 if (expect_false (ev_is_active (w))) 3044 if (expect_false (ev_is_active (w)))
2450 return; 3045 return;
2451 3046
2452 { 3047 {
2453 struct ev_loop *loop = w->other; 3048 struct ev_loop *loop = w->other;
2454 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3049 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2455 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3050 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2456 } 3051 }
3052
3053 EV_FREQUENT_CHECK;
2457 3054
2458 ev_set_priority (&w->io, ev_priority (w)); 3055 ev_set_priority (&w->io, ev_priority (w));
2459 ev_io_start (EV_A_ &w->io); 3056 ev_io_start (EV_A_ &w->io);
2460 3057
2461 ev_prepare_init (&w->prepare, embed_prepare_cb); 3058 ev_prepare_init (&w->prepare, embed_prepare_cb);
2462 ev_set_priority (&w->prepare, EV_MINPRI); 3059 ev_set_priority (&w->prepare, EV_MINPRI);
2463 ev_prepare_start (EV_A_ &w->prepare); 3060 ev_prepare_start (EV_A_ &w->prepare);
2464 3061
3062 ev_fork_init (&w->fork, embed_fork_cb);
3063 ev_fork_start (EV_A_ &w->fork);
3064
2465 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3065 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2466 3066
2467 ev_start (EV_A_ (W)w, 1); 3067 ev_start (EV_A_ (W)w, 1);
3068
3069 EV_FREQUENT_CHECK;
2468} 3070}
2469 3071
2470void 3072void
2471ev_embed_stop (EV_P_ ev_embed *w) 3073ev_embed_stop (EV_P_ ev_embed *w)
2472{ 3074{
2473 clear_pending (EV_A_ (W)w); 3075 clear_pending (EV_A_ (W)w);
2474 if (expect_false (!ev_is_active (w))) 3076 if (expect_false (!ev_is_active (w)))
2475 return; 3077 return;
2476 3078
3079 EV_FREQUENT_CHECK;
3080
2477 ev_io_stop (EV_A_ &w->io); 3081 ev_io_stop (EV_A_ &w->io);
2478 ev_prepare_stop (EV_A_ &w->prepare); 3082 ev_prepare_stop (EV_A_ &w->prepare);
3083 ev_fork_stop (EV_A_ &w->fork);
2479 3084
2480 ev_stop (EV_A_ (W)w); 3085 EV_FREQUENT_CHECK;
2481} 3086}
2482#endif 3087#endif
2483 3088
2484#if EV_FORK_ENABLE 3089#if EV_FORK_ENABLE
2485void 3090void
2486ev_fork_start (EV_P_ ev_fork *w) 3091ev_fork_start (EV_P_ ev_fork *w)
2487{ 3092{
2488 if (expect_false (ev_is_active (w))) 3093 if (expect_false (ev_is_active (w)))
2489 return; 3094 return;
3095
3096 EV_FREQUENT_CHECK;
2490 3097
2491 ev_start (EV_A_ (W)w, ++forkcnt); 3098 ev_start (EV_A_ (W)w, ++forkcnt);
2492 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3099 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2493 forks [forkcnt - 1] = w; 3100 forks [forkcnt - 1] = w;
3101
3102 EV_FREQUENT_CHECK;
2494} 3103}
2495 3104
2496void 3105void
2497ev_fork_stop (EV_P_ ev_fork *w) 3106ev_fork_stop (EV_P_ ev_fork *w)
2498{ 3107{
2499 clear_pending (EV_A_ (W)w); 3108 clear_pending (EV_A_ (W)w);
2500 if (expect_false (!ev_is_active (w))) 3109 if (expect_false (!ev_is_active (w)))
2501 return; 3110 return;
2502 3111
3112 EV_FREQUENT_CHECK;
3113
2503 { 3114 {
2504 int active = ((W)w)->active; 3115 int active = ev_active (w);
3116
2505 forks [active - 1] = forks [--forkcnt]; 3117 forks [active - 1] = forks [--forkcnt];
2506 ((W)forks [active - 1])->active = active; 3118 ev_active (forks [active - 1]) = active;
2507 } 3119 }
2508 3120
2509 ev_stop (EV_A_ (W)w); 3121 ev_stop (EV_A_ (W)w);
3122
3123 EV_FREQUENT_CHECK;
2510} 3124}
2511#endif 3125#endif
2512 3126
2513#if EV_ASYNC_ENABLE 3127#if EV_ASYNC_ENABLE
2514void 3128void
2516{ 3130{
2517 if (expect_false (ev_is_active (w))) 3131 if (expect_false (ev_is_active (w)))
2518 return; 3132 return;
2519 3133
2520 evpipe_init (EV_A); 3134 evpipe_init (EV_A);
3135
3136 EV_FREQUENT_CHECK;
2521 3137
2522 ev_start (EV_A_ (W)w, ++asynccnt); 3138 ev_start (EV_A_ (W)w, ++asynccnt);
2523 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3139 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2524 asyncs [asynccnt - 1] = w; 3140 asyncs [asynccnt - 1] = w;
3141
3142 EV_FREQUENT_CHECK;
2525} 3143}
2526 3144
2527void 3145void
2528ev_async_stop (EV_P_ ev_async *w) 3146ev_async_stop (EV_P_ ev_async *w)
2529{ 3147{
2530 clear_pending (EV_A_ (W)w); 3148 clear_pending (EV_A_ (W)w);
2531 if (expect_false (!ev_is_active (w))) 3149 if (expect_false (!ev_is_active (w)))
2532 return; 3150 return;
2533 3151
3152 EV_FREQUENT_CHECK;
3153
2534 { 3154 {
2535 int active = ((W)w)->active; 3155 int active = ev_active (w);
3156
2536 asyncs [active - 1] = asyncs [--asynccnt]; 3157 asyncs [active - 1] = asyncs [--asynccnt];
2537 ((W)asyncs [active - 1])->active = active; 3158 ev_active (asyncs [active - 1]) = active;
2538 } 3159 }
2539 3160
2540 ev_stop (EV_A_ (W)w); 3161 ev_stop (EV_A_ (W)w);
3162
3163 EV_FREQUENT_CHECK;
2541} 3164}
2542 3165
2543void 3166void
2544ev_async_send (EV_P_ ev_async *w) 3167ev_async_send (EV_P_ ev_async *w)
2545{ 3168{
2562once_cb (EV_P_ struct ev_once *once, int revents) 3185once_cb (EV_P_ struct ev_once *once, int revents)
2563{ 3186{
2564 void (*cb)(int revents, void *arg) = once->cb; 3187 void (*cb)(int revents, void *arg) = once->cb;
2565 void *arg = once->arg; 3188 void *arg = once->arg;
2566 3189
2567 ev_io_stop (EV_A_ &once->io); 3190 ev_io_stop (EV_A_ &once->io);
2568 ev_timer_stop (EV_A_ &once->to); 3191 ev_timer_stop (EV_A_ &once->to);
2569 ev_free (once); 3192 ev_free (once);
2570 3193
2571 cb (revents, arg); 3194 cb (revents, arg);
2572} 3195}
2573 3196
2574static void 3197static void
2575once_cb_io (EV_P_ ev_io *w, int revents) 3198once_cb_io (EV_P_ ev_io *w, int revents)
2576{ 3199{
2577 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3200 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3201
3202 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2578} 3203}
2579 3204
2580static void 3205static void
2581once_cb_to (EV_P_ ev_timer *w, int revents) 3206once_cb_to (EV_P_ ev_timer *w, int revents)
2582{ 3207{
2583 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3208 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3209
3210 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2584} 3211}
2585 3212
2586void 3213void
2587ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3214ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2588{ 3215{
2610 ev_timer_set (&once->to, timeout, 0.); 3237 ev_timer_set (&once->to, timeout, 0.);
2611 ev_timer_start (EV_A_ &once->to); 3238 ev_timer_start (EV_A_ &once->to);
2612 } 3239 }
2613} 3240}
2614 3241
3242/*****************************************************************************/
3243
3244#if EV_WALK_ENABLE
3245void
3246ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3247{
3248 int i, j;
3249 ev_watcher_list *wl, *wn;
3250
3251 if (types & (EV_IO | EV_EMBED))
3252 for (i = 0; i < anfdmax; ++i)
3253 for (wl = anfds [i].head; wl; )
3254 {
3255 wn = wl->next;
3256
3257#if EV_EMBED_ENABLE
3258 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3259 {
3260 if (types & EV_EMBED)
3261 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3262 }
3263 else
3264#endif
3265#if EV_USE_INOTIFY
3266 if (ev_cb ((ev_io *)wl) == infy_cb)
3267 ;
3268 else
3269#endif
3270 if ((ev_io *)wl != &pipe_w)
3271 if (types & EV_IO)
3272 cb (EV_A_ EV_IO, wl);
3273
3274 wl = wn;
3275 }
3276
3277 if (types & (EV_TIMER | EV_STAT))
3278 for (i = timercnt + HEAP0; i-- > HEAP0; )
3279#if EV_STAT_ENABLE
3280 /*TODO: timer is not always active*/
3281 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3282 {
3283 if (types & EV_STAT)
3284 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3285 }
3286 else
3287#endif
3288 if (types & EV_TIMER)
3289 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3290
3291#if EV_PERIODIC_ENABLE
3292 if (types & EV_PERIODIC)
3293 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3294 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3295#endif
3296
3297#if EV_IDLE_ENABLE
3298 if (types & EV_IDLE)
3299 for (j = NUMPRI; i--; )
3300 for (i = idlecnt [j]; i--; )
3301 cb (EV_A_ EV_IDLE, idles [j][i]);
3302#endif
3303
3304#if EV_FORK_ENABLE
3305 if (types & EV_FORK)
3306 for (i = forkcnt; i--; )
3307 if (ev_cb (forks [i]) != embed_fork_cb)
3308 cb (EV_A_ EV_FORK, forks [i]);
3309#endif
3310
3311#if EV_ASYNC_ENABLE
3312 if (types & EV_ASYNC)
3313 for (i = asynccnt; i--; )
3314 cb (EV_A_ EV_ASYNC, asyncs [i]);
3315#endif
3316
3317 if (types & EV_PREPARE)
3318 for (i = preparecnt; i--; )
3319#if EV_EMBED_ENABLE
3320 if (ev_cb (prepares [i]) != embed_prepare_cb)
3321#endif
3322 cb (EV_A_ EV_PREPARE, prepares [i]);
3323
3324 if (types & EV_CHECK)
3325 for (i = checkcnt; i--; )
3326 cb (EV_A_ EV_CHECK, checks [i]);
3327
3328 if (types & EV_SIGNAL)
3329 for (i = 0; i < signalmax; ++i)
3330 for (wl = signals [i].head; wl; )
3331 {
3332 wn = wl->next;
3333 cb (EV_A_ EV_SIGNAL, wl);
3334 wl = wn;
3335 }
3336
3337 if (types & EV_CHILD)
3338 for (i = EV_PID_HASHSIZE; i--; )
3339 for (wl = childs [i]; wl; )
3340 {
3341 wn = wl->next;
3342 cb (EV_A_ EV_CHILD, wl);
3343 wl = wn;
3344 }
3345/* EV_STAT 0x00001000 /* stat data changed */
3346/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3347}
3348#endif
3349
2615#if EV_MULTIPLICITY 3350#if EV_MULTIPLICITY
2616 #include "ev_wrap.h" 3351 #include "ev_wrap.h"
2617#endif 3352#endif
2618 3353
2619#ifdef __cplusplus 3354#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines