ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.29 by root, Thu Nov 1 08:10:03 2007 UTC vs.
Revision 1.61 by root, Sun Nov 4 19:45:09 2007 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are 8 * modification, are permitted provided that the following conditions are
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 30 */
29#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
30# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
31#endif 55#endif
32 56
33#include <math.h> 57#include <math.h>
34#include <stdlib.h> 58#include <stdlib.h>
35#include <unistd.h> 59#include <unistd.h>
40#include <stdio.h> 64#include <stdio.h>
41 65
42#include <assert.h> 66#include <assert.h>
43#include <errno.h> 67#include <errno.h>
44#include <sys/types.h> 68#include <sys/types.h>
69#ifndef WIN32
45#include <sys/wait.h> 70# include <sys/wait.h>
71#endif
46#include <sys/time.h> 72#include <sys/time.h>
47#include <time.h> 73#include <time.h>
48 74
75/**/
76
49#ifndef EV_USE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
50# ifdef CLOCK_MONOTONIC
51# define EV_USE_MONOTONIC 1 78# define EV_USE_MONOTONIC 1
52# endif
53#endif 79#endif
54 80
55#ifndef EV_USE_SELECT 81#ifndef EV_USE_SELECT
56# define EV_USE_SELECT 1 82# define EV_USE_SELECT 1
57#endif 83#endif
58 84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
59#ifndef EV_USE_EPOLL 89#ifndef EV_USE_EPOLL
60# define EV_USE_EPOLL 0 90# define EV_USE_EPOLL 0
61#endif 91#endif
62 92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
63#ifndef EV_USE_REALTIME 97#ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 1 /* posix requirement, but might be slower */ 98# define EV_USE_REALTIME 1
65#endif 99#endif
100
101/**/
102
103#ifndef CLOCK_MONOTONIC
104# undef EV_USE_MONOTONIC
105# define EV_USE_MONOTONIC 0
106#endif
107
108#ifndef CLOCK_REALTIME
109# undef EV_USE_REALTIME
110# define EV_USE_REALTIME 0
111#endif
112
113/**/
66 114
67#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 115#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
68#define MAX_BLOCKTIME 59.731 116#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
69#define PID_HASHSIZE 16 /* size of pid hahs table, must be power of two */ 117#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
118/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
70 119
71#include "ev.h" 120#include "ev.h"
121
122#if __GNUC__ >= 3
123# define expect(expr,value) __builtin_expect ((expr),(value))
124# define inline inline
125#else
126# define expect(expr,value) (expr)
127# define inline static
128#endif
129
130#define expect_false(expr) expect ((expr) != 0, 0)
131#define expect_true(expr) expect ((expr) != 0, 1)
132
133#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
134#define ABSPRI(w) ((w)->priority - EV_MINPRI)
72 135
73typedef struct ev_watcher *W; 136typedef struct ev_watcher *W;
74typedef struct ev_watcher_list *WL; 137typedef struct ev_watcher_list *WL;
75typedef struct ev_watcher_time *WT; 138typedef struct ev_watcher_time *WT;
76 139
77static ev_tstamp now, diff; /* monotonic clock */ 140static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
78ev_tstamp ev_now;
79int ev_method;
80
81static int have_monotonic; /* runtime */
82
83static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
84static void (*method_modify)(int fd, int oev, int nev);
85static void (*method_poll)(ev_tstamp timeout);
86 141
87/*****************************************************************************/ 142/*****************************************************************************/
88 143
89ev_tstamp 144typedef struct
145{
146 struct ev_watcher_list *head;
147 unsigned char events;
148 unsigned char reify;
149} ANFD;
150
151typedef struct
152{
153 W w;
154 int events;
155} ANPENDING;
156
157#if EV_MULTIPLICITY
158
159struct ev_loop
160{
161# define VAR(name,decl) decl;
162# include "ev_vars.h"
163};
164# undef VAR
165# include "ev_wrap.h"
166
167#else
168
169# define VAR(name,decl) static decl;
170# include "ev_vars.h"
171# undef VAR
172
173#endif
174
175/*****************************************************************************/
176
177inline ev_tstamp
90ev_time (void) 178ev_time (void)
91{ 179{
92#if EV_USE_REALTIME 180#if EV_USE_REALTIME
93 struct timespec ts; 181 struct timespec ts;
94 clock_gettime (CLOCK_REALTIME, &ts); 182 clock_gettime (CLOCK_REALTIME, &ts);
98 gettimeofday (&tv, 0); 186 gettimeofday (&tv, 0);
99 return tv.tv_sec + tv.tv_usec * 1e-6; 187 return tv.tv_sec + tv.tv_usec * 1e-6;
100#endif 188#endif
101} 189}
102 190
103static ev_tstamp 191inline ev_tstamp
104get_clock (void) 192get_clock (void)
105{ 193{
106#if EV_USE_MONOTONIC 194#if EV_USE_MONOTONIC
107 if (have_monotonic) 195 if (expect_true (have_monotonic))
108 { 196 {
109 struct timespec ts; 197 struct timespec ts;
110 clock_gettime (CLOCK_MONOTONIC, &ts); 198 clock_gettime (CLOCK_MONOTONIC, &ts);
111 return ts.tv_sec + ts.tv_nsec * 1e-9; 199 return ts.tv_sec + ts.tv_nsec * 1e-9;
112 } 200 }
113#endif 201#endif
114 202
115 return ev_time (); 203 return ev_time ();
116} 204}
117 205
206ev_tstamp
207ev_now (EV_P)
208{
209 return rt_now;
210}
211
118#define array_nextsize(n) (((n) << 1) | 4 & ~3) 212#define array_roundsize(base,n) ((n) | 4 & ~3)
119#define array_prevsize(n) (((n) >> 1) | 4 & ~3)
120 213
121#define array_needsize(base,cur,cnt,init) \ 214#define array_needsize(base,cur,cnt,init) \
122 if ((cnt) > cur) \ 215 if (expect_false ((cnt) > cur)) \
123 { \ 216 { \
124 int newcnt = cur; \ 217 int newcnt = cur; \
125 do \ 218 do \
126 { \ 219 { \
127 newcnt = array_nextsize (newcnt); \ 220 newcnt = array_roundsize (base, newcnt << 1); \
128 } \ 221 } \
129 while ((cnt) > newcnt); \ 222 while ((cnt) > newcnt); \
130 \ 223 \
131 base = realloc (base, sizeof (*base) * (newcnt)); \ 224 base = realloc (base, sizeof (*base) * (newcnt)); \
132 init (base + cur, newcnt - cur); \ 225 init (base + cur, newcnt - cur); \
133 cur = newcnt; \ 226 cur = newcnt; \
134 } 227 }
135 228
136/*****************************************************************************/ 229/*****************************************************************************/
137 230
138typedef struct
139{
140 struct ev_io *head;
141 int events;
142} ANFD;
143
144static ANFD *anfds;
145static int anfdmax;
146
147static void 231static void
148anfds_init (ANFD *base, int count) 232anfds_init (ANFD *base, int count)
149{ 233{
150 while (count--) 234 while (count--)
151 { 235 {
152 base->head = 0; 236 base->head = 0;
153 base->events = EV_NONE; 237 base->events = EV_NONE;
238 base->reify = 0;
239
154 ++base; 240 ++base;
155 } 241 }
156} 242}
157 243
158typedef struct
159{
160 W w;
161 int events;
162} ANPENDING;
163
164static ANPENDING *pendings;
165static int pendingmax, pendingcnt;
166
167static void 244static void
168event (W w, int events) 245event (EV_P_ W w, int events)
169{ 246{
170 if (w->active) 247 if (w->pending)
171 { 248 {
172 w->pending = ++pendingcnt;
173 array_needsize (pendings, pendingmax, pendingcnt, );
174 pendings [pendingcnt - 1].w = w;
175 pendings [pendingcnt - 1].events = events; 249 pendings [ABSPRI (w)][w->pending - 1].events |= events;
250 return;
176 } 251 }
177}
178 252
253 w->pending = ++pendingcnt [ABSPRI (w)];
254 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
255 pendings [ABSPRI (w)][w->pending - 1].w = w;
256 pendings [ABSPRI (w)][w->pending - 1].events = events;
257}
258
179static void 259static void
180queue_events (W *events, int eventcnt, int type) 260queue_events (EV_P_ W *events, int eventcnt, int type)
181{ 261{
182 int i; 262 int i;
183 263
184 for (i = 0; i < eventcnt; ++i) 264 for (i = 0; i < eventcnt; ++i)
185 event (events [i], type); 265 event (EV_A_ events [i], type);
186} 266}
187 267
188static void 268static void
189fd_event (int fd, int events) 269fd_event (EV_P_ int fd, int events)
190{ 270{
191 ANFD *anfd = anfds + fd; 271 ANFD *anfd = anfds + fd;
192 struct ev_io *w; 272 struct ev_io *w;
193 273
194 for (w = anfd->head; w; w = w->next) 274 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
195 { 275 {
196 int ev = w->events & events; 276 int ev = w->events & events;
197 277
198 if (ev) 278 if (ev)
199 event ((W)w, ev); 279 event (EV_A_ (W)w, ev);
200 } 280 }
201} 281}
202 282
203/*****************************************************************************/ 283/*****************************************************************************/
204 284
205static int *fdchanges;
206static int fdchangemax, fdchangecnt;
207
208static void 285static void
209fd_reify (void) 286fd_reify (EV_P)
210{ 287{
211 int i; 288 int i;
212 289
213 for (i = 0; i < fdchangecnt; ++i) 290 for (i = 0; i < fdchangecnt; ++i)
214 { 291 {
216 ANFD *anfd = anfds + fd; 293 ANFD *anfd = anfds + fd;
217 struct ev_io *w; 294 struct ev_io *w;
218 295
219 int events = 0; 296 int events = 0;
220 297
221 for (w = anfd->head; w; w = w->next) 298 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
222 events |= w->events; 299 events |= w->events;
223 300
224 anfd->events &= ~EV_REIFY; 301 anfd->reify = 0;
225 302
226 if (anfd->events != events) 303 if (anfd->events != events)
227 { 304 {
228 method_modify (fd, anfd->events, events); 305 method_modify (EV_A_ fd, anfd->events, events);
229 anfd->events = events; 306 anfd->events = events;
230 } 307 }
231 } 308 }
232 309
233 fdchangecnt = 0; 310 fdchangecnt = 0;
234} 311}
235 312
236static void 313static void
237fd_change (int fd) 314fd_change (EV_P_ int fd)
238{ 315{
239 if (anfds [fd].events & EV_REIFY || fdchangecnt < 0) 316 if (anfds [fd].reify || fdchangecnt < 0)
240 return; 317 return;
241 318
242 anfds [fd].events |= EV_REIFY; 319 anfds [fd].reify = 1;
243 320
244 ++fdchangecnt; 321 ++fdchangecnt;
245 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 322 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
246 fdchanges [fdchangecnt - 1] = fd; 323 fdchanges [fdchangecnt - 1] = fd;
247} 324}
248 325
326static void
327fd_kill (EV_P_ int fd)
328{
329 struct ev_io *w;
330
331 while ((w = (struct ev_io *)anfds [fd].head))
332 {
333 ev_io_stop (EV_A_ w);
334 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
335 }
336}
337
249/* called on EBADF to verify fds */ 338/* called on EBADF to verify fds */
250static void 339static void
251fd_recheck (void) 340fd_ebadf (EV_P)
252{ 341{
253 int fd; 342 int fd;
254 343
255 for (fd = 0; fd < anfdmax; ++fd) 344 for (fd = 0; fd < anfdmax; ++fd)
256 if (anfds [fd].events) 345 if (anfds [fd].events)
257 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 346 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
258 while (anfds [fd].head) 347 fd_kill (EV_A_ fd);
348}
349
350/* called on ENOMEM in select/poll to kill some fds and retry */
351static void
352fd_enomem (EV_P)
353{
354 int fd = anfdmax;
355
356 while (fd--)
357 if (anfds [fd].events)
259 { 358 {
260 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT); 359 close (fd);
261 ev_io_stop (anfds [fd].head); 360 fd_kill (EV_A_ fd);
361 return;
262 } 362 }
363}
364
365/* susually called after fork if method needs to re-arm all fds from scratch */
366static void
367fd_rearm_all (EV_P)
368{
369 int fd;
370
371 /* this should be highly optimised to not do anything but set a flag */
372 for (fd = 0; fd < anfdmax; ++fd)
373 if (anfds [fd].events)
374 {
375 anfds [fd].events = 0;
376 fd_change (EV_A_ fd);
377 }
263} 378}
264 379
265/*****************************************************************************/ 380/*****************************************************************************/
266 381
267static struct ev_timer **timers;
268static int timermax, timercnt;
269
270static struct ev_periodic **periodics;
271static int periodicmax, periodiccnt;
272
273static void 382static void
274upheap (WT *timers, int k) 383upheap (WT *heap, int k)
275{ 384{
276 WT w = timers [k]; 385 WT w = heap [k];
277 386
278 while (k && timers [k >> 1]->at > w->at) 387 while (k && heap [k >> 1]->at > w->at)
279 { 388 {
280 timers [k] = timers [k >> 1]; 389 heap [k] = heap [k >> 1];
281 timers [k]->active = k + 1; 390 heap [k]->active = k + 1;
282 k >>= 1; 391 k >>= 1;
283 } 392 }
284 393
285 timers [k] = w; 394 heap [k] = w;
286 timers [k]->active = k + 1; 395 heap [k]->active = k + 1;
287 396
288} 397}
289 398
290static void 399static void
291downheap (WT *timers, int N, int k) 400downheap (WT *heap, int N, int k)
292{ 401{
293 WT w = timers [k]; 402 WT w = heap [k];
294 403
295 while (k < (N >> 1)) 404 while (k < (N >> 1))
296 { 405 {
297 int j = k << 1; 406 int j = k << 1;
298 407
299 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 408 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
300 ++j; 409 ++j;
301 410
302 if (w->at <= timers [j]->at) 411 if (w->at <= heap [j]->at)
303 break; 412 break;
304 413
305 timers [k] = timers [j]; 414 heap [k] = heap [j];
306 timers [k]->active = k + 1; 415 heap [k]->active = k + 1;
307 k = j; 416 k = j;
308 } 417 }
309 418
310 timers [k] = w; 419 heap [k] = w;
311 timers [k]->active = k + 1; 420 heap [k]->active = k + 1;
312} 421}
313 422
314/*****************************************************************************/ 423/*****************************************************************************/
315 424
316typedef struct 425typedef struct
317{ 426{
318 struct ev_signal *head; 427 struct ev_watcher_list *head;
319 sig_atomic_t gotsig; 428 sig_atomic_t volatile gotsig;
320} ANSIG; 429} ANSIG;
321 430
322static ANSIG *signals; 431static ANSIG *signals;
323static int signalmax; 432static int signalmax;
324 433
325static int sigpipe [2]; 434static int sigpipe [2];
326static sig_atomic_t gotsig; 435static sig_atomic_t volatile gotsig;
327static struct ev_io sigev; 436static struct ev_io sigev;
328 437
329static void 438static void
330signals_init (ANSIG *base, int count) 439signals_init (ANSIG *base, int count)
331{ 440{
332 while (count--) 441 while (count--)
333 { 442 {
334 base->head = 0; 443 base->head = 0;
335 base->gotsig = 0; 444 base->gotsig = 0;
445
336 ++base; 446 ++base;
337 } 447 }
338} 448}
339 449
340static void 450static void
342{ 452{
343 signals [signum - 1].gotsig = 1; 453 signals [signum - 1].gotsig = 1;
344 454
345 if (!gotsig) 455 if (!gotsig)
346 { 456 {
457 int old_errno = errno;
347 gotsig = 1; 458 gotsig = 1;
348 write (sigpipe [1], &gotsig, 1); 459 write (sigpipe [1], &signum, 1);
460 errno = old_errno;
349 } 461 }
350} 462}
351 463
352static void 464static void
353sigcb (struct ev_io *iow, int revents) 465sigcb (EV_P_ struct ev_io *iow, int revents)
354{ 466{
355 struct ev_signal *w; 467 struct ev_watcher_list *w;
356 int sig; 468 int signum;
357 469
470 read (sigpipe [0], &revents, 1);
358 gotsig = 0; 471 gotsig = 0;
359 read (sigpipe [0], &revents, 1);
360 472
361 for (sig = signalmax; sig--; ) 473 for (signum = signalmax; signum--; )
362 if (signals [sig].gotsig) 474 if (signals [signum].gotsig)
363 { 475 {
364 signals [sig].gotsig = 0; 476 signals [signum].gotsig = 0;
365 477
366 for (w = signals [sig].head; w; w = w->next) 478 for (w = signals [signum].head; w; w = w->next)
367 event ((W)w, EV_SIGNAL); 479 event (EV_A_ (W)w, EV_SIGNAL);
368 } 480 }
369} 481}
370 482
371static void 483static void
372siginit (void) 484siginit (EV_P)
373{ 485{
486#ifndef WIN32
374 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 487 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
375 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 488 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
376 489
377 /* rather than sort out wether we really need nb, set it */ 490 /* rather than sort out wether we really need nb, set it */
378 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 491 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
379 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 492 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
493#endif
380 494
381 ev_io_set (&sigev, sigpipe [0], EV_READ); 495 ev_io_set (&sigev, sigpipe [0], EV_READ);
382 ev_io_start (&sigev); 496 ev_io_start (EV_A_ &sigev);
497 ev_unref (EV_A); /* child watcher should not keep loop alive */
383} 498}
384 499
385/*****************************************************************************/ 500/*****************************************************************************/
386 501
387static struct ev_idle **idles; 502#ifndef WIN32
388static int idlemax, idlecnt;
389
390static struct ev_prepare **prepares;
391static int preparemax, preparecnt;
392
393static struct ev_check **checks;
394static int checkmax, checkcnt;
395
396/*****************************************************************************/
397 503
398static struct ev_child *childs [PID_HASHSIZE]; 504static struct ev_child *childs [PID_HASHSIZE];
399static struct ev_signal childev; 505static struct ev_signal childev;
400 506
401#ifndef WCONTINUED 507#ifndef WCONTINUED
402# define WCONTINUED 0 508# define WCONTINUED 0
403#endif 509#endif
404 510
405static void 511static void
406childcb (struct ev_signal *sw, int revents) 512child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
407{ 513{
408 struct ev_child *w; 514 struct ev_child *w;
515
516 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
517 if (w->pid == pid || !w->pid)
518 {
519 w->priority = sw->priority; /* need to do it *now* */
520 w->rpid = pid;
521 w->rstatus = status;
522 event (EV_A_ (W)w, EV_CHILD);
523 }
524}
525
526static void
527childcb (EV_P_ struct ev_signal *sw, int revents)
528{
409 int pid, status; 529 int pid, status;
410 530
411 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 531 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
412 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 532 {
413 if (w->pid == pid || w->pid == -1) 533 /* make sure we are called again until all childs have been reaped */
414 { 534 event (EV_A_ (W)sw, EV_SIGNAL);
415 w->status = status; 535
416 event ((W)w, EV_CHILD); 536 child_reap (EV_A_ sw, pid, pid, status);
417 } 537 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
538 }
418} 539}
540
541#endif
419 542
420/*****************************************************************************/ 543/*****************************************************************************/
421 544
545#if EV_USE_KQUEUE
546# include "ev_kqueue.c"
547#endif
422#if EV_USE_EPOLL 548#if EV_USE_EPOLL
423# include "ev_epoll.c" 549# include "ev_epoll.c"
424#endif 550#endif
551#if EV_USE_POLL
552# include "ev_poll.c"
553#endif
425#if EV_USE_SELECT 554#if EV_USE_SELECT
426# include "ev_select.c" 555# include "ev_select.c"
427#endif 556#endif
428 557
429int 558int
436ev_version_minor (void) 565ev_version_minor (void)
437{ 566{
438 return EV_VERSION_MINOR; 567 return EV_VERSION_MINOR;
439} 568}
440 569
441int ev_init (int flags) 570/* return true if we are running with elevated privileges and should ignore env variables */
571static int
572enable_secure (void)
442{ 573{
574#ifdef WIN32
575 return 0;
576#else
577 return getuid () != geteuid ()
578 || getgid () != getegid ();
579#endif
580}
581
582int
583ev_method (EV_P)
584{
585 return method;
586}
587
588static void
589loop_init (EV_P_ int methods)
590{
443 if (!ev_method) 591 if (!method)
444 { 592 {
445#if EV_USE_MONOTONIC 593#if EV_USE_MONOTONIC
446 { 594 {
447 struct timespec ts; 595 struct timespec ts;
448 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 596 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
449 have_monotonic = 1; 597 have_monotonic = 1;
450 } 598 }
451#endif 599#endif
452 600
453 ev_now = ev_time (); 601 rt_now = ev_time ();
454 now = get_clock (); 602 mn_now = get_clock ();
603 now_floor = mn_now;
455 diff = ev_now - now; 604 rtmn_diff = rt_now - mn_now;
456 605
457 if (pipe (sigpipe)) 606 if (methods == EVMETHOD_AUTO)
458 return 0; 607 if (!enable_secure () && getenv ("LIBEV_METHODS"))
459 608 methods = atoi (getenv ("LIBEV_METHODS"));
609 else
460 ev_method = EVMETHOD_NONE; 610 methods = EVMETHOD_ANY;
611
612 method = 0;
613#if EV_USE_KQUEUE
614 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
615#endif
461#if EV_USE_EPOLL 616#if EV_USE_EPOLL
462 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 617 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
618#endif
619#if EV_USE_POLL
620 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
463#endif 621#endif
464#if EV_USE_SELECT 622#if EV_USE_SELECT
465 if (ev_method == EVMETHOD_NONE) select_init (flags); 623 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
466#endif 624#endif
625 }
626}
467 627
628void
629loop_destroy (EV_P)
630{
631#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
633#endif
634#if EV_USE_EPOLL
635 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
636#endif
637#if EV_USE_POLL
638 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
639#endif
640#if EV_USE_SELECT
641 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
642#endif
643
644 method = 0;
645 /*TODO*/
646}
647
648void
649loop_fork (EV_P)
650{
651 /*TODO*/
652#if EV_USE_EPOLL
653 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
654#endif
655#if EV_USE_KQUEUE
656 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
657#endif
658}
659
660#if EV_MULTIPLICITY
661struct ev_loop *
662ev_loop_new (int methods)
663{
664 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
665
666 loop_init (EV_A_ methods);
667
668 if (ev_method (EV_A))
669 return loop;
670
671 return 0;
672}
673
674void
675ev_loop_destroy (EV_P)
676{
677 loop_destroy (EV_A);
678 free (loop);
679}
680
681void
682ev_loop_fork (EV_P)
683{
684 loop_fork (EV_A);
685}
686
687#endif
688
689#if EV_MULTIPLICITY
690struct ev_loop default_loop_struct;
691static struct ev_loop *default_loop;
692
693struct ev_loop *
694#else
695static int default_loop;
696
697int
698#endif
699ev_default_loop (int methods)
700{
701 if (sigpipe [0] == sigpipe [1])
702 if (pipe (sigpipe))
703 return 0;
704
705 if (!default_loop)
706 {
707#if EV_MULTIPLICITY
708 struct ev_loop *loop = default_loop = &default_loop_struct;
709#else
710 default_loop = 1;
711#endif
712
713 loop_init (EV_A_ methods);
714
468 if (ev_method) 715 if (ev_method (EV_A))
469 { 716 {
470 ev_watcher_init (&sigev, sigcb); 717 ev_watcher_init (&sigev, sigcb);
718 ev_set_priority (&sigev, EV_MAXPRI);
471 siginit (); 719 siginit (EV_A);
472 720
721#ifndef WIN32
473 ev_signal_init (&childev, childcb, SIGCHLD); 722 ev_signal_init (&childev, childcb, SIGCHLD);
723 ev_set_priority (&childev, EV_MAXPRI);
474 ev_signal_start (&childev); 724 ev_signal_start (EV_A_ &childev);
725 ev_unref (EV_A); /* child watcher should not keep loop alive */
726#endif
475 } 727 }
728 else
729 default_loop = 0;
476 } 730 }
477 731
478 return ev_method; 732 return default_loop;
479} 733}
480 734
481/*****************************************************************************/
482
483void 735void
484ev_prefork (void) 736ev_default_destroy (void)
485{ 737{
486 /* nop */ 738#if EV_MULTIPLICITY
487} 739 struct ev_loop *loop = default_loop;
488
489void
490ev_postfork_parent (void)
491{
492 /* nop */
493}
494
495void
496ev_postfork_child (void)
497{
498#if EV_USE_EPOLL
499 if (ev_method == EVMETHOD_EPOLL)
500 epoll_postfork_child ();
501#endif 740#endif
502 741
742 ev_ref (EV_A); /* child watcher */
743 ev_signal_stop (EV_A_ &childev);
744
745 ev_ref (EV_A); /* signal watcher */
503 ev_io_stop (&sigev); 746 ev_io_stop (EV_A_ &sigev);
747
748 close (sigpipe [0]); sigpipe [0] = 0;
749 close (sigpipe [1]); sigpipe [1] = 0;
750
751 loop_destroy (EV_A);
752}
753
754void
755ev_default_fork (void)
756{
757#if EV_MULTIPLICITY
758 struct ev_loop *loop = default_loop;
759#endif
760
761 loop_fork (EV_A);
762
763 ev_io_stop (EV_A_ &sigev);
504 close (sigpipe [0]); 764 close (sigpipe [0]);
505 close (sigpipe [1]); 765 close (sigpipe [1]);
506 pipe (sigpipe); 766 pipe (sigpipe);
767
768 ev_ref (EV_A); /* signal watcher */
507 siginit (); 769 siginit (EV_A);
508} 770}
509 771
510/*****************************************************************************/ 772/*****************************************************************************/
511 773
512static void 774static void
513call_pending (void) 775call_pending (EV_P)
514{ 776{
777 int pri;
778
779 for (pri = NUMPRI; pri--; )
515 while (pendingcnt) 780 while (pendingcnt [pri])
516 { 781 {
517 ANPENDING *p = pendings + --pendingcnt; 782 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
518 783
519 if (p->w) 784 if (p->w)
520 { 785 {
521 p->w->pending = 0; 786 p->w->pending = 0;
522 p->w->cb (p->w, p->events); 787 p->w->cb (EV_A_ p->w, p->events);
523 } 788 }
524 } 789 }
525} 790}
526 791
527static void 792static void
528timers_reify (void) 793timers_reify (EV_P)
529{ 794{
530 while (timercnt && timers [0]->at <= now) 795 while (timercnt && timers [0]->at <= mn_now)
531 { 796 {
532 struct ev_timer *w = timers [0]; 797 struct ev_timer *w = timers [0];
533 798
534 event ((W)w, EV_TIMEOUT); 799 assert (("inactive timer on timer heap detected", ev_is_active (w)));
535 800
536 /* first reschedule or stop timer */ 801 /* first reschedule or stop timer */
537 if (w->repeat) 802 if (w->repeat)
538 { 803 {
804 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
539 w->at = now + w->repeat; 805 w->at = mn_now + w->repeat;
540 assert (("timer timeout in the past, negative repeat?", w->at > now));
541 downheap ((WT *)timers, timercnt, 0); 806 downheap ((WT *)timers, timercnt, 0);
542 } 807 }
543 else 808 else
544 ev_timer_stop (w); /* nonrepeating: stop timer */ 809 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
545 }
546}
547 810
811 event (EV_A_ (W)w, EV_TIMEOUT);
812 }
813}
814
548static void 815static void
549periodics_reify (void) 816periodics_reify (EV_P)
550{ 817{
551 while (periodiccnt && periodics [0]->at <= ev_now) 818 while (periodiccnt && periodics [0]->at <= rt_now)
552 { 819 {
553 struct ev_periodic *w = periodics [0]; 820 struct ev_periodic *w = periodics [0];
821
822 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
554 823
555 /* first reschedule or stop timer */ 824 /* first reschedule or stop timer */
556 if (w->interval) 825 if (w->interval)
557 { 826 {
558 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 827 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
559 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 828 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
560 downheap ((WT *)periodics, periodiccnt, 0); 829 downheap ((WT *)periodics, periodiccnt, 0);
561 } 830 }
562 else 831 else
563 ev_periodic_stop (w); /* nonrepeating: stop timer */ 832 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
564 833
565 event ((W)w, EV_TIMEOUT); 834 event (EV_A_ (W)w, EV_PERIODIC);
566 } 835 }
567} 836}
568 837
569static void 838static void
570periodics_reschedule (ev_tstamp diff) 839periodics_reschedule (EV_P)
571{ 840{
572 int i; 841 int i;
573 842
574 /* adjust periodics after time jump */ 843 /* adjust periodics after time jump */
575 for (i = 0; i < periodiccnt; ++i) 844 for (i = 0; i < periodiccnt; ++i)
576 { 845 {
577 struct ev_periodic *w = periodics [i]; 846 struct ev_periodic *w = periodics [i];
578 847
579 if (w->interval) 848 if (w->interval)
580 { 849 {
581 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 850 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
582 851
583 if (fabs (diff) >= 1e-4) 852 if (fabs (diff) >= 1e-4)
584 { 853 {
585 ev_periodic_stop (w); 854 ev_periodic_stop (EV_A_ w);
586 ev_periodic_start (w); 855 ev_periodic_start (EV_A_ w);
587 856
588 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 857 i = 0; /* restart loop, inefficient, but time jumps should be rare */
589 } 858 }
590 } 859 }
591 } 860 }
592} 861}
593 862
863inline int
864time_update_monotonic (EV_P)
865{
866 mn_now = get_clock ();
867
868 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
869 {
870 rt_now = rtmn_diff + mn_now;
871 return 0;
872 }
873 else
874 {
875 now_floor = mn_now;
876 rt_now = ev_time ();
877 return 1;
878 }
879}
880
594static void 881static void
595time_update (void) 882time_update (EV_P)
596{ 883{
597 int i; 884 int i;
598 885
599 ev_now = ev_time (); 886#if EV_USE_MONOTONIC
600
601 if (have_monotonic) 887 if (expect_true (have_monotonic))
602 { 888 {
603 ev_tstamp odiff = diff; 889 if (time_update_monotonic (EV_A))
604
605 for (i = 4; --i; ) /* loop a few times, before making important decisions */
606 { 890 {
607 now = get_clock (); 891 ev_tstamp odiff = rtmn_diff;
892
893 for (i = 4; --i; ) /* loop a few times, before making important decisions */
894 {
608 diff = ev_now - now; 895 rtmn_diff = rt_now - mn_now;
609 896
610 if (fabs (odiff - diff) < MIN_TIMEJUMP) 897 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
611 return; /* all is well */ 898 return; /* all is well */
612 899
613 ev_now = ev_time (); 900 rt_now = ev_time ();
901 mn_now = get_clock ();
902 now_floor = mn_now;
903 }
904
905 periodics_reschedule (EV_A);
906 /* no timer adjustment, as the monotonic clock doesn't jump */
907 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
614 } 908 }
615
616 periodics_reschedule (diff - odiff);
617 /* no timer adjustment, as the monotonic clock doesn't jump */
618 } 909 }
619 else 910 else
911#endif
620 { 912 {
621 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 913 rt_now = ev_time ();
914
915 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
622 { 916 {
623 periodics_reschedule (ev_now - now); 917 periodics_reschedule (EV_A);
624 918
625 /* adjust timers. this is easy, as the offset is the same for all */ 919 /* adjust timers. this is easy, as the offset is the same for all */
626 for (i = 0; i < timercnt; ++i) 920 for (i = 0; i < timercnt; ++i)
627 timers [i]->at += diff; 921 timers [i]->at += rt_now - mn_now;
628 } 922 }
629 923
630 now = ev_now; 924 mn_now = rt_now;
631 } 925 }
632} 926}
633 927
634int ev_loop_done; 928void
929ev_ref (EV_P)
930{
931 ++activecnt;
932}
635 933
934void
935ev_unref (EV_P)
936{
937 --activecnt;
938}
939
940static int loop_done;
941
942void
636void ev_loop (int flags) 943ev_loop (EV_P_ int flags)
637{ 944{
638 double block; 945 double block;
639 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 946 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
640 947
641 do 948 do
642 { 949 {
643 /* queue check watchers (and execute them) */ 950 /* queue check watchers (and execute them) */
644 if (preparecnt) 951 if (expect_false (preparecnt))
645 { 952 {
646 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 953 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
647 call_pending (); 954 call_pending (EV_A);
648 } 955 }
649 956
650 /* update fd-related kernel structures */ 957 /* update fd-related kernel structures */
651 fd_reify (); 958 fd_reify (EV_A);
652 959
653 /* calculate blocking time */ 960 /* calculate blocking time */
654 961
655 /* we only need this for !monotonic clockor timers, but as we basically 962 /* we only need this for !monotonic clockor timers, but as we basically
656 always have timers, we just calculate it always */ 963 always have timers, we just calculate it always */
964#if EV_USE_MONOTONIC
965 if (expect_true (have_monotonic))
966 time_update_monotonic (EV_A);
967 else
968#endif
969 {
657 ev_now = ev_time (); 970 rt_now = ev_time ();
971 mn_now = rt_now;
972 }
658 973
659 if (flags & EVLOOP_NONBLOCK || idlecnt) 974 if (flags & EVLOOP_NONBLOCK || idlecnt)
660 block = 0.; 975 block = 0.;
661 else 976 else
662 { 977 {
663 block = MAX_BLOCKTIME; 978 block = MAX_BLOCKTIME;
664 979
665 if (timercnt) 980 if (timercnt)
666 { 981 {
667 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 982 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
668 if (block > to) block = to; 983 if (block > to) block = to;
669 } 984 }
670 985
671 if (periodiccnt) 986 if (periodiccnt)
672 { 987 {
673 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 988 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
674 if (block > to) block = to; 989 if (block > to) block = to;
675 } 990 }
676 991
677 if (block < 0.) block = 0.; 992 if (block < 0.) block = 0.;
678 } 993 }
679 994
680 method_poll (block); 995 method_poll (EV_A_ block);
681 996
682 /* update ev_now, do magic */ 997 /* update rt_now, do magic */
683 time_update (); 998 time_update (EV_A);
684 999
685 /* queue pending timers and reschedule them */ 1000 /* queue pending timers and reschedule them */
686 timers_reify (); /* relative timers called last */ 1001 timers_reify (EV_A); /* relative timers called last */
687 periodics_reify (); /* absolute timers called first */ 1002 periodics_reify (EV_A); /* absolute timers called first */
688 1003
689 /* queue idle watchers unless io or timers are pending */ 1004 /* queue idle watchers unless io or timers are pending */
690 if (!pendingcnt) 1005 if (!pendingcnt)
691 queue_events ((W *)idles, idlecnt, EV_IDLE); 1006 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
692 1007
693 /* queue check watchers, to be executed first */ 1008 /* queue check watchers, to be executed first */
694 if (checkcnt) 1009 if (checkcnt)
695 queue_events ((W *)checks, checkcnt, EV_CHECK); 1010 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
696 1011
697 call_pending (); 1012 call_pending (EV_A);
698 } 1013 }
699 while (!ev_loop_done); 1014 while (activecnt && !loop_done);
700 1015
701 if (ev_loop_done != 2) 1016 if (loop_done != 2)
702 ev_loop_done = 0; 1017 loop_done = 0;
1018}
1019
1020void
1021ev_unloop (EV_P_ int how)
1022{
1023 loop_done = how;
703} 1024}
704 1025
705/*****************************************************************************/ 1026/*****************************************************************************/
706 1027
707static void 1028inline void
708wlist_add (WL *head, WL elem) 1029wlist_add (WL *head, WL elem)
709{ 1030{
710 elem->next = *head; 1031 elem->next = *head;
711 *head = elem; 1032 *head = elem;
712} 1033}
713 1034
714static void 1035inline void
715wlist_del (WL *head, WL elem) 1036wlist_del (WL *head, WL elem)
716{ 1037{
717 while (*head) 1038 while (*head)
718 { 1039 {
719 if (*head == elem) 1040 if (*head == elem)
724 1045
725 head = &(*head)->next; 1046 head = &(*head)->next;
726 } 1047 }
727} 1048}
728 1049
729static void 1050inline void
730ev_clear (W w) 1051ev_clear_pending (EV_P_ W w)
731{ 1052{
732 if (w->pending) 1053 if (w->pending)
733 { 1054 {
734 pendings [w->pending - 1].w = 0; 1055 pendings [ABSPRI (w)][w->pending - 1].w = 0;
735 w->pending = 0; 1056 w->pending = 0;
736 } 1057 }
737} 1058}
738 1059
739static void 1060inline void
740ev_start (W w, int active) 1061ev_start (EV_P_ W w, int active)
741{ 1062{
1063 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1064 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1065
742 w->active = active; 1066 w->active = active;
1067 ev_ref (EV_A);
743} 1068}
744 1069
745static void 1070inline void
746ev_stop (W w) 1071ev_stop (EV_P_ W w)
747{ 1072{
1073 ev_unref (EV_A);
748 w->active = 0; 1074 w->active = 0;
749} 1075}
750 1076
751/*****************************************************************************/ 1077/*****************************************************************************/
752 1078
753void 1079void
754ev_io_start (struct ev_io *w) 1080ev_io_start (EV_P_ struct ev_io *w)
755{ 1081{
1082 int fd = w->fd;
1083
756 if (ev_is_active (w)) 1084 if (ev_is_active (w))
757 return; 1085 return;
758 1086
759 int fd = w->fd; 1087 assert (("ev_io_start called with negative fd", fd >= 0));
760 1088
761 ev_start ((W)w, 1); 1089 ev_start (EV_A_ (W)w, 1);
762 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1090 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
763 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1091 wlist_add ((WL *)&anfds[fd].head, (WL)w);
764 1092
765 fd_change (fd); 1093 fd_change (EV_A_ fd);
766} 1094}
767 1095
768void 1096void
769ev_io_stop (struct ev_io *w) 1097ev_io_stop (EV_P_ struct ev_io *w)
770{ 1098{
771 ev_clear ((W)w); 1099 ev_clear_pending (EV_A_ (W)w);
772 if (!ev_is_active (w)) 1100 if (!ev_is_active (w))
773 return; 1101 return;
774 1102
775 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1103 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
776 ev_stop ((W)w); 1104 ev_stop (EV_A_ (W)w);
777 1105
778 fd_change (w->fd); 1106 fd_change (EV_A_ w->fd);
779} 1107}
780 1108
781void 1109void
782ev_timer_start (struct ev_timer *w) 1110ev_timer_start (EV_P_ struct ev_timer *w)
783{ 1111{
784 if (ev_is_active (w)) 1112 if (ev_is_active (w))
785 return; 1113 return;
786 1114
787 w->at += now; 1115 w->at += mn_now;
788 1116
789 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 1117 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
790 1118
791 ev_start ((W)w, ++timercnt); 1119 ev_start (EV_A_ (W)w, ++timercnt);
792 array_needsize (timers, timermax, timercnt, ); 1120 array_needsize (timers, timermax, timercnt, );
793 timers [timercnt - 1] = w; 1121 timers [timercnt - 1] = w;
794 upheap ((WT *)timers, timercnt - 1); 1122 upheap ((WT *)timers, timercnt - 1);
795} 1123}
796 1124
797void 1125void
798ev_timer_stop (struct ev_timer *w) 1126ev_timer_stop (EV_P_ struct ev_timer *w)
799{ 1127{
800 ev_clear ((W)w); 1128 ev_clear_pending (EV_A_ (W)w);
801 if (!ev_is_active (w)) 1129 if (!ev_is_active (w))
802 return; 1130 return;
803 1131
804 if (w->active < timercnt--) 1132 if (w->active < timercnt--)
805 { 1133 {
807 downheap ((WT *)timers, timercnt, w->active - 1); 1135 downheap ((WT *)timers, timercnt, w->active - 1);
808 } 1136 }
809 1137
810 w->at = w->repeat; 1138 w->at = w->repeat;
811 1139
812 ev_stop ((W)w); 1140 ev_stop (EV_A_ (W)w);
813} 1141}
814 1142
815void 1143void
816ev_timer_again (struct ev_timer *w) 1144ev_timer_again (EV_P_ struct ev_timer *w)
817{ 1145{
818 if (ev_is_active (w)) 1146 if (ev_is_active (w))
819 { 1147 {
820 if (w->repeat) 1148 if (w->repeat)
821 { 1149 {
822 w->at = now + w->repeat; 1150 w->at = mn_now + w->repeat;
823 downheap ((WT *)timers, timercnt, w->active - 1); 1151 downheap ((WT *)timers, timercnt, w->active - 1);
824 } 1152 }
825 else 1153 else
826 ev_timer_stop (w); 1154 ev_timer_stop (EV_A_ w);
827 } 1155 }
828 else if (w->repeat) 1156 else if (w->repeat)
829 ev_timer_start (w); 1157 ev_timer_start (EV_A_ w);
830} 1158}
831 1159
832void 1160void
833ev_periodic_start (struct ev_periodic *w) 1161ev_periodic_start (EV_P_ struct ev_periodic *w)
834{ 1162{
835 if (ev_is_active (w)) 1163 if (ev_is_active (w))
836 return; 1164 return;
837 1165
838 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 1166 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
839 1167
840 /* this formula differs from the one in periodic_reify because we do not always round up */ 1168 /* this formula differs from the one in periodic_reify because we do not always round up */
841 if (w->interval) 1169 if (w->interval)
842 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1170 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
843 1171
844 ev_start ((W)w, ++periodiccnt); 1172 ev_start (EV_A_ (W)w, ++periodiccnt);
845 array_needsize (periodics, periodicmax, periodiccnt, ); 1173 array_needsize (periodics, periodicmax, periodiccnt, );
846 periodics [periodiccnt - 1] = w; 1174 periodics [periodiccnt - 1] = w;
847 upheap ((WT *)periodics, periodiccnt - 1); 1175 upheap ((WT *)periodics, periodiccnt - 1);
848} 1176}
849 1177
850void 1178void
851ev_periodic_stop (struct ev_periodic *w) 1179ev_periodic_stop (EV_P_ struct ev_periodic *w)
852{ 1180{
853 ev_clear ((W)w); 1181 ev_clear_pending (EV_A_ (W)w);
854 if (!ev_is_active (w)) 1182 if (!ev_is_active (w))
855 return; 1183 return;
856 1184
857 if (w->active < periodiccnt--) 1185 if (w->active < periodiccnt--)
858 { 1186 {
859 periodics [w->active - 1] = periodics [periodiccnt]; 1187 periodics [w->active - 1] = periodics [periodiccnt];
860 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1188 downheap ((WT *)periodics, periodiccnt, w->active - 1);
861 } 1189 }
862 1190
863 ev_stop ((W)w); 1191 ev_stop (EV_A_ (W)w);
864} 1192}
865 1193
866void 1194void
867ev_signal_start (struct ev_signal *w) 1195ev_idle_start (EV_P_ struct ev_idle *w)
868{ 1196{
869 if (ev_is_active (w)) 1197 if (ev_is_active (w))
870 return; 1198 return;
871 1199
1200 ev_start (EV_A_ (W)w, ++idlecnt);
1201 array_needsize (idles, idlemax, idlecnt, );
1202 idles [idlecnt - 1] = w;
1203}
1204
1205void
1206ev_idle_stop (EV_P_ struct ev_idle *w)
1207{
1208 ev_clear_pending (EV_A_ (W)w);
1209 if (ev_is_active (w))
1210 return;
1211
1212 idles [w->active - 1] = idles [--idlecnt];
1213 ev_stop (EV_A_ (W)w);
1214}
1215
1216void
1217ev_prepare_start (EV_P_ struct ev_prepare *w)
1218{
1219 if (ev_is_active (w))
1220 return;
1221
1222 ev_start (EV_A_ (W)w, ++preparecnt);
1223 array_needsize (prepares, preparemax, preparecnt, );
1224 prepares [preparecnt - 1] = w;
1225}
1226
1227void
1228ev_prepare_stop (EV_P_ struct ev_prepare *w)
1229{
1230 ev_clear_pending (EV_A_ (W)w);
1231 if (ev_is_active (w))
1232 return;
1233
1234 prepares [w->active - 1] = prepares [--preparecnt];
1235 ev_stop (EV_A_ (W)w);
1236}
1237
1238void
1239ev_check_start (EV_P_ struct ev_check *w)
1240{
1241 if (ev_is_active (w))
1242 return;
1243
1244 ev_start (EV_A_ (W)w, ++checkcnt);
1245 array_needsize (checks, checkmax, checkcnt, );
1246 checks [checkcnt - 1] = w;
1247}
1248
1249void
1250ev_check_stop (EV_P_ struct ev_check *w)
1251{
1252 ev_clear_pending (EV_A_ (W)w);
1253 if (ev_is_active (w))
1254 return;
1255
1256 checks [w->active - 1] = checks [--checkcnt];
1257 ev_stop (EV_A_ (W)w);
1258}
1259
1260#ifndef SA_RESTART
1261# define SA_RESTART 0
1262#endif
1263
1264void
1265ev_signal_start (EV_P_ struct ev_signal *w)
1266{
1267#if EV_MULTIPLICITY
1268 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1269#endif
1270 if (ev_is_active (w))
1271 return;
1272
1273 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1274
872 ev_start ((W)w, 1); 1275 ev_start (EV_A_ (W)w, 1);
873 array_needsize (signals, signalmax, w->signum, signals_init); 1276 array_needsize (signals, signalmax, w->signum, signals_init);
874 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1277 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
875 1278
876 if (!w->next) 1279 if (!w->next)
877 { 1280 {
878 struct sigaction sa; 1281 struct sigaction sa;
879 sa.sa_handler = sighandler; 1282 sa.sa_handler = sighandler;
880 sigfillset (&sa.sa_mask); 1283 sigfillset (&sa.sa_mask);
881 sa.sa_flags = 0; 1284 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
882 sigaction (w->signum, &sa, 0); 1285 sigaction (w->signum, &sa, 0);
883 } 1286 }
884} 1287}
885 1288
886void 1289void
887ev_signal_stop (struct ev_signal *w) 1290ev_signal_stop (EV_P_ struct ev_signal *w)
888{ 1291{
889 ev_clear ((W)w); 1292 ev_clear_pending (EV_A_ (W)w);
890 if (!ev_is_active (w)) 1293 if (!ev_is_active (w))
891 return; 1294 return;
892 1295
893 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1296 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
894 ev_stop ((W)w); 1297 ev_stop (EV_A_ (W)w);
895 1298
896 if (!signals [w->signum - 1].head) 1299 if (!signals [w->signum - 1].head)
897 signal (w->signum, SIG_DFL); 1300 signal (w->signum, SIG_DFL);
898} 1301}
899 1302
900void 1303void
901ev_idle_start (struct ev_idle *w) 1304ev_child_start (EV_P_ struct ev_child *w)
902{ 1305{
1306#if EV_MULTIPLICITY
1307 assert (("child watchers are only supported in the default loop", loop == default_loop));
1308#endif
903 if (ev_is_active (w)) 1309 if (ev_is_active (w))
904 return; 1310 return;
905 1311
906 ev_start ((W)w, ++idlecnt); 1312 ev_start (EV_A_ (W)w, 1);
907 array_needsize (idles, idlemax, idlecnt, ); 1313 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
908 idles [idlecnt - 1] = w;
909} 1314}
910 1315
911void 1316void
912ev_idle_stop (struct ev_idle *w) 1317ev_child_stop (EV_P_ struct ev_child *w)
913{ 1318{
914 ev_clear ((W)w); 1319 ev_clear_pending (EV_A_ (W)w);
915 if (ev_is_active (w)) 1320 if (ev_is_active (w))
916 return; 1321 return;
917 1322
918 idles [w->active - 1] = idles [--idlecnt];
919 ev_stop ((W)w);
920}
921
922void
923ev_prepare_start (struct ev_prepare *w)
924{
925 if (ev_is_active (w))
926 return;
927
928 ev_start ((W)w, ++preparecnt);
929 array_needsize (prepares, preparemax, preparecnt, );
930 prepares [preparecnt - 1] = w;
931}
932
933void
934ev_prepare_stop (struct ev_prepare *w)
935{
936 ev_clear ((W)w);
937 if (ev_is_active (w))
938 return;
939
940 prepares [w->active - 1] = prepares [--preparecnt];
941 ev_stop ((W)w);
942}
943
944void
945ev_check_start (struct ev_check *w)
946{
947 if (ev_is_active (w))
948 return;
949
950 ev_start ((W)w, ++checkcnt);
951 array_needsize (checks, checkmax, checkcnt, );
952 checks [checkcnt - 1] = w;
953}
954
955void
956ev_check_stop (struct ev_check *w)
957{
958 ev_clear ((W)w);
959 if (ev_is_active (w))
960 return;
961
962 checks [w->active - 1] = checks [--checkcnt];
963 ev_stop ((W)w);
964}
965
966void
967ev_child_start (struct ev_child *w)
968{
969 if (ev_is_active (w))
970 return;
971
972 ev_start ((W)w, 1);
973 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
974}
975
976void
977ev_child_stop (struct ev_child *w)
978{
979 ev_clear ((W)w);
980 if (ev_is_active (w))
981 return;
982
983 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1323 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
984 ev_stop ((W)w); 1324 ev_stop (EV_A_ (W)w);
985} 1325}
986 1326
987/*****************************************************************************/ 1327/*****************************************************************************/
988 1328
989struct ev_once 1329struct ev_once
993 void (*cb)(int revents, void *arg); 1333 void (*cb)(int revents, void *arg);
994 void *arg; 1334 void *arg;
995}; 1335};
996 1336
997static void 1337static void
998once_cb (struct ev_once *once, int revents) 1338once_cb (EV_P_ struct ev_once *once, int revents)
999{ 1339{
1000 void (*cb)(int revents, void *arg) = once->cb; 1340 void (*cb)(int revents, void *arg) = once->cb;
1001 void *arg = once->arg; 1341 void *arg = once->arg;
1002 1342
1003 ev_io_stop (&once->io); 1343 ev_io_stop (EV_A_ &once->io);
1004 ev_timer_stop (&once->to); 1344 ev_timer_stop (EV_A_ &once->to);
1005 free (once); 1345 free (once);
1006 1346
1007 cb (revents, arg); 1347 cb (revents, arg);
1008} 1348}
1009 1349
1010static void 1350static void
1011once_cb_io (struct ev_io *w, int revents) 1351once_cb_io (EV_P_ struct ev_io *w, int revents)
1012{ 1352{
1013 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1353 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1014} 1354}
1015 1355
1016static void 1356static void
1017once_cb_to (struct ev_timer *w, int revents) 1357once_cb_to (EV_P_ struct ev_timer *w, int revents)
1018{ 1358{
1019 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1359 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1020} 1360}
1021 1361
1022void 1362void
1023ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1363ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1024{ 1364{
1025 struct ev_once *once = malloc (sizeof (struct ev_once)); 1365 struct ev_once *once = malloc (sizeof (struct ev_once));
1026 1366
1027 if (!once) 1367 if (!once)
1028 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1368 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1033 1373
1034 ev_watcher_init (&once->io, once_cb_io); 1374 ev_watcher_init (&once->io, once_cb_io);
1035 if (fd >= 0) 1375 if (fd >= 0)
1036 { 1376 {
1037 ev_io_set (&once->io, fd, events); 1377 ev_io_set (&once->io, fd, events);
1038 ev_io_start (&once->io); 1378 ev_io_start (EV_A_ &once->io);
1039 } 1379 }
1040 1380
1041 ev_watcher_init (&once->to, once_cb_to); 1381 ev_watcher_init (&once->to, once_cb_to);
1042 if (timeout >= 0.) 1382 if (timeout >= 0.)
1043 { 1383 {
1044 ev_timer_set (&once->to, timeout, 0.); 1384 ev_timer_set (&once->to, timeout, 0.);
1045 ev_timer_start (&once->to); 1385 ev_timer_start (EV_A_ &once->to);
1046 } 1386 }
1047 } 1387 }
1048} 1388}
1049 1389
1050/*****************************************************************************/
1051
1052#if 0
1053
1054struct ev_io wio;
1055
1056static void
1057sin_cb (struct ev_io *w, int revents)
1058{
1059 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1060}
1061
1062static void
1063ocb (struct ev_timer *w, int revents)
1064{
1065 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1066 ev_timer_stop (w);
1067 ev_timer_start (w);
1068}
1069
1070static void
1071scb (struct ev_signal *w, int revents)
1072{
1073 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1074 ev_io_stop (&wio);
1075 ev_io_start (&wio);
1076}
1077
1078static void
1079gcb (struct ev_signal *w, int revents)
1080{
1081 fprintf (stderr, "generic %x\n", revents);
1082
1083}
1084
1085int main (void)
1086{
1087 ev_init (0);
1088
1089 ev_io_init (&wio, sin_cb, 0, EV_READ);
1090 ev_io_start (&wio);
1091
1092 struct ev_timer t[10000];
1093
1094#if 0
1095 int i;
1096 for (i = 0; i < 10000; ++i)
1097 {
1098 struct ev_timer *w = t + i;
1099 ev_watcher_init (w, ocb, i);
1100 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1101 ev_timer_start (w);
1102 if (drand48 () < 0.5)
1103 ev_timer_stop (w);
1104 }
1105#endif
1106
1107 struct ev_timer t1;
1108 ev_timer_init (&t1, ocb, 5, 10);
1109 ev_timer_start (&t1);
1110
1111 struct ev_signal sig;
1112 ev_signal_init (&sig, scb, SIGQUIT);
1113 ev_signal_start (&sig);
1114
1115 struct ev_check cw;
1116 ev_check_init (&cw, gcb);
1117 ev_check_start (&cw);
1118
1119 struct ev_idle iw;
1120 ev_idle_init (&iw, gcb);
1121 ev_idle_start (&iw);
1122
1123 ev_loop (0);
1124
1125 return 0;
1126}
1127
1128#endif
1129
1130
1131
1132

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines