ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.134 by root, Fri Nov 23 19:13:33 2007 UTC vs.
Revision 1.290 by root, Mon Jun 29 04:41:34 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
56# endif 87# endif
57# endif 88# endif
58 89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# else 125# else
95# define EV_USE_PORT 0 126# define EV_USE_PORT 0
96# endif 127# endif
97# endif 128# endif
98 129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_EVENTFD
139# if HAVE_EVENTFD
140# define EV_USE_EVENTFD 1
141# else
142# define EV_USE_EVENTFD 0
143# endif
144# endif
145
99#endif 146#endif
100 147
101#include <math.h> 148#include <math.h>
102#include <stdlib.h> 149#include <stdlib.h>
103#include <fcntl.h> 150#include <fcntl.h>
110#include <sys/types.h> 157#include <sys/types.h>
111#include <time.h> 158#include <time.h>
112 159
113#include <signal.h> 160#include <signal.h>
114 161
162#ifdef EV_H
163# include EV_H
164#else
165# include "ev.h"
166#endif
167
115#ifndef _WIN32 168#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h> 169# include <sys/time.h>
118# include <sys/wait.h> 170# include <sys/wait.h>
171# include <unistd.h>
119#else 172#else
173# include <io.h>
120# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 175# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
124# endif 178# endif
125#endif 179#endif
126 180
127/**/ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
128 190
129#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
130# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
131#endif 197#endif
132 198
133#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
201#endif
202
203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
207# define EV_USE_NANOSLEEP 0
208# endif
135#endif 209#endif
136 210
137#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
139#endif 213#endif
145# define EV_USE_POLL 1 219# define EV_USE_POLL 1
146# endif 220# endif
147#endif 221#endif
148 222
149#ifndef EV_USE_EPOLL 223#ifndef EV_USE_EPOLL
224# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225# define EV_USE_EPOLL 1
226# else
150# define EV_USE_EPOLL 0 227# define EV_USE_EPOLL 0
228# endif
151#endif 229#endif
152 230
153#ifndef EV_USE_KQUEUE 231#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 232# define EV_USE_KQUEUE 0
155#endif 233#endif
156 234
157#ifndef EV_USE_PORT 235#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 236# define EV_USE_PORT 0
159#endif 237#endif
160 238
161/**/ 239#ifndef EV_USE_INOTIFY
240# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
241# define EV_USE_INOTIFY 1
242# else
243# define EV_USE_INOTIFY 0
244# endif
245#endif
246
247#ifndef EV_PID_HASHSIZE
248# if EV_MINIMAL
249# define EV_PID_HASHSIZE 1
250# else
251# define EV_PID_HASHSIZE 16
252# endif
253#endif
254
255#ifndef EV_INOTIFY_HASHSIZE
256# if EV_MINIMAL
257# define EV_INOTIFY_HASHSIZE 1
258# else
259# define EV_INOTIFY_HASHSIZE 16
260# endif
261#endif
262
263#ifndef EV_USE_EVENTFD
264# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265# define EV_USE_EVENTFD 1
266# else
267# define EV_USE_EVENTFD 0
268# endif
269#endif
270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* this block fixes any misconfiguration where we know we run into trouble otherwise */
162 290
163#ifndef CLOCK_MONOTONIC 291#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 292# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 293# define EV_USE_MONOTONIC 0
166#endif 294#endif
168#ifndef CLOCK_REALTIME 296#ifndef CLOCK_REALTIME
169# undef EV_USE_REALTIME 297# undef EV_USE_REALTIME
170# define EV_USE_REALTIME 0 298# define EV_USE_REALTIME 0
171#endif 299#endif
172 300
301#if !EV_STAT_ENABLE
302# undef EV_USE_INOTIFY
303# define EV_USE_INOTIFY 0
304#endif
305
306#if !EV_USE_NANOSLEEP
307# ifndef _WIN32
308# include <sys/select.h>
309# endif
310#endif
311
312#if EV_USE_INOTIFY
313# include <sys/utsname.h>
314# include <sys/statfs.h>
315# include <sys/inotify.h>
316/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
317# ifndef IN_DONT_FOLLOW
318# undef EV_USE_INOTIFY
319# define EV_USE_INOTIFY 0
320# endif
321#endif
322
173#if EV_SELECT_IS_WINSOCKET 323#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 324# include <winsock.h>
175#endif 325#endif
176 326
327/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
328/* which makes programs even slower. might work on other unices, too. */
329#if EV_USE_CLOCK_SYSCALL
330# include <syscall.h>
331# ifdef SYS_clock_gettime
332# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
333# undef EV_USE_MONOTONIC
334# define EV_USE_MONOTONIC 1
335# else
336# undef EV_USE_CLOCK_SYSCALL
337# define EV_USE_CLOCK_SYSCALL 0
338# endif
339#endif
340
341#if EV_USE_EVENTFD
342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343# include <stdint.h>
344# ifdef __cplusplus
345extern "C" {
346# endif
347int eventfd (unsigned int initval, int flags);
348# ifdef __cplusplus
349}
350# endif
351#endif
352
177/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
360
361/*
362 * This is used to avoid floating point rounding problems.
363 * It is added to ev_rt_now when scheduling periodics
364 * to ensure progress, time-wise, even when rounding
365 * errors are against us.
366 * This value is good at least till the year 4000.
367 * Better solutions welcome.
368 */
369#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
178 370
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 371#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 372#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 373/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
183 374
184#ifdef EV_H
185# include EV_H
186#else
187# include "ev.h"
188#endif
189
190#if __GNUC__ >= 3 375#if __GNUC__ >= 4
191# define expect(expr,value) __builtin_expect ((expr),(value)) 376# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline static inline 377# define noinline __attribute__ ((noinline))
193#else 378#else
194# define expect(expr,value) (expr) 379# define expect(expr,value) (expr)
195# define inline static 380# define noinline
381# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
382# define inline
383# endif
196#endif 384#endif
197 385
198#define expect_false(expr) expect ((expr) != 0, 0) 386#define expect_false(expr) expect ((expr) != 0, 0)
199#define expect_true(expr) expect ((expr) != 0, 1) 387#define expect_true(expr) expect ((expr) != 0, 1)
388#define inline_size static inline
389
390#if EV_MINIMAL
391# define inline_speed static noinline
392#else
393# define inline_speed static inline
394#endif
200 395
201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
202#define ABSPRI(w) ((w)->priority - EV_MINPRI) 397#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
203 398
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 399#define EMPTY /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */ 400#define EMPTY2(a,b) /* used to suppress some warnings */
206 401
207typedef struct ev_watcher *W; 402typedef ev_watcher *W;
208typedef struct ev_watcher_list *WL; 403typedef ev_watcher_list *WL;
209typedef struct ev_watcher_time *WT; 404typedef ev_watcher_time *WT;
210 405
406#define ev_active(w) ((W)(w))->active
407#define ev_at(w) ((WT)(w))->at
408
409#if EV_USE_REALTIME
410/* sig_atomic_t is used to avoid per-thread variables or locking but still */
411/* giving it a reasonably high chance of working on typical architetcures */
412static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
413#endif
414
415#if EV_USE_MONOTONIC
211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 416static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
417#endif
212 418
213#ifdef _WIN32 419#ifdef _WIN32
214# include "ev_win32.c" 420# include "ev_win32.c"
215#endif 421#endif
216 422
217/*****************************************************************************/ 423/*****************************************************************************/
218 424
219static void (*syserr_cb)(const char *msg); 425static void (*syserr_cb)(const char *msg);
220 426
427void
221void ev_set_syserr_cb (void (*cb)(const char *msg)) 428ev_set_syserr_cb (void (*cb)(const char *msg))
222{ 429{
223 syserr_cb = cb; 430 syserr_cb = cb;
224} 431}
225 432
226static void 433static void noinline
227syserr (const char *msg) 434ev_syserr (const char *msg)
228{ 435{
229 if (!msg) 436 if (!msg)
230 msg = "(libev) system error"; 437 msg = "(libev) system error";
231 438
232 if (syserr_cb) 439 if (syserr_cb)
236 perror (msg); 443 perror (msg);
237 abort (); 444 abort ();
238 } 445 }
239} 446}
240 447
448static void *
449ev_realloc_emul (void *ptr, long size)
450{
451 /* some systems, notably openbsd and darwin, fail to properly
452 * implement realloc (x, 0) (as required by both ansi c-98 and
453 * the single unix specification, so work around them here.
454 */
455
456 if (size)
457 return realloc (ptr, size);
458
459 free (ptr);
460 return 0;
461}
462
241static void *(*alloc)(void *ptr, long size); 463static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
242 464
465void
243void ev_set_allocator (void *(*cb)(void *ptr, long size)) 466ev_set_allocator (void *(*cb)(void *ptr, long size))
244{ 467{
245 alloc = cb; 468 alloc = cb;
246} 469}
247 470
248static void * 471inline_speed void *
249ev_realloc (void *ptr, long size) 472ev_realloc (void *ptr, long size)
250{ 473{
251 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 474 ptr = alloc (ptr, size);
252 475
253 if (!ptr && size) 476 if (!ptr && size)
254 { 477 {
255 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 478 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
256 abort (); 479 abort ();
262#define ev_malloc(size) ev_realloc (0, (size)) 485#define ev_malloc(size) ev_realloc (0, (size))
263#define ev_free(ptr) ev_realloc ((ptr), 0) 486#define ev_free(ptr) ev_realloc ((ptr), 0)
264 487
265/*****************************************************************************/ 488/*****************************************************************************/
266 489
490/* file descriptor info structure */
267typedef struct 491typedef struct
268{ 492{
269 WL head; 493 WL head;
270 unsigned char events; 494 unsigned char events; /* the events watched for */
495 unsigned char reify; /* flag set when this ANFD needs reification */
496 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
271 unsigned char reify; 497 unsigned char unused;
498#if EV_USE_EPOLL
499 unsigned int egen; /* generation counter to counter epoll bugs */
500#endif
272#if EV_SELECT_IS_WINSOCKET 501#if EV_SELECT_IS_WINSOCKET
273 SOCKET handle; 502 SOCKET handle;
274#endif 503#endif
275} ANFD; 504} ANFD;
276 505
506/* stores the pending event set for a given watcher */
277typedef struct 507typedef struct
278{ 508{
279 W w; 509 W w;
280 int events; 510 int events; /* the pending event set for the given watcher */
281} ANPENDING; 511} ANPENDING;
512
513#if EV_USE_INOTIFY
514/* hash table entry per inotify-id */
515typedef struct
516{
517 WL head;
518} ANFS;
519#endif
520
521/* Heap Entry */
522#if EV_HEAP_CACHE_AT
523 /* a heap element */
524 typedef struct {
525 ev_tstamp at;
526 WT w;
527 } ANHE;
528
529 #define ANHE_w(he) (he).w /* access watcher, read-write */
530 #define ANHE_at(he) (he).at /* access cached at, read-only */
531 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
532#else
533 /* a heap element */
534 typedef WT ANHE;
535
536 #define ANHE_w(he) (he)
537 #define ANHE_at(he) (he)->at
538 #define ANHE_at_cache(he)
539#endif
282 540
283#if EV_MULTIPLICITY 541#if EV_MULTIPLICITY
284 542
285 struct ev_loop 543 struct ev_loop
286 { 544 {
310 568
311ev_tstamp 569ev_tstamp
312ev_time (void) 570ev_time (void)
313{ 571{
314#if EV_USE_REALTIME 572#if EV_USE_REALTIME
573 if (expect_true (have_realtime))
574 {
315 struct timespec ts; 575 struct timespec ts;
316 clock_gettime (CLOCK_REALTIME, &ts); 576 clock_gettime (CLOCK_REALTIME, &ts);
317 return ts.tv_sec + ts.tv_nsec * 1e-9; 577 return ts.tv_sec + ts.tv_nsec * 1e-9;
318#else 578 }
579#endif
580
319 struct timeval tv; 581 struct timeval tv;
320 gettimeofday (&tv, 0); 582 gettimeofday (&tv, 0);
321 return tv.tv_sec + tv.tv_usec * 1e-6; 583 return tv.tv_sec + tv.tv_usec * 1e-6;
322#endif
323} 584}
324 585
325inline ev_tstamp 586inline_size ev_tstamp
326get_clock (void) 587get_clock (void)
327{ 588{
328#if EV_USE_MONOTONIC 589#if EV_USE_MONOTONIC
329 if (expect_true (have_monotonic)) 590 if (expect_true (have_monotonic))
330 { 591 {
343{ 604{
344 return ev_rt_now; 605 return ev_rt_now;
345} 606}
346#endif 607#endif
347 608
348#define array_roundsize(type,n) (((n) | 4) & ~3) 609void
610ev_sleep (ev_tstamp delay)
611{
612 if (delay > 0.)
613 {
614#if EV_USE_NANOSLEEP
615 struct timespec ts;
616
617 ts.tv_sec = (time_t)delay;
618 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
619
620 nanosleep (&ts, 0);
621#elif defined(_WIN32)
622 Sleep ((unsigned long)(delay * 1e3));
623#else
624 struct timeval tv;
625
626 tv.tv_sec = (time_t)delay;
627 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
628
629 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
630 /* somehting nto guaranteed by newer posix versions, but guaranteed */
631 /* by older ones */
632 select (0, 0, 0, 0, &tv);
633#endif
634 }
635}
636
637/*****************************************************************************/
638
639#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
640
641/* find a suitable new size for the given array, */
642/* hopefully by rounding to a ncie-to-malloc size */
643inline_size int
644array_nextsize (int elem, int cur, int cnt)
645{
646 int ncur = cur + 1;
647
648 do
649 ncur <<= 1;
650 while (cnt > ncur);
651
652 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
653 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
654 {
655 ncur *= elem;
656 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
657 ncur = ncur - sizeof (void *) * 4;
658 ncur /= elem;
659 }
660
661 return ncur;
662}
663
664static noinline void *
665array_realloc (int elem, void *base, int *cur, int cnt)
666{
667 *cur = array_nextsize (elem, *cur, cnt);
668 return ev_realloc (base, elem * *cur);
669}
670
671#define array_init_zero(base,count) \
672 memset ((void *)(base), 0, sizeof (*(base)) * (count))
349 673
350#define array_needsize(type,base,cur,cnt,init) \ 674#define array_needsize(type,base,cur,cnt,init) \
351 if (expect_false ((cnt) > cur)) \ 675 if (expect_false ((cnt) > (cur))) \
352 { \ 676 { \
353 int newcnt = cur; \ 677 int ocur_ = (cur); \
354 do \ 678 (base) = (type *)array_realloc \
355 { \ 679 (sizeof (type), (base), &(cur), (cnt)); \
356 newcnt = array_roundsize (type, newcnt << 1); \ 680 init ((base) + (ocur_), (cur) - ocur_); \
357 } \
358 while ((cnt) > newcnt); \
359 \
360 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
361 init (base + cur, newcnt - cur); \
362 cur = newcnt; \
363 } 681 }
364 682
683#if 0
365#define array_slim(type,stem) \ 684#define array_slim(type,stem) \
366 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 685 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
367 { \ 686 { \
368 stem ## max = array_roundsize (stem ## cnt >> 1); \ 687 stem ## max = array_roundsize (stem ## cnt >> 1); \
369 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 688 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
370 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 689 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
371 } 690 }
691#endif
372 692
373#define array_free(stem, idx) \ 693#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 694 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
375 695
376/*****************************************************************************/ 696/*****************************************************************************/
377 697
378static void 698/* dummy callback for pending events */
379anfds_init (ANFD *base, int count) 699static void noinline
700pendingcb (EV_P_ ev_prepare *w, int revents)
380{ 701{
381 while (count--)
382 {
383 base->head = 0;
384 base->events = EV_NONE;
385 base->reify = 0;
386
387 ++base;
388 }
389} 702}
390 703
391void 704void noinline
392ev_feed_event (EV_P_ void *w, int revents) 705ev_feed_event (EV_P_ void *w, int revents)
393{ 706{
394 W w_ = (W)w; 707 W w_ = (W)w;
708 int pri = ABSPRI (w_);
395 709
396 if (expect_false (w_->pending)) 710 if (expect_false (w_->pending))
711 pendings [pri][w_->pending - 1].events |= revents;
712 else
397 { 713 {
714 w_->pending = ++pendingcnt [pri];
715 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
716 pendings [pri][w_->pending - 1].w = w_;
398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 717 pendings [pri][w_->pending - 1].events = revents;
399 return;
400 } 718 }
401
402 if (expect_false (!w_->cb))
403 return;
404
405 w_->pending = ++pendingcnt [ABSPRI (w_)];
406 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
407 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
408 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
409} 719}
410 720
411static void 721inline_speed void
722feed_reverse (EV_P_ W w)
723{
724 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
725 rfeeds [rfeedcnt++] = w;
726}
727
728inline_size void
729feed_reverse_done (EV_P_ int revents)
730{
731 do
732 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
733 while (rfeedcnt);
734}
735
736inline_speed void
412queue_events (EV_P_ W *events, int eventcnt, int type) 737queue_events (EV_P_ W *events, int eventcnt, int type)
413{ 738{
414 int i; 739 int i;
415 740
416 for (i = 0; i < eventcnt; ++i) 741 for (i = 0; i < eventcnt; ++i)
417 ev_feed_event (EV_A_ events [i], type); 742 ev_feed_event (EV_A_ events [i], type);
418} 743}
419 744
745/*****************************************************************************/
746
420inline void 747inline_speed void
421fd_event (EV_P_ int fd, int revents) 748fd_event (EV_P_ int fd, int revents)
422{ 749{
423 ANFD *anfd = anfds + fd; 750 ANFD *anfd = anfds + fd;
424 struct ev_io *w; 751 ev_io *w;
425 752
426 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 753 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
427 { 754 {
428 int ev = w->events & revents; 755 int ev = w->events & revents;
429 756
430 if (ev) 757 if (ev)
431 ev_feed_event (EV_A_ (W)w, ev); 758 ev_feed_event (EV_A_ (W)w, ev);
433} 760}
434 761
435void 762void
436ev_feed_fd_event (EV_P_ int fd, int revents) 763ev_feed_fd_event (EV_P_ int fd, int revents)
437{ 764{
765 if (fd >= 0 && fd < anfdmax)
438 fd_event (EV_A_ fd, revents); 766 fd_event (EV_A_ fd, revents);
439} 767}
440 768
441/*****************************************************************************/ 769/* make sure the external fd watch events are in-sync */
442 770/* with the kernel/libev internal state */
443inline void 771inline_size void
444fd_reify (EV_P) 772fd_reify (EV_P)
445{ 773{
446 int i; 774 int i;
447 775
448 for (i = 0; i < fdchangecnt; ++i) 776 for (i = 0; i < fdchangecnt; ++i)
449 { 777 {
450 int fd = fdchanges [i]; 778 int fd = fdchanges [i];
451 ANFD *anfd = anfds + fd; 779 ANFD *anfd = anfds + fd;
452 struct ev_io *w; 780 ev_io *w;
453 781
454 int events = 0; 782 unsigned char events = 0;
455 783
456 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 784 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
457 events |= w->events; 785 events |= (unsigned char)w->events;
458 786
459#if EV_SELECT_IS_WINSOCKET 787#if EV_SELECT_IS_WINSOCKET
460 if (events) 788 if (events)
461 { 789 {
462 unsigned long argp; 790 unsigned long arg;
791 #ifdef EV_FD_TO_WIN32_HANDLE
792 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
793 #else
463 anfd->handle = _get_osfhandle (fd); 794 anfd->handle = _get_osfhandle (fd);
795 #endif
464 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 796 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
465 } 797 }
466#endif 798#endif
467 799
800 {
801 unsigned char o_events = anfd->events;
802 unsigned char o_reify = anfd->reify;
803
468 anfd->reify = 0; 804 anfd->reify = 0;
469
470 backend_modify (EV_A_ fd, anfd->events, events);
471 anfd->events = events; 805 anfd->events = events;
806
807 if (o_events != events || o_reify & EV__IOFDSET)
808 backend_modify (EV_A_ fd, o_events, events);
809 }
472 } 810 }
473 811
474 fdchangecnt = 0; 812 fdchangecnt = 0;
475} 813}
476 814
477static void 815/* something about the given fd changed */
816inline_size void
478fd_change (EV_P_ int fd) 817fd_change (EV_P_ int fd, int flags)
479{ 818{
480 if (expect_false (anfds [fd].reify)) 819 unsigned char reify = anfds [fd].reify;
481 return;
482
483 anfds [fd].reify = 1; 820 anfds [fd].reify |= flags;
484 821
822 if (expect_true (!reify))
823 {
485 ++fdchangecnt; 824 ++fdchangecnt;
486 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 825 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
487 fdchanges [fdchangecnt - 1] = fd; 826 fdchanges [fdchangecnt - 1] = fd;
827 }
488} 828}
489 829
490static void 830/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
831inline_speed void
491fd_kill (EV_P_ int fd) 832fd_kill (EV_P_ int fd)
492{ 833{
493 struct ev_io *w; 834 ev_io *w;
494 835
495 while ((w = (struct ev_io *)anfds [fd].head)) 836 while ((w = (ev_io *)anfds [fd].head))
496 { 837 {
497 ev_io_stop (EV_A_ w); 838 ev_io_stop (EV_A_ w);
498 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 839 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
499 } 840 }
500} 841}
501 842
843/* check whether the given fd is atcually valid, for error recovery */
502inline int 844inline_size int
503fd_valid (int fd) 845fd_valid (int fd)
504{ 846{
505#ifdef _WIN32 847#ifdef _WIN32
506 return _get_osfhandle (fd) != -1; 848 return _get_osfhandle (fd) != -1;
507#else 849#else
508 return fcntl (fd, F_GETFD) != -1; 850 return fcntl (fd, F_GETFD) != -1;
509#endif 851#endif
510} 852}
511 853
512/* called on EBADF to verify fds */ 854/* called on EBADF to verify fds */
513static void 855static void noinline
514fd_ebadf (EV_P) 856fd_ebadf (EV_P)
515{ 857{
516 int fd; 858 int fd;
517 859
518 for (fd = 0; fd < anfdmax; ++fd) 860 for (fd = 0; fd < anfdmax; ++fd)
519 if (anfds [fd].events) 861 if (anfds [fd].events)
520 if (!fd_valid (fd) == -1 && errno == EBADF) 862 if (!fd_valid (fd) && errno == EBADF)
521 fd_kill (EV_A_ fd); 863 fd_kill (EV_A_ fd);
522} 864}
523 865
524/* called on ENOMEM in select/poll to kill some fds and retry */ 866/* called on ENOMEM in select/poll to kill some fds and retry */
525static void 867static void noinline
526fd_enomem (EV_P) 868fd_enomem (EV_P)
527{ 869{
528 int fd; 870 int fd;
529 871
530 for (fd = anfdmax; fd--; ) 872 for (fd = anfdmax; fd--; )
534 return; 876 return;
535 } 877 }
536} 878}
537 879
538/* usually called after fork if backend needs to re-arm all fds from scratch */ 880/* usually called after fork if backend needs to re-arm all fds from scratch */
539static void 881static void noinline
540fd_rearm_all (EV_P) 882fd_rearm_all (EV_P)
541{ 883{
542 int fd; 884 int fd;
543 885
544 /* this should be highly optimised to not do anything but set a flag */
545 for (fd = 0; fd < anfdmax; ++fd) 886 for (fd = 0; fd < anfdmax; ++fd)
546 if (anfds [fd].events) 887 if (anfds [fd].events)
547 { 888 {
548 anfds [fd].events = 0; 889 anfds [fd].events = 0;
890 anfds [fd].emask = 0;
549 fd_change (EV_A_ fd); 891 fd_change (EV_A_ fd, EV__IOFDSET | 1);
550 } 892 }
551} 893}
552 894
553/*****************************************************************************/ 895/*****************************************************************************/
554 896
555static void 897/*
556upheap (WT *heap, int k) 898 * the heap functions want a real array index. array index 0 uis guaranteed to not
557{ 899 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
558 WT w = heap [k]; 900 * the branching factor of the d-tree.
901 */
559 902
560 while (k && heap [k >> 1]->at > w->at) 903/*
561 { 904 * at the moment we allow libev the luxury of two heaps,
562 heap [k] = heap [k >> 1]; 905 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
563 ((W)heap [k])->active = k + 1; 906 * which is more cache-efficient.
564 k >>= 1; 907 * the difference is about 5% with 50000+ watchers.
565 } 908 */
909#if EV_USE_4HEAP
566 910
567 heap [k] = w; 911#define DHEAP 4
568 ((W)heap [k])->active = k + 1; 912#define HEAP0 (DHEAP - 1) /* index of first element in heap */
913#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
914#define UPHEAP_DONE(p,k) ((p) == (k))
569 915
570} 916/* away from the root */
571 917inline_speed void
572static void
573downheap (WT *heap, int N, int k) 918downheap (ANHE *heap, int N, int k)
574{ 919{
575 WT w = heap [k]; 920 ANHE he = heap [k];
921 ANHE *E = heap + N + HEAP0;
576 922
577 while (k < (N >> 1)) 923 for (;;)
578 { 924 {
579 int j = k << 1; 925 ev_tstamp minat;
926 ANHE *minpos;
927 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
580 928
581 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 929 /* find minimum child */
930 if (expect_true (pos + DHEAP - 1 < E))
582 ++j; 931 {
583 932 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
584 if (w->at <= heap [j]->at) 933 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
934 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
935 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
936 }
937 else if (pos < E)
938 {
939 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
940 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
941 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
942 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
943 }
944 else
585 break; 945 break;
586 946
947 if (ANHE_at (he) <= minat)
948 break;
949
950 heap [k] = *minpos;
951 ev_active (ANHE_w (*minpos)) = k;
952
953 k = minpos - heap;
954 }
955
956 heap [k] = he;
957 ev_active (ANHE_w (he)) = k;
958}
959
960#else /* 4HEAP */
961
962#define HEAP0 1
963#define HPARENT(k) ((k) >> 1)
964#define UPHEAP_DONE(p,k) (!(p))
965
966/* away from the root */
967inline_speed void
968downheap (ANHE *heap, int N, int k)
969{
970 ANHE he = heap [k];
971
972 for (;;)
973 {
974 int c = k << 1;
975
976 if (c > N + HEAP0 - 1)
977 break;
978
979 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
980 ? 1 : 0;
981
982 if (ANHE_at (he) <= ANHE_at (heap [c]))
983 break;
984
587 heap [k] = heap [j]; 985 heap [k] = heap [c];
588 ((W)heap [k])->active = k + 1; 986 ev_active (ANHE_w (heap [k])) = k;
987
589 k = j; 988 k = c;
590 } 989 }
591 990
592 heap [k] = w; 991 heap [k] = he;
593 ((W)heap [k])->active = k + 1; 992 ev_active (ANHE_w (he)) = k;
594} 993}
994#endif
595 995
996/* towards the root */
997inline_speed void
998upheap (ANHE *heap, int k)
999{
1000 ANHE he = heap [k];
1001
1002 for (;;)
1003 {
1004 int p = HPARENT (k);
1005
1006 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1007 break;
1008
1009 heap [k] = heap [p];
1010 ev_active (ANHE_w (heap [k])) = k;
1011 k = p;
1012 }
1013
1014 heap [k] = he;
1015 ev_active (ANHE_w (he)) = k;
1016}
1017
1018/* move an element suitably so it is in a correct place */
596inline void 1019inline_size void
597adjustheap (WT *heap, int N, int k) 1020adjustheap (ANHE *heap, int N, int k)
598{ 1021{
1022 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
599 upheap (heap, k); 1023 upheap (heap, k);
1024 else
600 downheap (heap, N, k); 1025 downheap (heap, N, k);
1026}
1027
1028/* rebuild the heap: this function is used only once and executed rarely */
1029inline_size void
1030reheap (ANHE *heap, int N)
1031{
1032 int i;
1033
1034 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1035 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1036 for (i = 0; i < N; ++i)
1037 upheap (heap, i + HEAP0);
601} 1038}
602 1039
603/*****************************************************************************/ 1040/*****************************************************************************/
604 1041
1042/* associate signal watchers to a signal signal */
605typedef struct 1043typedef struct
606{ 1044{
607 WL head; 1045 WL head;
608 sig_atomic_t volatile gotsig; 1046 EV_ATOMIC_T gotsig;
609} ANSIG; 1047} ANSIG;
610 1048
611static ANSIG *signals; 1049static ANSIG *signals;
612static int signalmax; 1050static int signalmax;
613 1051
614static int sigpipe [2]; 1052static EV_ATOMIC_T gotsig;
615static sig_atomic_t volatile gotsig;
616static struct ev_io sigev;
617 1053
618static void 1054/*****************************************************************************/
619signals_init (ANSIG *base, int count)
620{
621 while (count--)
622 {
623 base->head = 0;
624 base->gotsig = 0;
625 1055
626 ++base; 1056/* used to prepare libev internal fd's */
627 } 1057/* this is not fork-safe */
628} 1058inline_speed void
629
630static void
631sighandler (int signum)
632{
633#if _WIN32
634 signal (signum, sighandler);
635#endif
636
637 signals [signum - 1].gotsig = 1;
638
639 if (!gotsig)
640 {
641 int old_errno = errno;
642 gotsig = 1;
643 write (sigpipe [1], &signum, 1);
644 errno = old_errno;
645 }
646}
647
648void
649ev_feed_signal_event (EV_P_ int signum)
650{
651 WL w;
652
653#if EV_MULTIPLICITY
654 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
655#endif
656
657 --signum;
658
659 if (signum < 0 || signum >= signalmax)
660 return;
661
662 signals [signum].gotsig = 0;
663
664 for (w = signals [signum].head; w; w = w->next)
665 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
666}
667
668static void
669sigcb (EV_P_ struct ev_io *iow, int revents)
670{
671 int signum;
672
673 read (sigpipe [0], &revents, 1);
674 gotsig = 0;
675
676 for (signum = signalmax; signum--; )
677 if (signals [signum].gotsig)
678 ev_feed_signal_event (EV_A_ signum + 1);
679}
680
681static void
682fd_intern (int fd) 1059fd_intern (int fd)
683{ 1060{
684#ifdef _WIN32 1061#ifdef _WIN32
685 int arg = 1; 1062 unsigned long arg = 1;
686 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1063 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
687#else 1064#else
688 fcntl (fd, F_SETFD, FD_CLOEXEC); 1065 fcntl (fd, F_SETFD, FD_CLOEXEC);
689 fcntl (fd, F_SETFL, O_NONBLOCK); 1066 fcntl (fd, F_SETFL, O_NONBLOCK);
690#endif 1067#endif
691} 1068}
692 1069
1070static void noinline
1071evpipe_init (EV_P)
1072{
1073 if (!ev_is_active (&pipe_w))
1074 {
1075#if EV_USE_EVENTFD
1076 if ((evfd = eventfd (0, 0)) >= 0)
1077 {
1078 evpipe [0] = -1;
1079 fd_intern (evfd);
1080 ev_io_set (&pipe_w, evfd, EV_READ);
1081 }
1082 else
1083#endif
1084 {
1085 while (pipe (evpipe))
1086 ev_syserr ("(libev) error creating signal/async pipe");
1087
1088 fd_intern (evpipe [0]);
1089 fd_intern (evpipe [1]);
1090 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1091 }
1092
1093 ev_io_start (EV_A_ &pipe_w);
1094 ev_unref (EV_A); /* watcher should not keep loop alive */
1095 }
1096}
1097
1098inline_size void
1099evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1100{
1101 if (!*flag)
1102 {
1103 int old_errno = errno; /* save errno because write might clobber it */
1104
1105 *flag = 1;
1106
1107#if EV_USE_EVENTFD
1108 if (evfd >= 0)
1109 {
1110 uint64_t counter = 1;
1111 write (evfd, &counter, sizeof (uint64_t));
1112 }
1113 else
1114#endif
1115 write (evpipe [1], &old_errno, 1);
1116
1117 errno = old_errno;
1118 }
1119}
1120
1121/* called whenever the libev signal pipe */
1122/* got some events (signal, async) */
693static void 1123static void
694siginit (EV_P) 1124pipecb (EV_P_ ev_io *iow, int revents)
695{ 1125{
696 fd_intern (sigpipe [0]); 1126#if EV_USE_EVENTFD
697 fd_intern (sigpipe [1]); 1127 if (evfd >= 0)
1128 {
1129 uint64_t counter;
1130 read (evfd, &counter, sizeof (uint64_t));
1131 }
1132 else
1133#endif
1134 {
1135 char dummy;
1136 read (evpipe [0], &dummy, 1);
1137 }
698 1138
699 ev_io_set (&sigev, sigpipe [0], EV_READ); 1139 if (gotsig && ev_is_default_loop (EV_A))
700 ev_io_start (EV_A_ &sigev); 1140 {
701 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1141 int signum;
1142 gotsig = 0;
1143
1144 for (signum = signalmax; signum--; )
1145 if (signals [signum].gotsig)
1146 ev_feed_signal_event (EV_A_ signum + 1);
1147 }
1148
1149#if EV_ASYNC_ENABLE
1150 if (gotasync)
1151 {
1152 int i;
1153 gotasync = 0;
1154
1155 for (i = asynccnt; i--; )
1156 if (asyncs [i]->sent)
1157 {
1158 asyncs [i]->sent = 0;
1159 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1160 }
1161 }
1162#endif
702} 1163}
703 1164
704/*****************************************************************************/ 1165/*****************************************************************************/
705 1166
706static struct ev_child *childs [PID_HASHSIZE]; 1167static void
1168ev_sighandler (int signum)
1169{
1170#if EV_MULTIPLICITY
1171 struct ev_loop *loop = &default_loop_struct;
1172#endif
1173
1174#if _WIN32
1175 signal (signum, ev_sighandler);
1176#endif
1177
1178 signals [signum - 1].gotsig = 1;
1179 evpipe_write (EV_A_ &gotsig);
1180}
1181
1182void noinline
1183ev_feed_signal_event (EV_P_ int signum)
1184{
1185 WL w;
1186
1187#if EV_MULTIPLICITY
1188 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1189#endif
1190
1191 --signum;
1192
1193 if (signum < 0 || signum >= signalmax)
1194 return;
1195
1196 signals [signum].gotsig = 0;
1197
1198 for (w = signals [signum].head; w; w = w->next)
1199 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1200}
1201
1202/*****************************************************************************/
1203
1204static WL childs [EV_PID_HASHSIZE];
707 1205
708#ifndef _WIN32 1206#ifndef _WIN32
709 1207
710static struct ev_signal childev; 1208static ev_signal childev;
1209
1210#ifndef WIFCONTINUED
1211# define WIFCONTINUED(status) 0
1212#endif
1213
1214/* handle a single child status event */
1215inline_speed void
1216child_reap (EV_P_ int chain, int pid, int status)
1217{
1218 ev_child *w;
1219 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1220
1221 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1222 {
1223 if ((w->pid == pid || !w->pid)
1224 && (!traced || (w->flags & 1)))
1225 {
1226 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1227 w->rpid = pid;
1228 w->rstatus = status;
1229 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1230 }
1231 }
1232}
711 1233
712#ifndef WCONTINUED 1234#ifndef WCONTINUED
713# define WCONTINUED 0 1235# define WCONTINUED 0
714#endif 1236#endif
715 1237
1238/* called on sigchld etc., calls waitpid */
716static void 1239static void
717child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
718{
719 struct ev_child *w;
720
721 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
722 if (w->pid == pid || !w->pid)
723 {
724 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
725 w->rpid = pid;
726 w->rstatus = status;
727 ev_feed_event (EV_A_ (W)w, EV_CHILD);
728 }
729}
730
731static void
732childcb (EV_P_ struct ev_signal *sw, int revents) 1240childcb (EV_P_ ev_signal *sw, int revents)
733{ 1241{
734 int pid, status; 1242 int pid, status;
735 1243
1244 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
736 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1245 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
737 { 1246 if (!WCONTINUED
1247 || errno != EINVAL
1248 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1249 return;
1250
738 /* make sure we are called again until all childs have been reaped */ 1251 /* make sure we are called again until all children have been reaped */
739 /* we need to do it this way so that the callback gets called before we continue */ 1252 /* we need to do it this way so that the callback gets called before we continue */
740 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1253 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
741 1254
742 child_reap (EV_A_ sw, pid, pid, status); 1255 child_reap (EV_A_ pid, pid, status);
1256 if (EV_PID_HASHSIZE > 1)
743 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1257 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
744 }
745} 1258}
746 1259
747#endif 1260#endif
748 1261
749/*****************************************************************************/ 1262/*****************************************************************************/
775{ 1288{
776 return EV_VERSION_MINOR; 1289 return EV_VERSION_MINOR;
777} 1290}
778 1291
779/* return true if we are running with elevated privileges and should ignore env variables */ 1292/* return true if we are running with elevated privileges and should ignore env variables */
780static int 1293int inline_size
781enable_secure (void) 1294enable_secure (void)
782{ 1295{
783#ifdef _WIN32 1296#ifdef _WIN32
784 return 0; 1297 return 0;
785#else 1298#else
811 /* kqueue is borked on everything but netbsd apparently */ 1324 /* kqueue is borked on everything but netbsd apparently */
812 /* it usually doesn't work correctly on anything but sockets and pipes */ 1325 /* it usually doesn't work correctly on anything but sockets and pipes */
813 flags &= ~EVBACKEND_KQUEUE; 1326 flags &= ~EVBACKEND_KQUEUE;
814#endif 1327#endif
815#ifdef __APPLE__ 1328#ifdef __APPLE__
816 // flags &= ~EVBACKEND_KQUEUE; for documentation 1329 /* only select works correctly on that "unix-certified" platform */
817 flags &= ~EVBACKEND_POLL; 1330 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1331 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
818#endif 1332#endif
819 1333
820 return flags; 1334 return flags;
821} 1335}
822 1336
823unsigned int 1337unsigned int
824ev_embeddable_backends (void) 1338ev_embeddable_backends (void)
825{ 1339{
826 return EVBACKEND_EPOLL 1340 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
827 | EVBACKEND_KQUEUE 1341
828 | EVBACKEND_PORT; 1342 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1343 /* please fix it and tell me how to detect the fix */
1344 flags &= ~EVBACKEND_EPOLL;
1345
1346 return flags;
829} 1347}
830 1348
831unsigned int 1349unsigned int
832ev_backend (EV_P) 1350ev_backend (EV_P)
833{ 1351{
834 return backend; 1352 return backend;
835} 1353}
836 1354
837static void 1355unsigned int
1356ev_loop_count (EV_P)
1357{
1358 return loop_count;
1359}
1360
1361void
1362ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1363{
1364 io_blocktime = interval;
1365}
1366
1367void
1368ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1369{
1370 timeout_blocktime = interval;
1371}
1372
1373/* initialise a loop structure, must be zero-initialised */
1374static void noinline
838loop_init (EV_P_ unsigned int flags) 1375loop_init (EV_P_ unsigned int flags)
839{ 1376{
840 if (!backend) 1377 if (!backend)
841 { 1378 {
1379#if EV_USE_REALTIME
1380 if (!have_realtime)
1381 {
1382 struct timespec ts;
1383
1384 if (!clock_gettime (CLOCK_REALTIME, &ts))
1385 have_realtime = 1;
1386 }
1387#endif
1388
842#if EV_USE_MONOTONIC 1389#if EV_USE_MONOTONIC
1390 if (!have_monotonic)
843 { 1391 {
844 struct timespec ts; 1392 struct timespec ts;
1393
845 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1394 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
846 have_monotonic = 1; 1395 have_monotonic = 1;
847 } 1396 }
848#endif 1397#endif
849 1398
850 ev_rt_now = ev_time (); 1399 ev_rt_now = ev_time ();
851 mn_now = get_clock (); 1400 mn_now = get_clock ();
852 now_floor = mn_now; 1401 now_floor = mn_now;
853 rtmn_diff = ev_rt_now - mn_now; 1402 rtmn_diff = ev_rt_now - mn_now;
1403
1404 io_blocktime = 0.;
1405 timeout_blocktime = 0.;
1406 backend = 0;
1407 backend_fd = -1;
1408 gotasync = 0;
1409#if EV_USE_INOTIFY
1410 fs_fd = -2;
1411#endif
1412
1413 /* pid check not overridable via env */
1414#ifndef _WIN32
1415 if (flags & EVFLAG_FORKCHECK)
1416 curpid = getpid ();
1417#endif
854 1418
855 if (!(flags & EVFLAG_NOENV) 1419 if (!(flags & EVFLAG_NOENV)
856 && !enable_secure () 1420 && !enable_secure ()
857 && getenv ("LIBEV_FLAGS")) 1421 && getenv ("LIBEV_FLAGS"))
858 flags = atoi (getenv ("LIBEV_FLAGS")); 1422 flags = atoi (getenv ("LIBEV_FLAGS"));
859 1423
860 if (!(flags & 0x0000ffffUL)) 1424 if (!(flags & 0x0000ffffU))
861 flags |= ev_recommended_backends (); 1425 flags |= ev_recommended_backends ();
862 1426
863 backend = 0;
864#if EV_USE_PORT 1427#if EV_USE_PORT
865 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1428 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
866#endif 1429#endif
867#if EV_USE_KQUEUE 1430#if EV_USE_KQUEUE
868 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1431 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
875#endif 1438#endif
876#if EV_USE_SELECT 1439#if EV_USE_SELECT
877 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1440 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
878#endif 1441#endif
879 1442
1443 ev_prepare_init (&pending_w, pendingcb);
1444
880 ev_init (&sigev, sigcb); 1445 ev_init (&pipe_w, pipecb);
881 ev_set_priority (&sigev, EV_MAXPRI); 1446 ev_set_priority (&pipe_w, EV_MAXPRI);
882 } 1447 }
883} 1448}
884 1449
885static void 1450/* free up a loop structure */
1451static void noinline
886loop_destroy (EV_P) 1452loop_destroy (EV_P)
887{ 1453{
888 int i; 1454 int i;
1455
1456 if (ev_is_active (&pipe_w))
1457 {
1458 ev_ref (EV_A); /* signal watcher */
1459 ev_io_stop (EV_A_ &pipe_w);
1460
1461#if EV_USE_EVENTFD
1462 if (evfd >= 0)
1463 close (evfd);
1464#endif
1465
1466 if (evpipe [0] >= 0)
1467 {
1468 close (evpipe [0]);
1469 close (evpipe [1]);
1470 }
1471 }
1472
1473#if EV_USE_INOTIFY
1474 if (fs_fd >= 0)
1475 close (fs_fd);
1476#endif
1477
1478 if (backend_fd >= 0)
1479 close (backend_fd);
889 1480
890#if EV_USE_PORT 1481#if EV_USE_PORT
891 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1482 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
892#endif 1483#endif
893#if EV_USE_KQUEUE 1484#if EV_USE_KQUEUE
902#if EV_USE_SELECT 1493#if EV_USE_SELECT
903 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1494 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
904#endif 1495#endif
905 1496
906 for (i = NUMPRI; i--; ) 1497 for (i = NUMPRI; i--; )
1498 {
907 array_free (pending, [i]); 1499 array_free (pending, [i]);
1500#if EV_IDLE_ENABLE
1501 array_free (idle, [i]);
1502#endif
1503 }
1504
1505 ev_free (anfds); anfdmax = 0;
908 1506
909 /* have to use the microsoft-never-gets-it-right macro */ 1507 /* have to use the microsoft-never-gets-it-right macro */
1508 array_free (rfeed, EMPTY);
910 array_free (fdchange, EMPTY0); 1509 array_free (fdchange, EMPTY);
911 array_free (timer, EMPTY0); 1510 array_free (timer, EMPTY);
912#if EV_PERIODICS 1511#if EV_PERIODIC_ENABLE
913 array_free (periodic, EMPTY0); 1512 array_free (periodic, EMPTY);
914#endif 1513#endif
1514#if EV_FORK_ENABLE
915 array_free (idle, EMPTY0); 1515 array_free (fork, EMPTY);
1516#endif
916 array_free (prepare, EMPTY0); 1517 array_free (prepare, EMPTY);
917 array_free (check, EMPTY0); 1518 array_free (check, EMPTY);
1519#if EV_ASYNC_ENABLE
1520 array_free (async, EMPTY);
1521#endif
918 1522
919 backend = 0; 1523 backend = 0;
920} 1524}
921 1525
922static void 1526#if EV_USE_INOTIFY
1527inline_size void infy_fork (EV_P);
1528#endif
1529
1530inline_size void
923loop_fork (EV_P) 1531loop_fork (EV_P)
924{ 1532{
925#if EV_USE_PORT 1533#if EV_USE_PORT
926 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1534 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
927#endif 1535#endif
929 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1537 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
930#endif 1538#endif
931#if EV_USE_EPOLL 1539#if EV_USE_EPOLL
932 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1540 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
933#endif 1541#endif
1542#if EV_USE_INOTIFY
1543 infy_fork (EV_A);
1544#endif
934 1545
935 if (ev_is_active (&sigev)) 1546 if (ev_is_active (&pipe_w))
936 { 1547 {
937 /* default loop */ 1548 /* this "locks" the handlers against writing to the pipe */
1549 /* while we modify the fd vars */
1550 gotsig = 1;
1551#if EV_ASYNC_ENABLE
1552 gotasync = 1;
1553#endif
938 1554
939 ev_ref (EV_A); 1555 ev_ref (EV_A);
940 ev_io_stop (EV_A_ &sigev); 1556 ev_io_stop (EV_A_ &pipe_w);
1557
1558#if EV_USE_EVENTFD
1559 if (evfd >= 0)
1560 close (evfd);
1561#endif
1562
1563 if (evpipe [0] >= 0)
1564 {
941 close (sigpipe [0]); 1565 close (evpipe [0]);
942 close (sigpipe [1]); 1566 close (evpipe [1]);
1567 }
943 1568
944 while (pipe (sigpipe))
945 syserr ("(libev) error creating pipe");
946
947 siginit (EV_A); 1569 evpipe_init (EV_A);
1570 /* now iterate over everything, in case we missed something */
1571 pipecb (EV_A_ &pipe_w, EV_READ);
948 } 1572 }
949 1573
950 postfork = 0; 1574 postfork = 0;
951} 1575}
952 1576
953#if EV_MULTIPLICITY 1577#if EV_MULTIPLICITY
1578
954struct ev_loop * 1579struct ev_loop *
955ev_loop_new (unsigned int flags) 1580ev_loop_new (unsigned int flags)
956{ 1581{
957 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1582 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
958 1583
974} 1599}
975 1600
976void 1601void
977ev_loop_fork (EV_P) 1602ev_loop_fork (EV_P)
978{ 1603{
979 postfork = 1; 1604 postfork = 1; /* must be in line with ev_default_fork */
980} 1605}
981 1606
1607#if EV_VERIFY
1608static void noinline
1609verify_watcher (EV_P_ W w)
1610{
1611 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1612
1613 if (w->pending)
1614 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1615}
1616
1617static void noinline
1618verify_heap (EV_P_ ANHE *heap, int N)
1619{
1620 int i;
1621
1622 for (i = HEAP0; i < N + HEAP0; ++i)
1623 {
1624 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1625 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1626 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1627
1628 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1629 }
1630}
1631
1632static void noinline
1633array_verify (EV_P_ W *ws, int cnt)
1634{
1635 while (cnt--)
1636 {
1637 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1638 verify_watcher (EV_A_ ws [cnt]);
1639 }
1640}
1641#endif
1642
1643void
1644ev_loop_verify (EV_P)
1645{
1646#if EV_VERIFY
1647 int i;
1648 WL w;
1649
1650 assert (activecnt >= -1);
1651
1652 assert (fdchangemax >= fdchangecnt);
1653 for (i = 0; i < fdchangecnt; ++i)
1654 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1655
1656 assert (anfdmax >= 0);
1657 for (i = 0; i < anfdmax; ++i)
1658 for (w = anfds [i].head; w; w = w->next)
1659 {
1660 verify_watcher (EV_A_ (W)w);
1661 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1662 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1663 }
1664
1665 assert (timermax >= timercnt);
1666 verify_heap (EV_A_ timers, timercnt);
1667
1668#if EV_PERIODIC_ENABLE
1669 assert (periodicmax >= periodiccnt);
1670 verify_heap (EV_A_ periodics, periodiccnt);
1671#endif
1672
1673 for (i = NUMPRI; i--; )
1674 {
1675 assert (pendingmax [i] >= pendingcnt [i]);
1676#if EV_IDLE_ENABLE
1677 assert (idleall >= 0);
1678 assert (idlemax [i] >= idlecnt [i]);
1679 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1680#endif
1681 }
1682
1683#if EV_FORK_ENABLE
1684 assert (forkmax >= forkcnt);
1685 array_verify (EV_A_ (W *)forks, forkcnt);
1686#endif
1687
1688#if EV_ASYNC_ENABLE
1689 assert (asyncmax >= asynccnt);
1690 array_verify (EV_A_ (W *)asyncs, asynccnt);
1691#endif
1692
1693 assert (preparemax >= preparecnt);
1694 array_verify (EV_A_ (W *)prepares, preparecnt);
1695
1696 assert (checkmax >= checkcnt);
1697 array_verify (EV_A_ (W *)checks, checkcnt);
1698
1699# if 0
1700 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1701 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
982#endif 1702# endif
1703#endif
1704}
1705
1706#endif /* multiplicity */
983 1707
984#if EV_MULTIPLICITY 1708#if EV_MULTIPLICITY
985struct ev_loop * 1709struct ev_loop *
986ev_default_loop_init (unsigned int flags) 1710ev_default_loop_init (unsigned int flags)
987#else 1711#else
988int 1712int
989ev_default_loop (unsigned int flags) 1713ev_default_loop (unsigned int flags)
990#endif 1714#endif
991{ 1715{
992 if (sigpipe [0] == sigpipe [1])
993 if (pipe (sigpipe))
994 return 0;
995
996 if (!ev_default_loop_ptr) 1716 if (!ev_default_loop_ptr)
997 { 1717 {
998#if EV_MULTIPLICITY 1718#if EV_MULTIPLICITY
999 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1719 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1000#else 1720#else
1003 1723
1004 loop_init (EV_A_ flags); 1724 loop_init (EV_A_ flags);
1005 1725
1006 if (ev_backend (EV_A)) 1726 if (ev_backend (EV_A))
1007 { 1727 {
1008 siginit (EV_A);
1009
1010#ifndef _WIN32 1728#ifndef _WIN32
1011 ev_signal_init (&childev, childcb, SIGCHLD); 1729 ev_signal_init (&childev, childcb, SIGCHLD);
1012 ev_set_priority (&childev, EV_MAXPRI); 1730 ev_set_priority (&childev, EV_MAXPRI);
1013 ev_signal_start (EV_A_ &childev); 1731 ev_signal_start (EV_A_ &childev);
1014 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1732 ev_unref (EV_A); /* child watcher should not keep loop alive */
1026{ 1744{
1027#if EV_MULTIPLICITY 1745#if EV_MULTIPLICITY
1028 struct ev_loop *loop = ev_default_loop_ptr; 1746 struct ev_loop *loop = ev_default_loop_ptr;
1029#endif 1747#endif
1030 1748
1749 ev_default_loop_ptr = 0;
1750
1031#ifndef _WIN32 1751#ifndef _WIN32
1032 ev_ref (EV_A); /* child watcher */ 1752 ev_ref (EV_A); /* child watcher */
1033 ev_signal_stop (EV_A_ &childev); 1753 ev_signal_stop (EV_A_ &childev);
1034#endif 1754#endif
1035 1755
1036 ev_ref (EV_A); /* signal watcher */
1037 ev_io_stop (EV_A_ &sigev);
1038
1039 close (sigpipe [0]); sigpipe [0] = 0;
1040 close (sigpipe [1]); sigpipe [1] = 0;
1041
1042 loop_destroy (EV_A); 1756 loop_destroy (EV_A);
1043} 1757}
1044 1758
1045void 1759void
1046ev_default_fork (void) 1760ev_default_fork (void)
1047{ 1761{
1048#if EV_MULTIPLICITY 1762#if EV_MULTIPLICITY
1049 struct ev_loop *loop = ev_default_loop_ptr; 1763 struct ev_loop *loop = ev_default_loop_ptr;
1050#endif 1764#endif
1051 1765
1052 if (backend) 1766 postfork = 1; /* must be in line with ev_loop_fork */
1053 postfork = 1;
1054} 1767}
1055 1768
1056/*****************************************************************************/ 1769/*****************************************************************************/
1057 1770
1058static int 1771void
1059any_pending (EV_P) 1772ev_invoke (EV_P_ void *w, int revents)
1060{ 1773{
1061 int pri; 1774 EV_CB_INVOKE ((W)w, revents);
1062
1063 for (pri = NUMPRI; pri--; )
1064 if (pendingcnt [pri])
1065 return 1;
1066
1067 return 0;
1068} 1775}
1069 1776
1070inline void 1777inline_speed void
1071call_pending (EV_P) 1778call_pending (EV_P)
1072{ 1779{
1073 int pri; 1780 int pri;
1074 1781
1075 for (pri = NUMPRI; pri--; ) 1782 for (pri = NUMPRI; pri--; )
1076 while (pendingcnt [pri]) 1783 while (pendingcnt [pri])
1077 { 1784 {
1078 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1785 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1079 1786
1080 if (expect_true (p->w)) 1787 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1081 { 1788 /* ^ this is no longer true, as pending_w could be here */
1789
1082 p->w->pending = 0; 1790 p->w->pending = 0;
1083 EV_CB_INVOKE (p->w, p->events); 1791 EV_CB_INVOKE (p->w, p->events);
1084 } 1792 EV_FREQUENT_CHECK;
1085 } 1793 }
1086} 1794}
1087 1795
1796#if EV_IDLE_ENABLE
1797/* make idle watchers pending. this handles the "call-idle */
1798/* only when higher priorities are idle" logic */
1088inline void 1799inline_size void
1800idle_reify (EV_P)
1801{
1802 if (expect_false (idleall))
1803 {
1804 int pri;
1805
1806 for (pri = NUMPRI; pri--; )
1807 {
1808 if (pendingcnt [pri])
1809 break;
1810
1811 if (idlecnt [pri])
1812 {
1813 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1814 break;
1815 }
1816 }
1817 }
1818}
1819#endif
1820
1821/* make timers pending */
1822inline_size void
1089timers_reify (EV_P) 1823timers_reify (EV_P)
1090{ 1824{
1825 EV_FREQUENT_CHECK;
1826
1091 while (timercnt && ((WT)timers [0])->at <= mn_now) 1827 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1092 { 1828 {
1093 struct ev_timer *w = timers [0]; 1829 do
1094
1095 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1096
1097 /* first reschedule or stop timer */
1098 if (w->repeat)
1099 { 1830 {
1831 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1832
1833 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1834
1835 /* first reschedule or stop timer */
1836 if (w->repeat)
1837 {
1838 ev_at (w) += w->repeat;
1839 if (ev_at (w) < mn_now)
1840 ev_at (w) = mn_now;
1841
1100 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1842 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1101 1843
1102 ((WT)w)->at += w->repeat; 1844 ANHE_at_cache (timers [HEAP0]);
1103 if (((WT)w)->at < mn_now)
1104 ((WT)w)->at = mn_now;
1105
1106 downheap ((WT *)timers, timercnt, 0); 1845 downheap (timers, timercnt, HEAP0);
1846 }
1847 else
1848 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1849
1850 EV_FREQUENT_CHECK;
1851 feed_reverse (EV_A_ (W)w);
1107 } 1852 }
1108 else 1853 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1109 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1110 1854
1111 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1855 feed_reverse_done (EV_A_ EV_TIMEOUT);
1112 } 1856 }
1113} 1857}
1114 1858
1115#if EV_PERIODICS 1859#if EV_PERIODIC_ENABLE
1860/* make periodics pending */
1116inline void 1861inline_size void
1117periodics_reify (EV_P) 1862periodics_reify (EV_P)
1118{ 1863{
1864 EV_FREQUENT_CHECK;
1865
1119 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1866 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1120 { 1867 {
1121 struct ev_periodic *w = periodics [0]; 1868 int feed_count = 0;
1122 1869
1870 do
1871 {
1872 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1873
1123 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1874 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1124 1875
1125 /* first reschedule or stop timer */ 1876 /* first reschedule or stop timer */
1877 if (w->reschedule_cb)
1878 {
1879 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1880
1881 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1882
1883 ANHE_at_cache (periodics [HEAP0]);
1884 downheap (periodics, periodiccnt, HEAP0);
1885 }
1886 else if (w->interval)
1887 {
1888 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1889 /* if next trigger time is not sufficiently in the future, put it there */
1890 /* this might happen because of floating point inexactness */
1891 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1892 {
1893 ev_at (w) += w->interval;
1894
1895 /* if interval is unreasonably low we might still have a time in the past */
1896 /* so correct this. this will make the periodic very inexact, but the user */
1897 /* has effectively asked to get triggered more often than possible */
1898 if (ev_at (w) < ev_rt_now)
1899 ev_at (w) = ev_rt_now;
1900 }
1901
1902 ANHE_at_cache (periodics [HEAP0]);
1903 downheap (periodics, periodiccnt, HEAP0);
1904 }
1905 else
1906 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1907
1908 EV_FREQUENT_CHECK;
1909 feed_reverse (EV_A_ (W)w);
1910 }
1911 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1912
1913 feed_reverse_done (EV_A_ EV_PERIODIC);
1914 }
1915}
1916
1917/* simply recalculate all periodics */
1918/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1919static void noinline
1920periodics_reschedule (EV_P)
1921{
1922 int i;
1923
1924 /* adjust periodics after time jump */
1925 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1926 {
1927 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1928
1126 if (w->reschedule_cb) 1929 if (w->reschedule_cb)
1930 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1931 else if (w->interval)
1932 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1933
1934 ANHE_at_cache (periodics [i]);
1935 }
1936
1937 reheap (periodics, periodiccnt);
1938}
1939#endif
1940
1941/* adjust all timers by a given offset */
1942static void noinline
1943timers_reschedule (EV_P_ ev_tstamp adjust)
1944{
1945 int i;
1946
1947 for (i = 0; i < timercnt; ++i)
1948 {
1949 ANHE *he = timers + i + HEAP0;
1950 ANHE_w (*he)->at += adjust;
1951 ANHE_at_cache (*he);
1952 }
1953}
1954
1955/* fetch new monotonic and realtime times from the kernel */
1956/* also detetc if there was a timejump, and act accordingly */
1957inline_speed void
1958time_update (EV_P_ ev_tstamp max_block)
1959{
1960#if EV_USE_MONOTONIC
1961 if (expect_true (have_monotonic))
1962 {
1963 int i;
1964 ev_tstamp odiff = rtmn_diff;
1965
1966 mn_now = get_clock ();
1967
1968 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1969 /* interpolate in the meantime */
1970 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1127 { 1971 {
1128 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1972 ev_rt_now = rtmn_diff + mn_now;
1129 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1973 return;
1130 downheap ((WT *)periodics, periodiccnt, 0);
1131 } 1974 }
1132 else if (w->interval)
1133 {
1134 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1135 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1136 downheap ((WT *)periodics, periodiccnt, 0);
1137 }
1138 else
1139 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1140 1975
1141 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1142 }
1143}
1144
1145static void
1146periodics_reschedule (EV_P)
1147{
1148 int i;
1149
1150 /* adjust periodics after time jump */
1151 for (i = 0; i < periodiccnt; ++i)
1152 {
1153 struct ev_periodic *w = periodics [i];
1154
1155 if (w->reschedule_cb)
1156 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1157 else if (w->interval)
1158 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1159 }
1160
1161 /* now rebuild the heap */
1162 for (i = periodiccnt >> 1; i--; )
1163 downheap ((WT *)periodics, periodiccnt, i);
1164}
1165#endif
1166
1167inline int
1168time_update_monotonic (EV_P)
1169{
1170 mn_now = get_clock ();
1171
1172 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1173 {
1174 ev_rt_now = rtmn_diff + mn_now;
1175 return 0;
1176 }
1177 else
1178 {
1179 now_floor = mn_now; 1976 now_floor = mn_now;
1180 ev_rt_now = ev_time (); 1977 ev_rt_now = ev_time ();
1181 return 1;
1182 }
1183}
1184 1978
1185inline void 1979 /* loop a few times, before making important decisions.
1186time_update (EV_P) 1980 * on the choice of "4": one iteration isn't enough,
1187{ 1981 * in case we get preempted during the calls to
1188 int i; 1982 * ev_time and get_clock. a second call is almost guaranteed
1189 1983 * to succeed in that case, though. and looping a few more times
1190#if EV_USE_MONOTONIC 1984 * doesn't hurt either as we only do this on time-jumps or
1191 if (expect_true (have_monotonic)) 1985 * in the unlikely event of having been preempted here.
1192 { 1986 */
1193 if (time_update_monotonic (EV_A)) 1987 for (i = 4; --i; )
1194 { 1988 {
1195 ev_tstamp odiff = rtmn_diff;
1196
1197 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1198 {
1199 rtmn_diff = ev_rt_now - mn_now; 1989 rtmn_diff = ev_rt_now - mn_now;
1200 1990
1201 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1991 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1202 return; /* all is well */ 1992 return; /* all is well */
1203 1993
1204 ev_rt_now = ev_time (); 1994 ev_rt_now = ev_time ();
1205 mn_now = get_clock (); 1995 mn_now = get_clock ();
1206 now_floor = mn_now; 1996 now_floor = mn_now;
1207 } 1997 }
1208 1998
1999 /* no timer adjustment, as the monotonic clock doesn't jump */
2000 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1209# if EV_PERIODICS 2001# if EV_PERIODIC_ENABLE
2002 periodics_reschedule (EV_A);
2003# endif
2004 }
2005 else
2006#endif
2007 {
2008 ev_rt_now = ev_time ();
2009
2010 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2011 {
2012 /* adjust timers. this is easy, as the offset is the same for all of them */
2013 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2014#if EV_PERIODIC_ENABLE
1210 periodics_reschedule (EV_A); 2015 periodics_reschedule (EV_A);
1211# endif 2016#endif
1212 /* no timer adjustment, as the monotonic clock doesn't jump */
1213 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1214 } 2017 }
1215 }
1216 else
1217#endif
1218 {
1219 ev_rt_now = ev_time ();
1220
1221 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1222 {
1223#if EV_PERIODICS
1224 periodics_reschedule (EV_A);
1225#endif
1226
1227 /* adjust timers. this is easy, as the offset is the same for all */
1228 for (i = 0; i < timercnt; ++i)
1229 ((WT)timers [i])->at += ev_rt_now - mn_now;
1230 }
1231 2018
1232 mn_now = ev_rt_now; 2019 mn_now = ev_rt_now;
1233 } 2020 }
1234} 2021}
1235 2022
1236void
1237ev_ref (EV_P)
1238{
1239 ++activecnt;
1240}
1241
1242void
1243ev_unref (EV_P)
1244{
1245 --activecnt;
1246}
1247
1248static int loop_done; 2023static int loop_done;
1249 2024
1250void 2025void
1251ev_loop (EV_P_ int flags) 2026ev_loop (EV_P_ int flags)
1252{ 2027{
1253 double block; 2028 loop_done = EVUNLOOP_CANCEL;
1254 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1255 2029
1256 while (activecnt) 2030 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
2031
2032 do
1257 { 2033 {
2034#if EV_VERIFY >= 2
2035 ev_loop_verify (EV_A);
2036#endif
2037
2038#ifndef _WIN32
2039 if (expect_false (curpid)) /* penalise the forking check even more */
2040 if (expect_false (getpid () != curpid))
2041 {
2042 curpid = getpid ();
2043 postfork = 1;
2044 }
2045#endif
2046
2047#if EV_FORK_ENABLE
2048 /* we might have forked, so queue fork handlers */
2049 if (expect_false (postfork))
2050 if (forkcnt)
2051 {
2052 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2053 call_pending (EV_A);
2054 }
2055#endif
2056
1258 /* queue check watchers (and execute them) */ 2057 /* queue prepare watchers (and execute them) */
1259 if (expect_false (preparecnt)) 2058 if (expect_false (preparecnt))
1260 { 2059 {
1261 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2060 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1262 call_pending (EV_A); 2061 call_pending (EV_A);
1263 } 2062 }
1268 2067
1269 /* update fd-related kernel structures */ 2068 /* update fd-related kernel structures */
1270 fd_reify (EV_A); 2069 fd_reify (EV_A);
1271 2070
1272 /* calculate blocking time */ 2071 /* calculate blocking time */
2072 {
2073 ev_tstamp waittime = 0.;
2074 ev_tstamp sleeptime = 0.;
1273 2075
1274 /* we only need this for !monotonic clock or timers, but as we basically 2076 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1275 always have timers, we just calculate it always */
1276#if EV_USE_MONOTONIC
1277 if (expect_true (have_monotonic))
1278 time_update_monotonic (EV_A);
1279 else
1280#endif
1281 { 2077 {
1282 ev_rt_now = ev_time (); 2078 /* update time to cancel out callback processing overhead */
1283 mn_now = ev_rt_now; 2079 time_update (EV_A_ 1e100);
1284 }
1285 2080
1286 if (flags & EVLOOP_NONBLOCK || idlecnt)
1287 block = 0.;
1288 else
1289 {
1290 block = MAX_BLOCKTIME; 2081 waittime = MAX_BLOCKTIME;
1291 2082
1292 if (timercnt) 2083 if (timercnt)
1293 { 2084 {
1294 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2085 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1295 if (block > to) block = to; 2086 if (waittime > to) waittime = to;
1296 } 2087 }
1297 2088
1298#if EV_PERIODICS 2089#if EV_PERIODIC_ENABLE
1299 if (periodiccnt) 2090 if (periodiccnt)
1300 { 2091 {
1301 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2092 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1302 if (block > to) block = to; 2093 if (waittime > to) waittime = to;
1303 } 2094 }
1304#endif 2095#endif
1305 2096
1306 if (expect_false (block < 0.)) block = 0.; 2097 if (expect_false (waittime < timeout_blocktime))
2098 waittime = timeout_blocktime;
2099
2100 sleeptime = waittime - backend_fudge;
2101
2102 if (expect_true (sleeptime > io_blocktime))
2103 sleeptime = io_blocktime;
2104
2105 if (sleeptime)
2106 {
2107 ev_sleep (sleeptime);
2108 waittime -= sleeptime;
2109 }
1307 } 2110 }
1308 2111
2112 ++loop_count;
1309 backend_poll (EV_A_ block); 2113 backend_poll (EV_A_ waittime);
1310 2114
1311 /* update ev_rt_now, do magic */ 2115 /* update ev_rt_now, do magic */
1312 time_update (EV_A); 2116 time_update (EV_A_ waittime + sleeptime);
2117 }
1313 2118
1314 /* queue pending timers and reschedule them */ 2119 /* queue pending timers and reschedule them */
1315 timers_reify (EV_A); /* relative timers called last */ 2120 timers_reify (EV_A); /* relative timers called last */
1316#if EV_PERIODICS 2121#if EV_PERIODIC_ENABLE
1317 periodics_reify (EV_A); /* absolute timers called first */ 2122 periodics_reify (EV_A); /* absolute timers called first */
1318#endif 2123#endif
1319 2124
2125#if EV_IDLE_ENABLE
1320 /* queue idle watchers unless io or timers are pending */ 2126 /* queue idle watchers unless other events are pending */
1321 if (idlecnt && !any_pending (EV_A)) 2127 idle_reify (EV_A);
1322 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2128#endif
1323 2129
1324 /* queue check watchers, to be executed first */ 2130 /* queue check watchers, to be executed first */
1325 if (expect_false (checkcnt)) 2131 if (expect_false (checkcnt))
1326 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2132 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1327 2133
1328 call_pending (EV_A); 2134 call_pending (EV_A);
1329
1330 if (expect_false (loop_done))
1331 break;
1332 } 2135 }
2136 while (expect_true (
2137 activecnt
2138 && !loop_done
2139 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2140 ));
1333 2141
1334 if (loop_done != 2) 2142 if (loop_done == EVUNLOOP_ONE)
1335 loop_done = 0; 2143 loop_done = EVUNLOOP_CANCEL;
1336} 2144}
1337 2145
1338void 2146void
1339ev_unloop (EV_P_ int how) 2147ev_unloop (EV_P_ int how)
1340{ 2148{
1341 loop_done = how; 2149 loop_done = how;
1342} 2150}
1343 2151
2152void
2153ev_ref (EV_P)
2154{
2155 ++activecnt;
2156}
2157
2158void
2159ev_unref (EV_P)
2160{
2161 --activecnt;
2162}
2163
2164void
2165ev_now_update (EV_P)
2166{
2167 time_update (EV_A_ 1e100);
2168}
2169
2170void
2171ev_suspend (EV_P)
2172{
2173 ev_now_update (EV_A);
2174}
2175
2176void
2177ev_resume (EV_P)
2178{
2179 ev_tstamp mn_prev = mn_now;
2180
2181 ev_now_update (EV_A);
2182 timers_reschedule (EV_A_ mn_now - mn_prev);
2183#if EV_PERIODIC_ENABLE
2184 /* TODO: really do this? */
2185 periodics_reschedule (EV_A);
2186#endif
2187}
2188
1344/*****************************************************************************/ 2189/*****************************************************************************/
2190/* singly-linked list management, used when the expected list length is short */
1345 2191
1346inline void 2192inline_size void
1347wlist_add (WL *head, WL elem) 2193wlist_add (WL *head, WL elem)
1348{ 2194{
1349 elem->next = *head; 2195 elem->next = *head;
1350 *head = elem; 2196 *head = elem;
1351} 2197}
1352 2198
1353inline void 2199inline_size void
1354wlist_del (WL *head, WL elem) 2200wlist_del (WL *head, WL elem)
1355{ 2201{
1356 while (*head) 2202 while (*head)
1357 { 2203 {
1358 if (*head == elem) 2204 if (*head == elem)
1363 2209
1364 head = &(*head)->next; 2210 head = &(*head)->next;
1365 } 2211 }
1366} 2212}
1367 2213
2214/* internal, faster, version of ev_clear_pending */
1368inline void 2215inline_speed void
1369ev_clear_pending (EV_P_ W w) 2216clear_pending (EV_P_ W w)
1370{ 2217{
1371 if (w->pending) 2218 if (w->pending)
1372 { 2219 {
1373 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2220 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1374 w->pending = 0; 2221 w->pending = 0;
1375 } 2222 }
1376} 2223}
1377 2224
2225int
2226ev_clear_pending (EV_P_ void *w)
2227{
2228 W w_ = (W)w;
2229 int pending = w_->pending;
2230
2231 if (expect_true (pending))
2232 {
2233 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2234 p->w = (W)&pending_w;
2235 w_->pending = 0;
2236 return p->events;
2237 }
2238 else
2239 return 0;
2240}
2241
1378inline void 2242inline_size void
2243pri_adjust (EV_P_ W w)
2244{
2245 int pri = w->priority;
2246 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2247 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2248 w->priority = pri;
2249}
2250
2251inline_speed void
1379ev_start (EV_P_ W w, int active) 2252ev_start (EV_P_ W w, int active)
1380{ 2253{
1381 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2254 pri_adjust (EV_A_ w);
1382 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1383
1384 w->active = active; 2255 w->active = active;
1385 ev_ref (EV_A); 2256 ev_ref (EV_A);
1386} 2257}
1387 2258
1388inline void 2259inline_size void
1389ev_stop (EV_P_ W w) 2260ev_stop (EV_P_ W w)
1390{ 2261{
1391 ev_unref (EV_A); 2262 ev_unref (EV_A);
1392 w->active = 0; 2263 w->active = 0;
1393} 2264}
1394 2265
1395/*****************************************************************************/ 2266/*****************************************************************************/
1396 2267
1397void 2268void noinline
1398ev_io_start (EV_P_ struct ev_io *w) 2269ev_io_start (EV_P_ ev_io *w)
1399{ 2270{
1400 int fd = w->fd; 2271 int fd = w->fd;
1401 2272
1402 if (expect_false (ev_is_active (w))) 2273 if (expect_false (ev_is_active (w)))
1403 return; 2274 return;
1404 2275
1405 assert (("ev_io_start called with negative fd", fd >= 0)); 2276 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2277 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2278
2279 EV_FREQUENT_CHECK;
1406 2280
1407 ev_start (EV_A_ (W)w, 1); 2281 ev_start (EV_A_ (W)w, 1);
1408 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2282 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1409 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2283 wlist_add (&anfds[fd].head, (WL)w);
1410 2284
1411 fd_change (EV_A_ fd); 2285 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1412} 2286 w->events &= ~EV__IOFDSET;
1413 2287
1414void 2288 EV_FREQUENT_CHECK;
2289}
2290
2291void noinline
1415ev_io_stop (EV_P_ struct ev_io *w) 2292ev_io_stop (EV_P_ ev_io *w)
1416{ 2293{
1417 ev_clear_pending (EV_A_ (W)w); 2294 clear_pending (EV_A_ (W)w);
1418 if (expect_false (!ev_is_active (w))) 2295 if (expect_false (!ev_is_active (w)))
1419 return; 2296 return;
1420 2297
1421 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2298 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1422 2299
2300 EV_FREQUENT_CHECK;
2301
1423 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2302 wlist_del (&anfds[w->fd].head, (WL)w);
1424 ev_stop (EV_A_ (W)w); 2303 ev_stop (EV_A_ (W)w);
1425 2304
1426 fd_change (EV_A_ w->fd); 2305 fd_change (EV_A_ w->fd, 1);
1427}
1428 2306
1429void 2307 EV_FREQUENT_CHECK;
2308}
2309
2310void noinline
1430ev_timer_start (EV_P_ struct ev_timer *w) 2311ev_timer_start (EV_P_ ev_timer *w)
1431{ 2312{
1432 if (expect_false (ev_is_active (w))) 2313 if (expect_false (ev_is_active (w)))
1433 return; 2314 return;
1434 2315
1435 ((WT)w)->at += mn_now; 2316 ev_at (w) += mn_now;
1436 2317
1437 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2318 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1438 2319
2320 EV_FREQUENT_CHECK;
2321
2322 ++timercnt;
1439 ev_start (EV_A_ (W)w, ++timercnt); 2323 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1440 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2324 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1441 timers [timercnt - 1] = w; 2325 ANHE_w (timers [ev_active (w)]) = (WT)w;
1442 upheap ((WT *)timers, timercnt - 1); 2326 ANHE_at_cache (timers [ev_active (w)]);
2327 upheap (timers, ev_active (w));
1443 2328
2329 EV_FREQUENT_CHECK;
2330
1444 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2331 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1445} 2332}
1446 2333
1447void 2334void noinline
1448ev_timer_stop (EV_P_ struct ev_timer *w) 2335ev_timer_stop (EV_P_ ev_timer *w)
1449{ 2336{
1450 ev_clear_pending (EV_A_ (W)w); 2337 clear_pending (EV_A_ (W)w);
1451 if (expect_false (!ev_is_active (w))) 2338 if (expect_false (!ev_is_active (w)))
1452 return; 2339 return;
1453 2340
2341 EV_FREQUENT_CHECK;
2342
2343 {
2344 int active = ev_active (w);
2345
1454 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2346 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1455 2347
2348 --timercnt;
2349
1456 if (expect_true (((W)w)->active < timercnt--)) 2350 if (expect_true (active < timercnt + HEAP0))
1457 { 2351 {
1458 timers [((W)w)->active - 1] = timers [timercnt]; 2352 timers [active] = timers [timercnt + HEAP0];
1459 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2353 adjustheap (timers, timercnt, active);
1460 } 2354 }
2355 }
1461 2356
1462 ((WT)w)->at -= mn_now; 2357 EV_FREQUENT_CHECK;
2358
2359 ev_at (w) -= mn_now;
1463 2360
1464 ev_stop (EV_A_ (W)w); 2361 ev_stop (EV_A_ (W)w);
1465} 2362}
1466 2363
1467void 2364void noinline
1468ev_timer_again (EV_P_ struct ev_timer *w) 2365ev_timer_again (EV_P_ ev_timer *w)
1469{ 2366{
2367 EV_FREQUENT_CHECK;
2368
1470 if (ev_is_active (w)) 2369 if (ev_is_active (w))
1471 { 2370 {
1472 if (w->repeat) 2371 if (w->repeat)
1473 { 2372 {
1474 ((WT)w)->at = mn_now + w->repeat; 2373 ev_at (w) = mn_now + w->repeat;
2374 ANHE_at_cache (timers [ev_active (w)]);
1475 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2375 adjustheap (timers, timercnt, ev_active (w));
1476 } 2376 }
1477 else 2377 else
1478 ev_timer_stop (EV_A_ w); 2378 ev_timer_stop (EV_A_ w);
1479 } 2379 }
1480 else if (w->repeat) 2380 else if (w->repeat)
1481 { 2381 {
1482 w->at = w->repeat; 2382 ev_at (w) = w->repeat;
1483 ev_timer_start (EV_A_ w); 2383 ev_timer_start (EV_A_ w);
1484 } 2384 }
1485}
1486 2385
2386 EV_FREQUENT_CHECK;
2387}
2388
1487#if EV_PERIODICS 2389#if EV_PERIODIC_ENABLE
1488void 2390void noinline
1489ev_periodic_start (EV_P_ struct ev_periodic *w) 2391ev_periodic_start (EV_P_ ev_periodic *w)
1490{ 2392{
1491 if (expect_false (ev_is_active (w))) 2393 if (expect_false (ev_is_active (w)))
1492 return; 2394 return;
1493 2395
1494 if (w->reschedule_cb) 2396 if (w->reschedule_cb)
1495 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2397 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1496 else if (w->interval) 2398 else if (w->interval)
1497 { 2399 {
1498 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2400 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1499 /* this formula differs from the one in periodic_reify because we do not always round up */ 2401 /* this formula differs from the one in periodic_reify because we do not always round up */
1500 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2402 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1501 } 2403 }
2404 else
2405 ev_at (w) = w->offset;
1502 2406
2407 EV_FREQUENT_CHECK;
2408
2409 ++periodiccnt;
1503 ev_start (EV_A_ (W)w, ++periodiccnt); 2410 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1504 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2411 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1505 periodics [periodiccnt - 1] = w; 2412 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1506 upheap ((WT *)periodics, periodiccnt - 1); 2413 ANHE_at_cache (periodics [ev_active (w)]);
2414 upheap (periodics, ev_active (w));
1507 2415
2416 EV_FREQUENT_CHECK;
2417
1508 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2418 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1509} 2419}
1510 2420
1511void 2421void noinline
1512ev_periodic_stop (EV_P_ struct ev_periodic *w) 2422ev_periodic_stop (EV_P_ ev_periodic *w)
1513{ 2423{
1514 ev_clear_pending (EV_A_ (W)w); 2424 clear_pending (EV_A_ (W)w);
1515 if (expect_false (!ev_is_active (w))) 2425 if (expect_false (!ev_is_active (w)))
1516 return; 2426 return;
1517 2427
2428 EV_FREQUENT_CHECK;
2429
2430 {
2431 int active = ev_active (w);
2432
1518 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2433 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1519 2434
2435 --periodiccnt;
2436
1520 if (expect_true (((W)w)->active < periodiccnt--)) 2437 if (expect_true (active < periodiccnt + HEAP0))
1521 { 2438 {
1522 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2439 periodics [active] = periodics [periodiccnt + HEAP0];
1523 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2440 adjustheap (periodics, periodiccnt, active);
1524 } 2441 }
2442 }
2443
2444 EV_FREQUENT_CHECK;
1525 2445
1526 ev_stop (EV_A_ (W)w); 2446 ev_stop (EV_A_ (W)w);
1527} 2447}
1528 2448
1529void 2449void noinline
1530ev_periodic_again (EV_P_ struct ev_periodic *w) 2450ev_periodic_again (EV_P_ ev_periodic *w)
1531{ 2451{
1532 /* TODO: use adjustheap and recalculation */ 2452 /* TODO: use adjustheap and recalculation */
1533 ev_periodic_stop (EV_A_ w); 2453 ev_periodic_stop (EV_A_ w);
1534 ev_periodic_start (EV_A_ w); 2454 ev_periodic_start (EV_A_ w);
1535} 2455}
1536#endif 2456#endif
1537 2457
1538void 2458#ifndef SA_RESTART
1539ev_idle_start (EV_P_ struct ev_idle *w) 2459# define SA_RESTART 0
2460#endif
2461
2462void noinline
2463ev_signal_start (EV_P_ ev_signal *w)
1540{ 2464{
2465#if EV_MULTIPLICITY
2466 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2467#endif
1541 if (expect_false (ev_is_active (w))) 2468 if (expect_false (ev_is_active (w)))
1542 return; 2469 return;
1543 2470
1544 ev_start (EV_A_ (W)w, ++idlecnt);
1545 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1546 idles [idlecnt - 1] = w;
1547}
1548
1549void
1550ev_idle_stop (EV_P_ struct ev_idle *w)
1551{
1552 ev_clear_pending (EV_A_ (W)w);
1553 if (expect_false (!ev_is_active (w)))
1554 return;
1555
1556 idles [((W)w)->active - 1] = idles [--idlecnt];
1557 ev_stop (EV_A_ (W)w);
1558}
1559
1560void
1561ev_prepare_start (EV_P_ struct ev_prepare *w)
1562{
1563 if (expect_false (ev_is_active (w)))
1564 return;
1565
1566 ev_start (EV_A_ (W)w, ++preparecnt);
1567 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1568 prepares [preparecnt - 1] = w;
1569}
1570
1571void
1572ev_prepare_stop (EV_P_ struct ev_prepare *w)
1573{
1574 ev_clear_pending (EV_A_ (W)w);
1575 if (expect_false (!ev_is_active (w)))
1576 return;
1577
1578 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1579 ev_stop (EV_A_ (W)w);
1580}
1581
1582void
1583ev_check_start (EV_P_ struct ev_check *w)
1584{
1585 if (expect_false (ev_is_active (w)))
1586 return;
1587
1588 ev_start (EV_A_ (W)w, ++checkcnt);
1589 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1590 checks [checkcnt - 1] = w;
1591}
1592
1593void
1594ev_check_stop (EV_P_ struct ev_check *w)
1595{
1596 ev_clear_pending (EV_A_ (W)w);
1597 if (expect_false (!ev_is_active (w)))
1598 return;
1599
1600 checks [((W)w)->active - 1] = checks [--checkcnt];
1601 ev_stop (EV_A_ (W)w);
1602}
1603
1604#ifndef SA_RESTART
1605# define SA_RESTART 0
1606#endif
1607
1608void
1609ev_signal_start (EV_P_ struct ev_signal *w)
1610{
1611#if EV_MULTIPLICITY
1612 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1613#endif
1614 if (expect_false (ev_is_active (w)))
1615 return;
1616
1617 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2471 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2472
2473 evpipe_init (EV_A);
2474
2475 EV_FREQUENT_CHECK;
2476
2477 {
2478#ifndef _WIN32
2479 sigset_t full, prev;
2480 sigfillset (&full);
2481 sigprocmask (SIG_SETMASK, &full, &prev);
2482#endif
2483
2484 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2485
2486#ifndef _WIN32
2487 sigprocmask (SIG_SETMASK, &prev, 0);
2488#endif
2489 }
1618 2490
1619 ev_start (EV_A_ (W)w, 1); 2491 ev_start (EV_A_ (W)w, 1);
1620 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1621 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2492 wlist_add (&signals [w->signum - 1].head, (WL)w);
1622 2493
1623 if (!((WL)w)->next) 2494 if (!((WL)w)->next)
1624 { 2495 {
1625#if _WIN32 2496#if _WIN32
1626 signal (w->signum, sighandler); 2497 signal (w->signum, ev_sighandler);
1627#else 2498#else
1628 struct sigaction sa; 2499 struct sigaction sa;
1629 sa.sa_handler = sighandler; 2500 sa.sa_handler = ev_sighandler;
1630 sigfillset (&sa.sa_mask); 2501 sigfillset (&sa.sa_mask);
1631 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2502 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1632 sigaction (w->signum, &sa, 0); 2503 sigaction (w->signum, &sa, 0);
1633#endif 2504#endif
1634 } 2505 }
1635}
1636 2506
1637void 2507 EV_FREQUENT_CHECK;
2508}
2509
2510void noinline
1638ev_signal_stop (EV_P_ struct ev_signal *w) 2511ev_signal_stop (EV_P_ ev_signal *w)
1639{ 2512{
1640 ev_clear_pending (EV_A_ (W)w); 2513 clear_pending (EV_A_ (W)w);
1641 if (expect_false (!ev_is_active (w))) 2514 if (expect_false (!ev_is_active (w)))
1642 return; 2515 return;
1643 2516
2517 EV_FREQUENT_CHECK;
2518
1644 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2519 wlist_del (&signals [w->signum - 1].head, (WL)w);
1645 ev_stop (EV_A_ (W)w); 2520 ev_stop (EV_A_ (W)w);
1646 2521
1647 if (!signals [w->signum - 1].head) 2522 if (!signals [w->signum - 1].head)
1648 signal (w->signum, SIG_DFL); 2523 signal (w->signum, SIG_DFL);
1649}
1650 2524
2525 EV_FREQUENT_CHECK;
2526}
2527
1651void 2528void
1652ev_child_start (EV_P_ struct ev_child *w) 2529ev_child_start (EV_P_ ev_child *w)
1653{ 2530{
1654#if EV_MULTIPLICITY 2531#if EV_MULTIPLICITY
1655 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2532 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1656#endif 2533#endif
1657 if (expect_false (ev_is_active (w))) 2534 if (expect_false (ev_is_active (w)))
1658 return; 2535 return;
1659 2536
2537 EV_FREQUENT_CHECK;
2538
1660 ev_start (EV_A_ (W)w, 1); 2539 ev_start (EV_A_ (W)w, 1);
1661 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2540 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1662}
1663 2541
2542 EV_FREQUENT_CHECK;
2543}
2544
1664void 2545void
1665ev_child_stop (EV_P_ struct ev_child *w) 2546ev_child_stop (EV_P_ ev_child *w)
1666{ 2547{
1667 ev_clear_pending (EV_A_ (W)w); 2548 clear_pending (EV_A_ (W)w);
1668 if (expect_false (!ev_is_active (w))) 2549 if (expect_false (!ev_is_active (w)))
1669 return; 2550 return;
1670 2551
2552 EV_FREQUENT_CHECK;
2553
1671 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2554 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1672 ev_stop (EV_A_ (W)w); 2555 ev_stop (EV_A_ (W)w);
1673}
1674 2556
1675#if EV_MULTIPLICITY 2557 EV_FREQUENT_CHECK;
2558}
2559
2560#if EV_STAT_ENABLE
2561
2562# ifdef _WIN32
2563# undef lstat
2564# define lstat(a,b) _stati64 (a,b)
2565# endif
2566
2567#define DEF_STAT_INTERVAL 5.0074891
2568#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2569#define MIN_STAT_INTERVAL 0.1074891
2570
2571static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2572
2573#if EV_USE_INOTIFY
2574# define EV_INOTIFY_BUFSIZE 8192
2575
2576static void noinline
2577infy_add (EV_P_ ev_stat *w)
2578{
2579 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2580
2581 if (w->wd < 0)
2582 {
2583 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2584 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2585
2586 /* monitor some parent directory for speedup hints */
2587 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2588 /* but an efficiency issue only */
2589 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2590 {
2591 char path [4096];
2592 strcpy (path, w->path);
2593
2594 do
2595 {
2596 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2597 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2598
2599 char *pend = strrchr (path, '/');
2600
2601 if (!pend || pend == path)
2602 break;
2603
2604 *pend = 0;
2605 w->wd = inotify_add_watch (fs_fd, path, mask);
2606 }
2607 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2608 }
2609 }
2610
2611 if (w->wd >= 0)
2612 {
2613 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2614
2615 /* now local changes will be tracked by inotify, but remote changes won't */
2616 /* unless the filesystem it known to be local, we therefore still poll */
2617 /* also do poll on <2.6.25, but with normal frequency */
2618 struct statfs sfs;
2619
2620 if (fs_2625 && !statfs (w->path, &sfs))
2621 if (sfs.f_type == 0x1373 /* devfs */
2622 || sfs.f_type == 0xEF53 /* ext2/3 */
2623 || sfs.f_type == 0x3153464a /* jfs */
2624 || sfs.f_type == 0x52654973 /* reiser3 */
2625 || sfs.f_type == 0x01021994 /* tempfs */
2626 || sfs.f_type == 0x58465342 /* xfs */)
2627 return;
2628
2629 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2630 ev_timer_again (EV_A_ &w->timer);
2631 }
2632}
2633
2634static void noinline
2635infy_del (EV_P_ ev_stat *w)
2636{
2637 int slot;
2638 int wd = w->wd;
2639
2640 if (wd < 0)
2641 return;
2642
2643 w->wd = -2;
2644 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2645 wlist_del (&fs_hash [slot].head, (WL)w);
2646
2647 /* remove this watcher, if others are watching it, they will rearm */
2648 inotify_rm_watch (fs_fd, wd);
2649}
2650
2651static void noinline
2652infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2653{
2654 if (slot < 0)
2655 /* overflow, need to check for all hash slots */
2656 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2657 infy_wd (EV_A_ slot, wd, ev);
2658 else
2659 {
2660 WL w_;
2661
2662 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2663 {
2664 ev_stat *w = (ev_stat *)w_;
2665 w_ = w_->next; /* lets us remove this watcher and all before it */
2666
2667 if (w->wd == wd || wd == -1)
2668 {
2669 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2670 {
2671 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2672 w->wd = -1;
2673 infy_add (EV_A_ w); /* re-add, no matter what */
2674 }
2675
2676 stat_timer_cb (EV_A_ &w->timer, 0);
2677 }
2678 }
2679 }
2680}
2681
1676static void 2682static void
1677embed_cb (EV_P_ struct ev_io *io, int revents) 2683infy_cb (EV_P_ ev_io *w, int revents)
1678{ 2684{
1679 struct ev_embed *w = (struct ev_embed *)(((char *)io) - offsetof (struct ev_embed, io)); 2685 char buf [EV_INOTIFY_BUFSIZE];
2686 struct inotify_event *ev = (struct inotify_event *)buf;
2687 int ofs;
2688 int len = read (fs_fd, buf, sizeof (buf));
1680 2689
2690 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2691 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2692}
2693
2694inline_size void
2695check_2625 (EV_P)
2696{
2697 /* kernels < 2.6.25 are borked
2698 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2699 */
2700 struct utsname buf;
2701 int major, minor, micro;
2702
2703 if (uname (&buf))
2704 return;
2705
2706 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2707 return;
2708
2709 if (major < 2
2710 || (major == 2 && minor < 6)
2711 || (major == 2 && minor == 6 && micro < 25))
2712 return;
2713
2714 fs_2625 = 1;
2715}
2716
2717inline_size void
2718infy_init (EV_P)
2719{
2720 if (fs_fd != -2)
2721 return;
2722
2723 fs_fd = -1;
2724
2725 check_2625 (EV_A);
2726
2727 fs_fd = inotify_init ();
2728
2729 if (fs_fd >= 0)
2730 {
2731 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2732 ev_set_priority (&fs_w, EV_MAXPRI);
2733 ev_io_start (EV_A_ &fs_w);
2734 }
2735}
2736
2737inline_size void
2738infy_fork (EV_P)
2739{
2740 int slot;
2741
2742 if (fs_fd < 0)
2743 return;
2744
2745 close (fs_fd);
2746 fs_fd = inotify_init ();
2747
2748 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2749 {
2750 WL w_ = fs_hash [slot].head;
2751 fs_hash [slot].head = 0;
2752
2753 while (w_)
2754 {
2755 ev_stat *w = (ev_stat *)w_;
2756 w_ = w_->next; /* lets us add this watcher */
2757
2758 w->wd = -1;
2759
2760 if (fs_fd >= 0)
2761 infy_add (EV_A_ w); /* re-add, no matter what */
2762 else
2763 ev_timer_again (EV_A_ &w->timer);
2764 }
2765 }
2766}
2767
2768#endif
2769
2770#ifdef _WIN32
2771# define EV_LSTAT(p,b) _stati64 (p, b)
2772#else
2773# define EV_LSTAT(p,b) lstat (p, b)
2774#endif
2775
2776void
2777ev_stat_stat (EV_P_ ev_stat *w)
2778{
2779 if (lstat (w->path, &w->attr) < 0)
2780 w->attr.st_nlink = 0;
2781 else if (!w->attr.st_nlink)
2782 w->attr.st_nlink = 1;
2783}
2784
2785static void noinline
2786stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2787{
2788 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2789
2790 /* we copy this here each the time so that */
2791 /* prev has the old value when the callback gets invoked */
2792 w->prev = w->attr;
2793 ev_stat_stat (EV_A_ w);
2794
2795 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2796 if (
2797 w->prev.st_dev != w->attr.st_dev
2798 || w->prev.st_ino != w->attr.st_ino
2799 || w->prev.st_mode != w->attr.st_mode
2800 || w->prev.st_nlink != w->attr.st_nlink
2801 || w->prev.st_uid != w->attr.st_uid
2802 || w->prev.st_gid != w->attr.st_gid
2803 || w->prev.st_rdev != w->attr.st_rdev
2804 || w->prev.st_size != w->attr.st_size
2805 || w->prev.st_atime != w->attr.st_atime
2806 || w->prev.st_mtime != w->attr.st_mtime
2807 || w->prev.st_ctime != w->attr.st_ctime
2808 ) {
2809 #if EV_USE_INOTIFY
2810 if (fs_fd >= 0)
2811 {
2812 infy_del (EV_A_ w);
2813 infy_add (EV_A_ w);
2814 ev_stat_stat (EV_A_ w); /* avoid race... */
2815 }
2816 #endif
2817
1681 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2818 ev_feed_event (EV_A_ w, EV_STAT);
1682 ev_loop (w->loop, EVLOOP_NONBLOCK); 2819 }
1683} 2820}
1684 2821
1685void 2822void
1686ev_embed_start (EV_P_ struct ev_embed *w) 2823ev_stat_start (EV_P_ ev_stat *w)
1687{ 2824{
1688 if (expect_false (ev_is_active (w))) 2825 if (expect_false (ev_is_active (w)))
1689 return; 2826 return;
1690 2827
1691 { 2828 ev_stat_stat (EV_A_ w);
1692 struct ev_loop *loop = w->loop;
1693 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1694 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1695 }
1696 2829
1697 ev_io_start (EV_A_ &w->io); 2830 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2831 w->interval = MIN_STAT_INTERVAL;
2832
2833 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2834 ev_set_priority (&w->timer, ev_priority (w));
2835
2836#if EV_USE_INOTIFY
2837 infy_init (EV_A);
2838
2839 if (fs_fd >= 0)
2840 infy_add (EV_A_ w);
2841 else
2842#endif
2843 ev_timer_again (EV_A_ &w->timer);
2844
1698 ev_start (EV_A_ (W)w, 1); 2845 ev_start (EV_A_ (W)w, 1);
1699}
1700 2846
2847 EV_FREQUENT_CHECK;
2848}
2849
1701void 2850void
1702ev_embed_stop (EV_P_ struct ev_embed *w) 2851ev_stat_stop (EV_P_ ev_stat *w)
1703{ 2852{
1704 ev_clear_pending (EV_A_ (W)w); 2853 clear_pending (EV_A_ (W)w);
1705 if (expect_false (!ev_is_active (w))) 2854 if (expect_false (!ev_is_active (w)))
1706 return; 2855 return;
1707 2856
2857 EV_FREQUENT_CHECK;
2858
2859#if EV_USE_INOTIFY
2860 infy_del (EV_A_ w);
2861#endif
1708 ev_io_stop (EV_A_ &w->io); 2862 ev_timer_stop (EV_A_ &w->timer);
2863
1709 ev_stop (EV_A_ (W)w); 2864 ev_stop (EV_A_ (W)w);
2865
2866 EV_FREQUENT_CHECK;
2867}
2868#endif
2869
2870#if EV_IDLE_ENABLE
2871void
2872ev_idle_start (EV_P_ ev_idle *w)
2873{
2874 if (expect_false (ev_is_active (w)))
2875 return;
2876
2877 pri_adjust (EV_A_ (W)w);
2878
2879 EV_FREQUENT_CHECK;
2880
2881 {
2882 int active = ++idlecnt [ABSPRI (w)];
2883
2884 ++idleall;
2885 ev_start (EV_A_ (W)w, active);
2886
2887 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2888 idles [ABSPRI (w)][active - 1] = w;
2889 }
2890
2891 EV_FREQUENT_CHECK;
2892}
2893
2894void
2895ev_idle_stop (EV_P_ ev_idle *w)
2896{
2897 clear_pending (EV_A_ (W)w);
2898 if (expect_false (!ev_is_active (w)))
2899 return;
2900
2901 EV_FREQUENT_CHECK;
2902
2903 {
2904 int active = ev_active (w);
2905
2906 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2907 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2908
2909 ev_stop (EV_A_ (W)w);
2910 --idleall;
2911 }
2912
2913 EV_FREQUENT_CHECK;
2914}
2915#endif
2916
2917void
2918ev_prepare_start (EV_P_ ev_prepare *w)
2919{
2920 if (expect_false (ev_is_active (w)))
2921 return;
2922
2923 EV_FREQUENT_CHECK;
2924
2925 ev_start (EV_A_ (W)w, ++preparecnt);
2926 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2927 prepares [preparecnt - 1] = w;
2928
2929 EV_FREQUENT_CHECK;
2930}
2931
2932void
2933ev_prepare_stop (EV_P_ ev_prepare *w)
2934{
2935 clear_pending (EV_A_ (W)w);
2936 if (expect_false (!ev_is_active (w)))
2937 return;
2938
2939 EV_FREQUENT_CHECK;
2940
2941 {
2942 int active = ev_active (w);
2943
2944 prepares [active - 1] = prepares [--preparecnt];
2945 ev_active (prepares [active - 1]) = active;
2946 }
2947
2948 ev_stop (EV_A_ (W)w);
2949
2950 EV_FREQUENT_CHECK;
2951}
2952
2953void
2954ev_check_start (EV_P_ ev_check *w)
2955{
2956 if (expect_false (ev_is_active (w)))
2957 return;
2958
2959 EV_FREQUENT_CHECK;
2960
2961 ev_start (EV_A_ (W)w, ++checkcnt);
2962 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2963 checks [checkcnt - 1] = w;
2964
2965 EV_FREQUENT_CHECK;
2966}
2967
2968void
2969ev_check_stop (EV_P_ ev_check *w)
2970{
2971 clear_pending (EV_A_ (W)w);
2972 if (expect_false (!ev_is_active (w)))
2973 return;
2974
2975 EV_FREQUENT_CHECK;
2976
2977 {
2978 int active = ev_active (w);
2979
2980 checks [active - 1] = checks [--checkcnt];
2981 ev_active (checks [active - 1]) = active;
2982 }
2983
2984 ev_stop (EV_A_ (W)w);
2985
2986 EV_FREQUENT_CHECK;
2987}
2988
2989#if EV_EMBED_ENABLE
2990void noinline
2991ev_embed_sweep (EV_P_ ev_embed *w)
2992{
2993 ev_loop (w->other, EVLOOP_NONBLOCK);
2994}
2995
2996static void
2997embed_io_cb (EV_P_ ev_io *io, int revents)
2998{
2999 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3000
3001 if (ev_cb (w))
3002 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3003 else
3004 ev_loop (w->other, EVLOOP_NONBLOCK);
3005}
3006
3007static void
3008embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3009{
3010 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3011
3012 {
3013 struct ev_loop *loop = w->other;
3014
3015 while (fdchangecnt)
3016 {
3017 fd_reify (EV_A);
3018 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3019 }
3020 }
3021}
3022
3023static void
3024embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3025{
3026 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3027
3028 ev_embed_stop (EV_A_ w);
3029
3030 {
3031 struct ev_loop *loop = w->other;
3032
3033 ev_loop_fork (EV_A);
3034 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3035 }
3036
3037 ev_embed_start (EV_A_ w);
3038}
3039
3040#if 0
3041static void
3042embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3043{
3044 ev_idle_stop (EV_A_ idle);
3045}
3046#endif
3047
3048void
3049ev_embed_start (EV_P_ ev_embed *w)
3050{
3051 if (expect_false (ev_is_active (w)))
3052 return;
3053
3054 {
3055 struct ev_loop *loop = w->other;
3056 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3057 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3058 }
3059
3060 EV_FREQUENT_CHECK;
3061
3062 ev_set_priority (&w->io, ev_priority (w));
3063 ev_io_start (EV_A_ &w->io);
3064
3065 ev_prepare_init (&w->prepare, embed_prepare_cb);
3066 ev_set_priority (&w->prepare, EV_MINPRI);
3067 ev_prepare_start (EV_A_ &w->prepare);
3068
3069 ev_fork_init (&w->fork, embed_fork_cb);
3070 ev_fork_start (EV_A_ &w->fork);
3071
3072 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3073
3074 ev_start (EV_A_ (W)w, 1);
3075
3076 EV_FREQUENT_CHECK;
3077}
3078
3079void
3080ev_embed_stop (EV_P_ ev_embed *w)
3081{
3082 clear_pending (EV_A_ (W)w);
3083 if (expect_false (!ev_is_active (w)))
3084 return;
3085
3086 EV_FREQUENT_CHECK;
3087
3088 ev_io_stop (EV_A_ &w->io);
3089 ev_prepare_stop (EV_A_ &w->prepare);
3090 ev_fork_stop (EV_A_ &w->fork);
3091
3092 EV_FREQUENT_CHECK;
3093}
3094#endif
3095
3096#if EV_FORK_ENABLE
3097void
3098ev_fork_start (EV_P_ ev_fork *w)
3099{
3100 if (expect_false (ev_is_active (w)))
3101 return;
3102
3103 EV_FREQUENT_CHECK;
3104
3105 ev_start (EV_A_ (W)w, ++forkcnt);
3106 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3107 forks [forkcnt - 1] = w;
3108
3109 EV_FREQUENT_CHECK;
3110}
3111
3112void
3113ev_fork_stop (EV_P_ ev_fork *w)
3114{
3115 clear_pending (EV_A_ (W)w);
3116 if (expect_false (!ev_is_active (w)))
3117 return;
3118
3119 EV_FREQUENT_CHECK;
3120
3121 {
3122 int active = ev_active (w);
3123
3124 forks [active - 1] = forks [--forkcnt];
3125 ev_active (forks [active - 1]) = active;
3126 }
3127
3128 ev_stop (EV_A_ (W)w);
3129
3130 EV_FREQUENT_CHECK;
3131}
3132#endif
3133
3134#if EV_ASYNC_ENABLE
3135void
3136ev_async_start (EV_P_ ev_async *w)
3137{
3138 if (expect_false (ev_is_active (w)))
3139 return;
3140
3141 evpipe_init (EV_A);
3142
3143 EV_FREQUENT_CHECK;
3144
3145 ev_start (EV_A_ (W)w, ++asynccnt);
3146 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3147 asyncs [asynccnt - 1] = w;
3148
3149 EV_FREQUENT_CHECK;
3150}
3151
3152void
3153ev_async_stop (EV_P_ ev_async *w)
3154{
3155 clear_pending (EV_A_ (W)w);
3156 if (expect_false (!ev_is_active (w)))
3157 return;
3158
3159 EV_FREQUENT_CHECK;
3160
3161 {
3162 int active = ev_active (w);
3163
3164 asyncs [active - 1] = asyncs [--asynccnt];
3165 ev_active (asyncs [active - 1]) = active;
3166 }
3167
3168 ev_stop (EV_A_ (W)w);
3169
3170 EV_FREQUENT_CHECK;
3171}
3172
3173void
3174ev_async_send (EV_P_ ev_async *w)
3175{
3176 w->sent = 1;
3177 evpipe_write (EV_A_ &gotasync);
1710} 3178}
1711#endif 3179#endif
1712 3180
1713/*****************************************************************************/ 3181/*****************************************************************************/
1714 3182
1715struct ev_once 3183struct ev_once
1716{ 3184{
1717 struct ev_io io; 3185 ev_io io;
1718 struct ev_timer to; 3186 ev_timer to;
1719 void (*cb)(int revents, void *arg); 3187 void (*cb)(int revents, void *arg);
1720 void *arg; 3188 void *arg;
1721}; 3189};
1722 3190
1723static void 3191static void
1724once_cb (EV_P_ struct ev_once *once, int revents) 3192once_cb (EV_P_ struct ev_once *once, int revents)
1725{ 3193{
1726 void (*cb)(int revents, void *arg) = once->cb; 3194 void (*cb)(int revents, void *arg) = once->cb;
1727 void *arg = once->arg; 3195 void *arg = once->arg;
1728 3196
1729 ev_io_stop (EV_A_ &once->io); 3197 ev_io_stop (EV_A_ &once->io);
1730 ev_timer_stop (EV_A_ &once->to); 3198 ev_timer_stop (EV_A_ &once->to);
1731 ev_free (once); 3199 ev_free (once);
1732 3200
1733 cb (revents, arg); 3201 cb (revents, arg);
1734} 3202}
1735 3203
1736static void 3204static void
1737once_cb_io (EV_P_ struct ev_io *w, int revents) 3205once_cb_io (EV_P_ ev_io *w, int revents)
1738{ 3206{
1739 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3207 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3208
3209 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1740} 3210}
1741 3211
1742static void 3212static void
1743once_cb_to (EV_P_ struct ev_timer *w, int revents) 3213once_cb_to (EV_P_ ev_timer *w, int revents)
1744{ 3214{
1745 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3215 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3216
3217 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1746} 3218}
1747 3219
1748void 3220void
1749ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3221ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1750{ 3222{
1772 ev_timer_set (&once->to, timeout, 0.); 3244 ev_timer_set (&once->to, timeout, 0.);
1773 ev_timer_start (EV_A_ &once->to); 3245 ev_timer_start (EV_A_ &once->to);
1774 } 3246 }
1775} 3247}
1776 3248
3249/*****************************************************************************/
3250
3251#if EV_WALK_ENABLE
3252void
3253ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3254{
3255 int i, j;
3256 ev_watcher_list *wl, *wn;
3257
3258 if (types & (EV_IO | EV_EMBED))
3259 for (i = 0; i < anfdmax; ++i)
3260 for (wl = anfds [i].head; wl; )
3261 {
3262 wn = wl->next;
3263
3264#if EV_EMBED_ENABLE
3265 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3266 {
3267 if (types & EV_EMBED)
3268 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3269 }
3270 else
3271#endif
3272#if EV_USE_INOTIFY
3273 if (ev_cb ((ev_io *)wl) == infy_cb)
3274 ;
3275 else
3276#endif
3277 if ((ev_io *)wl != &pipe_w)
3278 if (types & EV_IO)
3279 cb (EV_A_ EV_IO, wl);
3280
3281 wl = wn;
3282 }
3283
3284 if (types & (EV_TIMER | EV_STAT))
3285 for (i = timercnt + HEAP0; i-- > HEAP0; )
3286#if EV_STAT_ENABLE
3287 /*TODO: timer is not always active*/
3288 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3289 {
3290 if (types & EV_STAT)
3291 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3292 }
3293 else
3294#endif
3295 if (types & EV_TIMER)
3296 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3297
3298#if EV_PERIODIC_ENABLE
3299 if (types & EV_PERIODIC)
3300 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3301 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3302#endif
3303
3304#if EV_IDLE_ENABLE
3305 if (types & EV_IDLE)
3306 for (j = NUMPRI; i--; )
3307 for (i = idlecnt [j]; i--; )
3308 cb (EV_A_ EV_IDLE, idles [j][i]);
3309#endif
3310
3311#if EV_FORK_ENABLE
3312 if (types & EV_FORK)
3313 for (i = forkcnt; i--; )
3314 if (ev_cb (forks [i]) != embed_fork_cb)
3315 cb (EV_A_ EV_FORK, forks [i]);
3316#endif
3317
3318#if EV_ASYNC_ENABLE
3319 if (types & EV_ASYNC)
3320 for (i = asynccnt; i--; )
3321 cb (EV_A_ EV_ASYNC, asyncs [i]);
3322#endif
3323
3324 if (types & EV_PREPARE)
3325 for (i = preparecnt; i--; )
3326#if EV_EMBED_ENABLE
3327 if (ev_cb (prepares [i]) != embed_prepare_cb)
3328#endif
3329 cb (EV_A_ EV_PREPARE, prepares [i]);
3330
3331 if (types & EV_CHECK)
3332 for (i = checkcnt; i--; )
3333 cb (EV_A_ EV_CHECK, checks [i]);
3334
3335 if (types & EV_SIGNAL)
3336 for (i = 0; i < signalmax; ++i)
3337 for (wl = signals [i].head; wl; )
3338 {
3339 wn = wl->next;
3340 cb (EV_A_ EV_SIGNAL, wl);
3341 wl = wn;
3342 }
3343
3344 if (types & EV_CHILD)
3345 for (i = EV_PID_HASHSIZE; i--; )
3346 for (wl = childs [i]; wl; )
3347 {
3348 wn = wl->next;
3349 cb (EV_A_ EV_CHILD, wl);
3350 wl = wn;
3351 }
3352/* EV_STAT 0x00001000 /* stat data changed */
3353/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3354}
3355#endif
3356
3357#if EV_MULTIPLICITY
3358 #include "ev_wrap.h"
3359#endif
3360
1777#ifdef __cplusplus 3361#ifdef __cplusplus
1778} 3362}
1779#endif 3363#endif
1780 3364

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines