ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.118 by root, Fri Nov 16 01:33:54 2007 UTC vs.
Revision 1.291 by root, Mon Jun 29 04:44:18 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
38 65
39# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
42# endif 69# endif
43# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
45# endif 79# endif
46# endif 80# endif
47 81
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
50# endif 88# endif
51 89
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 90# ifndef EV_USE_SELECT
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
95# endif
54# endif 96# endif
55 97
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 100# define EV_USE_POLL 1
101# else
102# define EV_USE_POLL 0
103# endif
58# endif 104# endif
59 105
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 108# define EV_USE_EPOLL 1
109# else
110# define EV_USE_EPOLL 0
111# endif
62# endif 112# endif
63 113
64# if HAVE_PORT_H && HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 114# ifndef EV_USE_KQUEUE
115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
65# define EV_USE_PORT 1 116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
119# endif
66# endif 120# endif
121
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
127# endif
128# endif
67 129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_EVENTFD
139# if HAVE_EVENTFD
140# define EV_USE_EVENTFD 1
141# else
142# define EV_USE_EVENTFD 0
143# endif
144# endif
145
68#endif 146#endif
69 147
70#include <math.h> 148#include <math.h>
71#include <stdlib.h> 149#include <stdlib.h>
72#include <fcntl.h> 150#include <fcntl.h>
79#include <sys/types.h> 157#include <sys/types.h>
80#include <time.h> 158#include <time.h>
81 159
82#include <signal.h> 160#include <signal.h>
83 161
162#ifdef EV_H
163# include EV_H
164#else
165# include "ev.h"
166#endif
167
84#ifndef _WIN32 168#ifndef _WIN32
85# include <unistd.h>
86# include <sys/time.h> 169# include <sys/time.h>
87# include <sys/wait.h> 170# include <sys/wait.h>
171# include <unistd.h>
88#else 172#else
173# include <io.h>
89# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
90# include <windows.h> 175# include <windows.h>
91# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
92# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
93# endif 178# endif
94#endif 179#endif
95 180
96/**/ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
97 190
98#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
99# define EV_USE_MONOTONIC 1 193# define EV_USE_MONOTONIC 1
194# else
195# define EV_USE_MONOTONIC 0
196# endif
100#endif 197#endif
101 198
102#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
103# define EV_USE_REALTIME 1 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
201#endif
202
203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
207# define EV_USE_NANOSLEEP 0
208# endif
104#endif 209#endif
105 210
106#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
107# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
108# define EV_SELECT_USE_FD_SET 1
109#endif 213#endif
110 214
111#ifndef EV_USE_POLL 215#ifndef EV_USE_POLL
112# ifdef _WIN32 216# ifdef _WIN32
113# define EV_USE_POLL 0 217# define EV_USE_POLL 0
115# define EV_USE_POLL 1 219# define EV_USE_POLL 1
116# endif 220# endif
117#endif 221#endif
118 222
119#ifndef EV_USE_EPOLL 223#ifndef EV_USE_EPOLL
224# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225# define EV_USE_EPOLL 1
226# else
120# define EV_USE_EPOLL 0 227# define EV_USE_EPOLL 0
228# endif
121#endif 229#endif
122 230
123#ifndef EV_USE_KQUEUE 231#ifndef EV_USE_KQUEUE
124# define EV_USE_KQUEUE 0 232# define EV_USE_KQUEUE 0
125#endif 233#endif
126 234
127#ifndef EV_USE_PORT 235#ifndef EV_USE_PORT
128# define EV_USE_PORT 0 236# define EV_USE_PORT 0
129#endif 237#endif
130 238
131/**/ 239#ifndef EV_USE_INOTIFY
132 240# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
133/* darwin simply cannot be helped */ 241# define EV_USE_INOTIFY 1
134#ifdef __APPLE__ 242# else
135# undef EV_USE_POLL 243# define EV_USE_INOTIFY 0
136# undef EV_USE_KQUEUE
137#endif 244# endif
245#endif
246
247#ifndef EV_PID_HASHSIZE
248# if EV_MINIMAL
249# define EV_PID_HASHSIZE 1
250# else
251# define EV_PID_HASHSIZE 16
252# endif
253#endif
254
255#ifndef EV_INOTIFY_HASHSIZE
256# if EV_MINIMAL
257# define EV_INOTIFY_HASHSIZE 1
258# else
259# define EV_INOTIFY_HASHSIZE 16
260# endif
261#endif
262
263#ifndef EV_USE_EVENTFD
264# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265# define EV_USE_EVENTFD 1
266# else
267# define EV_USE_EVENTFD 0
268# endif
269#endif
270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
138 304
139#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
140# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
141# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
142#endif 308#endif
144#ifndef CLOCK_REALTIME 310#ifndef CLOCK_REALTIME
145# undef EV_USE_REALTIME 311# undef EV_USE_REALTIME
146# define EV_USE_REALTIME 0 312# define EV_USE_REALTIME 0
147#endif 313#endif
148 314
315#if !EV_STAT_ENABLE
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318#endif
319
320#if !EV_USE_NANOSLEEP
321# ifndef _WIN32
322# include <sys/select.h>
323# endif
324#endif
325
326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
335#endif
336
149#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
150# include <winsock.h> 338# include <winsock.h>
151#endif 339#endif
152 340
341#if EV_USE_EVENTFD
342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343# include <stdint.h>
344# ifdef __cplusplus
345extern "C" {
346# endif
347int eventfd (unsigned int initval, int flags);
348# ifdef __cplusplus
349}
350# endif
351#endif
352
153/**/ 353/**/
154 354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
360
361/*
362 * This is used to avoid floating point rounding problems.
363 * It is added to ev_rt_now when scheduling periodics
364 * to ensure progress, time-wise, even when rounding
365 * errors are against us.
366 * This value is good at least till the year 4000.
367 * Better solutions welcome.
368 */
369#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
370
155#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 371#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
156#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 372#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
157#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
158/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 373/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
159 374
160#ifdef EV_H
161# include EV_H
162#else
163# include "ev.h"
164#endif
165
166#if __GNUC__ >= 3 375#if __GNUC__ >= 4
167# define expect(expr,value) __builtin_expect ((expr),(value)) 376# define expect(expr,value) __builtin_expect ((expr),(value))
168# define inline inline 377# define noinline __attribute__ ((noinline))
169#else 378#else
170# define expect(expr,value) (expr) 379# define expect(expr,value) (expr)
171# define inline static 380# define noinline
381# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
382# define inline
383# endif
172#endif 384#endif
173 385
174#define expect_false(expr) expect ((expr) != 0, 0) 386#define expect_false(expr) expect ((expr) != 0, 0)
175#define expect_true(expr) expect ((expr) != 0, 1) 387#define expect_true(expr) expect ((expr) != 0, 1)
388#define inline_size static inline
389
390#if EV_MINIMAL
391# define inline_speed static noinline
392#else
393# define inline_speed static inline
394#endif
176 395
177#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
178#define ABSPRI(w) ((w)->priority - EV_MINPRI) 397#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
179 398
180#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 399#define EMPTY /* required for microsofts broken pseudo-c compiler */
181#define EMPTY2(a,b) /* used to suppress some warnings */ 400#define EMPTY2(a,b) /* used to suppress some warnings */
182 401
183typedef struct ev_watcher *W; 402typedef ev_watcher *W;
184typedef struct ev_watcher_list *WL; 403typedef ev_watcher_list *WL;
185typedef struct ev_watcher_time *WT; 404typedef ev_watcher_time *WT;
186 405
406#define ev_active(w) ((W)(w))->active
407#define ev_at(w) ((WT)(w))->at
408
409#if EV_USE_REALTIME
410/* sig_atomic_t is used to avoid per-thread variables or locking but still */
411/* giving it a reasonably high chance of working on typical architetcures */
412static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
413#endif
414
415#if EV_USE_MONOTONIC
187static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 416static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
417#endif
188 418
189#ifdef _WIN32 419#ifdef _WIN32
190# include "ev_win32.c" 420# include "ev_win32.c"
191#endif 421#endif
192 422
193/*****************************************************************************/ 423/*****************************************************************************/
194 424
195static void (*syserr_cb)(const char *msg); 425static void (*syserr_cb)(const char *msg);
196 426
427void
197void ev_set_syserr_cb (void (*cb)(const char *msg)) 428ev_set_syserr_cb (void (*cb)(const char *msg))
198{ 429{
199 syserr_cb = cb; 430 syserr_cb = cb;
200} 431}
201 432
202static void 433static void noinline
203syserr (const char *msg) 434ev_syserr (const char *msg)
204{ 435{
205 if (!msg) 436 if (!msg)
206 msg = "(libev) system error"; 437 msg = "(libev) system error";
207 438
208 if (syserr_cb) 439 if (syserr_cb)
212 perror (msg); 443 perror (msg);
213 abort (); 444 abort ();
214 } 445 }
215} 446}
216 447
448static void *
449ev_realloc_emul (void *ptr, long size)
450{
451 /* some systems, notably openbsd and darwin, fail to properly
452 * implement realloc (x, 0) (as required by both ansi c-98 and
453 * the single unix specification, so work around them here.
454 */
455
456 if (size)
457 return realloc (ptr, size);
458
459 free (ptr);
460 return 0;
461}
462
217static void *(*alloc)(void *ptr, long size); 463static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
218 464
465void
219void ev_set_allocator (void *(*cb)(void *ptr, long size)) 466ev_set_allocator (void *(*cb)(void *ptr, long size))
220{ 467{
221 alloc = cb; 468 alloc = cb;
222} 469}
223 470
224static void * 471inline_speed void *
225ev_realloc (void *ptr, long size) 472ev_realloc (void *ptr, long size)
226{ 473{
227 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 474 ptr = alloc (ptr, size);
228 475
229 if (!ptr && size) 476 if (!ptr && size)
230 { 477 {
231 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 478 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
232 abort (); 479 abort ();
238#define ev_malloc(size) ev_realloc (0, (size)) 485#define ev_malloc(size) ev_realloc (0, (size))
239#define ev_free(ptr) ev_realloc ((ptr), 0) 486#define ev_free(ptr) ev_realloc ((ptr), 0)
240 487
241/*****************************************************************************/ 488/*****************************************************************************/
242 489
490/* file descriptor info structure */
243typedef struct 491typedef struct
244{ 492{
245 WL head; 493 WL head;
246 unsigned char events; 494 unsigned char events; /* the events watched for */
495 unsigned char reify; /* flag set when this ANFD needs reification */
496 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
247 unsigned char reify; 497 unsigned char unused;
498#if EV_USE_EPOLL
499 unsigned int egen; /* generation counter to counter epoll bugs */
500#endif
248#if EV_SELECT_IS_WINSOCKET 501#if EV_SELECT_IS_WINSOCKET
249 SOCKET handle; 502 SOCKET handle;
250#endif 503#endif
251} ANFD; 504} ANFD;
252 505
506/* stores the pending event set for a given watcher */
253typedef struct 507typedef struct
254{ 508{
255 W w; 509 W w;
256 int events; 510 int events; /* the pending event set for the given watcher */
257} ANPENDING; 511} ANPENDING;
512
513#if EV_USE_INOTIFY
514/* hash table entry per inotify-id */
515typedef struct
516{
517 WL head;
518} ANFS;
519#endif
520
521/* Heap Entry */
522#if EV_HEAP_CACHE_AT
523 /* a heap element */
524 typedef struct {
525 ev_tstamp at;
526 WT w;
527 } ANHE;
528
529 #define ANHE_w(he) (he).w /* access watcher, read-write */
530 #define ANHE_at(he) (he).at /* access cached at, read-only */
531 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
532#else
533 /* a heap element */
534 typedef WT ANHE;
535
536 #define ANHE_w(he) (he)
537 #define ANHE_at(he) (he)->at
538 #define ANHE_at_cache(he)
539#endif
258 540
259#if EV_MULTIPLICITY 541#if EV_MULTIPLICITY
260 542
261 struct ev_loop 543 struct ev_loop
262 { 544 {
286 568
287ev_tstamp 569ev_tstamp
288ev_time (void) 570ev_time (void)
289{ 571{
290#if EV_USE_REALTIME 572#if EV_USE_REALTIME
573 if (expect_true (have_realtime))
574 {
291 struct timespec ts; 575 struct timespec ts;
292 clock_gettime (CLOCK_REALTIME, &ts); 576 clock_gettime (CLOCK_REALTIME, &ts);
293 return ts.tv_sec + ts.tv_nsec * 1e-9; 577 return ts.tv_sec + ts.tv_nsec * 1e-9;
294#else 578 }
579#endif
580
295 struct timeval tv; 581 struct timeval tv;
296 gettimeofday (&tv, 0); 582 gettimeofday (&tv, 0);
297 return tv.tv_sec + tv.tv_usec * 1e-6; 583 return tv.tv_sec + tv.tv_usec * 1e-6;
298#endif
299} 584}
300 585
301inline ev_tstamp 586inline_size ev_tstamp
302get_clock (void) 587get_clock (void)
303{ 588{
304#if EV_USE_MONOTONIC 589#if EV_USE_MONOTONIC
305 if (expect_true (have_monotonic)) 590 if (expect_true (have_monotonic))
306 { 591 {
319{ 604{
320 return ev_rt_now; 605 return ev_rt_now;
321} 606}
322#endif 607#endif
323 608
324#define array_roundsize(type,n) (((n) | 4) & ~3) 609void
610ev_sleep (ev_tstamp delay)
611{
612 if (delay > 0.)
613 {
614#if EV_USE_NANOSLEEP
615 struct timespec ts;
616
617 ts.tv_sec = (time_t)delay;
618 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
619
620 nanosleep (&ts, 0);
621#elif defined(_WIN32)
622 Sleep ((unsigned long)(delay * 1e3));
623#else
624 struct timeval tv;
625
626 tv.tv_sec = (time_t)delay;
627 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
628
629 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
630 /* somehting nto guaranteed by newer posix versions, but guaranteed */
631 /* by older ones */
632 select (0, 0, 0, 0, &tv);
633#endif
634 }
635}
636
637/*****************************************************************************/
638
639#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
640
641/* find a suitable new size for the given array, */
642/* hopefully by rounding to a ncie-to-malloc size */
643inline_size int
644array_nextsize (int elem, int cur, int cnt)
645{
646 int ncur = cur + 1;
647
648 do
649 ncur <<= 1;
650 while (cnt > ncur);
651
652 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
653 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
654 {
655 ncur *= elem;
656 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
657 ncur = ncur - sizeof (void *) * 4;
658 ncur /= elem;
659 }
660
661 return ncur;
662}
663
664static noinline void *
665array_realloc (int elem, void *base, int *cur, int cnt)
666{
667 *cur = array_nextsize (elem, *cur, cnt);
668 return ev_realloc (base, elem * *cur);
669}
670
671#define array_init_zero(base,count) \
672 memset ((void *)(base), 0, sizeof (*(base)) * (count))
325 673
326#define array_needsize(type,base,cur,cnt,init) \ 674#define array_needsize(type,base,cur,cnt,init) \
327 if (expect_false ((cnt) > cur)) \ 675 if (expect_false ((cnt) > (cur))) \
328 { \ 676 { \
329 int newcnt = cur; \ 677 int ocur_ = (cur); \
330 do \ 678 (base) = (type *)array_realloc \
331 { \ 679 (sizeof (type), (base), &(cur), (cnt)); \
332 newcnt = array_roundsize (type, newcnt << 1); \ 680 init ((base) + (ocur_), (cur) - ocur_); \
333 } \
334 while ((cnt) > newcnt); \
335 \
336 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
337 init (base + cur, newcnt - cur); \
338 cur = newcnt; \
339 } 681 }
340 682
683#if 0
341#define array_slim(type,stem) \ 684#define array_slim(type,stem) \
342 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 685 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
343 { \ 686 { \
344 stem ## max = array_roundsize (stem ## cnt >> 1); \ 687 stem ## max = array_roundsize (stem ## cnt >> 1); \
345 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 688 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
346 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 689 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
347 } 690 }
691#endif
348 692
349#define array_free(stem, idx) \ 693#define array_free(stem, idx) \
350 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 694 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
351 695
352/*****************************************************************************/ 696/*****************************************************************************/
353 697
354static void 698/* dummy callback for pending events */
355anfds_init (ANFD *base, int count) 699static void noinline
700pendingcb (EV_P_ ev_prepare *w, int revents)
356{ 701{
357 while (count--)
358 {
359 base->head = 0;
360 base->events = EV_NONE;
361 base->reify = 0;
362
363 ++base;
364 }
365} 702}
366 703
367void 704void noinline
368ev_feed_event (EV_P_ void *w, int revents) 705ev_feed_event (EV_P_ void *w, int revents)
369{ 706{
370 W w_ = (W)w; 707 W w_ = (W)w;
708 int pri = ABSPRI (w_);
371 709
372 if (w_->pending) 710 if (expect_false (w_->pending))
711 pendings [pri][w_->pending - 1].events |= revents;
712 else
373 { 713 {
714 w_->pending = ++pendingcnt [pri];
715 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
716 pendings [pri][w_->pending - 1].w = w_;
374 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 717 pendings [pri][w_->pending - 1].events = revents;
375 return;
376 } 718 }
377
378 w_->pending = ++pendingcnt [ABSPRI (w_)];
379 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
380 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
381 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
382} 719}
383 720
384static void 721inline_speed void
722feed_reverse (EV_P_ W w)
723{
724 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
725 rfeeds [rfeedcnt++] = w;
726}
727
728inline_size void
729feed_reverse_done (EV_P_ int revents)
730{
731 do
732 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
733 while (rfeedcnt);
734}
735
736inline_speed void
385queue_events (EV_P_ W *events, int eventcnt, int type) 737queue_events (EV_P_ W *events, int eventcnt, int type)
386{ 738{
387 int i; 739 int i;
388 740
389 for (i = 0; i < eventcnt; ++i) 741 for (i = 0; i < eventcnt; ++i)
390 ev_feed_event (EV_A_ events [i], type); 742 ev_feed_event (EV_A_ events [i], type);
391} 743}
392 744
745/*****************************************************************************/
746
393inline void 747inline_speed void
394fd_event (EV_P_ int fd, int revents) 748fd_event (EV_P_ int fd, int revents)
395{ 749{
396 ANFD *anfd = anfds + fd; 750 ANFD *anfd = anfds + fd;
397 struct ev_io *w; 751 ev_io *w;
398 752
399 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 753 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
400 { 754 {
401 int ev = w->events & revents; 755 int ev = w->events & revents;
402 756
403 if (ev) 757 if (ev)
404 ev_feed_event (EV_A_ (W)w, ev); 758 ev_feed_event (EV_A_ (W)w, ev);
406} 760}
407 761
408void 762void
409ev_feed_fd_event (EV_P_ int fd, int revents) 763ev_feed_fd_event (EV_P_ int fd, int revents)
410{ 764{
765 if (fd >= 0 && fd < anfdmax)
411 fd_event (EV_A_ fd, revents); 766 fd_event (EV_A_ fd, revents);
412} 767}
413 768
414/*****************************************************************************/ 769/* make sure the external fd watch events are in-sync */
415 770/* with the kernel/libev internal state */
416static void 771inline_size void
417fd_reify (EV_P) 772fd_reify (EV_P)
418{ 773{
419 int i; 774 int i;
420 775
421 for (i = 0; i < fdchangecnt; ++i) 776 for (i = 0; i < fdchangecnt; ++i)
422 { 777 {
423 int fd = fdchanges [i]; 778 int fd = fdchanges [i];
424 ANFD *anfd = anfds + fd; 779 ANFD *anfd = anfds + fd;
425 struct ev_io *w; 780 ev_io *w;
426 781
427 int events = 0; 782 unsigned char events = 0;
428 783
429 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 784 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
430 events |= w->events; 785 events |= (unsigned char)w->events;
431 786
432#if EV_SELECT_IS_WINSOCKET 787#if EV_SELECT_IS_WINSOCKET
433 if (events) 788 if (events)
434 { 789 {
435 unsigned long argp; 790 unsigned long arg;
791 #ifdef EV_FD_TO_WIN32_HANDLE
792 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
793 #else
436 anfd->handle = _get_osfhandle (fd); 794 anfd->handle = _get_osfhandle (fd);
795 #endif
437 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 796 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
438 } 797 }
439#endif 798#endif
440 799
800 {
801 unsigned char o_events = anfd->events;
802 unsigned char o_reify = anfd->reify;
803
441 anfd->reify = 0; 804 anfd->reify = 0;
442
443 method_modify (EV_A_ fd, anfd->events, events);
444 anfd->events = events; 805 anfd->events = events;
806
807 if (o_events != events || o_reify & EV__IOFDSET)
808 backend_modify (EV_A_ fd, o_events, events);
809 }
445 } 810 }
446 811
447 fdchangecnt = 0; 812 fdchangecnt = 0;
448} 813}
449 814
450static void 815/* something about the given fd changed */
816inline_size void
451fd_change (EV_P_ int fd) 817fd_change (EV_P_ int fd, int flags)
452{ 818{
453 if (anfds [fd].reify) 819 unsigned char reify = anfds [fd].reify;
454 return;
455
456 anfds [fd].reify = 1; 820 anfds [fd].reify |= flags;
457 821
822 if (expect_true (!reify))
823 {
458 ++fdchangecnt; 824 ++fdchangecnt;
459 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 825 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
460 fdchanges [fdchangecnt - 1] = fd; 826 fdchanges [fdchangecnt - 1] = fd;
827 }
461} 828}
462 829
463static void 830/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
831inline_speed void
464fd_kill (EV_P_ int fd) 832fd_kill (EV_P_ int fd)
465{ 833{
466 struct ev_io *w; 834 ev_io *w;
467 835
468 while ((w = (struct ev_io *)anfds [fd].head)) 836 while ((w = (ev_io *)anfds [fd].head))
469 { 837 {
470 ev_io_stop (EV_A_ w); 838 ev_io_stop (EV_A_ w);
471 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 839 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
472 } 840 }
473} 841}
474 842
475static int 843/* check whether the given fd is atcually valid, for error recovery */
844inline_size int
476fd_valid (int fd) 845fd_valid (int fd)
477{ 846{
478#ifdef _WIN32 847#ifdef _WIN32
479 return _get_osfhandle (fd) != -1; 848 return _get_osfhandle (fd) != -1;
480#else 849#else
481 return fcntl (fd, F_GETFD) != -1; 850 return fcntl (fd, F_GETFD) != -1;
482#endif 851#endif
483} 852}
484 853
485/* called on EBADF to verify fds */ 854/* called on EBADF to verify fds */
486static void 855static void noinline
487fd_ebadf (EV_P) 856fd_ebadf (EV_P)
488{ 857{
489 int fd; 858 int fd;
490 859
491 for (fd = 0; fd < anfdmax; ++fd) 860 for (fd = 0; fd < anfdmax; ++fd)
492 if (anfds [fd].events) 861 if (anfds [fd].events)
493 if (!fd_valid (fd) == -1 && errno == EBADF) 862 if (!fd_valid (fd) && errno == EBADF)
494 fd_kill (EV_A_ fd); 863 fd_kill (EV_A_ fd);
495} 864}
496 865
497/* called on ENOMEM in select/poll to kill some fds and retry */ 866/* called on ENOMEM in select/poll to kill some fds and retry */
498static void 867static void noinline
499fd_enomem (EV_P) 868fd_enomem (EV_P)
500{ 869{
501 int fd; 870 int fd;
502 871
503 for (fd = anfdmax; fd--; ) 872 for (fd = anfdmax; fd--; )
506 fd_kill (EV_A_ fd); 875 fd_kill (EV_A_ fd);
507 return; 876 return;
508 } 877 }
509} 878}
510 879
511/* usually called after fork if method needs to re-arm all fds from scratch */ 880/* usually called after fork if backend needs to re-arm all fds from scratch */
512static void 881static void noinline
513fd_rearm_all (EV_P) 882fd_rearm_all (EV_P)
514{ 883{
515 int fd; 884 int fd;
516 885
517 /* this should be highly optimised to not do anything but set a flag */
518 for (fd = 0; fd < anfdmax; ++fd) 886 for (fd = 0; fd < anfdmax; ++fd)
519 if (anfds [fd].events) 887 if (anfds [fd].events)
520 { 888 {
521 anfds [fd].events = 0; 889 anfds [fd].events = 0;
890 anfds [fd].emask = 0;
522 fd_change (EV_A_ fd); 891 fd_change (EV_A_ fd, EV__IOFDSET | 1);
523 } 892 }
524} 893}
525 894
526/*****************************************************************************/ 895/*****************************************************************************/
527 896
528static void 897/*
529upheap (WT *heap, int k) 898 * the heap functions want a real array index. array index 0 uis guaranteed to not
530{ 899 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
531 WT w = heap [k]; 900 * the branching factor of the d-tree.
901 */
532 902
533 while (k && heap [k >> 1]->at > w->at) 903/*
534 { 904 * at the moment we allow libev the luxury of two heaps,
535 heap [k] = heap [k >> 1]; 905 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
536 ((W)heap [k])->active = k + 1; 906 * which is more cache-efficient.
537 k >>= 1; 907 * the difference is about 5% with 50000+ watchers.
538 } 908 */
909#if EV_USE_4HEAP
539 910
540 heap [k] = w; 911#define DHEAP 4
541 ((W)heap [k])->active = k + 1; 912#define HEAP0 (DHEAP - 1) /* index of first element in heap */
913#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
914#define UPHEAP_DONE(p,k) ((p) == (k))
542 915
543} 916/* away from the root */
544 917inline_speed void
545static void
546downheap (WT *heap, int N, int k) 918downheap (ANHE *heap, int N, int k)
547{ 919{
548 WT w = heap [k]; 920 ANHE he = heap [k];
921 ANHE *E = heap + N + HEAP0;
549 922
550 while (k < (N >> 1)) 923 for (;;)
551 { 924 {
552 int j = k << 1; 925 ev_tstamp minat;
926 ANHE *minpos;
927 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
553 928
554 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 929 /* find minimum child */
930 if (expect_true (pos + DHEAP - 1 < E))
555 ++j; 931 {
556 932 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
557 if (w->at <= heap [j]->at) 933 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
934 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
935 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
936 }
937 else if (pos < E)
938 {
939 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
940 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
941 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
942 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
943 }
944 else
558 break; 945 break;
559 946
947 if (ANHE_at (he) <= minat)
948 break;
949
950 heap [k] = *minpos;
951 ev_active (ANHE_w (*minpos)) = k;
952
953 k = minpos - heap;
954 }
955
956 heap [k] = he;
957 ev_active (ANHE_w (he)) = k;
958}
959
960#else /* 4HEAP */
961
962#define HEAP0 1
963#define HPARENT(k) ((k) >> 1)
964#define UPHEAP_DONE(p,k) (!(p))
965
966/* away from the root */
967inline_speed void
968downheap (ANHE *heap, int N, int k)
969{
970 ANHE he = heap [k];
971
972 for (;;)
973 {
974 int c = k << 1;
975
976 if (c > N + HEAP0 - 1)
977 break;
978
979 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
980 ? 1 : 0;
981
982 if (ANHE_at (he) <= ANHE_at (heap [c]))
983 break;
984
560 heap [k] = heap [j]; 985 heap [k] = heap [c];
561 ((W)heap [k])->active = k + 1; 986 ev_active (ANHE_w (heap [k])) = k;
987
562 k = j; 988 k = c;
563 } 989 }
564 990
565 heap [k] = w; 991 heap [k] = he;
566 ((W)heap [k])->active = k + 1; 992 ev_active (ANHE_w (he)) = k;
567} 993}
994#endif
568 995
996/* towards the root */
997inline_speed void
998upheap (ANHE *heap, int k)
999{
1000 ANHE he = heap [k];
1001
1002 for (;;)
1003 {
1004 int p = HPARENT (k);
1005
1006 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1007 break;
1008
1009 heap [k] = heap [p];
1010 ev_active (ANHE_w (heap [k])) = k;
1011 k = p;
1012 }
1013
1014 heap [k] = he;
1015 ev_active (ANHE_w (he)) = k;
1016}
1017
1018/* move an element suitably so it is in a correct place */
569inline void 1019inline_size void
570adjustheap (WT *heap, int N, int k) 1020adjustheap (ANHE *heap, int N, int k)
571{ 1021{
1022 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
572 upheap (heap, k); 1023 upheap (heap, k);
1024 else
573 downheap (heap, N, k); 1025 downheap (heap, N, k);
1026}
1027
1028/* rebuild the heap: this function is used only once and executed rarely */
1029inline_size void
1030reheap (ANHE *heap, int N)
1031{
1032 int i;
1033
1034 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1035 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1036 for (i = 0; i < N; ++i)
1037 upheap (heap, i + HEAP0);
574} 1038}
575 1039
576/*****************************************************************************/ 1040/*****************************************************************************/
577 1041
1042/* associate signal watchers to a signal signal */
578typedef struct 1043typedef struct
579{ 1044{
580 WL head; 1045 WL head;
581 sig_atomic_t volatile gotsig; 1046 EV_ATOMIC_T gotsig;
582} ANSIG; 1047} ANSIG;
583 1048
584static ANSIG *signals; 1049static ANSIG *signals;
585static int signalmax; 1050static int signalmax;
586 1051
587static int sigpipe [2]; 1052static EV_ATOMIC_T gotsig;
588static sig_atomic_t volatile gotsig;
589static struct ev_io sigev;
590 1053
591static void 1054/*****************************************************************************/
592signals_init (ANSIG *base, int count)
593{
594 while (count--)
595 {
596 base->head = 0;
597 base->gotsig = 0;
598 1055
599 ++base; 1056/* used to prepare libev internal fd's */
600 } 1057/* this is not fork-safe */
601}
602
603static void
604sighandler (int signum)
605{
606#if _WIN32
607 signal (signum, sighandler);
608#endif
609
610 signals [signum - 1].gotsig = 1;
611
612 if (!gotsig)
613 {
614 int old_errno = errno;
615 gotsig = 1;
616 write (sigpipe [1], &signum, 1);
617 errno = old_errno;
618 }
619}
620
621void
622ev_feed_signal_event (EV_P_ int signum)
623{
624 WL w;
625
626#if EV_MULTIPLICITY
627 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
628#endif
629
630 --signum;
631
632 if (signum < 0 || signum >= signalmax)
633 return;
634
635 signals [signum].gotsig = 0;
636
637 for (w = signals [signum].head; w; w = w->next)
638 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
639}
640
641static void
642sigcb (EV_P_ struct ev_io *iow, int revents)
643{
644 int signum;
645
646 read (sigpipe [0], &revents, 1);
647 gotsig = 0;
648
649 for (signum = signalmax; signum--; )
650 if (signals [signum].gotsig)
651 ev_feed_signal_event (EV_A_ signum + 1);
652}
653
654inline void 1058inline_speed void
655fd_intern (int fd) 1059fd_intern (int fd)
656{ 1060{
657#ifdef _WIN32 1061#ifdef _WIN32
658 int arg = 1; 1062 unsigned long arg = 1;
659 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1063 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
660#else 1064#else
661 fcntl (fd, F_SETFD, FD_CLOEXEC); 1065 fcntl (fd, F_SETFD, FD_CLOEXEC);
662 fcntl (fd, F_SETFL, O_NONBLOCK); 1066 fcntl (fd, F_SETFL, O_NONBLOCK);
663#endif 1067#endif
664} 1068}
665 1069
1070static void noinline
1071evpipe_init (EV_P)
1072{
1073 if (!ev_is_active (&pipe_w))
1074 {
1075#if EV_USE_EVENTFD
1076 if ((evfd = eventfd (0, 0)) >= 0)
1077 {
1078 evpipe [0] = -1;
1079 fd_intern (evfd);
1080 ev_io_set (&pipe_w, evfd, EV_READ);
1081 }
1082 else
1083#endif
1084 {
1085 while (pipe (evpipe))
1086 ev_syserr ("(libev) error creating signal/async pipe");
1087
1088 fd_intern (evpipe [0]);
1089 fd_intern (evpipe [1]);
1090 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1091 }
1092
1093 ev_io_start (EV_A_ &pipe_w);
1094 ev_unref (EV_A); /* watcher should not keep loop alive */
1095 }
1096}
1097
1098inline_size void
1099evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1100{
1101 if (!*flag)
1102 {
1103 int old_errno = errno; /* save errno because write might clobber it */
1104
1105 *flag = 1;
1106
1107#if EV_USE_EVENTFD
1108 if (evfd >= 0)
1109 {
1110 uint64_t counter = 1;
1111 write (evfd, &counter, sizeof (uint64_t));
1112 }
1113 else
1114#endif
1115 write (evpipe [1], &old_errno, 1);
1116
1117 errno = old_errno;
1118 }
1119}
1120
1121/* called whenever the libev signal pipe */
1122/* got some events (signal, async) */
666static void 1123static void
667siginit (EV_P) 1124pipecb (EV_P_ ev_io *iow, int revents)
668{ 1125{
669 fd_intern (sigpipe [0]); 1126#if EV_USE_EVENTFD
670 fd_intern (sigpipe [1]); 1127 if (evfd >= 0)
1128 {
1129 uint64_t counter;
1130 read (evfd, &counter, sizeof (uint64_t));
1131 }
1132 else
1133#endif
1134 {
1135 char dummy;
1136 read (evpipe [0], &dummy, 1);
1137 }
671 1138
672 ev_io_set (&sigev, sigpipe [0], EV_READ); 1139 if (gotsig && ev_is_default_loop (EV_A))
673 ev_io_start (EV_A_ &sigev); 1140 {
674 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1141 int signum;
1142 gotsig = 0;
1143
1144 for (signum = signalmax; signum--; )
1145 if (signals [signum].gotsig)
1146 ev_feed_signal_event (EV_A_ signum + 1);
1147 }
1148
1149#if EV_ASYNC_ENABLE
1150 if (gotasync)
1151 {
1152 int i;
1153 gotasync = 0;
1154
1155 for (i = asynccnt; i--; )
1156 if (asyncs [i]->sent)
1157 {
1158 asyncs [i]->sent = 0;
1159 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1160 }
1161 }
1162#endif
675} 1163}
676 1164
677/*****************************************************************************/ 1165/*****************************************************************************/
678 1166
679static struct ev_child *childs [PID_HASHSIZE]; 1167static void
1168ev_sighandler (int signum)
1169{
1170#if EV_MULTIPLICITY
1171 struct ev_loop *loop = &default_loop_struct;
1172#endif
1173
1174#if _WIN32
1175 signal (signum, ev_sighandler);
1176#endif
1177
1178 signals [signum - 1].gotsig = 1;
1179 evpipe_write (EV_A_ &gotsig);
1180}
1181
1182void noinline
1183ev_feed_signal_event (EV_P_ int signum)
1184{
1185 WL w;
1186
1187#if EV_MULTIPLICITY
1188 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1189#endif
1190
1191 --signum;
1192
1193 if (signum < 0 || signum >= signalmax)
1194 return;
1195
1196 signals [signum].gotsig = 0;
1197
1198 for (w = signals [signum].head; w; w = w->next)
1199 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1200}
1201
1202/*****************************************************************************/
1203
1204static WL childs [EV_PID_HASHSIZE];
680 1205
681#ifndef _WIN32 1206#ifndef _WIN32
682 1207
683static struct ev_signal childev; 1208static ev_signal childev;
1209
1210#ifndef WIFCONTINUED
1211# define WIFCONTINUED(status) 0
1212#endif
1213
1214/* handle a single child status event */
1215inline_speed void
1216child_reap (EV_P_ int chain, int pid, int status)
1217{
1218 ev_child *w;
1219 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1220
1221 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1222 {
1223 if ((w->pid == pid || !w->pid)
1224 && (!traced || (w->flags & 1)))
1225 {
1226 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1227 w->rpid = pid;
1228 w->rstatus = status;
1229 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1230 }
1231 }
1232}
684 1233
685#ifndef WCONTINUED 1234#ifndef WCONTINUED
686# define WCONTINUED 0 1235# define WCONTINUED 0
687#endif 1236#endif
688 1237
1238/* called on sigchld etc., calls waitpid */
689static void 1239static void
690child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
691{
692 struct ev_child *w;
693
694 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
695 if (w->pid == pid || !w->pid)
696 {
697 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
698 w->rpid = pid;
699 w->rstatus = status;
700 ev_feed_event (EV_A_ (W)w, EV_CHILD);
701 }
702}
703
704static void
705childcb (EV_P_ struct ev_signal *sw, int revents) 1240childcb (EV_P_ ev_signal *sw, int revents)
706{ 1241{
707 int pid, status; 1242 int pid, status;
708 1243
1244 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
709 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1245 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
710 { 1246 if (!WCONTINUED
1247 || errno != EINVAL
1248 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1249 return;
1250
711 /* make sure we are called again until all childs have been reaped */ 1251 /* make sure we are called again until all children have been reaped */
1252 /* we need to do it this way so that the callback gets called before we continue */
712 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1253 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
713 1254
714 child_reap (EV_A_ sw, pid, pid, status); 1255 child_reap (EV_A_ pid, pid, status);
1256 if (EV_PID_HASHSIZE > 1)
715 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1257 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
716 }
717} 1258}
718 1259
719#endif 1260#endif
720 1261
721/*****************************************************************************/ 1262/*****************************************************************************/
747{ 1288{
748 return EV_VERSION_MINOR; 1289 return EV_VERSION_MINOR;
749} 1290}
750 1291
751/* return true if we are running with elevated privileges and should ignore env variables */ 1292/* return true if we are running with elevated privileges and should ignore env variables */
752static int 1293int inline_size
753enable_secure (void) 1294enable_secure (void)
754{ 1295{
755#ifdef _WIN32 1296#ifdef _WIN32
756 return 0; 1297 return 0;
757#else 1298#else
759 || getgid () != getegid (); 1300 || getgid () != getegid ();
760#endif 1301#endif
761} 1302}
762 1303
763unsigned int 1304unsigned int
764ev_method (EV_P) 1305ev_supported_backends (void)
765{ 1306{
766 return method; 1307 unsigned int flags = 0;
767}
768 1308
769static void 1309 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1310 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1311 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1312 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1313 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1314
1315 return flags;
1316}
1317
1318unsigned int
1319ev_recommended_backends (void)
1320{
1321 unsigned int flags = ev_supported_backends ();
1322
1323#ifndef __NetBSD__
1324 /* kqueue is borked on everything but netbsd apparently */
1325 /* it usually doesn't work correctly on anything but sockets and pipes */
1326 flags &= ~EVBACKEND_KQUEUE;
1327#endif
1328#ifdef __APPLE__
1329 /* only select works correctly on that "unix-certified" platform */
1330 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1331 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1332#endif
1333
1334 return flags;
1335}
1336
1337unsigned int
1338ev_embeddable_backends (void)
1339{
1340 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1341
1342 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1343 /* please fix it and tell me how to detect the fix */
1344 flags &= ~EVBACKEND_EPOLL;
1345
1346 return flags;
1347}
1348
1349unsigned int
1350ev_backend (EV_P)
1351{
1352 return backend;
1353}
1354
1355unsigned int
1356ev_loop_count (EV_P)
1357{
1358 return loop_count;
1359}
1360
1361void
1362ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1363{
1364 io_blocktime = interval;
1365}
1366
1367void
1368ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1369{
1370 timeout_blocktime = interval;
1371}
1372
1373/* initialise a loop structure, must be zero-initialised */
1374static void noinline
770loop_init (EV_P_ unsigned int flags) 1375loop_init (EV_P_ unsigned int flags)
771{ 1376{
772 if (!method) 1377 if (!backend)
773 { 1378 {
1379#if EV_USE_REALTIME
1380 if (!have_realtime)
1381 {
1382 struct timespec ts;
1383
1384 if (!clock_gettime (CLOCK_REALTIME, &ts))
1385 have_realtime = 1;
1386 }
1387#endif
1388
774#if EV_USE_MONOTONIC 1389#if EV_USE_MONOTONIC
1390 if (!have_monotonic)
1391 {
1392 struct timespec ts;
1393
1394 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1395 have_monotonic = 1;
1396 }
1397#endif
1398
1399 ev_rt_now = ev_time ();
1400 mn_now = get_clock ();
1401 now_floor = mn_now;
1402 rtmn_diff = ev_rt_now - mn_now;
1403
1404 io_blocktime = 0.;
1405 timeout_blocktime = 0.;
1406 backend = 0;
1407 backend_fd = -1;
1408 gotasync = 0;
1409#if EV_USE_INOTIFY
1410 fs_fd = -2;
1411#endif
1412
1413 /* pid check not overridable via env */
1414#ifndef _WIN32
1415 if (flags & EVFLAG_FORKCHECK)
1416 curpid = getpid ();
1417#endif
1418
1419 if (!(flags & EVFLAG_NOENV)
1420 && !enable_secure ()
1421 && getenv ("LIBEV_FLAGS"))
1422 flags = atoi (getenv ("LIBEV_FLAGS"));
1423
1424 if (!(flags & 0x0000ffffU))
1425 flags |= ev_recommended_backends ();
1426
1427#if EV_USE_PORT
1428 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1429#endif
1430#if EV_USE_KQUEUE
1431 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1432#endif
1433#if EV_USE_EPOLL
1434 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1435#endif
1436#if EV_USE_POLL
1437 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1438#endif
1439#if EV_USE_SELECT
1440 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1441#endif
1442
1443 ev_prepare_init (&pending_w, pendingcb);
1444
1445 ev_init (&pipe_w, pipecb);
1446 ev_set_priority (&pipe_w, EV_MAXPRI);
1447 }
1448}
1449
1450/* free up a loop structure */
1451static void noinline
1452loop_destroy (EV_P)
1453{
1454 int i;
1455
1456 if (ev_is_active (&pipe_w))
1457 {
1458 ev_ref (EV_A); /* signal watcher */
1459 ev_io_stop (EV_A_ &pipe_w);
1460
1461#if EV_USE_EVENTFD
1462 if (evfd >= 0)
1463 close (evfd);
1464#endif
1465
1466 if (evpipe [0] >= 0)
1467 {
1468 close (evpipe [0]);
1469 close (evpipe [1]);
1470 }
1471 }
1472
1473#if EV_USE_INOTIFY
1474 if (fs_fd >= 0)
1475 close (fs_fd);
1476#endif
1477
1478 if (backend_fd >= 0)
1479 close (backend_fd);
1480
1481#if EV_USE_PORT
1482 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1483#endif
1484#if EV_USE_KQUEUE
1485 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1486#endif
1487#if EV_USE_EPOLL
1488 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1489#endif
1490#if EV_USE_POLL
1491 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1492#endif
1493#if EV_USE_SELECT
1494 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1495#endif
1496
1497 for (i = NUMPRI; i--; )
1498 {
1499 array_free (pending, [i]);
1500#if EV_IDLE_ENABLE
1501 array_free (idle, [i]);
1502#endif
1503 }
1504
1505 ev_free (anfds); anfdmax = 0;
1506
1507 /* have to use the microsoft-never-gets-it-right macro */
1508 array_free (rfeed, EMPTY);
1509 array_free (fdchange, EMPTY);
1510 array_free (timer, EMPTY);
1511#if EV_PERIODIC_ENABLE
1512 array_free (periodic, EMPTY);
1513#endif
1514#if EV_FORK_ENABLE
1515 array_free (fork, EMPTY);
1516#endif
1517 array_free (prepare, EMPTY);
1518 array_free (check, EMPTY);
1519#if EV_ASYNC_ENABLE
1520 array_free (async, EMPTY);
1521#endif
1522
1523 backend = 0;
1524}
1525
1526#if EV_USE_INOTIFY
1527inline_size void infy_fork (EV_P);
1528#endif
1529
1530inline_size void
1531loop_fork (EV_P)
1532{
1533#if EV_USE_PORT
1534 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1535#endif
1536#if EV_USE_KQUEUE
1537 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1538#endif
1539#if EV_USE_EPOLL
1540 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1541#endif
1542#if EV_USE_INOTIFY
1543 infy_fork (EV_A);
1544#endif
1545
1546 if (ev_is_active (&pipe_w))
1547 {
1548 /* this "locks" the handlers against writing to the pipe */
1549 /* while we modify the fd vars */
1550 gotsig = 1;
1551#if EV_ASYNC_ENABLE
1552 gotasync = 1;
1553#endif
1554
1555 ev_ref (EV_A);
1556 ev_io_stop (EV_A_ &pipe_w);
1557
1558#if EV_USE_EVENTFD
1559 if (evfd >= 0)
1560 close (evfd);
1561#endif
1562
1563 if (evpipe [0] >= 0)
1564 {
1565 close (evpipe [0]);
1566 close (evpipe [1]);
1567 }
1568
1569 evpipe_init (EV_A);
1570 /* now iterate over everything, in case we missed something */
1571 pipecb (EV_A_ &pipe_w, EV_READ);
1572 }
1573
1574 postfork = 0;
1575}
1576
1577#if EV_MULTIPLICITY
1578
1579struct ev_loop *
1580ev_loop_new (unsigned int flags)
1581{
1582 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1583
1584 memset (loop, 0, sizeof (struct ev_loop));
1585
1586 loop_init (EV_A_ flags);
1587
1588 if (ev_backend (EV_A))
1589 return loop;
1590
1591 return 0;
1592}
1593
1594void
1595ev_loop_destroy (EV_P)
1596{
1597 loop_destroy (EV_A);
1598 ev_free (loop);
1599}
1600
1601void
1602ev_loop_fork (EV_P)
1603{
1604 postfork = 1; /* must be in line with ev_default_fork */
1605}
1606
1607#if EV_VERIFY
1608static void noinline
1609verify_watcher (EV_P_ W w)
1610{
1611 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1612
1613 if (w->pending)
1614 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1615}
1616
1617static void noinline
1618verify_heap (EV_P_ ANHE *heap, int N)
1619{
1620 int i;
1621
1622 for (i = HEAP0; i < N + HEAP0; ++i)
1623 {
1624 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1625 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1626 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1627
1628 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1629 }
1630}
1631
1632static void noinline
1633array_verify (EV_P_ W *ws, int cnt)
1634{
1635 while (cnt--)
1636 {
1637 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1638 verify_watcher (EV_A_ ws [cnt]);
1639 }
1640}
1641#endif
1642
1643void
1644ev_loop_verify (EV_P)
1645{
1646#if EV_VERIFY
1647 int i;
1648 WL w;
1649
1650 assert (activecnt >= -1);
1651
1652 assert (fdchangemax >= fdchangecnt);
1653 for (i = 0; i < fdchangecnt; ++i)
1654 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1655
1656 assert (anfdmax >= 0);
1657 for (i = 0; i < anfdmax; ++i)
1658 for (w = anfds [i].head; w; w = w->next)
775 { 1659 {
776 struct timespec ts; 1660 verify_watcher (EV_A_ (W)w);
777 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1661 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
778 have_monotonic = 1; 1662 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
779 } 1663 }
780#endif
781 1664
782 ev_rt_now = ev_time (); 1665 assert (timermax >= timercnt);
783 mn_now = get_clock (); 1666 verify_heap (EV_A_ timers, timercnt);
784 now_floor = mn_now;
785 rtmn_diff = ev_rt_now - mn_now;
786 1667
787 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1668#if EV_PERIODIC_ENABLE
788 flags = atoi (getenv ("LIBEV_FLAGS")); 1669 assert (periodicmax >= periodiccnt);
789 1670 verify_heap (EV_A_ periodics, periodiccnt);
790 if (!(flags & 0x0000ffff))
791 flags |= 0x0000ffff;
792
793 method = 0;
794#if EV_USE_PORT
795 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags);
796#endif
797#if EV_USE_KQUEUE
798 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
799#endif
800#if EV_USE_EPOLL
801 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
802#endif
803#if EV_USE_POLL
804 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
805#endif
806#if EV_USE_SELECT
807 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
808#endif
809
810 ev_init (&sigev, sigcb);
811 ev_set_priority (&sigev, EV_MAXPRI);
812 }
813}
814
815void
816loop_destroy (EV_P)
817{
818 int i;
819
820#if EV_USE_PORT
821 if (method == EVMETHOD_PORT ) port_destroy (EV_A);
822#endif
823#if EV_USE_KQUEUE
824 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
825#endif
826#if EV_USE_EPOLL
827 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
828#endif
829#if EV_USE_POLL
830 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
831#endif
832#if EV_USE_SELECT
833 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
834#endif 1671#endif
835 1672
836 for (i = NUMPRI; i--; ) 1673 for (i = NUMPRI; i--; )
837 array_free (pending, [i]); 1674 {
1675 assert (pendingmax [i] >= pendingcnt [i]);
1676#if EV_IDLE_ENABLE
1677 assert (idleall >= 0);
1678 assert (idlemax [i] >= idlecnt [i]);
1679 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1680#endif
1681 }
838 1682
839 /* have to use the microsoft-never-gets-it-right macro */ 1683#if EV_FORK_ENABLE
840 array_free (fdchange, EMPTY0); 1684 assert (forkmax >= forkcnt);
841 array_free (timer, EMPTY0); 1685 array_verify (EV_A_ (W *)forks, forkcnt);
842#if EV_PERIODICS 1686#endif
843 array_free (periodic, EMPTY0); 1687
1688#if EV_ASYNC_ENABLE
1689 assert (asyncmax >= asynccnt);
1690 array_verify (EV_A_ (W *)asyncs, asynccnt);
1691#endif
1692
1693 assert (preparemax >= preparecnt);
1694 array_verify (EV_A_ (W *)prepares, preparecnt);
1695
1696 assert (checkmax >= checkcnt);
1697 array_verify (EV_A_ (W *)checks, checkcnt);
1698
1699# if 0
1700 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1701 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
844#endif 1702# endif
845 array_free (idle, EMPTY0);
846 array_free (prepare, EMPTY0);
847 array_free (check, EMPTY0);
848
849 method = 0;
850}
851
852static void
853loop_fork (EV_P)
854{
855#if EV_USE_PORT
856 if (method == EVMETHOD_PORT ) port_fork (EV_A);
857#endif 1703#endif
858#if EV_USE_KQUEUE
859 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
860#endif
861#if EV_USE_EPOLL
862 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
863#endif
864
865 if (ev_is_active (&sigev))
866 {
867 /* default loop */
868
869 ev_ref (EV_A);
870 ev_io_stop (EV_A_ &sigev);
871 close (sigpipe [0]);
872 close (sigpipe [1]);
873
874 while (pipe (sigpipe))
875 syserr ("(libev) error creating pipe");
876
877 siginit (EV_A);
878 }
879
880 postfork = 0;
881} 1704}
1705
1706#endif /* multiplicity */
882 1707
883#if EV_MULTIPLICITY 1708#if EV_MULTIPLICITY
884struct ev_loop * 1709struct ev_loop *
885ev_loop_new (unsigned int flags)
886{
887 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
888
889 memset (loop, 0, sizeof (struct ev_loop));
890
891 loop_init (EV_A_ flags);
892
893 if (ev_method (EV_A))
894 return loop;
895
896 return 0;
897}
898
899void
900ev_loop_destroy (EV_P)
901{
902 loop_destroy (EV_A);
903 ev_free (loop);
904}
905
906void
907ev_loop_fork (EV_P)
908{
909 postfork = 1;
910}
911
912#endif
913
914#if EV_MULTIPLICITY
915struct ev_loop *
916ev_default_loop_ (unsigned int flags) 1710ev_default_loop_init (unsigned int flags)
917#else 1711#else
918int 1712int
919ev_default_loop (unsigned int flags) 1713ev_default_loop (unsigned int flags)
920#endif 1714#endif
921{ 1715{
922 if (sigpipe [0] == sigpipe [1])
923 if (pipe (sigpipe))
924 return 0;
925
926 if (!ev_default_loop_ptr) 1716 if (!ev_default_loop_ptr)
927 { 1717 {
928#if EV_MULTIPLICITY 1718#if EV_MULTIPLICITY
929 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1719 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
930#else 1720#else
931 ev_default_loop_ptr = 1; 1721 ev_default_loop_ptr = 1;
932#endif 1722#endif
933 1723
934 loop_init (EV_A_ flags); 1724 loop_init (EV_A_ flags);
935 1725
936 if (ev_method (EV_A)) 1726 if (ev_backend (EV_A))
937 { 1727 {
938 siginit (EV_A);
939
940#ifndef _WIN32 1728#ifndef _WIN32
941 ev_signal_init (&childev, childcb, SIGCHLD); 1729 ev_signal_init (&childev, childcb, SIGCHLD);
942 ev_set_priority (&childev, EV_MAXPRI); 1730 ev_set_priority (&childev, EV_MAXPRI);
943 ev_signal_start (EV_A_ &childev); 1731 ev_signal_start (EV_A_ &childev);
944 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1732 ev_unref (EV_A); /* child watcher should not keep loop alive */
956{ 1744{
957#if EV_MULTIPLICITY 1745#if EV_MULTIPLICITY
958 struct ev_loop *loop = ev_default_loop_ptr; 1746 struct ev_loop *loop = ev_default_loop_ptr;
959#endif 1747#endif
960 1748
1749 ev_default_loop_ptr = 0;
1750
961#ifndef _WIN32 1751#ifndef _WIN32
962 ev_ref (EV_A); /* child watcher */ 1752 ev_ref (EV_A); /* child watcher */
963 ev_signal_stop (EV_A_ &childev); 1753 ev_signal_stop (EV_A_ &childev);
964#endif 1754#endif
965 1755
966 ev_ref (EV_A); /* signal watcher */
967 ev_io_stop (EV_A_ &sigev);
968
969 close (sigpipe [0]); sigpipe [0] = 0;
970 close (sigpipe [1]); sigpipe [1] = 0;
971
972 loop_destroy (EV_A); 1756 loop_destroy (EV_A);
973} 1757}
974 1758
975void 1759void
976ev_default_fork (void) 1760ev_default_fork (void)
977{ 1761{
978#if EV_MULTIPLICITY 1762#if EV_MULTIPLICITY
979 struct ev_loop *loop = ev_default_loop_ptr; 1763 struct ev_loop *loop = ev_default_loop_ptr;
980#endif 1764#endif
981 1765
982 if (method) 1766 postfork = 1; /* must be in line with ev_loop_fork */
983 postfork = 1;
984} 1767}
985 1768
986/*****************************************************************************/ 1769/*****************************************************************************/
987 1770
988static int 1771void
989any_pending (EV_P) 1772ev_invoke (EV_P_ void *w, int revents)
990{ 1773{
991 int pri; 1774 EV_CB_INVOKE ((W)w, revents);
992
993 for (pri = NUMPRI; pri--; )
994 if (pendingcnt [pri])
995 return 1;
996
997 return 0;
998} 1775}
999 1776
1000static void 1777inline_speed void
1001call_pending (EV_P) 1778call_pending (EV_P)
1002{ 1779{
1003 int pri; 1780 int pri;
1004 1781
1005 for (pri = NUMPRI; pri--; ) 1782 for (pri = NUMPRI; pri--; )
1006 while (pendingcnt [pri]) 1783 while (pendingcnt [pri])
1007 { 1784 {
1008 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1785 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1009 1786
1010 if (p->w) 1787 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1011 { 1788 /* ^ this is no longer true, as pending_w could be here */
1789
1012 p->w->pending = 0; 1790 p->w->pending = 0;
1013 EV_CB_INVOKE (p->w, p->events); 1791 EV_CB_INVOKE (p->w, p->events);
1014 } 1792 EV_FREQUENT_CHECK;
1015 } 1793 }
1016} 1794}
1017 1795
1018static void 1796#if EV_IDLE_ENABLE
1797/* make idle watchers pending. this handles the "call-idle */
1798/* only when higher priorities are idle" logic */
1799inline_size void
1800idle_reify (EV_P)
1801{
1802 if (expect_false (idleall))
1803 {
1804 int pri;
1805
1806 for (pri = NUMPRI; pri--; )
1807 {
1808 if (pendingcnt [pri])
1809 break;
1810
1811 if (idlecnt [pri])
1812 {
1813 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1814 break;
1815 }
1816 }
1817 }
1818}
1819#endif
1820
1821/* make timers pending */
1822inline_size void
1019timers_reify (EV_P) 1823timers_reify (EV_P)
1020{ 1824{
1825 EV_FREQUENT_CHECK;
1826
1021 while (timercnt && ((WT)timers [0])->at <= mn_now) 1827 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1022 { 1828 {
1023 struct ev_timer *w = timers [0]; 1829 do
1024
1025 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1026
1027 /* first reschedule or stop timer */
1028 if (w->repeat)
1029 { 1830 {
1831 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1832
1833 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1834
1835 /* first reschedule or stop timer */
1836 if (w->repeat)
1837 {
1838 ev_at (w) += w->repeat;
1839 if (ev_at (w) < mn_now)
1840 ev_at (w) = mn_now;
1841
1030 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1842 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1031 1843
1032 ((WT)w)->at += w->repeat; 1844 ANHE_at_cache (timers [HEAP0]);
1033 if (((WT)w)->at < mn_now)
1034 ((WT)w)->at = mn_now;
1035
1036 downheap ((WT *)timers, timercnt, 0); 1845 downheap (timers, timercnt, HEAP0);
1846 }
1847 else
1848 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1849
1850 EV_FREQUENT_CHECK;
1851 feed_reverse (EV_A_ (W)w);
1037 } 1852 }
1038 else 1853 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1039 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1040 1854
1041 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1855 feed_reverse_done (EV_A_ EV_TIMEOUT);
1042 } 1856 }
1043} 1857}
1044 1858
1045#if EV_PERIODICS 1859#if EV_PERIODIC_ENABLE
1046static void 1860/* make periodics pending */
1861inline_size void
1047periodics_reify (EV_P) 1862periodics_reify (EV_P)
1048{ 1863{
1864 EV_FREQUENT_CHECK;
1865
1049 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1866 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1050 { 1867 {
1051 struct ev_periodic *w = periodics [0]; 1868 int feed_count = 0;
1052 1869
1870 do
1871 {
1872 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1873
1053 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1874 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1054 1875
1055 /* first reschedule or stop timer */ 1876 /* first reschedule or stop timer */
1877 if (w->reschedule_cb)
1878 {
1879 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1880
1881 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1882
1883 ANHE_at_cache (periodics [HEAP0]);
1884 downheap (periodics, periodiccnt, HEAP0);
1885 }
1886 else if (w->interval)
1887 {
1888 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1889 /* if next trigger time is not sufficiently in the future, put it there */
1890 /* this might happen because of floating point inexactness */
1891 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1892 {
1893 ev_at (w) += w->interval;
1894
1895 /* if interval is unreasonably low we might still have a time in the past */
1896 /* so correct this. this will make the periodic very inexact, but the user */
1897 /* has effectively asked to get triggered more often than possible */
1898 if (ev_at (w) < ev_rt_now)
1899 ev_at (w) = ev_rt_now;
1900 }
1901
1902 ANHE_at_cache (periodics [HEAP0]);
1903 downheap (periodics, periodiccnt, HEAP0);
1904 }
1905 else
1906 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1907
1908 EV_FREQUENT_CHECK;
1909 feed_reverse (EV_A_ (W)w);
1910 }
1911 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1912
1913 feed_reverse_done (EV_A_ EV_PERIODIC);
1914 }
1915}
1916
1917/* simply recalculate all periodics */
1918/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1919static void noinline
1920periodics_reschedule (EV_P)
1921{
1922 int i;
1923
1924 /* adjust periodics after time jump */
1925 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1926 {
1927 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1928
1056 if (w->reschedule_cb) 1929 if (w->reschedule_cb)
1930 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1931 else if (w->interval)
1932 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1933
1934 ANHE_at_cache (periodics [i]);
1935 }
1936
1937 reheap (periodics, periodiccnt);
1938}
1939#endif
1940
1941/* adjust all timers by a given offset */
1942static void noinline
1943timers_reschedule (EV_P_ ev_tstamp adjust)
1944{
1945 int i;
1946
1947 for (i = 0; i < timercnt; ++i)
1948 {
1949 ANHE *he = timers + i + HEAP0;
1950 ANHE_w (*he)->at += adjust;
1951 ANHE_at_cache (*he);
1952 }
1953}
1954
1955/* fetch new monotonic and realtime times from the kernel */
1956/* also detetc if there was a timejump, and act accordingly */
1957inline_speed void
1958time_update (EV_P_ ev_tstamp max_block)
1959{
1960#if EV_USE_MONOTONIC
1961 if (expect_true (have_monotonic))
1962 {
1963 int i;
1964 ev_tstamp odiff = rtmn_diff;
1965
1966 mn_now = get_clock ();
1967
1968 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1969 /* interpolate in the meantime */
1970 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1057 { 1971 {
1058 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1972 ev_rt_now = rtmn_diff + mn_now;
1059 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1973 return;
1060 downheap ((WT *)periodics, periodiccnt, 0);
1061 } 1974 }
1062 else if (w->interval)
1063 {
1064 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1065 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1066 downheap ((WT *)periodics, periodiccnt, 0);
1067 }
1068 else
1069 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1070 1975
1071 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1072 }
1073}
1074
1075static void
1076periodics_reschedule (EV_P)
1077{
1078 int i;
1079
1080 /* adjust periodics after time jump */
1081 for (i = 0; i < periodiccnt; ++i)
1082 {
1083 struct ev_periodic *w = periodics [i];
1084
1085 if (w->reschedule_cb)
1086 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1087 else if (w->interval)
1088 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1089 }
1090
1091 /* now rebuild the heap */
1092 for (i = periodiccnt >> 1; i--; )
1093 downheap ((WT *)periodics, periodiccnt, i);
1094}
1095#endif
1096
1097inline int
1098time_update_monotonic (EV_P)
1099{
1100 mn_now = get_clock ();
1101
1102 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1103 {
1104 ev_rt_now = rtmn_diff + mn_now;
1105 return 0;
1106 }
1107 else
1108 {
1109 now_floor = mn_now; 1976 now_floor = mn_now;
1110 ev_rt_now = ev_time (); 1977 ev_rt_now = ev_time ();
1111 return 1;
1112 }
1113}
1114 1978
1115static void 1979 /* loop a few times, before making important decisions.
1116time_update (EV_P) 1980 * on the choice of "4": one iteration isn't enough,
1117{ 1981 * in case we get preempted during the calls to
1118 int i; 1982 * ev_time and get_clock. a second call is almost guaranteed
1119 1983 * to succeed in that case, though. and looping a few more times
1120#if EV_USE_MONOTONIC 1984 * doesn't hurt either as we only do this on time-jumps or
1121 if (expect_true (have_monotonic)) 1985 * in the unlikely event of having been preempted here.
1122 { 1986 */
1123 if (time_update_monotonic (EV_A)) 1987 for (i = 4; --i; )
1124 { 1988 {
1125 ev_tstamp odiff = rtmn_diff;
1126
1127 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1128 {
1129 rtmn_diff = ev_rt_now - mn_now; 1989 rtmn_diff = ev_rt_now - mn_now;
1130 1990
1131 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1991 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1132 return; /* all is well */ 1992 return; /* all is well */
1133 1993
1134 ev_rt_now = ev_time (); 1994 ev_rt_now = ev_time ();
1135 mn_now = get_clock (); 1995 mn_now = get_clock ();
1136 now_floor = mn_now; 1996 now_floor = mn_now;
1137 } 1997 }
1138 1998
1999 /* no timer adjustment, as the monotonic clock doesn't jump */
2000 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1139# if EV_PERIODICS 2001# if EV_PERIODIC_ENABLE
2002 periodics_reschedule (EV_A);
2003# endif
2004 }
2005 else
2006#endif
2007 {
2008 ev_rt_now = ev_time ();
2009
2010 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2011 {
2012 /* adjust timers. this is easy, as the offset is the same for all of them */
2013 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2014#if EV_PERIODIC_ENABLE
1140 periodics_reschedule (EV_A); 2015 periodics_reschedule (EV_A);
1141# endif 2016#endif
1142 /* no timer adjustment, as the monotonic clock doesn't jump */
1143 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1144 } 2017 }
1145 }
1146 else
1147#endif
1148 {
1149 ev_rt_now = ev_time ();
1150
1151 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1152 {
1153#if EV_PERIODICS
1154 periodics_reschedule (EV_A);
1155#endif
1156
1157 /* adjust timers. this is easy, as the offset is the same for all */
1158 for (i = 0; i < timercnt; ++i)
1159 ((WT)timers [i])->at += ev_rt_now - mn_now;
1160 }
1161 2018
1162 mn_now = ev_rt_now; 2019 mn_now = ev_rt_now;
1163 } 2020 }
1164} 2021}
1165 2022
1166void
1167ev_ref (EV_P)
1168{
1169 ++activecnt;
1170}
1171
1172void
1173ev_unref (EV_P)
1174{
1175 --activecnt;
1176}
1177
1178static int loop_done; 2023static int loop_done;
1179 2024
1180void 2025void
1181ev_loop (EV_P_ int flags) 2026ev_loop (EV_P_ int flags)
1182{ 2027{
1183 double block; 2028 loop_done = EVUNLOOP_CANCEL;
1184 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1185 2029
1186 while (activecnt) 2030 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
2031
2032 do
1187 { 2033 {
2034#if EV_VERIFY >= 2
2035 ev_loop_verify (EV_A);
2036#endif
2037
2038#ifndef _WIN32
2039 if (expect_false (curpid)) /* penalise the forking check even more */
2040 if (expect_false (getpid () != curpid))
2041 {
2042 curpid = getpid ();
2043 postfork = 1;
2044 }
2045#endif
2046
2047#if EV_FORK_ENABLE
2048 /* we might have forked, so queue fork handlers */
2049 if (expect_false (postfork))
2050 if (forkcnt)
2051 {
2052 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2053 call_pending (EV_A);
2054 }
2055#endif
2056
1188 /* queue check watchers (and execute them) */ 2057 /* queue prepare watchers (and execute them) */
1189 if (expect_false (preparecnt)) 2058 if (expect_false (preparecnt))
1190 { 2059 {
1191 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2060 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1192 call_pending (EV_A); 2061 call_pending (EV_A);
1193 } 2062 }
1198 2067
1199 /* update fd-related kernel structures */ 2068 /* update fd-related kernel structures */
1200 fd_reify (EV_A); 2069 fd_reify (EV_A);
1201 2070
1202 /* calculate blocking time */ 2071 /* calculate blocking time */
2072 {
2073 ev_tstamp waittime = 0.;
2074 ev_tstamp sleeptime = 0.;
1203 2075
1204 /* we only need this for !monotonic clock or timers, but as we basically 2076 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1205 always have timers, we just calculate it always */
1206#if EV_USE_MONOTONIC
1207 if (expect_true (have_monotonic))
1208 time_update_monotonic (EV_A);
1209 else
1210#endif
1211 { 2077 {
1212 ev_rt_now = ev_time (); 2078 /* update time to cancel out callback processing overhead */
1213 mn_now = ev_rt_now; 2079 time_update (EV_A_ 1e100);
1214 }
1215 2080
1216 if (flags & EVLOOP_NONBLOCK || idlecnt)
1217 block = 0.;
1218 else
1219 {
1220 block = MAX_BLOCKTIME; 2081 waittime = MAX_BLOCKTIME;
1221 2082
1222 if (timercnt) 2083 if (timercnt)
1223 { 2084 {
1224 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2085 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1225 if (block > to) block = to; 2086 if (waittime > to) waittime = to;
1226 } 2087 }
1227 2088
1228#if EV_PERIODICS 2089#if EV_PERIODIC_ENABLE
1229 if (periodiccnt) 2090 if (periodiccnt)
1230 { 2091 {
1231 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2092 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1232 if (block > to) block = to; 2093 if (waittime > to) waittime = to;
1233 } 2094 }
1234#endif 2095#endif
1235 2096
1236 if (block < 0.) block = 0.; 2097 if (expect_false (waittime < timeout_blocktime))
2098 waittime = timeout_blocktime;
2099
2100 sleeptime = waittime - backend_fudge;
2101
2102 if (expect_true (sleeptime > io_blocktime))
2103 sleeptime = io_blocktime;
2104
2105 if (sleeptime)
2106 {
2107 ev_sleep (sleeptime);
2108 waittime -= sleeptime;
2109 }
1237 } 2110 }
1238 2111
1239 method_poll (EV_A_ block); 2112 ++loop_count;
2113 backend_poll (EV_A_ waittime);
1240 2114
1241 /* update ev_rt_now, do magic */ 2115 /* update ev_rt_now, do magic */
1242 time_update (EV_A); 2116 time_update (EV_A_ waittime + sleeptime);
2117 }
1243 2118
1244 /* queue pending timers and reschedule them */ 2119 /* queue pending timers and reschedule them */
1245 timers_reify (EV_A); /* relative timers called last */ 2120 timers_reify (EV_A); /* relative timers called last */
1246#if EV_PERIODICS 2121#if EV_PERIODIC_ENABLE
1247 periodics_reify (EV_A); /* absolute timers called first */ 2122 periodics_reify (EV_A); /* absolute timers called first */
1248#endif 2123#endif
1249 2124
2125#if EV_IDLE_ENABLE
1250 /* queue idle watchers unless io or timers are pending */ 2126 /* queue idle watchers unless other events are pending */
1251 if (idlecnt && !any_pending (EV_A)) 2127 idle_reify (EV_A);
1252 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2128#endif
1253 2129
1254 /* queue check watchers, to be executed first */ 2130 /* queue check watchers, to be executed first */
1255 if (checkcnt) 2131 if (expect_false (checkcnt))
1256 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2132 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1257 2133
1258 call_pending (EV_A); 2134 call_pending (EV_A);
1259
1260 if (loop_done)
1261 break;
1262 } 2135 }
2136 while (expect_true (
2137 activecnt
2138 && !loop_done
2139 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2140 ));
1263 2141
1264 if (loop_done != 2) 2142 if (loop_done == EVUNLOOP_ONE)
1265 loop_done = 0; 2143 loop_done = EVUNLOOP_CANCEL;
1266} 2144}
1267 2145
1268void 2146void
1269ev_unloop (EV_P_ int how) 2147ev_unloop (EV_P_ int how)
1270{ 2148{
1271 loop_done = how; 2149 loop_done = how;
1272} 2150}
1273 2151
2152void
2153ev_ref (EV_P)
2154{
2155 ++activecnt;
2156}
2157
2158void
2159ev_unref (EV_P)
2160{
2161 --activecnt;
2162}
2163
2164void
2165ev_now_update (EV_P)
2166{
2167 time_update (EV_A_ 1e100);
2168}
2169
2170void
2171ev_suspend (EV_P)
2172{
2173 ev_now_update (EV_A);
2174}
2175
2176void
2177ev_resume (EV_P)
2178{
2179 ev_tstamp mn_prev = mn_now;
2180
2181 ev_now_update (EV_A);
2182 timers_reschedule (EV_A_ mn_now - mn_prev);
2183#if EV_PERIODIC_ENABLE
2184 /* TODO: really do this? */
2185 periodics_reschedule (EV_A);
2186#endif
2187}
2188
1274/*****************************************************************************/ 2189/*****************************************************************************/
2190/* singly-linked list management, used when the expected list length is short */
1275 2191
1276inline void 2192inline_size void
1277wlist_add (WL *head, WL elem) 2193wlist_add (WL *head, WL elem)
1278{ 2194{
1279 elem->next = *head; 2195 elem->next = *head;
1280 *head = elem; 2196 *head = elem;
1281} 2197}
1282 2198
1283inline void 2199inline_size void
1284wlist_del (WL *head, WL elem) 2200wlist_del (WL *head, WL elem)
1285{ 2201{
1286 while (*head) 2202 while (*head)
1287 { 2203 {
1288 if (*head == elem) 2204 if (*head == elem)
1293 2209
1294 head = &(*head)->next; 2210 head = &(*head)->next;
1295 } 2211 }
1296} 2212}
1297 2213
2214/* internal, faster, version of ev_clear_pending */
1298inline void 2215inline_speed void
1299ev_clear_pending (EV_P_ W w) 2216clear_pending (EV_P_ W w)
1300{ 2217{
1301 if (w->pending) 2218 if (w->pending)
1302 { 2219 {
1303 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2220 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1304 w->pending = 0; 2221 w->pending = 0;
1305 } 2222 }
1306} 2223}
1307 2224
2225int
2226ev_clear_pending (EV_P_ void *w)
2227{
2228 W w_ = (W)w;
2229 int pending = w_->pending;
2230
2231 if (expect_true (pending))
2232 {
2233 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2234 p->w = (W)&pending_w;
2235 w_->pending = 0;
2236 return p->events;
2237 }
2238 else
2239 return 0;
2240}
2241
1308inline void 2242inline_size void
2243pri_adjust (EV_P_ W w)
2244{
2245 int pri = w->priority;
2246 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2247 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2248 w->priority = pri;
2249}
2250
2251inline_speed void
1309ev_start (EV_P_ W w, int active) 2252ev_start (EV_P_ W w, int active)
1310{ 2253{
1311 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2254 pri_adjust (EV_A_ w);
1312 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1313
1314 w->active = active; 2255 w->active = active;
1315 ev_ref (EV_A); 2256 ev_ref (EV_A);
1316} 2257}
1317 2258
1318inline void 2259inline_size void
1319ev_stop (EV_P_ W w) 2260ev_stop (EV_P_ W w)
1320{ 2261{
1321 ev_unref (EV_A); 2262 ev_unref (EV_A);
1322 w->active = 0; 2263 w->active = 0;
1323} 2264}
1324 2265
1325/*****************************************************************************/ 2266/*****************************************************************************/
1326 2267
1327void 2268void noinline
1328ev_io_start (EV_P_ struct ev_io *w) 2269ev_io_start (EV_P_ ev_io *w)
1329{ 2270{
1330 int fd = w->fd; 2271 int fd = w->fd;
1331 2272
1332 if (ev_is_active (w)) 2273 if (expect_false (ev_is_active (w)))
1333 return; 2274 return;
1334 2275
1335 assert (("ev_io_start called with negative fd", fd >= 0)); 2276 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2277 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2278
2279 EV_FREQUENT_CHECK;
1336 2280
1337 ev_start (EV_A_ (W)w, 1); 2281 ev_start (EV_A_ (W)w, 1);
1338 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2282 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1339 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2283 wlist_add (&anfds[fd].head, (WL)w);
1340 2284
1341 fd_change (EV_A_ fd); 2285 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1342} 2286 w->events &= ~EV__IOFDSET;
1343 2287
1344void 2288 EV_FREQUENT_CHECK;
2289}
2290
2291void noinline
1345ev_io_stop (EV_P_ struct ev_io *w) 2292ev_io_stop (EV_P_ ev_io *w)
1346{ 2293{
1347 ev_clear_pending (EV_A_ (W)w); 2294 clear_pending (EV_A_ (W)w);
1348 if (!ev_is_active (w)) 2295 if (expect_false (!ev_is_active (w)))
1349 return; 2296 return;
1350 2297
1351 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2298 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1352 2299
2300 EV_FREQUENT_CHECK;
2301
1353 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2302 wlist_del (&anfds[w->fd].head, (WL)w);
1354 ev_stop (EV_A_ (W)w); 2303 ev_stop (EV_A_ (W)w);
1355 2304
1356 fd_change (EV_A_ w->fd); 2305 fd_change (EV_A_ w->fd, 1);
1357}
1358 2306
1359void 2307 EV_FREQUENT_CHECK;
2308}
2309
2310void noinline
1360ev_timer_start (EV_P_ struct ev_timer *w) 2311ev_timer_start (EV_P_ ev_timer *w)
1361{ 2312{
1362 if (ev_is_active (w)) 2313 if (expect_false (ev_is_active (w)))
1363 return; 2314 return;
1364 2315
1365 ((WT)w)->at += mn_now; 2316 ev_at (w) += mn_now;
1366 2317
1367 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2318 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1368 2319
2320 EV_FREQUENT_CHECK;
2321
2322 ++timercnt;
1369 ev_start (EV_A_ (W)w, ++timercnt); 2323 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1370 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2324 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1371 timers [timercnt - 1] = w; 2325 ANHE_w (timers [ev_active (w)]) = (WT)w;
1372 upheap ((WT *)timers, timercnt - 1); 2326 ANHE_at_cache (timers [ev_active (w)]);
2327 upheap (timers, ev_active (w));
1373 2328
2329 EV_FREQUENT_CHECK;
2330
1374 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2331 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1375} 2332}
1376 2333
1377void 2334void noinline
1378ev_timer_stop (EV_P_ struct ev_timer *w) 2335ev_timer_stop (EV_P_ ev_timer *w)
1379{ 2336{
1380 ev_clear_pending (EV_A_ (W)w); 2337 clear_pending (EV_A_ (W)w);
1381 if (!ev_is_active (w)) 2338 if (expect_false (!ev_is_active (w)))
1382 return; 2339 return;
1383 2340
2341 EV_FREQUENT_CHECK;
2342
2343 {
2344 int active = ev_active (w);
2345
1384 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2346 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1385 2347
1386 if (((W)w)->active < timercnt--) 2348 --timercnt;
2349
2350 if (expect_true (active < timercnt + HEAP0))
1387 { 2351 {
1388 timers [((W)w)->active - 1] = timers [timercnt]; 2352 timers [active] = timers [timercnt + HEAP0];
1389 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2353 adjustheap (timers, timercnt, active);
1390 } 2354 }
2355 }
1391 2356
1392 ((WT)w)->at -= mn_now; 2357 EV_FREQUENT_CHECK;
2358
2359 ev_at (w) -= mn_now;
1393 2360
1394 ev_stop (EV_A_ (W)w); 2361 ev_stop (EV_A_ (W)w);
1395} 2362}
1396 2363
1397void 2364void noinline
1398ev_timer_again (EV_P_ struct ev_timer *w) 2365ev_timer_again (EV_P_ ev_timer *w)
1399{ 2366{
2367 EV_FREQUENT_CHECK;
2368
1400 if (ev_is_active (w)) 2369 if (ev_is_active (w))
1401 { 2370 {
1402 if (w->repeat) 2371 if (w->repeat)
1403 { 2372 {
1404 ((WT)w)->at = mn_now + w->repeat; 2373 ev_at (w) = mn_now + w->repeat;
2374 ANHE_at_cache (timers [ev_active (w)]);
1405 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2375 adjustheap (timers, timercnt, ev_active (w));
1406 } 2376 }
1407 else 2377 else
1408 ev_timer_stop (EV_A_ w); 2378 ev_timer_stop (EV_A_ w);
1409 } 2379 }
1410 else if (w->repeat) 2380 else if (w->repeat)
1411 { 2381 {
1412 w->at = w->repeat; 2382 ev_at (w) = w->repeat;
1413 ev_timer_start (EV_A_ w); 2383 ev_timer_start (EV_A_ w);
1414 } 2384 }
1415}
1416 2385
2386 EV_FREQUENT_CHECK;
2387}
2388
1417#if EV_PERIODICS 2389#if EV_PERIODIC_ENABLE
1418void 2390void noinline
1419ev_periodic_start (EV_P_ struct ev_periodic *w) 2391ev_periodic_start (EV_P_ ev_periodic *w)
1420{ 2392{
1421 if (ev_is_active (w)) 2393 if (expect_false (ev_is_active (w)))
1422 return; 2394 return;
1423 2395
1424 if (w->reschedule_cb) 2396 if (w->reschedule_cb)
1425 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2397 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1426 else if (w->interval) 2398 else if (w->interval)
1427 { 2399 {
1428 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2400 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1429 /* this formula differs from the one in periodic_reify because we do not always round up */ 2401 /* this formula differs from the one in periodic_reify because we do not always round up */
1430 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2402 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1431 } 2403 }
2404 else
2405 ev_at (w) = w->offset;
1432 2406
2407 EV_FREQUENT_CHECK;
2408
2409 ++periodiccnt;
1433 ev_start (EV_A_ (W)w, ++periodiccnt); 2410 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1434 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2411 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1435 periodics [periodiccnt - 1] = w; 2412 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1436 upheap ((WT *)periodics, periodiccnt - 1); 2413 ANHE_at_cache (periodics [ev_active (w)]);
2414 upheap (periodics, ev_active (w));
1437 2415
2416 EV_FREQUENT_CHECK;
2417
1438 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2418 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1439} 2419}
1440 2420
1441void 2421void noinline
1442ev_periodic_stop (EV_P_ struct ev_periodic *w) 2422ev_periodic_stop (EV_P_ ev_periodic *w)
1443{ 2423{
1444 ev_clear_pending (EV_A_ (W)w); 2424 clear_pending (EV_A_ (W)w);
1445 if (!ev_is_active (w)) 2425 if (expect_false (!ev_is_active (w)))
1446 return; 2426 return;
1447 2427
2428 EV_FREQUENT_CHECK;
2429
2430 {
2431 int active = ev_active (w);
2432
1448 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2433 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1449 2434
1450 if (((W)w)->active < periodiccnt--) 2435 --periodiccnt;
2436
2437 if (expect_true (active < periodiccnt + HEAP0))
1451 { 2438 {
1452 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2439 periodics [active] = periodics [periodiccnt + HEAP0];
1453 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2440 adjustheap (periodics, periodiccnt, active);
1454 } 2441 }
2442 }
2443
2444 EV_FREQUENT_CHECK;
1455 2445
1456 ev_stop (EV_A_ (W)w); 2446 ev_stop (EV_A_ (W)w);
1457} 2447}
1458 2448
1459void 2449void noinline
1460ev_periodic_again (EV_P_ struct ev_periodic *w) 2450ev_periodic_again (EV_P_ ev_periodic *w)
1461{ 2451{
1462 /* TODO: use adjustheap and recalculation */ 2452 /* TODO: use adjustheap and recalculation */
1463 ev_periodic_stop (EV_A_ w); 2453 ev_periodic_stop (EV_A_ w);
1464 ev_periodic_start (EV_A_ w); 2454 ev_periodic_start (EV_A_ w);
1465} 2455}
1466#endif 2456#endif
1467 2457
1468void
1469ev_idle_start (EV_P_ struct ev_idle *w)
1470{
1471 if (ev_is_active (w))
1472 return;
1473
1474 ev_start (EV_A_ (W)w, ++idlecnt);
1475 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1476 idles [idlecnt - 1] = w;
1477}
1478
1479void
1480ev_idle_stop (EV_P_ struct ev_idle *w)
1481{
1482 ev_clear_pending (EV_A_ (W)w);
1483 if (!ev_is_active (w))
1484 return;
1485
1486 idles [((W)w)->active - 1] = idles [--idlecnt];
1487 ev_stop (EV_A_ (W)w);
1488}
1489
1490void
1491ev_prepare_start (EV_P_ struct ev_prepare *w)
1492{
1493 if (ev_is_active (w))
1494 return;
1495
1496 ev_start (EV_A_ (W)w, ++preparecnt);
1497 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1498 prepares [preparecnt - 1] = w;
1499}
1500
1501void
1502ev_prepare_stop (EV_P_ struct ev_prepare *w)
1503{
1504 ev_clear_pending (EV_A_ (W)w);
1505 if (!ev_is_active (w))
1506 return;
1507
1508 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1509 ev_stop (EV_A_ (W)w);
1510}
1511
1512void
1513ev_check_start (EV_P_ struct ev_check *w)
1514{
1515 if (ev_is_active (w))
1516 return;
1517
1518 ev_start (EV_A_ (W)w, ++checkcnt);
1519 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1520 checks [checkcnt - 1] = w;
1521}
1522
1523void
1524ev_check_stop (EV_P_ struct ev_check *w)
1525{
1526 ev_clear_pending (EV_A_ (W)w);
1527 if (!ev_is_active (w))
1528 return;
1529
1530 checks [((W)w)->active - 1] = checks [--checkcnt];
1531 ev_stop (EV_A_ (W)w);
1532}
1533
1534#ifndef SA_RESTART 2458#ifndef SA_RESTART
1535# define SA_RESTART 0 2459# define SA_RESTART 0
1536#endif 2460#endif
1537 2461
1538void 2462void noinline
1539ev_signal_start (EV_P_ struct ev_signal *w) 2463ev_signal_start (EV_P_ ev_signal *w)
1540{ 2464{
1541#if EV_MULTIPLICITY 2465#if EV_MULTIPLICITY
1542 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2466 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1543#endif 2467#endif
1544 if (ev_is_active (w)) 2468 if (expect_false (ev_is_active (w)))
1545 return; 2469 return;
1546 2470
1547 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2471 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2472
2473 evpipe_init (EV_A);
2474
2475 EV_FREQUENT_CHECK;
2476
2477 {
2478#ifndef _WIN32
2479 sigset_t full, prev;
2480 sigfillset (&full);
2481 sigprocmask (SIG_SETMASK, &full, &prev);
2482#endif
2483
2484 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2485
2486#ifndef _WIN32
2487 sigprocmask (SIG_SETMASK, &prev, 0);
2488#endif
2489 }
1548 2490
1549 ev_start (EV_A_ (W)w, 1); 2491 ev_start (EV_A_ (W)w, 1);
1550 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1551 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2492 wlist_add (&signals [w->signum - 1].head, (WL)w);
1552 2493
1553 if (!((WL)w)->next) 2494 if (!((WL)w)->next)
1554 { 2495 {
1555#if _WIN32 2496#if _WIN32
1556 signal (w->signum, sighandler); 2497 signal (w->signum, ev_sighandler);
1557#else 2498#else
1558 struct sigaction sa; 2499 struct sigaction sa;
1559 sa.sa_handler = sighandler; 2500 sa.sa_handler = ev_sighandler;
1560 sigfillset (&sa.sa_mask); 2501 sigfillset (&sa.sa_mask);
1561 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2502 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1562 sigaction (w->signum, &sa, 0); 2503 sigaction (w->signum, &sa, 0);
1563#endif 2504#endif
1564 } 2505 }
1565}
1566 2506
1567void 2507 EV_FREQUENT_CHECK;
2508}
2509
2510void noinline
1568ev_signal_stop (EV_P_ struct ev_signal *w) 2511ev_signal_stop (EV_P_ ev_signal *w)
1569{ 2512{
1570 ev_clear_pending (EV_A_ (W)w); 2513 clear_pending (EV_A_ (W)w);
1571 if (!ev_is_active (w)) 2514 if (expect_false (!ev_is_active (w)))
1572 return; 2515 return;
1573 2516
2517 EV_FREQUENT_CHECK;
2518
1574 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2519 wlist_del (&signals [w->signum - 1].head, (WL)w);
1575 ev_stop (EV_A_ (W)w); 2520 ev_stop (EV_A_ (W)w);
1576 2521
1577 if (!signals [w->signum - 1].head) 2522 if (!signals [w->signum - 1].head)
1578 signal (w->signum, SIG_DFL); 2523 signal (w->signum, SIG_DFL);
1579}
1580 2524
2525 EV_FREQUENT_CHECK;
2526}
2527
1581void 2528void
1582ev_child_start (EV_P_ struct ev_child *w) 2529ev_child_start (EV_P_ ev_child *w)
1583{ 2530{
1584#if EV_MULTIPLICITY 2531#if EV_MULTIPLICITY
1585 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2532 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1586#endif 2533#endif
1587 if (ev_is_active (w)) 2534 if (expect_false (ev_is_active (w)))
1588 return; 2535 return;
1589 2536
2537 EV_FREQUENT_CHECK;
2538
1590 ev_start (EV_A_ (W)w, 1); 2539 ev_start (EV_A_ (W)w, 1);
1591 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2540 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1592}
1593 2541
2542 EV_FREQUENT_CHECK;
2543}
2544
1594void 2545void
1595ev_child_stop (EV_P_ struct ev_child *w) 2546ev_child_stop (EV_P_ ev_child *w)
1596{ 2547{
1597 ev_clear_pending (EV_A_ (W)w); 2548 clear_pending (EV_A_ (W)w);
1598 if (!ev_is_active (w)) 2549 if (expect_false (!ev_is_active (w)))
1599 return; 2550 return;
1600 2551
2552 EV_FREQUENT_CHECK;
2553
1601 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2554 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1602 ev_stop (EV_A_ (W)w); 2555 ev_stop (EV_A_ (W)w);
2556
2557 EV_FREQUENT_CHECK;
1603} 2558}
2559
2560#if EV_STAT_ENABLE
2561
2562# ifdef _WIN32
2563# undef lstat
2564# define lstat(a,b) _stati64 (a,b)
2565# endif
2566
2567#define DEF_STAT_INTERVAL 5.0074891
2568#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2569#define MIN_STAT_INTERVAL 0.1074891
2570
2571static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2572
2573#if EV_USE_INOTIFY
2574# define EV_INOTIFY_BUFSIZE 8192
2575
2576static void noinline
2577infy_add (EV_P_ ev_stat *w)
2578{
2579 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2580
2581 if (w->wd < 0)
2582 {
2583 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2584 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2585
2586 /* monitor some parent directory for speedup hints */
2587 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2588 /* but an efficiency issue only */
2589 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2590 {
2591 char path [4096];
2592 strcpy (path, w->path);
2593
2594 do
2595 {
2596 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2597 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2598
2599 char *pend = strrchr (path, '/');
2600
2601 if (!pend || pend == path)
2602 break;
2603
2604 *pend = 0;
2605 w->wd = inotify_add_watch (fs_fd, path, mask);
2606 }
2607 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2608 }
2609 }
2610
2611 if (w->wd >= 0)
2612 {
2613 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2614
2615 /* now local changes will be tracked by inotify, but remote changes won't */
2616 /* unless the filesystem it known to be local, we therefore still poll */
2617 /* also do poll on <2.6.25, but with normal frequency */
2618 struct statfs sfs;
2619
2620 if (fs_2625 && !statfs (w->path, &sfs))
2621 if (sfs.f_type == 0x1373 /* devfs */
2622 || sfs.f_type == 0xEF53 /* ext2/3 */
2623 || sfs.f_type == 0x3153464a /* jfs */
2624 || sfs.f_type == 0x52654973 /* reiser3 */
2625 || sfs.f_type == 0x01021994 /* tempfs */
2626 || sfs.f_type == 0x58465342 /* xfs */)
2627 return;
2628
2629 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2630 ev_timer_again (EV_A_ &w->timer);
2631 }
2632}
2633
2634static void noinline
2635infy_del (EV_P_ ev_stat *w)
2636{
2637 int slot;
2638 int wd = w->wd;
2639
2640 if (wd < 0)
2641 return;
2642
2643 w->wd = -2;
2644 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2645 wlist_del (&fs_hash [slot].head, (WL)w);
2646
2647 /* remove this watcher, if others are watching it, they will rearm */
2648 inotify_rm_watch (fs_fd, wd);
2649}
2650
2651static void noinline
2652infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2653{
2654 if (slot < 0)
2655 /* overflow, need to check for all hash slots */
2656 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2657 infy_wd (EV_A_ slot, wd, ev);
2658 else
2659 {
2660 WL w_;
2661
2662 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2663 {
2664 ev_stat *w = (ev_stat *)w_;
2665 w_ = w_->next; /* lets us remove this watcher and all before it */
2666
2667 if (w->wd == wd || wd == -1)
2668 {
2669 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2670 {
2671 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2672 w->wd = -1;
2673 infy_add (EV_A_ w); /* re-add, no matter what */
2674 }
2675
2676 stat_timer_cb (EV_A_ &w->timer, 0);
2677 }
2678 }
2679 }
2680}
2681
2682static void
2683infy_cb (EV_P_ ev_io *w, int revents)
2684{
2685 char buf [EV_INOTIFY_BUFSIZE];
2686 struct inotify_event *ev = (struct inotify_event *)buf;
2687 int ofs;
2688 int len = read (fs_fd, buf, sizeof (buf));
2689
2690 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2691 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2692}
2693
2694inline_size void
2695check_2625 (EV_P)
2696{
2697 /* kernels < 2.6.25 are borked
2698 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2699 */
2700 struct utsname buf;
2701 int major, minor, micro;
2702
2703 if (uname (&buf))
2704 return;
2705
2706 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2707 return;
2708
2709 if (major < 2
2710 || (major == 2 && minor < 6)
2711 || (major == 2 && minor == 6 && micro < 25))
2712 return;
2713
2714 fs_2625 = 1;
2715}
2716
2717inline_size void
2718infy_init (EV_P)
2719{
2720 if (fs_fd != -2)
2721 return;
2722
2723 fs_fd = -1;
2724
2725 check_2625 (EV_A);
2726
2727 fs_fd = inotify_init ();
2728
2729 if (fs_fd >= 0)
2730 {
2731 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2732 ev_set_priority (&fs_w, EV_MAXPRI);
2733 ev_io_start (EV_A_ &fs_w);
2734 }
2735}
2736
2737inline_size void
2738infy_fork (EV_P)
2739{
2740 int slot;
2741
2742 if (fs_fd < 0)
2743 return;
2744
2745 close (fs_fd);
2746 fs_fd = inotify_init ();
2747
2748 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2749 {
2750 WL w_ = fs_hash [slot].head;
2751 fs_hash [slot].head = 0;
2752
2753 while (w_)
2754 {
2755 ev_stat *w = (ev_stat *)w_;
2756 w_ = w_->next; /* lets us add this watcher */
2757
2758 w->wd = -1;
2759
2760 if (fs_fd >= 0)
2761 infy_add (EV_A_ w); /* re-add, no matter what */
2762 else
2763 ev_timer_again (EV_A_ &w->timer);
2764 }
2765 }
2766}
2767
2768#endif
2769
2770#ifdef _WIN32
2771# define EV_LSTAT(p,b) _stati64 (p, b)
2772#else
2773# define EV_LSTAT(p,b) lstat (p, b)
2774#endif
2775
2776void
2777ev_stat_stat (EV_P_ ev_stat *w)
2778{
2779 if (lstat (w->path, &w->attr) < 0)
2780 w->attr.st_nlink = 0;
2781 else if (!w->attr.st_nlink)
2782 w->attr.st_nlink = 1;
2783}
2784
2785static void noinline
2786stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2787{
2788 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2789
2790 /* we copy this here each the time so that */
2791 /* prev has the old value when the callback gets invoked */
2792 w->prev = w->attr;
2793 ev_stat_stat (EV_A_ w);
2794
2795 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2796 if (
2797 w->prev.st_dev != w->attr.st_dev
2798 || w->prev.st_ino != w->attr.st_ino
2799 || w->prev.st_mode != w->attr.st_mode
2800 || w->prev.st_nlink != w->attr.st_nlink
2801 || w->prev.st_uid != w->attr.st_uid
2802 || w->prev.st_gid != w->attr.st_gid
2803 || w->prev.st_rdev != w->attr.st_rdev
2804 || w->prev.st_size != w->attr.st_size
2805 || w->prev.st_atime != w->attr.st_atime
2806 || w->prev.st_mtime != w->attr.st_mtime
2807 || w->prev.st_ctime != w->attr.st_ctime
2808 ) {
2809 #if EV_USE_INOTIFY
2810 if (fs_fd >= 0)
2811 {
2812 infy_del (EV_A_ w);
2813 infy_add (EV_A_ w);
2814 ev_stat_stat (EV_A_ w); /* avoid race... */
2815 }
2816 #endif
2817
2818 ev_feed_event (EV_A_ w, EV_STAT);
2819 }
2820}
2821
2822void
2823ev_stat_start (EV_P_ ev_stat *w)
2824{
2825 if (expect_false (ev_is_active (w)))
2826 return;
2827
2828 ev_stat_stat (EV_A_ w);
2829
2830 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2831 w->interval = MIN_STAT_INTERVAL;
2832
2833 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2834 ev_set_priority (&w->timer, ev_priority (w));
2835
2836#if EV_USE_INOTIFY
2837 infy_init (EV_A);
2838
2839 if (fs_fd >= 0)
2840 infy_add (EV_A_ w);
2841 else
2842#endif
2843 ev_timer_again (EV_A_ &w->timer);
2844
2845 ev_start (EV_A_ (W)w, 1);
2846
2847 EV_FREQUENT_CHECK;
2848}
2849
2850void
2851ev_stat_stop (EV_P_ ev_stat *w)
2852{
2853 clear_pending (EV_A_ (W)w);
2854 if (expect_false (!ev_is_active (w)))
2855 return;
2856
2857 EV_FREQUENT_CHECK;
2858
2859#if EV_USE_INOTIFY
2860 infy_del (EV_A_ w);
2861#endif
2862 ev_timer_stop (EV_A_ &w->timer);
2863
2864 ev_stop (EV_A_ (W)w);
2865
2866 EV_FREQUENT_CHECK;
2867}
2868#endif
2869
2870#if EV_IDLE_ENABLE
2871void
2872ev_idle_start (EV_P_ ev_idle *w)
2873{
2874 if (expect_false (ev_is_active (w)))
2875 return;
2876
2877 pri_adjust (EV_A_ (W)w);
2878
2879 EV_FREQUENT_CHECK;
2880
2881 {
2882 int active = ++idlecnt [ABSPRI (w)];
2883
2884 ++idleall;
2885 ev_start (EV_A_ (W)w, active);
2886
2887 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2888 idles [ABSPRI (w)][active - 1] = w;
2889 }
2890
2891 EV_FREQUENT_CHECK;
2892}
2893
2894void
2895ev_idle_stop (EV_P_ ev_idle *w)
2896{
2897 clear_pending (EV_A_ (W)w);
2898 if (expect_false (!ev_is_active (w)))
2899 return;
2900
2901 EV_FREQUENT_CHECK;
2902
2903 {
2904 int active = ev_active (w);
2905
2906 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2907 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2908
2909 ev_stop (EV_A_ (W)w);
2910 --idleall;
2911 }
2912
2913 EV_FREQUENT_CHECK;
2914}
2915#endif
2916
2917void
2918ev_prepare_start (EV_P_ ev_prepare *w)
2919{
2920 if (expect_false (ev_is_active (w)))
2921 return;
2922
2923 EV_FREQUENT_CHECK;
2924
2925 ev_start (EV_A_ (W)w, ++preparecnt);
2926 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2927 prepares [preparecnt - 1] = w;
2928
2929 EV_FREQUENT_CHECK;
2930}
2931
2932void
2933ev_prepare_stop (EV_P_ ev_prepare *w)
2934{
2935 clear_pending (EV_A_ (W)w);
2936 if (expect_false (!ev_is_active (w)))
2937 return;
2938
2939 EV_FREQUENT_CHECK;
2940
2941 {
2942 int active = ev_active (w);
2943
2944 prepares [active - 1] = prepares [--preparecnt];
2945 ev_active (prepares [active - 1]) = active;
2946 }
2947
2948 ev_stop (EV_A_ (W)w);
2949
2950 EV_FREQUENT_CHECK;
2951}
2952
2953void
2954ev_check_start (EV_P_ ev_check *w)
2955{
2956 if (expect_false (ev_is_active (w)))
2957 return;
2958
2959 EV_FREQUENT_CHECK;
2960
2961 ev_start (EV_A_ (W)w, ++checkcnt);
2962 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2963 checks [checkcnt - 1] = w;
2964
2965 EV_FREQUENT_CHECK;
2966}
2967
2968void
2969ev_check_stop (EV_P_ ev_check *w)
2970{
2971 clear_pending (EV_A_ (W)w);
2972 if (expect_false (!ev_is_active (w)))
2973 return;
2974
2975 EV_FREQUENT_CHECK;
2976
2977 {
2978 int active = ev_active (w);
2979
2980 checks [active - 1] = checks [--checkcnt];
2981 ev_active (checks [active - 1]) = active;
2982 }
2983
2984 ev_stop (EV_A_ (W)w);
2985
2986 EV_FREQUENT_CHECK;
2987}
2988
2989#if EV_EMBED_ENABLE
2990void noinline
2991ev_embed_sweep (EV_P_ ev_embed *w)
2992{
2993 ev_loop (w->other, EVLOOP_NONBLOCK);
2994}
2995
2996static void
2997embed_io_cb (EV_P_ ev_io *io, int revents)
2998{
2999 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3000
3001 if (ev_cb (w))
3002 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3003 else
3004 ev_loop (w->other, EVLOOP_NONBLOCK);
3005}
3006
3007static void
3008embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3009{
3010 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3011
3012 {
3013 struct ev_loop *loop = w->other;
3014
3015 while (fdchangecnt)
3016 {
3017 fd_reify (EV_A);
3018 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3019 }
3020 }
3021}
3022
3023static void
3024embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3025{
3026 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3027
3028 ev_embed_stop (EV_A_ w);
3029
3030 {
3031 struct ev_loop *loop = w->other;
3032
3033 ev_loop_fork (EV_A);
3034 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3035 }
3036
3037 ev_embed_start (EV_A_ w);
3038}
3039
3040#if 0
3041static void
3042embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3043{
3044 ev_idle_stop (EV_A_ idle);
3045}
3046#endif
3047
3048void
3049ev_embed_start (EV_P_ ev_embed *w)
3050{
3051 if (expect_false (ev_is_active (w)))
3052 return;
3053
3054 {
3055 struct ev_loop *loop = w->other;
3056 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3057 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3058 }
3059
3060 EV_FREQUENT_CHECK;
3061
3062 ev_set_priority (&w->io, ev_priority (w));
3063 ev_io_start (EV_A_ &w->io);
3064
3065 ev_prepare_init (&w->prepare, embed_prepare_cb);
3066 ev_set_priority (&w->prepare, EV_MINPRI);
3067 ev_prepare_start (EV_A_ &w->prepare);
3068
3069 ev_fork_init (&w->fork, embed_fork_cb);
3070 ev_fork_start (EV_A_ &w->fork);
3071
3072 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3073
3074 ev_start (EV_A_ (W)w, 1);
3075
3076 EV_FREQUENT_CHECK;
3077}
3078
3079void
3080ev_embed_stop (EV_P_ ev_embed *w)
3081{
3082 clear_pending (EV_A_ (W)w);
3083 if (expect_false (!ev_is_active (w)))
3084 return;
3085
3086 EV_FREQUENT_CHECK;
3087
3088 ev_io_stop (EV_A_ &w->io);
3089 ev_prepare_stop (EV_A_ &w->prepare);
3090 ev_fork_stop (EV_A_ &w->fork);
3091
3092 EV_FREQUENT_CHECK;
3093}
3094#endif
3095
3096#if EV_FORK_ENABLE
3097void
3098ev_fork_start (EV_P_ ev_fork *w)
3099{
3100 if (expect_false (ev_is_active (w)))
3101 return;
3102
3103 EV_FREQUENT_CHECK;
3104
3105 ev_start (EV_A_ (W)w, ++forkcnt);
3106 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3107 forks [forkcnt - 1] = w;
3108
3109 EV_FREQUENT_CHECK;
3110}
3111
3112void
3113ev_fork_stop (EV_P_ ev_fork *w)
3114{
3115 clear_pending (EV_A_ (W)w);
3116 if (expect_false (!ev_is_active (w)))
3117 return;
3118
3119 EV_FREQUENT_CHECK;
3120
3121 {
3122 int active = ev_active (w);
3123
3124 forks [active - 1] = forks [--forkcnt];
3125 ev_active (forks [active - 1]) = active;
3126 }
3127
3128 ev_stop (EV_A_ (W)w);
3129
3130 EV_FREQUENT_CHECK;
3131}
3132#endif
3133
3134#if EV_ASYNC_ENABLE
3135void
3136ev_async_start (EV_P_ ev_async *w)
3137{
3138 if (expect_false (ev_is_active (w)))
3139 return;
3140
3141 evpipe_init (EV_A);
3142
3143 EV_FREQUENT_CHECK;
3144
3145 ev_start (EV_A_ (W)w, ++asynccnt);
3146 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3147 asyncs [asynccnt - 1] = w;
3148
3149 EV_FREQUENT_CHECK;
3150}
3151
3152void
3153ev_async_stop (EV_P_ ev_async *w)
3154{
3155 clear_pending (EV_A_ (W)w);
3156 if (expect_false (!ev_is_active (w)))
3157 return;
3158
3159 EV_FREQUENT_CHECK;
3160
3161 {
3162 int active = ev_active (w);
3163
3164 asyncs [active - 1] = asyncs [--asynccnt];
3165 ev_active (asyncs [active - 1]) = active;
3166 }
3167
3168 ev_stop (EV_A_ (W)w);
3169
3170 EV_FREQUENT_CHECK;
3171}
3172
3173void
3174ev_async_send (EV_P_ ev_async *w)
3175{
3176 w->sent = 1;
3177 evpipe_write (EV_A_ &gotasync);
3178}
3179#endif
1604 3180
1605/*****************************************************************************/ 3181/*****************************************************************************/
1606 3182
1607struct ev_once 3183struct ev_once
1608{ 3184{
1609 struct ev_io io; 3185 ev_io io;
1610 struct ev_timer to; 3186 ev_timer to;
1611 void (*cb)(int revents, void *arg); 3187 void (*cb)(int revents, void *arg);
1612 void *arg; 3188 void *arg;
1613}; 3189};
1614 3190
1615static void 3191static void
1616once_cb (EV_P_ struct ev_once *once, int revents) 3192once_cb (EV_P_ struct ev_once *once, int revents)
1617{ 3193{
1618 void (*cb)(int revents, void *arg) = once->cb; 3194 void (*cb)(int revents, void *arg) = once->cb;
1619 void *arg = once->arg; 3195 void *arg = once->arg;
1620 3196
1621 ev_io_stop (EV_A_ &once->io); 3197 ev_io_stop (EV_A_ &once->io);
1622 ev_timer_stop (EV_A_ &once->to); 3198 ev_timer_stop (EV_A_ &once->to);
1623 ev_free (once); 3199 ev_free (once);
1624 3200
1625 cb (revents, arg); 3201 cb (revents, arg);
1626} 3202}
1627 3203
1628static void 3204static void
1629once_cb_io (EV_P_ struct ev_io *w, int revents) 3205once_cb_io (EV_P_ ev_io *w, int revents)
1630{ 3206{
1631 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3207 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3208
3209 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1632} 3210}
1633 3211
1634static void 3212static void
1635once_cb_to (EV_P_ struct ev_timer *w, int revents) 3213once_cb_to (EV_P_ ev_timer *w, int revents)
1636{ 3214{
1637 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3215 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3216
3217 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1638} 3218}
1639 3219
1640void 3220void
1641ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3221ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1642{ 3222{
1643 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3223 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1644 3224
1645 if (!once) 3225 if (expect_false (!once))
3226 {
1646 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3227 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1647 else 3228 return;
1648 { 3229 }
3230
1649 once->cb = cb; 3231 once->cb = cb;
1650 once->arg = arg; 3232 once->arg = arg;
1651 3233
1652 ev_init (&once->io, once_cb_io); 3234 ev_init (&once->io, once_cb_io);
1653 if (fd >= 0) 3235 if (fd >= 0)
3236 {
3237 ev_io_set (&once->io, fd, events);
3238 ev_io_start (EV_A_ &once->io);
3239 }
3240
3241 ev_init (&once->to, once_cb_to);
3242 if (timeout >= 0.)
3243 {
3244 ev_timer_set (&once->to, timeout, 0.);
3245 ev_timer_start (EV_A_ &once->to);
3246 }
3247}
3248
3249/*****************************************************************************/
3250
3251#if EV_WALK_ENABLE
3252void
3253ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3254{
3255 int i, j;
3256 ev_watcher_list *wl, *wn;
3257
3258 if (types & (EV_IO | EV_EMBED))
3259 for (i = 0; i < anfdmax; ++i)
3260 for (wl = anfds [i].head; wl; )
1654 { 3261 {
1655 ev_io_set (&once->io, fd, events); 3262 wn = wl->next;
1656 ev_io_start (EV_A_ &once->io); 3263
3264#if EV_EMBED_ENABLE
3265 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3266 {
3267 if (types & EV_EMBED)
3268 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3269 }
3270 else
3271#endif
3272#if EV_USE_INOTIFY
3273 if (ev_cb ((ev_io *)wl) == infy_cb)
3274 ;
3275 else
3276#endif
3277 if ((ev_io *)wl != &pipe_w)
3278 if (types & EV_IO)
3279 cb (EV_A_ EV_IO, wl);
3280
3281 wl = wn;
1657 } 3282 }
1658 3283
1659 ev_init (&once->to, once_cb_to); 3284 if (types & (EV_TIMER | EV_STAT))
1660 if (timeout >= 0.) 3285 for (i = timercnt + HEAP0; i-- > HEAP0; )
3286#if EV_STAT_ENABLE
3287 /*TODO: timer is not always active*/
3288 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1661 { 3289 {
1662 ev_timer_set (&once->to, timeout, 0.); 3290 if (types & EV_STAT)
1663 ev_timer_start (EV_A_ &once->to); 3291 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1664 } 3292 }
1665 } 3293 else
3294#endif
3295 if (types & EV_TIMER)
3296 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3297
3298#if EV_PERIODIC_ENABLE
3299 if (types & EV_PERIODIC)
3300 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3301 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3302#endif
3303
3304#if EV_IDLE_ENABLE
3305 if (types & EV_IDLE)
3306 for (j = NUMPRI; i--; )
3307 for (i = idlecnt [j]; i--; )
3308 cb (EV_A_ EV_IDLE, idles [j][i]);
3309#endif
3310
3311#if EV_FORK_ENABLE
3312 if (types & EV_FORK)
3313 for (i = forkcnt; i--; )
3314 if (ev_cb (forks [i]) != embed_fork_cb)
3315 cb (EV_A_ EV_FORK, forks [i]);
3316#endif
3317
3318#if EV_ASYNC_ENABLE
3319 if (types & EV_ASYNC)
3320 for (i = asynccnt; i--; )
3321 cb (EV_A_ EV_ASYNC, asyncs [i]);
3322#endif
3323
3324 if (types & EV_PREPARE)
3325 for (i = preparecnt; i--; )
3326#if EV_EMBED_ENABLE
3327 if (ev_cb (prepares [i]) != embed_prepare_cb)
3328#endif
3329 cb (EV_A_ EV_PREPARE, prepares [i]);
3330
3331 if (types & EV_CHECK)
3332 for (i = checkcnt; i--; )
3333 cb (EV_A_ EV_CHECK, checks [i]);
3334
3335 if (types & EV_SIGNAL)
3336 for (i = 0; i < signalmax; ++i)
3337 for (wl = signals [i].head; wl; )
3338 {
3339 wn = wl->next;
3340 cb (EV_A_ EV_SIGNAL, wl);
3341 wl = wn;
3342 }
3343
3344 if (types & EV_CHILD)
3345 for (i = EV_PID_HASHSIZE; i--; )
3346 for (wl = childs [i]; wl; )
3347 {
3348 wn = wl->next;
3349 cb (EV_A_ EV_CHILD, wl);
3350 wl = wn;
3351 }
3352/* EV_STAT 0x00001000 /* stat data changed */
3353/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
1666} 3354}
3355#endif
3356
3357#if EV_MULTIPLICITY
3358 #include "ev_wrap.h"
3359#endif
1667 3360
1668#ifdef __cplusplus 3361#ifdef __cplusplus
1669} 3362}
1670#endif 3363#endif
1671 3364

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines