ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.200 by root, Wed Dec 26 08:06:09 2007 UTC vs.
Revision 1.291 by root, Mon Jun 29 04:44:18 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
49# endif 50# endif
50 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
51# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
54# endif 69# endif
55# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
57# endif 72# endif
58# else 73# else
59# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
61# endif 76# endif
118# else 133# else
119# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
120# endif 135# endif
121# endif 136# endif
122 137
138# ifndef EV_USE_EVENTFD
139# if HAVE_EVENTFD
140# define EV_USE_EVENTFD 1
141# else
142# define EV_USE_EVENTFD 0
143# endif
144# endif
145
123#endif 146#endif
124 147
125#include <math.h> 148#include <math.h>
126#include <stdlib.h> 149#include <stdlib.h>
127#include <fcntl.h> 150#include <fcntl.h>
145#ifndef _WIN32 168#ifndef _WIN32
146# include <sys/time.h> 169# include <sys/time.h>
147# include <sys/wait.h> 170# include <sys/wait.h>
148# include <unistd.h> 171# include <unistd.h>
149#else 172#else
173# include <io.h>
150# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
151# include <windows.h> 175# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
154# endif 178# endif
155#endif 179#endif
156 180
157/**/ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
158 190
159#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
160# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
161#endif 197#endif
162 198
163#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 201#endif
166 202
167#ifndef EV_USE_NANOSLEEP 203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
168# define EV_USE_NANOSLEEP 0 207# define EV_USE_NANOSLEEP 0
208# endif
169#endif 209#endif
170 210
171#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
173#endif 213#endif
179# define EV_USE_POLL 1 219# define EV_USE_POLL 1
180# endif 220# endif
181#endif 221#endif
182 222
183#ifndef EV_USE_EPOLL 223#ifndef EV_USE_EPOLL
224# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225# define EV_USE_EPOLL 1
226# else
184# define EV_USE_EPOLL 0 227# define EV_USE_EPOLL 0
228# endif
185#endif 229#endif
186 230
187#ifndef EV_USE_KQUEUE 231#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 232# define EV_USE_KQUEUE 0
189#endif 233#endif
191#ifndef EV_USE_PORT 235#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 236# define EV_USE_PORT 0
193#endif 237#endif
194 238
195#ifndef EV_USE_INOTIFY 239#ifndef EV_USE_INOTIFY
240# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
241# define EV_USE_INOTIFY 1
242# else
196# define EV_USE_INOTIFY 0 243# define EV_USE_INOTIFY 0
244# endif
197#endif 245#endif
198 246
199#ifndef EV_PID_HASHSIZE 247#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 248# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 249# define EV_PID_HASHSIZE 1
210# else 258# else
211# define EV_INOTIFY_HASHSIZE 16 259# define EV_INOTIFY_HASHSIZE 16
212# endif 260# endif
213#endif 261#endif
214 262
215/**/ 263#ifndef EV_USE_EVENTFD
264# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265# define EV_USE_EVENTFD 1
266# else
267# define EV_USE_EVENTFD 0
268# endif
269#endif
270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 304
217#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
220#endif 308#endif
234# include <sys/select.h> 322# include <sys/select.h>
235# endif 323# endif
236#endif 324#endif
237 325
238#if EV_USE_INOTIFY 326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
239# include <sys/inotify.h> 329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
240#endif 335#endif
241 336
242#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 338# include <winsock.h>
244#endif 339#endif
245 340
341#if EV_USE_EVENTFD
342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343# include <stdint.h>
344# ifdef __cplusplus
345extern "C" {
346# endif
347int eventfd (unsigned int initval, int flags);
348# ifdef __cplusplus
349}
350# endif
351#endif
352
246/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
247 360
248/* 361/*
249 * This is used to avoid floating point rounding problems. 362 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics 363 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding 364 * to ensure progress, time-wise, even when rounding
263# define expect(expr,value) __builtin_expect ((expr),(value)) 376# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 377# define noinline __attribute__ ((noinline))
265#else 378#else
266# define expect(expr,value) (expr) 379# define expect(expr,value) (expr)
267# define noinline 380# define noinline
268# if __STDC_VERSION__ < 199901L 381# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 382# define inline
270# endif 383# endif
271#endif 384#endif
272 385
273#define expect_false(expr) expect ((expr) != 0, 0) 386#define expect_false(expr) expect ((expr) != 0, 0)
288 401
289typedef ev_watcher *W; 402typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 403typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 404typedef ev_watcher_time *WT;
292 405
293#if EV_USE_MONOTONIC 406#define ev_active(w) ((W)(w))->active
407#define ev_at(w) ((WT)(w))->at
408
409#if EV_USE_REALTIME
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 410/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 411/* giving it a reasonably high chance of working on typical architetcures */
412static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
413#endif
414
415#if EV_USE_MONOTONIC
296static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 416static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif 417#endif
298 418
299#ifdef _WIN32 419#ifdef _WIN32
300# include "ev_win32.c" 420# include "ev_win32.c"
301#endif 421#endif
309{ 429{
310 syserr_cb = cb; 430 syserr_cb = cb;
311} 431}
312 432
313static void noinline 433static void noinline
314syserr (const char *msg) 434ev_syserr (const char *msg)
315{ 435{
316 if (!msg) 436 if (!msg)
317 msg = "(libev) system error"; 437 msg = "(libev) system error";
318 438
319 if (syserr_cb) 439 if (syserr_cb)
323 perror (msg); 443 perror (msg);
324 abort (); 444 abort ();
325 } 445 }
326} 446}
327 447
448static void *
449ev_realloc_emul (void *ptr, long size)
450{
451 /* some systems, notably openbsd and darwin, fail to properly
452 * implement realloc (x, 0) (as required by both ansi c-98 and
453 * the single unix specification, so work around them here.
454 */
455
456 if (size)
457 return realloc (ptr, size);
458
459 free (ptr);
460 return 0;
461}
462
328static void *(*alloc)(void *ptr, long size); 463static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 464
330void 465void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 466ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 467{
333 alloc = cb; 468 alloc = cb;
334} 469}
335 470
336inline_speed void * 471inline_speed void *
337ev_realloc (void *ptr, long size) 472ev_realloc (void *ptr, long size)
338{ 473{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 474 ptr = alloc (ptr, size);
340 475
341 if (!ptr && size) 476 if (!ptr && size)
342 { 477 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 478 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 479 abort ();
350#define ev_malloc(size) ev_realloc (0, (size)) 485#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 486#define ev_free(ptr) ev_realloc ((ptr), 0)
352 487
353/*****************************************************************************/ 488/*****************************************************************************/
354 489
490/* file descriptor info structure */
355typedef struct 491typedef struct
356{ 492{
357 WL head; 493 WL head;
358 unsigned char events; 494 unsigned char events; /* the events watched for */
495 unsigned char reify; /* flag set when this ANFD needs reification */
496 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
359 unsigned char reify; 497 unsigned char unused;
498#if EV_USE_EPOLL
499 unsigned int egen; /* generation counter to counter epoll bugs */
500#endif
360#if EV_SELECT_IS_WINSOCKET 501#if EV_SELECT_IS_WINSOCKET
361 SOCKET handle; 502 SOCKET handle;
362#endif 503#endif
363} ANFD; 504} ANFD;
364 505
506/* stores the pending event set for a given watcher */
365typedef struct 507typedef struct
366{ 508{
367 W w; 509 W w;
368 int events; 510 int events; /* the pending event set for the given watcher */
369} ANPENDING; 511} ANPENDING;
370 512
371#if EV_USE_INOTIFY 513#if EV_USE_INOTIFY
514/* hash table entry per inotify-id */
372typedef struct 515typedef struct
373{ 516{
374 WL head; 517 WL head;
375} ANFS; 518} ANFS;
519#endif
520
521/* Heap Entry */
522#if EV_HEAP_CACHE_AT
523 /* a heap element */
524 typedef struct {
525 ev_tstamp at;
526 WT w;
527 } ANHE;
528
529 #define ANHE_w(he) (he).w /* access watcher, read-write */
530 #define ANHE_at(he) (he).at /* access cached at, read-only */
531 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
532#else
533 /* a heap element */
534 typedef WT ANHE;
535
536 #define ANHE_w(he) (he)
537 #define ANHE_at(he) (he)->at
538 #define ANHE_at_cache(he)
376#endif 539#endif
377 540
378#if EV_MULTIPLICITY 541#if EV_MULTIPLICITY
379 542
380 struct ev_loop 543 struct ev_loop
405 568
406ev_tstamp 569ev_tstamp
407ev_time (void) 570ev_time (void)
408{ 571{
409#if EV_USE_REALTIME 572#if EV_USE_REALTIME
573 if (expect_true (have_realtime))
574 {
410 struct timespec ts; 575 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 576 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 577 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 578 }
579#endif
580
414 struct timeval tv; 581 struct timeval tv;
415 gettimeofday (&tv, 0); 582 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 583 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 584}
419 585
420ev_tstamp inline_size 586inline_size ev_tstamp
421get_clock (void) 587get_clock (void)
422{ 588{
423#if EV_USE_MONOTONIC 589#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 590 if (expect_true (have_monotonic))
425 { 591 {
451 ts.tv_sec = (time_t)delay; 617 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 618 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 619
454 nanosleep (&ts, 0); 620 nanosleep (&ts, 0);
455#elif defined(_WIN32) 621#elif defined(_WIN32)
456 Sleep (delay * 1e3); 622 Sleep ((unsigned long)(delay * 1e3));
457#else 623#else
458 struct timeval tv; 624 struct timeval tv;
459 625
460 tv.tv_sec = (time_t)delay; 626 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 627 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462 628
629 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
630 /* somehting nto guaranteed by newer posix versions, but guaranteed */
631 /* by older ones */
463 select (0, 0, 0, 0, &tv); 632 select (0, 0, 0, 0, &tv);
464#endif 633#endif
465 } 634 }
466} 635}
467 636
468/*****************************************************************************/ 637/*****************************************************************************/
469 638
470int inline_size 639#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
640
641/* find a suitable new size for the given array, */
642/* hopefully by rounding to a ncie-to-malloc size */
643inline_size int
471array_nextsize (int elem, int cur, int cnt) 644array_nextsize (int elem, int cur, int cnt)
472{ 645{
473 int ncur = cur + 1; 646 int ncur = cur + 1;
474 647
475 do 648 do
476 ncur <<= 1; 649 ncur <<= 1;
477 while (cnt > ncur); 650 while (cnt > ncur);
478 651
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 652 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 653 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 654 {
482 ncur *= elem; 655 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 656 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 657 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 658 ncur /= elem;
486 } 659 }
487 660
488 return ncur; 661 return ncur;
492array_realloc (int elem, void *base, int *cur, int cnt) 665array_realloc (int elem, void *base, int *cur, int cnt)
493{ 666{
494 *cur = array_nextsize (elem, *cur, cnt); 667 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 668 return ev_realloc (base, elem * *cur);
496} 669}
670
671#define array_init_zero(base,count) \
672 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 673
498#define array_needsize(type,base,cur,cnt,init) \ 674#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 675 if (expect_false ((cnt) > (cur))) \
500 { \ 676 { \
501 int ocur_ = (cur); \ 677 int ocur_ = (cur); \
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 689 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 690 }
515#endif 691#endif
516 692
517#define array_free(stem, idx) \ 693#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 694 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 695
520/*****************************************************************************/ 696/*****************************************************************************/
697
698/* dummy callback for pending events */
699static void noinline
700pendingcb (EV_P_ ev_prepare *w, int revents)
701{
702}
521 703
522void noinline 704void noinline
523ev_feed_event (EV_P_ void *w, int revents) 705ev_feed_event (EV_P_ void *w, int revents)
524{ 706{
525 W w_ = (W)w; 707 W w_ = (W)w;
534 pendings [pri][w_->pending - 1].w = w_; 716 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 717 pendings [pri][w_->pending - 1].events = revents;
536 } 718 }
537} 719}
538 720
539void inline_speed 721inline_speed void
722feed_reverse (EV_P_ W w)
723{
724 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
725 rfeeds [rfeedcnt++] = w;
726}
727
728inline_size void
729feed_reverse_done (EV_P_ int revents)
730{
731 do
732 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
733 while (rfeedcnt);
734}
735
736inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 737queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 738{
542 int i; 739 int i;
543 740
544 for (i = 0; i < eventcnt; ++i) 741 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 742 ev_feed_event (EV_A_ events [i], type);
546} 743}
547 744
548/*****************************************************************************/ 745/*****************************************************************************/
549 746
550void inline_size 747inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 748fd_event (EV_P_ int fd, int revents)
565{ 749{
566 ANFD *anfd = anfds + fd; 750 ANFD *anfd = anfds + fd;
567 ev_io *w; 751 ev_io *w;
568 752
580{ 764{
581 if (fd >= 0 && fd < anfdmax) 765 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 766 fd_event (EV_A_ fd, revents);
583} 767}
584 768
585void inline_size 769/* make sure the external fd watch events are in-sync */
770/* with the kernel/libev internal state */
771inline_size void
586fd_reify (EV_P) 772fd_reify (EV_P)
587{ 773{
588 int i; 774 int i;
589 775
590 for (i = 0; i < fdchangecnt; ++i) 776 for (i = 0; i < fdchangecnt; ++i)
599 events |= (unsigned char)w->events; 785 events |= (unsigned char)w->events;
600 786
601#if EV_SELECT_IS_WINSOCKET 787#if EV_SELECT_IS_WINSOCKET
602 if (events) 788 if (events)
603 { 789 {
604 unsigned long argp; 790 unsigned long arg;
605 #ifdef EV_FD_TO_WIN32_HANDLE 791 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 792 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else 793 #else
608 anfd->handle = _get_osfhandle (fd); 794 anfd->handle = _get_osfhandle (fd);
609 #endif 795 #endif
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 796 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
611 } 797 }
612#endif 798#endif
613 799
614 { 800 {
615 unsigned char o_events = anfd->events; 801 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify; 802 unsigned char o_reify = anfd->reify;
617 803
618 anfd->reify = 0; 804 anfd->reify = 0;
619 anfd->events = events; 805 anfd->events = events;
620 806
621 if (o_events != events || o_reify & EV_IOFDSET) 807 if (o_events != events || o_reify & EV__IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events); 808 backend_modify (EV_A_ fd, o_events, events);
623 } 809 }
624 } 810 }
625 811
626 fdchangecnt = 0; 812 fdchangecnt = 0;
627} 813}
628 814
629void inline_size 815/* something about the given fd changed */
816inline_size void
630fd_change (EV_P_ int fd, int flags) 817fd_change (EV_P_ int fd, int flags)
631{ 818{
632 unsigned char reify = anfds [fd].reify; 819 unsigned char reify = anfds [fd].reify;
633 anfds [fd].reify |= flags; 820 anfds [fd].reify |= flags;
634 821
638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 825 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
639 fdchanges [fdchangecnt - 1] = fd; 826 fdchanges [fdchangecnt - 1] = fd;
640 } 827 }
641} 828}
642 829
643void inline_speed 830/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
831inline_speed void
644fd_kill (EV_P_ int fd) 832fd_kill (EV_P_ int fd)
645{ 833{
646 ev_io *w; 834 ev_io *w;
647 835
648 while ((w = (ev_io *)anfds [fd].head)) 836 while ((w = (ev_io *)anfds [fd].head))
650 ev_io_stop (EV_A_ w); 838 ev_io_stop (EV_A_ w);
651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 839 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
652 } 840 }
653} 841}
654 842
655int inline_size 843/* check whether the given fd is atcually valid, for error recovery */
844inline_size int
656fd_valid (int fd) 845fd_valid (int fd)
657{ 846{
658#ifdef _WIN32 847#ifdef _WIN32
659 return _get_osfhandle (fd) != -1; 848 return _get_osfhandle (fd) != -1;
660#else 849#else
668{ 857{
669 int fd; 858 int fd;
670 859
671 for (fd = 0; fd < anfdmax; ++fd) 860 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 861 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 862 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 863 fd_kill (EV_A_ fd);
675} 864}
676 865
677/* called on ENOMEM in select/poll to kill some fds and retry */ 866/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 867static void noinline
696 885
697 for (fd = 0; fd < anfdmax; ++fd) 886 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 887 if (anfds [fd].events)
699 { 888 {
700 anfds [fd].events = 0; 889 anfds [fd].events = 0;
890 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 891 fd_change (EV_A_ fd, EV__IOFDSET | 1);
702 } 892 }
703} 893}
704 894
705/*****************************************************************************/ 895/*****************************************************************************/
706 896
707void inline_speed 897/*
708upheap (WT *heap, int k) 898 * the heap functions want a real array index. array index 0 uis guaranteed to not
709{ 899 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
710 WT w = heap [k]; 900 * the branching factor of the d-tree.
901 */
711 902
712 while (k) 903/*
713 { 904 * at the moment we allow libev the luxury of two heaps,
714 int p = (k - 1) >> 1; 905 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
906 * which is more cache-efficient.
907 * the difference is about 5% with 50000+ watchers.
908 */
909#if EV_USE_4HEAP
715 910
716 if (heap [p]->at <= w->at) 911#define DHEAP 4
912#define HEAP0 (DHEAP - 1) /* index of first element in heap */
913#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
914#define UPHEAP_DONE(p,k) ((p) == (k))
915
916/* away from the root */
917inline_speed void
918downheap (ANHE *heap, int N, int k)
919{
920 ANHE he = heap [k];
921 ANHE *E = heap + N + HEAP0;
922
923 for (;;)
924 {
925 ev_tstamp minat;
926 ANHE *minpos;
927 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
928
929 /* find minimum child */
930 if (expect_true (pos + DHEAP - 1 < E))
931 {
932 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
933 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
934 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
935 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
936 }
937 else if (pos < E)
938 {
939 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
940 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
941 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
942 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
943 }
944 else
717 break; 945 break;
718 946
947 if (ANHE_at (he) <= minat)
948 break;
949
950 heap [k] = *minpos;
951 ev_active (ANHE_w (*minpos)) = k;
952
953 k = minpos - heap;
954 }
955
956 heap [k] = he;
957 ev_active (ANHE_w (he)) = k;
958}
959
960#else /* 4HEAP */
961
962#define HEAP0 1
963#define HPARENT(k) ((k) >> 1)
964#define UPHEAP_DONE(p,k) (!(p))
965
966/* away from the root */
967inline_speed void
968downheap (ANHE *heap, int N, int k)
969{
970 ANHE he = heap [k];
971
972 for (;;)
973 {
974 int c = k << 1;
975
976 if (c > N + HEAP0 - 1)
977 break;
978
979 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
980 ? 1 : 0;
981
982 if (ANHE_at (he) <= ANHE_at (heap [c]))
983 break;
984
985 heap [k] = heap [c];
986 ev_active (ANHE_w (heap [k])) = k;
987
988 k = c;
989 }
990
991 heap [k] = he;
992 ev_active (ANHE_w (he)) = k;
993}
994#endif
995
996/* towards the root */
997inline_speed void
998upheap (ANHE *heap, int k)
999{
1000 ANHE he = heap [k];
1001
1002 for (;;)
1003 {
1004 int p = HPARENT (k);
1005
1006 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1007 break;
1008
719 heap [k] = heap [p]; 1009 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1; 1010 ev_active (ANHE_w (heap [k])) = k;
721 k = p; 1011 k = p;
722 } 1012 }
723 1013
724 heap [k] = w; 1014 heap [k] = he;
725 ((W)heap [k])->active = k + 1; 1015 ev_active (ANHE_w (he)) = k;
726} 1016}
727 1017
728void inline_speed 1018/* move an element suitably so it is in a correct place */
729downheap (WT *heap, int N, int k) 1019inline_size void
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754}
755
756void inline_size
757adjustheap (WT *heap, int N, int k) 1020adjustheap (ANHE *heap, int N, int k)
758{ 1021{
1022 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
759 upheap (heap, k); 1023 upheap (heap, k);
1024 else
760 downheap (heap, N, k); 1025 downheap (heap, N, k);
1026}
1027
1028/* rebuild the heap: this function is used only once and executed rarely */
1029inline_size void
1030reheap (ANHE *heap, int N)
1031{
1032 int i;
1033
1034 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1035 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1036 for (i = 0; i < N; ++i)
1037 upheap (heap, i + HEAP0);
761} 1038}
762 1039
763/*****************************************************************************/ 1040/*****************************************************************************/
764 1041
1042/* associate signal watchers to a signal signal */
765typedef struct 1043typedef struct
766{ 1044{
767 WL head; 1045 WL head;
768 sig_atomic_t volatile gotsig; 1046 EV_ATOMIC_T gotsig;
769} ANSIG; 1047} ANSIG;
770 1048
771static ANSIG *signals; 1049static ANSIG *signals;
772static int signalmax; 1050static int signalmax;
773 1051
774static int sigpipe [2]; 1052static EV_ATOMIC_T gotsig;
775static sig_atomic_t volatile gotsig;
776static ev_io sigev;
777 1053
778void inline_size 1054/*****************************************************************************/
779signals_init (ANSIG *base, int count)
780{
781 while (count--)
782 {
783 base->head = 0;
784 base->gotsig = 0;
785 1055
786 ++base; 1056/* used to prepare libev internal fd's */
787 } 1057/* this is not fork-safe */
788} 1058inline_speed void
789
790static void
791sighandler (int signum)
792{
793#if _WIN32
794 signal (signum, sighandler);
795#endif
796
797 signals [signum - 1].gotsig = 1;
798
799 if (!gotsig)
800 {
801 int old_errno = errno;
802 gotsig = 1;
803 write (sigpipe [1], &signum, 1);
804 errno = old_errno;
805 }
806}
807
808void noinline
809ev_feed_signal_event (EV_P_ int signum)
810{
811 WL w;
812
813#if EV_MULTIPLICITY
814 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
815#endif
816
817 --signum;
818
819 if (signum < 0 || signum >= signalmax)
820 return;
821
822 signals [signum].gotsig = 0;
823
824 for (w = signals [signum].head; w; w = w->next)
825 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
826}
827
828static void
829sigcb (EV_P_ ev_io *iow, int revents)
830{
831 int signum;
832
833 read (sigpipe [0], &revents, 1);
834 gotsig = 0;
835
836 for (signum = signalmax; signum--; )
837 if (signals [signum].gotsig)
838 ev_feed_signal_event (EV_A_ signum + 1);
839}
840
841void inline_speed
842fd_intern (int fd) 1059fd_intern (int fd)
843{ 1060{
844#ifdef _WIN32 1061#ifdef _WIN32
845 int arg = 1; 1062 unsigned long arg = 1;
846 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1063 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
847#else 1064#else
848 fcntl (fd, F_SETFD, FD_CLOEXEC); 1065 fcntl (fd, F_SETFD, FD_CLOEXEC);
849 fcntl (fd, F_SETFL, O_NONBLOCK); 1066 fcntl (fd, F_SETFL, O_NONBLOCK);
850#endif 1067#endif
851} 1068}
852 1069
853static void noinline 1070static void noinline
854siginit (EV_P) 1071evpipe_init (EV_P)
855{ 1072{
1073 if (!ev_is_active (&pipe_w))
1074 {
1075#if EV_USE_EVENTFD
1076 if ((evfd = eventfd (0, 0)) >= 0)
1077 {
1078 evpipe [0] = -1;
1079 fd_intern (evfd);
1080 ev_io_set (&pipe_w, evfd, EV_READ);
1081 }
1082 else
1083#endif
1084 {
1085 while (pipe (evpipe))
1086 ev_syserr ("(libev) error creating signal/async pipe");
1087
856 fd_intern (sigpipe [0]); 1088 fd_intern (evpipe [0]);
857 fd_intern (sigpipe [1]); 1089 fd_intern (evpipe [1]);
1090 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1091 }
858 1092
859 ev_io_set (&sigev, sigpipe [0], EV_READ);
860 ev_io_start (EV_A_ &sigev); 1093 ev_io_start (EV_A_ &pipe_w);
861 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1094 ev_unref (EV_A); /* watcher should not keep loop alive */
1095 }
1096}
1097
1098inline_size void
1099evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1100{
1101 if (!*flag)
1102 {
1103 int old_errno = errno; /* save errno because write might clobber it */
1104
1105 *flag = 1;
1106
1107#if EV_USE_EVENTFD
1108 if (evfd >= 0)
1109 {
1110 uint64_t counter = 1;
1111 write (evfd, &counter, sizeof (uint64_t));
1112 }
1113 else
1114#endif
1115 write (evpipe [1], &old_errno, 1);
1116
1117 errno = old_errno;
1118 }
1119}
1120
1121/* called whenever the libev signal pipe */
1122/* got some events (signal, async) */
1123static void
1124pipecb (EV_P_ ev_io *iow, int revents)
1125{
1126#if EV_USE_EVENTFD
1127 if (evfd >= 0)
1128 {
1129 uint64_t counter;
1130 read (evfd, &counter, sizeof (uint64_t));
1131 }
1132 else
1133#endif
1134 {
1135 char dummy;
1136 read (evpipe [0], &dummy, 1);
1137 }
1138
1139 if (gotsig && ev_is_default_loop (EV_A))
1140 {
1141 int signum;
1142 gotsig = 0;
1143
1144 for (signum = signalmax; signum--; )
1145 if (signals [signum].gotsig)
1146 ev_feed_signal_event (EV_A_ signum + 1);
1147 }
1148
1149#if EV_ASYNC_ENABLE
1150 if (gotasync)
1151 {
1152 int i;
1153 gotasync = 0;
1154
1155 for (i = asynccnt; i--; )
1156 if (asyncs [i]->sent)
1157 {
1158 asyncs [i]->sent = 0;
1159 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1160 }
1161 }
1162#endif
862} 1163}
863 1164
864/*****************************************************************************/ 1165/*****************************************************************************/
865 1166
1167static void
1168ev_sighandler (int signum)
1169{
1170#if EV_MULTIPLICITY
1171 struct ev_loop *loop = &default_loop_struct;
1172#endif
1173
1174#if _WIN32
1175 signal (signum, ev_sighandler);
1176#endif
1177
1178 signals [signum - 1].gotsig = 1;
1179 evpipe_write (EV_A_ &gotsig);
1180}
1181
1182void noinline
1183ev_feed_signal_event (EV_P_ int signum)
1184{
1185 WL w;
1186
1187#if EV_MULTIPLICITY
1188 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1189#endif
1190
1191 --signum;
1192
1193 if (signum < 0 || signum >= signalmax)
1194 return;
1195
1196 signals [signum].gotsig = 0;
1197
1198 for (w = signals [signum].head; w; w = w->next)
1199 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1200}
1201
1202/*****************************************************************************/
1203
866static WL childs [EV_PID_HASHSIZE]; 1204static WL childs [EV_PID_HASHSIZE];
867 1205
868#ifndef _WIN32 1206#ifndef _WIN32
869 1207
870static ev_signal childev; 1208static ev_signal childev;
871 1209
872void inline_speed 1210#ifndef WIFCONTINUED
1211# define WIFCONTINUED(status) 0
1212#endif
1213
1214/* handle a single child status event */
1215inline_speed void
873child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1216child_reap (EV_P_ int chain, int pid, int status)
874{ 1217{
875 ev_child *w; 1218 ev_child *w;
1219 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
876 1220
877 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1221 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1222 {
878 if (w->pid == pid || !w->pid) 1223 if ((w->pid == pid || !w->pid)
1224 && (!traced || (w->flags & 1)))
879 { 1225 {
880 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1226 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
881 w->rpid = pid; 1227 w->rpid = pid;
882 w->rstatus = status; 1228 w->rstatus = status;
883 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1229 ev_feed_event (EV_A_ (W)w, EV_CHILD);
884 } 1230 }
1231 }
885} 1232}
886 1233
887#ifndef WCONTINUED 1234#ifndef WCONTINUED
888# define WCONTINUED 0 1235# define WCONTINUED 0
889#endif 1236#endif
890 1237
1238/* called on sigchld etc., calls waitpid */
891static void 1239static void
892childcb (EV_P_ ev_signal *sw, int revents) 1240childcb (EV_P_ ev_signal *sw, int revents)
893{ 1241{
894 int pid, status; 1242 int pid, status;
895 1243
898 if (!WCONTINUED 1246 if (!WCONTINUED
899 || errno != EINVAL 1247 || errno != EINVAL
900 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1248 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
901 return; 1249 return;
902 1250
903 /* make sure we are called again until all childs have been reaped */ 1251 /* make sure we are called again until all children have been reaped */
904 /* we need to do it this way so that the callback gets called before we continue */ 1252 /* we need to do it this way so that the callback gets called before we continue */
905 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1253 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
906 1254
907 child_reap (EV_A_ sw, pid, pid, status); 1255 child_reap (EV_A_ pid, pid, status);
908 if (EV_PID_HASHSIZE > 1) 1256 if (EV_PID_HASHSIZE > 1)
909 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1257 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
910} 1258}
911 1259
912#endif 1260#endif
913 1261
914/*****************************************************************************/ 1262/*****************************************************************************/
976 /* kqueue is borked on everything but netbsd apparently */ 1324 /* kqueue is borked on everything but netbsd apparently */
977 /* it usually doesn't work correctly on anything but sockets and pipes */ 1325 /* it usually doesn't work correctly on anything but sockets and pipes */
978 flags &= ~EVBACKEND_KQUEUE; 1326 flags &= ~EVBACKEND_KQUEUE;
979#endif 1327#endif
980#ifdef __APPLE__ 1328#ifdef __APPLE__
981 // flags &= ~EVBACKEND_KQUEUE; for documentation 1329 /* only select works correctly on that "unix-certified" platform */
982 flags &= ~EVBACKEND_POLL; 1330 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1331 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
983#endif 1332#endif
984 1333
985 return flags; 1334 return flags;
986} 1335}
987 1336
1019ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1368ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1020{ 1369{
1021 timeout_blocktime = interval; 1370 timeout_blocktime = interval;
1022} 1371}
1023 1372
1373/* initialise a loop structure, must be zero-initialised */
1024static void noinline 1374static void noinline
1025loop_init (EV_P_ unsigned int flags) 1375loop_init (EV_P_ unsigned int flags)
1026{ 1376{
1027 if (!backend) 1377 if (!backend)
1028 { 1378 {
1379#if EV_USE_REALTIME
1380 if (!have_realtime)
1381 {
1382 struct timespec ts;
1383
1384 if (!clock_gettime (CLOCK_REALTIME, &ts))
1385 have_realtime = 1;
1386 }
1387#endif
1388
1029#if EV_USE_MONOTONIC 1389#if EV_USE_MONOTONIC
1390 if (!have_monotonic)
1030 { 1391 {
1031 struct timespec ts; 1392 struct timespec ts;
1393
1032 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1394 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1033 have_monotonic = 1; 1395 have_monotonic = 1;
1034 } 1396 }
1035#endif 1397#endif
1036 1398
1037 ev_rt_now = ev_time (); 1399 ev_rt_now = ev_time ();
1038 mn_now = get_clock (); 1400 mn_now = get_clock ();
1039 now_floor = mn_now; 1401 now_floor = mn_now;
1040 rtmn_diff = ev_rt_now - mn_now; 1402 rtmn_diff = ev_rt_now - mn_now;
1041 1403
1042 io_blocktime = 0.; 1404 io_blocktime = 0.;
1043 timeout_blocktime = 0.; 1405 timeout_blocktime = 0.;
1406 backend = 0;
1407 backend_fd = -1;
1408 gotasync = 0;
1409#if EV_USE_INOTIFY
1410 fs_fd = -2;
1411#endif
1044 1412
1045 /* pid check not overridable via env */ 1413 /* pid check not overridable via env */
1046#ifndef _WIN32 1414#ifndef _WIN32
1047 if (flags & EVFLAG_FORKCHECK) 1415 if (flags & EVFLAG_FORKCHECK)
1048 curpid = getpid (); 1416 curpid = getpid ();
1051 if (!(flags & EVFLAG_NOENV) 1419 if (!(flags & EVFLAG_NOENV)
1052 && !enable_secure () 1420 && !enable_secure ()
1053 && getenv ("LIBEV_FLAGS")) 1421 && getenv ("LIBEV_FLAGS"))
1054 flags = atoi (getenv ("LIBEV_FLAGS")); 1422 flags = atoi (getenv ("LIBEV_FLAGS"));
1055 1423
1056 if (!(flags & 0x0000ffffUL)) 1424 if (!(flags & 0x0000ffffU))
1057 flags |= ev_recommended_backends (); 1425 flags |= ev_recommended_backends ();
1058
1059 backend = 0;
1060 backend_fd = -1;
1061#if EV_USE_INOTIFY
1062 fs_fd = -2;
1063#endif
1064 1426
1065#if EV_USE_PORT 1427#if EV_USE_PORT
1066 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1428 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1067#endif 1429#endif
1068#if EV_USE_KQUEUE 1430#if EV_USE_KQUEUE
1076#endif 1438#endif
1077#if EV_USE_SELECT 1439#if EV_USE_SELECT
1078 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1440 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1079#endif 1441#endif
1080 1442
1443 ev_prepare_init (&pending_w, pendingcb);
1444
1081 ev_init (&sigev, sigcb); 1445 ev_init (&pipe_w, pipecb);
1082 ev_set_priority (&sigev, EV_MAXPRI); 1446 ev_set_priority (&pipe_w, EV_MAXPRI);
1083 } 1447 }
1084} 1448}
1085 1449
1450/* free up a loop structure */
1086static void noinline 1451static void noinline
1087loop_destroy (EV_P) 1452loop_destroy (EV_P)
1088{ 1453{
1089 int i; 1454 int i;
1455
1456 if (ev_is_active (&pipe_w))
1457 {
1458 ev_ref (EV_A); /* signal watcher */
1459 ev_io_stop (EV_A_ &pipe_w);
1460
1461#if EV_USE_EVENTFD
1462 if (evfd >= 0)
1463 close (evfd);
1464#endif
1465
1466 if (evpipe [0] >= 0)
1467 {
1468 close (evpipe [0]);
1469 close (evpipe [1]);
1470 }
1471 }
1090 1472
1091#if EV_USE_INOTIFY 1473#if EV_USE_INOTIFY
1092 if (fs_fd >= 0) 1474 if (fs_fd >= 0)
1093 close (fs_fd); 1475 close (fs_fd);
1094#endif 1476#endif
1121 } 1503 }
1122 1504
1123 ev_free (anfds); anfdmax = 0; 1505 ev_free (anfds); anfdmax = 0;
1124 1506
1125 /* have to use the microsoft-never-gets-it-right macro */ 1507 /* have to use the microsoft-never-gets-it-right macro */
1508 array_free (rfeed, EMPTY);
1126 array_free (fdchange, EMPTY); 1509 array_free (fdchange, EMPTY);
1127 array_free (timer, EMPTY); 1510 array_free (timer, EMPTY);
1128#if EV_PERIODIC_ENABLE 1511#if EV_PERIODIC_ENABLE
1129 array_free (periodic, EMPTY); 1512 array_free (periodic, EMPTY);
1130#endif 1513#endif
1131#if EV_FORK_ENABLE 1514#if EV_FORK_ENABLE
1132 array_free (fork, EMPTY); 1515 array_free (fork, EMPTY);
1133#endif 1516#endif
1134 array_free (prepare, EMPTY); 1517 array_free (prepare, EMPTY);
1135 array_free (check, EMPTY); 1518 array_free (check, EMPTY);
1519#if EV_ASYNC_ENABLE
1520 array_free (async, EMPTY);
1521#endif
1136 1522
1137 backend = 0; 1523 backend = 0;
1138} 1524}
1139 1525
1526#if EV_USE_INOTIFY
1140void inline_size infy_fork (EV_P); 1527inline_size void infy_fork (EV_P);
1528#endif
1141 1529
1142void inline_size 1530inline_size void
1143loop_fork (EV_P) 1531loop_fork (EV_P)
1144{ 1532{
1145#if EV_USE_PORT 1533#if EV_USE_PORT
1146 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1534 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1147#endif 1535#endif
1153#endif 1541#endif
1154#if EV_USE_INOTIFY 1542#if EV_USE_INOTIFY
1155 infy_fork (EV_A); 1543 infy_fork (EV_A);
1156#endif 1544#endif
1157 1545
1158 if (ev_is_active (&sigev)) 1546 if (ev_is_active (&pipe_w))
1159 { 1547 {
1160 /* default loop */ 1548 /* this "locks" the handlers against writing to the pipe */
1549 /* while we modify the fd vars */
1550 gotsig = 1;
1551#if EV_ASYNC_ENABLE
1552 gotasync = 1;
1553#endif
1161 1554
1162 ev_ref (EV_A); 1555 ev_ref (EV_A);
1163 ev_io_stop (EV_A_ &sigev); 1556 ev_io_stop (EV_A_ &pipe_w);
1557
1558#if EV_USE_EVENTFD
1559 if (evfd >= 0)
1560 close (evfd);
1561#endif
1562
1563 if (evpipe [0] >= 0)
1564 {
1164 close (sigpipe [0]); 1565 close (evpipe [0]);
1165 close (sigpipe [1]); 1566 close (evpipe [1]);
1567 }
1166 1568
1167 while (pipe (sigpipe))
1168 syserr ("(libev) error creating pipe");
1169
1170 siginit (EV_A); 1569 evpipe_init (EV_A);
1570 /* now iterate over everything, in case we missed something */
1571 pipecb (EV_A_ &pipe_w, EV_READ);
1171 } 1572 }
1172 1573
1173 postfork = 0; 1574 postfork = 0;
1174} 1575}
1175 1576
1176#if EV_MULTIPLICITY 1577#if EV_MULTIPLICITY
1578
1177struct ev_loop * 1579struct ev_loop *
1178ev_loop_new (unsigned int flags) 1580ev_loop_new (unsigned int flags)
1179{ 1581{
1180 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1582 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1181 1583
1197} 1599}
1198 1600
1199void 1601void
1200ev_loop_fork (EV_P) 1602ev_loop_fork (EV_P)
1201{ 1603{
1202 postfork = 1; 1604 postfork = 1; /* must be in line with ev_default_fork */
1203} 1605}
1204 1606
1607#if EV_VERIFY
1608static void noinline
1609verify_watcher (EV_P_ W w)
1610{
1611 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1612
1613 if (w->pending)
1614 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1615}
1616
1617static void noinline
1618verify_heap (EV_P_ ANHE *heap, int N)
1619{
1620 int i;
1621
1622 for (i = HEAP0; i < N + HEAP0; ++i)
1623 {
1624 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1625 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1626 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1627
1628 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1629 }
1630}
1631
1632static void noinline
1633array_verify (EV_P_ W *ws, int cnt)
1634{
1635 while (cnt--)
1636 {
1637 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1638 verify_watcher (EV_A_ ws [cnt]);
1639 }
1640}
1641#endif
1642
1643void
1644ev_loop_verify (EV_P)
1645{
1646#if EV_VERIFY
1647 int i;
1648 WL w;
1649
1650 assert (activecnt >= -1);
1651
1652 assert (fdchangemax >= fdchangecnt);
1653 for (i = 0; i < fdchangecnt; ++i)
1654 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1655
1656 assert (anfdmax >= 0);
1657 for (i = 0; i < anfdmax; ++i)
1658 for (w = anfds [i].head; w; w = w->next)
1659 {
1660 verify_watcher (EV_A_ (W)w);
1661 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1662 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1663 }
1664
1665 assert (timermax >= timercnt);
1666 verify_heap (EV_A_ timers, timercnt);
1667
1668#if EV_PERIODIC_ENABLE
1669 assert (periodicmax >= periodiccnt);
1670 verify_heap (EV_A_ periodics, periodiccnt);
1671#endif
1672
1673 for (i = NUMPRI; i--; )
1674 {
1675 assert (pendingmax [i] >= pendingcnt [i]);
1676#if EV_IDLE_ENABLE
1677 assert (idleall >= 0);
1678 assert (idlemax [i] >= idlecnt [i]);
1679 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1680#endif
1681 }
1682
1683#if EV_FORK_ENABLE
1684 assert (forkmax >= forkcnt);
1685 array_verify (EV_A_ (W *)forks, forkcnt);
1686#endif
1687
1688#if EV_ASYNC_ENABLE
1689 assert (asyncmax >= asynccnt);
1690 array_verify (EV_A_ (W *)asyncs, asynccnt);
1691#endif
1692
1693 assert (preparemax >= preparecnt);
1694 array_verify (EV_A_ (W *)prepares, preparecnt);
1695
1696 assert (checkmax >= checkcnt);
1697 array_verify (EV_A_ (W *)checks, checkcnt);
1698
1699# if 0
1700 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1701 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1205#endif 1702# endif
1703#endif
1704}
1705
1706#endif /* multiplicity */
1206 1707
1207#if EV_MULTIPLICITY 1708#if EV_MULTIPLICITY
1208struct ev_loop * 1709struct ev_loop *
1209ev_default_loop_init (unsigned int flags) 1710ev_default_loop_init (unsigned int flags)
1210#else 1711#else
1211int 1712int
1212ev_default_loop (unsigned int flags) 1713ev_default_loop (unsigned int flags)
1213#endif 1714#endif
1214{ 1715{
1215 if (sigpipe [0] == sigpipe [1])
1216 if (pipe (sigpipe))
1217 return 0;
1218
1219 if (!ev_default_loop_ptr) 1716 if (!ev_default_loop_ptr)
1220 { 1717 {
1221#if EV_MULTIPLICITY 1718#if EV_MULTIPLICITY
1222 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1719 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1223#else 1720#else
1226 1723
1227 loop_init (EV_A_ flags); 1724 loop_init (EV_A_ flags);
1228 1725
1229 if (ev_backend (EV_A)) 1726 if (ev_backend (EV_A))
1230 { 1727 {
1231 siginit (EV_A);
1232
1233#ifndef _WIN32 1728#ifndef _WIN32
1234 ev_signal_init (&childev, childcb, SIGCHLD); 1729 ev_signal_init (&childev, childcb, SIGCHLD);
1235 ev_set_priority (&childev, EV_MAXPRI); 1730 ev_set_priority (&childev, EV_MAXPRI);
1236 ev_signal_start (EV_A_ &childev); 1731 ev_signal_start (EV_A_ &childev);
1237 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1732 ev_unref (EV_A); /* child watcher should not keep loop alive */
1249{ 1744{
1250#if EV_MULTIPLICITY 1745#if EV_MULTIPLICITY
1251 struct ev_loop *loop = ev_default_loop_ptr; 1746 struct ev_loop *loop = ev_default_loop_ptr;
1252#endif 1747#endif
1253 1748
1749 ev_default_loop_ptr = 0;
1750
1254#ifndef _WIN32 1751#ifndef _WIN32
1255 ev_ref (EV_A); /* child watcher */ 1752 ev_ref (EV_A); /* child watcher */
1256 ev_signal_stop (EV_A_ &childev); 1753 ev_signal_stop (EV_A_ &childev);
1257#endif 1754#endif
1258 1755
1259 ev_ref (EV_A); /* signal watcher */
1260 ev_io_stop (EV_A_ &sigev);
1261
1262 close (sigpipe [0]); sigpipe [0] = 0;
1263 close (sigpipe [1]); sigpipe [1] = 0;
1264
1265 loop_destroy (EV_A); 1756 loop_destroy (EV_A);
1266} 1757}
1267 1758
1268void 1759void
1269ev_default_fork (void) 1760ev_default_fork (void)
1270{ 1761{
1271#if EV_MULTIPLICITY 1762#if EV_MULTIPLICITY
1272 struct ev_loop *loop = ev_default_loop_ptr; 1763 struct ev_loop *loop = ev_default_loop_ptr;
1273#endif 1764#endif
1274 1765
1275 if (backend) 1766 postfork = 1; /* must be in line with ev_loop_fork */
1276 postfork = 1;
1277} 1767}
1278 1768
1279/*****************************************************************************/ 1769/*****************************************************************************/
1280 1770
1281void 1771void
1282ev_invoke (EV_P_ void *w, int revents) 1772ev_invoke (EV_P_ void *w, int revents)
1283{ 1773{
1284 EV_CB_INVOKE ((W)w, revents); 1774 EV_CB_INVOKE ((W)w, revents);
1285} 1775}
1286 1776
1287void inline_speed 1777inline_speed void
1288call_pending (EV_P) 1778call_pending (EV_P)
1289{ 1779{
1290 int pri; 1780 int pri;
1291 1781
1292 for (pri = NUMPRI; pri--; ) 1782 for (pri = NUMPRI; pri--; )
1293 while (pendingcnt [pri]) 1783 while (pendingcnt [pri])
1294 { 1784 {
1295 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1785 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1296 1786
1297 if (expect_true (p->w))
1298 {
1299 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1787 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1788 /* ^ this is no longer true, as pending_w could be here */
1300 1789
1301 p->w->pending = 0; 1790 p->w->pending = 0;
1302 EV_CB_INVOKE (p->w, p->events); 1791 EV_CB_INVOKE (p->w, p->events);
1303 } 1792 EV_FREQUENT_CHECK;
1304 } 1793 }
1305} 1794}
1306 1795
1307void inline_size
1308timers_reify (EV_P)
1309{
1310 while (timercnt && ((WT)timers [0])->at <= mn_now)
1311 {
1312 ev_timer *w = (ev_timer *)timers [0];
1313
1314 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1315
1316 /* first reschedule or stop timer */
1317 if (w->repeat)
1318 {
1319 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1320
1321 ((WT)w)->at += w->repeat;
1322 if (((WT)w)->at < mn_now)
1323 ((WT)w)->at = mn_now;
1324
1325 downheap (timers, timercnt, 0);
1326 }
1327 else
1328 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1329
1330 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1331 }
1332}
1333
1334#if EV_PERIODIC_ENABLE
1335void inline_size
1336periodics_reify (EV_P)
1337{
1338 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1339 {
1340 ev_periodic *w = (ev_periodic *)periodics [0];
1341
1342 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1343
1344 /* first reschedule or stop timer */
1345 if (w->reschedule_cb)
1346 {
1347 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1348 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1349 downheap (periodics, periodiccnt, 0);
1350 }
1351 else if (w->interval)
1352 {
1353 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1354 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1355 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1356 downheap (periodics, periodiccnt, 0);
1357 }
1358 else
1359 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1360
1361 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1362 }
1363}
1364
1365static void noinline
1366periodics_reschedule (EV_P)
1367{
1368 int i;
1369
1370 /* adjust periodics after time jump */
1371 for (i = 0; i < periodiccnt; ++i)
1372 {
1373 ev_periodic *w = (ev_periodic *)periodics [i];
1374
1375 if (w->reschedule_cb)
1376 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1377 else if (w->interval)
1378 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1379 }
1380
1381 /* now rebuild the heap */
1382 for (i = periodiccnt >> 1; i--; )
1383 downheap (periodics, periodiccnt, i);
1384}
1385#endif
1386
1387#if EV_IDLE_ENABLE 1796#if EV_IDLE_ENABLE
1388void inline_size 1797/* make idle watchers pending. this handles the "call-idle */
1798/* only when higher priorities are idle" logic */
1799inline_size void
1389idle_reify (EV_P) 1800idle_reify (EV_P)
1390{ 1801{
1391 if (expect_false (idleall)) 1802 if (expect_false (idleall))
1392 { 1803 {
1393 int pri; 1804 int pri;
1405 } 1816 }
1406 } 1817 }
1407} 1818}
1408#endif 1819#endif
1409 1820
1410void inline_speed 1821/* make timers pending */
1822inline_size void
1823timers_reify (EV_P)
1824{
1825 EV_FREQUENT_CHECK;
1826
1827 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1828 {
1829 do
1830 {
1831 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1832
1833 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1834
1835 /* first reschedule or stop timer */
1836 if (w->repeat)
1837 {
1838 ev_at (w) += w->repeat;
1839 if (ev_at (w) < mn_now)
1840 ev_at (w) = mn_now;
1841
1842 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1843
1844 ANHE_at_cache (timers [HEAP0]);
1845 downheap (timers, timercnt, HEAP0);
1846 }
1847 else
1848 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1849
1850 EV_FREQUENT_CHECK;
1851 feed_reverse (EV_A_ (W)w);
1852 }
1853 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1854
1855 feed_reverse_done (EV_A_ EV_TIMEOUT);
1856 }
1857}
1858
1859#if EV_PERIODIC_ENABLE
1860/* make periodics pending */
1861inline_size void
1862periodics_reify (EV_P)
1863{
1864 EV_FREQUENT_CHECK;
1865
1866 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1867 {
1868 int feed_count = 0;
1869
1870 do
1871 {
1872 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1873
1874 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1875
1876 /* first reschedule or stop timer */
1877 if (w->reschedule_cb)
1878 {
1879 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1880
1881 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1882
1883 ANHE_at_cache (periodics [HEAP0]);
1884 downheap (periodics, periodiccnt, HEAP0);
1885 }
1886 else if (w->interval)
1887 {
1888 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1889 /* if next trigger time is not sufficiently in the future, put it there */
1890 /* this might happen because of floating point inexactness */
1891 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1892 {
1893 ev_at (w) += w->interval;
1894
1895 /* if interval is unreasonably low we might still have a time in the past */
1896 /* so correct this. this will make the periodic very inexact, but the user */
1897 /* has effectively asked to get triggered more often than possible */
1898 if (ev_at (w) < ev_rt_now)
1899 ev_at (w) = ev_rt_now;
1900 }
1901
1902 ANHE_at_cache (periodics [HEAP0]);
1903 downheap (periodics, periodiccnt, HEAP0);
1904 }
1905 else
1906 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1907
1908 EV_FREQUENT_CHECK;
1909 feed_reverse (EV_A_ (W)w);
1910 }
1911 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1912
1913 feed_reverse_done (EV_A_ EV_PERIODIC);
1914 }
1915}
1916
1917/* simply recalculate all periodics */
1918/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1919static void noinline
1920periodics_reschedule (EV_P)
1921{
1922 int i;
1923
1924 /* adjust periodics after time jump */
1925 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1926 {
1927 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1928
1929 if (w->reschedule_cb)
1930 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1931 else if (w->interval)
1932 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1933
1934 ANHE_at_cache (periodics [i]);
1935 }
1936
1937 reheap (periodics, periodiccnt);
1938}
1939#endif
1940
1941/* adjust all timers by a given offset */
1942static void noinline
1943timers_reschedule (EV_P_ ev_tstamp adjust)
1944{
1945 int i;
1946
1947 for (i = 0; i < timercnt; ++i)
1948 {
1949 ANHE *he = timers + i + HEAP0;
1950 ANHE_w (*he)->at += adjust;
1951 ANHE_at_cache (*he);
1952 }
1953}
1954
1955/* fetch new monotonic and realtime times from the kernel */
1956/* also detetc if there was a timejump, and act accordingly */
1957inline_speed void
1411time_update (EV_P_ ev_tstamp max_block) 1958time_update (EV_P_ ev_tstamp max_block)
1412{ 1959{
1413 int i;
1414
1415#if EV_USE_MONOTONIC 1960#if EV_USE_MONOTONIC
1416 if (expect_true (have_monotonic)) 1961 if (expect_true (have_monotonic))
1417 { 1962 {
1963 int i;
1418 ev_tstamp odiff = rtmn_diff; 1964 ev_tstamp odiff = rtmn_diff;
1419 1965
1420 mn_now = get_clock (); 1966 mn_now = get_clock ();
1421 1967
1422 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 1968 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1440 */ 1986 */
1441 for (i = 4; --i; ) 1987 for (i = 4; --i; )
1442 { 1988 {
1443 rtmn_diff = ev_rt_now - mn_now; 1989 rtmn_diff = ev_rt_now - mn_now;
1444 1990
1445 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1991 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1446 return; /* all is well */ 1992 return; /* all is well */
1447 1993
1448 ev_rt_now = ev_time (); 1994 ev_rt_now = ev_time ();
1449 mn_now = get_clock (); 1995 mn_now = get_clock ();
1450 now_floor = mn_now; 1996 now_floor = mn_now;
1451 } 1997 }
1452 1998
1999 /* no timer adjustment, as the monotonic clock doesn't jump */
2000 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1453# if EV_PERIODIC_ENABLE 2001# if EV_PERIODIC_ENABLE
1454 periodics_reschedule (EV_A); 2002 periodics_reschedule (EV_A);
1455# endif 2003# endif
1456 /* no timer adjustment, as the monotonic clock doesn't jump */
1457 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1458 } 2004 }
1459 else 2005 else
1460#endif 2006#endif
1461 { 2007 {
1462 ev_rt_now = ev_time (); 2008 ev_rt_now = ev_time ();
1463 2009
1464 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2010 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1465 { 2011 {
2012 /* adjust timers. this is easy, as the offset is the same for all of them */
2013 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1466#if EV_PERIODIC_ENABLE 2014#if EV_PERIODIC_ENABLE
1467 periodics_reschedule (EV_A); 2015 periodics_reschedule (EV_A);
1468#endif 2016#endif
1469 /* adjust timers. this is easy, as the offset is the same for all of them */
1470 for (i = 0; i < timercnt; ++i)
1471 ((WT)timers [i])->at += ev_rt_now - mn_now;
1472 } 2017 }
1473 2018
1474 mn_now = ev_rt_now; 2019 mn_now = ev_rt_now;
1475 } 2020 }
1476} 2021}
1477 2022
1478void
1479ev_ref (EV_P)
1480{
1481 ++activecnt;
1482}
1483
1484void
1485ev_unref (EV_P)
1486{
1487 --activecnt;
1488}
1489
1490static int loop_done; 2023static int loop_done;
1491 2024
1492void 2025void
1493ev_loop (EV_P_ int flags) 2026ev_loop (EV_P_ int flags)
1494{ 2027{
1495 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2028 loop_done = EVUNLOOP_CANCEL;
1496 ? EVUNLOOP_ONE
1497 : EVUNLOOP_CANCEL;
1498 2029
1499 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2030 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1500 2031
1501 do 2032 do
1502 { 2033 {
2034#if EV_VERIFY >= 2
2035 ev_loop_verify (EV_A);
2036#endif
2037
1503#ifndef _WIN32 2038#ifndef _WIN32
1504 if (expect_false (curpid)) /* penalise the forking check even more */ 2039 if (expect_false (curpid)) /* penalise the forking check even more */
1505 if (expect_false (getpid () != curpid)) 2040 if (expect_false (getpid () != curpid))
1506 { 2041 {
1507 curpid = getpid (); 2042 curpid = getpid ();
1524 { 2059 {
1525 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2060 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1526 call_pending (EV_A); 2061 call_pending (EV_A);
1527 } 2062 }
1528 2063
1529 if (expect_false (!activecnt))
1530 break;
1531
1532 /* we might have forked, so reify kernel state if necessary */ 2064 /* we might have forked, so reify kernel state if necessary */
1533 if (expect_false (postfork)) 2065 if (expect_false (postfork))
1534 loop_fork (EV_A); 2066 loop_fork (EV_A);
1535 2067
1536 /* update fd-related kernel structures */ 2068 /* update fd-related kernel structures */
1548 2080
1549 waittime = MAX_BLOCKTIME; 2081 waittime = MAX_BLOCKTIME;
1550 2082
1551 if (timercnt) 2083 if (timercnt)
1552 { 2084 {
1553 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2085 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1554 if (waittime > to) waittime = to; 2086 if (waittime > to) waittime = to;
1555 } 2087 }
1556 2088
1557#if EV_PERIODIC_ENABLE 2089#if EV_PERIODIC_ENABLE
1558 if (periodiccnt) 2090 if (periodiccnt)
1559 { 2091 {
1560 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2092 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1561 if (waittime > to) waittime = to; 2093 if (waittime > to) waittime = to;
1562 } 2094 }
1563#endif 2095#endif
1564 2096
1565 if (expect_false (waittime < timeout_blocktime)) 2097 if (expect_false (waittime < timeout_blocktime))
1598 /* queue check watchers, to be executed first */ 2130 /* queue check watchers, to be executed first */
1599 if (expect_false (checkcnt)) 2131 if (expect_false (checkcnt))
1600 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2132 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1601 2133
1602 call_pending (EV_A); 2134 call_pending (EV_A);
1603
1604 } 2135 }
1605 while (expect_true (activecnt && !loop_done)); 2136 while (expect_true (
2137 activecnt
2138 && !loop_done
2139 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2140 ));
1606 2141
1607 if (loop_done == EVUNLOOP_ONE) 2142 if (loop_done == EVUNLOOP_ONE)
1608 loop_done = EVUNLOOP_CANCEL; 2143 loop_done = EVUNLOOP_CANCEL;
1609} 2144}
1610 2145
1612ev_unloop (EV_P_ int how) 2147ev_unloop (EV_P_ int how)
1613{ 2148{
1614 loop_done = how; 2149 loop_done = how;
1615} 2150}
1616 2151
2152void
2153ev_ref (EV_P)
2154{
2155 ++activecnt;
2156}
2157
2158void
2159ev_unref (EV_P)
2160{
2161 --activecnt;
2162}
2163
2164void
2165ev_now_update (EV_P)
2166{
2167 time_update (EV_A_ 1e100);
2168}
2169
2170void
2171ev_suspend (EV_P)
2172{
2173 ev_now_update (EV_A);
2174}
2175
2176void
2177ev_resume (EV_P)
2178{
2179 ev_tstamp mn_prev = mn_now;
2180
2181 ev_now_update (EV_A);
2182 timers_reschedule (EV_A_ mn_now - mn_prev);
2183#if EV_PERIODIC_ENABLE
2184 /* TODO: really do this? */
2185 periodics_reschedule (EV_A);
2186#endif
2187}
2188
1617/*****************************************************************************/ 2189/*****************************************************************************/
2190/* singly-linked list management, used when the expected list length is short */
1618 2191
1619void inline_size 2192inline_size void
1620wlist_add (WL *head, WL elem) 2193wlist_add (WL *head, WL elem)
1621{ 2194{
1622 elem->next = *head; 2195 elem->next = *head;
1623 *head = elem; 2196 *head = elem;
1624} 2197}
1625 2198
1626void inline_size 2199inline_size void
1627wlist_del (WL *head, WL elem) 2200wlist_del (WL *head, WL elem)
1628{ 2201{
1629 while (*head) 2202 while (*head)
1630 { 2203 {
1631 if (*head == elem) 2204 if (*head == elem)
1636 2209
1637 head = &(*head)->next; 2210 head = &(*head)->next;
1638 } 2211 }
1639} 2212}
1640 2213
1641void inline_speed 2214/* internal, faster, version of ev_clear_pending */
2215inline_speed void
1642clear_pending (EV_P_ W w) 2216clear_pending (EV_P_ W w)
1643{ 2217{
1644 if (w->pending) 2218 if (w->pending)
1645 { 2219 {
1646 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2220 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1647 w->pending = 0; 2221 w->pending = 0;
1648 } 2222 }
1649} 2223}
1650 2224
1651int 2225int
1655 int pending = w_->pending; 2229 int pending = w_->pending;
1656 2230
1657 if (expect_true (pending)) 2231 if (expect_true (pending))
1658 { 2232 {
1659 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2233 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2234 p->w = (W)&pending_w;
1660 w_->pending = 0; 2235 w_->pending = 0;
1661 p->w = 0;
1662 return p->events; 2236 return p->events;
1663 } 2237 }
1664 else 2238 else
1665 return 0; 2239 return 0;
1666} 2240}
1667 2241
1668void inline_size 2242inline_size void
1669pri_adjust (EV_P_ W w) 2243pri_adjust (EV_P_ W w)
1670{ 2244{
1671 int pri = w->priority; 2245 int pri = w->priority;
1672 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2246 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1673 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2247 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1674 w->priority = pri; 2248 w->priority = pri;
1675} 2249}
1676 2250
1677void inline_speed 2251inline_speed void
1678ev_start (EV_P_ W w, int active) 2252ev_start (EV_P_ W w, int active)
1679{ 2253{
1680 pri_adjust (EV_A_ w); 2254 pri_adjust (EV_A_ w);
1681 w->active = active; 2255 w->active = active;
1682 ev_ref (EV_A); 2256 ev_ref (EV_A);
1683} 2257}
1684 2258
1685void inline_size 2259inline_size void
1686ev_stop (EV_P_ W w) 2260ev_stop (EV_P_ W w)
1687{ 2261{
1688 ev_unref (EV_A); 2262 ev_unref (EV_A);
1689 w->active = 0; 2263 w->active = 0;
1690} 2264}
1697 int fd = w->fd; 2271 int fd = w->fd;
1698 2272
1699 if (expect_false (ev_is_active (w))) 2273 if (expect_false (ev_is_active (w)))
1700 return; 2274 return;
1701 2275
1702 assert (("ev_io_start called with negative fd", fd >= 0)); 2276 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2277 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2278
2279 EV_FREQUENT_CHECK;
1703 2280
1704 ev_start (EV_A_ (W)w, 1); 2281 ev_start (EV_A_ (W)w, 1);
1705 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2282 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1706 wlist_add (&anfds[fd].head, (WL)w); 2283 wlist_add (&anfds[fd].head, (WL)w);
1707 2284
1708 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2285 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1709 w->events &= ~EV_IOFDSET; 2286 w->events &= ~EV__IOFDSET;
2287
2288 EV_FREQUENT_CHECK;
1710} 2289}
1711 2290
1712void noinline 2291void noinline
1713ev_io_stop (EV_P_ ev_io *w) 2292ev_io_stop (EV_P_ ev_io *w)
1714{ 2293{
1715 clear_pending (EV_A_ (W)w); 2294 clear_pending (EV_A_ (W)w);
1716 if (expect_false (!ev_is_active (w))) 2295 if (expect_false (!ev_is_active (w)))
1717 return; 2296 return;
1718 2297
1719 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2298 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2299
2300 EV_FREQUENT_CHECK;
1720 2301
1721 wlist_del (&anfds[w->fd].head, (WL)w); 2302 wlist_del (&anfds[w->fd].head, (WL)w);
1722 ev_stop (EV_A_ (W)w); 2303 ev_stop (EV_A_ (W)w);
1723 2304
1724 fd_change (EV_A_ w->fd, 1); 2305 fd_change (EV_A_ w->fd, 1);
2306
2307 EV_FREQUENT_CHECK;
1725} 2308}
1726 2309
1727void noinline 2310void noinline
1728ev_timer_start (EV_P_ ev_timer *w) 2311ev_timer_start (EV_P_ ev_timer *w)
1729{ 2312{
1730 if (expect_false (ev_is_active (w))) 2313 if (expect_false (ev_is_active (w)))
1731 return; 2314 return;
1732 2315
1733 ((WT)w)->at += mn_now; 2316 ev_at (w) += mn_now;
1734 2317
1735 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2318 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1736 2319
2320 EV_FREQUENT_CHECK;
2321
2322 ++timercnt;
1737 ev_start (EV_A_ (W)w, ++timercnt); 2323 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1738 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2324 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1739 timers [timercnt - 1] = (WT)w; 2325 ANHE_w (timers [ev_active (w)]) = (WT)w;
1740 upheap (timers, timercnt - 1); 2326 ANHE_at_cache (timers [ev_active (w)]);
2327 upheap (timers, ev_active (w));
1741 2328
2329 EV_FREQUENT_CHECK;
2330
1742 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2331 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1743} 2332}
1744 2333
1745void noinline 2334void noinline
1746ev_timer_stop (EV_P_ ev_timer *w) 2335ev_timer_stop (EV_P_ ev_timer *w)
1747{ 2336{
1748 clear_pending (EV_A_ (W)w); 2337 clear_pending (EV_A_ (W)w);
1749 if (expect_false (!ev_is_active (w))) 2338 if (expect_false (!ev_is_active (w)))
1750 return; 2339 return;
1751 2340
1752 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2341 EV_FREQUENT_CHECK;
1753 2342
1754 { 2343 {
1755 int active = ((W)w)->active; 2344 int active = ev_active (w);
1756 2345
2346 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2347
2348 --timercnt;
2349
1757 if (expect_true (--active < --timercnt)) 2350 if (expect_true (active < timercnt + HEAP0))
1758 { 2351 {
1759 timers [active] = timers [timercnt]; 2352 timers [active] = timers [timercnt + HEAP0];
1760 adjustheap (timers, timercnt, active); 2353 adjustheap (timers, timercnt, active);
1761 } 2354 }
1762 } 2355 }
1763 2356
1764 ((WT)w)->at -= mn_now; 2357 EV_FREQUENT_CHECK;
2358
2359 ev_at (w) -= mn_now;
1765 2360
1766 ev_stop (EV_A_ (W)w); 2361 ev_stop (EV_A_ (W)w);
1767} 2362}
1768 2363
1769void noinline 2364void noinline
1770ev_timer_again (EV_P_ ev_timer *w) 2365ev_timer_again (EV_P_ ev_timer *w)
1771{ 2366{
2367 EV_FREQUENT_CHECK;
2368
1772 if (ev_is_active (w)) 2369 if (ev_is_active (w))
1773 { 2370 {
1774 if (w->repeat) 2371 if (w->repeat)
1775 { 2372 {
1776 ((WT)w)->at = mn_now + w->repeat; 2373 ev_at (w) = mn_now + w->repeat;
2374 ANHE_at_cache (timers [ev_active (w)]);
1777 adjustheap (timers, timercnt, ((W)w)->active - 1); 2375 adjustheap (timers, timercnt, ev_active (w));
1778 } 2376 }
1779 else 2377 else
1780 ev_timer_stop (EV_A_ w); 2378 ev_timer_stop (EV_A_ w);
1781 } 2379 }
1782 else if (w->repeat) 2380 else if (w->repeat)
1783 { 2381 {
1784 w->at = w->repeat; 2382 ev_at (w) = w->repeat;
1785 ev_timer_start (EV_A_ w); 2383 ev_timer_start (EV_A_ w);
1786 } 2384 }
2385
2386 EV_FREQUENT_CHECK;
1787} 2387}
1788 2388
1789#if EV_PERIODIC_ENABLE 2389#if EV_PERIODIC_ENABLE
1790void noinline 2390void noinline
1791ev_periodic_start (EV_P_ ev_periodic *w) 2391ev_periodic_start (EV_P_ ev_periodic *w)
1792{ 2392{
1793 if (expect_false (ev_is_active (w))) 2393 if (expect_false (ev_is_active (w)))
1794 return; 2394 return;
1795 2395
1796 if (w->reschedule_cb) 2396 if (w->reschedule_cb)
1797 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2397 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1798 else if (w->interval) 2398 else if (w->interval)
1799 { 2399 {
1800 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2400 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1801 /* this formula differs from the one in periodic_reify because we do not always round up */ 2401 /* this formula differs from the one in periodic_reify because we do not always round up */
1802 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2402 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1803 } 2403 }
1804 else 2404 else
1805 ((WT)w)->at = w->offset; 2405 ev_at (w) = w->offset;
1806 2406
2407 EV_FREQUENT_CHECK;
2408
2409 ++periodiccnt;
1807 ev_start (EV_A_ (W)w, ++periodiccnt); 2410 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1808 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2411 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1809 periodics [periodiccnt - 1] = (WT)w; 2412 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1810 upheap (periodics, periodiccnt - 1); 2413 ANHE_at_cache (periodics [ev_active (w)]);
2414 upheap (periodics, ev_active (w));
1811 2415
2416 EV_FREQUENT_CHECK;
2417
1812 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2418 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1813} 2419}
1814 2420
1815void noinline 2421void noinline
1816ev_periodic_stop (EV_P_ ev_periodic *w) 2422ev_periodic_stop (EV_P_ ev_periodic *w)
1817{ 2423{
1818 clear_pending (EV_A_ (W)w); 2424 clear_pending (EV_A_ (W)w);
1819 if (expect_false (!ev_is_active (w))) 2425 if (expect_false (!ev_is_active (w)))
1820 return; 2426 return;
1821 2427
1822 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2428 EV_FREQUENT_CHECK;
1823 2429
1824 { 2430 {
1825 int active = ((W)w)->active; 2431 int active = ev_active (w);
1826 2432
2433 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2434
2435 --periodiccnt;
2436
1827 if (expect_true (--active < --periodiccnt)) 2437 if (expect_true (active < periodiccnt + HEAP0))
1828 { 2438 {
1829 periodics [active] = periodics [periodiccnt]; 2439 periodics [active] = periodics [periodiccnt + HEAP0];
1830 adjustheap (periodics, periodiccnt, active); 2440 adjustheap (periodics, periodiccnt, active);
1831 } 2441 }
1832 } 2442 }
1833 2443
2444 EV_FREQUENT_CHECK;
2445
1834 ev_stop (EV_A_ (W)w); 2446 ev_stop (EV_A_ (W)w);
1835} 2447}
1836 2448
1837void noinline 2449void noinline
1838ev_periodic_again (EV_P_ ev_periodic *w) 2450ev_periodic_again (EV_P_ ev_periodic *w)
1849 2461
1850void noinline 2462void noinline
1851ev_signal_start (EV_P_ ev_signal *w) 2463ev_signal_start (EV_P_ ev_signal *w)
1852{ 2464{
1853#if EV_MULTIPLICITY 2465#if EV_MULTIPLICITY
1854 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2466 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1855#endif 2467#endif
1856 if (expect_false (ev_is_active (w))) 2468 if (expect_false (ev_is_active (w)))
1857 return; 2469 return;
1858 2470
1859 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2471 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2472
2473 evpipe_init (EV_A);
2474
2475 EV_FREQUENT_CHECK;
1860 2476
1861 { 2477 {
1862#ifndef _WIN32 2478#ifndef _WIN32
1863 sigset_t full, prev; 2479 sigset_t full, prev;
1864 sigfillset (&full); 2480 sigfillset (&full);
1865 sigprocmask (SIG_SETMASK, &full, &prev); 2481 sigprocmask (SIG_SETMASK, &full, &prev);
1866#endif 2482#endif
1867 2483
1868 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2484 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
1869 2485
1870#ifndef _WIN32 2486#ifndef _WIN32
1871 sigprocmask (SIG_SETMASK, &prev, 0); 2487 sigprocmask (SIG_SETMASK, &prev, 0);
1872#endif 2488#endif
1873 } 2489 }
1876 wlist_add (&signals [w->signum - 1].head, (WL)w); 2492 wlist_add (&signals [w->signum - 1].head, (WL)w);
1877 2493
1878 if (!((WL)w)->next) 2494 if (!((WL)w)->next)
1879 { 2495 {
1880#if _WIN32 2496#if _WIN32
1881 signal (w->signum, sighandler); 2497 signal (w->signum, ev_sighandler);
1882#else 2498#else
1883 struct sigaction sa; 2499 struct sigaction sa;
1884 sa.sa_handler = sighandler; 2500 sa.sa_handler = ev_sighandler;
1885 sigfillset (&sa.sa_mask); 2501 sigfillset (&sa.sa_mask);
1886 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2502 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1887 sigaction (w->signum, &sa, 0); 2503 sigaction (w->signum, &sa, 0);
1888#endif 2504#endif
1889 } 2505 }
2506
2507 EV_FREQUENT_CHECK;
1890} 2508}
1891 2509
1892void noinline 2510void noinline
1893ev_signal_stop (EV_P_ ev_signal *w) 2511ev_signal_stop (EV_P_ ev_signal *w)
1894{ 2512{
1895 clear_pending (EV_A_ (W)w); 2513 clear_pending (EV_A_ (W)w);
1896 if (expect_false (!ev_is_active (w))) 2514 if (expect_false (!ev_is_active (w)))
1897 return; 2515 return;
1898 2516
2517 EV_FREQUENT_CHECK;
2518
1899 wlist_del (&signals [w->signum - 1].head, (WL)w); 2519 wlist_del (&signals [w->signum - 1].head, (WL)w);
1900 ev_stop (EV_A_ (W)w); 2520 ev_stop (EV_A_ (W)w);
1901 2521
1902 if (!signals [w->signum - 1].head) 2522 if (!signals [w->signum - 1].head)
1903 signal (w->signum, SIG_DFL); 2523 signal (w->signum, SIG_DFL);
2524
2525 EV_FREQUENT_CHECK;
1904} 2526}
1905 2527
1906void 2528void
1907ev_child_start (EV_P_ ev_child *w) 2529ev_child_start (EV_P_ ev_child *w)
1908{ 2530{
1909#if EV_MULTIPLICITY 2531#if EV_MULTIPLICITY
1910 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2532 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1911#endif 2533#endif
1912 if (expect_false (ev_is_active (w))) 2534 if (expect_false (ev_is_active (w)))
1913 return; 2535 return;
1914 2536
2537 EV_FREQUENT_CHECK;
2538
1915 ev_start (EV_A_ (W)w, 1); 2539 ev_start (EV_A_ (W)w, 1);
1916 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2540 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2541
2542 EV_FREQUENT_CHECK;
1917} 2543}
1918 2544
1919void 2545void
1920ev_child_stop (EV_P_ ev_child *w) 2546ev_child_stop (EV_P_ ev_child *w)
1921{ 2547{
1922 clear_pending (EV_A_ (W)w); 2548 clear_pending (EV_A_ (W)w);
1923 if (expect_false (!ev_is_active (w))) 2549 if (expect_false (!ev_is_active (w)))
1924 return; 2550 return;
1925 2551
2552 EV_FREQUENT_CHECK;
2553
1926 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2554 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1927 ev_stop (EV_A_ (W)w); 2555 ev_stop (EV_A_ (W)w);
2556
2557 EV_FREQUENT_CHECK;
1928} 2558}
1929 2559
1930#if EV_STAT_ENABLE 2560#if EV_STAT_ENABLE
1931 2561
1932# ifdef _WIN32 2562# ifdef _WIN32
1933# undef lstat 2563# undef lstat
1934# define lstat(a,b) _stati64 (a,b) 2564# define lstat(a,b) _stati64 (a,b)
1935# endif 2565# endif
1936 2566
1937#define DEF_STAT_INTERVAL 5.0074891 2567#define DEF_STAT_INTERVAL 5.0074891
2568#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1938#define MIN_STAT_INTERVAL 0.1074891 2569#define MIN_STAT_INTERVAL 0.1074891
1939 2570
1940static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2571static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1941 2572
1942#if EV_USE_INOTIFY 2573#if EV_USE_INOTIFY
1943# define EV_INOTIFY_BUFSIZE 8192 2574# define EV_INOTIFY_BUFSIZE 8192
1947{ 2578{
1948 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2579 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1949 2580
1950 if (w->wd < 0) 2581 if (w->wd < 0)
1951 { 2582 {
2583 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1952 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2584 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1953 2585
1954 /* monitor some parent directory for speedup hints */ 2586 /* monitor some parent directory for speedup hints */
2587 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2588 /* but an efficiency issue only */
1955 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2589 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1956 { 2590 {
1957 char path [4096]; 2591 char path [4096];
1958 strcpy (path, w->path); 2592 strcpy (path, w->path);
1959 2593
1962 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2596 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1963 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2597 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1964 2598
1965 char *pend = strrchr (path, '/'); 2599 char *pend = strrchr (path, '/');
1966 2600
1967 if (!pend) 2601 if (!pend || pend == path)
1968 break; /* whoops, no '/', complain to your admin */ 2602 break;
1969 2603
1970 *pend = 0; 2604 *pend = 0;
1971 w->wd = inotify_add_watch (fs_fd, path, mask); 2605 w->wd = inotify_add_watch (fs_fd, path, mask);
1972 } 2606 }
1973 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2607 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1974 } 2608 }
1975 } 2609 }
1976 else
1977 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1978 2610
1979 if (w->wd >= 0) 2611 if (w->wd >= 0)
2612 {
1980 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2613 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2614
2615 /* now local changes will be tracked by inotify, but remote changes won't */
2616 /* unless the filesystem it known to be local, we therefore still poll */
2617 /* also do poll on <2.6.25, but with normal frequency */
2618 struct statfs sfs;
2619
2620 if (fs_2625 && !statfs (w->path, &sfs))
2621 if (sfs.f_type == 0x1373 /* devfs */
2622 || sfs.f_type == 0xEF53 /* ext2/3 */
2623 || sfs.f_type == 0x3153464a /* jfs */
2624 || sfs.f_type == 0x52654973 /* reiser3 */
2625 || sfs.f_type == 0x01021994 /* tempfs */
2626 || sfs.f_type == 0x58465342 /* xfs */)
2627 return;
2628
2629 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2630 ev_timer_again (EV_A_ &w->timer);
2631 }
1981} 2632}
1982 2633
1983static void noinline 2634static void noinline
1984infy_del (EV_P_ ev_stat *w) 2635infy_del (EV_P_ ev_stat *w)
1985{ 2636{
1999 2650
2000static void noinline 2651static void noinline
2001infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2652infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2002{ 2653{
2003 if (slot < 0) 2654 if (slot < 0)
2004 /* overflow, need to check for all hahs slots */ 2655 /* overflow, need to check for all hash slots */
2005 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2656 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2006 infy_wd (EV_A_ slot, wd, ev); 2657 infy_wd (EV_A_ slot, wd, ev);
2007 else 2658 else
2008 { 2659 {
2009 WL w_; 2660 WL w_;
2015 2666
2016 if (w->wd == wd || wd == -1) 2667 if (w->wd == wd || wd == -1)
2017 { 2668 {
2018 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2669 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2019 { 2670 {
2671 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2020 w->wd = -1; 2672 w->wd = -1;
2021 infy_add (EV_A_ w); /* re-add, no matter what */ 2673 infy_add (EV_A_ w); /* re-add, no matter what */
2022 } 2674 }
2023 2675
2024 stat_timer_cb (EV_A_ &w->timer, 0); 2676 stat_timer_cb (EV_A_ &w->timer, 0);
2037 2689
2038 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2690 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2039 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2691 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2040} 2692}
2041 2693
2042void inline_size 2694inline_size void
2695check_2625 (EV_P)
2696{
2697 /* kernels < 2.6.25 are borked
2698 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2699 */
2700 struct utsname buf;
2701 int major, minor, micro;
2702
2703 if (uname (&buf))
2704 return;
2705
2706 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2707 return;
2708
2709 if (major < 2
2710 || (major == 2 && minor < 6)
2711 || (major == 2 && minor == 6 && micro < 25))
2712 return;
2713
2714 fs_2625 = 1;
2715}
2716
2717inline_size void
2043infy_init (EV_P) 2718infy_init (EV_P)
2044{ 2719{
2045 if (fs_fd != -2) 2720 if (fs_fd != -2)
2046 return; 2721 return;
2722
2723 fs_fd = -1;
2724
2725 check_2625 (EV_A);
2047 2726
2048 fs_fd = inotify_init (); 2727 fs_fd = inotify_init ();
2049 2728
2050 if (fs_fd >= 0) 2729 if (fs_fd >= 0)
2051 { 2730 {
2053 ev_set_priority (&fs_w, EV_MAXPRI); 2732 ev_set_priority (&fs_w, EV_MAXPRI);
2054 ev_io_start (EV_A_ &fs_w); 2733 ev_io_start (EV_A_ &fs_w);
2055 } 2734 }
2056} 2735}
2057 2736
2058void inline_size 2737inline_size void
2059infy_fork (EV_P) 2738infy_fork (EV_P)
2060{ 2739{
2061 int slot; 2740 int slot;
2062 2741
2063 if (fs_fd < 0) 2742 if (fs_fd < 0)
2079 w->wd = -1; 2758 w->wd = -1;
2080 2759
2081 if (fs_fd >= 0) 2760 if (fs_fd >= 0)
2082 infy_add (EV_A_ w); /* re-add, no matter what */ 2761 infy_add (EV_A_ w); /* re-add, no matter what */
2083 else 2762 else
2084 ev_timer_start (EV_A_ &w->timer); 2763 ev_timer_again (EV_A_ &w->timer);
2085 } 2764 }
2086
2087 } 2765 }
2088} 2766}
2089 2767
2768#endif
2769
2770#ifdef _WIN32
2771# define EV_LSTAT(p,b) _stati64 (p, b)
2772#else
2773# define EV_LSTAT(p,b) lstat (p, b)
2090#endif 2774#endif
2091 2775
2092void 2776void
2093ev_stat_stat (EV_P_ ev_stat *w) 2777ev_stat_stat (EV_P_ ev_stat *w)
2094{ 2778{
2121 || w->prev.st_atime != w->attr.st_atime 2805 || w->prev.st_atime != w->attr.st_atime
2122 || w->prev.st_mtime != w->attr.st_mtime 2806 || w->prev.st_mtime != w->attr.st_mtime
2123 || w->prev.st_ctime != w->attr.st_ctime 2807 || w->prev.st_ctime != w->attr.st_ctime
2124 ) { 2808 ) {
2125 #if EV_USE_INOTIFY 2809 #if EV_USE_INOTIFY
2810 if (fs_fd >= 0)
2811 {
2126 infy_del (EV_A_ w); 2812 infy_del (EV_A_ w);
2127 infy_add (EV_A_ w); 2813 infy_add (EV_A_ w);
2128 ev_stat_stat (EV_A_ w); /* avoid race... */ 2814 ev_stat_stat (EV_A_ w); /* avoid race... */
2815 }
2129 #endif 2816 #endif
2130 2817
2131 ev_feed_event (EV_A_ w, EV_STAT); 2818 ev_feed_event (EV_A_ w, EV_STAT);
2132 } 2819 }
2133} 2820}
2136ev_stat_start (EV_P_ ev_stat *w) 2823ev_stat_start (EV_P_ ev_stat *w)
2137{ 2824{
2138 if (expect_false (ev_is_active (w))) 2825 if (expect_false (ev_is_active (w)))
2139 return; 2826 return;
2140 2827
2141 /* since we use memcmp, we need to clear any padding data etc. */
2142 memset (&w->prev, 0, sizeof (ev_statdata));
2143 memset (&w->attr, 0, sizeof (ev_statdata));
2144
2145 ev_stat_stat (EV_A_ w); 2828 ev_stat_stat (EV_A_ w);
2146 2829
2830 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2147 if (w->interval < MIN_STAT_INTERVAL) 2831 w->interval = MIN_STAT_INTERVAL;
2148 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2149 2832
2150 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2833 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2151 ev_set_priority (&w->timer, ev_priority (w)); 2834 ev_set_priority (&w->timer, ev_priority (w));
2152 2835
2153#if EV_USE_INOTIFY 2836#if EV_USE_INOTIFY
2154 infy_init (EV_A); 2837 infy_init (EV_A);
2155 2838
2156 if (fs_fd >= 0) 2839 if (fs_fd >= 0)
2157 infy_add (EV_A_ w); 2840 infy_add (EV_A_ w);
2158 else 2841 else
2159#endif 2842#endif
2160 ev_timer_start (EV_A_ &w->timer); 2843 ev_timer_again (EV_A_ &w->timer);
2161 2844
2162 ev_start (EV_A_ (W)w, 1); 2845 ev_start (EV_A_ (W)w, 1);
2846
2847 EV_FREQUENT_CHECK;
2163} 2848}
2164 2849
2165void 2850void
2166ev_stat_stop (EV_P_ ev_stat *w) 2851ev_stat_stop (EV_P_ ev_stat *w)
2167{ 2852{
2168 clear_pending (EV_A_ (W)w); 2853 clear_pending (EV_A_ (W)w);
2169 if (expect_false (!ev_is_active (w))) 2854 if (expect_false (!ev_is_active (w)))
2170 return; 2855 return;
2171 2856
2857 EV_FREQUENT_CHECK;
2858
2172#if EV_USE_INOTIFY 2859#if EV_USE_INOTIFY
2173 infy_del (EV_A_ w); 2860 infy_del (EV_A_ w);
2174#endif 2861#endif
2175 ev_timer_stop (EV_A_ &w->timer); 2862 ev_timer_stop (EV_A_ &w->timer);
2176 2863
2177 ev_stop (EV_A_ (W)w); 2864 ev_stop (EV_A_ (W)w);
2865
2866 EV_FREQUENT_CHECK;
2178} 2867}
2179#endif 2868#endif
2180 2869
2181#if EV_IDLE_ENABLE 2870#if EV_IDLE_ENABLE
2182void 2871void
2184{ 2873{
2185 if (expect_false (ev_is_active (w))) 2874 if (expect_false (ev_is_active (w)))
2186 return; 2875 return;
2187 2876
2188 pri_adjust (EV_A_ (W)w); 2877 pri_adjust (EV_A_ (W)w);
2878
2879 EV_FREQUENT_CHECK;
2189 2880
2190 { 2881 {
2191 int active = ++idlecnt [ABSPRI (w)]; 2882 int active = ++idlecnt [ABSPRI (w)];
2192 2883
2193 ++idleall; 2884 ++idleall;
2194 ev_start (EV_A_ (W)w, active); 2885 ev_start (EV_A_ (W)w, active);
2195 2886
2196 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2887 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2197 idles [ABSPRI (w)][active - 1] = w; 2888 idles [ABSPRI (w)][active - 1] = w;
2198 } 2889 }
2890
2891 EV_FREQUENT_CHECK;
2199} 2892}
2200 2893
2201void 2894void
2202ev_idle_stop (EV_P_ ev_idle *w) 2895ev_idle_stop (EV_P_ ev_idle *w)
2203{ 2896{
2204 clear_pending (EV_A_ (W)w); 2897 clear_pending (EV_A_ (W)w);
2205 if (expect_false (!ev_is_active (w))) 2898 if (expect_false (!ev_is_active (w)))
2206 return; 2899 return;
2207 2900
2901 EV_FREQUENT_CHECK;
2902
2208 { 2903 {
2209 int active = ((W)w)->active; 2904 int active = ev_active (w);
2210 2905
2211 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2906 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2212 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2907 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2213 2908
2214 ev_stop (EV_A_ (W)w); 2909 ev_stop (EV_A_ (W)w);
2215 --idleall; 2910 --idleall;
2216 } 2911 }
2912
2913 EV_FREQUENT_CHECK;
2217} 2914}
2218#endif 2915#endif
2219 2916
2220void 2917void
2221ev_prepare_start (EV_P_ ev_prepare *w) 2918ev_prepare_start (EV_P_ ev_prepare *w)
2222{ 2919{
2223 if (expect_false (ev_is_active (w))) 2920 if (expect_false (ev_is_active (w)))
2224 return; 2921 return;
2922
2923 EV_FREQUENT_CHECK;
2225 2924
2226 ev_start (EV_A_ (W)w, ++preparecnt); 2925 ev_start (EV_A_ (W)w, ++preparecnt);
2227 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2926 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2228 prepares [preparecnt - 1] = w; 2927 prepares [preparecnt - 1] = w;
2928
2929 EV_FREQUENT_CHECK;
2229} 2930}
2230 2931
2231void 2932void
2232ev_prepare_stop (EV_P_ ev_prepare *w) 2933ev_prepare_stop (EV_P_ ev_prepare *w)
2233{ 2934{
2234 clear_pending (EV_A_ (W)w); 2935 clear_pending (EV_A_ (W)w);
2235 if (expect_false (!ev_is_active (w))) 2936 if (expect_false (!ev_is_active (w)))
2236 return; 2937 return;
2237 2938
2939 EV_FREQUENT_CHECK;
2940
2238 { 2941 {
2239 int active = ((W)w)->active; 2942 int active = ev_active (w);
2943
2240 prepares [active - 1] = prepares [--preparecnt]; 2944 prepares [active - 1] = prepares [--preparecnt];
2241 ((W)prepares [active - 1])->active = active; 2945 ev_active (prepares [active - 1]) = active;
2242 } 2946 }
2243 2947
2244 ev_stop (EV_A_ (W)w); 2948 ev_stop (EV_A_ (W)w);
2949
2950 EV_FREQUENT_CHECK;
2245} 2951}
2246 2952
2247void 2953void
2248ev_check_start (EV_P_ ev_check *w) 2954ev_check_start (EV_P_ ev_check *w)
2249{ 2955{
2250 if (expect_false (ev_is_active (w))) 2956 if (expect_false (ev_is_active (w)))
2251 return; 2957 return;
2958
2959 EV_FREQUENT_CHECK;
2252 2960
2253 ev_start (EV_A_ (W)w, ++checkcnt); 2961 ev_start (EV_A_ (W)w, ++checkcnt);
2254 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2962 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2255 checks [checkcnt - 1] = w; 2963 checks [checkcnt - 1] = w;
2964
2965 EV_FREQUENT_CHECK;
2256} 2966}
2257 2967
2258void 2968void
2259ev_check_stop (EV_P_ ev_check *w) 2969ev_check_stop (EV_P_ ev_check *w)
2260{ 2970{
2261 clear_pending (EV_A_ (W)w); 2971 clear_pending (EV_A_ (W)w);
2262 if (expect_false (!ev_is_active (w))) 2972 if (expect_false (!ev_is_active (w)))
2263 return; 2973 return;
2264 2974
2975 EV_FREQUENT_CHECK;
2976
2265 { 2977 {
2266 int active = ((W)w)->active; 2978 int active = ev_active (w);
2979
2267 checks [active - 1] = checks [--checkcnt]; 2980 checks [active - 1] = checks [--checkcnt];
2268 ((W)checks [active - 1])->active = active; 2981 ev_active (checks [active - 1]) = active;
2269 } 2982 }
2270 2983
2271 ev_stop (EV_A_ (W)w); 2984 ev_stop (EV_A_ (W)w);
2985
2986 EV_FREQUENT_CHECK;
2272} 2987}
2273 2988
2274#if EV_EMBED_ENABLE 2989#if EV_EMBED_ENABLE
2275void noinline 2990void noinline
2276ev_embed_sweep (EV_P_ ev_embed *w) 2991ev_embed_sweep (EV_P_ ev_embed *w)
2303 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3018 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2304 } 3019 }
2305 } 3020 }
2306} 3021}
2307 3022
3023static void
3024embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3025{
3026 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3027
3028 ev_embed_stop (EV_A_ w);
3029
3030 {
3031 struct ev_loop *loop = w->other;
3032
3033 ev_loop_fork (EV_A);
3034 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3035 }
3036
3037 ev_embed_start (EV_A_ w);
3038}
3039
2308#if 0 3040#if 0
2309static void 3041static void
2310embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3042embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2311{ 3043{
2312 ev_idle_stop (EV_A_ idle); 3044 ev_idle_stop (EV_A_ idle);
2319 if (expect_false (ev_is_active (w))) 3051 if (expect_false (ev_is_active (w)))
2320 return; 3052 return;
2321 3053
2322 { 3054 {
2323 struct ev_loop *loop = w->other; 3055 struct ev_loop *loop = w->other;
2324 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3056 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2325 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3057 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2326 } 3058 }
3059
3060 EV_FREQUENT_CHECK;
2327 3061
2328 ev_set_priority (&w->io, ev_priority (w)); 3062 ev_set_priority (&w->io, ev_priority (w));
2329 ev_io_start (EV_A_ &w->io); 3063 ev_io_start (EV_A_ &w->io);
2330 3064
2331 ev_prepare_init (&w->prepare, embed_prepare_cb); 3065 ev_prepare_init (&w->prepare, embed_prepare_cb);
2332 ev_set_priority (&w->prepare, EV_MINPRI); 3066 ev_set_priority (&w->prepare, EV_MINPRI);
2333 ev_prepare_start (EV_A_ &w->prepare); 3067 ev_prepare_start (EV_A_ &w->prepare);
2334 3068
3069 ev_fork_init (&w->fork, embed_fork_cb);
3070 ev_fork_start (EV_A_ &w->fork);
3071
2335 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3072 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2336 3073
2337 ev_start (EV_A_ (W)w, 1); 3074 ev_start (EV_A_ (W)w, 1);
3075
3076 EV_FREQUENT_CHECK;
2338} 3077}
2339 3078
2340void 3079void
2341ev_embed_stop (EV_P_ ev_embed *w) 3080ev_embed_stop (EV_P_ ev_embed *w)
2342{ 3081{
2343 clear_pending (EV_A_ (W)w); 3082 clear_pending (EV_A_ (W)w);
2344 if (expect_false (!ev_is_active (w))) 3083 if (expect_false (!ev_is_active (w)))
2345 return; 3084 return;
2346 3085
3086 EV_FREQUENT_CHECK;
3087
2347 ev_io_stop (EV_A_ &w->io); 3088 ev_io_stop (EV_A_ &w->io);
2348 ev_prepare_stop (EV_A_ &w->prepare); 3089 ev_prepare_stop (EV_A_ &w->prepare);
3090 ev_fork_stop (EV_A_ &w->fork);
2349 3091
2350 ev_stop (EV_A_ (W)w); 3092 EV_FREQUENT_CHECK;
2351} 3093}
2352#endif 3094#endif
2353 3095
2354#if EV_FORK_ENABLE 3096#if EV_FORK_ENABLE
2355void 3097void
2356ev_fork_start (EV_P_ ev_fork *w) 3098ev_fork_start (EV_P_ ev_fork *w)
2357{ 3099{
2358 if (expect_false (ev_is_active (w))) 3100 if (expect_false (ev_is_active (w)))
2359 return; 3101 return;
3102
3103 EV_FREQUENT_CHECK;
2360 3104
2361 ev_start (EV_A_ (W)w, ++forkcnt); 3105 ev_start (EV_A_ (W)w, ++forkcnt);
2362 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3106 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2363 forks [forkcnt - 1] = w; 3107 forks [forkcnt - 1] = w;
3108
3109 EV_FREQUENT_CHECK;
2364} 3110}
2365 3111
2366void 3112void
2367ev_fork_stop (EV_P_ ev_fork *w) 3113ev_fork_stop (EV_P_ ev_fork *w)
2368{ 3114{
2369 clear_pending (EV_A_ (W)w); 3115 clear_pending (EV_A_ (W)w);
2370 if (expect_false (!ev_is_active (w))) 3116 if (expect_false (!ev_is_active (w)))
2371 return; 3117 return;
2372 3118
3119 EV_FREQUENT_CHECK;
3120
2373 { 3121 {
2374 int active = ((W)w)->active; 3122 int active = ev_active (w);
3123
2375 forks [active - 1] = forks [--forkcnt]; 3124 forks [active - 1] = forks [--forkcnt];
2376 ((W)forks [active - 1])->active = active; 3125 ev_active (forks [active - 1]) = active;
2377 } 3126 }
2378 3127
2379 ev_stop (EV_A_ (W)w); 3128 ev_stop (EV_A_ (W)w);
3129
3130 EV_FREQUENT_CHECK;
3131}
3132#endif
3133
3134#if EV_ASYNC_ENABLE
3135void
3136ev_async_start (EV_P_ ev_async *w)
3137{
3138 if (expect_false (ev_is_active (w)))
3139 return;
3140
3141 evpipe_init (EV_A);
3142
3143 EV_FREQUENT_CHECK;
3144
3145 ev_start (EV_A_ (W)w, ++asynccnt);
3146 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3147 asyncs [asynccnt - 1] = w;
3148
3149 EV_FREQUENT_CHECK;
3150}
3151
3152void
3153ev_async_stop (EV_P_ ev_async *w)
3154{
3155 clear_pending (EV_A_ (W)w);
3156 if (expect_false (!ev_is_active (w)))
3157 return;
3158
3159 EV_FREQUENT_CHECK;
3160
3161 {
3162 int active = ev_active (w);
3163
3164 asyncs [active - 1] = asyncs [--asynccnt];
3165 ev_active (asyncs [active - 1]) = active;
3166 }
3167
3168 ev_stop (EV_A_ (W)w);
3169
3170 EV_FREQUENT_CHECK;
3171}
3172
3173void
3174ev_async_send (EV_P_ ev_async *w)
3175{
3176 w->sent = 1;
3177 evpipe_write (EV_A_ &gotasync);
2380} 3178}
2381#endif 3179#endif
2382 3180
2383/*****************************************************************************/ 3181/*****************************************************************************/
2384 3182
2394once_cb (EV_P_ struct ev_once *once, int revents) 3192once_cb (EV_P_ struct ev_once *once, int revents)
2395{ 3193{
2396 void (*cb)(int revents, void *arg) = once->cb; 3194 void (*cb)(int revents, void *arg) = once->cb;
2397 void *arg = once->arg; 3195 void *arg = once->arg;
2398 3196
2399 ev_io_stop (EV_A_ &once->io); 3197 ev_io_stop (EV_A_ &once->io);
2400 ev_timer_stop (EV_A_ &once->to); 3198 ev_timer_stop (EV_A_ &once->to);
2401 ev_free (once); 3199 ev_free (once);
2402 3200
2403 cb (revents, arg); 3201 cb (revents, arg);
2404} 3202}
2405 3203
2406static void 3204static void
2407once_cb_io (EV_P_ ev_io *w, int revents) 3205once_cb_io (EV_P_ ev_io *w, int revents)
2408{ 3206{
2409 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3207 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3208
3209 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2410} 3210}
2411 3211
2412static void 3212static void
2413once_cb_to (EV_P_ ev_timer *w, int revents) 3213once_cb_to (EV_P_ ev_timer *w, int revents)
2414{ 3214{
2415 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3215 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3216
3217 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2416} 3218}
2417 3219
2418void 3220void
2419ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3221ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2420{ 3222{
2442 ev_timer_set (&once->to, timeout, 0.); 3244 ev_timer_set (&once->to, timeout, 0.);
2443 ev_timer_start (EV_A_ &once->to); 3245 ev_timer_start (EV_A_ &once->to);
2444 } 3246 }
2445} 3247}
2446 3248
3249/*****************************************************************************/
3250
3251#if EV_WALK_ENABLE
3252void
3253ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3254{
3255 int i, j;
3256 ev_watcher_list *wl, *wn;
3257
3258 if (types & (EV_IO | EV_EMBED))
3259 for (i = 0; i < anfdmax; ++i)
3260 for (wl = anfds [i].head; wl; )
3261 {
3262 wn = wl->next;
3263
3264#if EV_EMBED_ENABLE
3265 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3266 {
3267 if (types & EV_EMBED)
3268 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3269 }
3270 else
3271#endif
3272#if EV_USE_INOTIFY
3273 if (ev_cb ((ev_io *)wl) == infy_cb)
3274 ;
3275 else
3276#endif
3277 if ((ev_io *)wl != &pipe_w)
3278 if (types & EV_IO)
3279 cb (EV_A_ EV_IO, wl);
3280
3281 wl = wn;
3282 }
3283
3284 if (types & (EV_TIMER | EV_STAT))
3285 for (i = timercnt + HEAP0; i-- > HEAP0; )
3286#if EV_STAT_ENABLE
3287 /*TODO: timer is not always active*/
3288 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3289 {
3290 if (types & EV_STAT)
3291 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3292 }
3293 else
3294#endif
3295 if (types & EV_TIMER)
3296 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3297
3298#if EV_PERIODIC_ENABLE
3299 if (types & EV_PERIODIC)
3300 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3301 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3302#endif
3303
3304#if EV_IDLE_ENABLE
3305 if (types & EV_IDLE)
3306 for (j = NUMPRI; i--; )
3307 for (i = idlecnt [j]; i--; )
3308 cb (EV_A_ EV_IDLE, idles [j][i]);
3309#endif
3310
3311#if EV_FORK_ENABLE
3312 if (types & EV_FORK)
3313 for (i = forkcnt; i--; )
3314 if (ev_cb (forks [i]) != embed_fork_cb)
3315 cb (EV_A_ EV_FORK, forks [i]);
3316#endif
3317
3318#if EV_ASYNC_ENABLE
3319 if (types & EV_ASYNC)
3320 for (i = asynccnt; i--; )
3321 cb (EV_A_ EV_ASYNC, asyncs [i]);
3322#endif
3323
3324 if (types & EV_PREPARE)
3325 for (i = preparecnt; i--; )
3326#if EV_EMBED_ENABLE
3327 if (ev_cb (prepares [i]) != embed_prepare_cb)
3328#endif
3329 cb (EV_A_ EV_PREPARE, prepares [i]);
3330
3331 if (types & EV_CHECK)
3332 for (i = checkcnt; i--; )
3333 cb (EV_A_ EV_CHECK, checks [i]);
3334
3335 if (types & EV_SIGNAL)
3336 for (i = 0; i < signalmax; ++i)
3337 for (wl = signals [i].head; wl; )
3338 {
3339 wn = wl->next;
3340 cb (EV_A_ EV_SIGNAL, wl);
3341 wl = wn;
3342 }
3343
3344 if (types & EV_CHILD)
3345 for (i = EV_PID_HASHSIZE; i--; )
3346 for (wl = childs [i]; wl; )
3347 {
3348 wn = wl->next;
3349 cb (EV_A_ EV_CHILD, wl);
3350 wl = wn;
3351 }
3352/* EV_STAT 0x00001000 /* stat data changed */
3353/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3354}
3355#endif
3356
2447#if EV_MULTIPLICITY 3357#if EV_MULTIPLICITY
2448 #include "ev_wrap.h" 3358 #include "ev_wrap.h"
2449#endif 3359#endif
2450 3360
2451#ifdef __cplusplus 3361#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines