ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.278 by root, Tue Jan 6 19:46:56 2009 UTC vs.
Revision 1.291 by root, Mon Jun 29 04:44:18 2009 UTC

57# endif 57# endif
58# ifndef EV_USE_MONOTONIC 58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1 59# define EV_USE_MONOTONIC 1
60# endif 60# endif
61# endif 61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
62# endif 64# endif
63 65
64# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
67# endif 69# endif
68# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
69# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
70# endif 72# endif
71# else 73# else
72# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
73# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
74# endif 76# endif
193# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
194# endif 196# endif
195#endif 197#endif
196 198
197#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
198# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif 201#endif
200 202
201#ifndef EV_USE_NANOSLEEP 203#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L 204# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1 205# define EV_USE_NANOSLEEP 1
280# define EV_USE_4HEAP !EV_MINIMAL 282# define EV_USE_4HEAP !EV_MINIMAL
281#endif 283#endif
282 284
283#ifndef EV_HEAP_CACHE_AT 285#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL 286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
285#endif 301#endif
286 302
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
288 304
289#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
320 336
321#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h> 338# include <winsock.h>
323#endif 339#endif
324 340
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD 341#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h> 343# include <stdint.h>
337# ifdef __cplusplus 344# ifdef __cplusplus
338extern "C" { 345extern "C" {
397typedef ev_watcher_time *WT; 404typedef ev_watcher_time *WT;
398 405
399#define ev_active(w) ((W)(w))->active 406#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at 407#define ev_at(w) ((WT)(w))->at
401 408
402#if EV_USE_MONOTONIC 409#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 410/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */ 411/* giving it a reasonably high chance of working on typical architetcures */
412static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
413#endif
414
415#if EV_USE_MONOTONIC
405static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 416static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
406#endif 417#endif
407 418
408#ifdef _WIN32 419#ifdef _WIN32
409# include "ev_win32.c" 420# include "ev_win32.c"
474#define ev_malloc(size) ev_realloc (0, (size)) 485#define ev_malloc(size) ev_realloc (0, (size))
475#define ev_free(ptr) ev_realloc ((ptr), 0) 486#define ev_free(ptr) ev_realloc ((ptr), 0)
476 487
477/*****************************************************************************/ 488/*****************************************************************************/
478 489
490/* file descriptor info structure */
479typedef struct 491typedef struct
480{ 492{
481 WL head; 493 WL head;
482 unsigned char events; 494 unsigned char events; /* the events watched for */
483 unsigned char reify; 495 unsigned char reify; /* flag set when this ANFD needs reification */
484 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 496 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
485 unsigned char unused; 497 unsigned char unused;
486#if EV_USE_EPOLL 498#if EV_USE_EPOLL
487 unsigned int egen; /* generation counter to counter epoll bugs */ 499 unsigned int egen; /* generation counter to counter epoll bugs */
488#endif 500#endif
489#if EV_SELECT_IS_WINSOCKET 501#if EV_SELECT_IS_WINSOCKET
490 SOCKET handle; 502 SOCKET handle;
491#endif 503#endif
492} ANFD; 504} ANFD;
493 505
506/* stores the pending event set for a given watcher */
494typedef struct 507typedef struct
495{ 508{
496 W w; 509 W w;
497 int events; 510 int events; /* the pending event set for the given watcher */
498} ANPENDING; 511} ANPENDING;
499 512
500#if EV_USE_INOTIFY 513#if EV_USE_INOTIFY
501/* hash table entry per inotify-id */ 514/* hash table entry per inotify-id */
502typedef struct 515typedef struct
505} ANFS; 518} ANFS;
506#endif 519#endif
507 520
508/* Heap Entry */ 521/* Heap Entry */
509#if EV_HEAP_CACHE_AT 522#if EV_HEAP_CACHE_AT
523 /* a heap element */
510 typedef struct { 524 typedef struct {
511 ev_tstamp at; 525 ev_tstamp at;
512 WT w; 526 WT w;
513 } ANHE; 527 } ANHE;
514 528
515 #define ANHE_w(he) (he).w /* access watcher, read-write */ 529 #define ANHE_w(he) (he).w /* access watcher, read-write */
516 #define ANHE_at(he) (he).at /* access cached at, read-only */ 530 #define ANHE_at(he) (he).at /* access cached at, read-only */
517 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 531 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
518#else 532#else
533 /* a heap element */
519 typedef WT ANHE; 534 typedef WT ANHE;
520 535
521 #define ANHE_w(he) (he) 536 #define ANHE_w(he) (he)
522 #define ANHE_at(he) (he)->at 537 #define ANHE_at(he) (he)->at
523 #define ANHE_at_cache(he) 538 #define ANHE_at_cache(he)
553 568
554ev_tstamp 569ev_tstamp
555ev_time (void) 570ev_time (void)
556{ 571{
557#if EV_USE_REALTIME 572#if EV_USE_REALTIME
573 if (expect_true (have_realtime))
574 {
558 struct timespec ts; 575 struct timespec ts;
559 clock_gettime (CLOCK_REALTIME, &ts); 576 clock_gettime (CLOCK_REALTIME, &ts);
560 return ts.tv_sec + ts.tv_nsec * 1e-9; 577 return ts.tv_sec + ts.tv_nsec * 1e-9;
561#else 578 }
579#endif
580
562 struct timeval tv; 581 struct timeval tv;
563 gettimeofday (&tv, 0); 582 gettimeofday (&tv, 0);
564 return tv.tv_sec + tv.tv_usec * 1e-6; 583 return tv.tv_sec + tv.tv_usec * 1e-6;
565#endif
566} 584}
567 585
568ev_tstamp inline_size 586inline_size ev_tstamp
569get_clock (void) 587get_clock (void)
570{ 588{
571#if EV_USE_MONOTONIC 589#if EV_USE_MONOTONIC
572 if (expect_true (have_monotonic)) 590 if (expect_true (have_monotonic))
573 { 591 {
618 636
619/*****************************************************************************/ 637/*****************************************************************************/
620 638
621#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 639#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
622 640
623int inline_size 641/* find a suitable new size for the given array, */
642/* hopefully by rounding to a ncie-to-malloc size */
643inline_size int
624array_nextsize (int elem, int cur, int cnt) 644array_nextsize (int elem, int cur, int cnt)
625{ 645{
626 int ncur = cur + 1; 646 int ncur = cur + 1;
627 647
628 do 648 do
669 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 689 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
670 } 690 }
671#endif 691#endif
672 692
673#define array_free(stem, idx) \ 693#define array_free(stem, idx) \
674 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 694 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
675 695
676/*****************************************************************************/ 696/*****************************************************************************/
697
698/* dummy callback for pending events */
699static void noinline
700pendingcb (EV_P_ ev_prepare *w, int revents)
701{
702}
677 703
678void noinline 704void noinline
679ev_feed_event (EV_P_ void *w, int revents) 705ev_feed_event (EV_P_ void *w, int revents)
680{ 706{
681 W w_ = (W)w; 707 W w_ = (W)w;
690 pendings [pri][w_->pending - 1].w = w_; 716 pendings [pri][w_->pending - 1].w = w_;
691 pendings [pri][w_->pending - 1].events = revents; 717 pendings [pri][w_->pending - 1].events = revents;
692 } 718 }
693} 719}
694 720
695void inline_speed 721inline_speed void
722feed_reverse (EV_P_ W w)
723{
724 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
725 rfeeds [rfeedcnt++] = w;
726}
727
728inline_size void
729feed_reverse_done (EV_P_ int revents)
730{
731 do
732 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
733 while (rfeedcnt);
734}
735
736inline_speed void
696queue_events (EV_P_ W *events, int eventcnt, int type) 737queue_events (EV_P_ W *events, int eventcnt, int type)
697{ 738{
698 int i; 739 int i;
699 740
700 for (i = 0; i < eventcnt; ++i) 741 for (i = 0; i < eventcnt; ++i)
701 ev_feed_event (EV_A_ events [i], type); 742 ev_feed_event (EV_A_ events [i], type);
702} 743}
703 744
704/*****************************************************************************/ 745/*****************************************************************************/
705 746
706void inline_speed 747inline_speed void
707fd_event (EV_P_ int fd, int revents) 748fd_event (EV_P_ int fd, int revents)
708{ 749{
709 ANFD *anfd = anfds + fd; 750 ANFD *anfd = anfds + fd;
710 ev_io *w; 751 ev_io *w;
711 752
723{ 764{
724 if (fd >= 0 && fd < anfdmax) 765 if (fd >= 0 && fd < anfdmax)
725 fd_event (EV_A_ fd, revents); 766 fd_event (EV_A_ fd, revents);
726} 767}
727 768
728void inline_size 769/* make sure the external fd watch events are in-sync */
770/* with the kernel/libev internal state */
771inline_size void
729fd_reify (EV_P) 772fd_reify (EV_P)
730{ 773{
731 int i; 774 int i;
732 775
733 for (i = 0; i < fdchangecnt; ++i) 776 for (i = 0; i < fdchangecnt; ++i)
759 unsigned char o_reify = anfd->reify; 802 unsigned char o_reify = anfd->reify;
760 803
761 anfd->reify = 0; 804 anfd->reify = 0;
762 anfd->events = events; 805 anfd->events = events;
763 806
764 if (o_events != events || o_reify & EV_IOFDSET) 807 if (o_events != events || o_reify & EV__IOFDSET)
765 backend_modify (EV_A_ fd, o_events, events); 808 backend_modify (EV_A_ fd, o_events, events);
766 } 809 }
767 } 810 }
768 811
769 fdchangecnt = 0; 812 fdchangecnt = 0;
770} 813}
771 814
772void inline_size 815/* something about the given fd changed */
816inline_size void
773fd_change (EV_P_ int fd, int flags) 817fd_change (EV_P_ int fd, int flags)
774{ 818{
775 unsigned char reify = anfds [fd].reify; 819 unsigned char reify = anfds [fd].reify;
776 anfds [fd].reify |= flags; 820 anfds [fd].reify |= flags;
777 821
781 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 825 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
782 fdchanges [fdchangecnt - 1] = fd; 826 fdchanges [fdchangecnt - 1] = fd;
783 } 827 }
784} 828}
785 829
786void inline_speed 830/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
831inline_speed void
787fd_kill (EV_P_ int fd) 832fd_kill (EV_P_ int fd)
788{ 833{
789 ev_io *w; 834 ev_io *w;
790 835
791 while ((w = (ev_io *)anfds [fd].head)) 836 while ((w = (ev_io *)anfds [fd].head))
793 ev_io_stop (EV_A_ w); 838 ev_io_stop (EV_A_ w);
794 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 839 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
795 } 840 }
796} 841}
797 842
798int inline_size 843/* check whether the given fd is atcually valid, for error recovery */
844inline_size int
799fd_valid (int fd) 845fd_valid (int fd)
800{ 846{
801#ifdef _WIN32 847#ifdef _WIN32
802 return _get_osfhandle (fd) != -1; 848 return _get_osfhandle (fd) != -1;
803#else 849#else
840 for (fd = 0; fd < anfdmax; ++fd) 886 for (fd = 0; fd < anfdmax; ++fd)
841 if (anfds [fd].events) 887 if (anfds [fd].events)
842 { 888 {
843 anfds [fd].events = 0; 889 anfds [fd].events = 0;
844 anfds [fd].emask = 0; 890 anfds [fd].emask = 0;
845 fd_change (EV_A_ fd, EV_IOFDSET | 1); 891 fd_change (EV_A_ fd, EV__IOFDSET | 1);
846 } 892 }
847} 893}
848 894
849/*****************************************************************************/ 895/*****************************************************************************/
850 896
866#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 912#define HEAP0 (DHEAP - 1) /* index of first element in heap */
867#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 913#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
868#define UPHEAP_DONE(p,k) ((p) == (k)) 914#define UPHEAP_DONE(p,k) ((p) == (k))
869 915
870/* away from the root */ 916/* away from the root */
871void inline_speed 917inline_speed void
872downheap (ANHE *heap, int N, int k) 918downheap (ANHE *heap, int N, int k)
873{ 919{
874 ANHE he = heap [k]; 920 ANHE he = heap [k];
875 ANHE *E = heap + N + HEAP0; 921 ANHE *E = heap + N + HEAP0;
876 922
916#define HEAP0 1 962#define HEAP0 1
917#define HPARENT(k) ((k) >> 1) 963#define HPARENT(k) ((k) >> 1)
918#define UPHEAP_DONE(p,k) (!(p)) 964#define UPHEAP_DONE(p,k) (!(p))
919 965
920/* away from the root */ 966/* away from the root */
921void inline_speed 967inline_speed void
922downheap (ANHE *heap, int N, int k) 968downheap (ANHE *heap, int N, int k)
923{ 969{
924 ANHE he = heap [k]; 970 ANHE he = heap [k];
925 971
926 for (;;) 972 for (;;)
946 ev_active (ANHE_w (he)) = k; 992 ev_active (ANHE_w (he)) = k;
947} 993}
948#endif 994#endif
949 995
950/* towards the root */ 996/* towards the root */
951void inline_speed 997inline_speed void
952upheap (ANHE *heap, int k) 998upheap (ANHE *heap, int k)
953{ 999{
954 ANHE he = heap [k]; 1000 ANHE he = heap [k];
955 1001
956 for (;;) 1002 for (;;)
967 1013
968 heap [k] = he; 1014 heap [k] = he;
969 ev_active (ANHE_w (he)) = k; 1015 ev_active (ANHE_w (he)) = k;
970} 1016}
971 1017
972void inline_size 1018/* move an element suitably so it is in a correct place */
1019inline_size void
973adjustheap (ANHE *heap, int N, int k) 1020adjustheap (ANHE *heap, int N, int k)
974{ 1021{
975 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1022 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
976 upheap (heap, k); 1023 upheap (heap, k);
977 else 1024 else
978 downheap (heap, N, k); 1025 downheap (heap, N, k);
979} 1026}
980 1027
981/* rebuild the heap: this function is used only once and executed rarely */ 1028/* rebuild the heap: this function is used only once and executed rarely */
982void inline_size 1029inline_size void
983reheap (ANHE *heap, int N) 1030reheap (ANHE *heap, int N)
984{ 1031{
985 int i; 1032 int i;
986 1033
987 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1034 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
990 upheap (heap, i + HEAP0); 1037 upheap (heap, i + HEAP0);
991} 1038}
992 1039
993/*****************************************************************************/ 1040/*****************************************************************************/
994 1041
1042/* associate signal watchers to a signal signal */
995typedef struct 1043typedef struct
996{ 1044{
997 WL head; 1045 WL head;
998 EV_ATOMIC_T gotsig; 1046 EV_ATOMIC_T gotsig;
999} ANSIG; 1047} ANSIG;
1003 1051
1004static EV_ATOMIC_T gotsig; 1052static EV_ATOMIC_T gotsig;
1005 1053
1006/*****************************************************************************/ 1054/*****************************************************************************/
1007 1055
1008void inline_speed 1056/* used to prepare libev internal fd's */
1057/* this is not fork-safe */
1058inline_speed void
1009fd_intern (int fd) 1059fd_intern (int fd)
1010{ 1060{
1011#ifdef _WIN32 1061#ifdef _WIN32
1012 unsigned long arg = 1; 1062 unsigned long arg = 1;
1013 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1063 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1018} 1068}
1019 1069
1020static void noinline 1070static void noinline
1021evpipe_init (EV_P) 1071evpipe_init (EV_P)
1022{ 1072{
1023 if (!ev_is_active (&pipeev)) 1073 if (!ev_is_active (&pipe_w))
1024 { 1074 {
1025#if EV_USE_EVENTFD 1075#if EV_USE_EVENTFD
1026 if ((evfd = eventfd (0, 0)) >= 0) 1076 if ((evfd = eventfd (0, 0)) >= 0)
1027 { 1077 {
1028 evpipe [0] = -1; 1078 evpipe [0] = -1;
1029 fd_intern (evfd); 1079 fd_intern (evfd);
1030 ev_io_set (&pipeev, evfd, EV_READ); 1080 ev_io_set (&pipe_w, evfd, EV_READ);
1031 } 1081 }
1032 else 1082 else
1033#endif 1083#endif
1034 { 1084 {
1035 while (pipe (evpipe)) 1085 while (pipe (evpipe))
1036 ev_syserr ("(libev) error creating signal/async pipe"); 1086 ev_syserr ("(libev) error creating signal/async pipe");
1037 1087
1038 fd_intern (evpipe [0]); 1088 fd_intern (evpipe [0]);
1039 fd_intern (evpipe [1]); 1089 fd_intern (evpipe [1]);
1040 ev_io_set (&pipeev, evpipe [0], EV_READ); 1090 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1041 } 1091 }
1042 1092
1043 ev_io_start (EV_A_ &pipeev); 1093 ev_io_start (EV_A_ &pipe_w);
1044 ev_unref (EV_A); /* watcher should not keep loop alive */ 1094 ev_unref (EV_A); /* watcher should not keep loop alive */
1045 } 1095 }
1046} 1096}
1047 1097
1048void inline_size 1098inline_size void
1049evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1099evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1050{ 1100{
1051 if (!*flag) 1101 if (!*flag)
1052 { 1102 {
1053 int old_errno = errno; /* save errno because write might clobber it */ 1103 int old_errno = errno; /* save errno because write might clobber it */
1066 1116
1067 errno = old_errno; 1117 errno = old_errno;
1068 } 1118 }
1069} 1119}
1070 1120
1121/* called whenever the libev signal pipe */
1122/* got some events (signal, async) */
1071static void 1123static void
1072pipecb (EV_P_ ev_io *iow, int revents) 1124pipecb (EV_P_ ev_io *iow, int revents)
1073{ 1125{
1074#if EV_USE_EVENTFD 1126#if EV_USE_EVENTFD
1075 if (evfd >= 0) 1127 if (evfd >= 0)
1157 1209
1158#ifndef WIFCONTINUED 1210#ifndef WIFCONTINUED
1159# define WIFCONTINUED(status) 0 1211# define WIFCONTINUED(status) 0
1160#endif 1212#endif
1161 1213
1162void inline_speed 1214/* handle a single child status event */
1215inline_speed void
1163child_reap (EV_P_ int chain, int pid, int status) 1216child_reap (EV_P_ int chain, int pid, int status)
1164{ 1217{
1165 ev_child *w; 1218 ev_child *w;
1166 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1219 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1167 1220
1180 1233
1181#ifndef WCONTINUED 1234#ifndef WCONTINUED
1182# define WCONTINUED 0 1235# define WCONTINUED 0
1183#endif 1236#endif
1184 1237
1238/* called on sigchld etc., calls waitpid */
1185static void 1239static void
1186childcb (EV_P_ ev_signal *sw, int revents) 1240childcb (EV_P_ ev_signal *sw, int revents)
1187{ 1241{
1188 int pid, status; 1242 int pid, status;
1189 1243
1314ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1368ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1315{ 1369{
1316 timeout_blocktime = interval; 1370 timeout_blocktime = interval;
1317} 1371}
1318 1372
1373/* initialise a loop structure, must be zero-initialised */
1319static void noinline 1374static void noinline
1320loop_init (EV_P_ unsigned int flags) 1375loop_init (EV_P_ unsigned int flags)
1321{ 1376{
1322 if (!backend) 1377 if (!backend)
1323 { 1378 {
1379#if EV_USE_REALTIME
1380 if (!have_realtime)
1381 {
1382 struct timespec ts;
1383
1384 if (!clock_gettime (CLOCK_REALTIME, &ts))
1385 have_realtime = 1;
1386 }
1387#endif
1388
1324#if EV_USE_MONOTONIC 1389#if EV_USE_MONOTONIC
1390 if (!have_monotonic)
1325 { 1391 {
1326 struct timespec ts; 1392 struct timespec ts;
1393
1327 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1394 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1328 have_monotonic = 1; 1395 have_monotonic = 1;
1329 } 1396 }
1330#endif 1397#endif
1331 1398
1332 ev_rt_now = ev_time (); 1399 ev_rt_now = ev_time ();
1333 mn_now = get_clock (); 1400 mn_now = get_clock ();
1334 now_floor = mn_now; 1401 now_floor = mn_now;
1371#endif 1438#endif
1372#if EV_USE_SELECT 1439#if EV_USE_SELECT
1373 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1440 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1374#endif 1441#endif
1375 1442
1443 ev_prepare_init (&pending_w, pendingcb);
1444
1376 ev_init (&pipeev, pipecb); 1445 ev_init (&pipe_w, pipecb);
1377 ev_set_priority (&pipeev, EV_MAXPRI); 1446 ev_set_priority (&pipe_w, EV_MAXPRI);
1378 } 1447 }
1379} 1448}
1380 1449
1450/* free up a loop structure */
1381static void noinline 1451static void noinline
1382loop_destroy (EV_P) 1452loop_destroy (EV_P)
1383{ 1453{
1384 int i; 1454 int i;
1385 1455
1386 if (ev_is_active (&pipeev)) 1456 if (ev_is_active (&pipe_w))
1387 { 1457 {
1388 ev_ref (EV_A); /* signal watcher */ 1458 ev_ref (EV_A); /* signal watcher */
1389 ev_io_stop (EV_A_ &pipeev); 1459 ev_io_stop (EV_A_ &pipe_w);
1390 1460
1391#if EV_USE_EVENTFD 1461#if EV_USE_EVENTFD
1392 if (evfd >= 0) 1462 if (evfd >= 0)
1393 close (evfd); 1463 close (evfd);
1394#endif 1464#endif
1433 } 1503 }
1434 1504
1435 ev_free (anfds); anfdmax = 0; 1505 ev_free (anfds); anfdmax = 0;
1436 1506
1437 /* have to use the microsoft-never-gets-it-right macro */ 1507 /* have to use the microsoft-never-gets-it-right macro */
1508 array_free (rfeed, EMPTY);
1438 array_free (fdchange, EMPTY); 1509 array_free (fdchange, EMPTY);
1439 array_free (timer, EMPTY); 1510 array_free (timer, EMPTY);
1440#if EV_PERIODIC_ENABLE 1511#if EV_PERIODIC_ENABLE
1441 array_free (periodic, EMPTY); 1512 array_free (periodic, EMPTY);
1442#endif 1513#endif
1451 1522
1452 backend = 0; 1523 backend = 0;
1453} 1524}
1454 1525
1455#if EV_USE_INOTIFY 1526#if EV_USE_INOTIFY
1456void inline_size infy_fork (EV_P); 1527inline_size void infy_fork (EV_P);
1457#endif 1528#endif
1458 1529
1459void inline_size 1530inline_size void
1460loop_fork (EV_P) 1531loop_fork (EV_P)
1461{ 1532{
1462#if EV_USE_PORT 1533#if EV_USE_PORT
1463 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1534 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1464#endif 1535#endif
1470#endif 1541#endif
1471#if EV_USE_INOTIFY 1542#if EV_USE_INOTIFY
1472 infy_fork (EV_A); 1543 infy_fork (EV_A);
1473#endif 1544#endif
1474 1545
1475 if (ev_is_active (&pipeev)) 1546 if (ev_is_active (&pipe_w))
1476 { 1547 {
1477 /* this "locks" the handlers against writing to the pipe */ 1548 /* this "locks" the handlers against writing to the pipe */
1478 /* while we modify the fd vars */ 1549 /* while we modify the fd vars */
1479 gotsig = 1; 1550 gotsig = 1;
1480#if EV_ASYNC_ENABLE 1551#if EV_ASYNC_ENABLE
1481 gotasync = 1; 1552 gotasync = 1;
1482#endif 1553#endif
1483 1554
1484 ev_ref (EV_A); 1555 ev_ref (EV_A);
1485 ev_io_stop (EV_A_ &pipeev); 1556 ev_io_stop (EV_A_ &pipe_w);
1486 1557
1487#if EV_USE_EVENTFD 1558#if EV_USE_EVENTFD
1488 if (evfd >= 0) 1559 if (evfd >= 0)
1489 close (evfd); 1560 close (evfd);
1490#endif 1561#endif
1495 close (evpipe [1]); 1566 close (evpipe [1]);
1496 } 1567 }
1497 1568
1498 evpipe_init (EV_A); 1569 evpipe_init (EV_A);
1499 /* now iterate over everything, in case we missed something */ 1570 /* now iterate over everything, in case we missed something */
1500 pipecb (EV_A_ &pipeev, EV_READ); 1571 pipecb (EV_A_ &pipe_w, EV_READ);
1501 } 1572 }
1502 1573
1503 postfork = 0; 1574 postfork = 0;
1504} 1575}
1505 1576
1701ev_invoke (EV_P_ void *w, int revents) 1772ev_invoke (EV_P_ void *w, int revents)
1702{ 1773{
1703 EV_CB_INVOKE ((W)w, revents); 1774 EV_CB_INVOKE ((W)w, revents);
1704} 1775}
1705 1776
1706void inline_speed 1777inline_speed void
1707call_pending (EV_P) 1778call_pending (EV_P)
1708{ 1779{
1709 int pri; 1780 int pri;
1710 1781
1711 for (pri = NUMPRI; pri--; ) 1782 for (pri = NUMPRI; pri--; )
1712 while (pendingcnt [pri]) 1783 while (pendingcnt [pri])
1713 { 1784 {
1714 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1785 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1715 1786
1716 if (expect_true (p->w))
1717 {
1718 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/ 1787 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1788 /* ^ this is no longer true, as pending_w could be here */
1719 1789
1720 p->w->pending = 0; 1790 p->w->pending = 0;
1721 EV_CB_INVOKE (p->w, p->events); 1791 EV_CB_INVOKE (p->w, p->events);
1722 EV_FREQUENT_CHECK; 1792 EV_FREQUENT_CHECK;
1723 }
1724 } 1793 }
1725} 1794}
1726 1795
1727#if EV_IDLE_ENABLE 1796#if EV_IDLE_ENABLE
1728void inline_size 1797/* make idle watchers pending. this handles the "call-idle */
1798/* only when higher priorities are idle" logic */
1799inline_size void
1729idle_reify (EV_P) 1800idle_reify (EV_P)
1730{ 1801{
1731 if (expect_false (idleall)) 1802 if (expect_false (idleall))
1732 { 1803 {
1733 int pri; 1804 int pri;
1745 } 1816 }
1746 } 1817 }
1747} 1818}
1748#endif 1819#endif
1749 1820
1750void inline_size 1821/* make timers pending */
1822inline_size void
1751timers_reify (EV_P) 1823timers_reify (EV_P)
1752{ 1824{
1753 EV_FREQUENT_CHECK; 1825 EV_FREQUENT_CHECK;
1754 1826
1755 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 1827 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1756 { 1828 {
1757 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 1829 do
1758
1759 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1760
1761 /* first reschedule or stop timer */
1762 if (w->repeat)
1763 { 1830 {
1831 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1832
1833 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1834
1835 /* first reschedule or stop timer */
1836 if (w->repeat)
1837 {
1764 ev_at (w) += w->repeat; 1838 ev_at (w) += w->repeat;
1765 if (ev_at (w) < mn_now) 1839 if (ev_at (w) < mn_now)
1766 ev_at (w) = mn_now; 1840 ev_at (w) = mn_now;
1767 1841
1768 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1842 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1769 1843
1770 ANHE_at_cache (timers [HEAP0]); 1844 ANHE_at_cache (timers [HEAP0]);
1771 downheap (timers, timercnt, HEAP0); 1845 downheap (timers, timercnt, HEAP0);
1846 }
1847 else
1848 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1849
1850 EV_FREQUENT_CHECK;
1851 feed_reverse (EV_A_ (W)w);
1772 } 1852 }
1773 else 1853 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1774 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1775 1854
1776 EV_FREQUENT_CHECK;
1777 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1855 feed_reverse_done (EV_A_ EV_TIMEOUT);
1778 } 1856 }
1779} 1857}
1780 1858
1781#if EV_PERIODIC_ENABLE 1859#if EV_PERIODIC_ENABLE
1782void inline_size 1860/* make periodics pending */
1861inline_size void
1783periodics_reify (EV_P) 1862periodics_reify (EV_P)
1784{ 1863{
1785 EV_FREQUENT_CHECK; 1864 EV_FREQUENT_CHECK;
1786 1865
1787 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 1866 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1788 { 1867 {
1789 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 1868 int feed_count = 0;
1790 1869
1791 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/ 1870 do
1792
1793 /* first reschedule or stop timer */
1794 if (w->reschedule_cb)
1795 { 1871 {
1872 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1873
1874 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1875
1876 /* first reschedule or stop timer */
1877 if (w->reschedule_cb)
1878 {
1796 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1879 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1797 1880
1798 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 1881 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1799 1882
1800 ANHE_at_cache (periodics [HEAP0]); 1883 ANHE_at_cache (periodics [HEAP0]);
1801 downheap (periodics, periodiccnt, HEAP0); 1884 downheap (periodics, periodiccnt, HEAP0);
1885 }
1886 else if (w->interval)
1887 {
1888 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1889 /* if next trigger time is not sufficiently in the future, put it there */
1890 /* this might happen because of floating point inexactness */
1891 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1892 {
1893 ev_at (w) += w->interval;
1894
1895 /* if interval is unreasonably low we might still have a time in the past */
1896 /* so correct this. this will make the periodic very inexact, but the user */
1897 /* has effectively asked to get triggered more often than possible */
1898 if (ev_at (w) < ev_rt_now)
1899 ev_at (w) = ev_rt_now;
1900 }
1901
1902 ANHE_at_cache (periodics [HEAP0]);
1903 downheap (periodics, periodiccnt, HEAP0);
1904 }
1905 else
1906 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1907
1908 EV_FREQUENT_CHECK;
1909 feed_reverse (EV_A_ (W)w);
1802 } 1910 }
1803 else if (w->interval) 1911 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1804 {
1805 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1806 /* if next trigger time is not sufficiently in the future, put it there */
1807 /* this might happen because of floating point inexactness */
1808 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1809 {
1810 ev_at (w) += w->interval;
1811 1912
1812 /* if interval is unreasonably low we might still have a time in the past */
1813 /* so correct this. this will make the periodic very inexact, but the user */
1814 /* has effectively asked to get triggered more often than possible */
1815 if (ev_at (w) < ev_rt_now)
1816 ev_at (w) = ev_rt_now;
1817 }
1818
1819 ANHE_at_cache (periodics [HEAP0]);
1820 downheap (periodics, periodiccnt, HEAP0);
1821 }
1822 else
1823 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1824
1825 EV_FREQUENT_CHECK;
1826 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1913 feed_reverse_done (EV_A_ EV_PERIODIC);
1827 } 1914 }
1828} 1915}
1829 1916
1917/* simply recalculate all periodics */
1918/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1830static void noinline 1919static void noinline
1831periodics_reschedule (EV_P) 1920periodics_reschedule (EV_P)
1832{ 1921{
1833 int i; 1922 int i;
1834 1923
1847 1936
1848 reheap (periodics, periodiccnt); 1937 reheap (periodics, periodiccnt);
1849} 1938}
1850#endif 1939#endif
1851 1940
1852void inline_speed 1941/* adjust all timers by a given offset */
1942static void noinline
1943timers_reschedule (EV_P_ ev_tstamp adjust)
1944{
1945 int i;
1946
1947 for (i = 0; i < timercnt; ++i)
1948 {
1949 ANHE *he = timers + i + HEAP0;
1950 ANHE_w (*he)->at += adjust;
1951 ANHE_at_cache (*he);
1952 }
1953}
1954
1955/* fetch new monotonic and realtime times from the kernel */
1956/* also detetc if there was a timejump, and act accordingly */
1957inline_speed void
1853time_update (EV_P_ ev_tstamp max_block) 1958time_update (EV_P_ ev_tstamp max_block)
1854{ 1959{
1855 int i;
1856
1857#if EV_USE_MONOTONIC 1960#if EV_USE_MONOTONIC
1858 if (expect_true (have_monotonic)) 1961 if (expect_true (have_monotonic))
1859 { 1962 {
1963 int i;
1860 ev_tstamp odiff = rtmn_diff; 1964 ev_tstamp odiff = rtmn_diff;
1861 1965
1862 mn_now = get_clock (); 1966 mn_now = get_clock ();
1863 1967
1864 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 1968 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1890 ev_rt_now = ev_time (); 1994 ev_rt_now = ev_time ();
1891 mn_now = get_clock (); 1995 mn_now = get_clock ();
1892 now_floor = mn_now; 1996 now_floor = mn_now;
1893 } 1997 }
1894 1998
1999 /* no timer adjustment, as the monotonic clock doesn't jump */
2000 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1895# if EV_PERIODIC_ENABLE 2001# if EV_PERIODIC_ENABLE
1896 periodics_reschedule (EV_A); 2002 periodics_reschedule (EV_A);
1897# endif 2003# endif
1898 /* no timer adjustment, as the monotonic clock doesn't jump */
1899 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1900 } 2004 }
1901 else 2005 else
1902#endif 2006#endif
1903 { 2007 {
1904 ev_rt_now = ev_time (); 2008 ev_rt_now = ev_time ();
1905 2009
1906 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2010 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1907 { 2011 {
2012 /* adjust timers. this is easy, as the offset is the same for all of them */
2013 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1908#if EV_PERIODIC_ENABLE 2014#if EV_PERIODIC_ENABLE
1909 periodics_reschedule (EV_A); 2015 periodics_reschedule (EV_A);
1910#endif 2016#endif
1911 /* adjust timers. this is easy, as the offset is the same for all of them */
1912 for (i = 0; i < timercnt; ++i)
1913 {
1914 ANHE *he = timers + i + HEAP0;
1915 ANHE_w (*he)->at += ev_rt_now - mn_now;
1916 ANHE_at_cache (*he);
1917 }
1918 } 2017 }
1919 2018
1920 mn_now = ev_rt_now; 2019 mn_now = ev_rt_now;
1921 } 2020 }
1922}
1923
1924void
1925ev_ref (EV_P)
1926{
1927 ++activecnt;
1928}
1929
1930void
1931ev_unref (EV_P)
1932{
1933 --activecnt;
1934}
1935
1936void
1937ev_now_update (EV_P)
1938{
1939 time_update (EV_A_ 1e100);
1940} 2021}
1941 2022
1942static int loop_done; 2023static int loop_done;
1943 2024
1944void 2025void
1978 { 2059 {
1979 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2060 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1980 call_pending (EV_A); 2061 call_pending (EV_A);
1981 } 2062 }
1982 2063
1983 if (expect_false (!activecnt))
1984 break;
1985
1986 /* we might have forked, so reify kernel state if necessary */ 2064 /* we might have forked, so reify kernel state if necessary */
1987 if (expect_false (postfork)) 2065 if (expect_false (postfork))
1988 loop_fork (EV_A); 2066 loop_fork (EV_A);
1989 2067
1990 /* update fd-related kernel structures */ 2068 /* update fd-related kernel structures */
2069ev_unloop (EV_P_ int how) 2147ev_unloop (EV_P_ int how)
2070{ 2148{
2071 loop_done = how; 2149 loop_done = how;
2072} 2150}
2073 2151
2152void
2153ev_ref (EV_P)
2154{
2155 ++activecnt;
2156}
2157
2158void
2159ev_unref (EV_P)
2160{
2161 --activecnt;
2162}
2163
2164void
2165ev_now_update (EV_P)
2166{
2167 time_update (EV_A_ 1e100);
2168}
2169
2170void
2171ev_suspend (EV_P)
2172{
2173 ev_now_update (EV_A);
2174}
2175
2176void
2177ev_resume (EV_P)
2178{
2179 ev_tstamp mn_prev = mn_now;
2180
2181 ev_now_update (EV_A);
2182 timers_reschedule (EV_A_ mn_now - mn_prev);
2183#if EV_PERIODIC_ENABLE
2184 /* TODO: really do this? */
2185 periodics_reschedule (EV_A);
2186#endif
2187}
2188
2074/*****************************************************************************/ 2189/*****************************************************************************/
2190/* singly-linked list management, used when the expected list length is short */
2075 2191
2076void inline_size 2192inline_size void
2077wlist_add (WL *head, WL elem) 2193wlist_add (WL *head, WL elem)
2078{ 2194{
2079 elem->next = *head; 2195 elem->next = *head;
2080 *head = elem; 2196 *head = elem;
2081} 2197}
2082 2198
2083void inline_size 2199inline_size void
2084wlist_del (WL *head, WL elem) 2200wlist_del (WL *head, WL elem)
2085{ 2201{
2086 while (*head) 2202 while (*head)
2087 { 2203 {
2088 if (*head == elem) 2204 if (*head == elem)
2093 2209
2094 head = &(*head)->next; 2210 head = &(*head)->next;
2095 } 2211 }
2096} 2212}
2097 2213
2098void inline_speed 2214/* internal, faster, version of ev_clear_pending */
2215inline_speed void
2099clear_pending (EV_P_ W w) 2216clear_pending (EV_P_ W w)
2100{ 2217{
2101 if (w->pending) 2218 if (w->pending)
2102 { 2219 {
2103 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2220 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2104 w->pending = 0; 2221 w->pending = 0;
2105 } 2222 }
2106} 2223}
2107 2224
2108int 2225int
2112 int pending = w_->pending; 2229 int pending = w_->pending;
2113 2230
2114 if (expect_true (pending)) 2231 if (expect_true (pending))
2115 { 2232 {
2116 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2233 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2234 p->w = (W)&pending_w;
2117 w_->pending = 0; 2235 w_->pending = 0;
2118 p->w = 0;
2119 return p->events; 2236 return p->events;
2120 } 2237 }
2121 else 2238 else
2122 return 0; 2239 return 0;
2123} 2240}
2124 2241
2125void inline_size 2242inline_size void
2126pri_adjust (EV_P_ W w) 2243pri_adjust (EV_P_ W w)
2127{ 2244{
2128 int pri = w->priority; 2245 int pri = w->priority;
2129 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2246 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2130 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2247 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2131 w->priority = pri; 2248 w->priority = pri;
2132} 2249}
2133 2250
2134void inline_speed 2251inline_speed void
2135ev_start (EV_P_ W w, int active) 2252ev_start (EV_P_ W w, int active)
2136{ 2253{
2137 pri_adjust (EV_A_ w); 2254 pri_adjust (EV_A_ w);
2138 w->active = active; 2255 w->active = active;
2139 ev_ref (EV_A); 2256 ev_ref (EV_A);
2140} 2257}
2141 2258
2142void inline_size 2259inline_size void
2143ev_stop (EV_P_ W w) 2260ev_stop (EV_P_ W w)
2144{ 2261{
2145 ev_unref (EV_A); 2262 ev_unref (EV_A);
2146 w->active = 0; 2263 w->active = 0;
2147} 2264}
2155 2272
2156 if (expect_false (ev_is_active (w))) 2273 if (expect_false (ev_is_active (w)))
2157 return; 2274 return;
2158 2275
2159 assert (("libev: ev_io_start called with negative fd", fd >= 0)); 2276 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2160 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE)))); 2277 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2161 2278
2162 EV_FREQUENT_CHECK; 2279 EV_FREQUENT_CHECK;
2163 2280
2164 ev_start (EV_A_ (W)w, 1); 2281 ev_start (EV_A_ (W)w, 1);
2165 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 2282 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2166 wlist_add (&anfds[fd].head, (WL)w); 2283 wlist_add (&anfds[fd].head, (WL)w);
2167 2284
2168 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2285 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
2169 w->events &= ~EV_IOFDSET; 2286 w->events &= ~EV__IOFDSET;
2170 2287
2171 EV_FREQUENT_CHECK; 2288 EV_FREQUENT_CHECK;
2172} 2289}
2173 2290
2174void noinline 2291void noinline
2572 2689
2573 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2690 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2574 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2691 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2575} 2692}
2576 2693
2577void inline_size 2694inline_size void
2578check_2625 (EV_P) 2695check_2625 (EV_P)
2579{ 2696{
2580 /* kernels < 2.6.25 are borked 2697 /* kernels < 2.6.25 are borked
2581 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 2698 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2582 */ 2699 */
2595 return; 2712 return;
2596 2713
2597 fs_2625 = 1; 2714 fs_2625 = 1;
2598} 2715}
2599 2716
2600void inline_size 2717inline_size void
2601infy_init (EV_P) 2718infy_init (EV_P)
2602{ 2719{
2603 if (fs_fd != -2) 2720 if (fs_fd != -2)
2604 return; 2721 return;
2605 2722
2615 ev_set_priority (&fs_w, EV_MAXPRI); 2732 ev_set_priority (&fs_w, EV_MAXPRI);
2616 ev_io_start (EV_A_ &fs_w); 2733 ev_io_start (EV_A_ &fs_w);
2617 } 2734 }
2618} 2735}
2619 2736
2620void inline_size 2737inline_size void
2621infy_fork (EV_P) 2738infy_fork (EV_P)
2622{ 2739{
2623 int slot; 2740 int slot;
2624 2741
2625 if (fs_fd < 0) 2742 if (fs_fd < 0)
3127 ev_timer_set (&once->to, timeout, 0.); 3244 ev_timer_set (&once->to, timeout, 0.);
3128 ev_timer_start (EV_A_ &once->to); 3245 ev_timer_start (EV_A_ &once->to);
3129 } 3246 }
3130} 3247}
3131 3248
3249/*****************************************************************************/
3250
3251#if EV_WALK_ENABLE
3252void
3253ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3254{
3255 int i, j;
3256 ev_watcher_list *wl, *wn;
3257
3258 if (types & (EV_IO | EV_EMBED))
3259 for (i = 0; i < anfdmax; ++i)
3260 for (wl = anfds [i].head; wl; )
3261 {
3262 wn = wl->next;
3263
3264#if EV_EMBED_ENABLE
3265 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3266 {
3267 if (types & EV_EMBED)
3268 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3269 }
3270 else
3271#endif
3272#if EV_USE_INOTIFY
3273 if (ev_cb ((ev_io *)wl) == infy_cb)
3274 ;
3275 else
3276#endif
3277 if ((ev_io *)wl != &pipe_w)
3278 if (types & EV_IO)
3279 cb (EV_A_ EV_IO, wl);
3280
3281 wl = wn;
3282 }
3283
3284 if (types & (EV_TIMER | EV_STAT))
3285 for (i = timercnt + HEAP0; i-- > HEAP0; )
3286#if EV_STAT_ENABLE
3287 /*TODO: timer is not always active*/
3288 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3289 {
3290 if (types & EV_STAT)
3291 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3292 }
3293 else
3294#endif
3295 if (types & EV_TIMER)
3296 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3297
3298#if EV_PERIODIC_ENABLE
3299 if (types & EV_PERIODIC)
3300 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3301 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3302#endif
3303
3304#if EV_IDLE_ENABLE
3305 if (types & EV_IDLE)
3306 for (j = NUMPRI; i--; )
3307 for (i = idlecnt [j]; i--; )
3308 cb (EV_A_ EV_IDLE, idles [j][i]);
3309#endif
3310
3311#if EV_FORK_ENABLE
3312 if (types & EV_FORK)
3313 for (i = forkcnt; i--; )
3314 if (ev_cb (forks [i]) != embed_fork_cb)
3315 cb (EV_A_ EV_FORK, forks [i]);
3316#endif
3317
3318#if EV_ASYNC_ENABLE
3319 if (types & EV_ASYNC)
3320 for (i = asynccnt; i--; )
3321 cb (EV_A_ EV_ASYNC, asyncs [i]);
3322#endif
3323
3324 if (types & EV_PREPARE)
3325 for (i = preparecnt; i--; )
3326#if EV_EMBED_ENABLE
3327 if (ev_cb (prepares [i]) != embed_prepare_cb)
3328#endif
3329 cb (EV_A_ EV_PREPARE, prepares [i]);
3330
3331 if (types & EV_CHECK)
3332 for (i = checkcnt; i--; )
3333 cb (EV_A_ EV_CHECK, checks [i]);
3334
3335 if (types & EV_SIGNAL)
3336 for (i = 0; i < signalmax; ++i)
3337 for (wl = signals [i].head; wl; )
3338 {
3339 wn = wl->next;
3340 cb (EV_A_ EV_SIGNAL, wl);
3341 wl = wn;
3342 }
3343
3344 if (types & EV_CHILD)
3345 for (i = EV_PID_HASHSIZE; i--; )
3346 for (wl = childs [i]; wl; )
3347 {
3348 wn = wl->next;
3349 cb (EV_A_ EV_CHILD, wl);
3350 wl = wn;
3351 }
3352/* EV_STAT 0x00001000 /* stat data changed */
3353/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3354}
3355#endif
3356
3132#if EV_MULTIPLICITY 3357#if EV_MULTIPLICITY
3133 #include "ev_wrap.h" 3358 #include "ev_wrap.h"
3134#endif 3359#endif
3135 3360
3136#ifdef __cplusplus 3361#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines