ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.242 by root, Fri May 9 14:07:19 2008 UTC vs.
Revision 1.292 by root, Mon Jun 29 07:22:56 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
126# define EV_USE_EVENTFD 1 140# define EV_USE_EVENTFD 1
127# else 141# else
128# define EV_USE_EVENTFD 0 142# define EV_USE_EVENTFD 0
129# endif 143# endif
130# endif 144# endif
131 145
132#endif 146#endif
133 147
134#include <math.h> 148#include <math.h>
135#include <stdlib.h> 149#include <stdlib.h>
136#include <fcntl.h> 150#include <fcntl.h>
154#ifndef _WIN32 168#ifndef _WIN32
155# include <sys/time.h> 169# include <sys/time.h>
156# include <sys/wait.h> 170# include <sys/wait.h>
157# include <unistd.h> 171# include <unistd.h>
158#else 172#else
173# include <io.h>
159# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 175# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
163# endif 178# endif
164#endif 179#endif
165 180
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
167 182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
190
168#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
169# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
170#endif 197#endif
171 198
172#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 201#endif
175 202
176#ifndef EV_USE_NANOSLEEP 203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
177# define EV_USE_NANOSLEEP 0 207# define EV_USE_NANOSLEEP 0
208# endif
178#endif 209#endif
179 210
180#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
182#endif 213#endif
235# else 266# else
236# define EV_USE_EVENTFD 0 267# define EV_USE_EVENTFD 0
237# endif 268# endif
238#endif 269#endif
239 270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 304
242#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
259# include <sys/select.h> 322# include <sys/select.h>
260# endif 323# endif
261#endif 324#endif
262 325
263#if EV_USE_INOTIFY 326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
264# include <sys/inotify.h> 329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
265#endif 335#endif
266 336
267#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 338# include <winsock.h>
269#endif 339#endif
279} 349}
280# endif 350# endif
281#endif 351#endif
282 352
283/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
284 360
285/* 361/*
286 * This is used to avoid floating point rounding problems. 362 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 363 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 364 * to ensure progress, time-wise, even when rounding
328typedef ev_watcher_time *WT; 404typedef ev_watcher_time *WT;
329 405
330#define ev_active(w) ((W)(w))->active 406#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 407#define ev_at(w) ((WT)(w))->at
332 408
333#if EV_USE_MONOTONIC 409#if EV_USE_REALTIME
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 410/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */ 411/* giving it a reasonably high chance of working on typical architetcures */
412static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
413#endif
414
415#if EV_USE_MONOTONIC
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 416static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif 417#endif
338 418
339#ifdef _WIN32 419#ifdef _WIN32
340# include "ev_win32.c" 420# include "ev_win32.c"
349{ 429{
350 syserr_cb = cb; 430 syserr_cb = cb;
351} 431}
352 432
353static void noinline 433static void noinline
354syserr (const char *msg) 434ev_syserr (const char *msg)
355{ 435{
356 if (!msg) 436 if (!msg)
357 msg = "(libev) system error"; 437 msg = "(libev) system error";
358 438
359 if (syserr_cb) 439 if (syserr_cb)
405#define ev_malloc(size) ev_realloc (0, (size)) 485#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 486#define ev_free(ptr) ev_realloc ((ptr), 0)
407 487
408/*****************************************************************************/ 488/*****************************************************************************/
409 489
490/* file descriptor info structure */
410typedef struct 491typedef struct
411{ 492{
412 WL head; 493 WL head;
413 unsigned char events; 494 unsigned char events; /* the events watched for */
495 unsigned char reify; /* flag set when this ANFD needs reification */
496 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
414 unsigned char reify; 497 unsigned char unused;
498#if EV_USE_EPOLL
499 unsigned int egen; /* generation counter to counter epoll bugs */
500#endif
415#if EV_SELECT_IS_WINSOCKET 501#if EV_SELECT_IS_WINSOCKET
416 SOCKET handle; 502 SOCKET handle;
417#endif 503#endif
418} ANFD; 504} ANFD;
419 505
506/* stores the pending event set for a given watcher */
420typedef struct 507typedef struct
421{ 508{
422 W w; 509 W w;
423 int events; 510 int events; /* the pending event set for the given watcher */
424} ANPENDING; 511} ANPENDING;
425 512
426#if EV_USE_INOTIFY 513#if EV_USE_INOTIFY
427/* hash table entry per inotify-id */ 514/* hash table entry per inotify-id */
428typedef struct 515typedef struct
430 WL head; 517 WL head;
431} ANFS; 518} ANFS;
432#endif 519#endif
433 520
434/* Heap Entry */ 521/* Heap Entry */
435#define EV_HEAP_CACHE_AT 0
436#if EV_HEAP_CACHE_AT 522#if EV_HEAP_CACHE_AT
523 /* a heap element */
437 typedef struct { 524 typedef struct {
525 ev_tstamp at;
438 WT w; 526 WT w;
439 ev_tstamp at;
440 } ANHE; 527 } ANHE;
441 528
442 #define ANHE_w(he) (he).w /* access watcher, read-write */ 529 #define ANHE_w(he) (he).w /* access watcher, read-write */
443 #define ANHE_at(he) (he).at /* access cached at, read-only */ 530 #define ANHE_at(he) (he).at /* access cached at, read-only */
444 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 531 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
445#else 532#else
533 /* a heap element */
446 typedef WT ANHE; 534 typedef WT ANHE;
447 535
448 #define ANHE_w(he) (he) 536 #define ANHE_w(he) (he)
449 #define ANHE_at(he) (he)->at 537 #define ANHE_at(he) (he)->at
450 #define ANHE_at_set(he) 538 #define ANHE_at_cache(he)
451#endif 539#endif
452 540
453#if EV_MULTIPLICITY 541#if EV_MULTIPLICITY
454 542
455 struct ev_loop 543 struct ev_loop
476 564
477#endif 565#endif
478 566
479/*****************************************************************************/ 567/*****************************************************************************/
480 568
569#ifndef EV_HAVE_EV_TIME
481ev_tstamp 570ev_tstamp
482ev_time (void) 571ev_time (void)
483{ 572{
484#if EV_USE_REALTIME 573#if EV_USE_REALTIME
574 if (expect_true (have_realtime))
575 {
485 struct timespec ts; 576 struct timespec ts;
486 clock_gettime (CLOCK_REALTIME, &ts); 577 clock_gettime (CLOCK_REALTIME, &ts);
487 return ts.tv_sec + ts.tv_nsec * 1e-9; 578 return ts.tv_sec + ts.tv_nsec * 1e-9;
488#else 579 }
580#endif
581
489 struct timeval tv; 582 struct timeval tv;
490 gettimeofday (&tv, 0); 583 gettimeofday (&tv, 0);
491 return tv.tv_sec + tv.tv_usec * 1e-6; 584 return tv.tv_sec + tv.tv_usec * 1e-6;
492#endif
493} 585}
586#endif
494 587
495ev_tstamp inline_size 588inline_size ev_tstamp
496get_clock (void) 589get_clock (void)
497{ 590{
498#if EV_USE_MONOTONIC 591#if EV_USE_MONOTONIC
499 if (expect_true (have_monotonic)) 592 if (expect_true (have_monotonic))
500 { 593 {
533 struct timeval tv; 626 struct timeval tv;
534 627
535 tv.tv_sec = (time_t)delay; 628 tv.tv_sec = (time_t)delay;
536 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 629 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
537 630
631 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
632 /* somehting nto guaranteed by newer posix versions, but guaranteed */
633 /* by older ones */
538 select (0, 0, 0, 0, &tv); 634 select (0, 0, 0, 0, &tv);
539#endif 635#endif
540 } 636 }
541} 637}
542 638
543/*****************************************************************************/ 639/*****************************************************************************/
544 640
545#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 641#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
546 642
547int inline_size 643/* find a suitable new size for the given array, */
644/* hopefully by rounding to a ncie-to-malloc size */
645inline_size int
548array_nextsize (int elem, int cur, int cnt) 646array_nextsize (int elem, int cur, int cnt)
549{ 647{
550 int ncur = cur + 1; 648 int ncur = cur + 1;
551 649
552 do 650 do
569array_realloc (int elem, void *base, int *cur, int cnt) 667array_realloc (int elem, void *base, int *cur, int cnt)
570{ 668{
571 *cur = array_nextsize (elem, *cur, cnt); 669 *cur = array_nextsize (elem, *cur, cnt);
572 return ev_realloc (base, elem * *cur); 670 return ev_realloc (base, elem * *cur);
573} 671}
672
673#define array_init_zero(base,count) \
674 memset ((void *)(base), 0, sizeof (*(base)) * (count))
574 675
575#define array_needsize(type,base,cur,cnt,init) \ 676#define array_needsize(type,base,cur,cnt,init) \
576 if (expect_false ((cnt) > (cur))) \ 677 if (expect_false ((cnt) > (cur))) \
577 { \ 678 { \
578 int ocur_ = (cur); \ 679 int ocur_ = (cur); \
590 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 691 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
591 } 692 }
592#endif 693#endif
593 694
594#define array_free(stem, idx) \ 695#define array_free(stem, idx) \
595 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 696 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
596 697
597/*****************************************************************************/ 698/*****************************************************************************/
699
700/* dummy callback for pending events */
701static void noinline
702pendingcb (EV_P_ ev_prepare *w, int revents)
703{
704}
598 705
599void noinline 706void noinline
600ev_feed_event (EV_P_ void *w, int revents) 707ev_feed_event (EV_P_ void *w, int revents)
601{ 708{
602 W w_ = (W)w; 709 W w_ = (W)w;
611 pendings [pri][w_->pending - 1].w = w_; 718 pendings [pri][w_->pending - 1].w = w_;
612 pendings [pri][w_->pending - 1].events = revents; 719 pendings [pri][w_->pending - 1].events = revents;
613 } 720 }
614} 721}
615 722
616void inline_speed 723inline_speed void
724feed_reverse (EV_P_ W w)
725{
726 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
727 rfeeds [rfeedcnt++] = w;
728}
729
730inline_size void
731feed_reverse_done (EV_P_ int revents)
732{
733 do
734 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
735 while (rfeedcnt);
736}
737
738inline_speed void
617queue_events (EV_P_ W *events, int eventcnt, int type) 739queue_events (EV_P_ W *events, int eventcnt, int type)
618{ 740{
619 int i; 741 int i;
620 742
621 for (i = 0; i < eventcnt; ++i) 743 for (i = 0; i < eventcnt; ++i)
622 ev_feed_event (EV_A_ events [i], type); 744 ev_feed_event (EV_A_ events [i], type);
623} 745}
624 746
625/*****************************************************************************/ 747/*****************************************************************************/
626 748
627void inline_size 749inline_speed void
628anfds_init (ANFD *base, int count)
629{
630 while (count--)
631 {
632 base->head = 0;
633 base->events = EV_NONE;
634 base->reify = 0;
635
636 ++base;
637 }
638}
639
640void inline_speed
641fd_event (EV_P_ int fd, int revents) 750fd_event (EV_P_ int fd, int revents)
642{ 751{
643 ANFD *anfd = anfds + fd; 752 ANFD *anfd = anfds + fd;
644 ev_io *w; 753 ev_io *w;
645 754
657{ 766{
658 if (fd >= 0 && fd < anfdmax) 767 if (fd >= 0 && fd < anfdmax)
659 fd_event (EV_A_ fd, revents); 768 fd_event (EV_A_ fd, revents);
660} 769}
661 770
662void inline_size 771/* make sure the external fd watch events are in-sync */
772/* with the kernel/libev internal state */
773inline_size void
663fd_reify (EV_P) 774fd_reify (EV_P)
664{ 775{
665 int i; 776 int i;
666 777
667 for (i = 0; i < fdchangecnt; ++i) 778 for (i = 0; i < fdchangecnt; ++i)
676 events |= (unsigned char)w->events; 787 events |= (unsigned char)w->events;
677 788
678#if EV_SELECT_IS_WINSOCKET 789#if EV_SELECT_IS_WINSOCKET
679 if (events) 790 if (events)
680 { 791 {
681 unsigned long argp; 792 unsigned long arg;
682 #ifdef EV_FD_TO_WIN32_HANDLE 793 #ifdef EV_FD_TO_WIN32_HANDLE
683 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 794 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
684 #else 795 #else
685 anfd->handle = _get_osfhandle (fd); 796 anfd->handle = _get_osfhandle (fd);
686 #endif 797 #endif
687 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 798 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
688 } 799 }
689#endif 800#endif
690 801
691 { 802 {
692 unsigned char o_events = anfd->events; 803 unsigned char o_events = anfd->events;
693 unsigned char o_reify = anfd->reify; 804 unsigned char o_reify = anfd->reify;
694 805
695 anfd->reify = 0; 806 anfd->reify = 0;
696 anfd->events = events; 807 anfd->events = events;
697 808
698 if (o_events != events || o_reify & EV_IOFDSET) 809 if (o_events != events || o_reify & EV__IOFDSET)
699 backend_modify (EV_A_ fd, o_events, events); 810 backend_modify (EV_A_ fd, o_events, events);
700 } 811 }
701 } 812 }
702 813
703 fdchangecnt = 0; 814 fdchangecnt = 0;
704} 815}
705 816
706void inline_size 817/* something about the given fd changed */
818inline_size void
707fd_change (EV_P_ int fd, int flags) 819fd_change (EV_P_ int fd, int flags)
708{ 820{
709 unsigned char reify = anfds [fd].reify; 821 unsigned char reify = anfds [fd].reify;
710 anfds [fd].reify |= flags; 822 anfds [fd].reify |= flags;
711 823
715 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 827 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
716 fdchanges [fdchangecnt - 1] = fd; 828 fdchanges [fdchangecnt - 1] = fd;
717 } 829 }
718} 830}
719 831
720void inline_speed 832/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
833inline_speed void
721fd_kill (EV_P_ int fd) 834fd_kill (EV_P_ int fd)
722{ 835{
723 ev_io *w; 836 ev_io *w;
724 837
725 while ((w = (ev_io *)anfds [fd].head)) 838 while ((w = (ev_io *)anfds [fd].head))
727 ev_io_stop (EV_A_ w); 840 ev_io_stop (EV_A_ w);
728 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 841 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
729 } 842 }
730} 843}
731 844
732int inline_size 845/* check whether the given fd is atcually valid, for error recovery */
846inline_size int
733fd_valid (int fd) 847fd_valid (int fd)
734{ 848{
735#ifdef _WIN32 849#ifdef _WIN32
736 return _get_osfhandle (fd) != -1; 850 return _get_osfhandle (fd) != -1;
737#else 851#else
745{ 859{
746 int fd; 860 int fd;
747 861
748 for (fd = 0; fd < anfdmax; ++fd) 862 for (fd = 0; fd < anfdmax; ++fd)
749 if (anfds [fd].events) 863 if (anfds [fd].events)
750 if (!fd_valid (fd) == -1 && errno == EBADF) 864 if (!fd_valid (fd) && errno == EBADF)
751 fd_kill (EV_A_ fd); 865 fd_kill (EV_A_ fd);
752} 866}
753 867
754/* called on ENOMEM in select/poll to kill some fds and retry */ 868/* called on ENOMEM in select/poll to kill some fds and retry */
755static void noinline 869static void noinline
773 887
774 for (fd = 0; fd < anfdmax; ++fd) 888 for (fd = 0; fd < anfdmax; ++fd)
775 if (anfds [fd].events) 889 if (anfds [fd].events)
776 { 890 {
777 anfds [fd].events = 0; 891 anfds [fd].events = 0;
892 anfds [fd].emask = 0;
778 fd_change (EV_A_ fd, EV_IOFDSET | 1); 893 fd_change (EV_A_ fd, EV__IOFDSET | 1);
779 } 894 }
780} 895}
781 896
782/*****************************************************************************/ 897/*****************************************************************************/
783 898
791 * at the moment we allow libev the luxury of two heaps, 906 * at the moment we allow libev the luxury of two heaps,
792 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 907 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
793 * which is more cache-efficient. 908 * which is more cache-efficient.
794 * the difference is about 5% with 50000+ watchers. 909 * the difference is about 5% with 50000+ watchers.
795 */ 910 */
796#define EV_USE_4HEAP !EV_MINIMAL
797#if EV_USE_4HEAP 911#if EV_USE_4HEAP
798 912
799#define DHEAP 4 913#define DHEAP 4
800#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 914#define HEAP0 (DHEAP - 1) /* index of first element in heap */
801 915#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
802/* towards the root */ 916#define UPHEAP_DONE(p,k) ((p) == (k))
803void inline_speed
804upheap (ANHE *heap, int k)
805{
806 ANHE he = heap [k];
807
808 for (;;)
809 {
810 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
811
812 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
813 break;
814
815 heap [k] = heap [p];
816 ev_active (ANHE_w (heap [k])) = k;
817 k = p;
818 }
819
820 ev_active (ANHE_w (he)) = k;
821 heap [k] = he;
822}
823 917
824/* away from the root */ 918/* away from the root */
825void inline_speed 919inline_speed void
826downheap (ANHE *heap, int N, int k) 920downheap (ANHE *heap, int N, int k)
827{ 921{
828 ANHE he = heap [k]; 922 ANHE he = heap [k];
829 ANHE *E = heap + N + HEAP0; 923 ANHE *E = heap + N + HEAP0;
830 924
831 for (;;) 925 for (;;)
832 { 926 {
833 ev_tstamp minat; 927 ev_tstamp minat;
834 ANHE *minpos; 928 ANHE *minpos;
835 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 929 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
836 930
837 // find minimum child 931 /* find minimum child */
838 if (expect_true (pos + DHEAP - 1 < E)) 932 if (expect_true (pos + DHEAP - 1 < E))
839 { 933 {
840 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 934 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
841 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 935 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
842 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 936 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
843 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 937 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
844 } 938 }
845 else if (pos < E) 939 else if (pos < E)
846 { 940 {
847 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 941 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 942 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
853 break; 947 break;
854 948
855 if (ANHE_at (he) <= minat) 949 if (ANHE_at (he) <= minat)
856 break; 950 break;
857 951
952 heap [k] = *minpos;
858 ev_active (ANHE_w (*minpos)) = k; 953 ev_active (ANHE_w (*minpos)) = k;
859 heap [k] = *minpos;
860 954
861 k = minpos - heap; 955 k = minpos - heap;
862 } 956 }
863 957
958 heap [k] = he;
864 ev_active (ANHE_w (he)) = k; 959 ev_active (ANHE_w (he)) = k;
865 heap [k] = he;
866} 960}
867 961
868#else // 4HEAP 962#else /* 4HEAP */
869 963
870#define HEAP0 1 964#define HEAP0 1
965#define HPARENT(k) ((k) >> 1)
966#define UPHEAP_DONE(p,k) (!(p))
871 967
872/* towards the root */ 968/* away from the root */
873void inline_speed 969inline_speed void
874upheap (ANHE *heap, int k) 970downheap (ANHE *heap, int N, int k)
875{ 971{
876 ANHE he = heap [k]; 972 ANHE he = heap [k];
877 973
878 for (;;) 974 for (;;)
879 { 975 {
880 int p = k >> 1; 976 int c = k << 1;
881 977
882 /* maybe we could use a dummy element at heap [0]? */ 978 if (c > N + HEAP0 - 1)
883 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
884 break; 979 break;
885 980
886 heap [k] = heap [p];
887 ev_active (ANHE_w (heap [k])) = k;
888 k = p;
889 }
890
891 heap [k] = w;
892 ev_active (ANHE_w (heap [k])) = k;
893}
894
895/* away from the root */
896void inline_speed
897downheap (ANHE *heap, int N, int k)
898{
899 ANHE he = heap [k];
900
901 for (;;)
902 {
903 int c = k << 1;
904
905 if (c > N)
906 break;
907
908 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 981 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
909 ? 1 : 0; 982 ? 1 : 0;
910 983
911 if (w->at <= ANHE_at (heap [c])) 984 if (ANHE_at (he) <= ANHE_at (heap [c]))
912 break; 985 break;
913 986
914 heap [k] = heap [c]; 987 heap [k] = heap [c];
915 ev_active (ANHE_w (heap [k])) = k; 988 ev_active (ANHE_w (heap [k])) = k;
916 989
920 heap [k] = he; 993 heap [k] = he;
921 ev_active (ANHE_w (he)) = k; 994 ev_active (ANHE_w (he)) = k;
922} 995}
923#endif 996#endif
924 997
925void inline_size 998/* towards the root */
999inline_speed void
1000upheap (ANHE *heap, int k)
1001{
1002 ANHE he = heap [k];
1003
1004 for (;;)
1005 {
1006 int p = HPARENT (k);
1007
1008 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1009 break;
1010
1011 heap [k] = heap [p];
1012 ev_active (ANHE_w (heap [k])) = k;
1013 k = p;
1014 }
1015
1016 heap [k] = he;
1017 ev_active (ANHE_w (he)) = k;
1018}
1019
1020/* move an element suitably so it is in a correct place */
1021inline_size void
926adjustheap (ANHE *heap, int N, int k) 1022adjustheap (ANHE *heap, int N, int k)
927{ 1023{
1024 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
928 upheap (heap, k); 1025 upheap (heap, k);
1026 else
929 downheap (heap, N, k); 1027 downheap (heap, N, k);
1028}
1029
1030/* rebuild the heap: this function is used only once and executed rarely */
1031inline_size void
1032reheap (ANHE *heap, int N)
1033{
1034 int i;
1035
1036 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1037 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1038 for (i = 0; i < N; ++i)
1039 upheap (heap, i + HEAP0);
930} 1040}
931 1041
932/*****************************************************************************/ 1042/*****************************************************************************/
933 1043
1044/* associate signal watchers to a signal signal */
934typedef struct 1045typedef struct
935{ 1046{
936 WL head; 1047 WL head;
937 EV_ATOMIC_T gotsig; 1048 EV_ATOMIC_T gotsig;
938} ANSIG; 1049} ANSIG;
940static ANSIG *signals; 1051static ANSIG *signals;
941static int signalmax; 1052static int signalmax;
942 1053
943static EV_ATOMIC_T gotsig; 1054static EV_ATOMIC_T gotsig;
944 1055
945void inline_size
946signals_init (ANSIG *base, int count)
947{
948 while (count--)
949 {
950 base->head = 0;
951 base->gotsig = 0;
952
953 ++base;
954 }
955}
956
957/*****************************************************************************/ 1056/*****************************************************************************/
958 1057
959void inline_speed 1058/* used to prepare libev internal fd's */
1059/* this is not fork-safe */
1060inline_speed void
960fd_intern (int fd) 1061fd_intern (int fd)
961{ 1062{
962#ifdef _WIN32 1063#ifdef _WIN32
963 int arg = 1; 1064 unsigned long arg = 1;
964 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1065 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
965#else 1066#else
966 fcntl (fd, F_SETFD, FD_CLOEXEC); 1067 fcntl (fd, F_SETFD, FD_CLOEXEC);
967 fcntl (fd, F_SETFL, O_NONBLOCK); 1068 fcntl (fd, F_SETFL, O_NONBLOCK);
968#endif 1069#endif
969} 1070}
970 1071
971static void noinline 1072static void noinline
972evpipe_init (EV_P) 1073evpipe_init (EV_P)
973{ 1074{
974 if (!ev_is_active (&pipeev)) 1075 if (!ev_is_active (&pipe_w))
975 { 1076 {
976#if EV_USE_EVENTFD 1077#if EV_USE_EVENTFD
977 if ((evfd = eventfd (0, 0)) >= 0) 1078 if ((evfd = eventfd (0, 0)) >= 0)
978 { 1079 {
979 evpipe [0] = -1; 1080 evpipe [0] = -1;
980 fd_intern (evfd); 1081 fd_intern (evfd);
981 ev_io_set (&pipeev, evfd, EV_READ); 1082 ev_io_set (&pipe_w, evfd, EV_READ);
982 } 1083 }
983 else 1084 else
984#endif 1085#endif
985 { 1086 {
986 while (pipe (evpipe)) 1087 while (pipe (evpipe))
987 syserr ("(libev) error creating signal/async pipe"); 1088 ev_syserr ("(libev) error creating signal/async pipe");
988 1089
989 fd_intern (evpipe [0]); 1090 fd_intern (evpipe [0]);
990 fd_intern (evpipe [1]); 1091 fd_intern (evpipe [1]);
991 ev_io_set (&pipeev, evpipe [0], EV_READ); 1092 ev_io_set (&pipe_w, evpipe [0], EV_READ);
992 } 1093 }
993 1094
994 ev_io_start (EV_A_ &pipeev); 1095 ev_io_start (EV_A_ &pipe_w);
995 ev_unref (EV_A); /* watcher should not keep loop alive */ 1096 ev_unref (EV_A); /* watcher should not keep loop alive */
996 } 1097 }
997} 1098}
998 1099
999void inline_size 1100inline_size void
1000evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1101evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1001{ 1102{
1002 if (!*flag) 1103 if (!*flag)
1003 { 1104 {
1004 int old_errno = errno; /* save errno because write might clobber it */ 1105 int old_errno = errno; /* save errno because write might clobber it */
1017 1118
1018 errno = old_errno; 1119 errno = old_errno;
1019 } 1120 }
1020} 1121}
1021 1122
1123/* called whenever the libev signal pipe */
1124/* got some events (signal, async) */
1022static void 1125static void
1023pipecb (EV_P_ ev_io *iow, int revents) 1126pipecb (EV_P_ ev_io *iow, int revents)
1024{ 1127{
1025#if EV_USE_EVENTFD 1128#if EV_USE_EVENTFD
1026 if (evfd >= 0) 1129 if (evfd >= 0)
1082ev_feed_signal_event (EV_P_ int signum) 1185ev_feed_signal_event (EV_P_ int signum)
1083{ 1186{
1084 WL w; 1187 WL w;
1085 1188
1086#if EV_MULTIPLICITY 1189#if EV_MULTIPLICITY
1087 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1190 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1088#endif 1191#endif
1089 1192
1090 --signum; 1193 --signum;
1091 1194
1092 if (signum < 0 || signum >= signalmax) 1195 if (signum < 0 || signum >= signalmax)
1108 1211
1109#ifndef WIFCONTINUED 1212#ifndef WIFCONTINUED
1110# define WIFCONTINUED(status) 0 1213# define WIFCONTINUED(status) 0
1111#endif 1214#endif
1112 1215
1113void inline_speed 1216/* handle a single child status event */
1217inline_speed void
1114child_reap (EV_P_ int chain, int pid, int status) 1218child_reap (EV_P_ int chain, int pid, int status)
1115{ 1219{
1116 ev_child *w; 1220 ev_child *w;
1117 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1221 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1118 1222
1131 1235
1132#ifndef WCONTINUED 1236#ifndef WCONTINUED
1133# define WCONTINUED 0 1237# define WCONTINUED 0
1134#endif 1238#endif
1135 1239
1240/* called on sigchld etc., calls waitpid */
1136static void 1241static void
1137childcb (EV_P_ ev_signal *sw, int revents) 1242childcb (EV_P_ ev_signal *sw, int revents)
1138{ 1243{
1139 int pid, status; 1244 int pid, status;
1140 1245
1221 /* kqueue is borked on everything but netbsd apparently */ 1326 /* kqueue is borked on everything but netbsd apparently */
1222 /* it usually doesn't work correctly on anything but sockets and pipes */ 1327 /* it usually doesn't work correctly on anything but sockets and pipes */
1223 flags &= ~EVBACKEND_KQUEUE; 1328 flags &= ~EVBACKEND_KQUEUE;
1224#endif 1329#endif
1225#ifdef __APPLE__ 1330#ifdef __APPLE__
1226 // flags &= ~EVBACKEND_KQUEUE; for documentation 1331 /* only select works correctly on that "unix-certified" platform */
1227 flags &= ~EVBACKEND_POLL; 1332 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1333 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1228#endif 1334#endif
1229 1335
1230 return flags; 1336 return flags;
1231} 1337}
1232 1338
1264ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1370ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1265{ 1371{
1266 timeout_blocktime = interval; 1372 timeout_blocktime = interval;
1267} 1373}
1268 1374
1375/* initialise a loop structure, must be zero-initialised */
1269static void noinline 1376static void noinline
1270loop_init (EV_P_ unsigned int flags) 1377loop_init (EV_P_ unsigned int flags)
1271{ 1378{
1272 if (!backend) 1379 if (!backend)
1273 { 1380 {
1381#if EV_USE_REALTIME
1382 if (!have_realtime)
1383 {
1384 struct timespec ts;
1385
1386 if (!clock_gettime (CLOCK_REALTIME, &ts))
1387 have_realtime = 1;
1388 }
1389#endif
1390
1274#if EV_USE_MONOTONIC 1391#if EV_USE_MONOTONIC
1392 if (!have_monotonic)
1275 { 1393 {
1276 struct timespec ts; 1394 struct timespec ts;
1395
1277 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1396 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1278 have_monotonic = 1; 1397 have_monotonic = 1;
1279 } 1398 }
1280#endif 1399#endif
1281 1400
1282 ev_rt_now = ev_time (); 1401 ev_rt_now = ev_time ();
1283 mn_now = get_clock (); 1402 mn_now = get_clock ();
1284 now_floor = mn_now; 1403 now_floor = mn_now;
1321#endif 1440#endif
1322#if EV_USE_SELECT 1441#if EV_USE_SELECT
1323 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1442 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1324#endif 1443#endif
1325 1444
1445 ev_prepare_init (&pending_w, pendingcb);
1446
1326 ev_init (&pipeev, pipecb); 1447 ev_init (&pipe_w, pipecb);
1327 ev_set_priority (&pipeev, EV_MAXPRI); 1448 ev_set_priority (&pipe_w, EV_MAXPRI);
1328 } 1449 }
1329} 1450}
1330 1451
1452/* free up a loop structure */
1331static void noinline 1453static void noinline
1332loop_destroy (EV_P) 1454loop_destroy (EV_P)
1333{ 1455{
1334 int i; 1456 int i;
1335 1457
1336 if (ev_is_active (&pipeev)) 1458 if (ev_is_active (&pipe_w))
1337 { 1459 {
1338 ev_ref (EV_A); /* signal watcher */ 1460 ev_ref (EV_A); /* signal watcher */
1339 ev_io_stop (EV_A_ &pipeev); 1461 ev_io_stop (EV_A_ &pipe_w);
1340 1462
1341#if EV_USE_EVENTFD 1463#if EV_USE_EVENTFD
1342 if (evfd >= 0) 1464 if (evfd >= 0)
1343 close (evfd); 1465 close (evfd);
1344#endif 1466#endif
1383 } 1505 }
1384 1506
1385 ev_free (anfds); anfdmax = 0; 1507 ev_free (anfds); anfdmax = 0;
1386 1508
1387 /* have to use the microsoft-never-gets-it-right macro */ 1509 /* have to use the microsoft-never-gets-it-right macro */
1510 array_free (rfeed, EMPTY);
1388 array_free (fdchange, EMPTY); 1511 array_free (fdchange, EMPTY);
1389 array_free (timer, EMPTY); 1512 array_free (timer, EMPTY);
1390#if EV_PERIODIC_ENABLE 1513#if EV_PERIODIC_ENABLE
1391 array_free (periodic, EMPTY); 1514 array_free (periodic, EMPTY);
1392#endif 1515#endif
1401 1524
1402 backend = 0; 1525 backend = 0;
1403} 1526}
1404 1527
1405#if EV_USE_INOTIFY 1528#if EV_USE_INOTIFY
1406void inline_size infy_fork (EV_P); 1529inline_size void infy_fork (EV_P);
1407#endif 1530#endif
1408 1531
1409void inline_size 1532inline_size void
1410loop_fork (EV_P) 1533loop_fork (EV_P)
1411{ 1534{
1412#if EV_USE_PORT 1535#if EV_USE_PORT
1413 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1536 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1414#endif 1537#endif
1420#endif 1543#endif
1421#if EV_USE_INOTIFY 1544#if EV_USE_INOTIFY
1422 infy_fork (EV_A); 1545 infy_fork (EV_A);
1423#endif 1546#endif
1424 1547
1425 if (ev_is_active (&pipeev)) 1548 if (ev_is_active (&pipe_w))
1426 { 1549 {
1427 /* this "locks" the handlers against writing to the pipe */ 1550 /* this "locks" the handlers against writing to the pipe */
1428 /* while we modify the fd vars */ 1551 /* while we modify the fd vars */
1429 gotsig = 1; 1552 gotsig = 1;
1430#if EV_ASYNC_ENABLE 1553#if EV_ASYNC_ENABLE
1431 gotasync = 1; 1554 gotasync = 1;
1432#endif 1555#endif
1433 1556
1434 ev_ref (EV_A); 1557 ev_ref (EV_A);
1435 ev_io_stop (EV_A_ &pipeev); 1558 ev_io_stop (EV_A_ &pipe_w);
1436 1559
1437#if EV_USE_EVENTFD 1560#if EV_USE_EVENTFD
1438 if (evfd >= 0) 1561 if (evfd >= 0)
1439 close (evfd); 1562 close (evfd);
1440#endif 1563#endif
1445 close (evpipe [1]); 1568 close (evpipe [1]);
1446 } 1569 }
1447 1570
1448 evpipe_init (EV_A); 1571 evpipe_init (EV_A);
1449 /* now iterate over everything, in case we missed something */ 1572 /* now iterate over everything, in case we missed something */
1450 pipecb (EV_A_ &pipeev, EV_READ); 1573 pipecb (EV_A_ &pipe_w, EV_READ);
1451 } 1574 }
1452 1575
1453 postfork = 0; 1576 postfork = 0;
1454} 1577}
1455 1578
1456#if EV_MULTIPLICITY 1579#if EV_MULTIPLICITY
1580
1457struct ev_loop * 1581struct ev_loop *
1458ev_loop_new (unsigned int flags) 1582ev_loop_new (unsigned int flags)
1459{ 1583{
1460 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1584 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1461 1585
1479void 1603void
1480ev_loop_fork (EV_P) 1604ev_loop_fork (EV_P)
1481{ 1605{
1482 postfork = 1; /* must be in line with ev_default_fork */ 1606 postfork = 1; /* must be in line with ev_default_fork */
1483} 1607}
1608
1609#if EV_VERIFY
1610static void noinline
1611verify_watcher (EV_P_ W w)
1612{
1613 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1614
1615 if (w->pending)
1616 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1617}
1618
1619static void noinline
1620verify_heap (EV_P_ ANHE *heap, int N)
1621{
1622 int i;
1623
1624 for (i = HEAP0; i < N + HEAP0; ++i)
1625 {
1626 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1627 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1628 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1629
1630 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1631 }
1632}
1633
1634static void noinline
1635array_verify (EV_P_ W *ws, int cnt)
1636{
1637 while (cnt--)
1638 {
1639 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1640 verify_watcher (EV_A_ ws [cnt]);
1641 }
1642}
1643#endif
1644
1645void
1646ev_loop_verify (EV_P)
1647{
1648#if EV_VERIFY
1649 int i;
1650 WL w;
1651
1652 assert (activecnt >= -1);
1653
1654 assert (fdchangemax >= fdchangecnt);
1655 for (i = 0; i < fdchangecnt; ++i)
1656 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1657
1658 assert (anfdmax >= 0);
1659 for (i = 0; i < anfdmax; ++i)
1660 for (w = anfds [i].head; w; w = w->next)
1661 {
1662 verify_watcher (EV_A_ (W)w);
1663 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1664 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1665 }
1666
1667 assert (timermax >= timercnt);
1668 verify_heap (EV_A_ timers, timercnt);
1669
1670#if EV_PERIODIC_ENABLE
1671 assert (periodicmax >= periodiccnt);
1672 verify_heap (EV_A_ periodics, periodiccnt);
1673#endif
1674
1675 for (i = NUMPRI; i--; )
1676 {
1677 assert (pendingmax [i] >= pendingcnt [i]);
1678#if EV_IDLE_ENABLE
1679 assert (idleall >= 0);
1680 assert (idlemax [i] >= idlecnt [i]);
1681 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1682#endif
1683 }
1684
1685#if EV_FORK_ENABLE
1686 assert (forkmax >= forkcnt);
1687 array_verify (EV_A_ (W *)forks, forkcnt);
1688#endif
1689
1690#if EV_ASYNC_ENABLE
1691 assert (asyncmax >= asynccnt);
1692 array_verify (EV_A_ (W *)asyncs, asynccnt);
1693#endif
1694
1695 assert (preparemax >= preparecnt);
1696 array_verify (EV_A_ (W *)prepares, preparecnt);
1697
1698 assert (checkmax >= checkcnt);
1699 array_verify (EV_A_ (W *)checks, checkcnt);
1700
1701# if 0
1702 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1703 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1484#endif 1704# endif
1705#endif
1706}
1707
1708#endif /* multiplicity */
1485 1709
1486#if EV_MULTIPLICITY 1710#if EV_MULTIPLICITY
1487struct ev_loop * 1711struct ev_loop *
1488ev_default_loop_init (unsigned int flags) 1712ev_default_loop_init (unsigned int flags)
1489#else 1713#else
1522{ 1746{
1523#if EV_MULTIPLICITY 1747#if EV_MULTIPLICITY
1524 struct ev_loop *loop = ev_default_loop_ptr; 1748 struct ev_loop *loop = ev_default_loop_ptr;
1525#endif 1749#endif
1526 1750
1751 ev_default_loop_ptr = 0;
1752
1527#ifndef _WIN32 1753#ifndef _WIN32
1528 ev_ref (EV_A); /* child watcher */ 1754 ev_ref (EV_A); /* child watcher */
1529 ev_signal_stop (EV_A_ &childev); 1755 ev_signal_stop (EV_A_ &childev);
1530#endif 1756#endif
1531 1757
1537{ 1763{
1538#if EV_MULTIPLICITY 1764#if EV_MULTIPLICITY
1539 struct ev_loop *loop = ev_default_loop_ptr; 1765 struct ev_loop *loop = ev_default_loop_ptr;
1540#endif 1766#endif
1541 1767
1542 if (backend)
1543 postfork = 1; /* must be in line with ev_loop_fork */ 1768 postfork = 1; /* must be in line with ev_loop_fork */
1544} 1769}
1545 1770
1546/*****************************************************************************/ 1771/*****************************************************************************/
1547 1772
1548void 1773void
1549ev_invoke (EV_P_ void *w, int revents) 1774ev_invoke (EV_P_ void *w, int revents)
1550{ 1775{
1551 EV_CB_INVOKE ((W)w, revents); 1776 EV_CB_INVOKE ((W)w, revents);
1552} 1777}
1553 1778
1554void inline_speed 1779inline_speed void
1555call_pending (EV_P) 1780call_pending (EV_P)
1556{ 1781{
1557 int pri; 1782 int pri;
1558 1783
1559 for (pri = NUMPRI; pri--; ) 1784 for (pri = NUMPRI; pri--; )
1560 while (pendingcnt [pri]) 1785 while (pendingcnt [pri])
1561 { 1786 {
1562 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1787 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1563 1788
1564 if (expect_true (p->w))
1565 {
1566 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1789 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1790 /* ^ this is no longer true, as pending_w could be here */
1567 1791
1568 p->w->pending = 0; 1792 p->w->pending = 0;
1569 EV_CB_INVOKE (p->w, p->events); 1793 EV_CB_INVOKE (p->w, p->events);
1570 } 1794 EV_FREQUENT_CHECK;
1571 } 1795 }
1572} 1796}
1573 1797
1574#if EV_IDLE_ENABLE 1798#if EV_IDLE_ENABLE
1575void inline_size 1799/* make idle watchers pending. this handles the "call-idle */
1800/* only when higher priorities are idle" logic */
1801inline_size void
1576idle_reify (EV_P) 1802idle_reify (EV_P)
1577{ 1803{
1578 if (expect_false (idleall)) 1804 if (expect_false (idleall))
1579 { 1805 {
1580 int pri; 1806 int pri;
1592 } 1818 }
1593 } 1819 }
1594} 1820}
1595#endif 1821#endif
1596 1822
1597void inline_size 1823/* make timers pending */
1824inline_size void
1598timers_reify (EV_P) 1825timers_reify (EV_P)
1599{ 1826{
1827 EV_FREQUENT_CHECK;
1828
1600 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now) 1829 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1601 { 1830 {
1602 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 1831 do
1603
1604 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1605
1606 /* first reschedule or stop timer */
1607 if (w->repeat)
1608 { 1832 {
1833 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1834
1835 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1836
1837 /* first reschedule or stop timer */
1838 if (w->repeat)
1839 {
1840 ev_at (w) += w->repeat;
1841 if (ev_at (w) < mn_now)
1842 ev_at (w) = mn_now;
1843
1609 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1844 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1610 1845
1611 ev_at (w) += w->repeat;
1612 if (ev_at (w) < mn_now)
1613 ev_at (w) = mn_now;
1614
1615 ANHE_at_set (timers [HEAP0]); 1846 ANHE_at_cache (timers [HEAP0]);
1616 downheap (timers, timercnt, HEAP0); 1847 downheap (timers, timercnt, HEAP0);
1848 }
1849 else
1850 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1851
1852 EV_FREQUENT_CHECK;
1853 feed_reverse (EV_A_ (W)w);
1617 } 1854 }
1618 else 1855 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1619 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1620 1856
1621 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1857 feed_reverse_done (EV_A_ EV_TIMEOUT);
1622 } 1858 }
1623} 1859}
1624 1860
1625#if EV_PERIODIC_ENABLE 1861#if EV_PERIODIC_ENABLE
1626void inline_size 1862/* make periodics pending */
1863inline_size void
1627periodics_reify (EV_P) 1864periodics_reify (EV_P)
1628{ 1865{
1866 EV_FREQUENT_CHECK;
1867
1629 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now) 1868 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1630 { 1869 {
1631 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 1870 int feed_count = 0;
1632 1871
1633 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1872 do
1634
1635 /* first reschedule or stop timer */
1636 if (w->reschedule_cb)
1637 { 1873 {
1874 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1875
1876 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1877
1878 /* first reschedule or stop timer */
1879 if (w->reschedule_cb)
1880 {
1638 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1881 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1882
1639 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 1883 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1884
1640 ANHE_at_set (periodics [HEAP0]); 1885 ANHE_at_cache (periodics [HEAP0]);
1641 downheap (periodics, periodiccnt, HEAP0); 1886 downheap (periodics, periodiccnt, HEAP0);
1887 }
1888 else if (w->interval)
1889 {
1890 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1891 /* if next trigger time is not sufficiently in the future, put it there */
1892 /* this might happen because of floating point inexactness */
1893 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1894 {
1895 ev_at (w) += w->interval;
1896
1897 /* if interval is unreasonably low we might still have a time in the past */
1898 /* so correct this. this will make the periodic very inexact, but the user */
1899 /* has effectively asked to get triggered more often than possible */
1900 if (ev_at (w) < ev_rt_now)
1901 ev_at (w) = ev_rt_now;
1902 }
1903
1904 ANHE_at_cache (periodics [HEAP0]);
1905 downheap (periodics, periodiccnt, HEAP0);
1906 }
1907 else
1908 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1909
1910 EV_FREQUENT_CHECK;
1911 feed_reverse (EV_A_ (W)w);
1642 } 1912 }
1643 else if (w->interval) 1913 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1644 {
1645 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1646 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1647 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1648 ANHE_at_set (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0);
1650 }
1651 else
1652 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1653 1914
1654 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1915 feed_reverse_done (EV_A_ EV_PERIODIC);
1655 } 1916 }
1656} 1917}
1657 1918
1919/* simply recalculate all periodics */
1920/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1658static void noinline 1921static void noinline
1659periodics_reschedule (EV_P) 1922periodics_reschedule (EV_P)
1660{ 1923{
1661 int i; 1924 int i;
1662 1925
1668 if (w->reschedule_cb) 1931 if (w->reschedule_cb)
1669 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1932 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1670 else if (w->interval) 1933 else if (w->interval)
1671 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1934 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1672 1935
1673 ANHE_at_set (periodics [i]); 1936 ANHE_at_cache (periodics [i]);
1937 }
1938
1939 reheap (periodics, periodiccnt);
1940}
1941#endif
1942
1943/* adjust all timers by a given offset */
1944static void noinline
1945timers_reschedule (EV_P_ ev_tstamp adjust)
1946{
1947 int i;
1948
1949 for (i = 0; i < timercnt; ++i)
1674 } 1950 {
1675 1951 ANHE *he = timers + i + HEAP0;
1676 /* now rebuild the heap, this for the 2-heap, inefficient for the 4-heap, but correct */ 1952 ANHE_w (*he)->at += adjust;
1677 for (i = periodiccnt >> 1; --i; ) 1953 ANHE_at_cache (*he);
1678 downheap (periodics, periodiccnt, i + HEAP0); 1954 }
1679} 1955}
1680#endif
1681 1956
1682void inline_speed 1957/* fetch new monotonic and realtime times from the kernel */
1958/* also detetc if there was a timejump, and act accordingly */
1959inline_speed void
1683time_update (EV_P_ ev_tstamp max_block) 1960time_update (EV_P_ ev_tstamp max_block)
1684{ 1961{
1685 int i;
1686
1687#if EV_USE_MONOTONIC 1962#if EV_USE_MONOTONIC
1688 if (expect_true (have_monotonic)) 1963 if (expect_true (have_monotonic))
1689 { 1964 {
1965 int i;
1690 ev_tstamp odiff = rtmn_diff; 1966 ev_tstamp odiff = rtmn_diff;
1691 1967
1692 mn_now = get_clock (); 1968 mn_now = get_clock ();
1693 1969
1694 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 1970 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1720 ev_rt_now = ev_time (); 1996 ev_rt_now = ev_time ();
1721 mn_now = get_clock (); 1997 mn_now = get_clock ();
1722 now_floor = mn_now; 1998 now_floor = mn_now;
1723 } 1999 }
1724 2000
2001 /* no timer adjustment, as the monotonic clock doesn't jump */
2002 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1725# if EV_PERIODIC_ENABLE 2003# if EV_PERIODIC_ENABLE
1726 periodics_reschedule (EV_A); 2004 periodics_reschedule (EV_A);
1727# endif 2005# endif
1728 /* no timer adjustment, as the monotonic clock doesn't jump */
1729 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1730 } 2006 }
1731 else 2007 else
1732#endif 2008#endif
1733 { 2009 {
1734 ev_rt_now = ev_time (); 2010 ev_rt_now = ev_time ();
1735 2011
1736 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2012 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1737 { 2013 {
2014 /* adjust timers. this is easy, as the offset is the same for all of them */
2015 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1738#if EV_PERIODIC_ENABLE 2016#if EV_PERIODIC_ENABLE
1739 periodics_reschedule (EV_A); 2017 periodics_reschedule (EV_A);
1740#endif 2018#endif
1741 /* adjust timers. this is easy, as the offset is the same for all of them */
1742 for (i = 0; i < timercnt; ++i)
1743 {
1744 ANHE *he = timers + i + HEAP0;
1745 ANHE_w (*he)->at += ev_rt_now - mn_now;
1746 ANHE_at_set (*he);
1747 }
1748 } 2019 }
1749 2020
1750 mn_now = ev_rt_now; 2021 mn_now = ev_rt_now;
1751 } 2022 }
1752} 2023}
1753 2024
1754void
1755ev_ref (EV_P)
1756{
1757 ++activecnt;
1758}
1759
1760void
1761ev_unref (EV_P)
1762{
1763 --activecnt;
1764}
1765
1766static int loop_done; 2025static int loop_done;
1767 2026
1768void 2027void
1769ev_loop (EV_P_ int flags) 2028ev_loop (EV_P_ int flags)
1770{ 2029{
1772 2031
1773 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2032 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1774 2033
1775 do 2034 do
1776 { 2035 {
2036#if EV_VERIFY >= 2
2037 ev_loop_verify (EV_A);
2038#endif
2039
1777#ifndef _WIN32 2040#ifndef _WIN32
1778 if (expect_false (curpid)) /* penalise the forking check even more */ 2041 if (expect_false (curpid)) /* penalise the forking check even more */
1779 if (expect_false (getpid () != curpid)) 2042 if (expect_false (getpid () != curpid))
1780 { 2043 {
1781 curpid = getpid (); 2044 curpid = getpid ();
1798 { 2061 {
1799 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2062 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1800 call_pending (EV_A); 2063 call_pending (EV_A);
1801 } 2064 }
1802 2065
1803 if (expect_false (!activecnt))
1804 break;
1805
1806 /* we might have forked, so reify kernel state if necessary */ 2066 /* we might have forked, so reify kernel state if necessary */
1807 if (expect_false (postfork)) 2067 if (expect_false (postfork))
1808 loop_fork (EV_A); 2068 loop_fork (EV_A);
1809 2069
1810 /* update fd-related kernel structures */ 2070 /* update fd-related kernel structures */
1889ev_unloop (EV_P_ int how) 2149ev_unloop (EV_P_ int how)
1890{ 2150{
1891 loop_done = how; 2151 loop_done = how;
1892} 2152}
1893 2153
2154void
2155ev_ref (EV_P)
2156{
2157 ++activecnt;
2158}
2159
2160void
2161ev_unref (EV_P)
2162{
2163 --activecnt;
2164}
2165
2166void
2167ev_now_update (EV_P)
2168{
2169 time_update (EV_A_ 1e100);
2170}
2171
2172void
2173ev_suspend (EV_P)
2174{
2175 ev_now_update (EV_A);
2176}
2177
2178void
2179ev_resume (EV_P)
2180{
2181 ev_tstamp mn_prev = mn_now;
2182
2183 ev_now_update (EV_A);
2184 timers_reschedule (EV_A_ mn_now - mn_prev);
2185#if EV_PERIODIC_ENABLE
2186 /* TODO: really do this? */
2187 periodics_reschedule (EV_A);
2188#endif
2189}
2190
1894/*****************************************************************************/ 2191/*****************************************************************************/
2192/* singly-linked list management, used when the expected list length is short */
1895 2193
1896void inline_size 2194inline_size void
1897wlist_add (WL *head, WL elem) 2195wlist_add (WL *head, WL elem)
1898{ 2196{
1899 elem->next = *head; 2197 elem->next = *head;
1900 *head = elem; 2198 *head = elem;
1901} 2199}
1902 2200
1903void inline_size 2201inline_size void
1904wlist_del (WL *head, WL elem) 2202wlist_del (WL *head, WL elem)
1905{ 2203{
1906 while (*head) 2204 while (*head)
1907 { 2205 {
1908 if (*head == elem) 2206 if (*head == elem)
1913 2211
1914 head = &(*head)->next; 2212 head = &(*head)->next;
1915 } 2213 }
1916} 2214}
1917 2215
1918void inline_speed 2216/* internal, faster, version of ev_clear_pending */
2217inline_speed void
1919clear_pending (EV_P_ W w) 2218clear_pending (EV_P_ W w)
1920{ 2219{
1921 if (w->pending) 2220 if (w->pending)
1922 { 2221 {
1923 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2222 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1924 w->pending = 0; 2223 w->pending = 0;
1925 } 2224 }
1926} 2225}
1927 2226
1928int 2227int
1932 int pending = w_->pending; 2231 int pending = w_->pending;
1933 2232
1934 if (expect_true (pending)) 2233 if (expect_true (pending))
1935 { 2234 {
1936 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2235 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2236 p->w = (W)&pending_w;
1937 w_->pending = 0; 2237 w_->pending = 0;
1938 p->w = 0;
1939 return p->events; 2238 return p->events;
1940 } 2239 }
1941 else 2240 else
1942 return 0; 2241 return 0;
1943} 2242}
1944 2243
1945void inline_size 2244inline_size void
1946pri_adjust (EV_P_ W w) 2245pri_adjust (EV_P_ W w)
1947{ 2246{
1948 int pri = w->priority; 2247 int pri = w->priority;
1949 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2248 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1950 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2249 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1951 w->priority = pri; 2250 w->priority = pri;
1952} 2251}
1953 2252
1954void inline_speed 2253inline_speed void
1955ev_start (EV_P_ W w, int active) 2254ev_start (EV_P_ W w, int active)
1956{ 2255{
1957 pri_adjust (EV_A_ w); 2256 pri_adjust (EV_A_ w);
1958 w->active = active; 2257 w->active = active;
1959 ev_ref (EV_A); 2258 ev_ref (EV_A);
1960} 2259}
1961 2260
1962void inline_size 2261inline_size void
1963ev_stop (EV_P_ W w) 2262ev_stop (EV_P_ W w)
1964{ 2263{
1965 ev_unref (EV_A); 2264 ev_unref (EV_A);
1966 w->active = 0; 2265 w->active = 0;
1967} 2266}
1974 int fd = w->fd; 2273 int fd = w->fd;
1975 2274
1976 if (expect_false (ev_is_active (w))) 2275 if (expect_false (ev_is_active (w)))
1977 return; 2276 return;
1978 2277
1979 assert (("ev_io_start called with negative fd", fd >= 0)); 2278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2279 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2280
2281 EV_FREQUENT_CHECK;
1980 2282
1981 ev_start (EV_A_ (W)w, 1); 2283 ev_start (EV_A_ (W)w, 1);
1982 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2284 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1983 wlist_add (&anfds[fd].head, (WL)w); 2285 wlist_add (&anfds[fd].head, (WL)w);
1984 2286
1985 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2287 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1986 w->events &= ~EV_IOFDSET; 2288 w->events &= ~EV__IOFDSET;
2289
2290 EV_FREQUENT_CHECK;
1987} 2291}
1988 2292
1989void noinline 2293void noinline
1990ev_io_stop (EV_P_ ev_io *w) 2294ev_io_stop (EV_P_ ev_io *w)
1991{ 2295{
1992 clear_pending (EV_A_ (W)w); 2296 clear_pending (EV_A_ (W)w);
1993 if (expect_false (!ev_is_active (w))) 2297 if (expect_false (!ev_is_active (w)))
1994 return; 2298 return;
1995 2299
1996 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2300 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2301
2302 EV_FREQUENT_CHECK;
1997 2303
1998 wlist_del (&anfds[w->fd].head, (WL)w); 2304 wlist_del (&anfds[w->fd].head, (WL)w);
1999 ev_stop (EV_A_ (W)w); 2305 ev_stop (EV_A_ (W)w);
2000 2306
2001 fd_change (EV_A_ w->fd, 1); 2307 fd_change (EV_A_ w->fd, 1);
2308
2309 EV_FREQUENT_CHECK;
2002} 2310}
2003 2311
2004void noinline 2312void noinline
2005ev_timer_start (EV_P_ ev_timer *w) 2313ev_timer_start (EV_P_ ev_timer *w)
2006{ 2314{
2007 if (expect_false (ev_is_active (w))) 2315 if (expect_false (ev_is_active (w)))
2008 return; 2316 return;
2009 2317
2010 ev_at (w) += mn_now; 2318 ev_at (w) += mn_now;
2011 2319
2012 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2320 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2013 2321
2322 EV_FREQUENT_CHECK;
2323
2324 ++timercnt;
2014 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2325 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2015 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 2326 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2016 ANHE_w (timers [ev_active (w)]) = (WT)w; 2327 ANHE_w (timers [ev_active (w)]) = (WT)w;
2017 ANHE_at_set (timers [ev_active (w)]); 2328 ANHE_at_cache (timers [ev_active (w)]);
2018 upheap (timers, ev_active (w)); 2329 upheap (timers, ev_active (w));
2019 2330
2331 EV_FREQUENT_CHECK;
2332
2020 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2333 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2021} 2334}
2022 2335
2023void noinline 2336void noinline
2024ev_timer_stop (EV_P_ ev_timer *w) 2337ev_timer_stop (EV_P_ ev_timer *w)
2025{ 2338{
2026 clear_pending (EV_A_ (W)w); 2339 clear_pending (EV_A_ (W)w);
2027 if (expect_false (!ev_is_active (w))) 2340 if (expect_false (!ev_is_active (w)))
2028 return; 2341 return;
2029 2342
2343 EV_FREQUENT_CHECK;
2344
2030 { 2345 {
2031 int active = ev_active (w); 2346 int active = ev_active (w);
2032 2347
2033 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2348 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2034 2349
2350 --timercnt;
2351
2035 if (expect_true (active < timercnt + HEAP0 - 1)) 2352 if (expect_true (active < timercnt + HEAP0))
2036 { 2353 {
2037 timers [active] = timers [timercnt + HEAP0 - 1]; 2354 timers [active] = timers [timercnt + HEAP0];
2038 adjustheap (timers, timercnt, active); 2355 adjustheap (timers, timercnt, active);
2039 } 2356 }
2040
2041 --timercnt;
2042 } 2357 }
2358
2359 EV_FREQUENT_CHECK;
2043 2360
2044 ev_at (w) -= mn_now; 2361 ev_at (w) -= mn_now;
2045 2362
2046 ev_stop (EV_A_ (W)w); 2363 ev_stop (EV_A_ (W)w);
2047} 2364}
2048 2365
2049void noinline 2366void noinline
2050ev_timer_again (EV_P_ ev_timer *w) 2367ev_timer_again (EV_P_ ev_timer *w)
2051{ 2368{
2369 EV_FREQUENT_CHECK;
2370
2052 if (ev_is_active (w)) 2371 if (ev_is_active (w))
2053 { 2372 {
2054 if (w->repeat) 2373 if (w->repeat)
2055 { 2374 {
2056 ev_at (w) = mn_now + w->repeat; 2375 ev_at (w) = mn_now + w->repeat;
2057 ANHE_at_set (timers [ev_active (w)]); 2376 ANHE_at_cache (timers [ev_active (w)]);
2058 adjustheap (timers, timercnt, ev_active (w)); 2377 adjustheap (timers, timercnt, ev_active (w));
2059 } 2378 }
2060 else 2379 else
2061 ev_timer_stop (EV_A_ w); 2380 ev_timer_stop (EV_A_ w);
2062 } 2381 }
2063 else if (w->repeat) 2382 else if (w->repeat)
2064 { 2383 {
2065 ev_at (w) = w->repeat; 2384 ev_at (w) = w->repeat;
2066 ev_timer_start (EV_A_ w); 2385 ev_timer_start (EV_A_ w);
2067 } 2386 }
2387
2388 EV_FREQUENT_CHECK;
2068} 2389}
2069 2390
2070#if EV_PERIODIC_ENABLE 2391#if EV_PERIODIC_ENABLE
2071void noinline 2392void noinline
2072ev_periodic_start (EV_P_ ev_periodic *w) 2393ev_periodic_start (EV_P_ ev_periodic *w)
2076 2397
2077 if (w->reschedule_cb) 2398 if (w->reschedule_cb)
2078 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2399 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2079 else if (w->interval) 2400 else if (w->interval)
2080 { 2401 {
2081 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2402 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2082 /* this formula differs from the one in periodic_reify because we do not always round up */ 2403 /* this formula differs from the one in periodic_reify because we do not always round up */
2083 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2404 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2084 } 2405 }
2085 else 2406 else
2086 ev_at (w) = w->offset; 2407 ev_at (w) = w->offset;
2087 2408
2409 EV_FREQUENT_CHECK;
2410
2411 ++periodiccnt;
2088 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2412 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2089 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 2413 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2090 ANHE_w (periodics [ev_active (w)]) = (WT)w; 2414 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2415 ANHE_at_cache (periodics [ev_active (w)]);
2091 upheap (periodics, ev_active (w)); 2416 upheap (periodics, ev_active (w));
2092 2417
2418 EV_FREQUENT_CHECK;
2419
2093 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2420 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2094} 2421}
2095 2422
2096void noinline 2423void noinline
2097ev_periodic_stop (EV_P_ ev_periodic *w) 2424ev_periodic_stop (EV_P_ ev_periodic *w)
2098{ 2425{
2099 clear_pending (EV_A_ (W)w); 2426 clear_pending (EV_A_ (W)w);
2100 if (expect_false (!ev_is_active (w))) 2427 if (expect_false (!ev_is_active (w)))
2101 return; 2428 return;
2102 2429
2430 EV_FREQUENT_CHECK;
2431
2103 { 2432 {
2104 int active = ev_active (w); 2433 int active = ev_active (w);
2105 2434
2106 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2435 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2107 2436
2437 --periodiccnt;
2438
2108 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2439 if (expect_true (active < periodiccnt + HEAP0))
2109 { 2440 {
2110 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2441 periodics [active] = periodics [periodiccnt + HEAP0];
2111 adjustheap (periodics, periodiccnt, active); 2442 adjustheap (periodics, periodiccnt, active);
2112 } 2443 }
2113
2114 --periodiccnt;
2115 } 2444 }
2445
2446 EV_FREQUENT_CHECK;
2116 2447
2117 ev_stop (EV_A_ (W)w); 2448 ev_stop (EV_A_ (W)w);
2118} 2449}
2119 2450
2120void noinline 2451void noinline
2132 2463
2133void noinline 2464void noinline
2134ev_signal_start (EV_P_ ev_signal *w) 2465ev_signal_start (EV_P_ ev_signal *w)
2135{ 2466{
2136#if EV_MULTIPLICITY 2467#if EV_MULTIPLICITY
2137 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2468 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2138#endif 2469#endif
2139 if (expect_false (ev_is_active (w))) 2470 if (expect_false (ev_is_active (w)))
2140 return; 2471 return;
2141 2472
2142 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2473 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2143 2474
2144 evpipe_init (EV_A); 2475 evpipe_init (EV_A);
2476
2477 EV_FREQUENT_CHECK;
2145 2478
2146 { 2479 {
2147#ifndef _WIN32 2480#ifndef _WIN32
2148 sigset_t full, prev; 2481 sigset_t full, prev;
2149 sigfillset (&full); 2482 sigfillset (&full);
2150 sigprocmask (SIG_SETMASK, &full, &prev); 2483 sigprocmask (SIG_SETMASK, &full, &prev);
2151#endif 2484#endif
2152 2485
2153 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2486 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2154 2487
2155#ifndef _WIN32 2488#ifndef _WIN32
2156 sigprocmask (SIG_SETMASK, &prev, 0); 2489 sigprocmask (SIG_SETMASK, &prev, 0);
2157#endif 2490#endif
2158 } 2491 }
2170 sigfillset (&sa.sa_mask); 2503 sigfillset (&sa.sa_mask);
2171 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2504 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2172 sigaction (w->signum, &sa, 0); 2505 sigaction (w->signum, &sa, 0);
2173#endif 2506#endif
2174 } 2507 }
2508
2509 EV_FREQUENT_CHECK;
2175} 2510}
2176 2511
2177void noinline 2512void noinline
2178ev_signal_stop (EV_P_ ev_signal *w) 2513ev_signal_stop (EV_P_ ev_signal *w)
2179{ 2514{
2180 clear_pending (EV_A_ (W)w); 2515 clear_pending (EV_A_ (W)w);
2181 if (expect_false (!ev_is_active (w))) 2516 if (expect_false (!ev_is_active (w)))
2182 return; 2517 return;
2183 2518
2519 EV_FREQUENT_CHECK;
2520
2184 wlist_del (&signals [w->signum - 1].head, (WL)w); 2521 wlist_del (&signals [w->signum - 1].head, (WL)w);
2185 ev_stop (EV_A_ (W)w); 2522 ev_stop (EV_A_ (W)w);
2186 2523
2187 if (!signals [w->signum - 1].head) 2524 if (!signals [w->signum - 1].head)
2188 signal (w->signum, SIG_DFL); 2525 signal (w->signum, SIG_DFL);
2526
2527 EV_FREQUENT_CHECK;
2189} 2528}
2190 2529
2191void 2530void
2192ev_child_start (EV_P_ ev_child *w) 2531ev_child_start (EV_P_ ev_child *w)
2193{ 2532{
2194#if EV_MULTIPLICITY 2533#if EV_MULTIPLICITY
2195 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2534 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2196#endif 2535#endif
2197 if (expect_false (ev_is_active (w))) 2536 if (expect_false (ev_is_active (w)))
2198 return; 2537 return;
2199 2538
2539 EV_FREQUENT_CHECK;
2540
2200 ev_start (EV_A_ (W)w, 1); 2541 ev_start (EV_A_ (W)w, 1);
2201 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2542 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2543
2544 EV_FREQUENT_CHECK;
2202} 2545}
2203 2546
2204void 2547void
2205ev_child_stop (EV_P_ ev_child *w) 2548ev_child_stop (EV_P_ ev_child *w)
2206{ 2549{
2207 clear_pending (EV_A_ (W)w); 2550 clear_pending (EV_A_ (W)w);
2208 if (expect_false (!ev_is_active (w))) 2551 if (expect_false (!ev_is_active (w)))
2209 return; 2552 return;
2210 2553
2554 EV_FREQUENT_CHECK;
2555
2211 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2556 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2212 ev_stop (EV_A_ (W)w); 2557 ev_stop (EV_A_ (W)w);
2558
2559 EV_FREQUENT_CHECK;
2213} 2560}
2214 2561
2215#if EV_STAT_ENABLE 2562#if EV_STAT_ENABLE
2216 2563
2217# ifdef _WIN32 2564# ifdef _WIN32
2218# undef lstat 2565# undef lstat
2219# define lstat(a,b) _stati64 (a,b) 2566# define lstat(a,b) _stati64 (a,b)
2220# endif 2567# endif
2221 2568
2222#define DEF_STAT_INTERVAL 5.0074891 2569#define DEF_STAT_INTERVAL 5.0074891
2570#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2223#define MIN_STAT_INTERVAL 0.1074891 2571#define MIN_STAT_INTERVAL 0.1074891
2224 2572
2225static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2573static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2226 2574
2227#if EV_USE_INOTIFY 2575#if EV_USE_INOTIFY
2228# define EV_INOTIFY_BUFSIZE 8192 2576# define EV_INOTIFY_BUFSIZE 8192
2232{ 2580{
2233 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2581 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2234 2582
2235 if (w->wd < 0) 2583 if (w->wd < 0)
2236 { 2584 {
2585 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2237 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2586 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2238 2587
2239 /* monitor some parent directory for speedup hints */ 2588 /* monitor some parent directory for speedup hints */
2240 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2589 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2241 /* but an efficiency issue only */ 2590 /* but an efficiency issue only */
2242 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2591 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2243 { 2592 {
2244 char path [4096]; 2593 char path [4096];
2245 strcpy (path, w->path); 2594 strcpy (path, w->path);
2249 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2598 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2250 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2599 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2251 2600
2252 char *pend = strrchr (path, '/'); 2601 char *pend = strrchr (path, '/');
2253 2602
2254 if (!pend) 2603 if (!pend || pend == path)
2255 break; /* whoops, no '/', complain to your admin */ 2604 break;
2256 2605
2257 *pend = 0; 2606 *pend = 0;
2258 w->wd = inotify_add_watch (fs_fd, path, mask); 2607 w->wd = inotify_add_watch (fs_fd, path, mask);
2259 } 2608 }
2260 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2609 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2261 } 2610 }
2262 } 2611 }
2263 else
2264 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2265 2612
2266 if (w->wd >= 0) 2613 if (w->wd >= 0)
2614 {
2267 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2615 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2616
2617 /* now local changes will be tracked by inotify, but remote changes won't */
2618 /* unless the filesystem it known to be local, we therefore still poll */
2619 /* also do poll on <2.6.25, but with normal frequency */
2620 struct statfs sfs;
2621
2622 if (fs_2625 && !statfs (w->path, &sfs))
2623 if (sfs.f_type == 0x1373 /* devfs */
2624 || sfs.f_type == 0xEF53 /* ext2/3 */
2625 || sfs.f_type == 0x3153464a /* jfs */
2626 || sfs.f_type == 0x52654973 /* reiser3 */
2627 || sfs.f_type == 0x01021994 /* tempfs */
2628 || sfs.f_type == 0x58465342 /* xfs */)
2629 return;
2630
2631 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2632 ev_timer_again (EV_A_ &w->timer);
2633 }
2268} 2634}
2269 2635
2270static void noinline 2636static void noinline
2271infy_del (EV_P_ ev_stat *w) 2637infy_del (EV_P_ ev_stat *w)
2272{ 2638{
2286 2652
2287static void noinline 2653static void noinline
2288infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2654infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2289{ 2655{
2290 if (slot < 0) 2656 if (slot < 0)
2291 /* overflow, need to check for all hahs slots */ 2657 /* overflow, need to check for all hash slots */
2292 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2658 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2293 infy_wd (EV_A_ slot, wd, ev); 2659 infy_wd (EV_A_ slot, wd, ev);
2294 else 2660 else
2295 { 2661 {
2296 WL w_; 2662 WL w_;
2302 2668
2303 if (w->wd == wd || wd == -1) 2669 if (w->wd == wd || wd == -1)
2304 { 2670 {
2305 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2671 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2306 { 2672 {
2673 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2307 w->wd = -1; 2674 w->wd = -1;
2308 infy_add (EV_A_ w); /* re-add, no matter what */ 2675 infy_add (EV_A_ w); /* re-add, no matter what */
2309 } 2676 }
2310 2677
2311 stat_timer_cb (EV_A_ &w->timer, 0); 2678 stat_timer_cb (EV_A_ &w->timer, 0);
2324 2691
2325 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2692 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2326 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2693 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2327} 2694}
2328 2695
2329void inline_size 2696inline_size void
2697check_2625 (EV_P)
2698{
2699 /* kernels < 2.6.25 are borked
2700 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2701 */
2702 struct utsname buf;
2703 int major, minor, micro;
2704
2705 if (uname (&buf))
2706 return;
2707
2708 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2709 return;
2710
2711 if (major < 2
2712 || (major == 2 && minor < 6)
2713 || (major == 2 && minor == 6 && micro < 25))
2714 return;
2715
2716 fs_2625 = 1;
2717}
2718
2719inline_size void
2330infy_init (EV_P) 2720infy_init (EV_P)
2331{ 2721{
2332 if (fs_fd != -2) 2722 if (fs_fd != -2)
2333 return; 2723 return;
2724
2725 fs_fd = -1;
2726
2727 check_2625 (EV_A);
2334 2728
2335 fs_fd = inotify_init (); 2729 fs_fd = inotify_init ();
2336 2730
2337 if (fs_fd >= 0) 2731 if (fs_fd >= 0)
2338 { 2732 {
2340 ev_set_priority (&fs_w, EV_MAXPRI); 2734 ev_set_priority (&fs_w, EV_MAXPRI);
2341 ev_io_start (EV_A_ &fs_w); 2735 ev_io_start (EV_A_ &fs_w);
2342 } 2736 }
2343} 2737}
2344 2738
2345void inline_size 2739inline_size void
2346infy_fork (EV_P) 2740infy_fork (EV_P)
2347{ 2741{
2348 int slot; 2742 int slot;
2349 2743
2350 if (fs_fd < 0) 2744 if (fs_fd < 0)
2366 w->wd = -1; 2760 w->wd = -1;
2367 2761
2368 if (fs_fd >= 0) 2762 if (fs_fd >= 0)
2369 infy_add (EV_A_ w); /* re-add, no matter what */ 2763 infy_add (EV_A_ w); /* re-add, no matter what */
2370 else 2764 else
2371 ev_timer_start (EV_A_ &w->timer); 2765 ev_timer_again (EV_A_ &w->timer);
2372 } 2766 }
2373
2374 } 2767 }
2375} 2768}
2376 2769
2770#endif
2771
2772#ifdef _WIN32
2773# define EV_LSTAT(p,b) _stati64 (p, b)
2774#else
2775# define EV_LSTAT(p,b) lstat (p, b)
2377#endif 2776#endif
2378 2777
2379void 2778void
2380ev_stat_stat (EV_P_ ev_stat *w) 2779ev_stat_stat (EV_P_ ev_stat *w)
2381{ 2780{
2408 || w->prev.st_atime != w->attr.st_atime 2807 || w->prev.st_atime != w->attr.st_atime
2409 || w->prev.st_mtime != w->attr.st_mtime 2808 || w->prev.st_mtime != w->attr.st_mtime
2410 || w->prev.st_ctime != w->attr.st_ctime 2809 || w->prev.st_ctime != w->attr.st_ctime
2411 ) { 2810 ) {
2412 #if EV_USE_INOTIFY 2811 #if EV_USE_INOTIFY
2812 if (fs_fd >= 0)
2813 {
2413 infy_del (EV_A_ w); 2814 infy_del (EV_A_ w);
2414 infy_add (EV_A_ w); 2815 infy_add (EV_A_ w);
2415 ev_stat_stat (EV_A_ w); /* avoid race... */ 2816 ev_stat_stat (EV_A_ w); /* avoid race... */
2817 }
2416 #endif 2818 #endif
2417 2819
2418 ev_feed_event (EV_A_ w, EV_STAT); 2820 ev_feed_event (EV_A_ w, EV_STAT);
2419 } 2821 }
2420} 2822}
2423ev_stat_start (EV_P_ ev_stat *w) 2825ev_stat_start (EV_P_ ev_stat *w)
2424{ 2826{
2425 if (expect_false (ev_is_active (w))) 2827 if (expect_false (ev_is_active (w)))
2426 return; 2828 return;
2427 2829
2428 /* since we use memcmp, we need to clear any padding data etc. */
2429 memset (&w->prev, 0, sizeof (ev_statdata));
2430 memset (&w->attr, 0, sizeof (ev_statdata));
2431
2432 ev_stat_stat (EV_A_ w); 2830 ev_stat_stat (EV_A_ w);
2433 2831
2832 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2434 if (w->interval < MIN_STAT_INTERVAL) 2833 w->interval = MIN_STAT_INTERVAL;
2435 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2436 2834
2437 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2835 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2438 ev_set_priority (&w->timer, ev_priority (w)); 2836 ev_set_priority (&w->timer, ev_priority (w));
2439 2837
2440#if EV_USE_INOTIFY 2838#if EV_USE_INOTIFY
2441 infy_init (EV_A); 2839 infy_init (EV_A);
2442 2840
2443 if (fs_fd >= 0) 2841 if (fs_fd >= 0)
2444 infy_add (EV_A_ w); 2842 infy_add (EV_A_ w);
2445 else 2843 else
2446#endif 2844#endif
2447 ev_timer_start (EV_A_ &w->timer); 2845 ev_timer_again (EV_A_ &w->timer);
2448 2846
2449 ev_start (EV_A_ (W)w, 1); 2847 ev_start (EV_A_ (W)w, 1);
2848
2849 EV_FREQUENT_CHECK;
2450} 2850}
2451 2851
2452void 2852void
2453ev_stat_stop (EV_P_ ev_stat *w) 2853ev_stat_stop (EV_P_ ev_stat *w)
2454{ 2854{
2455 clear_pending (EV_A_ (W)w); 2855 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w))) 2856 if (expect_false (!ev_is_active (w)))
2457 return; 2857 return;
2458 2858
2859 EV_FREQUENT_CHECK;
2860
2459#if EV_USE_INOTIFY 2861#if EV_USE_INOTIFY
2460 infy_del (EV_A_ w); 2862 infy_del (EV_A_ w);
2461#endif 2863#endif
2462 ev_timer_stop (EV_A_ &w->timer); 2864 ev_timer_stop (EV_A_ &w->timer);
2463 2865
2464 ev_stop (EV_A_ (W)w); 2866 ev_stop (EV_A_ (W)w);
2867
2868 EV_FREQUENT_CHECK;
2465} 2869}
2466#endif 2870#endif
2467 2871
2468#if EV_IDLE_ENABLE 2872#if EV_IDLE_ENABLE
2469void 2873void
2471{ 2875{
2472 if (expect_false (ev_is_active (w))) 2876 if (expect_false (ev_is_active (w)))
2473 return; 2877 return;
2474 2878
2475 pri_adjust (EV_A_ (W)w); 2879 pri_adjust (EV_A_ (W)w);
2880
2881 EV_FREQUENT_CHECK;
2476 2882
2477 { 2883 {
2478 int active = ++idlecnt [ABSPRI (w)]; 2884 int active = ++idlecnt [ABSPRI (w)];
2479 2885
2480 ++idleall; 2886 ++idleall;
2481 ev_start (EV_A_ (W)w, active); 2887 ev_start (EV_A_ (W)w, active);
2482 2888
2483 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2889 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2484 idles [ABSPRI (w)][active - 1] = w; 2890 idles [ABSPRI (w)][active - 1] = w;
2485 } 2891 }
2892
2893 EV_FREQUENT_CHECK;
2486} 2894}
2487 2895
2488void 2896void
2489ev_idle_stop (EV_P_ ev_idle *w) 2897ev_idle_stop (EV_P_ ev_idle *w)
2490{ 2898{
2491 clear_pending (EV_A_ (W)w); 2899 clear_pending (EV_A_ (W)w);
2492 if (expect_false (!ev_is_active (w))) 2900 if (expect_false (!ev_is_active (w)))
2493 return; 2901 return;
2494 2902
2903 EV_FREQUENT_CHECK;
2904
2495 { 2905 {
2496 int active = ev_active (w); 2906 int active = ev_active (w);
2497 2907
2498 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2908 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2499 ev_active (idles [ABSPRI (w)][active - 1]) = active; 2909 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2500 2910
2501 ev_stop (EV_A_ (W)w); 2911 ev_stop (EV_A_ (W)w);
2502 --idleall; 2912 --idleall;
2503 } 2913 }
2914
2915 EV_FREQUENT_CHECK;
2504} 2916}
2505#endif 2917#endif
2506 2918
2507void 2919void
2508ev_prepare_start (EV_P_ ev_prepare *w) 2920ev_prepare_start (EV_P_ ev_prepare *w)
2509{ 2921{
2510 if (expect_false (ev_is_active (w))) 2922 if (expect_false (ev_is_active (w)))
2511 return; 2923 return;
2924
2925 EV_FREQUENT_CHECK;
2512 2926
2513 ev_start (EV_A_ (W)w, ++preparecnt); 2927 ev_start (EV_A_ (W)w, ++preparecnt);
2514 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2928 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2515 prepares [preparecnt - 1] = w; 2929 prepares [preparecnt - 1] = w;
2930
2931 EV_FREQUENT_CHECK;
2516} 2932}
2517 2933
2518void 2934void
2519ev_prepare_stop (EV_P_ ev_prepare *w) 2935ev_prepare_stop (EV_P_ ev_prepare *w)
2520{ 2936{
2521 clear_pending (EV_A_ (W)w); 2937 clear_pending (EV_A_ (W)w);
2522 if (expect_false (!ev_is_active (w))) 2938 if (expect_false (!ev_is_active (w)))
2523 return; 2939 return;
2524 2940
2941 EV_FREQUENT_CHECK;
2942
2525 { 2943 {
2526 int active = ev_active (w); 2944 int active = ev_active (w);
2527 2945
2528 prepares [active - 1] = prepares [--preparecnt]; 2946 prepares [active - 1] = prepares [--preparecnt];
2529 ev_active (prepares [active - 1]) = active; 2947 ev_active (prepares [active - 1]) = active;
2530 } 2948 }
2531 2949
2532 ev_stop (EV_A_ (W)w); 2950 ev_stop (EV_A_ (W)w);
2951
2952 EV_FREQUENT_CHECK;
2533} 2953}
2534 2954
2535void 2955void
2536ev_check_start (EV_P_ ev_check *w) 2956ev_check_start (EV_P_ ev_check *w)
2537{ 2957{
2538 if (expect_false (ev_is_active (w))) 2958 if (expect_false (ev_is_active (w)))
2539 return; 2959 return;
2960
2961 EV_FREQUENT_CHECK;
2540 2962
2541 ev_start (EV_A_ (W)w, ++checkcnt); 2963 ev_start (EV_A_ (W)w, ++checkcnt);
2542 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2964 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2543 checks [checkcnt - 1] = w; 2965 checks [checkcnt - 1] = w;
2966
2967 EV_FREQUENT_CHECK;
2544} 2968}
2545 2969
2546void 2970void
2547ev_check_stop (EV_P_ ev_check *w) 2971ev_check_stop (EV_P_ ev_check *w)
2548{ 2972{
2549 clear_pending (EV_A_ (W)w); 2973 clear_pending (EV_A_ (W)w);
2550 if (expect_false (!ev_is_active (w))) 2974 if (expect_false (!ev_is_active (w)))
2551 return; 2975 return;
2552 2976
2977 EV_FREQUENT_CHECK;
2978
2553 { 2979 {
2554 int active = ev_active (w); 2980 int active = ev_active (w);
2555 2981
2556 checks [active - 1] = checks [--checkcnt]; 2982 checks [active - 1] = checks [--checkcnt];
2557 ev_active (checks [active - 1]) = active; 2983 ev_active (checks [active - 1]) = active;
2558 } 2984 }
2559 2985
2560 ev_stop (EV_A_ (W)w); 2986 ev_stop (EV_A_ (W)w);
2987
2988 EV_FREQUENT_CHECK;
2561} 2989}
2562 2990
2563#if EV_EMBED_ENABLE 2991#if EV_EMBED_ENABLE
2564void noinline 2992void noinline
2565ev_embed_sweep (EV_P_ ev_embed *w) 2993ev_embed_sweep (EV_P_ ev_embed *w)
2592 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3020 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2593 } 3021 }
2594 } 3022 }
2595} 3023}
2596 3024
3025static void
3026embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3027{
3028 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3029
3030 ev_embed_stop (EV_A_ w);
3031
3032 {
3033 struct ev_loop *loop = w->other;
3034
3035 ev_loop_fork (EV_A);
3036 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3037 }
3038
3039 ev_embed_start (EV_A_ w);
3040}
3041
2597#if 0 3042#if 0
2598static void 3043static void
2599embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3044embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2600{ 3045{
2601 ev_idle_stop (EV_A_ idle); 3046 ev_idle_stop (EV_A_ idle);
2608 if (expect_false (ev_is_active (w))) 3053 if (expect_false (ev_is_active (w)))
2609 return; 3054 return;
2610 3055
2611 { 3056 {
2612 struct ev_loop *loop = w->other; 3057 struct ev_loop *loop = w->other;
2613 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3058 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2614 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3059 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2615 } 3060 }
3061
3062 EV_FREQUENT_CHECK;
2616 3063
2617 ev_set_priority (&w->io, ev_priority (w)); 3064 ev_set_priority (&w->io, ev_priority (w));
2618 ev_io_start (EV_A_ &w->io); 3065 ev_io_start (EV_A_ &w->io);
2619 3066
2620 ev_prepare_init (&w->prepare, embed_prepare_cb); 3067 ev_prepare_init (&w->prepare, embed_prepare_cb);
2621 ev_set_priority (&w->prepare, EV_MINPRI); 3068 ev_set_priority (&w->prepare, EV_MINPRI);
2622 ev_prepare_start (EV_A_ &w->prepare); 3069 ev_prepare_start (EV_A_ &w->prepare);
2623 3070
3071 ev_fork_init (&w->fork, embed_fork_cb);
3072 ev_fork_start (EV_A_ &w->fork);
3073
2624 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3074 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2625 3075
2626 ev_start (EV_A_ (W)w, 1); 3076 ev_start (EV_A_ (W)w, 1);
3077
3078 EV_FREQUENT_CHECK;
2627} 3079}
2628 3080
2629void 3081void
2630ev_embed_stop (EV_P_ ev_embed *w) 3082ev_embed_stop (EV_P_ ev_embed *w)
2631{ 3083{
2632 clear_pending (EV_A_ (W)w); 3084 clear_pending (EV_A_ (W)w);
2633 if (expect_false (!ev_is_active (w))) 3085 if (expect_false (!ev_is_active (w)))
2634 return; 3086 return;
2635 3087
3088 EV_FREQUENT_CHECK;
3089
2636 ev_io_stop (EV_A_ &w->io); 3090 ev_io_stop (EV_A_ &w->io);
2637 ev_prepare_stop (EV_A_ &w->prepare); 3091 ev_prepare_stop (EV_A_ &w->prepare);
3092 ev_fork_stop (EV_A_ &w->fork);
2638 3093
2639 ev_stop (EV_A_ (W)w); 3094 EV_FREQUENT_CHECK;
2640} 3095}
2641#endif 3096#endif
2642 3097
2643#if EV_FORK_ENABLE 3098#if EV_FORK_ENABLE
2644void 3099void
2645ev_fork_start (EV_P_ ev_fork *w) 3100ev_fork_start (EV_P_ ev_fork *w)
2646{ 3101{
2647 if (expect_false (ev_is_active (w))) 3102 if (expect_false (ev_is_active (w)))
2648 return; 3103 return;
3104
3105 EV_FREQUENT_CHECK;
2649 3106
2650 ev_start (EV_A_ (W)w, ++forkcnt); 3107 ev_start (EV_A_ (W)w, ++forkcnt);
2651 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3108 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2652 forks [forkcnt - 1] = w; 3109 forks [forkcnt - 1] = w;
3110
3111 EV_FREQUENT_CHECK;
2653} 3112}
2654 3113
2655void 3114void
2656ev_fork_stop (EV_P_ ev_fork *w) 3115ev_fork_stop (EV_P_ ev_fork *w)
2657{ 3116{
2658 clear_pending (EV_A_ (W)w); 3117 clear_pending (EV_A_ (W)w);
2659 if (expect_false (!ev_is_active (w))) 3118 if (expect_false (!ev_is_active (w)))
2660 return; 3119 return;
2661 3120
3121 EV_FREQUENT_CHECK;
3122
2662 { 3123 {
2663 int active = ev_active (w); 3124 int active = ev_active (w);
2664 3125
2665 forks [active - 1] = forks [--forkcnt]; 3126 forks [active - 1] = forks [--forkcnt];
2666 ev_active (forks [active - 1]) = active; 3127 ev_active (forks [active - 1]) = active;
2667 } 3128 }
2668 3129
2669 ev_stop (EV_A_ (W)w); 3130 ev_stop (EV_A_ (W)w);
3131
3132 EV_FREQUENT_CHECK;
2670} 3133}
2671#endif 3134#endif
2672 3135
2673#if EV_ASYNC_ENABLE 3136#if EV_ASYNC_ENABLE
2674void 3137void
2676{ 3139{
2677 if (expect_false (ev_is_active (w))) 3140 if (expect_false (ev_is_active (w)))
2678 return; 3141 return;
2679 3142
2680 evpipe_init (EV_A); 3143 evpipe_init (EV_A);
3144
3145 EV_FREQUENT_CHECK;
2681 3146
2682 ev_start (EV_A_ (W)w, ++asynccnt); 3147 ev_start (EV_A_ (W)w, ++asynccnt);
2683 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3148 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2684 asyncs [asynccnt - 1] = w; 3149 asyncs [asynccnt - 1] = w;
3150
3151 EV_FREQUENT_CHECK;
2685} 3152}
2686 3153
2687void 3154void
2688ev_async_stop (EV_P_ ev_async *w) 3155ev_async_stop (EV_P_ ev_async *w)
2689{ 3156{
2690 clear_pending (EV_A_ (W)w); 3157 clear_pending (EV_A_ (W)w);
2691 if (expect_false (!ev_is_active (w))) 3158 if (expect_false (!ev_is_active (w)))
2692 return; 3159 return;
2693 3160
3161 EV_FREQUENT_CHECK;
3162
2694 { 3163 {
2695 int active = ev_active (w); 3164 int active = ev_active (w);
2696 3165
2697 asyncs [active - 1] = asyncs [--asynccnt]; 3166 asyncs [active - 1] = asyncs [--asynccnt];
2698 ev_active (asyncs [active - 1]) = active; 3167 ev_active (asyncs [active - 1]) = active;
2699 } 3168 }
2700 3169
2701 ev_stop (EV_A_ (W)w); 3170 ev_stop (EV_A_ (W)w);
3171
3172 EV_FREQUENT_CHECK;
2702} 3173}
2703 3174
2704void 3175void
2705ev_async_send (EV_P_ ev_async *w) 3176ev_async_send (EV_P_ ev_async *w)
2706{ 3177{
2723once_cb (EV_P_ struct ev_once *once, int revents) 3194once_cb (EV_P_ struct ev_once *once, int revents)
2724{ 3195{
2725 void (*cb)(int revents, void *arg) = once->cb; 3196 void (*cb)(int revents, void *arg) = once->cb;
2726 void *arg = once->arg; 3197 void *arg = once->arg;
2727 3198
2728 ev_io_stop (EV_A_ &once->io); 3199 ev_io_stop (EV_A_ &once->io);
2729 ev_timer_stop (EV_A_ &once->to); 3200 ev_timer_stop (EV_A_ &once->to);
2730 ev_free (once); 3201 ev_free (once);
2731 3202
2732 cb (revents, arg); 3203 cb (revents, arg);
2733} 3204}
2734 3205
2735static void 3206static void
2736once_cb_io (EV_P_ ev_io *w, int revents) 3207once_cb_io (EV_P_ ev_io *w, int revents)
2737{ 3208{
2738 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3209 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3210
3211 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2739} 3212}
2740 3213
2741static void 3214static void
2742once_cb_to (EV_P_ ev_timer *w, int revents) 3215once_cb_to (EV_P_ ev_timer *w, int revents)
2743{ 3216{
2744 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3217 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3218
3219 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2745} 3220}
2746 3221
2747void 3222void
2748ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3223ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2749{ 3224{
2771 ev_timer_set (&once->to, timeout, 0.); 3246 ev_timer_set (&once->to, timeout, 0.);
2772 ev_timer_start (EV_A_ &once->to); 3247 ev_timer_start (EV_A_ &once->to);
2773 } 3248 }
2774} 3249}
2775 3250
3251/*****************************************************************************/
3252
3253#if EV_WALK_ENABLE
3254void
3255ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3256{
3257 int i, j;
3258 ev_watcher_list *wl, *wn;
3259
3260 if (types & (EV_IO | EV_EMBED))
3261 for (i = 0; i < anfdmax; ++i)
3262 for (wl = anfds [i].head; wl; )
3263 {
3264 wn = wl->next;
3265
3266#if EV_EMBED_ENABLE
3267 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3268 {
3269 if (types & EV_EMBED)
3270 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3271 }
3272 else
3273#endif
3274#if EV_USE_INOTIFY
3275 if (ev_cb ((ev_io *)wl) == infy_cb)
3276 ;
3277 else
3278#endif
3279 if ((ev_io *)wl != &pipe_w)
3280 if (types & EV_IO)
3281 cb (EV_A_ EV_IO, wl);
3282
3283 wl = wn;
3284 }
3285
3286 if (types & (EV_TIMER | EV_STAT))
3287 for (i = timercnt + HEAP0; i-- > HEAP0; )
3288#if EV_STAT_ENABLE
3289 /*TODO: timer is not always active*/
3290 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3291 {
3292 if (types & EV_STAT)
3293 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3294 }
3295 else
3296#endif
3297 if (types & EV_TIMER)
3298 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3299
3300#if EV_PERIODIC_ENABLE
3301 if (types & EV_PERIODIC)
3302 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3303 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3304#endif
3305
3306#if EV_IDLE_ENABLE
3307 if (types & EV_IDLE)
3308 for (j = NUMPRI; i--; )
3309 for (i = idlecnt [j]; i--; )
3310 cb (EV_A_ EV_IDLE, idles [j][i]);
3311#endif
3312
3313#if EV_FORK_ENABLE
3314 if (types & EV_FORK)
3315 for (i = forkcnt; i--; )
3316 if (ev_cb (forks [i]) != embed_fork_cb)
3317 cb (EV_A_ EV_FORK, forks [i]);
3318#endif
3319
3320#if EV_ASYNC_ENABLE
3321 if (types & EV_ASYNC)
3322 for (i = asynccnt; i--; )
3323 cb (EV_A_ EV_ASYNC, asyncs [i]);
3324#endif
3325
3326 if (types & EV_PREPARE)
3327 for (i = preparecnt; i--; )
3328#if EV_EMBED_ENABLE
3329 if (ev_cb (prepares [i]) != embed_prepare_cb)
3330#endif
3331 cb (EV_A_ EV_PREPARE, prepares [i]);
3332
3333 if (types & EV_CHECK)
3334 for (i = checkcnt; i--; )
3335 cb (EV_A_ EV_CHECK, checks [i]);
3336
3337 if (types & EV_SIGNAL)
3338 for (i = 0; i < signalmax; ++i)
3339 for (wl = signals [i].head; wl; )
3340 {
3341 wn = wl->next;
3342 cb (EV_A_ EV_SIGNAL, wl);
3343 wl = wn;
3344 }
3345
3346 if (types & EV_CHILD)
3347 for (i = EV_PID_HASHSIZE; i--; )
3348 for (wl = childs [i]; wl; )
3349 {
3350 wn = wl->next;
3351 cb (EV_A_ EV_CHILD, wl);
3352 wl = wn;
3353 }
3354/* EV_STAT 0x00001000 /* stat data changed */
3355/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3356}
3357#endif
3358
2776#if EV_MULTIPLICITY 3359#if EV_MULTIPLICITY
2777 #include "ev_wrap.h" 3360 #include "ev_wrap.h"
2778#endif 3361#endif
2779 3362
2780#ifdef __cplusplus 3363#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines