ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.74 by root, Tue Nov 6 16:51:20 2007 UTC vs.
Revision 1.292 by root, Mon Jun 29 07:22:56 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
33 65
34# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
67# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
69# endif
70# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
79# endif
37# endif 80# endif
38 81
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
41# endif 88# endif
42 89
43# if HAVE_POLL && HAVE_POLL_H 90# ifndef EV_USE_SELECT
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
95# endif
45# endif 96# endif
46 97
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 100# define EV_USE_POLL 1
101# else
102# define EV_USE_POLL 0
103# endif
49# endif 104# endif
50 105
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
52# define EV_USE_KQUEUE 1 108# define EV_USE_EPOLL 1
109# else
110# define EV_USE_EPOLL 0
111# endif
53# endif 112# endif
113
114# ifndef EV_USE_KQUEUE
115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
119# endif
120# endif
121
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
127# endif
128# endif
54 129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_EVENTFD
139# if HAVE_EVENTFD
140# define EV_USE_EVENTFD 1
141# else
142# define EV_USE_EVENTFD 0
143# endif
144# endif
145
55#endif 146#endif
56 147
57#include <math.h> 148#include <math.h>
58#include <stdlib.h> 149#include <stdlib.h>
59#include <fcntl.h> 150#include <fcntl.h>
66#include <sys/types.h> 157#include <sys/types.h>
67#include <time.h> 158#include <time.h>
68 159
69#include <signal.h> 160#include <signal.h>
70 161
162#ifdef EV_H
163# include EV_H
164#else
165# include "ev.h"
166#endif
167
71#ifndef WIN32 168#ifndef _WIN32
72# include <unistd.h>
73# include <sys/time.h> 169# include <sys/time.h>
74# include <sys/wait.h> 170# include <sys/wait.h>
171# include <unistd.h>
172#else
173# include <io.h>
174# define WIN32_LEAN_AND_MEAN
175# include <windows.h>
176# ifndef EV_SELECT_IS_WINSOCKET
177# define EV_SELECT_IS_WINSOCKET 1
75#endif 178# endif
76/**/ 179#endif
180
181/* this block tries to deduce configuration from header-defined symbols and defaults */
182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
77 190
78#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
79# define EV_USE_MONOTONIC 1 193# define EV_USE_MONOTONIC 1
194# else
195# define EV_USE_MONOTONIC 0
196# endif
197#endif
198
199#ifndef EV_USE_REALTIME
200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
201#endif
202
203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
207# define EV_USE_NANOSLEEP 0
208# endif
80#endif 209#endif
81 210
82#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
84#endif 213#endif
85 214
86#ifndef EV_USE_POLL 215#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 216# ifdef _WIN32
217# define EV_USE_POLL 0
218# else
219# define EV_USE_POLL 1
220# endif
88#endif 221#endif
89 222
90#ifndef EV_USE_EPOLL 223#ifndef EV_USE_EPOLL
224# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225# define EV_USE_EPOLL 1
226# else
91# define EV_USE_EPOLL 0 227# define EV_USE_EPOLL 0
228# endif
92#endif 229#endif
93 230
94#ifndef EV_USE_KQUEUE 231#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0 232# define EV_USE_KQUEUE 0
96#endif 233#endif
97 234
235#ifndef EV_USE_PORT
236# define EV_USE_PORT 0
237#endif
238
98#ifndef EV_USE_WIN32 239#ifndef EV_USE_INOTIFY
99# ifdef WIN32 240# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1 241# define EV_USE_INOTIFY 1
103# else 242# else
104# define EV_USE_WIN32 0 243# define EV_USE_INOTIFY 0
105# endif 244# endif
106#endif 245#endif
107 246
108#ifndef EV_USE_REALTIME 247#ifndef EV_PID_HASHSIZE
109# define EV_USE_REALTIME 1 248# if EV_MINIMAL
249# define EV_PID_HASHSIZE 1
250# else
251# define EV_PID_HASHSIZE 16
110#endif 252# endif
253#endif
111 254
112/**/ 255#ifndef EV_INOTIFY_HASHSIZE
256# if EV_MINIMAL
257# define EV_INOTIFY_HASHSIZE 1
258# else
259# define EV_INOTIFY_HASHSIZE 16
260# endif
261#endif
262
263#ifndef EV_USE_EVENTFD
264# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265# define EV_USE_EVENTFD 1
266# else
267# define EV_USE_EVENTFD 0
268# endif
269#endif
270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
113 304
114#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
117#endif 308#endif
119#ifndef CLOCK_REALTIME 310#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME 311# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0 312# define EV_USE_REALTIME 0
122#endif 313#endif
123 314
315#if !EV_STAT_ENABLE
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318#endif
319
320#if !EV_USE_NANOSLEEP
321# ifndef _WIN32
322# include <sys/select.h>
323# endif
324#endif
325
326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
335#endif
336
337#if EV_SELECT_IS_WINSOCKET
338# include <winsock.h>
339#endif
340
341#if EV_USE_EVENTFD
342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343# include <stdint.h>
344# ifdef __cplusplus
345extern "C" {
346# endif
347int eventfd (unsigned int initval, int flags);
348# ifdef __cplusplus
349}
350# endif
351#endif
352
124/**/ 353/**/
125 354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
360
361/*
362 * This is used to avoid floating point rounding problems.
363 * It is added to ev_rt_now when scheduling periodics
364 * to ensure progress, time-wise, even when rounding
365 * errors are against us.
366 * This value is good at least till the year 4000.
367 * Better solutions welcome.
368 */
369#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
370
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 371#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 372#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 373/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
130 374
131#include "ev.h"
132
133#if __GNUC__ >= 3 375#if __GNUC__ >= 4
134# define expect(expr,value) __builtin_expect ((expr),(value)) 376# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline 377# define noinline __attribute__ ((noinline))
136#else 378#else
137# define expect(expr,value) (expr) 379# define expect(expr,value) (expr)
138# define inline static 380# define noinline
381# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
382# define inline
383# endif
139#endif 384#endif
140 385
141#define expect_false(expr) expect ((expr) != 0, 0) 386#define expect_false(expr) expect ((expr) != 0, 0)
142#define expect_true(expr) expect ((expr) != 0, 1) 387#define expect_true(expr) expect ((expr) != 0, 1)
388#define inline_size static inline
389
390#if EV_MINIMAL
391# define inline_speed static noinline
392#else
393# define inline_speed static inline
394#endif
143 395
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
145#define ABSPRI(w) ((w)->priority - EV_MINPRI) 397#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
146 398
399#define EMPTY /* required for microsofts broken pseudo-c compiler */
400#define EMPTY2(a,b) /* used to suppress some warnings */
401
147typedef struct ev_watcher *W; 402typedef ev_watcher *W;
148typedef struct ev_watcher_list *WL; 403typedef ev_watcher_list *WL;
149typedef struct ev_watcher_time *WT; 404typedef ev_watcher_time *WT;
150 405
406#define ev_active(w) ((W)(w))->active
407#define ev_at(w) ((WT)(w))->at
408
409#if EV_USE_REALTIME
410/* sig_atomic_t is used to avoid per-thread variables or locking but still */
411/* giving it a reasonably high chance of working on typical architetcures */
412static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
413#endif
414
415#if EV_USE_MONOTONIC
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 416static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
417#endif
152 418
419#ifdef _WIN32
153#include "ev_win32.c" 420# include "ev_win32.c"
421#endif
154 422
155/*****************************************************************************/ 423/*****************************************************************************/
156 424
157static void (*syserr_cb)(const char *msg); 425static void (*syserr_cb)(const char *msg);
158 426
427void
159void ev_set_syserr_cb (void (*cb)(const char *msg)) 428ev_set_syserr_cb (void (*cb)(const char *msg))
160{ 429{
161 syserr_cb = cb; 430 syserr_cb = cb;
162} 431}
163 432
164static void 433static void noinline
165syserr (const char *msg) 434ev_syserr (const char *msg)
166{ 435{
167 if (!msg) 436 if (!msg)
168 msg = "(libev) system error"; 437 msg = "(libev) system error";
169 438
170 if (syserr_cb) 439 if (syserr_cb)
174 perror (msg); 443 perror (msg);
175 abort (); 444 abort ();
176 } 445 }
177} 446}
178 447
448static void *
449ev_realloc_emul (void *ptr, long size)
450{
451 /* some systems, notably openbsd and darwin, fail to properly
452 * implement realloc (x, 0) (as required by both ansi c-98 and
453 * the single unix specification, so work around them here.
454 */
455
456 if (size)
457 return realloc (ptr, size);
458
459 free (ptr);
460 return 0;
461}
462
179static void *(*alloc)(void *ptr, long size); 463static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
180 464
465void
181void ev_set_allocator (void *(*cb)(void *ptr, long size)) 466ev_set_allocator (void *(*cb)(void *ptr, long size))
182{ 467{
183 alloc = cb; 468 alloc = cb;
184} 469}
185 470
186static void * 471inline_speed void *
187ev_realloc (void *ptr, long size) 472ev_realloc (void *ptr, long size)
188{ 473{
189 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 474 ptr = alloc (ptr, size);
190 475
191 if (!ptr && size) 476 if (!ptr && size)
192 { 477 {
193 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 478 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
194 abort (); 479 abort ();
200#define ev_malloc(size) ev_realloc (0, (size)) 485#define ev_malloc(size) ev_realloc (0, (size))
201#define ev_free(ptr) ev_realloc ((ptr), 0) 486#define ev_free(ptr) ev_realloc ((ptr), 0)
202 487
203/*****************************************************************************/ 488/*****************************************************************************/
204 489
490/* file descriptor info structure */
205typedef struct 491typedef struct
206{ 492{
207 WL head; 493 WL head;
208 unsigned char events; 494 unsigned char events; /* the events watched for */
495 unsigned char reify; /* flag set when this ANFD needs reification */
496 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
209 unsigned char reify; 497 unsigned char unused;
498#if EV_USE_EPOLL
499 unsigned int egen; /* generation counter to counter epoll bugs */
500#endif
501#if EV_SELECT_IS_WINSOCKET
502 SOCKET handle;
503#endif
210} ANFD; 504} ANFD;
211 505
506/* stores the pending event set for a given watcher */
212typedef struct 507typedef struct
213{ 508{
214 W w; 509 W w;
215 int events; 510 int events; /* the pending event set for the given watcher */
216} ANPENDING; 511} ANPENDING;
217 512
513#if EV_USE_INOTIFY
514/* hash table entry per inotify-id */
515typedef struct
516{
517 WL head;
518} ANFS;
519#endif
520
521/* Heap Entry */
522#if EV_HEAP_CACHE_AT
523 /* a heap element */
524 typedef struct {
525 ev_tstamp at;
526 WT w;
527 } ANHE;
528
529 #define ANHE_w(he) (he).w /* access watcher, read-write */
530 #define ANHE_at(he) (he).at /* access cached at, read-only */
531 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
532#else
533 /* a heap element */
534 typedef WT ANHE;
535
536 #define ANHE_w(he) (he)
537 #define ANHE_at(he) (he)->at
538 #define ANHE_at_cache(he)
539#endif
540
218#if EV_MULTIPLICITY 541#if EV_MULTIPLICITY
219 542
220struct ev_loop 543 struct ev_loop
221{ 544 {
545 ev_tstamp ev_rt_now;
546 #define ev_rt_now ((loop)->ev_rt_now)
222# define VAR(name,decl) decl; 547 #define VAR(name,decl) decl;
223# include "ev_vars.h" 548 #include "ev_vars.h"
224};
225# undef VAR 549 #undef VAR
550 };
226# include "ev_wrap.h" 551 #include "ev_wrap.h"
552
553 static struct ev_loop default_loop_struct;
554 struct ev_loop *ev_default_loop_ptr;
227 555
228#else 556#else
229 557
558 ev_tstamp ev_rt_now;
230# define VAR(name,decl) static decl; 559 #define VAR(name,decl) static decl;
231# include "ev_vars.h" 560 #include "ev_vars.h"
232# undef VAR 561 #undef VAR
562
563 static int ev_default_loop_ptr;
233 564
234#endif 565#endif
235 566
236/*****************************************************************************/ 567/*****************************************************************************/
237 568
238inline ev_tstamp 569#ifndef EV_HAVE_EV_TIME
570ev_tstamp
239ev_time (void) 571ev_time (void)
240{ 572{
241#if EV_USE_REALTIME 573#if EV_USE_REALTIME
574 if (expect_true (have_realtime))
575 {
242 struct timespec ts; 576 struct timespec ts;
243 clock_gettime (CLOCK_REALTIME, &ts); 577 clock_gettime (CLOCK_REALTIME, &ts);
244 return ts.tv_sec + ts.tv_nsec * 1e-9; 578 return ts.tv_sec + ts.tv_nsec * 1e-9;
245#else 579 }
580#endif
581
246 struct timeval tv; 582 struct timeval tv;
247 gettimeofday (&tv, 0); 583 gettimeofday (&tv, 0);
248 return tv.tv_sec + tv.tv_usec * 1e-6; 584 return tv.tv_sec + tv.tv_usec * 1e-6;
249#endif
250} 585}
586#endif
251 587
252inline ev_tstamp 588inline_size ev_tstamp
253get_clock (void) 589get_clock (void)
254{ 590{
255#if EV_USE_MONOTONIC 591#if EV_USE_MONOTONIC
256 if (expect_true (have_monotonic)) 592 if (expect_true (have_monotonic))
257 { 593 {
262#endif 598#endif
263 599
264 return ev_time (); 600 return ev_time ();
265} 601}
266 602
603#if EV_MULTIPLICITY
267ev_tstamp 604ev_tstamp
268ev_now (EV_P) 605ev_now (EV_P)
269{ 606{
270 return rt_now; 607 return ev_rt_now;
271} 608}
609#endif
272 610
273#define array_roundsize(type,n) ((n) | 4 & ~3) 611void
612ev_sleep (ev_tstamp delay)
613{
614 if (delay > 0.)
615 {
616#if EV_USE_NANOSLEEP
617 struct timespec ts;
618
619 ts.tv_sec = (time_t)delay;
620 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
621
622 nanosleep (&ts, 0);
623#elif defined(_WIN32)
624 Sleep ((unsigned long)(delay * 1e3));
625#else
626 struct timeval tv;
627
628 tv.tv_sec = (time_t)delay;
629 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
630
631 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
632 /* somehting nto guaranteed by newer posix versions, but guaranteed */
633 /* by older ones */
634 select (0, 0, 0, 0, &tv);
635#endif
636 }
637}
638
639/*****************************************************************************/
640
641#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
642
643/* find a suitable new size for the given array, */
644/* hopefully by rounding to a ncie-to-malloc size */
645inline_size int
646array_nextsize (int elem, int cur, int cnt)
647{
648 int ncur = cur + 1;
649
650 do
651 ncur <<= 1;
652 while (cnt > ncur);
653
654 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
655 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
656 {
657 ncur *= elem;
658 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
659 ncur = ncur - sizeof (void *) * 4;
660 ncur /= elem;
661 }
662
663 return ncur;
664}
665
666static noinline void *
667array_realloc (int elem, void *base, int *cur, int cnt)
668{
669 *cur = array_nextsize (elem, *cur, cnt);
670 return ev_realloc (base, elem * *cur);
671}
672
673#define array_init_zero(base,count) \
674 memset ((void *)(base), 0, sizeof (*(base)) * (count))
274 675
275#define array_needsize(type,base,cur,cnt,init) \ 676#define array_needsize(type,base,cur,cnt,init) \
276 if (expect_false ((cnt) > cur)) \ 677 if (expect_false ((cnt) > (cur))) \
277 { \ 678 { \
278 int newcnt = cur; \ 679 int ocur_ = (cur); \
279 do \ 680 (base) = (type *)array_realloc \
280 { \ 681 (sizeof (type), (base), &(cur), (cnt)); \
281 newcnt = array_roundsize (type, newcnt << 1); \ 682 init ((base) + (ocur_), (cur) - ocur_); \
282 } \
283 while ((cnt) > newcnt); \
284 \
285 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
286 init (base + cur, newcnt - cur); \
287 cur = newcnt; \
288 } 683 }
289 684
685#if 0
290#define array_slim(type,stem) \ 686#define array_slim(type,stem) \
291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 687 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
292 { \ 688 { \
293 stem ## max = array_roundsize (stem ## cnt >> 1); \ 689 stem ## max = array_roundsize (stem ## cnt >> 1); \
294 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 690 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 691 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
296 } 692 }
297 693#endif
298/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
299/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
300#define array_free_microshit(stem) \
301 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
302 694
303#define array_free(stem, idx) \ 695#define array_free(stem, idx) \
304 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 696 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
305 697
306/*****************************************************************************/ 698/*****************************************************************************/
307 699
308static void 700/* dummy callback for pending events */
309anfds_init (ANFD *base, int count) 701static void noinline
702pendingcb (EV_P_ ev_prepare *w, int revents)
310{ 703{
311 while (count--) 704}
312 {
313 base->head = 0;
314 base->events = EV_NONE;
315 base->reify = 0;
316 705
317 ++base; 706void noinline
707ev_feed_event (EV_P_ void *w, int revents)
708{
709 W w_ = (W)w;
710 int pri = ABSPRI (w_);
711
712 if (expect_false (w_->pending))
713 pendings [pri][w_->pending - 1].events |= revents;
714 else
318 } 715 {
319} 716 w_->pending = ++pendingcnt [pri];
320 717 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
321static void 718 pendings [pri][w_->pending - 1].w = w_;
322event (EV_P_ W w, int events)
323{
324 if (w->pending)
325 {
326 pendings [ABSPRI (w)][w->pending - 1].events |= events; 719 pendings [pri][w_->pending - 1].events = revents;
327 return;
328 } 720 }
329
330 w->pending = ++pendingcnt [ABSPRI (w)];
331 array_needsize (ANPENDING, pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void));
332 pendings [ABSPRI (w)][w->pending - 1].w = w;
333 pendings [ABSPRI (w)][w->pending - 1].events = events;
334} 721}
335 722
336static void 723inline_speed void
724feed_reverse (EV_P_ W w)
725{
726 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
727 rfeeds [rfeedcnt++] = w;
728}
729
730inline_size void
731feed_reverse_done (EV_P_ int revents)
732{
733 do
734 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
735 while (rfeedcnt);
736}
737
738inline_speed void
337queue_events (EV_P_ W *events, int eventcnt, int type) 739queue_events (EV_P_ W *events, int eventcnt, int type)
338{ 740{
339 int i; 741 int i;
340 742
341 for (i = 0; i < eventcnt; ++i) 743 for (i = 0; i < eventcnt; ++i)
342 event (EV_A_ events [i], type); 744 ev_feed_event (EV_A_ events [i], type);
343} 745}
344 746
345static void 747/*****************************************************************************/
748
749inline_speed void
346fd_event (EV_P_ int fd, int events) 750fd_event (EV_P_ int fd, int revents)
347{ 751{
348 ANFD *anfd = anfds + fd; 752 ANFD *anfd = anfds + fd;
349 struct ev_io *w; 753 ev_io *w;
350 754
351 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 755 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
352 { 756 {
353 int ev = w->events & events; 757 int ev = w->events & revents;
354 758
355 if (ev) 759 if (ev)
356 event (EV_A_ (W)w, ev); 760 ev_feed_event (EV_A_ (W)w, ev);
357 } 761 }
358} 762}
359 763
360/*****************************************************************************/ 764void
765ev_feed_fd_event (EV_P_ int fd, int revents)
766{
767 if (fd >= 0 && fd < anfdmax)
768 fd_event (EV_A_ fd, revents);
769}
361 770
362static void 771/* make sure the external fd watch events are in-sync */
772/* with the kernel/libev internal state */
773inline_size void
363fd_reify (EV_P) 774fd_reify (EV_P)
364{ 775{
365 int i; 776 int i;
366 777
367 for (i = 0; i < fdchangecnt; ++i) 778 for (i = 0; i < fdchangecnt; ++i)
368 { 779 {
369 int fd = fdchanges [i]; 780 int fd = fdchanges [i];
370 ANFD *anfd = anfds + fd; 781 ANFD *anfd = anfds + fd;
371 struct ev_io *w; 782 ev_io *w;
372 783
373 int events = 0; 784 unsigned char events = 0;
374 785
375 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 786 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
376 events |= w->events; 787 events |= (unsigned char)w->events;
377 788
789#if EV_SELECT_IS_WINSOCKET
790 if (events)
791 {
792 unsigned long arg;
793 #ifdef EV_FD_TO_WIN32_HANDLE
794 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
795 #else
796 anfd->handle = _get_osfhandle (fd);
797 #endif
798 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
799 }
800#endif
801
802 {
803 unsigned char o_events = anfd->events;
804 unsigned char o_reify = anfd->reify;
805
378 anfd->reify = 0; 806 anfd->reify = 0;
379
380 method_modify (EV_A_ fd, anfd->events, events);
381 anfd->events = events; 807 anfd->events = events;
808
809 if (o_events != events || o_reify & EV__IOFDSET)
810 backend_modify (EV_A_ fd, o_events, events);
811 }
382 } 812 }
383 813
384 fdchangecnt = 0; 814 fdchangecnt = 0;
385} 815}
386 816
387static void 817/* something about the given fd changed */
818inline_size void
388fd_change (EV_P_ int fd) 819fd_change (EV_P_ int fd, int flags)
389{ 820{
390 if (anfds [fd].reify) 821 unsigned char reify = anfds [fd].reify;
391 return;
392
393 anfds [fd].reify = 1; 822 anfds [fd].reify |= flags;
394 823
824 if (expect_true (!reify))
825 {
395 ++fdchangecnt; 826 ++fdchangecnt;
396 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 827 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
397 fdchanges [fdchangecnt - 1] = fd; 828 fdchanges [fdchangecnt - 1] = fd;
829 }
398} 830}
399 831
400static void 832/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
833inline_speed void
401fd_kill (EV_P_ int fd) 834fd_kill (EV_P_ int fd)
402{ 835{
403 struct ev_io *w; 836 ev_io *w;
404 837
405 while ((w = (struct ev_io *)anfds [fd].head)) 838 while ((w = (ev_io *)anfds [fd].head))
406 { 839 {
407 ev_io_stop (EV_A_ w); 840 ev_io_stop (EV_A_ w);
408 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 841 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
409 } 842 }
410} 843}
411 844
412static int 845/* check whether the given fd is atcually valid, for error recovery */
846inline_size int
413fd_valid (int fd) 847fd_valid (int fd)
414{ 848{
415#ifdef WIN32 849#ifdef _WIN32
416 return !!win32_get_osfhandle (fd); 850 return _get_osfhandle (fd) != -1;
417#else 851#else
418 return fcntl (fd, F_GETFD) != -1; 852 return fcntl (fd, F_GETFD) != -1;
419#endif 853#endif
420} 854}
421 855
422/* called on EBADF to verify fds */ 856/* called on EBADF to verify fds */
423static void 857static void noinline
424fd_ebadf (EV_P) 858fd_ebadf (EV_P)
425{ 859{
426 int fd; 860 int fd;
427 861
428 for (fd = 0; fd < anfdmax; ++fd) 862 for (fd = 0; fd < anfdmax; ++fd)
429 if (anfds [fd].events) 863 if (anfds [fd].events)
430 if (!fd_valid (fd) == -1 && errno == EBADF) 864 if (!fd_valid (fd) && errno == EBADF)
431 fd_kill (EV_A_ fd); 865 fd_kill (EV_A_ fd);
432} 866}
433 867
434/* called on ENOMEM in select/poll to kill some fds and retry */ 868/* called on ENOMEM in select/poll to kill some fds and retry */
435static void 869static void noinline
436fd_enomem (EV_P) 870fd_enomem (EV_P)
437{ 871{
438 int fd; 872 int fd;
439 873
440 for (fd = anfdmax; fd--; ) 874 for (fd = anfdmax; fd--; )
443 fd_kill (EV_A_ fd); 877 fd_kill (EV_A_ fd);
444 return; 878 return;
445 } 879 }
446} 880}
447 881
448/* usually called after fork if method needs to re-arm all fds from scratch */ 882/* usually called after fork if backend needs to re-arm all fds from scratch */
449static void 883static void noinline
450fd_rearm_all (EV_P) 884fd_rearm_all (EV_P)
451{ 885{
452 int fd; 886 int fd;
453 887
454 /* this should be highly optimised to not do anything but set a flag */
455 for (fd = 0; fd < anfdmax; ++fd) 888 for (fd = 0; fd < anfdmax; ++fd)
456 if (anfds [fd].events) 889 if (anfds [fd].events)
457 { 890 {
458 anfds [fd].events = 0; 891 anfds [fd].events = 0;
892 anfds [fd].emask = 0;
459 fd_change (EV_A_ fd); 893 fd_change (EV_A_ fd, EV__IOFDSET | 1);
460 } 894 }
461} 895}
462 896
463/*****************************************************************************/ 897/*****************************************************************************/
464 898
465static void 899/*
466upheap (WT *heap, int k) 900 * the heap functions want a real array index. array index 0 uis guaranteed to not
467{ 901 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
468 WT w = heap [k]; 902 * the branching factor of the d-tree.
903 */
469 904
470 while (k && heap [k >> 1]->at > w->at) 905/*
471 { 906 * at the moment we allow libev the luxury of two heaps,
472 heap [k] = heap [k >> 1]; 907 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
473 ((W)heap [k])->active = k + 1; 908 * which is more cache-efficient.
474 k >>= 1; 909 * the difference is about 5% with 50000+ watchers.
475 } 910 */
911#if EV_USE_4HEAP
476 912
477 heap [k] = w; 913#define DHEAP 4
478 ((W)heap [k])->active = k + 1; 914#define HEAP0 (DHEAP - 1) /* index of first element in heap */
915#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
916#define UPHEAP_DONE(p,k) ((p) == (k))
479 917
480} 918/* away from the root */
481 919inline_speed void
482static void
483downheap (WT *heap, int N, int k) 920downheap (ANHE *heap, int N, int k)
484{ 921{
485 WT w = heap [k]; 922 ANHE he = heap [k];
923 ANHE *E = heap + N + HEAP0;
486 924
487 while (k < (N >> 1)) 925 for (;;)
488 { 926 {
489 int j = k << 1; 927 ev_tstamp minat;
928 ANHE *minpos;
929 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
490 930
491 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 931 /* find minimum child */
932 if (expect_true (pos + DHEAP - 1 < E))
492 ++j; 933 {
493 934 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
494 if (w->at <= heap [j]->at) 935 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
936 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
937 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
938 }
939 else if (pos < E)
940 {
941 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
942 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
943 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
944 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
945 }
946 else
495 break; 947 break;
496 948
949 if (ANHE_at (he) <= minat)
950 break;
951
952 heap [k] = *minpos;
953 ev_active (ANHE_w (*minpos)) = k;
954
955 k = minpos - heap;
956 }
957
958 heap [k] = he;
959 ev_active (ANHE_w (he)) = k;
960}
961
962#else /* 4HEAP */
963
964#define HEAP0 1
965#define HPARENT(k) ((k) >> 1)
966#define UPHEAP_DONE(p,k) (!(p))
967
968/* away from the root */
969inline_speed void
970downheap (ANHE *heap, int N, int k)
971{
972 ANHE he = heap [k];
973
974 for (;;)
975 {
976 int c = k << 1;
977
978 if (c > N + HEAP0 - 1)
979 break;
980
981 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
982 ? 1 : 0;
983
984 if (ANHE_at (he) <= ANHE_at (heap [c]))
985 break;
986
497 heap [k] = heap [j]; 987 heap [k] = heap [c];
498 ((W)heap [k])->active = k + 1; 988 ev_active (ANHE_w (heap [k])) = k;
989
499 k = j; 990 k = c;
500 } 991 }
501 992
502 heap [k] = w; 993 heap [k] = he;
503 ((W)heap [k])->active = k + 1; 994 ev_active (ANHE_w (he)) = k;
995}
996#endif
997
998/* towards the root */
999inline_speed void
1000upheap (ANHE *heap, int k)
1001{
1002 ANHE he = heap [k];
1003
1004 for (;;)
1005 {
1006 int p = HPARENT (k);
1007
1008 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1009 break;
1010
1011 heap [k] = heap [p];
1012 ev_active (ANHE_w (heap [k])) = k;
1013 k = p;
1014 }
1015
1016 heap [k] = he;
1017 ev_active (ANHE_w (he)) = k;
1018}
1019
1020/* move an element suitably so it is in a correct place */
1021inline_size void
1022adjustheap (ANHE *heap, int N, int k)
1023{
1024 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
1025 upheap (heap, k);
1026 else
1027 downheap (heap, N, k);
1028}
1029
1030/* rebuild the heap: this function is used only once and executed rarely */
1031inline_size void
1032reheap (ANHE *heap, int N)
1033{
1034 int i;
1035
1036 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1037 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1038 for (i = 0; i < N; ++i)
1039 upheap (heap, i + HEAP0);
504} 1040}
505 1041
506/*****************************************************************************/ 1042/*****************************************************************************/
507 1043
1044/* associate signal watchers to a signal signal */
508typedef struct 1045typedef struct
509{ 1046{
510 WL head; 1047 WL head;
511 sig_atomic_t volatile gotsig; 1048 EV_ATOMIC_T gotsig;
512} ANSIG; 1049} ANSIG;
513 1050
514static ANSIG *signals; 1051static ANSIG *signals;
515static int signalmax; 1052static int signalmax;
516 1053
517static int sigpipe [2]; 1054static EV_ATOMIC_T gotsig;
518static sig_atomic_t volatile gotsig;
519static struct ev_io sigev;
520 1055
1056/*****************************************************************************/
1057
1058/* used to prepare libev internal fd's */
1059/* this is not fork-safe */
1060inline_speed void
1061fd_intern (int fd)
1062{
1063#ifdef _WIN32
1064 unsigned long arg = 1;
1065 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1066#else
1067 fcntl (fd, F_SETFD, FD_CLOEXEC);
1068 fcntl (fd, F_SETFL, O_NONBLOCK);
1069#endif
1070}
1071
1072static void noinline
1073evpipe_init (EV_P)
1074{
1075 if (!ev_is_active (&pipe_w))
1076 {
1077#if EV_USE_EVENTFD
1078 if ((evfd = eventfd (0, 0)) >= 0)
1079 {
1080 evpipe [0] = -1;
1081 fd_intern (evfd);
1082 ev_io_set (&pipe_w, evfd, EV_READ);
1083 }
1084 else
1085#endif
1086 {
1087 while (pipe (evpipe))
1088 ev_syserr ("(libev) error creating signal/async pipe");
1089
1090 fd_intern (evpipe [0]);
1091 fd_intern (evpipe [1]);
1092 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1093 }
1094
1095 ev_io_start (EV_A_ &pipe_w);
1096 ev_unref (EV_A); /* watcher should not keep loop alive */
1097 }
1098}
1099
1100inline_size void
1101evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1102{
1103 if (!*flag)
1104 {
1105 int old_errno = errno; /* save errno because write might clobber it */
1106
1107 *flag = 1;
1108
1109#if EV_USE_EVENTFD
1110 if (evfd >= 0)
1111 {
1112 uint64_t counter = 1;
1113 write (evfd, &counter, sizeof (uint64_t));
1114 }
1115 else
1116#endif
1117 write (evpipe [1], &old_errno, 1);
1118
1119 errno = old_errno;
1120 }
1121}
1122
1123/* called whenever the libev signal pipe */
1124/* got some events (signal, async) */
521static void 1125static void
522signals_init (ANSIG *base, int count) 1126pipecb (EV_P_ ev_io *iow, int revents)
523{ 1127{
524 while (count--) 1128#if EV_USE_EVENTFD
1129 if (evfd >= 0)
1130 {
1131 uint64_t counter;
1132 read (evfd, &counter, sizeof (uint64_t));
525 { 1133 }
526 base->head = 0; 1134 else
1135#endif
1136 {
1137 char dummy;
1138 read (evpipe [0], &dummy, 1);
1139 }
1140
1141 if (gotsig && ev_is_default_loop (EV_A))
1142 {
1143 int signum;
527 base->gotsig = 0; 1144 gotsig = 0;
528 1145
529 ++base; 1146 for (signum = signalmax; signum--; )
1147 if (signals [signum].gotsig)
1148 ev_feed_signal_event (EV_A_ signum + 1);
1149 }
1150
1151#if EV_ASYNC_ENABLE
1152 if (gotasync)
530 } 1153 {
1154 int i;
1155 gotasync = 0;
1156
1157 for (i = asynccnt; i--; )
1158 if (asyncs [i]->sent)
1159 {
1160 asyncs [i]->sent = 0;
1161 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1162 }
1163 }
1164#endif
531} 1165}
1166
1167/*****************************************************************************/
532 1168
533static void 1169static void
534sighandler (int signum) 1170ev_sighandler (int signum)
535{ 1171{
1172#if EV_MULTIPLICITY
1173 struct ev_loop *loop = &default_loop_struct;
1174#endif
1175
536#if WIN32 1176#if _WIN32
537 signal (signum, sighandler); 1177 signal (signum, ev_sighandler);
538#endif 1178#endif
539 1179
540 signals [signum - 1].gotsig = 1; 1180 signals [signum - 1].gotsig = 1;
541 1181 evpipe_write (EV_A_ &gotsig);
542 if (!gotsig)
543 {
544 int old_errno = errno;
545 gotsig = 1;
546 write (sigpipe [1], &signum, 1);
547 errno = old_errno;
548 }
549} 1182}
550 1183
551static void 1184void noinline
552sigcb (EV_P_ struct ev_io *iow, int revents) 1185ev_feed_signal_event (EV_P_ int signum)
553{ 1186{
554 WL w; 1187 WL w;
1188
1189#if EV_MULTIPLICITY
1190 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1191#endif
1192
555 int signum; 1193 --signum;
556 1194
557 read (sigpipe [0], &revents, 1); 1195 if (signum < 0 || signum >= signalmax)
558 gotsig = 0; 1196 return;
559 1197
560 for (signum = signalmax; signum--; )
561 if (signals [signum].gotsig)
562 {
563 signals [signum].gotsig = 0; 1198 signals [signum].gotsig = 0;
564 1199
565 for (w = signals [signum].head; w; w = w->next) 1200 for (w = signals [signum].head; w; w = w->next)
566 event (EV_A_ (W)w, EV_SIGNAL); 1201 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
567 }
568}
569
570static void
571siginit (EV_P)
572{
573#ifndef WIN32
574 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
575 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
576
577 /* rather than sort out wether we really need nb, set it */
578 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
579 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
580#endif
581
582 ev_io_set (&sigev, sigpipe [0], EV_READ);
583 ev_io_start (EV_A_ &sigev);
584 ev_unref (EV_A); /* child watcher should not keep loop alive */
585} 1202}
586 1203
587/*****************************************************************************/ 1204/*****************************************************************************/
588 1205
589static struct ev_child *childs [PID_HASHSIZE]; 1206static WL childs [EV_PID_HASHSIZE];
590 1207
591#ifndef WIN32 1208#ifndef _WIN32
592 1209
593static struct ev_signal childev; 1210static ev_signal childev;
1211
1212#ifndef WIFCONTINUED
1213# define WIFCONTINUED(status) 0
1214#endif
1215
1216/* handle a single child status event */
1217inline_speed void
1218child_reap (EV_P_ int chain, int pid, int status)
1219{
1220 ev_child *w;
1221 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1222
1223 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1224 {
1225 if ((w->pid == pid || !w->pid)
1226 && (!traced || (w->flags & 1)))
1227 {
1228 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1229 w->rpid = pid;
1230 w->rstatus = status;
1231 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1232 }
1233 }
1234}
594 1235
595#ifndef WCONTINUED 1236#ifndef WCONTINUED
596# define WCONTINUED 0 1237# define WCONTINUED 0
597#endif 1238#endif
598 1239
1240/* called on sigchld etc., calls waitpid */
599static void 1241static void
600child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
601{
602 struct ev_child *w;
603
604 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
605 if (w->pid == pid || !w->pid)
606 {
607 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
608 w->rpid = pid;
609 w->rstatus = status;
610 event (EV_A_ (W)w, EV_CHILD);
611 }
612}
613
614static void
615childcb (EV_P_ struct ev_signal *sw, int revents) 1242childcb (EV_P_ ev_signal *sw, int revents)
616{ 1243{
617 int pid, status; 1244 int pid, status;
618 1245
1246 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
619 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1247 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
620 { 1248 if (!WCONTINUED
1249 || errno != EINVAL
1250 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1251 return;
1252
621 /* make sure we are called again until all childs have been reaped */ 1253 /* make sure we are called again until all children have been reaped */
1254 /* we need to do it this way so that the callback gets called before we continue */
622 event (EV_A_ (W)sw, EV_SIGNAL); 1255 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
623 1256
624 child_reap (EV_A_ sw, pid, pid, status); 1257 child_reap (EV_A_ pid, pid, status);
1258 if (EV_PID_HASHSIZE > 1)
625 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1259 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
626 }
627} 1260}
628 1261
629#endif 1262#endif
630 1263
631/*****************************************************************************/ 1264/*****************************************************************************/
632 1265
1266#if EV_USE_PORT
1267# include "ev_port.c"
1268#endif
633#if EV_USE_KQUEUE 1269#if EV_USE_KQUEUE
634# include "ev_kqueue.c" 1270# include "ev_kqueue.c"
635#endif 1271#endif
636#if EV_USE_EPOLL 1272#if EV_USE_EPOLL
637# include "ev_epoll.c" 1273# include "ev_epoll.c"
654{ 1290{
655 return EV_VERSION_MINOR; 1291 return EV_VERSION_MINOR;
656} 1292}
657 1293
658/* return true if we are running with elevated privileges and should ignore env variables */ 1294/* return true if we are running with elevated privileges and should ignore env variables */
659static int 1295int inline_size
660enable_secure (void) 1296enable_secure (void)
661{ 1297{
662#ifdef WIN32 1298#ifdef _WIN32
663 return 0; 1299 return 0;
664#else 1300#else
665 return getuid () != geteuid () 1301 return getuid () != geteuid ()
666 || getgid () != getegid (); 1302 || getgid () != getegid ();
667#endif 1303#endif
668} 1304}
669 1305
670int 1306unsigned int
671ev_method (EV_P) 1307ev_supported_backends (void)
672{ 1308{
673 return method; 1309 unsigned int flags = 0;
674}
675 1310
676static void 1311 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
677loop_init (EV_P_ int methods) 1312 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1313 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1314 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1315 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1316
1317 return flags;
1318}
1319
1320unsigned int
1321ev_recommended_backends (void)
678{ 1322{
679 if (!method) 1323 unsigned int flags = ev_supported_backends ();
1324
1325#ifndef __NetBSD__
1326 /* kqueue is borked on everything but netbsd apparently */
1327 /* it usually doesn't work correctly on anything but sockets and pipes */
1328 flags &= ~EVBACKEND_KQUEUE;
1329#endif
1330#ifdef __APPLE__
1331 /* only select works correctly on that "unix-certified" platform */
1332 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1333 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1334#endif
1335
1336 return flags;
1337}
1338
1339unsigned int
1340ev_embeddable_backends (void)
1341{
1342 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1343
1344 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1345 /* please fix it and tell me how to detect the fix */
1346 flags &= ~EVBACKEND_EPOLL;
1347
1348 return flags;
1349}
1350
1351unsigned int
1352ev_backend (EV_P)
1353{
1354 return backend;
1355}
1356
1357unsigned int
1358ev_loop_count (EV_P)
1359{
1360 return loop_count;
1361}
1362
1363void
1364ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1365{
1366 io_blocktime = interval;
1367}
1368
1369void
1370ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1371{
1372 timeout_blocktime = interval;
1373}
1374
1375/* initialise a loop structure, must be zero-initialised */
1376static void noinline
1377loop_init (EV_P_ unsigned int flags)
1378{
1379 if (!backend)
680 { 1380 {
1381#if EV_USE_REALTIME
1382 if (!have_realtime)
1383 {
1384 struct timespec ts;
1385
1386 if (!clock_gettime (CLOCK_REALTIME, &ts))
1387 have_realtime = 1;
1388 }
1389#endif
1390
681#if EV_USE_MONOTONIC 1391#if EV_USE_MONOTONIC
1392 if (!have_monotonic)
1393 {
1394 struct timespec ts;
1395
1396 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1397 have_monotonic = 1;
1398 }
1399#endif
1400
1401 ev_rt_now = ev_time ();
1402 mn_now = get_clock ();
1403 now_floor = mn_now;
1404 rtmn_diff = ev_rt_now - mn_now;
1405
1406 io_blocktime = 0.;
1407 timeout_blocktime = 0.;
1408 backend = 0;
1409 backend_fd = -1;
1410 gotasync = 0;
1411#if EV_USE_INOTIFY
1412 fs_fd = -2;
1413#endif
1414
1415 /* pid check not overridable via env */
1416#ifndef _WIN32
1417 if (flags & EVFLAG_FORKCHECK)
1418 curpid = getpid ();
1419#endif
1420
1421 if (!(flags & EVFLAG_NOENV)
1422 && !enable_secure ()
1423 && getenv ("LIBEV_FLAGS"))
1424 flags = atoi (getenv ("LIBEV_FLAGS"));
1425
1426 if (!(flags & 0x0000ffffU))
1427 flags |= ev_recommended_backends ();
1428
1429#if EV_USE_PORT
1430 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1431#endif
1432#if EV_USE_KQUEUE
1433 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1434#endif
1435#if EV_USE_EPOLL
1436 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1437#endif
1438#if EV_USE_POLL
1439 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1440#endif
1441#if EV_USE_SELECT
1442 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1443#endif
1444
1445 ev_prepare_init (&pending_w, pendingcb);
1446
1447 ev_init (&pipe_w, pipecb);
1448 ev_set_priority (&pipe_w, EV_MAXPRI);
1449 }
1450}
1451
1452/* free up a loop structure */
1453static void noinline
1454loop_destroy (EV_P)
1455{
1456 int i;
1457
1458 if (ev_is_active (&pipe_w))
1459 {
1460 ev_ref (EV_A); /* signal watcher */
1461 ev_io_stop (EV_A_ &pipe_w);
1462
1463#if EV_USE_EVENTFD
1464 if (evfd >= 0)
1465 close (evfd);
1466#endif
1467
1468 if (evpipe [0] >= 0)
1469 {
1470 close (evpipe [0]);
1471 close (evpipe [1]);
1472 }
1473 }
1474
1475#if EV_USE_INOTIFY
1476 if (fs_fd >= 0)
1477 close (fs_fd);
1478#endif
1479
1480 if (backend_fd >= 0)
1481 close (backend_fd);
1482
1483#if EV_USE_PORT
1484 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1485#endif
1486#if EV_USE_KQUEUE
1487 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1488#endif
1489#if EV_USE_EPOLL
1490 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1491#endif
1492#if EV_USE_POLL
1493 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1494#endif
1495#if EV_USE_SELECT
1496 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1497#endif
1498
1499 for (i = NUMPRI; i--; )
1500 {
1501 array_free (pending, [i]);
1502#if EV_IDLE_ENABLE
1503 array_free (idle, [i]);
1504#endif
1505 }
1506
1507 ev_free (anfds); anfdmax = 0;
1508
1509 /* have to use the microsoft-never-gets-it-right macro */
1510 array_free (rfeed, EMPTY);
1511 array_free (fdchange, EMPTY);
1512 array_free (timer, EMPTY);
1513#if EV_PERIODIC_ENABLE
1514 array_free (periodic, EMPTY);
1515#endif
1516#if EV_FORK_ENABLE
1517 array_free (fork, EMPTY);
1518#endif
1519 array_free (prepare, EMPTY);
1520 array_free (check, EMPTY);
1521#if EV_ASYNC_ENABLE
1522 array_free (async, EMPTY);
1523#endif
1524
1525 backend = 0;
1526}
1527
1528#if EV_USE_INOTIFY
1529inline_size void infy_fork (EV_P);
1530#endif
1531
1532inline_size void
1533loop_fork (EV_P)
1534{
1535#if EV_USE_PORT
1536 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1537#endif
1538#if EV_USE_KQUEUE
1539 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1540#endif
1541#if EV_USE_EPOLL
1542 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1543#endif
1544#if EV_USE_INOTIFY
1545 infy_fork (EV_A);
1546#endif
1547
1548 if (ev_is_active (&pipe_w))
1549 {
1550 /* this "locks" the handlers against writing to the pipe */
1551 /* while we modify the fd vars */
1552 gotsig = 1;
1553#if EV_ASYNC_ENABLE
1554 gotasync = 1;
1555#endif
1556
1557 ev_ref (EV_A);
1558 ev_io_stop (EV_A_ &pipe_w);
1559
1560#if EV_USE_EVENTFD
1561 if (evfd >= 0)
1562 close (evfd);
1563#endif
1564
1565 if (evpipe [0] >= 0)
1566 {
1567 close (evpipe [0]);
1568 close (evpipe [1]);
1569 }
1570
1571 evpipe_init (EV_A);
1572 /* now iterate over everything, in case we missed something */
1573 pipecb (EV_A_ &pipe_w, EV_READ);
1574 }
1575
1576 postfork = 0;
1577}
1578
1579#if EV_MULTIPLICITY
1580
1581struct ev_loop *
1582ev_loop_new (unsigned int flags)
1583{
1584 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1585
1586 memset (loop, 0, sizeof (struct ev_loop));
1587
1588 loop_init (EV_A_ flags);
1589
1590 if (ev_backend (EV_A))
1591 return loop;
1592
1593 return 0;
1594}
1595
1596void
1597ev_loop_destroy (EV_P)
1598{
1599 loop_destroy (EV_A);
1600 ev_free (loop);
1601}
1602
1603void
1604ev_loop_fork (EV_P)
1605{
1606 postfork = 1; /* must be in line with ev_default_fork */
1607}
1608
1609#if EV_VERIFY
1610static void noinline
1611verify_watcher (EV_P_ W w)
1612{
1613 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1614
1615 if (w->pending)
1616 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1617}
1618
1619static void noinline
1620verify_heap (EV_P_ ANHE *heap, int N)
1621{
1622 int i;
1623
1624 for (i = HEAP0; i < N + HEAP0; ++i)
1625 {
1626 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1627 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1628 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1629
1630 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1631 }
1632}
1633
1634static void noinline
1635array_verify (EV_P_ W *ws, int cnt)
1636{
1637 while (cnt--)
1638 {
1639 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1640 verify_watcher (EV_A_ ws [cnt]);
1641 }
1642}
1643#endif
1644
1645void
1646ev_loop_verify (EV_P)
1647{
1648#if EV_VERIFY
1649 int i;
1650 WL w;
1651
1652 assert (activecnt >= -1);
1653
1654 assert (fdchangemax >= fdchangecnt);
1655 for (i = 0; i < fdchangecnt; ++i)
1656 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1657
1658 assert (anfdmax >= 0);
1659 for (i = 0; i < anfdmax; ++i)
1660 for (w = anfds [i].head; w; w = w->next)
682 { 1661 {
683 struct timespec ts; 1662 verify_watcher (EV_A_ (W)w);
684 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1663 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
685 have_monotonic = 1; 1664 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
686 } 1665 }
687#endif
688 1666
689 rt_now = ev_time (); 1667 assert (timermax >= timercnt);
690 mn_now = get_clock (); 1668 verify_heap (EV_A_ timers, timercnt);
691 now_floor = mn_now;
692 rtmn_diff = rt_now - mn_now;
693 1669
694 if (methods == EVMETHOD_AUTO) 1670#if EV_PERIODIC_ENABLE
695 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1671 assert (periodicmax >= periodiccnt);
696 methods = atoi (getenv ("LIBEV_METHODS")); 1672 verify_heap (EV_A_ periodics, periodiccnt);
697 else
698 methods = EVMETHOD_ANY;
699
700 method = 0;
701#if EV_USE_WIN32
702 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
703#endif
704#if EV_USE_KQUEUE
705 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
706#endif
707#if EV_USE_EPOLL
708 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
709#endif
710#if EV_USE_POLL
711 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
712#endif
713#if EV_USE_SELECT
714 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
715#endif
716
717 ev_watcher_init (&sigev, sigcb);
718 ev_set_priority (&sigev, EV_MAXPRI);
719 }
720}
721
722void
723loop_destroy (EV_P)
724{
725 int i;
726
727#if EV_USE_WIN32
728 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
729#endif
730#if EV_USE_KQUEUE
731 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
732#endif
733#if EV_USE_EPOLL
734 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
735#endif
736#if EV_USE_POLL
737 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
738#endif
739#if EV_USE_SELECT
740 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
741#endif 1673#endif
742 1674
743 for (i = NUMPRI; i--; ) 1675 for (i = NUMPRI; i--; )
744 array_free (pending, [i]); 1676 {
1677 assert (pendingmax [i] >= pendingcnt [i]);
1678#if EV_IDLE_ENABLE
1679 assert (idleall >= 0);
1680 assert (idlemax [i] >= idlecnt [i]);
1681 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1682#endif
1683 }
745 1684
746 /* have to use the microsoft-never-gets-it-right macro */ 1685#if EV_FORK_ENABLE
747 array_free_microshit (fdchange); 1686 assert (forkmax >= forkcnt);
748 array_free_microshit (timer); 1687 array_verify (EV_A_ (W *)forks, forkcnt);
749 array_free_microshit (periodic); 1688#endif
750 array_free_microshit (idle);
751 array_free_microshit (prepare);
752 array_free_microshit (check);
753 1689
754 method = 0; 1690#if EV_ASYNC_ENABLE
755} 1691 assert (asyncmax >= asynccnt);
1692 array_verify (EV_A_ (W *)asyncs, asynccnt);
1693#endif
756 1694
757static void 1695 assert (preparemax >= preparecnt);
758loop_fork (EV_P) 1696 array_verify (EV_A_ (W *)prepares, preparecnt);
759{ 1697
760#if EV_USE_EPOLL 1698 assert (checkmax >= checkcnt);
761 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1699 array_verify (EV_A_ (W *)checks, checkcnt);
1700
1701# if 0
1702 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1703 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
762#endif 1704# endif
763#if EV_USE_KQUEUE
764 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
765#endif 1705#endif
766
767 if (ev_is_active (&sigev))
768 {
769 /* default loop */
770
771 ev_ref (EV_A);
772 ev_io_stop (EV_A_ &sigev);
773 close (sigpipe [0]);
774 close (sigpipe [1]);
775
776 while (pipe (sigpipe))
777 syserr ("(libev) error creating pipe");
778
779 siginit (EV_A);
780 }
781
782 postfork = 0;
783} 1706}
1707
1708#endif /* multiplicity */
784 1709
785#if EV_MULTIPLICITY 1710#if EV_MULTIPLICITY
786struct ev_loop * 1711struct ev_loop *
787ev_loop_new (int methods) 1712ev_default_loop_init (unsigned int flags)
788{ 1713#else
789 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1714int
790 1715ev_default_loop (unsigned int flags)
791 memset (loop, 0, sizeof (struct ev_loop));
792
793 loop_init (EV_A_ methods);
794
795 if (ev_method (EV_A))
796 return loop;
797
798 return 0;
799}
800
801void
802ev_loop_destroy (EV_P)
803{
804 loop_destroy (EV_A);
805 ev_free (loop);
806}
807
808void
809ev_loop_fork (EV_P)
810{
811 postfork = 1;
812}
813
814#endif 1716#endif
815 1717{
1718 if (!ev_default_loop_ptr)
1719 {
816#if EV_MULTIPLICITY 1720#if EV_MULTIPLICITY
817struct ev_loop default_loop_struct; 1721 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
818static struct ev_loop *default_loop;
819
820struct ev_loop *
821#else 1722#else
822static int default_loop;
823
824int
825#endif
826ev_default_loop (int methods)
827{
828 if (sigpipe [0] == sigpipe [1])
829 if (pipe (sigpipe))
830 return 0;
831
832 if (!default_loop)
833 {
834#if EV_MULTIPLICITY
835 struct ev_loop *loop = default_loop = &default_loop_struct;
836#else
837 default_loop = 1; 1723 ev_default_loop_ptr = 1;
838#endif 1724#endif
839 1725
840 loop_init (EV_A_ methods); 1726 loop_init (EV_A_ flags);
841 1727
842 if (ev_method (EV_A)) 1728 if (ev_backend (EV_A))
843 { 1729 {
844 siginit (EV_A);
845
846#ifndef WIN32 1730#ifndef _WIN32
847 ev_signal_init (&childev, childcb, SIGCHLD); 1731 ev_signal_init (&childev, childcb, SIGCHLD);
848 ev_set_priority (&childev, EV_MAXPRI); 1732 ev_set_priority (&childev, EV_MAXPRI);
849 ev_signal_start (EV_A_ &childev); 1733 ev_signal_start (EV_A_ &childev);
850 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1734 ev_unref (EV_A); /* child watcher should not keep loop alive */
851#endif 1735#endif
852 } 1736 }
853 else 1737 else
854 default_loop = 0; 1738 ev_default_loop_ptr = 0;
855 } 1739 }
856 1740
857 return default_loop; 1741 return ev_default_loop_ptr;
858} 1742}
859 1743
860void 1744void
861ev_default_destroy (void) 1745ev_default_destroy (void)
862{ 1746{
863#if EV_MULTIPLICITY 1747#if EV_MULTIPLICITY
864 struct ev_loop *loop = default_loop; 1748 struct ev_loop *loop = ev_default_loop_ptr;
865#endif 1749#endif
866 1750
1751 ev_default_loop_ptr = 0;
1752
867#ifndef WIN32 1753#ifndef _WIN32
868 ev_ref (EV_A); /* child watcher */ 1754 ev_ref (EV_A); /* child watcher */
869 ev_signal_stop (EV_A_ &childev); 1755 ev_signal_stop (EV_A_ &childev);
870#endif 1756#endif
871 1757
872 ev_ref (EV_A); /* signal watcher */
873 ev_io_stop (EV_A_ &sigev);
874
875 close (sigpipe [0]); sigpipe [0] = 0;
876 close (sigpipe [1]); sigpipe [1] = 0;
877
878 loop_destroy (EV_A); 1758 loop_destroy (EV_A);
879} 1759}
880 1760
881void 1761void
882ev_default_fork (void) 1762ev_default_fork (void)
883{ 1763{
884#if EV_MULTIPLICITY 1764#if EV_MULTIPLICITY
885 struct ev_loop *loop = default_loop; 1765 struct ev_loop *loop = ev_default_loop_ptr;
886#endif 1766#endif
887 1767
888 if (method) 1768 postfork = 1; /* must be in line with ev_loop_fork */
889 postfork = 1;
890} 1769}
891 1770
892/*****************************************************************************/ 1771/*****************************************************************************/
893 1772
894static void 1773void
1774ev_invoke (EV_P_ void *w, int revents)
1775{
1776 EV_CB_INVOKE ((W)w, revents);
1777}
1778
1779inline_speed void
895call_pending (EV_P) 1780call_pending (EV_P)
896{ 1781{
897 int pri; 1782 int pri;
898 1783
899 for (pri = NUMPRI; pri--; ) 1784 for (pri = NUMPRI; pri--; )
900 while (pendingcnt [pri]) 1785 while (pendingcnt [pri])
901 { 1786 {
902 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1787 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
903 1788
904 if (p->w) 1789 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
905 { 1790 /* ^ this is no longer true, as pending_w could be here */
1791
906 p->w->pending = 0; 1792 p->w->pending = 0;
907 p->w->cb (EV_A_ p->w, p->events); 1793 EV_CB_INVOKE (p->w, p->events);
908 } 1794 EV_FREQUENT_CHECK;
909 } 1795 }
910} 1796}
911 1797
912static void 1798#if EV_IDLE_ENABLE
1799/* make idle watchers pending. this handles the "call-idle */
1800/* only when higher priorities are idle" logic */
1801inline_size void
913timers_reify (EV_P) 1802idle_reify (EV_P)
914{ 1803{
915 while (timercnt && ((WT)timers [0])->at <= mn_now) 1804 if (expect_false (idleall))
916 { 1805 {
917 struct ev_timer *w = timers [0]; 1806 int pri;
918 1807
919 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1808 for (pri = NUMPRI; pri--; )
920
921 /* first reschedule or stop timer */
922 if (w->repeat)
923 { 1809 {
924 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1810 if (pendingcnt [pri])
925 ((WT)w)->at = mn_now + w->repeat; 1811 break;
926 downheap ((WT *)timers, timercnt, 0);
927 }
928 else
929 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
930 1812
931 event (EV_A_ (W)w, EV_TIMEOUT); 1813 if (idlecnt [pri])
932 }
933}
934
935static void
936periodics_reify (EV_P)
937{
938 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
939 {
940 struct ev_periodic *w = periodics [0];
941
942 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
943
944 /* first reschedule or stop timer */
945 if (w->interval)
946 {
947 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
948 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
949 downheap ((WT *)periodics, periodiccnt, 0);
950 }
951 else
952 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
953
954 event (EV_A_ (W)w, EV_PERIODIC);
955 }
956}
957
958static void
959periodics_reschedule (EV_P)
960{
961 int i;
962
963 /* adjust periodics after time jump */
964 for (i = 0; i < periodiccnt; ++i)
965 {
966 struct ev_periodic *w = periodics [i];
967
968 if (w->interval)
969 {
970 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
971
972 if (fabs (diff) >= 1e-4)
973 { 1814 {
974 ev_periodic_stop (EV_A_ w); 1815 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
975 ev_periodic_start (EV_A_ w); 1816 break;
976
977 i = 0; /* restart loop, inefficient, but time jumps should be rare */
978 } 1817 }
979 } 1818 }
980 } 1819 }
981} 1820}
1821#endif
982 1822
983inline int 1823/* make timers pending */
984time_update_monotonic (EV_P) 1824inline_size void
1825timers_reify (EV_P)
985{ 1826{
986 mn_now = get_clock (); 1827 EV_FREQUENT_CHECK;
987 1828
988 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1829 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
989 {
990 rt_now = rtmn_diff + mn_now;
991 return 0;
992 } 1830 {
993 else 1831 do
1832 {
1833 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1834
1835 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1836
1837 /* first reschedule or stop timer */
1838 if (w->repeat)
1839 {
1840 ev_at (w) += w->repeat;
1841 if (ev_at (w) < mn_now)
1842 ev_at (w) = mn_now;
1843
1844 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1845
1846 ANHE_at_cache (timers [HEAP0]);
1847 downheap (timers, timercnt, HEAP0);
1848 }
1849 else
1850 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1851
1852 EV_FREQUENT_CHECK;
1853 feed_reverse (EV_A_ (W)w);
1854 }
1855 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1856
1857 feed_reverse_done (EV_A_ EV_TIMEOUT);
994 { 1858 }
995 now_floor = mn_now; 1859}
996 rt_now = ev_time (); 1860
997 return 1; 1861#if EV_PERIODIC_ENABLE
1862/* make periodics pending */
1863inline_size void
1864periodics_reify (EV_P)
1865{
1866 EV_FREQUENT_CHECK;
1867
1868 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
998 } 1869 {
999} 1870 int feed_count = 0;
1000 1871
1001static void 1872 do
1002time_update (EV_P) 1873 {
1874 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1875
1876 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1877
1878 /* first reschedule or stop timer */
1879 if (w->reschedule_cb)
1880 {
1881 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1882
1883 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1884
1885 ANHE_at_cache (periodics [HEAP0]);
1886 downheap (periodics, periodiccnt, HEAP0);
1887 }
1888 else if (w->interval)
1889 {
1890 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1891 /* if next trigger time is not sufficiently in the future, put it there */
1892 /* this might happen because of floating point inexactness */
1893 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1894 {
1895 ev_at (w) += w->interval;
1896
1897 /* if interval is unreasonably low we might still have a time in the past */
1898 /* so correct this. this will make the periodic very inexact, but the user */
1899 /* has effectively asked to get triggered more often than possible */
1900 if (ev_at (w) < ev_rt_now)
1901 ev_at (w) = ev_rt_now;
1902 }
1903
1904 ANHE_at_cache (periodics [HEAP0]);
1905 downheap (periodics, periodiccnt, HEAP0);
1906 }
1907 else
1908 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1909
1910 EV_FREQUENT_CHECK;
1911 feed_reverse (EV_A_ (W)w);
1912 }
1913 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1914
1915 feed_reverse_done (EV_A_ EV_PERIODIC);
1916 }
1917}
1918
1919/* simply recalculate all periodics */
1920/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1921static void noinline
1922periodics_reschedule (EV_P)
1003{ 1923{
1004 int i; 1924 int i;
1005 1925
1926 /* adjust periodics after time jump */
1927 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1928 {
1929 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1930
1931 if (w->reschedule_cb)
1932 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1933 else if (w->interval)
1934 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1935
1936 ANHE_at_cache (periodics [i]);
1937 }
1938
1939 reheap (periodics, periodiccnt);
1940}
1941#endif
1942
1943/* adjust all timers by a given offset */
1944static void noinline
1945timers_reschedule (EV_P_ ev_tstamp adjust)
1946{
1947 int i;
1948
1949 for (i = 0; i < timercnt; ++i)
1950 {
1951 ANHE *he = timers + i + HEAP0;
1952 ANHE_w (*he)->at += adjust;
1953 ANHE_at_cache (*he);
1954 }
1955}
1956
1957/* fetch new monotonic and realtime times from the kernel */
1958/* also detetc if there was a timejump, and act accordingly */
1959inline_speed void
1960time_update (EV_P_ ev_tstamp max_block)
1961{
1006#if EV_USE_MONOTONIC 1962#if EV_USE_MONOTONIC
1007 if (expect_true (have_monotonic)) 1963 if (expect_true (have_monotonic))
1008 { 1964 {
1009 if (time_update_monotonic (EV_A)) 1965 int i;
1966 ev_tstamp odiff = rtmn_diff;
1967
1968 mn_now = get_clock ();
1969
1970 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1971 /* interpolate in the meantime */
1972 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1010 { 1973 {
1011 ev_tstamp odiff = rtmn_diff; 1974 ev_rt_now = rtmn_diff + mn_now;
1975 return;
1976 }
1012 1977
1978 now_floor = mn_now;
1979 ev_rt_now = ev_time ();
1980
1013 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1981 /* loop a few times, before making important decisions.
1982 * on the choice of "4": one iteration isn't enough,
1983 * in case we get preempted during the calls to
1984 * ev_time and get_clock. a second call is almost guaranteed
1985 * to succeed in that case, though. and looping a few more times
1986 * doesn't hurt either as we only do this on time-jumps or
1987 * in the unlikely event of having been preempted here.
1988 */
1989 for (i = 4; --i; )
1014 { 1990 {
1015 rtmn_diff = rt_now - mn_now; 1991 rtmn_diff = ev_rt_now - mn_now;
1016 1992
1017 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1993 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1018 return; /* all is well */ 1994 return; /* all is well */
1019 1995
1020 rt_now = ev_time (); 1996 ev_rt_now = ev_time ();
1021 mn_now = get_clock (); 1997 mn_now = get_clock ();
1022 now_floor = mn_now; 1998 now_floor = mn_now;
1023 } 1999 }
1024 2000
2001 /* no timer adjustment, as the monotonic clock doesn't jump */
2002 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2003# if EV_PERIODIC_ENABLE
2004 periodics_reschedule (EV_A);
2005# endif
2006 }
2007 else
2008#endif
2009 {
2010 ev_rt_now = ev_time ();
2011
2012 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2013 {
2014 /* adjust timers. this is easy, as the offset is the same for all of them */
2015 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2016#if EV_PERIODIC_ENABLE
1025 periodics_reschedule (EV_A); 2017 periodics_reschedule (EV_A);
1026 /* no timer adjustment, as the monotonic clock doesn't jump */ 2018#endif
1027 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1028 } 2019 }
1029 }
1030 else
1031#endif
1032 {
1033 rt_now = ev_time ();
1034 2020
1035 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1036 {
1037 periodics_reschedule (EV_A);
1038
1039 /* adjust timers. this is easy, as the offset is the same for all */
1040 for (i = 0; i < timercnt; ++i)
1041 ((WT)timers [i])->at += rt_now - mn_now;
1042 }
1043
1044 mn_now = rt_now; 2021 mn_now = ev_rt_now;
1045 } 2022 }
1046}
1047
1048void
1049ev_ref (EV_P)
1050{
1051 ++activecnt;
1052}
1053
1054void
1055ev_unref (EV_P)
1056{
1057 --activecnt;
1058} 2023}
1059 2024
1060static int loop_done; 2025static int loop_done;
1061 2026
1062void 2027void
1063ev_loop (EV_P_ int flags) 2028ev_loop (EV_P_ int flags)
1064{ 2029{
1065 double block; 2030 loop_done = EVUNLOOP_CANCEL;
1066 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2031
2032 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1067 2033
1068 do 2034 do
1069 { 2035 {
2036#if EV_VERIFY >= 2
2037 ev_loop_verify (EV_A);
2038#endif
2039
2040#ifndef _WIN32
2041 if (expect_false (curpid)) /* penalise the forking check even more */
2042 if (expect_false (getpid () != curpid))
2043 {
2044 curpid = getpid ();
2045 postfork = 1;
2046 }
2047#endif
2048
2049#if EV_FORK_ENABLE
2050 /* we might have forked, so queue fork handlers */
2051 if (expect_false (postfork))
2052 if (forkcnt)
2053 {
2054 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2055 call_pending (EV_A);
2056 }
2057#endif
2058
1070 /* queue check watchers (and execute them) */ 2059 /* queue prepare watchers (and execute them) */
1071 if (expect_false (preparecnt)) 2060 if (expect_false (preparecnt))
1072 { 2061 {
1073 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2062 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1074 call_pending (EV_A); 2063 call_pending (EV_A);
1075 } 2064 }
1080 2069
1081 /* update fd-related kernel structures */ 2070 /* update fd-related kernel structures */
1082 fd_reify (EV_A); 2071 fd_reify (EV_A);
1083 2072
1084 /* calculate blocking time */ 2073 /* calculate blocking time */
2074 {
2075 ev_tstamp waittime = 0.;
2076 ev_tstamp sleeptime = 0.;
1085 2077
1086 /* we only need this for !monotonic clockor timers, but as we basically 2078 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1087 always have timers, we just calculate it always */
1088#if EV_USE_MONOTONIC
1089 if (expect_true (have_monotonic))
1090 time_update_monotonic (EV_A);
1091 else
1092#endif
1093 { 2079 {
1094 rt_now = ev_time (); 2080 /* update time to cancel out callback processing overhead */
1095 mn_now = rt_now; 2081 time_update (EV_A_ 1e100);
1096 }
1097 2082
1098 if (flags & EVLOOP_NONBLOCK || idlecnt)
1099 block = 0.;
1100 else
1101 {
1102 block = MAX_BLOCKTIME; 2083 waittime = MAX_BLOCKTIME;
1103 2084
1104 if (timercnt) 2085 if (timercnt)
1105 { 2086 {
1106 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2087 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1107 if (block > to) block = to; 2088 if (waittime > to) waittime = to;
1108 } 2089 }
1109 2090
2091#if EV_PERIODIC_ENABLE
1110 if (periodiccnt) 2092 if (periodiccnt)
1111 { 2093 {
1112 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 2094 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1113 if (block > to) block = to; 2095 if (waittime > to) waittime = to;
1114 } 2096 }
2097#endif
1115 2098
1116 if (block < 0.) block = 0.; 2099 if (expect_false (waittime < timeout_blocktime))
2100 waittime = timeout_blocktime;
2101
2102 sleeptime = waittime - backend_fudge;
2103
2104 if (expect_true (sleeptime > io_blocktime))
2105 sleeptime = io_blocktime;
2106
2107 if (sleeptime)
2108 {
2109 ev_sleep (sleeptime);
2110 waittime -= sleeptime;
2111 }
1117 } 2112 }
1118 2113
1119 method_poll (EV_A_ block); 2114 ++loop_count;
2115 backend_poll (EV_A_ waittime);
1120 2116
1121 /* update rt_now, do magic */ 2117 /* update ev_rt_now, do magic */
1122 time_update (EV_A); 2118 time_update (EV_A_ waittime + sleeptime);
2119 }
1123 2120
1124 /* queue pending timers and reschedule them */ 2121 /* queue pending timers and reschedule them */
1125 timers_reify (EV_A); /* relative timers called last */ 2122 timers_reify (EV_A); /* relative timers called last */
2123#if EV_PERIODIC_ENABLE
1126 periodics_reify (EV_A); /* absolute timers called first */ 2124 periodics_reify (EV_A); /* absolute timers called first */
2125#endif
1127 2126
2127#if EV_IDLE_ENABLE
1128 /* queue idle watchers unless io or timers are pending */ 2128 /* queue idle watchers unless other events are pending */
1129 if (!pendingcnt) 2129 idle_reify (EV_A);
1130 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2130#endif
1131 2131
1132 /* queue check watchers, to be executed first */ 2132 /* queue check watchers, to be executed first */
1133 if (checkcnt) 2133 if (expect_false (checkcnt))
1134 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2134 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1135 2135
1136 call_pending (EV_A); 2136 call_pending (EV_A);
1137 } 2137 }
1138 while (activecnt && !loop_done); 2138 while (expect_true (
2139 activecnt
2140 && !loop_done
2141 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2142 ));
1139 2143
1140 if (loop_done != 2) 2144 if (loop_done == EVUNLOOP_ONE)
1141 loop_done = 0; 2145 loop_done = EVUNLOOP_CANCEL;
1142} 2146}
1143 2147
1144void 2148void
1145ev_unloop (EV_P_ int how) 2149ev_unloop (EV_P_ int how)
1146{ 2150{
1147 loop_done = how; 2151 loop_done = how;
1148} 2152}
1149 2153
2154void
2155ev_ref (EV_P)
2156{
2157 ++activecnt;
2158}
2159
2160void
2161ev_unref (EV_P)
2162{
2163 --activecnt;
2164}
2165
2166void
2167ev_now_update (EV_P)
2168{
2169 time_update (EV_A_ 1e100);
2170}
2171
2172void
2173ev_suspend (EV_P)
2174{
2175 ev_now_update (EV_A);
2176}
2177
2178void
2179ev_resume (EV_P)
2180{
2181 ev_tstamp mn_prev = mn_now;
2182
2183 ev_now_update (EV_A);
2184 timers_reschedule (EV_A_ mn_now - mn_prev);
2185#if EV_PERIODIC_ENABLE
2186 /* TODO: really do this? */
2187 periodics_reschedule (EV_A);
2188#endif
2189}
2190
1150/*****************************************************************************/ 2191/*****************************************************************************/
2192/* singly-linked list management, used when the expected list length is short */
1151 2193
1152inline void 2194inline_size void
1153wlist_add (WL *head, WL elem) 2195wlist_add (WL *head, WL elem)
1154{ 2196{
1155 elem->next = *head; 2197 elem->next = *head;
1156 *head = elem; 2198 *head = elem;
1157} 2199}
1158 2200
1159inline void 2201inline_size void
1160wlist_del (WL *head, WL elem) 2202wlist_del (WL *head, WL elem)
1161{ 2203{
1162 while (*head) 2204 while (*head)
1163 { 2205 {
1164 if (*head == elem) 2206 if (*head == elem)
1169 2211
1170 head = &(*head)->next; 2212 head = &(*head)->next;
1171 } 2213 }
1172} 2214}
1173 2215
2216/* internal, faster, version of ev_clear_pending */
1174inline void 2217inline_speed void
1175ev_clear_pending (EV_P_ W w) 2218clear_pending (EV_P_ W w)
1176{ 2219{
1177 if (w->pending) 2220 if (w->pending)
1178 { 2221 {
1179 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2222 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1180 w->pending = 0; 2223 w->pending = 0;
1181 } 2224 }
1182} 2225}
1183 2226
2227int
2228ev_clear_pending (EV_P_ void *w)
2229{
2230 W w_ = (W)w;
2231 int pending = w_->pending;
2232
2233 if (expect_true (pending))
2234 {
2235 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2236 p->w = (W)&pending_w;
2237 w_->pending = 0;
2238 return p->events;
2239 }
2240 else
2241 return 0;
2242}
2243
1184inline void 2244inline_size void
2245pri_adjust (EV_P_ W w)
2246{
2247 int pri = w->priority;
2248 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2249 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2250 w->priority = pri;
2251}
2252
2253inline_speed void
1185ev_start (EV_P_ W w, int active) 2254ev_start (EV_P_ W w, int active)
1186{ 2255{
1187 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2256 pri_adjust (EV_A_ w);
1188 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1189
1190 w->active = active; 2257 w->active = active;
1191 ev_ref (EV_A); 2258 ev_ref (EV_A);
1192} 2259}
1193 2260
1194inline void 2261inline_size void
1195ev_stop (EV_P_ W w) 2262ev_stop (EV_P_ W w)
1196{ 2263{
1197 ev_unref (EV_A); 2264 ev_unref (EV_A);
1198 w->active = 0; 2265 w->active = 0;
1199} 2266}
1200 2267
1201/*****************************************************************************/ 2268/*****************************************************************************/
1202 2269
1203void 2270void noinline
1204ev_io_start (EV_P_ struct ev_io *w) 2271ev_io_start (EV_P_ ev_io *w)
1205{ 2272{
1206 int fd = w->fd; 2273 int fd = w->fd;
1207 2274
1208 if (ev_is_active (w)) 2275 if (expect_false (ev_is_active (w)))
1209 return; 2276 return;
1210 2277
1211 assert (("ev_io_start called with negative fd", fd >= 0)); 2278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2279 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2280
2281 EV_FREQUENT_CHECK;
1212 2282
1213 ev_start (EV_A_ (W)w, 1); 2283 ev_start (EV_A_ (W)w, 1);
1214 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2284 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1215 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2285 wlist_add (&anfds[fd].head, (WL)w);
1216 2286
1217 fd_change (EV_A_ fd); 2287 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1218} 2288 w->events &= ~EV__IOFDSET;
1219 2289
1220void 2290 EV_FREQUENT_CHECK;
2291}
2292
2293void noinline
1221ev_io_stop (EV_P_ struct ev_io *w) 2294ev_io_stop (EV_P_ ev_io *w)
1222{ 2295{
1223 ev_clear_pending (EV_A_ (W)w); 2296 clear_pending (EV_A_ (W)w);
1224 if (!ev_is_active (w)) 2297 if (expect_false (!ev_is_active (w)))
1225 return; 2298 return;
1226 2299
2300 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2301
2302 EV_FREQUENT_CHECK;
2303
1227 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2304 wlist_del (&anfds[w->fd].head, (WL)w);
1228 ev_stop (EV_A_ (W)w); 2305 ev_stop (EV_A_ (W)w);
1229 2306
1230 fd_change (EV_A_ w->fd); 2307 fd_change (EV_A_ w->fd, 1);
1231}
1232 2308
1233void 2309 EV_FREQUENT_CHECK;
2310}
2311
2312void noinline
1234ev_timer_start (EV_P_ struct ev_timer *w) 2313ev_timer_start (EV_P_ ev_timer *w)
1235{ 2314{
1236 if (ev_is_active (w)) 2315 if (expect_false (ev_is_active (w)))
1237 return; 2316 return;
1238 2317
1239 ((WT)w)->at += mn_now; 2318 ev_at (w) += mn_now;
1240 2319
1241 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2320 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1242 2321
2322 EV_FREQUENT_CHECK;
2323
2324 ++timercnt;
1243 ev_start (EV_A_ (W)w, ++timercnt); 2325 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1244 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 2326 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1245 timers [timercnt - 1] = w; 2327 ANHE_w (timers [ev_active (w)]) = (WT)w;
1246 upheap ((WT *)timers, timercnt - 1); 2328 ANHE_at_cache (timers [ev_active (w)]);
2329 upheap (timers, ev_active (w));
1247 2330
2331 EV_FREQUENT_CHECK;
2332
1248 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2333 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1249} 2334}
1250 2335
1251void 2336void noinline
1252ev_timer_stop (EV_P_ struct ev_timer *w) 2337ev_timer_stop (EV_P_ ev_timer *w)
1253{ 2338{
1254 ev_clear_pending (EV_A_ (W)w); 2339 clear_pending (EV_A_ (W)w);
1255 if (!ev_is_active (w)) 2340 if (expect_false (!ev_is_active (w)))
1256 return; 2341 return;
1257 2342
2343 EV_FREQUENT_CHECK;
2344
2345 {
2346 int active = ev_active (w);
2347
1258 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2348 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1259 2349
1260 if (((W)w)->active < timercnt--) 2350 --timercnt;
2351
2352 if (expect_true (active < timercnt + HEAP0))
1261 { 2353 {
1262 timers [((W)w)->active - 1] = timers [timercnt]; 2354 timers [active] = timers [timercnt + HEAP0];
1263 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2355 adjustheap (timers, timercnt, active);
1264 } 2356 }
2357 }
1265 2358
1266 ((WT)w)->at = w->repeat; 2359 EV_FREQUENT_CHECK;
2360
2361 ev_at (w) -= mn_now;
1267 2362
1268 ev_stop (EV_A_ (W)w); 2363 ev_stop (EV_A_ (W)w);
1269} 2364}
1270 2365
1271void 2366void noinline
1272ev_timer_again (EV_P_ struct ev_timer *w) 2367ev_timer_again (EV_P_ ev_timer *w)
1273{ 2368{
2369 EV_FREQUENT_CHECK;
2370
1274 if (ev_is_active (w)) 2371 if (ev_is_active (w))
1275 { 2372 {
1276 if (w->repeat) 2373 if (w->repeat)
1277 { 2374 {
1278 ((WT)w)->at = mn_now + w->repeat; 2375 ev_at (w) = mn_now + w->repeat;
1279 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2376 ANHE_at_cache (timers [ev_active (w)]);
2377 adjustheap (timers, timercnt, ev_active (w));
1280 } 2378 }
1281 else 2379 else
1282 ev_timer_stop (EV_A_ w); 2380 ev_timer_stop (EV_A_ w);
1283 } 2381 }
1284 else if (w->repeat) 2382 else if (w->repeat)
2383 {
2384 ev_at (w) = w->repeat;
1285 ev_timer_start (EV_A_ w); 2385 ev_timer_start (EV_A_ w);
1286} 2386 }
1287 2387
1288void 2388 EV_FREQUENT_CHECK;
2389}
2390
2391#if EV_PERIODIC_ENABLE
2392void noinline
1289ev_periodic_start (EV_P_ struct ev_periodic *w) 2393ev_periodic_start (EV_P_ ev_periodic *w)
1290{ 2394{
1291 if (ev_is_active (w)) 2395 if (expect_false (ev_is_active (w)))
1292 return; 2396 return;
1293 2397
2398 if (w->reschedule_cb)
2399 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2400 else if (w->interval)
2401 {
1294 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2402 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1295
1296 /* this formula differs from the one in periodic_reify because we do not always round up */ 2403 /* this formula differs from the one in periodic_reify because we do not always round up */
1297 if (w->interval)
1298 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 2404 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2405 }
2406 else
2407 ev_at (w) = w->offset;
1299 2408
2409 EV_FREQUENT_CHECK;
2410
2411 ++periodiccnt;
1300 ev_start (EV_A_ (W)w, ++periodiccnt); 2412 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1301 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 2413 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1302 periodics [periodiccnt - 1] = w; 2414 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1303 upheap ((WT *)periodics, periodiccnt - 1); 2415 ANHE_at_cache (periodics [ev_active (w)]);
2416 upheap (periodics, ev_active (w));
1304 2417
2418 EV_FREQUENT_CHECK;
2419
1305 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2420 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1306} 2421}
1307 2422
1308void 2423void noinline
1309ev_periodic_stop (EV_P_ struct ev_periodic *w) 2424ev_periodic_stop (EV_P_ ev_periodic *w)
1310{ 2425{
1311 ev_clear_pending (EV_A_ (W)w); 2426 clear_pending (EV_A_ (W)w);
1312 if (!ev_is_active (w)) 2427 if (expect_false (!ev_is_active (w)))
1313 return; 2428 return;
1314 2429
2430 EV_FREQUENT_CHECK;
2431
2432 {
2433 int active = ev_active (w);
2434
1315 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2435 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1316 2436
1317 if (((W)w)->active < periodiccnt--) 2437 --periodiccnt;
2438
2439 if (expect_true (active < periodiccnt + HEAP0))
1318 { 2440 {
1319 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2441 periodics [active] = periodics [periodiccnt + HEAP0];
1320 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2442 adjustheap (periodics, periodiccnt, active);
1321 } 2443 }
2444 }
2445
2446 EV_FREQUENT_CHECK;
1322 2447
1323 ev_stop (EV_A_ (W)w); 2448 ev_stop (EV_A_ (W)w);
1324} 2449}
1325 2450
1326void 2451void noinline
1327ev_idle_start (EV_P_ struct ev_idle *w) 2452ev_periodic_again (EV_P_ ev_periodic *w)
1328{ 2453{
1329 if (ev_is_active (w)) 2454 /* TODO: use adjustheap and recalculation */
1330 return;
1331
1332 ev_start (EV_A_ (W)w, ++idlecnt);
1333 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1334 idles [idlecnt - 1] = w;
1335}
1336
1337void
1338ev_idle_stop (EV_P_ struct ev_idle *w)
1339{
1340 ev_clear_pending (EV_A_ (W)w);
1341 if (ev_is_active (w))
1342 return;
1343
1344 idles [((W)w)->active - 1] = idles [--idlecnt];
1345 ev_stop (EV_A_ (W)w); 2455 ev_periodic_stop (EV_A_ w);
2456 ev_periodic_start (EV_A_ w);
1346} 2457}
1347 2458#endif
1348void
1349ev_prepare_start (EV_P_ struct ev_prepare *w)
1350{
1351 if (ev_is_active (w))
1352 return;
1353
1354 ev_start (EV_A_ (W)w, ++preparecnt);
1355 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1356 prepares [preparecnt - 1] = w;
1357}
1358
1359void
1360ev_prepare_stop (EV_P_ struct ev_prepare *w)
1361{
1362 ev_clear_pending (EV_A_ (W)w);
1363 if (ev_is_active (w))
1364 return;
1365
1366 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1367 ev_stop (EV_A_ (W)w);
1368}
1369
1370void
1371ev_check_start (EV_P_ struct ev_check *w)
1372{
1373 if (ev_is_active (w))
1374 return;
1375
1376 ev_start (EV_A_ (W)w, ++checkcnt);
1377 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1378 checks [checkcnt - 1] = w;
1379}
1380
1381void
1382ev_check_stop (EV_P_ struct ev_check *w)
1383{
1384 ev_clear_pending (EV_A_ (W)w);
1385 if (ev_is_active (w))
1386 return;
1387
1388 checks [((W)w)->active - 1] = checks [--checkcnt];
1389 ev_stop (EV_A_ (W)w);
1390}
1391 2459
1392#ifndef SA_RESTART 2460#ifndef SA_RESTART
1393# define SA_RESTART 0 2461# define SA_RESTART 0
1394#endif 2462#endif
1395 2463
1396void 2464void noinline
1397ev_signal_start (EV_P_ struct ev_signal *w) 2465ev_signal_start (EV_P_ ev_signal *w)
1398{ 2466{
1399#if EV_MULTIPLICITY 2467#if EV_MULTIPLICITY
1400 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2468 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1401#endif 2469#endif
1402 if (ev_is_active (w)) 2470 if (expect_false (ev_is_active (w)))
1403 return; 2471 return;
1404 2472
1405 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2473 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2474
2475 evpipe_init (EV_A);
2476
2477 EV_FREQUENT_CHECK;
2478
2479 {
2480#ifndef _WIN32
2481 sigset_t full, prev;
2482 sigfillset (&full);
2483 sigprocmask (SIG_SETMASK, &full, &prev);
2484#endif
2485
2486 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2487
2488#ifndef _WIN32
2489 sigprocmask (SIG_SETMASK, &prev, 0);
2490#endif
2491 }
1406 2492
1407 ev_start (EV_A_ (W)w, 1); 2493 ev_start (EV_A_ (W)w, 1);
1408 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1409 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2494 wlist_add (&signals [w->signum - 1].head, (WL)w);
1410 2495
1411 if (!((WL)w)->next) 2496 if (!((WL)w)->next)
1412 { 2497 {
1413#if WIN32 2498#if _WIN32
1414 signal (w->signum, sighandler); 2499 signal (w->signum, ev_sighandler);
1415#else 2500#else
1416 struct sigaction sa; 2501 struct sigaction sa;
1417 sa.sa_handler = sighandler; 2502 sa.sa_handler = ev_sighandler;
1418 sigfillset (&sa.sa_mask); 2503 sigfillset (&sa.sa_mask);
1419 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2504 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1420 sigaction (w->signum, &sa, 0); 2505 sigaction (w->signum, &sa, 0);
1421#endif 2506#endif
1422 } 2507 }
1423}
1424 2508
1425void 2509 EV_FREQUENT_CHECK;
2510}
2511
2512void noinline
1426ev_signal_stop (EV_P_ struct ev_signal *w) 2513ev_signal_stop (EV_P_ ev_signal *w)
1427{ 2514{
1428 ev_clear_pending (EV_A_ (W)w); 2515 clear_pending (EV_A_ (W)w);
1429 if (!ev_is_active (w)) 2516 if (expect_false (!ev_is_active (w)))
1430 return; 2517 return;
1431 2518
2519 EV_FREQUENT_CHECK;
2520
1432 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2521 wlist_del (&signals [w->signum - 1].head, (WL)w);
1433 ev_stop (EV_A_ (W)w); 2522 ev_stop (EV_A_ (W)w);
1434 2523
1435 if (!signals [w->signum - 1].head) 2524 if (!signals [w->signum - 1].head)
1436 signal (w->signum, SIG_DFL); 2525 signal (w->signum, SIG_DFL);
1437}
1438 2526
2527 EV_FREQUENT_CHECK;
2528}
2529
1439void 2530void
1440ev_child_start (EV_P_ struct ev_child *w) 2531ev_child_start (EV_P_ ev_child *w)
1441{ 2532{
1442#if EV_MULTIPLICITY 2533#if EV_MULTIPLICITY
1443 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2534 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1444#endif 2535#endif
1445 if (ev_is_active (w)) 2536 if (expect_false (ev_is_active (w)))
1446 return; 2537 return;
1447 2538
2539 EV_FREQUENT_CHECK;
2540
1448 ev_start (EV_A_ (W)w, 1); 2541 ev_start (EV_A_ (W)w, 1);
1449 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2542 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1450}
1451 2543
2544 EV_FREQUENT_CHECK;
2545}
2546
1452void 2547void
1453ev_child_stop (EV_P_ struct ev_child *w) 2548ev_child_stop (EV_P_ ev_child *w)
1454{ 2549{
1455 ev_clear_pending (EV_A_ (W)w); 2550 clear_pending (EV_A_ (W)w);
1456 if (ev_is_active (w)) 2551 if (expect_false (!ev_is_active (w)))
1457 return; 2552 return;
1458 2553
2554 EV_FREQUENT_CHECK;
2555
1459 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2556 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1460 ev_stop (EV_A_ (W)w); 2557 ev_stop (EV_A_ (W)w);
2558
2559 EV_FREQUENT_CHECK;
1461} 2560}
2561
2562#if EV_STAT_ENABLE
2563
2564# ifdef _WIN32
2565# undef lstat
2566# define lstat(a,b) _stati64 (a,b)
2567# endif
2568
2569#define DEF_STAT_INTERVAL 5.0074891
2570#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2571#define MIN_STAT_INTERVAL 0.1074891
2572
2573static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2574
2575#if EV_USE_INOTIFY
2576# define EV_INOTIFY_BUFSIZE 8192
2577
2578static void noinline
2579infy_add (EV_P_ ev_stat *w)
2580{
2581 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2582
2583 if (w->wd < 0)
2584 {
2585 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2586 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2587
2588 /* monitor some parent directory for speedup hints */
2589 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2590 /* but an efficiency issue only */
2591 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2592 {
2593 char path [4096];
2594 strcpy (path, w->path);
2595
2596 do
2597 {
2598 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2599 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2600
2601 char *pend = strrchr (path, '/');
2602
2603 if (!pend || pend == path)
2604 break;
2605
2606 *pend = 0;
2607 w->wd = inotify_add_watch (fs_fd, path, mask);
2608 }
2609 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2610 }
2611 }
2612
2613 if (w->wd >= 0)
2614 {
2615 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2616
2617 /* now local changes will be tracked by inotify, but remote changes won't */
2618 /* unless the filesystem it known to be local, we therefore still poll */
2619 /* also do poll on <2.6.25, but with normal frequency */
2620 struct statfs sfs;
2621
2622 if (fs_2625 && !statfs (w->path, &sfs))
2623 if (sfs.f_type == 0x1373 /* devfs */
2624 || sfs.f_type == 0xEF53 /* ext2/3 */
2625 || sfs.f_type == 0x3153464a /* jfs */
2626 || sfs.f_type == 0x52654973 /* reiser3 */
2627 || sfs.f_type == 0x01021994 /* tempfs */
2628 || sfs.f_type == 0x58465342 /* xfs */)
2629 return;
2630
2631 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2632 ev_timer_again (EV_A_ &w->timer);
2633 }
2634}
2635
2636static void noinline
2637infy_del (EV_P_ ev_stat *w)
2638{
2639 int slot;
2640 int wd = w->wd;
2641
2642 if (wd < 0)
2643 return;
2644
2645 w->wd = -2;
2646 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2647 wlist_del (&fs_hash [slot].head, (WL)w);
2648
2649 /* remove this watcher, if others are watching it, they will rearm */
2650 inotify_rm_watch (fs_fd, wd);
2651}
2652
2653static void noinline
2654infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2655{
2656 if (slot < 0)
2657 /* overflow, need to check for all hash slots */
2658 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2659 infy_wd (EV_A_ slot, wd, ev);
2660 else
2661 {
2662 WL w_;
2663
2664 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2665 {
2666 ev_stat *w = (ev_stat *)w_;
2667 w_ = w_->next; /* lets us remove this watcher and all before it */
2668
2669 if (w->wd == wd || wd == -1)
2670 {
2671 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2672 {
2673 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2674 w->wd = -1;
2675 infy_add (EV_A_ w); /* re-add, no matter what */
2676 }
2677
2678 stat_timer_cb (EV_A_ &w->timer, 0);
2679 }
2680 }
2681 }
2682}
2683
2684static void
2685infy_cb (EV_P_ ev_io *w, int revents)
2686{
2687 char buf [EV_INOTIFY_BUFSIZE];
2688 struct inotify_event *ev = (struct inotify_event *)buf;
2689 int ofs;
2690 int len = read (fs_fd, buf, sizeof (buf));
2691
2692 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2693 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2694}
2695
2696inline_size void
2697check_2625 (EV_P)
2698{
2699 /* kernels < 2.6.25 are borked
2700 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2701 */
2702 struct utsname buf;
2703 int major, minor, micro;
2704
2705 if (uname (&buf))
2706 return;
2707
2708 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2709 return;
2710
2711 if (major < 2
2712 || (major == 2 && minor < 6)
2713 || (major == 2 && minor == 6 && micro < 25))
2714 return;
2715
2716 fs_2625 = 1;
2717}
2718
2719inline_size void
2720infy_init (EV_P)
2721{
2722 if (fs_fd != -2)
2723 return;
2724
2725 fs_fd = -1;
2726
2727 check_2625 (EV_A);
2728
2729 fs_fd = inotify_init ();
2730
2731 if (fs_fd >= 0)
2732 {
2733 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2734 ev_set_priority (&fs_w, EV_MAXPRI);
2735 ev_io_start (EV_A_ &fs_w);
2736 }
2737}
2738
2739inline_size void
2740infy_fork (EV_P)
2741{
2742 int slot;
2743
2744 if (fs_fd < 0)
2745 return;
2746
2747 close (fs_fd);
2748 fs_fd = inotify_init ();
2749
2750 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2751 {
2752 WL w_ = fs_hash [slot].head;
2753 fs_hash [slot].head = 0;
2754
2755 while (w_)
2756 {
2757 ev_stat *w = (ev_stat *)w_;
2758 w_ = w_->next; /* lets us add this watcher */
2759
2760 w->wd = -1;
2761
2762 if (fs_fd >= 0)
2763 infy_add (EV_A_ w); /* re-add, no matter what */
2764 else
2765 ev_timer_again (EV_A_ &w->timer);
2766 }
2767 }
2768}
2769
2770#endif
2771
2772#ifdef _WIN32
2773# define EV_LSTAT(p,b) _stati64 (p, b)
2774#else
2775# define EV_LSTAT(p,b) lstat (p, b)
2776#endif
2777
2778void
2779ev_stat_stat (EV_P_ ev_stat *w)
2780{
2781 if (lstat (w->path, &w->attr) < 0)
2782 w->attr.st_nlink = 0;
2783 else if (!w->attr.st_nlink)
2784 w->attr.st_nlink = 1;
2785}
2786
2787static void noinline
2788stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2789{
2790 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2791
2792 /* we copy this here each the time so that */
2793 /* prev has the old value when the callback gets invoked */
2794 w->prev = w->attr;
2795 ev_stat_stat (EV_A_ w);
2796
2797 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2798 if (
2799 w->prev.st_dev != w->attr.st_dev
2800 || w->prev.st_ino != w->attr.st_ino
2801 || w->prev.st_mode != w->attr.st_mode
2802 || w->prev.st_nlink != w->attr.st_nlink
2803 || w->prev.st_uid != w->attr.st_uid
2804 || w->prev.st_gid != w->attr.st_gid
2805 || w->prev.st_rdev != w->attr.st_rdev
2806 || w->prev.st_size != w->attr.st_size
2807 || w->prev.st_atime != w->attr.st_atime
2808 || w->prev.st_mtime != w->attr.st_mtime
2809 || w->prev.st_ctime != w->attr.st_ctime
2810 ) {
2811 #if EV_USE_INOTIFY
2812 if (fs_fd >= 0)
2813 {
2814 infy_del (EV_A_ w);
2815 infy_add (EV_A_ w);
2816 ev_stat_stat (EV_A_ w); /* avoid race... */
2817 }
2818 #endif
2819
2820 ev_feed_event (EV_A_ w, EV_STAT);
2821 }
2822}
2823
2824void
2825ev_stat_start (EV_P_ ev_stat *w)
2826{
2827 if (expect_false (ev_is_active (w)))
2828 return;
2829
2830 ev_stat_stat (EV_A_ w);
2831
2832 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2833 w->interval = MIN_STAT_INTERVAL;
2834
2835 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2836 ev_set_priority (&w->timer, ev_priority (w));
2837
2838#if EV_USE_INOTIFY
2839 infy_init (EV_A);
2840
2841 if (fs_fd >= 0)
2842 infy_add (EV_A_ w);
2843 else
2844#endif
2845 ev_timer_again (EV_A_ &w->timer);
2846
2847 ev_start (EV_A_ (W)w, 1);
2848
2849 EV_FREQUENT_CHECK;
2850}
2851
2852void
2853ev_stat_stop (EV_P_ ev_stat *w)
2854{
2855 clear_pending (EV_A_ (W)w);
2856 if (expect_false (!ev_is_active (w)))
2857 return;
2858
2859 EV_FREQUENT_CHECK;
2860
2861#if EV_USE_INOTIFY
2862 infy_del (EV_A_ w);
2863#endif
2864 ev_timer_stop (EV_A_ &w->timer);
2865
2866 ev_stop (EV_A_ (W)w);
2867
2868 EV_FREQUENT_CHECK;
2869}
2870#endif
2871
2872#if EV_IDLE_ENABLE
2873void
2874ev_idle_start (EV_P_ ev_idle *w)
2875{
2876 if (expect_false (ev_is_active (w)))
2877 return;
2878
2879 pri_adjust (EV_A_ (W)w);
2880
2881 EV_FREQUENT_CHECK;
2882
2883 {
2884 int active = ++idlecnt [ABSPRI (w)];
2885
2886 ++idleall;
2887 ev_start (EV_A_ (W)w, active);
2888
2889 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2890 idles [ABSPRI (w)][active - 1] = w;
2891 }
2892
2893 EV_FREQUENT_CHECK;
2894}
2895
2896void
2897ev_idle_stop (EV_P_ ev_idle *w)
2898{
2899 clear_pending (EV_A_ (W)w);
2900 if (expect_false (!ev_is_active (w)))
2901 return;
2902
2903 EV_FREQUENT_CHECK;
2904
2905 {
2906 int active = ev_active (w);
2907
2908 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2909 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2910
2911 ev_stop (EV_A_ (W)w);
2912 --idleall;
2913 }
2914
2915 EV_FREQUENT_CHECK;
2916}
2917#endif
2918
2919void
2920ev_prepare_start (EV_P_ ev_prepare *w)
2921{
2922 if (expect_false (ev_is_active (w)))
2923 return;
2924
2925 EV_FREQUENT_CHECK;
2926
2927 ev_start (EV_A_ (W)w, ++preparecnt);
2928 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2929 prepares [preparecnt - 1] = w;
2930
2931 EV_FREQUENT_CHECK;
2932}
2933
2934void
2935ev_prepare_stop (EV_P_ ev_prepare *w)
2936{
2937 clear_pending (EV_A_ (W)w);
2938 if (expect_false (!ev_is_active (w)))
2939 return;
2940
2941 EV_FREQUENT_CHECK;
2942
2943 {
2944 int active = ev_active (w);
2945
2946 prepares [active - 1] = prepares [--preparecnt];
2947 ev_active (prepares [active - 1]) = active;
2948 }
2949
2950 ev_stop (EV_A_ (W)w);
2951
2952 EV_FREQUENT_CHECK;
2953}
2954
2955void
2956ev_check_start (EV_P_ ev_check *w)
2957{
2958 if (expect_false (ev_is_active (w)))
2959 return;
2960
2961 EV_FREQUENT_CHECK;
2962
2963 ev_start (EV_A_ (W)w, ++checkcnt);
2964 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2965 checks [checkcnt - 1] = w;
2966
2967 EV_FREQUENT_CHECK;
2968}
2969
2970void
2971ev_check_stop (EV_P_ ev_check *w)
2972{
2973 clear_pending (EV_A_ (W)w);
2974 if (expect_false (!ev_is_active (w)))
2975 return;
2976
2977 EV_FREQUENT_CHECK;
2978
2979 {
2980 int active = ev_active (w);
2981
2982 checks [active - 1] = checks [--checkcnt];
2983 ev_active (checks [active - 1]) = active;
2984 }
2985
2986 ev_stop (EV_A_ (W)w);
2987
2988 EV_FREQUENT_CHECK;
2989}
2990
2991#if EV_EMBED_ENABLE
2992void noinline
2993ev_embed_sweep (EV_P_ ev_embed *w)
2994{
2995 ev_loop (w->other, EVLOOP_NONBLOCK);
2996}
2997
2998static void
2999embed_io_cb (EV_P_ ev_io *io, int revents)
3000{
3001 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3002
3003 if (ev_cb (w))
3004 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3005 else
3006 ev_loop (w->other, EVLOOP_NONBLOCK);
3007}
3008
3009static void
3010embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3011{
3012 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3013
3014 {
3015 struct ev_loop *loop = w->other;
3016
3017 while (fdchangecnt)
3018 {
3019 fd_reify (EV_A);
3020 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3021 }
3022 }
3023}
3024
3025static void
3026embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3027{
3028 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3029
3030 ev_embed_stop (EV_A_ w);
3031
3032 {
3033 struct ev_loop *loop = w->other;
3034
3035 ev_loop_fork (EV_A);
3036 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3037 }
3038
3039 ev_embed_start (EV_A_ w);
3040}
3041
3042#if 0
3043static void
3044embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3045{
3046 ev_idle_stop (EV_A_ idle);
3047}
3048#endif
3049
3050void
3051ev_embed_start (EV_P_ ev_embed *w)
3052{
3053 if (expect_false (ev_is_active (w)))
3054 return;
3055
3056 {
3057 struct ev_loop *loop = w->other;
3058 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3059 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3060 }
3061
3062 EV_FREQUENT_CHECK;
3063
3064 ev_set_priority (&w->io, ev_priority (w));
3065 ev_io_start (EV_A_ &w->io);
3066
3067 ev_prepare_init (&w->prepare, embed_prepare_cb);
3068 ev_set_priority (&w->prepare, EV_MINPRI);
3069 ev_prepare_start (EV_A_ &w->prepare);
3070
3071 ev_fork_init (&w->fork, embed_fork_cb);
3072 ev_fork_start (EV_A_ &w->fork);
3073
3074 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3075
3076 ev_start (EV_A_ (W)w, 1);
3077
3078 EV_FREQUENT_CHECK;
3079}
3080
3081void
3082ev_embed_stop (EV_P_ ev_embed *w)
3083{
3084 clear_pending (EV_A_ (W)w);
3085 if (expect_false (!ev_is_active (w)))
3086 return;
3087
3088 EV_FREQUENT_CHECK;
3089
3090 ev_io_stop (EV_A_ &w->io);
3091 ev_prepare_stop (EV_A_ &w->prepare);
3092 ev_fork_stop (EV_A_ &w->fork);
3093
3094 EV_FREQUENT_CHECK;
3095}
3096#endif
3097
3098#if EV_FORK_ENABLE
3099void
3100ev_fork_start (EV_P_ ev_fork *w)
3101{
3102 if (expect_false (ev_is_active (w)))
3103 return;
3104
3105 EV_FREQUENT_CHECK;
3106
3107 ev_start (EV_A_ (W)w, ++forkcnt);
3108 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3109 forks [forkcnt - 1] = w;
3110
3111 EV_FREQUENT_CHECK;
3112}
3113
3114void
3115ev_fork_stop (EV_P_ ev_fork *w)
3116{
3117 clear_pending (EV_A_ (W)w);
3118 if (expect_false (!ev_is_active (w)))
3119 return;
3120
3121 EV_FREQUENT_CHECK;
3122
3123 {
3124 int active = ev_active (w);
3125
3126 forks [active - 1] = forks [--forkcnt];
3127 ev_active (forks [active - 1]) = active;
3128 }
3129
3130 ev_stop (EV_A_ (W)w);
3131
3132 EV_FREQUENT_CHECK;
3133}
3134#endif
3135
3136#if EV_ASYNC_ENABLE
3137void
3138ev_async_start (EV_P_ ev_async *w)
3139{
3140 if (expect_false (ev_is_active (w)))
3141 return;
3142
3143 evpipe_init (EV_A);
3144
3145 EV_FREQUENT_CHECK;
3146
3147 ev_start (EV_A_ (W)w, ++asynccnt);
3148 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3149 asyncs [asynccnt - 1] = w;
3150
3151 EV_FREQUENT_CHECK;
3152}
3153
3154void
3155ev_async_stop (EV_P_ ev_async *w)
3156{
3157 clear_pending (EV_A_ (W)w);
3158 if (expect_false (!ev_is_active (w)))
3159 return;
3160
3161 EV_FREQUENT_CHECK;
3162
3163 {
3164 int active = ev_active (w);
3165
3166 asyncs [active - 1] = asyncs [--asynccnt];
3167 ev_active (asyncs [active - 1]) = active;
3168 }
3169
3170 ev_stop (EV_A_ (W)w);
3171
3172 EV_FREQUENT_CHECK;
3173}
3174
3175void
3176ev_async_send (EV_P_ ev_async *w)
3177{
3178 w->sent = 1;
3179 evpipe_write (EV_A_ &gotasync);
3180}
3181#endif
1462 3182
1463/*****************************************************************************/ 3183/*****************************************************************************/
1464 3184
1465struct ev_once 3185struct ev_once
1466{ 3186{
1467 struct ev_io io; 3187 ev_io io;
1468 struct ev_timer to; 3188 ev_timer to;
1469 void (*cb)(int revents, void *arg); 3189 void (*cb)(int revents, void *arg);
1470 void *arg; 3190 void *arg;
1471}; 3191};
1472 3192
1473static void 3193static void
1474once_cb (EV_P_ struct ev_once *once, int revents) 3194once_cb (EV_P_ struct ev_once *once, int revents)
1475{ 3195{
1476 void (*cb)(int revents, void *arg) = once->cb; 3196 void (*cb)(int revents, void *arg) = once->cb;
1477 void *arg = once->arg; 3197 void *arg = once->arg;
1478 3198
1479 ev_io_stop (EV_A_ &once->io); 3199 ev_io_stop (EV_A_ &once->io);
1480 ev_timer_stop (EV_A_ &once->to); 3200 ev_timer_stop (EV_A_ &once->to);
1481 ev_free (once); 3201 ev_free (once);
1482 3202
1483 cb (revents, arg); 3203 cb (revents, arg);
1484} 3204}
1485 3205
1486static void 3206static void
1487once_cb_io (EV_P_ struct ev_io *w, int revents) 3207once_cb_io (EV_P_ ev_io *w, int revents)
1488{ 3208{
1489 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3209 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3210
3211 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1490} 3212}
1491 3213
1492static void 3214static void
1493once_cb_to (EV_P_ struct ev_timer *w, int revents) 3215once_cb_to (EV_P_ ev_timer *w, int revents)
1494{ 3216{
1495 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3217 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3218
3219 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1496} 3220}
1497 3221
1498void 3222void
1499ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3223ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1500{ 3224{
1501 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3225 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1502 3226
1503 if (!once) 3227 if (expect_false (!once))
3228 {
1504 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3229 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1505 else 3230 return;
1506 { 3231 }
3232
1507 once->cb = cb; 3233 once->cb = cb;
1508 once->arg = arg; 3234 once->arg = arg;
1509 3235
1510 ev_watcher_init (&once->io, once_cb_io); 3236 ev_init (&once->io, once_cb_io);
1511 if (fd >= 0) 3237 if (fd >= 0)
3238 {
3239 ev_io_set (&once->io, fd, events);
3240 ev_io_start (EV_A_ &once->io);
3241 }
3242
3243 ev_init (&once->to, once_cb_to);
3244 if (timeout >= 0.)
3245 {
3246 ev_timer_set (&once->to, timeout, 0.);
3247 ev_timer_start (EV_A_ &once->to);
3248 }
3249}
3250
3251/*****************************************************************************/
3252
3253#if EV_WALK_ENABLE
3254void
3255ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3256{
3257 int i, j;
3258 ev_watcher_list *wl, *wn;
3259
3260 if (types & (EV_IO | EV_EMBED))
3261 for (i = 0; i < anfdmax; ++i)
3262 for (wl = anfds [i].head; wl; )
1512 { 3263 {
1513 ev_io_set (&once->io, fd, events); 3264 wn = wl->next;
1514 ev_io_start (EV_A_ &once->io); 3265
3266#if EV_EMBED_ENABLE
3267 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3268 {
3269 if (types & EV_EMBED)
3270 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3271 }
3272 else
3273#endif
3274#if EV_USE_INOTIFY
3275 if (ev_cb ((ev_io *)wl) == infy_cb)
3276 ;
3277 else
3278#endif
3279 if ((ev_io *)wl != &pipe_w)
3280 if (types & EV_IO)
3281 cb (EV_A_ EV_IO, wl);
3282
3283 wl = wn;
1515 } 3284 }
1516 3285
1517 ev_watcher_init (&once->to, once_cb_to); 3286 if (types & (EV_TIMER | EV_STAT))
1518 if (timeout >= 0.) 3287 for (i = timercnt + HEAP0; i-- > HEAP0; )
3288#if EV_STAT_ENABLE
3289 /*TODO: timer is not always active*/
3290 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1519 { 3291 {
1520 ev_timer_set (&once->to, timeout, 0.); 3292 if (types & EV_STAT)
1521 ev_timer_start (EV_A_ &once->to); 3293 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1522 } 3294 }
1523 } 3295 else
1524} 3296#endif
3297 if (types & EV_TIMER)
3298 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1525 3299
3300#if EV_PERIODIC_ENABLE
3301 if (types & EV_PERIODIC)
3302 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3303 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3304#endif
3305
3306#if EV_IDLE_ENABLE
3307 if (types & EV_IDLE)
3308 for (j = NUMPRI; i--; )
3309 for (i = idlecnt [j]; i--; )
3310 cb (EV_A_ EV_IDLE, idles [j][i]);
3311#endif
3312
3313#if EV_FORK_ENABLE
3314 if (types & EV_FORK)
3315 for (i = forkcnt; i--; )
3316 if (ev_cb (forks [i]) != embed_fork_cb)
3317 cb (EV_A_ EV_FORK, forks [i]);
3318#endif
3319
3320#if EV_ASYNC_ENABLE
3321 if (types & EV_ASYNC)
3322 for (i = asynccnt; i--; )
3323 cb (EV_A_ EV_ASYNC, asyncs [i]);
3324#endif
3325
3326 if (types & EV_PREPARE)
3327 for (i = preparecnt; i--; )
3328#if EV_EMBED_ENABLE
3329 if (ev_cb (prepares [i]) != embed_prepare_cb)
3330#endif
3331 cb (EV_A_ EV_PREPARE, prepares [i]);
3332
3333 if (types & EV_CHECK)
3334 for (i = checkcnt; i--; )
3335 cb (EV_A_ EV_CHECK, checks [i]);
3336
3337 if (types & EV_SIGNAL)
3338 for (i = 0; i < signalmax; ++i)
3339 for (wl = signals [i].head; wl; )
3340 {
3341 wn = wl->next;
3342 cb (EV_A_ EV_SIGNAL, wl);
3343 wl = wn;
3344 }
3345
3346 if (types & EV_CHILD)
3347 for (i = EV_PID_HASHSIZE; i--; )
3348 for (wl = childs [i]; wl; )
3349 {
3350 wn = wl->next;
3351 cb (EV_A_ EV_CHILD, wl);
3352 wl = wn;
3353 }
3354/* EV_STAT 0x00001000 /* stat data changed */
3355/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3356}
3357#endif
3358
3359#if EV_MULTIPLICITY
3360 #include "ev_wrap.h"
3361#endif
3362
3363#ifdef __cplusplus
3364}
3365#endif
3366

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines