ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.211 by root, Tue Feb 19 17:09:28 2008 UTC vs.
Revision 1.294 by root, Wed Jul 8 02:46:05 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
49# endif 50# endif
50 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
51# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
54# endif 69# endif
55# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
57# endif 72# endif
58# else 73# else
59# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
61# endif 76# endif
118# else 133# else
119# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
120# endif 135# endif
121# endif 136# endif
122 137
138# ifndef EV_USE_EVENTFD
139# if HAVE_EVENTFD
140# define EV_USE_EVENTFD 1
141# else
142# define EV_USE_EVENTFD 0
143# endif
144# endif
145
123#endif 146#endif
124 147
125#include <math.h> 148#include <math.h>
126#include <stdlib.h> 149#include <stdlib.h>
127#include <fcntl.h> 150#include <fcntl.h>
145#ifndef _WIN32 168#ifndef _WIN32
146# include <sys/time.h> 169# include <sys/time.h>
147# include <sys/wait.h> 170# include <sys/wait.h>
148# include <unistd.h> 171# include <unistd.h>
149#else 172#else
173# include <io.h>
150# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
151# include <windows.h> 175# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
154# endif 178# endif
155#endif 179#endif
156 180
157/**/ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
158 190
159#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
160# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
161#endif 197#endif
162 198
163#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 201#endif
166 202
167#ifndef EV_USE_NANOSLEEP 203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
168# define EV_USE_NANOSLEEP 0 207# define EV_USE_NANOSLEEP 0
208# endif
169#endif 209#endif
170 210
171#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
173#endif 213#endif
179# define EV_USE_POLL 1 219# define EV_USE_POLL 1
180# endif 220# endif
181#endif 221#endif
182 222
183#ifndef EV_USE_EPOLL 223#ifndef EV_USE_EPOLL
224# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225# define EV_USE_EPOLL 1
226# else
184# define EV_USE_EPOLL 0 227# define EV_USE_EPOLL 0
228# endif
185#endif 229#endif
186 230
187#ifndef EV_USE_KQUEUE 231#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 232# define EV_USE_KQUEUE 0
189#endif 233#endif
191#ifndef EV_USE_PORT 235#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 236# define EV_USE_PORT 0
193#endif 237#endif
194 238
195#ifndef EV_USE_INOTIFY 239#ifndef EV_USE_INOTIFY
240# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
241# define EV_USE_INOTIFY 1
242# else
196# define EV_USE_INOTIFY 0 243# define EV_USE_INOTIFY 0
244# endif
197#endif 245#endif
198 246
199#ifndef EV_PID_HASHSIZE 247#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 248# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 249# define EV_PID_HASHSIZE 1
210# else 258# else
211# define EV_INOTIFY_HASHSIZE 16 259# define EV_INOTIFY_HASHSIZE 16
212# endif 260# endif
213#endif 261#endif
214 262
215/**/ 263#ifndef EV_USE_EVENTFD
264# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265# define EV_USE_EVENTFD 1
266# else
267# define EV_USE_EVENTFD 0
268# endif
269#endif
270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 304
217#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
220#endif 308#endif
234# include <sys/select.h> 322# include <sys/select.h>
235# endif 323# endif
236#endif 324#endif
237 325
238#if EV_USE_INOTIFY 326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
239# include <sys/inotify.h> 329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
240#endif 335#endif
241 336
242#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 338# include <winsock.h>
244#endif 339#endif
245 340
341#if EV_USE_EVENTFD
342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343# include <stdint.h>
344# ifdef __cplusplus
345extern "C" {
346# endif
347int eventfd (unsigned int initval, int flags);
348# ifdef __cplusplus
349}
350# endif
351#endif
352
246/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
247 360
248/* 361/*
249 * This is used to avoid floating point rounding problems. 362 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics 363 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding 364 * to ensure progress, time-wise, even when rounding
263# define expect(expr,value) __builtin_expect ((expr),(value)) 376# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 377# define noinline __attribute__ ((noinline))
265#else 378#else
266# define expect(expr,value) (expr) 379# define expect(expr,value) (expr)
267# define noinline 380# define noinline
268# if __STDC_VERSION__ < 199901L 381# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 382# define inline
270# endif 383# endif
271#endif 384#endif
272 385
273#define expect_false(expr) expect ((expr) != 0, 0) 386#define expect_false(expr) expect ((expr) != 0, 0)
288 401
289typedef ev_watcher *W; 402typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 403typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 404typedef ev_watcher_time *WT;
292 405
293#if EV_USE_MONOTONIC 406#define ev_active(w) ((W)(w))->active
407#define ev_at(w) ((WT)(w))->at
408
409#if EV_USE_REALTIME
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 410/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 411/* giving it a reasonably high chance of working on typical architetcures */
412static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
413#endif
414
415#if EV_USE_MONOTONIC
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 416static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif 417#endif
298 418
299#ifdef _WIN32 419#ifdef _WIN32
300# include "ev_win32.c" 420# include "ev_win32.c"
309{ 429{
310 syserr_cb = cb; 430 syserr_cb = cb;
311} 431}
312 432
313static void noinline 433static void noinline
314syserr (const char *msg) 434ev_syserr (const char *msg)
315{ 435{
316 if (!msg) 436 if (!msg)
317 msg = "(libev) system error"; 437 msg = "(libev) system error";
318 438
319 if (syserr_cb) 439 if (syserr_cb)
323 perror (msg); 443 perror (msg);
324 abort (); 444 abort ();
325 } 445 }
326} 446}
327 447
448static void *
449ev_realloc_emul (void *ptr, long size)
450{
451 /* some systems, notably openbsd and darwin, fail to properly
452 * implement realloc (x, 0) (as required by both ansi c-98 and
453 * the single unix specification, so work around them here.
454 */
455
456 if (size)
457 return realloc (ptr, size);
458
459 free (ptr);
460 return 0;
461}
462
328static void *(*alloc)(void *ptr, long size); 463static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 464
330void 465void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 466ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 467{
333 alloc = cb; 468 alloc = cb;
334} 469}
335 470
336inline_speed void * 471inline_speed void *
337ev_realloc (void *ptr, long size) 472ev_realloc (void *ptr, long size)
338{ 473{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 474 ptr = alloc (ptr, size);
340 475
341 if (!ptr && size) 476 if (!ptr && size)
342 { 477 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 478 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 479 abort ();
350#define ev_malloc(size) ev_realloc (0, (size)) 485#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 486#define ev_free(ptr) ev_realloc ((ptr), 0)
352 487
353/*****************************************************************************/ 488/*****************************************************************************/
354 489
490/* file descriptor info structure */
355typedef struct 491typedef struct
356{ 492{
357 WL head; 493 WL head;
358 unsigned char events; 494 unsigned char events; /* the events watched for */
495 unsigned char reify; /* flag set when this ANFD needs reification */
496 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
359 unsigned char reify; 497 unsigned char unused;
498#if EV_USE_EPOLL
499 unsigned int egen; /* generation counter to counter epoll bugs */
500#endif
360#if EV_SELECT_IS_WINSOCKET 501#if EV_SELECT_IS_WINSOCKET
361 SOCKET handle; 502 SOCKET handle;
362#endif 503#endif
363} ANFD; 504} ANFD;
364 505
506/* stores the pending event set for a given watcher */
365typedef struct 507typedef struct
366{ 508{
367 W w; 509 W w;
368 int events; 510 int events; /* the pending event set for the given watcher */
369} ANPENDING; 511} ANPENDING;
370 512
371#if EV_USE_INOTIFY 513#if EV_USE_INOTIFY
514/* hash table entry per inotify-id */
372typedef struct 515typedef struct
373{ 516{
374 WL head; 517 WL head;
375} ANFS; 518} ANFS;
519#endif
520
521/* Heap Entry */
522#if EV_HEAP_CACHE_AT
523 /* a heap element */
524 typedef struct {
525 ev_tstamp at;
526 WT w;
527 } ANHE;
528
529 #define ANHE_w(he) (he).w /* access watcher, read-write */
530 #define ANHE_at(he) (he).at /* access cached at, read-only */
531 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
532#else
533 /* a heap element */
534 typedef WT ANHE;
535
536 #define ANHE_w(he) (he)
537 #define ANHE_at(he) (he)->at
538 #define ANHE_at_cache(he)
376#endif 539#endif
377 540
378#if EV_MULTIPLICITY 541#if EV_MULTIPLICITY
379 542
380 struct ev_loop 543 struct ev_loop
401 564
402#endif 565#endif
403 566
404/*****************************************************************************/ 567/*****************************************************************************/
405 568
569#ifndef EV_HAVE_EV_TIME
406ev_tstamp 570ev_tstamp
407ev_time (void) 571ev_time (void)
408{ 572{
409#if EV_USE_REALTIME 573#if EV_USE_REALTIME
574 if (expect_true (have_realtime))
575 {
410 struct timespec ts; 576 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 577 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 578 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 579 }
580#endif
581
414 struct timeval tv; 582 struct timeval tv;
415 gettimeofday (&tv, 0); 583 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 584 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 585}
586#endif
419 587
420ev_tstamp inline_size 588inline_size ev_tstamp
421get_clock (void) 589get_clock (void)
422{ 590{
423#if EV_USE_MONOTONIC 591#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 592 if (expect_true (have_monotonic))
425 { 593 {
451 ts.tv_sec = (time_t)delay; 619 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 620 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 621
454 nanosleep (&ts, 0); 622 nanosleep (&ts, 0);
455#elif defined(_WIN32) 623#elif defined(_WIN32)
456 Sleep (delay * 1e3); 624 Sleep ((unsigned long)(delay * 1e3));
457#else 625#else
458 struct timeval tv; 626 struct timeval tv;
459 627
460 tv.tv_sec = (time_t)delay; 628 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 629 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462 630
631 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
632 /* somehting not guaranteed by newer posix versions, but guaranteed */
633 /* by older ones */
463 select (0, 0, 0, 0, &tv); 634 select (0, 0, 0, 0, &tv);
464#endif 635#endif
465 } 636 }
466} 637}
467 638
468/*****************************************************************************/ 639/*****************************************************************************/
469 640
470int inline_size 641#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
642
643/* find a suitable new size for the given array, */
644/* hopefully by rounding to a ncie-to-malloc size */
645inline_size int
471array_nextsize (int elem, int cur, int cnt) 646array_nextsize (int elem, int cur, int cnt)
472{ 647{
473 int ncur = cur + 1; 648 int ncur = cur + 1;
474 649
475 do 650 do
476 ncur <<= 1; 651 ncur <<= 1;
477 while (cnt > ncur); 652 while (cnt > ncur);
478 653
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 654 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 655 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 656 {
482 ncur *= elem; 657 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 658 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 659 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 660 ncur /= elem;
486 } 661 }
487 662
488 return ncur; 663 return ncur;
492array_realloc (int elem, void *base, int *cur, int cnt) 667array_realloc (int elem, void *base, int *cur, int cnt)
493{ 668{
494 *cur = array_nextsize (elem, *cur, cnt); 669 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 670 return ev_realloc (base, elem * *cur);
496} 671}
672
673#define array_init_zero(base,count) \
674 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 675
498#define array_needsize(type,base,cur,cnt,init) \ 676#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 677 if (expect_false ((cnt) > (cur))) \
500 { \ 678 { \
501 int ocur_ = (cur); \ 679 int ocur_ = (cur); \
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 691 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 692 }
515#endif 693#endif
516 694
517#define array_free(stem, idx) \ 695#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 696 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 697
520/*****************************************************************************/ 698/*****************************************************************************/
699
700/* dummy callback for pending events */
701static void noinline
702pendingcb (EV_P_ ev_prepare *w, int revents)
703{
704}
521 705
522void noinline 706void noinline
523ev_feed_event (EV_P_ void *w, int revents) 707ev_feed_event (EV_P_ void *w, int revents)
524{ 708{
525 W w_ = (W)w; 709 W w_ = (W)w;
534 pendings [pri][w_->pending - 1].w = w_; 718 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 719 pendings [pri][w_->pending - 1].events = revents;
536 } 720 }
537} 721}
538 722
539void inline_speed 723inline_speed void
724feed_reverse (EV_P_ W w)
725{
726 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
727 rfeeds [rfeedcnt++] = w;
728}
729
730inline_size void
731feed_reverse_done (EV_P_ int revents)
732{
733 do
734 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
735 while (rfeedcnt);
736}
737
738inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 739queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 740{
542 int i; 741 int i;
543 742
544 for (i = 0; i < eventcnt; ++i) 743 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 744 ev_feed_event (EV_A_ events [i], type);
546} 745}
547 746
548/*****************************************************************************/ 747/*****************************************************************************/
549 748
550void inline_size 749inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 750fd_event (EV_P_ int fd, int revents)
565{ 751{
566 ANFD *anfd = anfds + fd; 752 ANFD *anfd = anfds + fd;
567 ev_io *w; 753 ev_io *w;
568 754
580{ 766{
581 if (fd >= 0 && fd < anfdmax) 767 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 768 fd_event (EV_A_ fd, revents);
583} 769}
584 770
585void inline_size 771/* make sure the external fd watch events are in-sync */
772/* with the kernel/libev internal state */
773inline_size void
586fd_reify (EV_P) 774fd_reify (EV_P)
587{ 775{
588 int i; 776 int i;
589 777
590 for (i = 0; i < fdchangecnt; ++i) 778 for (i = 0; i < fdchangecnt; ++i)
599 events |= (unsigned char)w->events; 787 events |= (unsigned char)w->events;
600 788
601#if EV_SELECT_IS_WINSOCKET 789#if EV_SELECT_IS_WINSOCKET
602 if (events) 790 if (events)
603 { 791 {
604 unsigned long argp; 792 unsigned long arg;
605 #ifdef EV_FD_TO_WIN32_HANDLE 793 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 794 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else 795 #else
608 anfd->handle = _get_osfhandle (fd); 796 anfd->handle = _get_osfhandle (fd);
609 #endif 797 #endif
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 798 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
611 } 799 }
612#endif 800#endif
613 801
614 { 802 {
615 unsigned char o_events = anfd->events; 803 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify; 804 unsigned char o_reify = anfd->reify;
617 805
618 anfd->reify = 0; 806 anfd->reify = 0;
619 anfd->events = events; 807 anfd->events = events;
620 808
621 if (o_events != events || o_reify & EV_IOFDSET) 809 if (o_events != events || o_reify & EV__IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events); 810 backend_modify (EV_A_ fd, o_events, events);
623 } 811 }
624 } 812 }
625 813
626 fdchangecnt = 0; 814 fdchangecnt = 0;
627} 815}
628 816
629void inline_size 817/* something about the given fd changed */
818inline_size void
630fd_change (EV_P_ int fd, int flags) 819fd_change (EV_P_ int fd, int flags)
631{ 820{
632 unsigned char reify = anfds [fd].reify; 821 unsigned char reify = anfds [fd].reify;
633 anfds [fd].reify |= flags; 822 anfds [fd].reify |= flags;
634 823
638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 827 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
639 fdchanges [fdchangecnt - 1] = fd; 828 fdchanges [fdchangecnt - 1] = fd;
640 } 829 }
641} 830}
642 831
643void inline_speed 832/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
833inline_speed void
644fd_kill (EV_P_ int fd) 834fd_kill (EV_P_ int fd)
645{ 835{
646 ev_io *w; 836 ev_io *w;
647 837
648 while ((w = (ev_io *)anfds [fd].head)) 838 while ((w = (ev_io *)anfds [fd].head))
650 ev_io_stop (EV_A_ w); 840 ev_io_stop (EV_A_ w);
651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 841 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
652 } 842 }
653} 843}
654 844
655int inline_size 845/* check whether the given fd is atcually valid, for error recovery */
846inline_size int
656fd_valid (int fd) 847fd_valid (int fd)
657{ 848{
658#ifdef _WIN32 849#ifdef _WIN32
659 return _get_osfhandle (fd) != -1; 850 return _get_osfhandle (fd) != -1;
660#else 851#else
668{ 859{
669 int fd; 860 int fd;
670 861
671 for (fd = 0; fd < anfdmax; ++fd) 862 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 863 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 864 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 865 fd_kill (EV_A_ fd);
675} 866}
676 867
677/* called on ENOMEM in select/poll to kill some fds and retry */ 868/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 869static void noinline
696 887
697 for (fd = 0; fd < anfdmax; ++fd) 888 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 889 if (anfds [fd].events)
699 { 890 {
700 anfds [fd].events = 0; 891 anfds [fd].events = 0;
892 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 893 fd_change (EV_A_ fd, EV__IOFDSET | 1);
702 } 894 }
703} 895}
704 896
705/*****************************************************************************/ 897/*****************************************************************************/
706 898
707void inline_speed 899/*
708upheap (WT *heap, int k) 900 * the heap functions want a real array index. array index 0 uis guaranteed to not
709{ 901 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
710 WT w = heap [k]; 902 * the branching factor of the d-tree.
903 */
711 904
712 while (k) 905/*
713 { 906 * at the moment we allow libev the luxury of two heaps,
714 int p = (k - 1) >> 1; 907 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
908 * which is more cache-efficient.
909 * the difference is about 5% with 50000+ watchers.
910 */
911#if EV_USE_4HEAP
715 912
716 if (heap [p]->at <= w->at) 913#define DHEAP 4
914#define HEAP0 (DHEAP - 1) /* index of first element in heap */
915#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
916#define UPHEAP_DONE(p,k) ((p) == (k))
917
918/* away from the root */
919inline_speed void
920downheap (ANHE *heap, int N, int k)
921{
922 ANHE he = heap [k];
923 ANHE *E = heap + N + HEAP0;
924
925 for (;;)
926 {
927 ev_tstamp minat;
928 ANHE *minpos;
929 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
930
931 /* find minimum child */
932 if (expect_true (pos + DHEAP - 1 < E))
933 {
934 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
935 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
936 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
937 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
938 }
939 else if (pos < E)
940 {
941 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
942 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
943 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
944 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
945 }
946 else
717 break; 947 break;
718 948
949 if (ANHE_at (he) <= minat)
950 break;
951
952 heap [k] = *minpos;
953 ev_active (ANHE_w (*minpos)) = k;
954
955 k = minpos - heap;
956 }
957
958 heap [k] = he;
959 ev_active (ANHE_w (he)) = k;
960}
961
962#else /* 4HEAP */
963
964#define HEAP0 1
965#define HPARENT(k) ((k) >> 1)
966#define UPHEAP_DONE(p,k) (!(p))
967
968/* away from the root */
969inline_speed void
970downheap (ANHE *heap, int N, int k)
971{
972 ANHE he = heap [k];
973
974 for (;;)
975 {
976 int c = k << 1;
977
978 if (c > N + HEAP0 - 1)
979 break;
980
981 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
982 ? 1 : 0;
983
984 if (ANHE_at (he) <= ANHE_at (heap [c]))
985 break;
986
987 heap [k] = heap [c];
988 ev_active (ANHE_w (heap [k])) = k;
989
990 k = c;
991 }
992
993 heap [k] = he;
994 ev_active (ANHE_w (he)) = k;
995}
996#endif
997
998/* towards the root */
999inline_speed void
1000upheap (ANHE *heap, int k)
1001{
1002 ANHE he = heap [k];
1003
1004 for (;;)
1005 {
1006 int p = HPARENT (k);
1007
1008 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1009 break;
1010
719 heap [k] = heap [p]; 1011 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1; 1012 ev_active (ANHE_w (heap [k])) = k;
721 k = p; 1013 k = p;
722 } 1014 }
723 1015
724 heap [k] = w; 1016 heap [k] = he;
725 ((W)heap [k])->active = k + 1; 1017 ev_active (ANHE_w (he)) = k;
726} 1018}
727 1019
728void inline_speed 1020/* move an element suitably so it is in a correct place */
729downheap (WT *heap, int N, int k) 1021inline_size void
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754}
755
756void inline_size
757adjustheap (WT *heap, int N, int k) 1022adjustheap (ANHE *heap, int N, int k)
758{ 1023{
1024 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
759 upheap (heap, k); 1025 upheap (heap, k);
1026 else
760 downheap (heap, N, k); 1027 downheap (heap, N, k);
1028}
1029
1030/* rebuild the heap: this function is used only once and executed rarely */
1031inline_size void
1032reheap (ANHE *heap, int N)
1033{
1034 int i;
1035
1036 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1037 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1038 for (i = 0; i < N; ++i)
1039 upheap (heap, i + HEAP0);
761} 1040}
762 1041
763/*****************************************************************************/ 1042/*****************************************************************************/
764 1043
1044/* associate signal watchers to a signal signal */
765typedef struct 1045typedef struct
766{ 1046{
767 WL head; 1047 WL head;
768 EV_ATOMIC_T gotsig; 1048 EV_ATOMIC_T gotsig;
769} ANSIG; 1049} ANSIG;
771static ANSIG *signals; 1051static ANSIG *signals;
772static int signalmax; 1052static int signalmax;
773 1053
774static EV_ATOMIC_T gotsig; 1054static EV_ATOMIC_T gotsig;
775 1055
776void inline_size
777signals_init (ANSIG *base, int count)
778{
779 while (count--)
780 {
781 base->head = 0;
782 base->gotsig = 0;
783
784 ++base;
785 }
786}
787
788/*****************************************************************************/ 1056/*****************************************************************************/
789 1057
790void inline_speed 1058/* used to prepare libev internal fd's */
1059/* this is not fork-safe */
1060inline_speed void
791fd_intern (int fd) 1061fd_intern (int fd)
792{ 1062{
793#ifdef _WIN32 1063#ifdef _WIN32
794 int arg = 1; 1064 unsigned long arg = 1;
795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1065 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
796#else 1066#else
797 fcntl (fd, F_SETFD, FD_CLOEXEC); 1067 fcntl (fd, F_SETFD, FD_CLOEXEC);
798 fcntl (fd, F_SETFL, O_NONBLOCK); 1068 fcntl (fd, F_SETFL, O_NONBLOCK);
799#endif 1069#endif
800} 1070}
801 1071
802static void noinline 1072static void noinline
803evpipe_init (EV_P) 1073evpipe_init (EV_P)
804{ 1074{
805 if (!ev_is_active (&pipeev)) 1075 if (!ev_is_active (&pipe_w))
806 { 1076 {
1077#if EV_USE_EVENTFD
1078 if ((evfd = eventfd (0, 0)) >= 0)
1079 {
1080 evpipe [0] = -1;
1081 fd_intern (evfd);
1082 ev_io_set (&pipe_w, evfd, EV_READ);
1083 }
1084 else
1085#endif
1086 {
807 while (pipe (evpipe)) 1087 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 1088 ev_syserr ("(libev) error creating signal/async pipe");
809 1089
810 fd_intern (evpipe [0]); 1090 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 1091 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 1092 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1093 }
1094
814 ev_io_start (EV_A_ &pipeev); 1095 ev_io_start (EV_A_ &pipe_w);
815 ev_unref (EV_A); /* watcher should not keep loop alive */ 1096 ev_unref (EV_A); /* watcher should not keep loop alive */
816
817 /* in case we received the signal before we had the chance of installing a handler */
818 ev_feed_event (EV_A_ &pipeev, 0);
819 }
820}
821
822void inline_size
823evpipe_write (EV_P_ int sig, int async)
824{
825 if (!(gotasync || gotsig))
826 { 1097 }
1098}
1099
1100inline_size void
1101evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1102{
1103 if (!*flag)
1104 {
827 int old_errno = errno; /* save errno becaue write might clobber it */ 1105 int old_errno = errno; /* save errno because write might clobber it */
828 1106
829 if (sig) gotsig = 1; 1107 *flag = 1;
830 if (async) gotasync = 1;
831 1108
1109#if EV_USE_EVENTFD
1110 if (evfd >= 0)
1111 {
1112 uint64_t counter = 1;
1113 write (evfd, &counter, sizeof (uint64_t));
1114 }
1115 else
1116#endif
832 write (evpipe [1], &old_errno, 1); 1117 write (evpipe [1], &old_errno, 1);
833 1118
834 errno = old_errno; 1119 errno = old_errno;
835 } 1120 }
836} 1121}
837 1122
1123/* called whenever the libev signal pipe */
1124/* got some events (signal, async) */
838static void 1125static void
839pipecb (EV_P_ ev_io *iow, int revents) 1126pipecb (EV_P_ ev_io *iow, int revents)
840{ 1127{
1128#if EV_USE_EVENTFD
1129 if (evfd >= 0)
841 { 1130 {
842 int dummy; 1131 uint64_t counter;
1132 read (evfd, &counter, sizeof (uint64_t));
1133 }
1134 else
1135#endif
1136 {
1137 char dummy;
843 read (evpipe [0], &dummy, 1); 1138 read (evpipe [0], &dummy, 1);
844 } 1139 }
845 1140
846 if (gotsig && ev_is_default_loop (EV_A)) 1141 if (gotsig && ev_is_default_loop (EV_A))
847 { 1142 {
848 int signum; 1143 int signum;
849 gotsig = 0; 1144 gotsig = 0;
870} 1165}
871 1166
872/*****************************************************************************/ 1167/*****************************************************************************/
873 1168
874static void 1169static void
875sighandler (int signum) 1170ev_sighandler (int signum)
876{ 1171{
877#if EV_MULTIPLICITY 1172#if EV_MULTIPLICITY
878 struct ev_loop *loop = &default_loop_struct; 1173 struct ev_loop *loop = &default_loop_struct;
879#endif 1174#endif
880 1175
881#if _WIN32 1176#if _WIN32
882 signal (signum, sighandler); 1177 signal (signum, ev_sighandler);
883#endif 1178#endif
884 1179
885 signals [signum - 1].gotsig = 1; 1180 signals [signum - 1].gotsig = 1;
886 evpipe_write (EV_A_ 1, 0); 1181 evpipe_write (EV_A_ &gotsig);
887} 1182}
888 1183
889void noinline 1184void noinline
890ev_feed_signal_event (EV_P_ int signum) 1185ev_feed_signal_event (EV_P_ int signum)
891{ 1186{
892 WL w; 1187 WL w;
893 1188
894#if EV_MULTIPLICITY 1189#if EV_MULTIPLICITY
895 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1190 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
896#endif 1191#endif
897 1192
898 --signum; 1193 --signum;
899 1194
900 if (signum < 0 || signum >= signalmax) 1195 if (signum < 0 || signum >= signalmax)
916 1211
917#ifndef WIFCONTINUED 1212#ifndef WIFCONTINUED
918# define WIFCONTINUED(status) 0 1213# define WIFCONTINUED(status) 0
919#endif 1214#endif
920 1215
921void inline_speed 1216/* handle a single child status event */
1217inline_speed void
922child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1218child_reap (EV_P_ int chain, int pid, int status)
923{ 1219{
924 ev_child *w; 1220 ev_child *w;
925 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1221 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
926 1222
927 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1223 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
928 { 1224 {
929 if ((w->pid == pid || !w->pid) 1225 if ((w->pid == pid || !w->pid)
930 && (!traced || (w->flags & 1))) 1226 && (!traced || (w->flags & 1)))
931 { 1227 {
932 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1228 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
933 w->rpid = pid; 1229 w->rpid = pid;
934 w->rstatus = status; 1230 w->rstatus = status;
935 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1231 ev_feed_event (EV_A_ (W)w, EV_CHILD);
936 } 1232 }
937 } 1233 }
939 1235
940#ifndef WCONTINUED 1236#ifndef WCONTINUED
941# define WCONTINUED 0 1237# define WCONTINUED 0
942#endif 1238#endif
943 1239
1240/* called on sigchld etc., calls waitpid */
944static void 1241static void
945childcb (EV_P_ ev_signal *sw, int revents) 1242childcb (EV_P_ ev_signal *sw, int revents)
946{ 1243{
947 int pid, status; 1244 int pid, status;
948 1245
951 if (!WCONTINUED 1248 if (!WCONTINUED
952 || errno != EINVAL 1249 || errno != EINVAL
953 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1250 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
954 return; 1251 return;
955 1252
956 /* make sure we are called again until all childs have been reaped */ 1253 /* make sure we are called again until all children have been reaped */
957 /* we need to do it this way so that the callback gets called before we continue */ 1254 /* we need to do it this way so that the callback gets called before we continue */
958 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1255 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
959 1256
960 child_reap (EV_A_ sw, pid, pid, status); 1257 child_reap (EV_A_ pid, pid, status);
961 if (EV_PID_HASHSIZE > 1) 1258 if (EV_PID_HASHSIZE > 1)
962 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1259 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
963} 1260}
964 1261
965#endif 1262#endif
966 1263
967/*****************************************************************************/ 1264/*****************************************************************************/
1029 /* kqueue is borked on everything but netbsd apparently */ 1326 /* kqueue is borked on everything but netbsd apparently */
1030 /* it usually doesn't work correctly on anything but sockets and pipes */ 1327 /* it usually doesn't work correctly on anything but sockets and pipes */
1031 flags &= ~EVBACKEND_KQUEUE; 1328 flags &= ~EVBACKEND_KQUEUE;
1032#endif 1329#endif
1033#ifdef __APPLE__ 1330#ifdef __APPLE__
1034 // flags &= ~EVBACKEND_KQUEUE; for documentation 1331 /* only select works correctly on that "unix-certified" platform */
1035 flags &= ~EVBACKEND_POLL; 1332 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1333 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1036#endif 1334#endif
1037 1335
1038 return flags; 1336 return flags;
1039} 1337}
1040 1338
1060ev_loop_count (EV_P) 1358ev_loop_count (EV_P)
1061{ 1359{
1062 return loop_count; 1360 return loop_count;
1063} 1361}
1064 1362
1363unsigned int
1364ev_loop_depth (EV_P)
1365{
1366 return loop_depth;
1367}
1368
1065void 1369void
1066ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1370ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1067{ 1371{
1068 io_blocktime = interval; 1372 io_blocktime = interval;
1069} 1373}
1072ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1376ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1073{ 1377{
1074 timeout_blocktime = interval; 1378 timeout_blocktime = interval;
1075} 1379}
1076 1380
1381/* initialise a loop structure, must be zero-initialised */
1077static void noinline 1382static void noinline
1078loop_init (EV_P_ unsigned int flags) 1383loop_init (EV_P_ unsigned int flags)
1079{ 1384{
1080 if (!backend) 1385 if (!backend)
1081 { 1386 {
1387#if EV_USE_REALTIME
1388 if (!have_realtime)
1389 {
1390 struct timespec ts;
1391
1392 if (!clock_gettime (CLOCK_REALTIME, &ts))
1393 have_realtime = 1;
1394 }
1395#endif
1396
1082#if EV_USE_MONOTONIC 1397#if EV_USE_MONOTONIC
1398 if (!have_monotonic)
1083 { 1399 {
1084 struct timespec ts; 1400 struct timespec ts;
1401
1085 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1402 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1086 have_monotonic = 1; 1403 have_monotonic = 1;
1087 } 1404 }
1088#endif 1405#endif
1089 1406
1090 ev_rt_now = ev_time (); 1407 ev_rt_now = ev_time ();
1091 mn_now = get_clock (); 1408 mn_now = get_clock ();
1092 now_floor = mn_now; 1409 now_floor = mn_now;
1110 if (!(flags & EVFLAG_NOENV) 1427 if (!(flags & EVFLAG_NOENV)
1111 && !enable_secure () 1428 && !enable_secure ()
1112 && getenv ("LIBEV_FLAGS")) 1429 && getenv ("LIBEV_FLAGS"))
1113 flags = atoi (getenv ("LIBEV_FLAGS")); 1430 flags = atoi (getenv ("LIBEV_FLAGS"));
1114 1431
1115 if (!(flags & 0x0000ffffUL)) 1432 if (!(flags & 0x0000ffffU))
1116 flags |= ev_recommended_backends (); 1433 flags |= ev_recommended_backends ();
1117 1434
1118#if EV_USE_PORT 1435#if EV_USE_PORT
1119 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1436 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1120#endif 1437#endif
1129#endif 1446#endif
1130#if EV_USE_SELECT 1447#if EV_USE_SELECT
1131 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1448 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1132#endif 1449#endif
1133 1450
1451 ev_prepare_init (&pending_w, pendingcb);
1452
1134 ev_init (&pipeev, pipecb); 1453 ev_init (&pipe_w, pipecb);
1135 ev_set_priority (&pipeev, EV_MAXPRI); 1454 ev_set_priority (&pipe_w, EV_MAXPRI);
1136 } 1455 }
1137} 1456}
1138 1457
1458/* free up a loop structure */
1139static void noinline 1459static void noinline
1140loop_destroy (EV_P) 1460loop_destroy (EV_P)
1141{ 1461{
1142 int i; 1462 int i;
1143 1463
1144 if (ev_is_active (&pipeev)) 1464 if (ev_is_active (&pipe_w))
1145 { 1465 {
1146 ev_ref (EV_A); /* signal watcher */ 1466 ev_ref (EV_A); /* signal watcher */
1147 ev_io_stop (EV_A_ &pipeev); 1467 ev_io_stop (EV_A_ &pipe_w);
1148 1468
1149 close (evpipe [0]); evpipe [0] = 0; 1469#if EV_USE_EVENTFD
1150 close (evpipe [1]); evpipe [1] = 0; 1470 if (evfd >= 0)
1471 close (evfd);
1472#endif
1473
1474 if (evpipe [0] >= 0)
1475 {
1476 close (evpipe [0]);
1477 close (evpipe [1]);
1478 }
1151 } 1479 }
1152 1480
1153#if EV_USE_INOTIFY 1481#if EV_USE_INOTIFY
1154 if (fs_fd >= 0) 1482 if (fs_fd >= 0)
1155 close (fs_fd); 1483 close (fs_fd);
1183 } 1511 }
1184 1512
1185 ev_free (anfds); anfdmax = 0; 1513 ev_free (anfds); anfdmax = 0;
1186 1514
1187 /* have to use the microsoft-never-gets-it-right macro */ 1515 /* have to use the microsoft-never-gets-it-right macro */
1516 array_free (rfeed, EMPTY);
1188 array_free (fdchange, EMPTY); 1517 array_free (fdchange, EMPTY);
1189 array_free (timer, EMPTY); 1518 array_free (timer, EMPTY);
1190#if EV_PERIODIC_ENABLE 1519#if EV_PERIODIC_ENABLE
1191 array_free (periodic, EMPTY); 1520 array_free (periodic, EMPTY);
1192#endif 1521#endif
1200#endif 1529#endif
1201 1530
1202 backend = 0; 1531 backend = 0;
1203} 1532}
1204 1533
1534#if EV_USE_INOTIFY
1205void inline_size infy_fork (EV_P); 1535inline_size void infy_fork (EV_P);
1536#endif
1206 1537
1207void inline_size 1538inline_size void
1208loop_fork (EV_P) 1539loop_fork (EV_P)
1209{ 1540{
1210#if EV_USE_PORT 1541#if EV_USE_PORT
1211 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1542 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1212#endif 1543#endif
1218#endif 1549#endif
1219#if EV_USE_INOTIFY 1550#if EV_USE_INOTIFY
1220 infy_fork (EV_A); 1551 infy_fork (EV_A);
1221#endif 1552#endif
1222 1553
1223 if (ev_is_active (&pipeev)) 1554 if (ev_is_active (&pipe_w))
1224 { 1555 {
1225 /* this "locks" the handlers against writing to the pipe */ 1556 /* this "locks" the handlers against writing to the pipe */
1557 /* while we modify the fd vars */
1558 gotsig = 1;
1559#if EV_ASYNC_ENABLE
1226 gotsig = gotasync = 1; 1560 gotasync = 1;
1561#endif
1227 1562
1228 ev_ref (EV_A); 1563 ev_ref (EV_A);
1229 ev_io_stop (EV_A_ &pipeev); 1564 ev_io_stop (EV_A_ &pipe_w);
1565
1566#if EV_USE_EVENTFD
1567 if (evfd >= 0)
1568 close (evfd);
1569#endif
1570
1571 if (evpipe [0] >= 0)
1572 {
1230 close (evpipe [0]); 1573 close (evpipe [0]);
1231 close (evpipe [1]); 1574 close (evpipe [1]);
1575 }
1232 1576
1233 evpipe_init (EV_A); 1577 evpipe_init (EV_A);
1234 /* now iterate over everything, in case we missed something */ 1578 /* now iterate over everything, in case we missed something */
1235 pipecb (EV_A_ &pipeev, EV_READ); 1579 pipecb (EV_A_ &pipe_w, EV_READ);
1236 } 1580 }
1237 1581
1238 postfork = 0; 1582 postfork = 0;
1239} 1583}
1240 1584
1241#if EV_MULTIPLICITY 1585#if EV_MULTIPLICITY
1586
1242struct ev_loop * 1587struct ev_loop *
1243ev_loop_new (unsigned int flags) 1588ev_loop_new (unsigned int flags)
1244{ 1589{
1245 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1590 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1246 1591
1265ev_loop_fork (EV_P) 1610ev_loop_fork (EV_P)
1266{ 1611{
1267 postfork = 1; /* must be in line with ev_default_fork */ 1612 postfork = 1; /* must be in line with ev_default_fork */
1268} 1613}
1269 1614
1615#if EV_VERIFY
1616static void noinline
1617verify_watcher (EV_P_ W w)
1618{
1619 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1620
1621 if (w->pending)
1622 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1623}
1624
1625static void noinline
1626verify_heap (EV_P_ ANHE *heap, int N)
1627{
1628 int i;
1629
1630 for (i = HEAP0; i < N + HEAP0; ++i)
1631 {
1632 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1633 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1634 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1635
1636 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1637 }
1638}
1639
1640static void noinline
1641array_verify (EV_P_ W *ws, int cnt)
1642{
1643 while (cnt--)
1644 {
1645 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1646 verify_watcher (EV_A_ ws [cnt]);
1647 }
1648}
1649#endif
1650
1651void
1652ev_loop_verify (EV_P)
1653{
1654#if EV_VERIFY
1655 int i;
1656 WL w;
1657
1658 assert (activecnt >= -1);
1659
1660 assert (fdchangemax >= fdchangecnt);
1661 for (i = 0; i < fdchangecnt; ++i)
1662 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1663
1664 assert (anfdmax >= 0);
1665 for (i = 0; i < anfdmax; ++i)
1666 for (w = anfds [i].head; w; w = w->next)
1667 {
1668 verify_watcher (EV_A_ (W)w);
1669 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1670 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1671 }
1672
1673 assert (timermax >= timercnt);
1674 verify_heap (EV_A_ timers, timercnt);
1675
1676#if EV_PERIODIC_ENABLE
1677 assert (periodicmax >= periodiccnt);
1678 verify_heap (EV_A_ periodics, periodiccnt);
1679#endif
1680
1681 for (i = NUMPRI; i--; )
1682 {
1683 assert (pendingmax [i] >= pendingcnt [i]);
1684#if EV_IDLE_ENABLE
1685 assert (idleall >= 0);
1686 assert (idlemax [i] >= idlecnt [i]);
1687 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1688#endif
1689 }
1690
1691#if EV_FORK_ENABLE
1692 assert (forkmax >= forkcnt);
1693 array_verify (EV_A_ (W *)forks, forkcnt);
1694#endif
1695
1696#if EV_ASYNC_ENABLE
1697 assert (asyncmax >= asynccnt);
1698 array_verify (EV_A_ (W *)asyncs, asynccnt);
1699#endif
1700
1701 assert (preparemax >= preparecnt);
1702 array_verify (EV_A_ (W *)prepares, preparecnt);
1703
1704 assert (checkmax >= checkcnt);
1705 array_verify (EV_A_ (W *)checks, checkcnt);
1706
1707# if 0
1708 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1709 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1270#endif 1710# endif
1711#endif
1712}
1713
1714#endif /* multiplicity */
1271 1715
1272#if EV_MULTIPLICITY 1716#if EV_MULTIPLICITY
1273struct ev_loop * 1717struct ev_loop *
1274ev_default_loop_init (unsigned int flags) 1718ev_default_loop_init (unsigned int flags)
1275#else 1719#else
1308{ 1752{
1309#if EV_MULTIPLICITY 1753#if EV_MULTIPLICITY
1310 struct ev_loop *loop = ev_default_loop_ptr; 1754 struct ev_loop *loop = ev_default_loop_ptr;
1311#endif 1755#endif
1312 1756
1757 ev_default_loop_ptr = 0;
1758
1313#ifndef _WIN32 1759#ifndef _WIN32
1314 ev_ref (EV_A); /* child watcher */ 1760 ev_ref (EV_A); /* child watcher */
1315 ev_signal_stop (EV_A_ &childev); 1761 ev_signal_stop (EV_A_ &childev);
1316#endif 1762#endif
1317 1763
1323{ 1769{
1324#if EV_MULTIPLICITY 1770#if EV_MULTIPLICITY
1325 struct ev_loop *loop = ev_default_loop_ptr; 1771 struct ev_loop *loop = ev_default_loop_ptr;
1326#endif 1772#endif
1327 1773
1328 if (backend)
1329 postfork = 1; /* must be in line with ev_loop_fork */ 1774 postfork = 1; /* must be in line with ev_loop_fork */
1330} 1775}
1331 1776
1332/*****************************************************************************/ 1777/*****************************************************************************/
1333 1778
1334void 1779void
1335ev_invoke (EV_P_ void *w, int revents) 1780ev_invoke (EV_P_ void *w, int revents)
1336{ 1781{
1337 EV_CB_INVOKE ((W)w, revents); 1782 EV_CB_INVOKE ((W)w, revents);
1338} 1783}
1339 1784
1340void inline_speed 1785inline_speed void
1341call_pending (EV_P) 1786call_pending (EV_P)
1342{ 1787{
1343 int pri; 1788 int pri;
1344 1789
1345 for (pri = NUMPRI; pri--; ) 1790 for (pri = NUMPRI; pri--; )
1346 while (pendingcnt [pri]) 1791 while (pendingcnt [pri])
1347 { 1792 {
1348 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1793 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1349 1794
1350 if (expect_true (p->w))
1351 {
1352 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1795 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1796 /* ^ this is no longer true, as pending_w could be here */
1353 1797
1354 p->w->pending = 0; 1798 p->w->pending = 0;
1355 EV_CB_INVOKE (p->w, p->events); 1799 EV_CB_INVOKE (p->w, p->events);
1356 } 1800 EV_FREQUENT_CHECK;
1357 } 1801 }
1358} 1802}
1359 1803
1360void inline_size
1361timers_reify (EV_P)
1362{
1363 while (timercnt && ((WT)timers [0])->at <= mn_now)
1364 {
1365 ev_timer *w = (ev_timer *)timers [0];
1366
1367 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1368
1369 /* first reschedule or stop timer */
1370 if (w->repeat)
1371 {
1372 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1373
1374 ((WT)w)->at += w->repeat;
1375 if (((WT)w)->at < mn_now)
1376 ((WT)w)->at = mn_now;
1377
1378 downheap (timers, timercnt, 0);
1379 }
1380 else
1381 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1382
1383 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1384 }
1385}
1386
1387#if EV_PERIODIC_ENABLE
1388void inline_size
1389periodics_reify (EV_P)
1390{
1391 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1392 {
1393 ev_periodic *w = (ev_periodic *)periodics [0];
1394
1395 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1396
1397 /* first reschedule or stop timer */
1398 if (w->reschedule_cb)
1399 {
1400 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1401 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1402 downheap (periodics, periodiccnt, 0);
1403 }
1404 else if (w->interval)
1405 {
1406 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1407 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1408 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1409 downheap (periodics, periodiccnt, 0);
1410 }
1411 else
1412 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1413
1414 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1415 }
1416}
1417
1418static void noinline
1419periodics_reschedule (EV_P)
1420{
1421 int i;
1422
1423 /* adjust periodics after time jump */
1424 for (i = 0; i < periodiccnt; ++i)
1425 {
1426 ev_periodic *w = (ev_periodic *)periodics [i];
1427
1428 if (w->reschedule_cb)
1429 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1430 else if (w->interval)
1431 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1432 }
1433
1434 /* now rebuild the heap */
1435 for (i = periodiccnt >> 1; i--; )
1436 downheap (periodics, periodiccnt, i);
1437}
1438#endif
1439
1440#if EV_IDLE_ENABLE 1804#if EV_IDLE_ENABLE
1441void inline_size 1805/* make idle watchers pending. this handles the "call-idle */
1806/* only when higher priorities are idle" logic */
1807inline_size void
1442idle_reify (EV_P) 1808idle_reify (EV_P)
1443{ 1809{
1444 if (expect_false (idleall)) 1810 if (expect_false (idleall))
1445 { 1811 {
1446 int pri; 1812 int pri;
1458 } 1824 }
1459 } 1825 }
1460} 1826}
1461#endif 1827#endif
1462 1828
1463void inline_speed 1829/* make timers pending */
1830inline_size void
1831timers_reify (EV_P)
1832{
1833 EV_FREQUENT_CHECK;
1834
1835 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1836 {
1837 do
1838 {
1839 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1840
1841 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1842
1843 /* first reschedule or stop timer */
1844 if (w->repeat)
1845 {
1846 ev_at (w) += w->repeat;
1847 if (ev_at (w) < mn_now)
1848 ev_at (w) = mn_now;
1849
1850 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1851
1852 ANHE_at_cache (timers [HEAP0]);
1853 downheap (timers, timercnt, HEAP0);
1854 }
1855 else
1856 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1857
1858 EV_FREQUENT_CHECK;
1859 feed_reverse (EV_A_ (W)w);
1860 }
1861 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1862
1863 feed_reverse_done (EV_A_ EV_TIMEOUT);
1864 }
1865}
1866
1867#if EV_PERIODIC_ENABLE
1868/* make periodics pending */
1869inline_size void
1870periodics_reify (EV_P)
1871{
1872 EV_FREQUENT_CHECK;
1873
1874 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1875 {
1876 int feed_count = 0;
1877
1878 do
1879 {
1880 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1881
1882 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1883
1884 /* first reschedule or stop timer */
1885 if (w->reschedule_cb)
1886 {
1887 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1888
1889 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1890
1891 ANHE_at_cache (periodics [HEAP0]);
1892 downheap (periodics, periodiccnt, HEAP0);
1893 }
1894 else if (w->interval)
1895 {
1896 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1897 /* if next trigger time is not sufficiently in the future, put it there */
1898 /* this might happen because of floating point inexactness */
1899 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1900 {
1901 ev_at (w) += w->interval;
1902
1903 /* if interval is unreasonably low we might still have a time in the past */
1904 /* so correct this. this will make the periodic very inexact, but the user */
1905 /* has effectively asked to get triggered more often than possible */
1906 if (ev_at (w) < ev_rt_now)
1907 ev_at (w) = ev_rt_now;
1908 }
1909
1910 ANHE_at_cache (periodics [HEAP0]);
1911 downheap (periodics, periodiccnt, HEAP0);
1912 }
1913 else
1914 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1915
1916 EV_FREQUENT_CHECK;
1917 feed_reverse (EV_A_ (W)w);
1918 }
1919 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1920
1921 feed_reverse_done (EV_A_ EV_PERIODIC);
1922 }
1923}
1924
1925/* simply recalculate all periodics */
1926/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1927static void noinline
1928periodics_reschedule (EV_P)
1929{
1930 int i;
1931
1932 /* adjust periodics after time jump */
1933 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1934 {
1935 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1936
1937 if (w->reschedule_cb)
1938 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1939 else if (w->interval)
1940 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1941
1942 ANHE_at_cache (periodics [i]);
1943 }
1944
1945 reheap (periodics, periodiccnt);
1946}
1947#endif
1948
1949/* adjust all timers by a given offset */
1950static void noinline
1951timers_reschedule (EV_P_ ev_tstamp adjust)
1952{
1953 int i;
1954
1955 for (i = 0; i < timercnt; ++i)
1956 {
1957 ANHE *he = timers + i + HEAP0;
1958 ANHE_w (*he)->at += adjust;
1959 ANHE_at_cache (*he);
1960 }
1961}
1962
1963/* fetch new monotonic and realtime times from the kernel */
1964/* also detetc if there was a timejump, and act accordingly */
1965inline_speed void
1464time_update (EV_P_ ev_tstamp max_block) 1966time_update (EV_P_ ev_tstamp max_block)
1465{ 1967{
1466 int i;
1467
1468#if EV_USE_MONOTONIC 1968#if EV_USE_MONOTONIC
1469 if (expect_true (have_monotonic)) 1969 if (expect_true (have_monotonic))
1470 { 1970 {
1971 int i;
1471 ev_tstamp odiff = rtmn_diff; 1972 ev_tstamp odiff = rtmn_diff;
1472 1973
1473 mn_now = get_clock (); 1974 mn_now = get_clock ();
1474 1975
1475 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 1976 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1493 */ 1994 */
1494 for (i = 4; --i; ) 1995 for (i = 4; --i; )
1495 { 1996 {
1496 rtmn_diff = ev_rt_now - mn_now; 1997 rtmn_diff = ev_rt_now - mn_now;
1497 1998
1498 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1999 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1499 return; /* all is well */ 2000 return; /* all is well */
1500 2001
1501 ev_rt_now = ev_time (); 2002 ev_rt_now = ev_time ();
1502 mn_now = get_clock (); 2003 mn_now = get_clock ();
1503 now_floor = mn_now; 2004 now_floor = mn_now;
1504 } 2005 }
1505 2006
2007 /* no timer adjustment, as the monotonic clock doesn't jump */
2008 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1506# if EV_PERIODIC_ENABLE 2009# if EV_PERIODIC_ENABLE
1507 periodics_reschedule (EV_A); 2010 periodics_reschedule (EV_A);
1508# endif 2011# endif
1509 /* no timer adjustment, as the monotonic clock doesn't jump */
1510 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1511 } 2012 }
1512 else 2013 else
1513#endif 2014#endif
1514 { 2015 {
1515 ev_rt_now = ev_time (); 2016 ev_rt_now = ev_time ();
1516 2017
1517 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2018 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1518 { 2019 {
2020 /* adjust timers. this is easy, as the offset is the same for all of them */
2021 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1519#if EV_PERIODIC_ENABLE 2022#if EV_PERIODIC_ENABLE
1520 periodics_reschedule (EV_A); 2023 periodics_reschedule (EV_A);
1521#endif 2024#endif
1522 /* adjust timers. this is easy, as the offset is the same for all of them */
1523 for (i = 0; i < timercnt; ++i)
1524 ((WT)timers [i])->at += ev_rt_now - mn_now;
1525 } 2025 }
1526 2026
1527 mn_now = ev_rt_now; 2027 mn_now = ev_rt_now;
1528 } 2028 }
1529} 2029}
1530 2030
1531void 2031void
1532ev_ref (EV_P)
1533{
1534 ++activecnt;
1535}
1536
1537void
1538ev_unref (EV_P)
1539{
1540 --activecnt;
1541}
1542
1543static int loop_done;
1544
1545void
1546ev_loop (EV_P_ int flags) 2032ev_loop (EV_P_ int flags)
1547{ 2033{
1548 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2034 ++loop_depth;
1549 ? EVUNLOOP_ONE 2035
1550 : EVUNLOOP_CANCEL; 2036 loop_done = EVUNLOOP_CANCEL;
1551 2037
1552 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2038 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1553 2039
1554 do 2040 do
1555 { 2041 {
2042#if EV_VERIFY >= 2
2043 ev_loop_verify (EV_A);
2044#endif
2045
1556#ifndef _WIN32 2046#ifndef _WIN32
1557 if (expect_false (curpid)) /* penalise the forking check even more */ 2047 if (expect_false (curpid)) /* penalise the forking check even more */
1558 if (expect_false (getpid () != curpid)) 2048 if (expect_false (getpid () != curpid))
1559 { 2049 {
1560 curpid = getpid (); 2050 curpid = getpid ();
1577 { 2067 {
1578 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2068 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1579 call_pending (EV_A); 2069 call_pending (EV_A);
1580 } 2070 }
1581 2071
1582 if (expect_false (!activecnt))
1583 break;
1584
1585 /* we might have forked, so reify kernel state if necessary */ 2072 /* we might have forked, so reify kernel state if necessary */
1586 if (expect_false (postfork)) 2073 if (expect_false (postfork))
1587 loop_fork (EV_A); 2074 loop_fork (EV_A);
1588 2075
1589 /* update fd-related kernel structures */ 2076 /* update fd-related kernel structures */
1594 ev_tstamp waittime = 0.; 2081 ev_tstamp waittime = 0.;
1595 ev_tstamp sleeptime = 0.; 2082 ev_tstamp sleeptime = 0.;
1596 2083
1597 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2084 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1598 { 2085 {
2086 /* remember old timestamp for io_blocktime calculation */
2087 ev_tstamp prev_mn_now = mn_now;
2088
1599 /* update time to cancel out callback processing overhead */ 2089 /* update time to cancel out callback processing overhead */
1600 time_update (EV_A_ 1e100); 2090 time_update (EV_A_ 1e100);
1601 2091
1602 waittime = MAX_BLOCKTIME; 2092 waittime = MAX_BLOCKTIME;
1603 2093
1604 if (timercnt) 2094 if (timercnt)
1605 { 2095 {
1606 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2096 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1607 if (waittime > to) waittime = to; 2097 if (waittime > to) waittime = to;
1608 } 2098 }
1609 2099
1610#if EV_PERIODIC_ENABLE 2100#if EV_PERIODIC_ENABLE
1611 if (periodiccnt) 2101 if (periodiccnt)
1612 { 2102 {
1613 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2103 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1614 if (waittime > to) waittime = to; 2104 if (waittime > to) waittime = to;
1615 } 2105 }
1616#endif 2106#endif
1617 2107
2108 /* don't let timeouts decrease the waittime below timeout_blocktime */
1618 if (expect_false (waittime < timeout_blocktime)) 2109 if (expect_false (waittime < timeout_blocktime))
1619 waittime = timeout_blocktime; 2110 waittime = timeout_blocktime;
1620 2111
1621 sleeptime = waittime - backend_fudge; 2112 /* extra check because io_blocktime is commonly 0 */
1622
1623 if (expect_true (sleeptime > io_blocktime)) 2113 if (expect_false (io_blocktime))
1624 sleeptime = io_blocktime;
1625
1626 if (sleeptime)
1627 { 2114 {
2115 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2116
2117 if (sleeptime > waittime - backend_fudge)
2118 sleeptime = waittime - backend_fudge;
2119
2120 if (expect_true (sleeptime > 0.))
2121 {
1628 ev_sleep (sleeptime); 2122 ev_sleep (sleeptime);
1629 waittime -= sleeptime; 2123 waittime -= sleeptime;
2124 }
1630 } 2125 }
1631 } 2126 }
1632 2127
1633 ++loop_count; 2128 ++loop_count;
1634 backend_poll (EV_A_ waittime); 2129 backend_poll (EV_A_ waittime);
1651 /* queue check watchers, to be executed first */ 2146 /* queue check watchers, to be executed first */
1652 if (expect_false (checkcnt)) 2147 if (expect_false (checkcnt))
1653 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2148 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1654 2149
1655 call_pending (EV_A); 2150 call_pending (EV_A);
1656
1657 } 2151 }
1658 while (expect_true (activecnt && !loop_done)); 2152 while (expect_true (
2153 activecnt
2154 && !loop_done
2155 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2156 ));
1659 2157
1660 if (loop_done == EVUNLOOP_ONE) 2158 if (loop_done == EVUNLOOP_ONE)
1661 loop_done = EVUNLOOP_CANCEL; 2159 loop_done = EVUNLOOP_CANCEL;
2160
2161 --loop_depth;
1662} 2162}
1663 2163
1664void 2164void
1665ev_unloop (EV_P_ int how) 2165ev_unloop (EV_P_ int how)
1666{ 2166{
1667 loop_done = how; 2167 loop_done = how;
1668} 2168}
1669 2169
2170void
2171ev_ref (EV_P)
2172{
2173 ++activecnt;
2174}
2175
2176void
2177ev_unref (EV_P)
2178{
2179 --activecnt;
2180}
2181
2182void
2183ev_now_update (EV_P)
2184{
2185 time_update (EV_A_ 1e100);
2186}
2187
2188void
2189ev_suspend (EV_P)
2190{
2191 ev_now_update (EV_A);
2192}
2193
2194void
2195ev_resume (EV_P)
2196{
2197 ev_tstamp mn_prev = mn_now;
2198
2199 ev_now_update (EV_A);
2200 timers_reschedule (EV_A_ mn_now - mn_prev);
2201#if EV_PERIODIC_ENABLE
2202 /* TODO: really do this? */
2203 periodics_reschedule (EV_A);
2204#endif
2205}
2206
1670/*****************************************************************************/ 2207/*****************************************************************************/
2208/* singly-linked list management, used when the expected list length is short */
1671 2209
1672void inline_size 2210inline_size void
1673wlist_add (WL *head, WL elem) 2211wlist_add (WL *head, WL elem)
1674{ 2212{
1675 elem->next = *head; 2213 elem->next = *head;
1676 *head = elem; 2214 *head = elem;
1677} 2215}
1678 2216
1679void inline_size 2217inline_size void
1680wlist_del (WL *head, WL elem) 2218wlist_del (WL *head, WL elem)
1681{ 2219{
1682 while (*head) 2220 while (*head)
1683 { 2221 {
1684 if (*head == elem) 2222 if (*head == elem)
1689 2227
1690 head = &(*head)->next; 2228 head = &(*head)->next;
1691 } 2229 }
1692} 2230}
1693 2231
1694void inline_speed 2232/* internal, faster, version of ev_clear_pending */
2233inline_speed void
1695clear_pending (EV_P_ W w) 2234clear_pending (EV_P_ W w)
1696{ 2235{
1697 if (w->pending) 2236 if (w->pending)
1698 { 2237 {
1699 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2238 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1700 w->pending = 0; 2239 w->pending = 0;
1701 } 2240 }
1702} 2241}
1703 2242
1704int 2243int
1708 int pending = w_->pending; 2247 int pending = w_->pending;
1709 2248
1710 if (expect_true (pending)) 2249 if (expect_true (pending))
1711 { 2250 {
1712 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2251 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2252 p->w = (W)&pending_w;
1713 w_->pending = 0; 2253 w_->pending = 0;
1714 p->w = 0;
1715 return p->events; 2254 return p->events;
1716 } 2255 }
1717 else 2256 else
1718 return 0; 2257 return 0;
1719} 2258}
1720 2259
1721void inline_size 2260inline_size void
1722pri_adjust (EV_P_ W w) 2261pri_adjust (EV_P_ W w)
1723{ 2262{
1724 int pri = w->priority; 2263 int pri = w->priority;
1725 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2264 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1726 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2265 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1727 w->priority = pri; 2266 w->priority = pri;
1728} 2267}
1729 2268
1730void inline_speed 2269inline_speed void
1731ev_start (EV_P_ W w, int active) 2270ev_start (EV_P_ W w, int active)
1732{ 2271{
1733 pri_adjust (EV_A_ w); 2272 pri_adjust (EV_A_ w);
1734 w->active = active; 2273 w->active = active;
1735 ev_ref (EV_A); 2274 ev_ref (EV_A);
1736} 2275}
1737 2276
1738void inline_size 2277inline_size void
1739ev_stop (EV_P_ W w) 2278ev_stop (EV_P_ W w)
1740{ 2279{
1741 ev_unref (EV_A); 2280 ev_unref (EV_A);
1742 w->active = 0; 2281 w->active = 0;
1743} 2282}
1750 int fd = w->fd; 2289 int fd = w->fd;
1751 2290
1752 if (expect_false (ev_is_active (w))) 2291 if (expect_false (ev_is_active (w)))
1753 return; 2292 return;
1754 2293
1755 assert (("ev_io_start called with negative fd", fd >= 0)); 2294 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2295 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2296
2297 EV_FREQUENT_CHECK;
1756 2298
1757 ev_start (EV_A_ (W)w, 1); 2299 ev_start (EV_A_ (W)w, 1);
1758 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2300 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1759 wlist_add (&anfds[fd].head, (WL)w); 2301 wlist_add (&anfds[fd].head, (WL)w);
1760 2302
1761 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2303 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1762 w->events &= ~EV_IOFDSET; 2304 w->events &= ~EV__IOFDSET;
2305
2306 EV_FREQUENT_CHECK;
1763} 2307}
1764 2308
1765void noinline 2309void noinline
1766ev_io_stop (EV_P_ ev_io *w) 2310ev_io_stop (EV_P_ ev_io *w)
1767{ 2311{
1768 clear_pending (EV_A_ (W)w); 2312 clear_pending (EV_A_ (W)w);
1769 if (expect_false (!ev_is_active (w))) 2313 if (expect_false (!ev_is_active (w)))
1770 return; 2314 return;
1771 2315
1772 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2316 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2317
2318 EV_FREQUENT_CHECK;
1773 2319
1774 wlist_del (&anfds[w->fd].head, (WL)w); 2320 wlist_del (&anfds[w->fd].head, (WL)w);
1775 ev_stop (EV_A_ (W)w); 2321 ev_stop (EV_A_ (W)w);
1776 2322
1777 fd_change (EV_A_ w->fd, 1); 2323 fd_change (EV_A_ w->fd, 1);
2324
2325 EV_FREQUENT_CHECK;
1778} 2326}
1779 2327
1780void noinline 2328void noinline
1781ev_timer_start (EV_P_ ev_timer *w) 2329ev_timer_start (EV_P_ ev_timer *w)
1782{ 2330{
1783 if (expect_false (ev_is_active (w))) 2331 if (expect_false (ev_is_active (w)))
1784 return; 2332 return;
1785 2333
1786 ((WT)w)->at += mn_now; 2334 ev_at (w) += mn_now;
1787 2335
1788 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2336 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1789 2337
2338 EV_FREQUENT_CHECK;
2339
2340 ++timercnt;
1790 ev_start (EV_A_ (W)w, ++timercnt); 2341 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1791 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2342 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1792 timers [timercnt - 1] = (WT)w; 2343 ANHE_w (timers [ev_active (w)]) = (WT)w;
1793 upheap (timers, timercnt - 1); 2344 ANHE_at_cache (timers [ev_active (w)]);
2345 upheap (timers, ev_active (w));
1794 2346
2347 EV_FREQUENT_CHECK;
2348
1795 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2349 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1796} 2350}
1797 2351
1798void noinline 2352void noinline
1799ev_timer_stop (EV_P_ ev_timer *w) 2353ev_timer_stop (EV_P_ ev_timer *w)
1800{ 2354{
1801 clear_pending (EV_A_ (W)w); 2355 clear_pending (EV_A_ (W)w);
1802 if (expect_false (!ev_is_active (w))) 2356 if (expect_false (!ev_is_active (w)))
1803 return; 2357 return;
1804 2358
1805 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2359 EV_FREQUENT_CHECK;
1806 2360
1807 { 2361 {
1808 int active = ((W)w)->active; 2362 int active = ev_active (w);
1809 2363
2364 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2365
2366 --timercnt;
2367
1810 if (expect_true (--active < --timercnt)) 2368 if (expect_true (active < timercnt + HEAP0))
1811 { 2369 {
1812 timers [active] = timers [timercnt]; 2370 timers [active] = timers [timercnt + HEAP0];
1813 adjustheap (timers, timercnt, active); 2371 adjustheap (timers, timercnt, active);
1814 } 2372 }
1815 } 2373 }
1816 2374
1817 ((WT)w)->at -= mn_now; 2375 EV_FREQUENT_CHECK;
2376
2377 ev_at (w) -= mn_now;
1818 2378
1819 ev_stop (EV_A_ (W)w); 2379 ev_stop (EV_A_ (W)w);
1820} 2380}
1821 2381
1822void noinline 2382void noinline
1823ev_timer_again (EV_P_ ev_timer *w) 2383ev_timer_again (EV_P_ ev_timer *w)
1824{ 2384{
2385 EV_FREQUENT_CHECK;
2386
1825 if (ev_is_active (w)) 2387 if (ev_is_active (w))
1826 { 2388 {
1827 if (w->repeat) 2389 if (w->repeat)
1828 { 2390 {
1829 ((WT)w)->at = mn_now + w->repeat; 2391 ev_at (w) = mn_now + w->repeat;
2392 ANHE_at_cache (timers [ev_active (w)]);
1830 adjustheap (timers, timercnt, ((W)w)->active - 1); 2393 adjustheap (timers, timercnt, ev_active (w));
1831 } 2394 }
1832 else 2395 else
1833 ev_timer_stop (EV_A_ w); 2396 ev_timer_stop (EV_A_ w);
1834 } 2397 }
1835 else if (w->repeat) 2398 else if (w->repeat)
1836 { 2399 {
1837 w->at = w->repeat; 2400 ev_at (w) = w->repeat;
1838 ev_timer_start (EV_A_ w); 2401 ev_timer_start (EV_A_ w);
1839 } 2402 }
2403
2404 EV_FREQUENT_CHECK;
1840} 2405}
1841 2406
1842#if EV_PERIODIC_ENABLE 2407#if EV_PERIODIC_ENABLE
1843void noinline 2408void noinline
1844ev_periodic_start (EV_P_ ev_periodic *w) 2409ev_periodic_start (EV_P_ ev_periodic *w)
1845{ 2410{
1846 if (expect_false (ev_is_active (w))) 2411 if (expect_false (ev_is_active (w)))
1847 return; 2412 return;
1848 2413
1849 if (w->reschedule_cb) 2414 if (w->reschedule_cb)
1850 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2415 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1851 else if (w->interval) 2416 else if (w->interval)
1852 { 2417 {
1853 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2418 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1854 /* this formula differs from the one in periodic_reify because we do not always round up */ 2419 /* this formula differs from the one in periodic_reify because we do not always round up */
1855 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2420 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1856 } 2421 }
1857 else 2422 else
1858 ((WT)w)->at = w->offset; 2423 ev_at (w) = w->offset;
1859 2424
2425 EV_FREQUENT_CHECK;
2426
2427 ++periodiccnt;
1860 ev_start (EV_A_ (W)w, ++periodiccnt); 2428 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1861 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2429 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1862 periodics [periodiccnt - 1] = (WT)w; 2430 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1863 upheap (periodics, periodiccnt - 1); 2431 ANHE_at_cache (periodics [ev_active (w)]);
2432 upheap (periodics, ev_active (w));
1864 2433
2434 EV_FREQUENT_CHECK;
2435
1865 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2436 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1866} 2437}
1867 2438
1868void noinline 2439void noinline
1869ev_periodic_stop (EV_P_ ev_periodic *w) 2440ev_periodic_stop (EV_P_ ev_periodic *w)
1870{ 2441{
1871 clear_pending (EV_A_ (W)w); 2442 clear_pending (EV_A_ (W)w);
1872 if (expect_false (!ev_is_active (w))) 2443 if (expect_false (!ev_is_active (w)))
1873 return; 2444 return;
1874 2445
1875 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2446 EV_FREQUENT_CHECK;
1876 2447
1877 { 2448 {
1878 int active = ((W)w)->active; 2449 int active = ev_active (w);
1879 2450
2451 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2452
2453 --periodiccnt;
2454
1880 if (expect_true (--active < --periodiccnt)) 2455 if (expect_true (active < periodiccnt + HEAP0))
1881 { 2456 {
1882 periodics [active] = periodics [periodiccnt]; 2457 periodics [active] = periodics [periodiccnt + HEAP0];
1883 adjustheap (periodics, periodiccnt, active); 2458 adjustheap (periodics, periodiccnt, active);
1884 } 2459 }
1885 } 2460 }
1886 2461
2462 EV_FREQUENT_CHECK;
2463
1887 ev_stop (EV_A_ (W)w); 2464 ev_stop (EV_A_ (W)w);
1888} 2465}
1889 2466
1890void noinline 2467void noinline
1891ev_periodic_again (EV_P_ ev_periodic *w) 2468ev_periodic_again (EV_P_ ev_periodic *w)
1902 2479
1903void noinline 2480void noinline
1904ev_signal_start (EV_P_ ev_signal *w) 2481ev_signal_start (EV_P_ ev_signal *w)
1905{ 2482{
1906#if EV_MULTIPLICITY 2483#if EV_MULTIPLICITY
1907 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2484 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1908#endif 2485#endif
1909 if (expect_false (ev_is_active (w))) 2486 if (expect_false (ev_is_active (w)))
1910 return; 2487 return;
1911 2488
1912 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2489 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
1913 2490
1914 evpipe_init (EV_A); 2491 evpipe_init (EV_A);
2492
2493 EV_FREQUENT_CHECK;
1915 2494
1916 { 2495 {
1917#ifndef _WIN32 2496#ifndef _WIN32
1918 sigset_t full, prev; 2497 sigset_t full, prev;
1919 sigfillset (&full); 2498 sigfillset (&full);
1920 sigprocmask (SIG_SETMASK, &full, &prev); 2499 sigprocmask (SIG_SETMASK, &full, &prev);
1921#endif 2500#endif
1922 2501
1923 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2502 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
1924 2503
1925#ifndef _WIN32 2504#ifndef _WIN32
1926 sigprocmask (SIG_SETMASK, &prev, 0); 2505 sigprocmask (SIG_SETMASK, &prev, 0);
1927#endif 2506#endif
1928 } 2507 }
1931 wlist_add (&signals [w->signum - 1].head, (WL)w); 2510 wlist_add (&signals [w->signum - 1].head, (WL)w);
1932 2511
1933 if (!((WL)w)->next) 2512 if (!((WL)w)->next)
1934 { 2513 {
1935#if _WIN32 2514#if _WIN32
1936 signal (w->signum, sighandler); 2515 signal (w->signum, ev_sighandler);
1937#else 2516#else
1938 struct sigaction sa; 2517 struct sigaction sa;
1939 sa.sa_handler = sighandler; 2518 sa.sa_handler = ev_sighandler;
1940 sigfillset (&sa.sa_mask); 2519 sigfillset (&sa.sa_mask);
1941 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2520 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1942 sigaction (w->signum, &sa, 0); 2521 sigaction (w->signum, &sa, 0);
1943#endif 2522#endif
1944 } 2523 }
2524
2525 EV_FREQUENT_CHECK;
1945} 2526}
1946 2527
1947void noinline 2528void noinline
1948ev_signal_stop (EV_P_ ev_signal *w) 2529ev_signal_stop (EV_P_ ev_signal *w)
1949{ 2530{
1950 clear_pending (EV_A_ (W)w); 2531 clear_pending (EV_A_ (W)w);
1951 if (expect_false (!ev_is_active (w))) 2532 if (expect_false (!ev_is_active (w)))
1952 return; 2533 return;
1953 2534
2535 EV_FREQUENT_CHECK;
2536
1954 wlist_del (&signals [w->signum - 1].head, (WL)w); 2537 wlist_del (&signals [w->signum - 1].head, (WL)w);
1955 ev_stop (EV_A_ (W)w); 2538 ev_stop (EV_A_ (W)w);
1956 2539
1957 if (!signals [w->signum - 1].head) 2540 if (!signals [w->signum - 1].head)
1958 signal (w->signum, SIG_DFL); 2541 signal (w->signum, SIG_DFL);
2542
2543 EV_FREQUENT_CHECK;
1959} 2544}
1960 2545
1961void 2546void
1962ev_child_start (EV_P_ ev_child *w) 2547ev_child_start (EV_P_ ev_child *w)
1963{ 2548{
1964#if EV_MULTIPLICITY 2549#if EV_MULTIPLICITY
1965 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2550 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1966#endif 2551#endif
1967 if (expect_false (ev_is_active (w))) 2552 if (expect_false (ev_is_active (w)))
1968 return; 2553 return;
1969 2554
2555 EV_FREQUENT_CHECK;
2556
1970 ev_start (EV_A_ (W)w, 1); 2557 ev_start (EV_A_ (W)w, 1);
1971 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2558 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2559
2560 EV_FREQUENT_CHECK;
1972} 2561}
1973 2562
1974void 2563void
1975ev_child_stop (EV_P_ ev_child *w) 2564ev_child_stop (EV_P_ ev_child *w)
1976{ 2565{
1977 clear_pending (EV_A_ (W)w); 2566 clear_pending (EV_A_ (W)w);
1978 if (expect_false (!ev_is_active (w))) 2567 if (expect_false (!ev_is_active (w)))
1979 return; 2568 return;
1980 2569
2570 EV_FREQUENT_CHECK;
2571
1981 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2572 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1982 ev_stop (EV_A_ (W)w); 2573 ev_stop (EV_A_ (W)w);
2574
2575 EV_FREQUENT_CHECK;
1983} 2576}
1984 2577
1985#if EV_STAT_ENABLE 2578#if EV_STAT_ENABLE
1986 2579
1987# ifdef _WIN32 2580# ifdef _WIN32
1988# undef lstat 2581# undef lstat
1989# define lstat(a,b) _stati64 (a,b) 2582# define lstat(a,b) _stati64 (a,b)
1990# endif 2583# endif
1991 2584
1992#define DEF_STAT_INTERVAL 5.0074891 2585#define DEF_STAT_INTERVAL 5.0074891
2586#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1993#define MIN_STAT_INTERVAL 0.1074891 2587#define MIN_STAT_INTERVAL 0.1074891
1994 2588
1995static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2589static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1996 2590
1997#if EV_USE_INOTIFY 2591#if EV_USE_INOTIFY
1998# define EV_INOTIFY_BUFSIZE 8192 2592# define EV_INOTIFY_BUFSIZE 8192
2002{ 2596{
2003 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2597 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2004 2598
2005 if (w->wd < 0) 2599 if (w->wd < 0)
2006 { 2600 {
2601 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2007 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2602 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2008 2603
2009 /* monitor some parent directory for speedup hints */ 2604 /* monitor some parent directory for speedup hints */
2605 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2606 /* but an efficiency issue only */
2010 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2607 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2011 { 2608 {
2012 char path [4096]; 2609 char path [4096];
2013 strcpy (path, w->path); 2610 strcpy (path, w->path);
2014 2611
2017 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2614 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2018 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2615 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2019 2616
2020 char *pend = strrchr (path, '/'); 2617 char *pend = strrchr (path, '/');
2021 2618
2022 if (!pend) 2619 if (!pend || pend == path)
2023 break; /* whoops, no '/', complain to your admin */ 2620 break;
2024 2621
2025 *pend = 0; 2622 *pend = 0;
2026 w->wd = inotify_add_watch (fs_fd, path, mask); 2623 w->wd = inotify_add_watch (fs_fd, path, mask);
2027 } 2624 }
2028 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2625 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2029 } 2626 }
2030 } 2627 }
2031 else
2032 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2033 2628
2034 if (w->wd >= 0) 2629 if (w->wd >= 0)
2630 {
2035 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2631 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2632
2633 /* now local changes will be tracked by inotify, but remote changes won't */
2634 /* unless the filesystem it known to be local, we therefore still poll */
2635 /* also do poll on <2.6.25, but with normal frequency */
2636 struct statfs sfs;
2637
2638 if (fs_2625 && !statfs (w->path, &sfs))
2639 if (sfs.f_type == 0x1373 /* devfs */
2640 || sfs.f_type == 0xEF53 /* ext2/3 */
2641 || sfs.f_type == 0x3153464a /* jfs */
2642 || sfs.f_type == 0x52654973 /* reiser3 */
2643 || sfs.f_type == 0x01021994 /* tempfs */
2644 || sfs.f_type == 0x58465342 /* xfs */)
2645 return;
2646
2647 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2648 ev_timer_again (EV_A_ &w->timer);
2649 }
2036} 2650}
2037 2651
2038static void noinline 2652static void noinline
2039infy_del (EV_P_ ev_stat *w) 2653infy_del (EV_P_ ev_stat *w)
2040{ 2654{
2054 2668
2055static void noinline 2669static void noinline
2056infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2670infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2057{ 2671{
2058 if (slot < 0) 2672 if (slot < 0)
2059 /* overflow, need to check for all hahs slots */ 2673 /* overflow, need to check for all hash slots */
2060 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2674 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2061 infy_wd (EV_A_ slot, wd, ev); 2675 infy_wd (EV_A_ slot, wd, ev);
2062 else 2676 else
2063 { 2677 {
2064 WL w_; 2678 WL w_;
2070 2684
2071 if (w->wd == wd || wd == -1) 2685 if (w->wd == wd || wd == -1)
2072 { 2686 {
2073 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2687 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2074 { 2688 {
2689 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2075 w->wd = -1; 2690 w->wd = -1;
2076 infy_add (EV_A_ w); /* re-add, no matter what */ 2691 infy_add (EV_A_ w); /* re-add, no matter what */
2077 } 2692 }
2078 2693
2079 stat_timer_cb (EV_A_ &w->timer, 0); 2694 stat_timer_cb (EV_A_ &w->timer, 0);
2092 2707
2093 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2708 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2094 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2709 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2095} 2710}
2096 2711
2097void inline_size 2712inline_size void
2713check_2625 (EV_P)
2714{
2715 /* kernels < 2.6.25 are borked
2716 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2717 */
2718 struct utsname buf;
2719 int major, minor, micro;
2720
2721 if (uname (&buf))
2722 return;
2723
2724 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2725 return;
2726
2727 if (major < 2
2728 || (major == 2 && minor < 6)
2729 || (major == 2 && minor == 6 && micro < 25))
2730 return;
2731
2732 fs_2625 = 1;
2733}
2734
2735inline_size void
2098infy_init (EV_P) 2736infy_init (EV_P)
2099{ 2737{
2100 if (fs_fd != -2) 2738 if (fs_fd != -2)
2101 return; 2739 return;
2740
2741 fs_fd = -1;
2742
2743 check_2625 (EV_A);
2102 2744
2103 fs_fd = inotify_init (); 2745 fs_fd = inotify_init ();
2104 2746
2105 if (fs_fd >= 0) 2747 if (fs_fd >= 0)
2106 { 2748 {
2108 ev_set_priority (&fs_w, EV_MAXPRI); 2750 ev_set_priority (&fs_w, EV_MAXPRI);
2109 ev_io_start (EV_A_ &fs_w); 2751 ev_io_start (EV_A_ &fs_w);
2110 } 2752 }
2111} 2753}
2112 2754
2113void inline_size 2755inline_size void
2114infy_fork (EV_P) 2756infy_fork (EV_P)
2115{ 2757{
2116 int slot; 2758 int slot;
2117 2759
2118 if (fs_fd < 0) 2760 if (fs_fd < 0)
2134 w->wd = -1; 2776 w->wd = -1;
2135 2777
2136 if (fs_fd >= 0) 2778 if (fs_fd >= 0)
2137 infy_add (EV_A_ w); /* re-add, no matter what */ 2779 infy_add (EV_A_ w); /* re-add, no matter what */
2138 else 2780 else
2139 ev_timer_start (EV_A_ &w->timer); 2781 ev_timer_again (EV_A_ &w->timer);
2140 } 2782 }
2141
2142 } 2783 }
2143} 2784}
2144 2785
2786#endif
2787
2788#ifdef _WIN32
2789# define EV_LSTAT(p,b) _stati64 (p, b)
2790#else
2791# define EV_LSTAT(p,b) lstat (p, b)
2145#endif 2792#endif
2146 2793
2147void 2794void
2148ev_stat_stat (EV_P_ ev_stat *w) 2795ev_stat_stat (EV_P_ ev_stat *w)
2149{ 2796{
2176 || w->prev.st_atime != w->attr.st_atime 2823 || w->prev.st_atime != w->attr.st_atime
2177 || w->prev.st_mtime != w->attr.st_mtime 2824 || w->prev.st_mtime != w->attr.st_mtime
2178 || w->prev.st_ctime != w->attr.st_ctime 2825 || w->prev.st_ctime != w->attr.st_ctime
2179 ) { 2826 ) {
2180 #if EV_USE_INOTIFY 2827 #if EV_USE_INOTIFY
2828 if (fs_fd >= 0)
2829 {
2181 infy_del (EV_A_ w); 2830 infy_del (EV_A_ w);
2182 infy_add (EV_A_ w); 2831 infy_add (EV_A_ w);
2183 ev_stat_stat (EV_A_ w); /* avoid race... */ 2832 ev_stat_stat (EV_A_ w); /* avoid race... */
2833 }
2184 #endif 2834 #endif
2185 2835
2186 ev_feed_event (EV_A_ w, EV_STAT); 2836 ev_feed_event (EV_A_ w, EV_STAT);
2187 } 2837 }
2188} 2838}
2191ev_stat_start (EV_P_ ev_stat *w) 2841ev_stat_start (EV_P_ ev_stat *w)
2192{ 2842{
2193 if (expect_false (ev_is_active (w))) 2843 if (expect_false (ev_is_active (w)))
2194 return; 2844 return;
2195 2845
2196 /* since we use memcmp, we need to clear any padding data etc. */
2197 memset (&w->prev, 0, sizeof (ev_statdata));
2198 memset (&w->attr, 0, sizeof (ev_statdata));
2199
2200 ev_stat_stat (EV_A_ w); 2846 ev_stat_stat (EV_A_ w);
2201 2847
2848 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2202 if (w->interval < MIN_STAT_INTERVAL) 2849 w->interval = MIN_STAT_INTERVAL;
2203 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2204 2850
2205 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2851 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2206 ev_set_priority (&w->timer, ev_priority (w)); 2852 ev_set_priority (&w->timer, ev_priority (w));
2207 2853
2208#if EV_USE_INOTIFY 2854#if EV_USE_INOTIFY
2209 infy_init (EV_A); 2855 infy_init (EV_A);
2210 2856
2211 if (fs_fd >= 0) 2857 if (fs_fd >= 0)
2212 infy_add (EV_A_ w); 2858 infy_add (EV_A_ w);
2213 else 2859 else
2214#endif 2860#endif
2215 ev_timer_start (EV_A_ &w->timer); 2861 ev_timer_again (EV_A_ &w->timer);
2216 2862
2217 ev_start (EV_A_ (W)w, 1); 2863 ev_start (EV_A_ (W)w, 1);
2864
2865 EV_FREQUENT_CHECK;
2218} 2866}
2219 2867
2220void 2868void
2221ev_stat_stop (EV_P_ ev_stat *w) 2869ev_stat_stop (EV_P_ ev_stat *w)
2222{ 2870{
2223 clear_pending (EV_A_ (W)w); 2871 clear_pending (EV_A_ (W)w);
2224 if (expect_false (!ev_is_active (w))) 2872 if (expect_false (!ev_is_active (w)))
2225 return; 2873 return;
2226 2874
2875 EV_FREQUENT_CHECK;
2876
2227#if EV_USE_INOTIFY 2877#if EV_USE_INOTIFY
2228 infy_del (EV_A_ w); 2878 infy_del (EV_A_ w);
2229#endif 2879#endif
2230 ev_timer_stop (EV_A_ &w->timer); 2880 ev_timer_stop (EV_A_ &w->timer);
2231 2881
2232 ev_stop (EV_A_ (W)w); 2882 ev_stop (EV_A_ (W)w);
2883
2884 EV_FREQUENT_CHECK;
2233} 2885}
2234#endif 2886#endif
2235 2887
2236#if EV_IDLE_ENABLE 2888#if EV_IDLE_ENABLE
2237void 2889void
2239{ 2891{
2240 if (expect_false (ev_is_active (w))) 2892 if (expect_false (ev_is_active (w)))
2241 return; 2893 return;
2242 2894
2243 pri_adjust (EV_A_ (W)w); 2895 pri_adjust (EV_A_ (W)w);
2896
2897 EV_FREQUENT_CHECK;
2244 2898
2245 { 2899 {
2246 int active = ++idlecnt [ABSPRI (w)]; 2900 int active = ++idlecnt [ABSPRI (w)];
2247 2901
2248 ++idleall; 2902 ++idleall;
2249 ev_start (EV_A_ (W)w, active); 2903 ev_start (EV_A_ (W)w, active);
2250 2904
2251 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2905 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2252 idles [ABSPRI (w)][active - 1] = w; 2906 idles [ABSPRI (w)][active - 1] = w;
2253 } 2907 }
2908
2909 EV_FREQUENT_CHECK;
2254} 2910}
2255 2911
2256void 2912void
2257ev_idle_stop (EV_P_ ev_idle *w) 2913ev_idle_stop (EV_P_ ev_idle *w)
2258{ 2914{
2259 clear_pending (EV_A_ (W)w); 2915 clear_pending (EV_A_ (W)w);
2260 if (expect_false (!ev_is_active (w))) 2916 if (expect_false (!ev_is_active (w)))
2261 return; 2917 return;
2262 2918
2919 EV_FREQUENT_CHECK;
2920
2263 { 2921 {
2264 int active = ((W)w)->active; 2922 int active = ev_active (w);
2265 2923
2266 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2924 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2267 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2925 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2268 2926
2269 ev_stop (EV_A_ (W)w); 2927 ev_stop (EV_A_ (W)w);
2270 --idleall; 2928 --idleall;
2271 } 2929 }
2930
2931 EV_FREQUENT_CHECK;
2272} 2932}
2273#endif 2933#endif
2274 2934
2275void 2935void
2276ev_prepare_start (EV_P_ ev_prepare *w) 2936ev_prepare_start (EV_P_ ev_prepare *w)
2277{ 2937{
2278 if (expect_false (ev_is_active (w))) 2938 if (expect_false (ev_is_active (w)))
2279 return; 2939 return;
2940
2941 EV_FREQUENT_CHECK;
2280 2942
2281 ev_start (EV_A_ (W)w, ++preparecnt); 2943 ev_start (EV_A_ (W)w, ++preparecnt);
2282 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2944 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2283 prepares [preparecnt - 1] = w; 2945 prepares [preparecnt - 1] = w;
2946
2947 EV_FREQUENT_CHECK;
2284} 2948}
2285 2949
2286void 2950void
2287ev_prepare_stop (EV_P_ ev_prepare *w) 2951ev_prepare_stop (EV_P_ ev_prepare *w)
2288{ 2952{
2289 clear_pending (EV_A_ (W)w); 2953 clear_pending (EV_A_ (W)w);
2290 if (expect_false (!ev_is_active (w))) 2954 if (expect_false (!ev_is_active (w)))
2291 return; 2955 return;
2292 2956
2957 EV_FREQUENT_CHECK;
2958
2293 { 2959 {
2294 int active = ((W)w)->active; 2960 int active = ev_active (w);
2961
2295 prepares [active - 1] = prepares [--preparecnt]; 2962 prepares [active - 1] = prepares [--preparecnt];
2296 ((W)prepares [active - 1])->active = active; 2963 ev_active (prepares [active - 1]) = active;
2297 } 2964 }
2298 2965
2299 ev_stop (EV_A_ (W)w); 2966 ev_stop (EV_A_ (W)w);
2967
2968 EV_FREQUENT_CHECK;
2300} 2969}
2301 2970
2302void 2971void
2303ev_check_start (EV_P_ ev_check *w) 2972ev_check_start (EV_P_ ev_check *w)
2304{ 2973{
2305 if (expect_false (ev_is_active (w))) 2974 if (expect_false (ev_is_active (w)))
2306 return; 2975 return;
2976
2977 EV_FREQUENT_CHECK;
2307 2978
2308 ev_start (EV_A_ (W)w, ++checkcnt); 2979 ev_start (EV_A_ (W)w, ++checkcnt);
2309 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2980 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2310 checks [checkcnt - 1] = w; 2981 checks [checkcnt - 1] = w;
2982
2983 EV_FREQUENT_CHECK;
2311} 2984}
2312 2985
2313void 2986void
2314ev_check_stop (EV_P_ ev_check *w) 2987ev_check_stop (EV_P_ ev_check *w)
2315{ 2988{
2316 clear_pending (EV_A_ (W)w); 2989 clear_pending (EV_A_ (W)w);
2317 if (expect_false (!ev_is_active (w))) 2990 if (expect_false (!ev_is_active (w)))
2318 return; 2991 return;
2319 2992
2993 EV_FREQUENT_CHECK;
2994
2320 { 2995 {
2321 int active = ((W)w)->active; 2996 int active = ev_active (w);
2997
2322 checks [active - 1] = checks [--checkcnt]; 2998 checks [active - 1] = checks [--checkcnt];
2323 ((W)checks [active - 1])->active = active; 2999 ev_active (checks [active - 1]) = active;
2324 } 3000 }
2325 3001
2326 ev_stop (EV_A_ (W)w); 3002 ev_stop (EV_A_ (W)w);
3003
3004 EV_FREQUENT_CHECK;
2327} 3005}
2328 3006
2329#if EV_EMBED_ENABLE 3007#if EV_EMBED_ENABLE
2330void noinline 3008void noinline
2331ev_embed_sweep (EV_P_ ev_embed *w) 3009ev_embed_sweep (EV_P_ ev_embed *w)
2358 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3036 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2359 } 3037 }
2360 } 3038 }
2361} 3039}
2362 3040
3041static void
3042embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3043{
3044 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3045
3046 ev_embed_stop (EV_A_ w);
3047
3048 {
3049 struct ev_loop *loop = w->other;
3050
3051 ev_loop_fork (EV_A);
3052 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3053 }
3054
3055 ev_embed_start (EV_A_ w);
3056}
3057
2363#if 0 3058#if 0
2364static void 3059static void
2365embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3060embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2366{ 3061{
2367 ev_idle_stop (EV_A_ idle); 3062 ev_idle_stop (EV_A_ idle);
2374 if (expect_false (ev_is_active (w))) 3069 if (expect_false (ev_is_active (w)))
2375 return; 3070 return;
2376 3071
2377 { 3072 {
2378 struct ev_loop *loop = w->other; 3073 struct ev_loop *loop = w->other;
2379 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3074 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2380 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3075 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2381 } 3076 }
3077
3078 EV_FREQUENT_CHECK;
2382 3079
2383 ev_set_priority (&w->io, ev_priority (w)); 3080 ev_set_priority (&w->io, ev_priority (w));
2384 ev_io_start (EV_A_ &w->io); 3081 ev_io_start (EV_A_ &w->io);
2385 3082
2386 ev_prepare_init (&w->prepare, embed_prepare_cb); 3083 ev_prepare_init (&w->prepare, embed_prepare_cb);
2387 ev_set_priority (&w->prepare, EV_MINPRI); 3084 ev_set_priority (&w->prepare, EV_MINPRI);
2388 ev_prepare_start (EV_A_ &w->prepare); 3085 ev_prepare_start (EV_A_ &w->prepare);
2389 3086
3087 ev_fork_init (&w->fork, embed_fork_cb);
3088 ev_fork_start (EV_A_ &w->fork);
3089
2390 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3090 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2391 3091
2392 ev_start (EV_A_ (W)w, 1); 3092 ev_start (EV_A_ (W)w, 1);
3093
3094 EV_FREQUENT_CHECK;
2393} 3095}
2394 3096
2395void 3097void
2396ev_embed_stop (EV_P_ ev_embed *w) 3098ev_embed_stop (EV_P_ ev_embed *w)
2397{ 3099{
2398 clear_pending (EV_A_ (W)w); 3100 clear_pending (EV_A_ (W)w);
2399 if (expect_false (!ev_is_active (w))) 3101 if (expect_false (!ev_is_active (w)))
2400 return; 3102 return;
2401 3103
3104 EV_FREQUENT_CHECK;
3105
2402 ev_io_stop (EV_A_ &w->io); 3106 ev_io_stop (EV_A_ &w->io);
2403 ev_prepare_stop (EV_A_ &w->prepare); 3107 ev_prepare_stop (EV_A_ &w->prepare);
3108 ev_fork_stop (EV_A_ &w->fork);
2404 3109
2405 ev_stop (EV_A_ (W)w); 3110 EV_FREQUENT_CHECK;
2406} 3111}
2407#endif 3112#endif
2408 3113
2409#if EV_FORK_ENABLE 3114#if EV_FORK_ENABLE
2410void 3115void
2411ev_fork_start (EV_P_ ev_fork *w) 3116ev_fork_start (EV_P_ ev_fork *w)
2412{ 3117{
2413 if (expect_false (ev_is_active (w))) 3118 if (expect_false (ev_is_active (w)))
2414 return; 3119 return;
3120
3121 EV_FREQUENT_CHECK;
2415 3122
2416 ev_start (EV_A_ (W)w, ++forkcnt); 3123 ev_start (EV_A_ (W)w, ++forkcnt);
2417 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3124 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2418 forks [forkcnt - 1] = w; 3125 forks [forkcnt - 1] = w;
3126
3127 EV_FREQUENT_CHECK;
2419} 3128}
2420 3129
2421void 3130void
2422ev_fork_stop (EV_P_ ev_fork *w) 3131ev_fork_stop (EV_P_ ev_fork *w)
2423{ 3132{
2424 clear_pending (EV_A_ (W)w); 3133 clear_pending (EV_A_ (W)w);
2425 if (expect_false (!ev_is_active (w))) 3134 if (expect_false (!ev_is_active (w)))
2426 return; 3135 return;
2427 3136
3137 EV_FREQUENT_CHECK;
3138
2428 { 3139 {
2429 int active = ((W)w)->active; 3140 int active = ev_active (w);
3141
2430 forks [active - 1] = forks [--forkcnt]; 3142 forks [active - 1] = forks [--forkcnt];
2431 ((W)forks [active - 1])->active = active; 3143 ev_active (forks [active - 1]) = active;
2432 } 3144 }
2433 3145
2434 ev_stop (EV_A_ (W)w); 3146 ev_stop (EV_A_ (W)w);
3147
3148 EV_FREQUENT_CHECK;
2435} 3149}
2436#endif 3150#endif
2437 3151
2438#if EV_ASYNC_ENABLE 3152#if EV_ASYNC_ENABLE
2439void 3153void
2441{ 3155{
2442 if (expect_false (ev_is_active (w))) 3156 if (expect_false (ev_is_active (w)))
2443 return; 3157 return;
2444 3158
2445 evpipe_init (EV_A); 3159 evpipe_init (EV_A);
3160
3161 EV_FREQUENT_CHECK;
2446 3162
2447 ev_start (EV_A_ (W)w, ++asynccnt); 3163 ev_start (EV_A_ (W)w, ++asynccnt);
2448 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3164 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2449 asyncs [asynccnt - 1] = w; 3165 asyncs [asynccnt - 1] = w;
3166
3167 EV_FREQUENT_CHECK;
2450} 3168}
2451 3169
2452void 3170void
2453ev_async_stop (EV_P_ ev_async *w) 3171ev_async_stop (EV_P_ ev_async *w)
2454{ 3172{
2455 clear_pending (EV_A_ (W)w); 3173 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w))) 3174 if (expect_false (!ev_is_active (w)))
2457 return; 3175 return;
2458 3176
3177 EV_FREQUENT_CHECK;
3178
2459 { 3179 {
2460 int active = ((W)w)->active; 3180 int active = ev_active (w);
3181
2461 asyncs [active - 1] = asyncs [--asynccnt]; 3182 asyncs [active - 1] = asyncs [--asynccnt];
2462 ((W)asyncs [active - 1])->active = active; 3183 ev_active (asyncs [active - 1]) = active;
2463 } 3184 }
2464 3185
2465 ev_stop (EV_A_ (W)w); 3186 ev_stop (EV_A_ (W)w);
3187
3188 EV_FREQUENT_CHECK;
2466} 3189}
2467 3190
2468void 3191void
2469ev_async_send (EV_P_ ev_async *w) 3192ev_async_send (EV_P_ ev_async *w)
2470{ 3193{
2471 w->sent = 1; 3194 w->sent = 1;
2472 evpipe_write (EV_A_ 0, 1); 3195 evpipe_write (EV_A_ &gotasync);
2473} 3196}
2474#endif 3197#endif
2475 3198
2476/*****************************************************************************/ 3199/*****************************************************************************/
2477 3200
2487once_cb (EV_P_ struct ev_once *once, int revents) 3210once_cb (EV_P_ struct ev_once *once, int revents)
2488{ 3211{
2489 void (*cb)(int revents, void *arg) = once->cb; 3212 void (*cb)(int revents, void *arg) = once->cb;
2490 void *arg = once->arg; 3213 void *arg = once->arg;
2491 3214
2492 ev_io_stop (EV_A_ &once->io); 3215 ev_io_stop (EV_A_ &once->io);
2493 ev_timer_stop (EV_A_ &once->to); 3216 ev_timer_stop (EV_A_ &once->to);
2494 ev_free (once); 3217 ev_free (once);
2495 3218
2496 cb (revents, arg); 3219 cb (revents, arg);
2497} 3220}
2498 3221
2499static void 3222static void
2500once_cb_io (EV_P_ ev_io *w, int revents) 3223once_cb_io (EV_P_ ev_io *w, int revents)
2501{ 3224{
2502 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3225 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3226
3227 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2503} 3228}
2504 3229
2505static void 3230static void
2506once_cb_to (EV_P_ ev_timer *w, int revents) 3231once_cb_to (EV_P_ ev_timer *w, int revents)
2507{ 3232{
2508 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3233 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3234
3235 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2509} 3236}
2510 3237
2511void 3238void
2512ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3239ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2513{ 3240{
2535 ev_timer_set (&once->to, timeout, 0.); 3262 ev_timer_set (&once->to, timeout, 0.);
2536 ev_timer_start (EV_A_ &once->to); 3263 ev_timer_start (EV_A_ &once->to);
2537 } 3264 }
2538} 3265}
2539 3266
3267/*****************************************************************************/
3268
3269#if EV_WALK_ENABLE
3270void
3271ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3272{
3273 int i, j;
3274 ev_watcher_list *wl, *wn;
3275
3276 if (types & (EV_IO | EV_EMBED))
3277 for (i = 0; i < anfdmax; ++i)
3278 for (wl = anfds [i].head; wl; )
3279 {
3280 wn = wl->next;
3281
3282#if EV_EMBED_ENABLE
3283 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3284 {
3285 if (types & EV_EMBED)
3286 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3287 }
3288 else
3289#endif
3290#if EV_USE_INOTIFY
3291 if (ev_cb ((ev_io *)wl) == infy_cb)
3292 ;
3293 else
3294#endif
3295 if ((ev_io *)wl != &pipe_w)
3296 if (types & EV_IO)
3297 cb (EV_A_ EV_IO, wl);
3298
3299 wl = wn;
3300 }
3301
3302 if (types & (EV_TIMER | EV_STAT))
3303 for (i = timercnt + HEAP0; i-- > HEAP0; )
3304#if EV_STAT_ENABLE
3305 /*TODO: timer is not always active*/
3306 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3307 {
3308 if (types & EV_STAT)
3309 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3310 }
3311 else
3312#endif
3313 if (types & EV_TIMER)
3314 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3315
3316#if EV_PERIODIC_ENABLE
3317 if (types & EV_PERIODIC)
3318 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3319 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3320#endif
3321
3322#if EV_IDLE_ENABLE
3323 if (types & EV_IDLE)
3324 for (j = NUMPRI; i--; )
3325 for (i = idlecnt [j]; i--; )
3326 cb (EV_A_ EV_IDLE, idles [j][i]);
3327#endif
3328
3329#if EV_FORK_ENABLE
3330 if (types & EV_FORK)
3331 for (i = forkcnt; i--; )
3332 if (ev_cb (forks [i]) != embed_fork_cb)
3333 cb (EV_A_ EV_FORK, forks [i]);
3334#endif
3335
3336#if EV_ASYNC_ENABLE
3337 if (types & EV_ASYNC)
3338 for (i = asynccnt; i--; )
3339 cb (EV_A_ EV_ASYNC, asyncs [i]);
3340#endif
3341
3342 if (types & EV_PREPARE)
3343 for (i = preparecnt; i--; )
3344#if EV_EMBED_ENABLE
3345 if (ev_cb (prepares [i]) != embed_prepare_cb)
3346#endif
3347 cb (EV_A_ EV_PREPARE, prepares [i]);
3348
3349 if (types & EV_CHECK)
3350 for (i = checkcnt; i--; )
3351 cb (EV_A_ EV_CHECK, checks [i]);
3352
3353 if (types & EV_SIGNAL)
3354 for (i = 0; i < signalmax; ++i)
3355 for (wl = signals [i].head; wl; )
3356 {
3357 wn = wl->next;
3358 cb (EV_A_ EV_SIGNAL, wl);
3359 wl = wn;
3360 }
3361
3362 if (types & EV_CHILD)
3363 for (i = EV_PID_HASHSIZE; i--; )
3364 for (wl = childs [i]; wl; )
3365 {
3366 wn = wl->next;
3367 cb (EV_A_ EV_CHILD, wl);
3368 wl = wn;
3369 }
3370/* EV_STAT 0x00001000 /* stat data changed */
3371/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3372}
3373#endif
3374
2540#if EV_MULTIPLICITY 3375#if EV_MULTIPLICITY
2541 #include "ev_wrap.h" 3376 #include "ev_wrap.h"
2542#endif 3377#endif
2543 3378
2544#ifdef __cplusplus 3379#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines