ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.221 by root, Sun Apr 6 12:44:49 2008 UTC vs.
Revision 1.294 by root, Wed Jul 8 02:46:05 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
126# define EV_USE_EVENTFD 1 140# define EV_USE_EVENTFD 1
127# else 141# else
128# define EV_USE_EVENTFD 0 142# define EV_USE_EVENTFD 0
129# endif 143# endif
130# endif 144# endif
131 145
132#endif 146#endif
133 147
134#include <math.h> 148#include <math.h>
135#include <stdlib.h> 149#include <stdlib.h>
136#include <fcntl.h> 150#include <fcntl.h>
154#ifndef _WIN32 168#ifndef _WIN32
155# include <sys/time.h> 169# include <sys/time.h>
156# include <sys/wait.h> 170# include <sys/wait.h>
157# include <unistd.h> 171# include <unistd.h>
158#else 172#else
173# include <io.h>
159# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 175# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
163# endif 178# endif
164#endif 179#endif
165 180
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
167 182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
190
168#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
169# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
170#endif 197#endif
171 198
172#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 201#endif
175 202
176#ifndef EV_USE_NANOSLEEP 203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
177# define EV_USE_NANOSLEEP 0 207# define EV_USE_NANOSLEEP 0
208# endif
178#endif 209#endif
179 210
180#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
182#endif 213#endif
235# else 266# else
236# define EV_USE_EVENTFD 0 267# define EV_USE_EVENTFD 0
237# endif 268# endif
238#endif 269#endif
239 270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 304
242#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
259# include <sys/select.h> 322# include <sys/select.h>
260# endif 323# endif
261#endif 324#endif
262 325
263#if EV_USE_INOTIFY 326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
264# include <sys/inotify.h> 329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
265#endif 335#endif
266 336
267#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 338# include <winsock.h>
269#endif 339#endif
270 340
271#if EV_USE_EVENTFD 341#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 343# include <stdint.h>
344# ifdef __cplusplus
345extern "C" {
346# endif
274int eventfd (unsigned int initval, int flags); 347int eventfd (unsigned int initval, int flags);
348# ifdef __cplusplus
349}
350# endif
275#endif 351#endif
276 352
277/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
278 360
279/* 361/*
280 * This is used to avoid floating point rounding problems. 362 * This is used to avoid floating point rounding problems.
281 * It is added to ev_rt_now when scheduling periodics 363 * It is added to ev_rt_now when scheduling periodics
282 * to ensure progress, time-wise, even when rounding 364 * to ensure progress, time-wise, even when rounding
294# define expect(expr,value) __builtin_expect ((expr),(value)) 376# define expect(expr,value) __builtin_expect ((expr),(value))
295# define noinline __attribute__ ((noinline)) 377# define noinline __attribute__ ((noinline))
296#else 378#else
297# define expect(expr,value) (expr) 379# define expect(expr,value) (expr)
298# define noinline 380# define noinline
299# if __STDC_VERSION__ < 199901L 381# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
300# define inline 382# define inline
301# endif 383# endif
302#endif 384#endif
303 385
304#define expect_false(expr) expect ((expr) != 0, 0) 386#define expect_false(expr) expect ((expr) != 0, 0)
319 401
320typedef ev_watcher *W; 402typedef ev_watcher *W;
321typedef ev_watcher_list *WL; 403typedef ev_watcher_list *WL;
322typedef ev_watcher_time *WT; 404typedef ev_watcher_time *WT;
323 405
324#if EV_USE_MONOTONIC 406#define ev_active(w) ((W)(w))->active
407#define ev_at(w) ((WT)(w))->at
408
409#if EV_USE_REALTIME
325/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 410/* sig_atomic_t is used to avoid per-thread variables or locking but still */
326/* giving it a reasonably high chance of working on typical architetcures */ 411/* giving it a reasonably high chance of working on typical architetcures */
412static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
413#endif
414
415#if EV_USE_MONOTONIC
327static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 416static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
328#endif 417#endif
329 418
330#ifdef _WIN32 419#ifdef _WIN32
331# include "ev_win32.c" 420# include "ev_win32.c"
340{ 429{
341 syserr_cb = cb; 430 syserr_cb = cb;
342} 431}
343 432
344static void noinline 433static void noinline
345syserr (const char *msg) 434ev_syserr (const char *msg)
346{ 435{
347 if (!msg) 436 if (!msg)
348 msg = "(libev) system error"; 437 msg = "(libev) system error";
349 438
350 if (syserr_cb) 439 if (syserr_cb)
354 perror (msg); 443 perror (msg);
355 abort (); 444 abort ();
356 } 445 }
357} 446}
358 447
448static void *
449ev_realloc_emul (void *ptr, long size)
450{
451 /* some systems, notably openbsd and darwin, fail to properly
452 * implement realloc (x, 0) (as required by both ansi c-98 and
453 * the single unix specification, so work around them here.
454 */
455
456 if (size)
457 return realloc (ptr, size);
458
459 free (ptr);
460 return 0;
461}
462
359static void *(*alloc)(void *ptr, long size); 463static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
360 464
361void 465void
362ev_set_allocator (void *(*cb)(void *ptr, long size)) 466ev_set_allocator (void *(*cb)(void *ptr, long size))
363{ 467{
364 alloc = cb; 468 alloc = cb;
365} 469}
366 470
367inline_speed void * 471inline_speed void *
368ev_realloc (void *ptr, long size) 472ev_realloc (void *ptr, long size)
369{ 473{
370 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 474 ptr = alloc (ptr, size);
371 475
372 if (!ptr && size) 476 if (!ptr && size)
373 { 477 {
374 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 478 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
375 abort (); 479 abort ();
381#define ev_malloc(size) ev_realloc (0, (size)) 485#define ev_malloc(size) ev_realloc (0, (size))
382#define ev_free(ptr) ev_realloc ((ptr), 0) 486#define ev_free(ptr) ev_realloc ((ptr), 0)
383 487
384/*****************************************************************************/ 488/*****************************************************************************/
385 489
490/* file descriptor info structure */
386typedef struct 491typedef struct
387{ 492{
388 WL head; 493 WL head;
389 unsigned char events; 494 unsigned char events; /* the events watched for */
495 unsigned char reify; /* flag set when this ANFD needs reification */
496 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
390 unsigned char reify; 497 unsigned char unused;
498#if EV_USE_EPOLL
499 unsigned int egen; /* generation counter to counter epoll bugs */
500#endif
391#if EV_SELECT_IS_WINSOCKET 501#if EV_SELECT_IS_WINSOCKET
392 SOCKET handle; 502 SOCKET handle;
393#endif 503#endif
394} ANFD; 504} ANFD;
395 505
506/* stores the pending event set for a given watcher */
396typedef struct 507typedef struct
397{ 508{
398 W w; 509 W w;
399 int events; 510 int events; /* the pending event set for the given watcher */
400} ANPENDING; 511} ANPENDING;
401 512
402#if EV_USE_INOTIFY 513#if EV_USE_INOTIFY
514/* hash table entry per inotify-id */
403typedef struct 515typedef struct
404{ 516{
405 WL head; 517 WL head;
406} ANFS; 518} ANFS;
519#endif
520
521/* Heap Entry */
522#if EV_HEAP_CACHE_AT
523 /* a heap element */
524 typedef struct {
525 ev_tstamp at;
526 WT w;
527 } ANHE;
528
529 #define ANHE_w(he) (he).w /* access watcher, read-write */
530 #define ANHE_at(he) (he).at /* access cached at, read-only */
531 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
532#else
533 /* a heap element */
534 typedef WT ANHE;
535
536 #define ANHE_w(he) (he)
537 #define ANHE_at(he) (he)->at
538 #define ANHE_at_cache(he)
407#endif 539#endif
408 540
409#if EV_MULTIPLICITY 541#if EV_MULTIPLICITY
410 542
411 struct ev_loop 543 struct ev_loop
432 564
433#endif 565#endif
434 566
435/*****************************************************************************/ 567/*****************************************************************************/
436 568
569#ifndef EV_HAVE_EV_TIME
437ev_tstamp 570ev_tstamp
438ev_time (void) 571ev_time (void)
439{ 572{
440#if EV_USE_REALTIME 573#if EV_USE_REALTIME
574 if (expect_true (have_realtime))
575 {
441 struct timespec ts; 576 struct timespec ts;
442 clock_gettime (CLOCK_REALTIME, &ts); 577 clock_gettime (CLOCK_REALTIME, &ts);
443 return ts.tv_sec + ts.tv_nsec * 1e-9; 578 return ts.tv_sec + ts.tv_nsec * 1e-9;
444#else 579 }
580#endif
581
445 struct timeval tv; 582 struct timeval tv;
446 gettimeofday (&tv, 0); 583 gettimeofday (&tv, 0);
447 return tv.tv_sec + tv.tv_usec * 1e-6; 584 return tv.tv_sec + tv.tv_usec * 1e-6;
448#endif
449} 585}
586#endif
450 587
451ev_tstamp inline_size 588inline_size ev_tstamp
452get_clock (void) 589get_clock (void)
453{ 590{
454#if EV_USE_MONOTONIC 591#if EV_USE_MONOTONIC
455 if (expect_true (have_monotonic)) 592 if (expect_true (have_monotonic))
456 { 593 {
489 struct timeval tv; 626 struct timeval tv;
490 627
491 tv.tv_sec = (time_t)delay; 628 tv.tv_sec = (time_t)delay;
492 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 629 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
493 630
631 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
632 /* somehting not guaranteed by newer posix versions, but guaranteed */
633 /* by older ones */
494 select (0, 0, 0, 0, &tv); 634 select (0, 0, 0, 0, &tv);
495#endif 635#endif
496 } 636 }
497} 637}
498 638
499/*****************************************************************************/ 639/*****************************************************************************/
500 640
501int inline_size 641#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
642
643/* find a suitable new size for the given array, */
644/* hopefully by rounding to a ncie-to-malloc size */
645inline_size int
502array_nextsize (int elem, int cur, int cnt) 646array_nextsize (int elem, int cur, int cnt)
503{ 647{
504 int ncur = cur + 1; 648 int ncur = cur + 1;
505 649
506 do 650 do
507 ncur <<= 1; 651 ncur <<= 1;
508 while (cnt > ncur); 652 while (cnt > ncur);
509 653
510 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 654 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
511 if (elem * ncur > 4096) 655 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
512 { 656 {
513 ncur *= elem; 657 ncur *= elem;
514 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 658 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
515 ncur = ncur - sizeof (void *) * 4; 659 ncur = ncur - sizeof (void *) * 4;
516 ncur /= elem; 660 ncur /= elem;
517 } 661 }
518 662
519 return ncur; 663 return ncur;
523array_realloc (int elem, void *base, int *cur, int cnt) 667array_realloc (int elem, void *base, int *cur, int cnt)
524{ 668{
525 *cur = array_nextsize (elem, *cur, cnt); 669 *cur = array_nextsize (elem, *cur, cnt);
526 return ev_realloc (base, elem * *cur); 670 return ev_realloc (base, elem * *cur);
527} 671}
672
673#define array_init_zero(base,count) \
674 memset ((void *)(base), 0, sizeof (*(base)) * (count))
528 675
529#define array_needsize(type,base,cur,cnt,init) \ 676#define array_needsize(type,base,cur,cnt,init) \
530 if (expect_false ((cnt) > (cur))) \ 677 if (expect_false ((cnt) > (cur))) \
531 { \ 678 { \
532 int ocur_ = (cur); \ 679 int ocur_ = (cur); \
544 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 691 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
545 } 692 }
546#endif 693#endif
547 694
548#define array_free(stem, idx) \ 695#define array_free(stem, idx) \
549 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 696 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
550 697
551/*****************************************************************************/ 698/*****************************************************************************/
699
700/* dummy callback for pending events */
701static void noinline
702pendingcb (EV_P_ ev_prepare *w, int revents)
703{
704}
552 705
553void noinline 706void noinline
554ev_feed_event (EV_P_ void *w, int revents) 707ev_feed_event (EV_P_ void *w, int revents)
555{ 708{
556 W w_ = (W)w; 709 W w_ = (W)w;
565 pendings [pri][w_->pending - 1].w = w_; 718 pendings [pri][w_->pending - 1].w = w_;
566 pendings [pri][w_->pending - 1].events = revents; 719 pendings [pri][w_->pending - 1].events = revents;
567 } 720 }
568} 721}
569 722
570void inline_speed 723inline_speed void
724feed_reverse (EV_P_ W w)
725{
726 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
727 rfeeds [rfeedcnt++] = w;
728}
729
730inline_size void
731feed_reverse_done (EV_P_ int revents)
732{
733 do
734 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
735 while (rfeedcnt);
736}
737
738inline_speed void
571queue_events (EV_P_ W *events, int eventcnt, int type) 739queue_events (EV_P_ W *events, int eventcnt, int type)
572{ 740{
573 int i; 741 int i;
574 742
575 for (i = 0; i < eventcnt; ++i) 743 for (i = 0; i < eventcnt; ++i)
576 ev_feed_event (EV_A_ events [i], type); 744 ev_feed_event (EV_A_ events [i], type);
577} 745}
578 746
579/*****************************************************************************/ 747/*****************************************************************************/
580 748
581void inline_size 749inline_speed void
582anfds_init (ANFD *base, int count)
583{
584 while (count--)
585 {
586 base->head = 0;
587 base->events = EV_NONE;
588 base->reify = 0;
589
590 ++base;
591 }
592}
593
594void inline_speed
595fd_event (EV_P_ int fd, int revents) 750fd_event (EV_P_ int fd, int revents)
596{ 751{
597 ANFD *anfd = anfds + fd; 752 ANFD *anfd = anfds + fd;
598 ev_io *w; 753 ev_io *w;
599 754
611{ 766{
612 if (fd >= 0 && fd < anfdmax) 767 if (fd >= 0 && fd < anfdmax)
613 fd_event (EV_A_ fd, revents); 768 fd_event (EV_A_ fd, revents);
614} 769}
615 770
616void inline_size 771/* make sure the external fd watch events are in-sync */
772/* with the kernel/libev internal state */
773inline_size void
617fd_reify (EV_P) 774fd_reify (EV_P)
618{ 775{
619 int i; 776 int i;
620 777
621 for (i = 0; i < fdchangecnt; ++i) 778 for (i = 0; i < fdchangecnt; ++i)
630 events |= (unsigned char)w->events; 787 events |= (unsigned char)w->events;
631 788
632#if EV_SELECT_IS_WINSOCKET 789#if EV_SELECT_IS_WINSOCKET
633 if (events) 790 if (events)
634 { 791 {
635 unsigned long argp; 792 unsigned long arg;
636 #ifdef EV_FD_TO_WIN32_HANDLE 793 #ifdef EV_FD_TO_WIN32_HANDLE
637 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 794 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
638 #else 795 #else
639 anfd->handle = _get_osfhandle (fd); 796 anfd->handle = _get_osfhandle (fd);
640 #endif 797 #endif
641 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 798 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
642 } 799 }
643#endif 800#endif
644 801
645 { 802 {
646 unsigned char o_events = anfd->events; 803 unsigned char o_events = anfd->events;
647 unsigned char o_reify = anfd->reify; 804 unsigned char o_reify = anfd->reify;
648 805
649 anfd->reify = 0; 806 anfd->reify = 0;
650 anfd->events = events; 807 anfd->events = events;
651 808
652 if (o_events != events || o_reify & EV_IOFDSET) 809 if (o_events != events || o_reify & EV__IOFDSET)
653 backend_modify (EV_A_ fd, o_events, events); 810 backend_modify (EV_A_ fd, o_events, events);
654 } 811 }
655 } 812 }
656 813
657 fdchangecnt = 0; 814 fdchangecnt = 0;
658} 815}
659 816
660void inline_size 817/* something about the given fd changed */
818inline_size void
661fd_change (EV_P_ int fd, int flags) 819fd_change (EV_P_ int fd, int flags)
662{ 820{
663 unsigned char reify = anfds [fd].reify; 821 unsigned char reify = anfds [fd].reify;
664 anfds [fd].reify |= flags; 822 anfds [fd].reify |= flags;
665 823
669 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 827 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
670 fdchanges [fdchangecnt - 1] = fd; 828 fdchanges [fdchangecnt - 1] = fd;
671 } 829 }
672} 830}
673 831
674void inline_speed 832/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
833inline_speed void
675fd_kill (EV_P_ int fd) 834fd_kill (EV_P_ int fd)
676{ 835{
677 ev_io *w; 836 ev_io *w;
678 837
679 while ((w = (ev_io *)anfds [fd].head)) 838 while ((w = (ev_io *)anfds [fd].head))
681 ev_io_stop (EV_A_ w); 840 ev_io_stop (EV_A_ w);
682 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 841 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
683 } 842 }
684} 843}
685 844
686int inline_size 845/* check whether the given fd is atcually valid, for error recovery */
846inline_size int
687fd_valid (int fd) 847fd_valid (int fd)
688{ 848{
689#ifdef _WIN32 849#ifdef _WIN32
690 return _get_osfhandle (fd) != -1; 850 return _get_osfhandle (fd) != -1;
691#else 851#else
699{ 859{
700 int fd; 860 int fd;
701 861
702 for (fd = 0; fd < anfdmax; ++fd) 862 for (fd = 0; fd < anfdmax; ++fd)
703 if (anfds [fd].events) 863 if (anfds [fd].events)
704 if (!fd_valid (fd) == -1 && errno == EBADF) 864 if (!fd_valid (fd) && errno == EBADF)
705 fd_kill (EV_A_ fd); 865 fd_kill (EV_A_ fd);
706} 866}
707 867
708/* called on ENOMEM in select/poll to kill some fds and retry */ 868/* called on ENOMEM in select/poll to kill some fds and retry */
709static void noinline 869static void noinline
727 887
728 for (fd = 0; fd < anfdmax; ++fd) 888 for (fd = 0; fd < anfdmax; ++fd)
729 if (anfds [fd].events) 889 if (anfds [fd].events)
730 { 890 {
731 anfds [fd].events = 0; 891 anfds [fd].events = 0;
892 anfds [fd].emask = 0;
732 fd_change (EV_A_ fd, EV_IOFDSET | 1); 893 fd_change (EV_A_ fd, EV__IOFDSET | 1);
733 } 894 }
734} 895}
735 896
736/*****************************************************************************/ 897/*****************************************************************************/
737 898
738void inline_speed 899/*
739upheap (WT *heap, int k) 900 * the heap functions want a real array index. array index 0 uis guaranteed to not
740{ 901 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
741 WT w = heap [k]; 902 * the branching factor of the d-tree.
903 */
742 904
743 while (k) 905/*
744 { 906 * at the moment we allow libev the luxury of two heaps,
745 int p = (k - 1) >> 1; 907 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
908 * which is more cache-efficient.
909 * the difference is about 5% with 50000+ watchers.
910 */
911#if EV_USE_4HEAP
746 912
747 if (heap [p]->at <= w->at) 913#define DHEAP 4
914#define HEAP0 (DHEAP - 1) /* index of first element in heap */
915#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
916#define UPHEAP_DONE(p,k) ((p) == (k))
917
918/* away from the root */
919inline_speed void
920downheap (ANHE *heap, int N, int k)
921{
922 ANHE he = heap [k];
923 ANHE *E = heap + N + HEAP0;
924
925 for (;;)
926 {
927 ev_tstamp minat;
928 ANHE *minpos;
929 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
930
931 /* find minimum child */
932 if (expect_true (pos + DHEAP - 1 < E))
933 {
934 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
935 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
936 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
937 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
938 }
939 else if (pos < E)
940 {
941 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
942 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
943 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
944 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
945 }
946 else
748 break; 947 break;
749 948
949 if (ANHE_at (he) <= minat)
950 break;
951
952 heap [k] = *minpos;
953 ev_active (ANHE_w (*minpos)) = k;
954
955 k = minpos - heap;
956 }
957
958 heap [k] = he;
959 ev_active (ANHE_w (he)) = k;
960}
961
962#else /* 4HEAP */
963
964#define HEAP0 1
965#define HPARENT(k) ((k) >> 1)
966#define UPHEAP_DONE(p,k) (!(p))
967
968/* away from the root */
969inline_speed void
970downheap (ANHE *heap, int N, int k)
971{
972 ANHE he = heap [k];
973
974 for (;;)
975 {
976 int c = k << 1;
977
978 if (c > N + HEAP0 - 1)
979 break;
980
981 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
982 ? 1 : 0;
983
984 if (ANHE_at (he) <= ANHE_at (heap [c]))
985 break;
986
987 heap [k] = heap [c];
988 ev_active (ANHE_w (heap [k])) = k;
989
990 k = c;
991 }
992
993 heap [k] = he;
994 ev_active (ANHE_w (he)) = k;
995}
996#endif
997
998/* towards the root */
999inline_speed void
1000upheap (ANHE *heap, int k)
1001{
1002 ANHE he = heap [k];
1003
1004 for (;;)
1005 {
1006 int p = HPARENT (k);
1007
1008 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1009 break;
1010
750 heap [k] = heap [p]; 1011 heap [k] = heap [p];
751 ((W)heap [k])->active = k + 1; 1012 ev_active (ANHE_w (heap [k])) = k;
752 k = p; 1013 k = p;
753 } 1014 }
754 1015
755 heap [k] = w; 1016 heap [k] = he;
756 ((W)heap [k])->active = k + 1; 1017 ev_active (ANHE_w (he)) = k;
757} 1018}
758 1019
759void inline_speed 1020/* move an element suitably so it is in a correct place */
760downheap (WT *heap, int N, int k) 1021inline_size void
761{
762 WT w = heap [k];
763
764 for (;;)
765 {
766 int c = (k << 1) + 1;
767
768 if (c >= N)
769 break;
770
771 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
772 ? 1 : 0;
773
774 if (w->at <= heap [c]->at)
775 break;
776
777 heap [k] = heap [c];
778 ((W)heap [k])->active = k + 1;
779
780 k = c;
781 }
782
783 heap [k] = w;
784 ((W)heap [k])->active = k + 1;
785}
786
787void inline_size
788adjustheap (WT *heap, int N, int k) 1022adjustheap (ANHE *heap, int N, int k)
789{ 1023{
1024 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
790 upheap (heap, k); 1025 upheap (heap, k);
1026 else
791 downheap (heap, N, k); 1027 downheap (heap, N, k);
1028}
1029
1030/* rebuild the heap: this function is used only once and executed rarely */
1031inline_size void
1032reheap (ANHE *heap, int N)
1033{
1034 int i;
1035
1036 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1037 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1038 for (i = 0; i < N; ++i)
1039 upheap (heap, i + HEAP0);
792} 1040}
793 1041
794/*****************************************************************************/ 1042/*****************************************************************************/
795 1043
1044/* associate signal watchers to a signal signal */
796typedef struct 1045typedef struct
797{ 1046{
798 WL head; 1047 WL head;
799 EV_ATOMIC_T gotsig; 1048 EV_ATOMIC_T gotsig;
800} ANSIG; 1049} ANSIG;
802static ANSIG *signals; 1051static ANSIG *signals;
803static int signalmax; 1052static int signalmax;
804 1053
805static EV_ATOMIC_T gotsig; 1054static EV_ATOMIC_T gotsig;
806 1055
807void inline_size
808signals_init (ANSIG *base, int count)
809{
810 while (count--)
811 {
812 base->head = 0;
813 base->gotsig = 0;
814
815 ++base;
816 }
817}
818
819/*****************************************************************************/ 1056/*****************************************************************************/
820 1057
821void inline_speed 1058/* used to prepare libev internal fd's */
1059/* this is not fork-safe */
1060inline_speed void
822fd_intern (int fd) 1061fd_intern (int fd)
823{ 1062{
824#ifdef _WIN32 1063#ifdef _WIN32
825 int arg = 1; 1064 unsigned long arg = 1;
826 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1065 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
827#else 1066#else
828 fcntl (fd, F_SETFD, FD_CLOEXEC); 1067 fcntl (fd, F_SETFD, FD_CLOEXEC);
829 fcntl (fd, F_SETFL, O_NONBLOCK); 1068 fcntl (fd, F_SETFL, O_NONBLOCK);
830#endif 1069#endif
831} 1070}
832 1071
833static void noinline 1072static void noinline
834evpipe_init (EV_P) 1073evpipe_init (EV_P)
835{ 1074{
836 if (!ev_is_active (&pipeev)) 1075 if (!ev_is_active (&pipe_w))
837 { 1076 {
838#if EV_USE_EVENTFD 1077#if EV_USE_EVENTFD
839 if ((evfd = eventfd (0, 0)) >= 0) 1078 if ((evfd = eventfd (0, 0)) >= 0)
840 { 1079 {
841 evpipe [0] = -1; 1080 evpipe [0] = -1;
842 fd_intern (evfd); 1081 fd_intern (evfd);
843 ev_io_set (&pipeev, evfd, EV_READ); 1082 ev_io_set (&pipe_w, evfd, EV_READ);
844 } 1083 }
845 else 1084 else
846#endif 1085#endif
847 { 1086 {
848 while (pipe (evpipe)) 1087 while (pipe (evpipe))
849 syserr ("(libev) error creating signal/async pipe"); 1088 ev_syserr ("(libev) error creating signal/async pipe");
850 1089
851 fd_intern (evpipe [0]); 1090 fd_intern (evpipe [0]);
852 fd_intern (evpipe [1]); 1091 fd_intern (evpipe [1]);
853 ev_io_set (&pipeev, evpipe [0], EV_READ); 1092 ev_io_set (&pipe_w, evpipe [0], EV_READ);
854 } 1093 }
855 1094
856 ev_io_start (EV_A_ &pipeev); 1095 ev_io_start (EV_A_ &pipe_w);
857 ev_unref (EV_A); /* watcher should not keep loop alive */ 1096 ev_unref (EV_A); /* watcher should not keep loop alive */
858 } 1097 }
859} 1098}
860 1099
861void inline_size 1100inline_size void
862evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1101evpipe_write (EV_P_ EV_ATOMIC_T *flag)
863{ 1102{
864 if (!*flag) 1103 if (!*flag)
865 { 1104 {
866 int old_errno = errno; /* save errno because write might clobber it */ 1105 int old_errno = errno; /* save errno because write might clobber it */
879 1118
880 errno = old_errno; 1119 errno = old_errno;
881 } 1120 }
882} 1121}
883 1122
1123/* called whenever the libev signal pipe */
1124/* got some events (signal, async) */
884static void 1125static void
885pipecb (EV_P_ ev_io *iow, int revents) 1126pipecb (EV_P_ ev_io *iow, int revents)
886{ 1127{
887#if EV_USE_EVENTFD 1128#if EV_USE_EVENTFD
888 if (evfd >= 0) 1129 if (evfd >= 0)
889 { 1130 {
890 uint64_t counter = 1; 1131 uint64_t counter;
891 read (evfd, &counter, sizeof (uint64_t)); 1132 read (evfd, &counter, sizeof (uint64_t));
892 } 1133 }
893 else 1134 else
894#endif 1135#endif
895 { 1136 {
944ev_feed_signal_event (EV_P_ int signum) 1185ev_feed_signal_event (EV_P_ int signum)
945{ 1186{
946 WL w; 1187 WL w;
947 1188
948#if EV_MULTIPLICITY 1189#if EV_MULTIPLICITY
949 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1190 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
950#endif 1191#endif
951 1192
952 --signum; 1193 --signum;
953 1194
954 if (signum < 0 || signum >= signalmax) 1195 if (signum < 0 || signum >= signalmax)
970 1211
971#ifndef WIFCONTINUED 1212#ifndef WIFCONTINUED
972# define WIFCONTINUED(status) 0 1213# define WIFCONTINUED(status) 0
973#endif 1214#endif
974 1215
975void inline_speed 1216/* handle a single child status event */
1217inline_speed void
976child_reap (EV_P_ int chain, int pid, int status) 1218child_reap (EV_P_ int chain, int pid, int status)
977{ 1219{
978 ev_child *w; 1220 ev_child *w;
979 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1221 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
980 1222
993 1235
994#ifndef WCONTINUED 1236#ifndef WCONTINUED
995# define WCONTINUED 0 1237# define WCONTINUED 0
996#endif 1238#endif
997 1239
1240/* called on sigchld etc., calls waitpid */
998static void 1241static void
999childcb (EV_P_ ev_signal *sw, int revents) 1242childcb (EV_P_ ev_signal *sw, int revents)
1000{ 1243{
1001 int pid, status; 1244 int pid, status;
1002 1245
1083 /* kqueue is borked on everything but netbsd apparently */ 1326 /* kqueue is borked on everything but netbsd apparently */
1084 /* it usually doesn't work correctly on anything but sockets and pipes */ 1327 /* it usually doesn't work correctly on anything but sockets and pipes */
1085 flags &= ~EVBACKEND_KQUEUE; 1328 flags &= ~EVBACKEND_KQUEUE;
1086#endif 1329#endif
1087#ifdef __APPLE__ 1330#ifdef __APPLE__
1088 // flags &= ~EVBACKEND_KQUEUE; for documentation 1331 /* only select works correctly on that "unix-certified" platform */
1089 flags &= ~EVBACKEND_POLL; 1332 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1333 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1090#endif 1334#endif
1091 1335
1092 return flags; 1336 return flags;
1093} 1337}
1094 1338
1114ev_loop_count (EV_P) 1358ev_loop_count (EV_P)
1115{ 1359{
1116 return loop_count; 1360 return loop_count;
1117} 1361}
1118 1362
1363unsigned int
1364ev_loop_depth (EV_P)
1365{
1366 return loop_depth;
1367}
1368
1119void 1369void
1120ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1370ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1121{ 1371{
1122 io_blocktime = interval; 1372 io_blocktime = interval;
1123} 1373}
1126ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1376ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1127{ 1377{
1128 timeout_blocktime = interval; 1378 timeout_blocktime = interval;
1129} 1379}
1130 1380
1381/* initialise a loop structure, must be zero-initialised */
1131static void noinline 1382static void noinline
1132loop_init (EV_P_ unsigned int flags) 1383loop_init (EV_P_ unsigned int flags)
1133{ 1384{
1134 if (!backend) 1385 if (!backend)
1135 { 1386 {
1387#if EV_USE_REALTIME
1388 if (!have_realtime)
1389 {
1390 struct timespec ts;
1391
1392 if (!clock_gettime (CLOCK_REALTIME, &ts))
1393 have_realtime = 1;
1394 }
1395#endif
1396
1136#if EV_USE_MONOTONIC 1397#if EV_USE_MONOTONIC
1398 if (!have_monotonic)
1137 { 1399 {
1138 struct timespec ts; 1400 struct timespec ts;
1401
1139 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1402 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1140 have_monotonic = 1; 1403 have_monotonic = 1;
1141 } 1404 }
1142#endif 1405#endif
1143 1406
1144 ev_rt_now = ev_time (); 1407 ev_rt_now = ev_time ();
1145 mn_now = get_clock (); 1408 mn_now = get_clock ();
1146 now_floor = mn_now; 1409 now_floor = mn_now;
1164 if (!(flags & EVFLAG_NOENV) 1427 if (!(flags & EVFLAG_NOENV)
1165 && !enable_secure () 1428 && !enable_secure ()
1166 && getenv ("LIBEV_FLAGS")) 1429 && getenv ("LIBEV_FLAGS"))
1167 flags = atoi (getenv ("LIBEV_FLAGS")); 1430 flags = atoi (getenv ("LIBEV_FLAGS"));
1168 1431
1169 if (!(flags & 0x0000ffffUL)) 1432 if (!(flags & 0x0000ffffU))
1170 flags |= ev_recommended_backends (); 1433 flags |= ev_recommended_backends ();
1171 1434
1172#if EV_USE_PORT 1435#if EV_USE_PORT
1173 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1436 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1174#endif 1437#endif
1183#endif 1446#endif
1184#if EV_USE_SELECT 1447#if EV_USE_SELECT
1185 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1448 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1186#endif 1449#endif
1187 1450
1451 ev_prepare_init (&pending_w, pendingcb);
1452
1188 ev_init (&pipeev, pipecb); 1453 ev_init (&pipe_w, pipecb);
1189 ev_set_priority (&pipeev, EV_MAXPRI); 1454 ev_set_priority (&pipe_w, EV_MAXPRI);
1190 } 1455 }
1191} 1456}
1192 1457
1458/* free up a loop structure */
1193static void noinline 1459static void noinline
1194loop_destroy (EV_P) 1460loop_destroy (EV_P)
1195{ 1461{
1196 int i; 1462 int i;
1197 1463
1198 if (ev_is_active (&pipeev)) 1464 if (ev_is_active (&pipe_w))
1199 { 1465 {
1200 ev_ref (EV_A); /* signal watcher */ 1466 ev_ref (EV_A); /* signal watcher */
1201 ev_io_stop (EV_A_ &pipeev); 1467 ev_io_stop (EV_A_ &pipe_w);
1202 1468
1203#if EV_USE_EVENTFD 1469#if EV_USE_EVENTFD
1204 if (evfd >= 0) 1470 if (evfd >= 0)
1205 close (evfd); 1471 close (evfd);
1206#endif 1472#endif
1245 } 1511 }
1246 1512
1247 ev_free (anfds); anfdmax = 0; 1513 ev_free (anfds); anfdmax = 0;
1248 1514
1249 /* have to use the microsoft-never-gets-it-right macro */ 1515 /* have to use the microsoft-never-gets-it-right macro */
1516 array_free (rfeed, EMPTY);
1250 array_free (fdchange, EMPTY); 1517 array_free (fdchange, EMPTY);
1251 array_free (timer, EMPTY); 1518 array_free (timer, EMPTY);
1252#if EV_PERIODIC_ENABLE 1519#if EV_PERIODIC_ENABLE
1253 array_free (periodic, EMPTY); 1520 array_free (periodic, EMPTY);
1254#endif 1521#endif
1262#endif 1529#endif
1263 1530
1264 backend = 0; 1531 backend = 0;
1265} 1532}
1266 1533
1534#if EV_USE_INOTIFY
1267void inline_size infy_fork (EV_P); 1535inline_size void infy_fork (EV_P);
1536#endif
1268 1537
1269void inline_size 1538inline_size void
1270loop_fork (EV_P) 1539loop_fork (EV_P)
1271{ 1540{
1272#if EV_USE_PORT 1541#if EV_USE_PORT
1273 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1542 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1274#endif 1543#endif
1280#endif 1549#endif
1281#if EV_USE_INOTIFY 1550#if EV_USE_INOTIFY
1282 infy_fork (EV_A); 1551 infy_fork (EV_A);
1283#endif 1552#endif
1284 1553
1285 if (ev_is_active (&pipeev)) 1554 if (ev_is_active (&pipe_w))
1286 { 1555 {
1287 /* this "locks" the handlers against writing to the pipe */ 1556 /* this "locks" the handlers against writing to the pipe */
1288 /* while we modify the fd vars */ 1557 /* while we modify the fd vars */
1289 gotsig = 1; 1558 gotsig = 1;
1290#if EV_ASYNC_ENABLE 1559#if EV_ASYNC_ENABLE
1291 gotasync = 1; 1560 gotasync = 1;
1292#endif 1561#endif
1293 1562
1294 ev_ref (EV_A); 1563 ev_ref (EV_A);
1295 ev_io_stop (EV_A_ &pipeev); 1564 ev_io_stop (EV_A_ &pipe_w);
1296 1565
1297#if EV_USE_EVENTFD 1566#if EV_USE_EVENTFD
1298 if (evfd >= 0) 1567 if (evfd >= 0)
1299 close (evfd); 1568 close (evfd);
1300#endif 1569#endif
1305 close (evpipe [1]); 1574 close (evpipe [1]);
1306 } 1575 }
1307 1576
1308 evpipe_init (EV_A); 1577 evpipe_init (EV_A);
1309 /* now iterate over everything, in case we missed something */ 1578 /* now iterate over everything, in case we missed something */
1310 pipecb (EV_A_ &pipeev, EV_READ); 1579 pipecb (EV_A_ &pipe_w, EV_READ);
1311 } 1580 }
1312 1581
1313 postfork = 0; 1582 postfork = 0;
1314} 1583}
1315 1584
1316#if EV_MULTIPLICITY 1585#if EV_MULTIPLICITY
1586
1317struct ev_loop * 1587struct ev_loop *
1318ev_loop_new (unsigned int flags) 1588ev_loop_new (unsigned int flags)
1319{ 1589{
1320 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1590 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1321 1591
1340ev_loop_fork (EV_P) 1610ev_loop_fork (EV_P)
1341{ 1611{
1342 postfork = 1; /* must be in line with ev_default_fork */ 1612 postfork = 1; /* must be in line with ev_default_fork */
1343} 1613}
1344 1614
1615#if EV_VERIFY
1616static void noinline
1617verify_watcher (EV_P_ W w)
1618{
1619 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1620
1621 if (w->pending)
1622 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1623}
1624
1625static void noinline
1626verify_heap (EV_P_ ANHE *heap, int N)
1627{
1628 int i;
1629
1630 for (i = HEAP0; i < N + HEAP0; ++i)
1631 {
1632 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1633 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1634 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1635
1636 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1637 }
1638}
1639
1640static void noinline
1641array_verify (EV_P_ W *ws, int cnt)
1642{
1643 while (cnt--)
1644 {
1645 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1646 verify_watcher (EV_A_ ws [cnt]);
1647 }
1648}
1649#endif
1650
1651void
1652ev_loop_verify (EV_P)
1653{
1654#if EV_VERIFY
1655 int i;
1656 WL w;
1657
1658 assert (activecnt >= -1);
1659
1660 assert (fdchangemax >= fdchangecnt);
1661 for (i = 0; i < fdchangecnt; ++i)
1662 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1663
1664 assert (anfdmax >= 0);
1665 for (i = 0; i < anfdmax; ++i)
1666 for (w = anfds [i].head; w; w = w->next)
1667 {
1668 verify_watcher (EV_A_ (W)w);
1669 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1670 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1671 }
1672
1673 assert (timermax >= timercnt);
1674 verify_heap (EV_A_ timers, timercnt);
1675
1676#if EV_PERIODIC_ENABLE
1677 assert (periodicmax >= periodiccnt);
1678 verify_heap (EV_A_ periodics, periodiccnt);
1679#endif
1680
1681 for (i = NUMPRI; i--; )
1682 {
1683 assert (pendingmax [i] >= pendingcnt [i]);
1684#if EV_IDLE_ENABLE
1685 assert (idleall >= 0);
1686 assert (idlemax [i] >= idlecnt [i]);
1687 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1688#endif
1689 }
1690
1691#if EV_FORK_ENABLE
1692 assert (forkmax >= forkcnt);
1693 array_verify (EV_A_ (W *)forks, forkcnt);
1694#endif
1695
1696#if EV_ASYNC_ENABLE
1697 assert (asyncmax >= asynccnt);
1698 array_verify (EV_A_ (W *)asyncs, asynccnt);
1699#endif
1700
1701 assert (preparemax >= preparecnt);
1702 array_verify (EV_A_ (W *)prepares, preparecnt);
1703
1704 assert (checkmax >= checkcnt);
1705 array_verify (EV_A_ (W *)checks, checkcnt);
1706
1707# if 0
1708 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1709 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1345#endif 1710# endif
1711#endif
1712}
1713
1714#endif /* multiplicity */
1346 1715
1347#if EV_MULTIPLICITY 1716#if EV_MULTIPLICITY
1348struct ev_loop * 1717struct ev_loop *
1349ev_default_loop_init (unsigned int flags) 1718ev_default_loop_init (unsigned int flags)
1350#else 1719#else
1383{ 1752{
1384#if EV_MULTIPLICITY 1753#if EV_MULTIPLICITY
1385 struct ev_loop *loop = ev_default_loop_ptr; 1754 struct ev_loop *loop = ev_default_loop_ptr;
1386#endif 1755#endif
1387 1756
1757 ev_default_loop_ptr = 0;
1758
1388#ifndef _WIN32 1759#ifndef _WIN32
1389 ev_ref (EV_A); /* child watcher */ 1760 ev_ref (EV_A); /* child watcher */
1390 ev_signal_stop (EV_A_ &childev); 1761 ev_signal_stop (EV_A_ &childev);
1391#endif 1762#endif
1392 1763
1398{ 1769{
1399#if EV_MULTIPLICITY 1770#if EV_MULTIPLICITY
1400 struct ev_loop *loop = ev_default_loop_ptr; 1771 struct ev_loop *loop = ev_default_loop_ptr;
1401#endif 1772#endif
1402 1773
1403 if (backend)
1404 postfork = 1; /* must be in line with ev_loop_fork */ 1774 postfork = 1; /* must be in line with ev_loop_fork */
1405} 1775}
1406 1776
1407/*****************************************************************************/ 1777/*****************************************************************************/
1408 1778
1409void 1779void
1410ev_invoke (EV_P_ void *w, int revents) 1780ev_invoke (EV_P_ void *w, int revents)
1411{ 1781{
1412 EV_CB_INVOKE ((W)w, revents); 1782 EV_CB_INVOKE ((W)w, revents);
1413} 1783}
1414 1784
1415void inline_speed 1785inline_speed void
1416call_pending (EV_P) 1786call_pending (EV_P)
1417{ 1787{
1418 int pri; 1788 int pri;
1419 1789
1420 for (pri = NUMPRI; pri--; ) 1790 for (pri = NUMPRI; pri--; )
1421 while (pendingcnt [pri]) 1791 while (pendingcnt [pri])
1422 { 1792 {
1423 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1793 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1424 1794
1425 if (expect_true (p->w))
1426 {
1427 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1795 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1796 /* ^ this is no longer true, as pending_w could be here */
1428 1797
1429 p->w->pending = 0; 1798 p->w->pending = 0;
1430 EV_CB_INVOKE (p->w, p->events); 1799 EV_CB_INVOKE (p->w, p->events);
1431 } 1800 EV_FREQUENT_CHECK;
1432 } 1801 }
1433} 1802}
1434 1803
1435void inline_size
1436timers_reify (EV_P)
1437{
1438 while (timercnt && ((WT)timers [0])->at <= mn_now)
1439 {
1440 ev_timer *w = (ev_timer *)timers [0];
1441
1442 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1443
1444 /* first reschedule or stop timer */
1445 if (w->repeat)
1446 {
1447 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1448
1449 ((WT)w)->at += w->repeat;
1450 if (((WT)w)->at < mn_now)
1451 ((WT)w)->at = mn_now;
1452
1453 downheap (timers, timercnt, 0);
1454 }
1455 else
1456 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1457
1458 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1459 }
1460}
1461
1462#if EV_PERIODIC_ENABLE
1463void inline_size
1464periodics_reify (EV_P)
1465{
1466 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1467 {
1468 ev_periodic *w = (ev_periodic *)periodics [0];
1469
1470 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1471
1472 /* first reschedule or stop timer */
1473 if (w->reschedule_cb)
1474 {
1475 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1476 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1477 downheap (periodics, periodiccnt, 0);
1478 }
1479 else if (w->interval)
1480 {
1481 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1482 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1483 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1484 downheap (periodics, periodiccnt, 0);
1485 }
1486 else
1487 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1488
1489 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1490 }
1491}
1492
1493static void noinline
1494periodics_reschedule (EV_P)
1495{
1496 int i;
1497
1498 /* adjust periodics after time jump */
1499 for (i = 0; i < periodiccnt; ++i)
1500 {
1501 ev_periodic *w = (ev_periodic *)periodics [i];
1502
1503 if (w->reschedule_cb)
1504 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1505 else if (w->interval)
1506 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1507 }
1508
1509 /* now rebuild the heap */
1510 for (i = periodiccnt >> 1; i--; )
1511 downheap (periodics, periodiccnt, i);
1512}
1513#endif
1514
1515#if EV_IDLE_ENABLE 1804#if EV_IDLE_ENABLE
1516void inline_size 1805/* make idle watchers pending. this handles the "call-idle */
1806/* only when higher priorities are idle" logic */
1807inline_size void
1517idle_reify (EV_P) 1808idle_reify (EV_P)
1518{ 1809{
1519 if (expect_false (idleall)) 1810 if (expect_false (idleall))
1520 { 1811 {
1521 int pri; 1812 int pri;
1533 } 1824 }
1534 } 1825 }
1535} 1826}
1536#endif 1827#endif
1537 1828
1538void inline_speed 1829/* make timers pending */
1830inline_size void
1831timers_reify (EV_P)
1832{
1833 EV_FREQUENT_CHECK;
1834
1835 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1836 {
1837 do
1838 {
1839 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1840
1841 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1842
1843 /* first reschedule or stop timer */
1844 if (w->repeat)
1845 {
1846 ev_at (w) += w->repeat;
1847 if (ev_at (w) < mn_now)
1848 ev_at (w) = mn_now;
1849
1850 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1851
1852 ANHE_at_cache (timers [HEAP0]);
1853 downheap (timers, timercnt, HEAP0);
1854 }
1855 else
1856 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1857
1858 EV_FREQUENT_CHECK;
1859 feed_reverse (EV_A_ (W)w);
1860 }
1861 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1862
1863 feed_reverse_done (EV_A_ EV_TIMEOUT);
1864 }
1865}
1866
1867#if EV_PERIODIC_ENABLE
1868/* make periodics pending */
1869inline_size void
1870periodics_reify (EV_P)
1871{
1872 EV_FREQUENT_CHECK;
1873
1874 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1875 {
1876 int feed_count = 0;
1877
1878 do
1879 {
1880 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1881
1882 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1883
1884 /* first reschedule or stop timer */
1885 if (w->reschedule_cb)
1886 {
1887 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1888
1889 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1890
1891 ANHE_at_cache (periodics [HEAP0]);
1892 downheap (periodics, periodiccnt, HEAP0);
1893 }
1894 else if (w->interval)
1895 {
1896 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1897 /* if next trigger time is not sufficiently in the future, put it there */
1898 /* this might happen because of floating point inexactness */
1899 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1900 {
1901 ev_at (w) += w->interval;
1902
1903 /* if interval is unreasonably low we might still have a time in the past */
1904 /* so correct this. this will make the periodic very inexact, but the user */
1905 /* has effectively asked to get triggered more often than possible */
1906 if (ev_at (w) < ev_rt_now)
1907 ev_at (w) = ev_rt_now;
1908 }
1909
1910 ANHE_at_cache (periodics [HEAP0]);
1911 downheap (periodics, periodiccnt, HEAP0);
1912 }
1913 else
1914 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1915
1916 EV_FREQUENT_CHECK;
1917 feed_reverse (EV_A_ (W)w);
1918 }
1919 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1920
1921 feed_reverse_done (EV_A_ EV_PERIODIC);
1922 }
1923}
1924
1925/* simply recalculate all periodics */
1926/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1927static void noinline
1928periodics_reschedule (EV_P)
1929{
1930 int i;
1931
1932 /* adjust periodics after time jump */
1933 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1934 {
1935 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1936
1937 if (w->reschedule_cb)
1938 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1939 else if (w->interval)
1940 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1941
1942 ANHE_at_cache (periodics [i]);
1943 }
1944
1945 reheap (periodics, periodiccnt);
1946}
1947#endif
1948
1949/* adjust all timers by a given offset */
1950static void noinline
1951timers_reschedule (EV_P_ ev_tstamp adjust)
1952{
1953 int i;
1954
1955 for (i = 0; i < timercnt; ++i)
1956 {
1957 ANHE *he = timers + i + HEAP0;
1958 ANHE_w (*he)->at += adjust;
1959 ANHE_at_cache (*he);
1960 }
1961}
1962
1963/* fetch new monotonic and realtime times from the kernel */
1964/* also detetc if there was a timejump, and act accordingly */
1965inline_speed void
1539time_update (EV_P_ ev_tstamp max_block) 1966time_update (EV_P_ ev_tstamp max_block)
1540{ 1967{
1541 int i;
1542
1543#if EV_USE_MONOTONIC 1968#if EV_USE_MONOTONIC
1544 if (expect_true (have_monotonic)) 1969 if (expect_true (have_monotonic))
1545 { 1970 {
1971 int i;
1546 ev_tstamp odiff = rtmn_diff; 1972 ev_tstamp odiff = rtmn_diff;
1547 1973
1548 mn_now = get_clock (); 1974 mn_now = get_clock ();
1549 1975
1550 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 1976 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1568 */ 1994 */
1569 for (i = 4; --i; ) 1995 for (i = 4; --i; )
1570 { 1996 {
1571 rtmn_diff = ev_rt_now - mn_now; 1997 rtmn_diff = ev_rt_now - mn_now;
1572 1998
1573 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1999 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1574 return; /* all is well */ 2000 return; /* all is well */
1575 2001
1576 ev_rt_now = ev_time (); 2002 ev_rt_now = ev_time ();
1577 mn_now = get_clock (); 2003 mn_now = get_clock ();
1578 now_floor = mn_now; 2004 now_floor = mn_now;
1579 } 2005 }
1580 2006
2007 /* no timer adjustment, as the monotonic clock doesn't jump */
2008 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1581# if EV_PERIODIC_ENABLE 2009# if EV_PERIODIC_ENABLE
1582 periodics_reschedule (EV_A); 2010 periodics_reschedule (EV_A);
1583# endif 2011# endif
1584 /* no timer adjustment, as the monotonic clock doesn't jump */
1585 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1586 } 2012 }
1587 else 2013 else
1588#endif 2014#endif
1589 { 2015 {
1590 ev_rt_now = ev_time (); 2016 ev_rt_now = ev_time ();
1591 2017
1592 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2018 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1593 { 2019 {
2020 /* adjust timers. this is easy, as the offset is the same for all of them */
2021 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1594#if EV_PERIODIC_ENABLE 2022#if EV_PERIODIC_ENABLE
1595 periodics_reschedule (EV_A); 2023 periodics_reschedule (EV_A);
1596#endif 2024#endif
1597 /* adjust timers. this is easy, as the offset is the same for all of them */
1598 for (i = 0; i < timercnt; ++i)
1599 ((WT)timers [i])->at += ev_rt_now - mn_now;
1600 } 2025 }
1601 2026
1602 mn_now = ev_rt_now; 2027 mn_now = ev_rt_now;
1603 } 2028 }
1604} 2029}
1605 2030
1606void 2031void
1607ev_ref (EV_P)
1608{
1609 ++activecnt;
1610}
1611
1612void
1613ev_unref (EV_P)
1614{
1615 --activecnt;
1616}
1617
1618static int loop_done;
1619
1620void
1621ev_loop (EV_P_ int flags) 2032ev_loop (EV_P_ int flags)
1622{ 2033{
2034 ++loop_depth;
2035
1623 loop_done = EVUNLOOP_CANCEL; 2036 loop_done = EVUNLOOP_CANCEL;
1624 2037
1625 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2038 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1626 2039
1627 do 2040 do
1628 { 2041 {
2042#if EV_VERIFY >= 2
2043 ev_loop_verify (EV_A);
2044#endif
2045
1629#ifndef _WIN32 2046#ifndef _WIN32
1630 if (expect_false (curpid)) /* penalise the forking check even more */ 2047 if (expect_false (curpid)) /* penalise the forking check even more */
1631 if (expect_false (getpid () != curpid)) 2048 if (expect_false (getpid () != curpid))
1632 { 2049 {
1633 curpid = getpid (); 2050 curpid = getpid ();
1650 { 2067 {
1651 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2068 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1652 call_pending (EV_A); 2069 call_pending (EV_A);
1653 } 2070 }
1654 2071
1655 if (expect_false (!activecnt))
1656 break;
1657
1658 /* we might have forked, so reify kernel state if necessary */ 2072 /* we might have forked, so reify kernel state if necessary */
1659 if (expect_false (postfork)) 2073 if (expect_false (postfork))
1660 loop_fork (EV_A); 2074 loop_fork (EV_A);
1661 2075
1662 /* update fd-related kernel structures */ 2076 /* update fd-related kernel structures */
1667 ev_tstamp waittime = 0.; 2081 ev_tstamp waittime = 0.;
1668 ev_tstamp sleeptime = 0.; 2082 ev_tstamp sleeptime = 0.;
1669 2083
1670 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2084 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1671 { 2085 {
2086 /* remember old timestamp for io_blocktime calculation */
2087 ev_tstamp prev_mn_now = mn_now;
2088
1672 /* update time to cancel out callback processing overhead */ 2089 /* update time to cancel out callback processing overhead */
1673 time_update (EV_A_ 1e100); 2090 time_update (EV_A_ 1e100);
1674 2091
1675 waittime = MAX_BLOCKTIME; 2092 waittime = MAX_BLOCKTIME;
1676 2093
1677 if (timercnt) 2094 if (timercnt)
1678 { 2095 {
1679 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2096 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1680 if (waittime > to) waittime = to; 2097 if (waittime > to) waittime = to;
1681 } 2098 }
1682 2099
1683#if EV_PERIODIC_ENABLE 2100#if EV_PERIODIC_ENABLE
1684 if (periodiccnt) 2101 if (periodiccnt)
1685 { 2102 {
1686 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2103 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1687 if (waittime > to) waittime = to; 2104 if (waittime > to) waittime = to;
1688 } 2105 }
1689#endif 2106#endif
1690 2107
2108 /* don't let timeouts decrease the waittime below timeout_blocktime */
1691 if (expect_false (waittime < timeout_blocktime)) 2109 if (expect_false (waittime < timeout_blocktime))
1692 waittime = timeout_blocktime; 2110 waittime = timeout_blocktime;
1693 2111
1694 sleeptime = waittime - backend_fudge; 2112 /* extra check because io_blocktime is commonly 0 */
1695
1696 if (expect_true (sleeptime > io_blocktime)) 2113 if (expect_false (io_blocktime))
1697 sleeptime = io_blocktime;
1698
1699 if (sleeptime)
1700 { 2114 {
2115 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2116
2117 if (sleeptime > waittime - backend_fudge)
2118 sleeptime = waittime - backend_fudge;
2119
2120 if (expect_true (sleeptime > 0.))
2121 {
1701 ev_sleep (sleeptime); 2122 ev_sleep (sleeptime);
1702 waittime -= sleeptime; 2123 waittime -= sleeptime;
2124 }
1703 } 2125 }
1704 } 2126 }
1705 2127
1706 ++loop_count; 2128 ++loop_count;
1707 backend_poll (EV_A_ waittime); 2129 backend_poll (EV_A_ waittime);
1733 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2155 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1734 )); 2156 ));
1735 2157
1736 if (loop_done == EVUNLOOP_ONE) 2158 if (loop_done == EVUNLOOP_ONE)
1737 loop_done = EVUNLOOP_CANCEL; 2159 loop_done = EVUNLOOP_CANCEL;
2160
2161 --loop_depth;
1738} 2162}
1739 2163
1740void 2164void
1741ev_unloop (EV_P_ int how) 2165ev_unloop (EV_P_ int how)
1742{ 2166{
1743 loop_done = how; 2167 loop_done = how;
1744} 2168}
1745 2169
2170void
2171ev_ref (EV_P)
2172{
2173 ++activecnt;
2174}
2175
2176void
2177ev_unref (EV_P)
2178{
2179 --activecnt;
2180}
2181
2182void
2183ev_now_update (EV_P)
2184{
2185 time_update (EV_A_ 1e100);
2186}
2187
2188void
2189ev_suspend (EV_P)
2190{
2191 ev_now_update (EV_A);
2192}
2193
2194void
2195ev_resume (EV_P)
2196{
2197 ev_tstamp mn_prev = mn_now;
2198
2199 ev_now_update (EV_A);
2200 timers_reschedule (EV_A_ mn_now - mn_prev);
2201#if EV_PERIODIC_ENABLE
2202 /* TODO: really do this? */
2203 periodics_reschedule (EV_A);
2204#endif
2205}
2206
1746/*****************************************************************************/ 2207/*****************************************************************************/
2208/* singly-linked list management, used when the expected list length is short */
1747 2209
1748void inline_size 2210inline_size void
1749wlist_add (WL *head, WL elem) 2211wlist_add (WL *head, WL elem)
1750{ 2212{
1751 elem->next = *head; 2213 elem->next = *head;
1752 *head = elem; 2214 *head = elem;
1753} 2215}
1754 2216
1755void inline_size 2217inline_size void
1756wlist_del (WL *head, WL elem) 2218wlist_del (WL *head, WL elem)
1757{ 2219{
1758 while (*head) 2220 while (*head)
1759 { 2221 {
1760 if (*head == elem) 2222 if (*head == elem)
1765 2227
1766 head = &(*head)->next; 2228 head = &(*head)->next;
1767 } 2229 }
1768} 2230}
1769 2231
1770void inline_speed 2232/* internal, faster, version of ev_clear_pending */
2233inline_speed void
1771clear_pending (EV_P_ W w) 2234clear_pending (EV_P_ W w)
1772{ 2235{
1773 if (w->pending) 2236 if (w->pending)
1774 { 2237 {
1775 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2238 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1776 w->pending = 0; 2239 w->pending = 0;
1777 } 2240 }
1778} 2241}
1779 2242
1780int 2243int
1784 int pending = w_->pending; 2247 int pending = w_->pending;
1785 2248
1786 if (expect_true (pending)) 2249 if (expect_true (pending))
1787 { 2250 {
1788 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2251 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2252 p->w = (W)&pending_w;
1789 w_->pending = 0; 2253 w_->pending = 0;
1790 p->w = 0;
1791 return p->events; 2254 return p->events;
1792 } 2255 }
1793 else 2256 else
1794 return 0; 2257 return 0;
1795} 2258}
1796 2259
1797void inline_size 2260inline_size void
1798pri_adjust (EV_P_ W w) 2261pri_adjust (EV_P_ W w)
1799{ 2262{
1800 int pri = w->priority; 2263 int pri = w->priority;
1801 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2264 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1802 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2265 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1803 w->priority = pri; 2266 w->priority = pri;
1804} 2267}
1805 2268
1806void inline_speed 2269inline_speed void
1807ev_start (EV_P_ W w, int active) 2270ev_start (EV_P_ W w, int active)
1808{ 2271{
1809 pri_adjust (EV_A_ w); 2272 pri_adjust (EV_A_ w);
1810 w->active = active; 2273 w->active = active;
1811 ev_ref (EV_A); 2274 ev_ref (EV_A);
1812} 2275}
1813 2276
1814void inline_size 2277inline_size void
1815ev_stop (EV_P_ W w) 2278ev_stop (EV_P_ W w)
1816{ 2279{
1817 ev_unref (EV_A); 2280 ev_unref (EV_A);
1818 w->active = 0; 2281 w->active = 0;
1819} 2282}
1826 int fd = w->fd; 2289 int fd = w->fd;
1827 2290
1828 if (expect_false (ev_is_active (w))) 2291 if (expect_false (ev_is_active (w)))
1829 return; 2292 return;
1830 2293
1831 assert (("ev_io_start called with negative fd", fd >= 0)); 2294 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2295 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2296
2297 EV_FREQUENT_CHECK;
1832 2298
1833 ev_start (EV_A_ (W)w, 1); 2299 ev_start (EV_A_ (W)w, 1);
1834 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2300 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1835 wlist_add (&anfds[fd].head, (WL)w); 2301 wlist_add (&anfds[fd].head, (WL)w);
1836 2302
1837 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2303 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1838 w->events &= ~EV_IOFDSET; 2304 w->events &= ~EV__IOFDSET;
2305
2306 EV_FREQUENT_CHECK;
1839} 2307}
1840 2308
1841void noinline 2309void noinline
1842ev_io_stop (EV_P_ ev_io *w) 2310ev_io_stop (EV_P_ ev_io *w)
1843{ 2311{
1844 clear_pending (EV_A_ (W)w); 2312 clear_pending (EV_A_ (W)w);
1845 if (expect_false (!ev_is_active (w))) 2313 if (expect_false (!ev_is_active (w)))
1846 return; 2314 return;
1847 2315
1848 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2316 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2317
2318 EV_FREQUENT_CHECK;
1849 2319
1850 wlist_del (&anfds[w->fd].head, (WL)w); 2320 wlist_del (&anfds[w->fd].head, (WL)w);
1851 ev_stop (EV_A_ (W)w); 2321 ev_stop (EV_A_ (W)w);
1852 2322
1853 fd_change (EV_A_ w->fd, 1); 2323 fd_change (EV_A_ w->fd, 1);
2324
2325 EV_FREQUENT_CHECK;
1854} 2326}
1855 2327
1856void noinline 2328void noinline
1857ev_timer_start (EV_P_ ev_timer *w) 2329ev_timer_start (EV_P_ ev_timer *w)
1858{ 2330{
1859 if (expect_false (ev_is_active (w))) 2331 if (expect_false (ev_is_active (w)))
1860 return; 2332 return;
1861 2333
1862 ((WT)w)->at += mn_now; 2334 ev_at (w) += mn_now;
1863 2335
1864 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2336 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1865 2337
2338 EV_FREQUENT_CHECK;
2339
2340 ++timercnt;
1866 ev_start (EV_A_ (W)w, ++timercnt); 2341 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1867 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2342 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1868 timers [timercnt - 1] = (WT)w; 2343 ANHE_w (timers [ev_active (w)]) = (WT)w;
1869 upheap (timers, timercnt - 1); 2344 ANHE_at_cache (timers [ev_active (w)]);
2345 upheap (timers, ev_active (w));
1870 2346
2347 EV_FREQUENT_CHECK;
2348
1871 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2349 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1872} 2350}
1873 2351
1874void noinline 2352void noinline
1875ev_timer_stop (EV_P_ ev_timer *w) 2353ev_timer_stop (EV_P_ ev_timer *w)
1876{ 2354{
1877 clear_pending (EV_A_ (W)w); 2355 clear_pending (EV_A_ (W)w);
1878 if (expect_false (!ev_is_active (w))) 2356 if (expect_false (!ev_is_active (w)))
1879 return; 2357 return;
1880 2358
1881 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2359 EV_FREQUENT_CHECK;
1882 2360
1883 { 2361 {
1884 int active = ((W)w)->active; 2362 int active = ev_active (w);
1885 2363
2364 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2365
2366 --timercnt;
2367
1886 if (expect_true (--active < --timercnt)) 2368 if (expect_true (active < timercnt + HEAP0))
1887 { 2369 {
1888 timers [active] = timers [timercnt]; 2370 timers [active] = timers [timercnt + HEAP0];
1889 adjustheap (timers, timercnt, active); 2371 adjustheap (timers, timercnt, active);
1890 } 2372 }
1891 } 2373 }
1892 2374
1893 ((WT)w)->at -= mn_now; 2375 EV_FREQUENT_CHECK;
2376
2377 ev_at (w) -= mn_now;
1894 2378
1895 ev_stop (EV_A_ (W)w); 2379 ev_stop (EV_A_ (W)w);
1896} 2380}
1897 2381
1898void noinline 2382void noinline
1899ev_timer_again (EV_P_ ev_timer *w) 2383ev_timer_again (EV_P_ ev_timer *w)
1900{ 2384{
2385 EV_FREQUENT_CHECK;
2386
1901 if (ev_is_active (w)) 2387 if (ev_is_active (w))
1902 { 2388 {
1903 if (w->repeat) 2389 if (w->repeat)
1904 { 2390 {
1905 ((WT)w)->at = mn_now + w->repeat; 2391 ev_at (w) = mn_now + w->repeat;
2392 ANHE_at_cache (timers [ev_active (w)]);
1906 adjustheap (timers, timercnt, ((W)w)->active - 1); 2393 adjustheap (timers, timercnt, ev_active (w));
1907 } 2394 }
1908 else 2395 else
1909 ev_timer_stop (EV_A_ w); 2396 ev_timer_stop (EV_A_ w);
1910 } 2397 }
1911 else if (w->repeat) 2398 else if (w->repeat)
1912 { 2399 {
1913 w->at = w->repeat; 2400 ev_at (w) = w->repeat;
1914 ev_timer_start (EV_A_ w); 2401 ev_timer_start (EV_A_ w);
1915 } 2402 }
2403
2404 EV_FREQUENT_CHECK;
1916} 2405}
1917 2406
1918#if EV_PERIODIC_ENABLE 2407#if EV_PERIODIC_ENABLE
1919void noinline 2408void noinline
1920ev_periodic_start (EV_P_ ev_periodic *w) 2409ev_periodic_start (EV_P_ ev_periodic *w)
1921{ 2410{
1922 if (expect_false (ev_is_active (w))) 2411 if (expect_false (ev_is_active (w)))
1923 return; 2412 return;
1924 2413
1925 if (w->reschedule_cb) 2414 if (w->reschedule_cb)
1926 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2415 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1927 else if (w->interval) 2416 else if (w->interval)
1928 { 2417 {
1929 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2418 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1930 /* this formula differs from the one in periodic_reify because we do not always round up */ 2419 /* this formula differs from the one in periodic_reify because we do not always round up */
1931 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2420 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1932 } 2421 }
1933 else 2422 else
1934 ((WT)w)->at = w->offset; 2423 ev_at (w) = w->offset;
1935 2424
2425 EV_FREQUENT_CHECK;
2426
2427 ++periodiccnt;
1936 ev_start (EV_A_ (W)w, ++periodiccnt); 2428 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1937 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2429 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1938 periodics [periodiccnt - 1] = (WT)w; 2430 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1939 upheap (periodics, periodiccnt - 1); 2431 ANHE_at_cache (periodics [ev_active (w)]);
2432 upheap (periodics, ev_active (w));
1940 2433
2434 EV_FREQUENT_CHECK;
2435
1941 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2436 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1942} 2437}
1943 2438
1944void noinline 2439void noinline
1945ev_periodic_stop (EV_P_ ev_periodic *w) 2440ev_periodic_stop (EV_P_ ev_periodic *w)
1946{ 2441{
1947 clear_pending (EV_A_ (W)w); 2442 clear_pending (EV_A_ (W)w);
1948 if (expect_false (!ev_is_active (w))) 2443 if (expect_false (!ev_is_active (w)))
1949 return; 2444 return;
1950 2445
1951 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2446 EV_FREQUENT_CHECK;
1952 2447
1953 { 2448 {
1954 int active = ((W)w)->active; 2449 int active = ev_active (w);
1955 2450
2451 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2452
2453 --periodiccnt;
2454
1956 if (expect_true (--active < --periodiccnt)) 2455 if (expect_true (active < periodiccnt + HEAP0))
1957 { 2456 {
1958 periodics [active] = periodics [periodiccnt]; 2457 periodics [active] = periodics [periodiccnt + HEAP0];
1959 adjustheap (periodics, periodiccnt, active); 2458 adjustheap (periodics, periodiccnt, active);
1960 } 2459 }
1961 } 2460 }
1962 2461
2462 EV_FREQUENT_CHECK;
2463
1963 ev_stop (EV_A_ (W)w); 2464 ev_stop (EV_A_ (W)w);
1964} 2465}
1965 2466
1966void noinline 2467void noinline
1967ev_periodic_again (EV_P_ ev_periodic *w) 2468ev_periodic_again (EV_P_ ev_periodic *w)
1978 2479
1979void noinline 2480void noinline
1980ev_signal_start (EV_P_ ev_signal *w) 2481ev_signal_start (EV_P_ ev_signal *w)
1981{ 2482{
1982#if EV_MULTIPLICITY 2483#if EV_MULTIPLICITY
1983 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2484 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1984#endif 2485#endif
1985 if (expect_false (ev_is_active (w))) 2486 if (expect_false (ev_is_active (w)))
1986 return; 2487 return;
1987 2488
1988 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2489 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
1989 2490
1990 evpipe_init (EV_A); 2491 evpipe_init (EV_A);
2492
2493 EV_FREQUENT_CHECK;
1991 2494
1992 { 2495 {
1993#ifndef _WIN32 2496#ifndef _WIN32
1994 sigset_t full, prev; 2497 sigset_t full, prev;
1995 sigfillset (&full); 2498 sigfillset (&full);
1996 sigprocmask (SIG_SETMASK, &full, &prev); 2499 sigprocmask (SIG_SETMASK, &full, &prev);
1997#endif 2500#endif
1998 2501
1999 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2502 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2000 2503
2001#ifndef _WIN32 2504#ifndef _WIN32
2002 sigprocmask (SIG_SETMASK, &prev, 0); 2505 sigprocmask (SIG_SETMASK, &prev, 0);
2003#endif 2506#endif
2004 } 2507 }
2016 sigfillset (&sa.sa_mask); 2519 sigfillset (&sa.sa_mask);
2017 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2520 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2018 sigaction (w->signum, &sa, 0); 2521 sigaction (w->signum, &sa, 0);
2019#endif 2522#endif
2020 } 2523 }
2524
2525 EV_FREQUENT_CHECK;
2021} 2526}
2022 2527
2023void noinline 2528void noinline
2024ev_signal_stop (EV_P_ ev_signal *w) 2529ev_signal_stop (EV_P_ ev_signal *w)
2025{ 2530{
2026 clear_pending (EV_A_ (W)w); 2531 clear_pending (EV_A_ (W)w);
2027 if (expect_false (!ev_is_active (w))) 2532 if (expect_false (!ev_is_active (w)))
2028 return; 2533 return;
2029 2534
2535 EV_FREQUENT_CHECK;
2536
2030 wlist_del (&signals [w->signum - 1].head, (WL)w); 2537 wlist_del (&signals [w->signum - 1].head, (WL)w);
2031 ev_stop (EV_A_ (W)w); 2538 ev_stop (EV_A_ (W)w);
2032 2539
2033 if (!signals [w->signum - 1].head) 2540 if (!signals [w->signum - 1].head)
2034 signal (w->signum, SIG_DFL); 2541 signal (w->signum, SIG_DFL);
2542
2543 EV_FREQUENT_CHECK;
2035} 2544}
2036 2545
2037void 2546void
2038ev_child_start (EV_P_ ev_child *w) 2547ev_child_start (EV_P_ ev_child *w)
2039{ 2548{
2040#if EV_MULTIPLICITY 2549#if EV_MULTIPLICITY
2041 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2550 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2042#endif 2551#endif
2043 if (expect_false (ev_is_active (w))) 2552 if (expect_false (ev_is_active (w)))
2044 return; 2553 return;
2045 2554
2555 EV_FREQUENT_CHECK;
2556
2046 ev_start (EV_A_ (W)w, 1); 2557 ev_start (EV_A_ (W)w, 1);
2047 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2558 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2559
2560 EV_FREQUENT_CHECK;
2048} 2561}
2049 2562
2050void 2563void
2051ev_child_stop (EV_P_ ev_child *w) 2564ev_child_stop (EV_P_ ev_child *w)
2052{ 2565{
2053 clear_pending (EV_A_ (W)w); 2566 clear_pending (EV_A_ (W)w);
2054 if (expect_false (!ev_is_active (w))) 2567 if (expect_false (!ev_is_active (w)))
2055 return; 2568 return;
2056 2569
2570 EV_FREQUENT_CHECK;
2571
2057 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2572 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2058 ev_stop (EV_A_ (W)w); 2573 ev_stop (EV_A_ (W)w);
2574
2575 EV_FREQUENT_CHECK;
2059} 2576}
2060 2577
2061#if EV_STAT_ENABLE 2578#if EV_STAT_ENABLE
2062 2579
2063# ifdef _WIN32 2580# ifdef _WIN32
2064# undef lstat 2581# undef lstat
2065# define lstat(a,b) _stati64 (a,b) 2582# define lstat(a,b) _stati64 (a,b)
2066# endif 2583# endif
2067 2584
2068#define DEF_STAT_INTERVAL 5.0074891 2585#define DEF_STAT_INTERVAL 5.0074891
2586#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2069#define MIN_STAT_INTERVAL 0.1074891 2587#define MIN_STAT_INTERVAL 0.1074891
2070 2588
2071static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2589static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2072 2590
2073#if EV_USE_INOTIFY 2591#if EV_USE_INOTIFY
2074# define EV_INOTIFY_BUFSIZE 8192 2592# define EV_INOTIFY_BUFSIZE 8192
2078{ 2596{
2079 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2597 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2080 2598
2081 if (w->wd < 0) 2599 if (w->wd < 0)
2082 { 2600 {
2601 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2083 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2602 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2084 2603
2085 /* monitor some parent directory for speedup hints */ 2604 /* monitor some parent directory for speedup hints */
2605 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2606 /* but an efficiency issue only */
2086 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2607 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2087 { 2608 {
2088 char path [4096]; 2609 char path [4096];
2089 strcpy (path, w->path); 2610 strcpy (path, w->path);
2090 2611
2093 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2614 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2094 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2615 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2095 2616
2096 char *pend = strrchr (path, '/'); 2617 char *pend = strrchr (path, '/');
2097 2618
2098 if (!pend) 2619 if (!pend || pend == path)
2099 break; /* whoops, no '/', complain to your admin */ 2620 break;
2100 2621
2101 *pend = 0; 2622 *pend = 0;
2102 w->wd = inotify_add_watch (fs_fd, path, mask); 2623 w->wd = inotify_add_watch (fs_fd, path, mask);
2103 } 2624 }
2104 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2625 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2105 } 2626 }
2106 } 2627 }
2107 else
2108 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2109 2628
2110 if (w->wd >= 0) 2629 if (w->wd >= 0)
2630 {
2111 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2631 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2632
2633 /* now local changes will be tracked by inotify, but remote changes won't */
2634 /* unless the filesystem it known to be local, we therefore still poll */
2635 /* also do poll on <2.6.25, but with normal frequency */
2636 struct statfs sfs;
2637
2638 if (fs_2625 && !statfs (w->path, &sfs))
2639 if (sfs.f_type == 0x1373 /* devfs */
2640 || sfs.f_type == 0xEF53 /* ext2/3 */
2641 || sfs.f_type == 0x3153464a /* jfs */
2642 || sfs.f_type == 0x52654973 /* reiser3 */
2643 || sfs.f_type == 0x01021994 /* tempfs */
2644 || sfs.f_type == 0x58465342 /* xfs */)
2645 return;
2646
2647 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2648 ev_timer_again (EV_A_ &w->timer);
2649 }
2112} 2650}
2113 2651
2114static void noinline 2652static void noinline
2115infy_del (EV_P_ ev_stat *w) 2653infy_del (EV_P_ ev_stat *w)
2116{ 2654{
2130 2668
2131static void noinline 2669static void noinline
2132infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2670infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2133{ 2671{
2134 if (slot < 0) 2672 if (slot < 0)
2135 /* overflow, need to check for all hahs slots */ 2673 /* overflow, need to check for all hash slots */
2136 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2674 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2137 infy_wd (EV_A_ slot, wd, ev); 2675 infy_wd (EV_A_ slot, wd, ev);
2138 else 2676 else
2139 { 2677 {
2140 WL w_; 2678 WL w_;
2146 2684
2147 if (w->wd == wd || wd == -1) 2685 if (w->wd == wd || wd == -1)
2148 { 2686 {
2149 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2687 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2150 { 2688 {
2689 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2151 w->wd = -1; 2690 w->wd = -1;
2152 infy_add (EV_A_ w); /* re-add, no matter what */ 2691 infy_add (EV_A_ w); /* re-add, no matter what */
2153 } 2692 }
2154 2693
2155 stat_timer_cb (EV_A_ &w->timer, 0); 2694 stat_timer_cb (EV_A_ &w->timer, 0);
2168 2707
2169 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2708 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2170 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2709 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2171} 2710}
2172 2711
2173void inline_size 2712inline_size void
2713check_2625 (EV_P)
2714{
2715 /* kernels < 2.6.25 are borked
2716 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2717 */
2718 struct utsname buf;
2719 int major, minor, micro;
2720
2721 if (uname (&buf))
2722 return;
2723
2724 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2725 return;
2726
2727 if (major < 2
2728 || (major == 2 && minor < 6)
2729 || (major == 2 && minor == 6 && micro < 25))
2730 return;
2731
2732 fs_2625 = 1;
2733}
2734
2735inline_size void
2174infy_init (EV_P) 2736infy_init (EV_P)
2175{ 2737{
2176 if (fs_fd != -2) 2738 if (fs_fd != -2)
2177 return; 2739 return;
2740
2741 fs_fd = -1;
2742
2743 check_2625 (EV_A);
2178 2744
2179 fs_fd = inotify_init (); 2745 fs_fd = inotify_init ();
2180 2746
2181 if (fs_fd >= 0) 2747 if (fs_fd >= 0)
2182 { 2748 {
2184 ev_set_priority (&fs_w, EV_MAXPRI); 2750 ev_set_priority (&fs_w, EV_MAXPRI);
2185 ev_io_start (EV_A_ &fs_w); 2751 ev_io_start (EV_A_ &fs_w);
2186 } 2752 }
2187} 2753}
2188 2754
2189void inline_size 2755inline_size void
2190infy_fork (EV_P) 2756infy_fork (EV_P)
2191{ 2757{
2192 int slot; 2758 int slot;
2193 2759
2194 if (fs_fd < 0) 2760 if (fs_fd < 0)
2210 w->wd = -1; 2776 w->wd = -1;
2211 2777
2212 if (fs_fd >= 0) 2778 if (fs_fd >= 0)
2213 infy_add (EV_A_ w); /* re-add, no matter what */ 2779 infy_add (EV_A_ w); /* re-add, no matter what */
2214 else 2780 else
2215 ev_timer_start (EV_A_ &w->timer); 2781 ev_timer_again (EV_A_ &w->timer);
2216 } 2782 }
2217
2218 } 2783 }
2219} 2784}
2220 2785
2786#endif
2787
2788#ifdef _WIN32
2789# define EV_LSTAT(p,b) _stati64 (p, b)
2790#else
2791# define EV_LSTAT(p,b) lstat (p, b)
2221#endif 2792#endif
2222 2793
2223void 2794void
2224ev_stat_stat (EV_P_ ev_stat *w) 2795ev_stat_stat (EV_P_ ev_stat *w)
2225{ 2796{
2252 || w->prev.st_atime != w->attr.st_atime 2823 || w->prev.st_atime != w->attr.st_atime
2253 || w->prev.st_mtime != w->attr.st_mtime 2824 || w->prev.st_mtime != w->attr.st_mtime
2254 || w->prev.st_ctime != w->attr.st_ctime 2825 || w->prev.st_ctime != w->attr.st_ctime
2255 ) { 2826 ) {
2256 #if EV_USE_INOTIFY 2827 #if EV_USE_INOTIFY
2828 if (fs_fd >= 0)
2829 {
2257 infy_del (EV_A_ w); 2830 infy_del (EV_A_ w);
2258 infy_add (EV_A_ w); 2831 infy_add (EV_A_ w);
2259 ev_stat_stat (EV_A_ w); /* avoid race... */ 2832 ev_stat_stat (EV_A_ w); /* avoid race... */
2833 }
2260 #endif 2834 #endif
2261 2835
2262 ev_feed_event (EV_A_ w, EV_STAT); 2836 ev_feed_event (EV_A_ w, EV_STAT);
2263 } 2837 }
2264} 2838}
2267ev_stat_start (EV_P_ ev_stat *w) 2841ev_stat_start (EV_P_ ev_stat *w)
2268{ 2842{
2269 if (expect_false (ev_is_active (w))) 2843 if (expect_false (ev_is_active (w)))
2270 return; 2844 return;
2271 2845
2272 /* since we use memcmp, we need to clear any padding data etc. */
2273 memset (&w->prev, 0, sizeof (ev_statdata));
2274 memset (&w->attr, 0, sizeof (ev_statdata));
2275
2276 ev_stat_stat (EV_A_ w); 2846 ev_stat_stat (EV_A_ w);
2277 2847
2848 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2278 if (w->interval < MIN_STAT_INTERVAL) 2849 w->interval = MIN_STAT_INTERVAL;
2279 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2280 2850
2281 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2851 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2282 ev_set_priority (&w->timer, ev_priority (w)); 2852 ev_set_priority (&w->timer, ev_priority (w));
2283 2853
2284#if EV_USE_INOTIFY 2854#if EV_USE_INOTIFY
2285 infy_init (EV_A); 2855 infy_init (EV_A);
2286 2856
2287 if (fs_fd >= 0) 2857 if (fs_fd >= 0)
2288 infy_add (EV_A_ w); 2858 infy_add (EV_A_ w);
2289 else 2859 else
2290#endif 2860#endif
2291 ev_timer_start (EV_A_ &w->timer); 2861 ev_timer_again (EV_A_ &w->timer);
2292 2862
2293 ev_start (EV_A_ (W)w, 1); 2863 ev_start (EV_A_ (W)w, 1);
2864
2865 EV_FREQUENT_CHECK;
2294} 2866}
2295 2867
2296void 2868void
2297ev_stat_stop (EV_P_ ev_stat *w) 2869ev_stat_stop (EV_P_ ev_stat *w)
2298{ 2870{
2299 clear_pending (EV_A_ (W)w); 2871 clear_pending (EV_A_ (W)w);
2300 if (expect_false (!ev_is_active (w))) 2872 if (expect_false (!ev_is_active (w)))
2301 return; 2873 return;
2302 2874
2875 EV_FREQUENT_CHECK;
2876
2303#if EV_USE_INOTIFY 2877#if EV_USE_INOTIFY
2304 infy_del (EV_A_ w); 2878 infy_del (EV_A_ w);
2305#endif 2879#endif
2306 ev_timer_stop (EV_A_ &w->timer); 2880 ev_timer_stop (EV_A_ &w->timer);
2307 2881
2308 ev_stop (EV_A_ (W)w); 2882 ev_stop (EV_A_ (W)w);
2883
2884 EV_FREQUENT_CHECK;
2309} 2885}
2310#endif 2886#endif
2311 2887
2312#if EV_IDLE_ENABLE 2888#if EV_IDLE_ENABLE
2313void 2889void
2315{ 2891{
2316 if (expect_false (ev_is_active (w))) 2892 if (expect_false (ev_is_active (w)))
2317 return; 2893 return;
2318 2894
2319 pri_adjust (EV_A_ (W)w); 2895 pri_adjust (EV_A_ (W)w);
2896
2897 EV_FREQUENT_CHECK;
2320 2898
2321 { 2899 {
2322 int active = ++idlecnt [ABSPRI (w)]; 2900 int active = ++idlecnt [ABSPRI (w)];
2323 2901
2324 ++idleall; 2902 ++idleall;
2325 ev_start (EV_A_ (W)w, active); 2903 ev_start (EV_A_ (W)w, active);
2326 2904
2327 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2905 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2328 idles [ABSPRI (w)][active - 1] = w; 2906 idles [ABSPRI (w)][active - 1] = w;
2329 } 2907 }
2908
2909 EV_FREQUENT_CHECK;
2330} 2910}
2331 2911
2332void 2912void
2333ev_idle_stop (EV_P_ ev_idle *w) 2913ev_idle_stop (EV_P_ ev_idle *w)
2334{ 2914{
2335 clear_pending (EV_A_ (W)w); 2915 clear_pending (EV_A_ (W)w);
2336 if (expect_false (!ev_is_active (w))) 2916 if (expect_false (!ev_is_active (w)))
2337 return; 2917 return;
2338 2918
2919 EV_FREQUENT_CHECK;
2920
2339 { 2921 {
2340 int active = ((W)w)->active; 2922 int active = ev_active (w);
2341 2923
2342 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2924 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2343 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2925 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2344 2926
2345 ev_stop (EV_A_ (W)w); 2927 ev_stop (EV_A_ (W)w);
2346 --idleall; 2928 --idleall;
2347 } 2929 }
2930
2931 EV_FREQUENT_CHECK;
2348} 2932}
2349#endif 2933#endif
2350 2934
2351void 2935void
2352ev_prepare_start (EV_P_ ev_prepare *w) 2936ev_prepare_start (EV_P_ ev_prepare *w)
2353{ 2937{
2354 if (expect_false (ev_is_active (w))) 2938 if (expect_false (ev_is_active (w)))
2355 return; 2939 return;
2940
2941 EV_FREQUENT_CHECK;
2356 2942
2357 ev_start (EV_A_ (W)w, ++preparecnt); 2943 ev_start (EV_A_ (W)w, ++preparecnt);
2358 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2944 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2359 prepares [preparecnt - 1] = w; 2945 prepares [preparecnt - 1] = w;
2946
2947 EV_FREQUENT_CHECK;
2360} 2948}
2361 2949
2362void 2950void
2363ev_prepare_stop (EV_P_ ev_prepare *w) 2951ev_prepare_stop (EV_P_ ev_prepare *w)
2364{ 2952{
2365 clear_pending (EV_A_ (W)w); 2953 clear_pending (EV_A_ (W)w);
2366 if (expect_false (!ev_is_active (w))) 2954 if (expect_false (!ev_is_active (w)))
2367 return; 2955 return;
2368 2956
2957 EV_FREQUENT_CHECK;
2958
2369 { 2959 {
2370 int active = ((W)w)->active; 2960 int active = ev_active (w);
2961
2371 prepares [active - 1] = prepares [--preparecnt]; 2962 prepares [active - 1] = prepares [--preparecnt];
2372 ((W)prepares [active - 1])->active = active; 2963 ev_active (prepares [active - 1]) = active;
2373 } 2964 }
2374 2965
2375 ev_stop (EV_A_ (W)w); 2966 ev_stop (EV_A_ (W)w);
2967
2968 EV_FREQUENT_CHECK;
2376} 2969}
2377 2970
2378void 2971void
2379ev_check_start (EV_P_ ev_check *w) 2972ev_check_start (EV_P_ ev_check *w)
2380{ 2973{
2381 if (expect_false (ev_is_active (w))) 2974 if (expect_false (ev_is_active (w)))
2382 return; 2975 return;
2976
2977 EV_FREQUENT_CHECK;
2383 2978
2384 ev_start (EV_A_ (W)w, ++checkcnt); 2979 ev_start (EV_A_ (W)w, ++checkcnt);
2385 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2980 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2386 checks [checkcnt - 1] = w; 2981 checks [checkcnt - 1] = w;
2982
2983 EV_FREQUENT_CHECK;
2387} 2984}
2388 2985
2389void 2986void
2390ev_check_stop (EV_P_ ev_check *w) 2987ev_check_stop (EV_P_ ev_check *w)
2391{ 2988{
2392 clear_pending (EV_A_ (W)w); 2989 clear_pending (EV_A_ (W)w);
2393 if (expect_false (!ev_is_active (w))) 2990 if (expect_false (!ev_is_active (w)))
2394 return; 2991 return;
2395 2992
2993 EV_FREQUENT_CHECK;
2994
2396 { 2995 {
2397 int active = ((W)w)->active; 2996 int active = ev_active (w);
2997
2398 checks [active - 1] = checks [--checkcnt]; 2998 checks [active - 1] = checks [--checkcnt];
2399 ((W)checks [active - 1])->active = active; 2999 ev_active (checks [active - 1]) = active;
2400 } 3000 }
2401 3001
2402 ev_stop (EV_A_ (W)w); 3002 ev_stop (EV_A_ (W)w);
3003
3004 EV_FREQUENT_CHECK;
2403} 3005}
2404 3006
2405#if EV_EMBED_ENABLE 3007#if EV_EMBED_ENABLE
2406void noinline 3008void noinline
2407ev_embed_sweep (EV_P_ ev_embed *w) 3009ev_embed_sweep (EV_P_ ev_embed *w)
2434 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3036 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2435 } 3037 }
2436 } 3038 }
2437} 3039}
2438 3040
3041static void
3042embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3043{
3044 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3045
3046 ev_embed_stop (EV_A_ w);
3047
3048 {
3049 struct ev_loop *loop = w->other;
3050
3051 ev_loop_fork (EV_A);
3052 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3053 }
3054
3055 ev_embed_start (EV_A_ w);
3056}
3057
2439#if 0 3058#if 0
2440static void 3059static void
2441embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3060embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2442{ 3061{
2443 ev_idle_stop (EV_A_ idle); 3062 ev_idle_stop (EV_A_ idle);
2450 if (expect_false (ev_is_active (w))) 3069 if (expect_false (ev_is_active (w)))
2451 return; 3070 return;
2452 3071
2453 { 3072 {
2454 struct ev_loop *loop = w->other; 3073 struct ev_loop *loop = w->other;
2455 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3074 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2456 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3075 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2457 } 3076 }
3077
3078 EV_FREQUENT_CHECK;
2458 3079
2459 ev_set_priority (&w->io, ev_priority (w)); 3080 ev_set_priority (&w->io, ev_priority (w));
2460 ev_io_start (EV_A_ &w->io); 3081 ev_io_start (EV_A_ &w->io);
2461 3082
2462 ev_prepare_init (&w->prepare, embed_prepare_cb); 3083 ev_prepare_init (&w->prepare, embed_prepare_cb);
2463 ev_set_priority (&w->prepare, EV_MINPRI); 3084 ev_set_priority (&w->prepare, EV_MINPRI);
2464 ev_prepare_start (EV_A_ &w->prepare); 3085 ev_prepare_start (EV_A_ &w->prepare);
2465 3086
3087 ev_fork_init (&w->fork, embed_fork_cb);
3088 ev_fork_start (EV_A_ &w->fork);
3089
2466 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3090 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2467 3091
2468 ev_start (EV_A_ (W)w, 1); 3092 ev_start (EV_A_ (W)w, 1);
3093
3094 EV_FREQUENT_CHECK;
2469} 3095}
2470 3096
2471void 3097void
2472ev_embed_stop (EV_P_ ev_embed *w) 3098ev_embed_stop (EV_P_ ev_embed *w)
2473{ 3099{
2474 clear_pending (EV_A_ (W)w); 3100 clear_pending (EV_A_ (W)w);
2475 if (expect_false (!ev_is_active (w))) 3101 if (expect_false (!ev_is_active (w)))
2476 return; 3102 return;
2477 3103
3104 EV_FREQUENT_CHECK;
3105
2478 ev_io_stop (EV_A_ &w->io); 3106 ev_io_stop (EV_A_ &w->io);
2479 ev_prepare_stop (EV_A_ &w->prepare); 3107 ev_prepare_stop (EV_A_ &w->prepare);
3108 ev_fork_stop (EV_A_ &w->fork);
2480 3109
2481 ev_stop (EV_A_ (W)w); 3110 EV_FREQUENT_CHECK;
2482} 3111}
2483#endif 3112#endif
2484 3113
2485#if EV_FORK_ENABLE 3114#if EV_FORK_ENABLE
2486void 3115void
2487ev_fork_start (EV_P_ ev_fork *w) 3116ev_fork_start (EV_P_ ev_fork *w)
2488{ 3117{
2489 if (expect_false (ev_is_active (w))) 3118 if (expect_false (ev_is_active (w)))
2490 return; 3119 return;
3120
3121 EV_FREQUENT_CHECK;
2491 3122
2492 ev_start (EV_A_ (W)w, ++forkcnt); 3123 ev_start (EV_A_ (W)w, ++forkcnt);
2493 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3124 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2494 forks [forkcnt - 1] = w; 3125 forks [forkcnt - 1] = w;
3126
3127 EV_FREQUENT_CHECK;
2495} 3128}
2496 3129
2497void 3130void
2498ev_fork_stop (EV_P_ ev_fork *w) 3131ev_fork_stop (EV_P_ ev_fork *w)
2499{ 3132{
2500 clear_pending (EV_A_ (W)w); 3133 clear_pending (EV_A_ (W)w);
2501 if (expect_false (!ev_is_active (w))) 3134 if (expect_false (!ev_is_active (w)))
2502 return; 3135 return;
2503 3136
3137 EV_FREQUENT_CHECK;
3138
2504 { 3139 {
2505 int active = ((W)w)->active; 3140 int active = ev_active (w);
3141
2506 forks [active - 1] = forks [--forkcnt]; 3142 forks [active - 1] = forks [--forkcnt];
2507 ((W)forks [active - 1])->active = active; 3143 ev_active (forks [active - 1]) = active;
2508 } 3144 }
2509 3145
2510 ev_stop (EV_A_ (W)w); 3146 ev_stop (EV_A_ (W)w);
3147
3148 EV_FREQUENT_CHECK;
2511} 3149}
2512#endif 3150#endif
2513 3151
2514#if EV_ASYNC_ENABLE 3152#if EV_ASYNC_ENABLE
2515void 3153void
2517{ 3155{
2518 if (expect_false (ev_is_active (w))) 3156 if (expect_false (ev_is_active (w)))
2519 return; 3157 return;
2520 3158
2521 evpipe_init (EV_A); 3159 evpipe_init (EV_A);
3160
3161 EV_FREQUENT_CHECK;
2522 3162
2523 ev_start (EV_A_ (W)w, ++asynccnt); 3163 ev_start (EV_A_ (W)w, ++asynccnt);
2524 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3164 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2525 asyncs [asynccnt - 1] = w; 3165 asyncs [asynccnt - 1] = w;
3166
3167 EV_FREQUENT_CHECK;
2526} 3168}
2527 3169
2528void 3170void
2529ev_async_stop (EV_P_ ev_async *w) 3171ev_async_stop (EV_P_ ev_async *w)
2530{ 3172{
2531 clear_pending (EV_A_ (W)w); 3173 clear_pending (EV_A_ (W)w);
2532 if (expect_false (!ev_is_active (w))) 3174 if (expect_false (!ev_is_active (w)))
2533 return; 3175 return;
2534 3176
3177 EV_FREQUENT_CHECK;
3178
2535 { 3179 {
2536 int active = ((W)w)->active; 3180 int active = ev_active (w);
3181
2537 asyncs [active - 1] = asyncs [--asynccnt]; 3182 asyncs [active - 1] = asyncs [--asynccnt];
2538 ((W)asyncs [active - 1])->active = active; 3183 ev_active (asyncs [active - 1]) = active;
2539 } 3184 }
2540 3185
2541 ev_stop (EV_A_ (W)w); 3186 ev_stop (EV_A_ (W)w);
3187
3188 EV_FREQUENT_CHECK;
2542} 3189}
2543 3190
2544void 3191void
2545ev_async_send (EV_P_ ev_async *w) 3192ev_async_send (EV_P_ ev_async *w)
2546{ 3193{
2563once_cb (EV_P_ struct ev_once *once, int revents) 3210once_cb (EV_P_ struct ev_once *once, int revents)
2564{ 3211{
2565 void (*cb)(int revents, void *arg) = once->cb; 3212 void (*cb)(int revents, void *arg) = once->cb;
2566 void *arg = once->arg; 3213 void *arg = once->arg;
2567 3214
2568 ev_io_stop (EV_A_ &once->io); 3215 ev_io_stop (EV_A_ &once->io);
2569 ev_timer_stop (EV_A_ &once->to); 3216 ev_timer_stop (EV_A_ &once->to);
2570 ev_free (once); 3217 ev_free (once);
2571 3218
2572 cb (revents, arg); 3219 cb (revents, arg);
2573} 3220}
2574 3221
2575static void 3222static void
2576once_cb_io (EV_P_ ev_io *w, int revents) 3223once_cb_io (EV_P_ ev_io *w, int revents)
2577{ 3224{
2578 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3225 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3226
3227 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2579} 3228}
2580 3229
2581static void 3230static void
2582once_cb_to (EV_P_ ev_timer *w, int revents) 3231once_cb_to (EV_P_ ev_timer *w, int revents)
2583{ 3232{
2584 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3233 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3234
3235 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2585} 3236}
2586 3237
2587void 3238void
2588ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3239ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2589{ 3240{
2611 ev_timer_set (&once->to, timeout, 0.); 3262 ev_timer_set (&once->to, timeout, 0.);
2612 ev_timer_start (EV_A_ &once->to); 3263 ev_timer_start (EV_A_ &once->to);
2613 } 3264 }
2614} 3265}
2615 3266
3267/*****************************************************************************/
3268
3269#if EV_WALK_ENABLE
3270void
3271ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3272{
3273 int i, j;
3274 ev_watcher_list *wl, *wn;
3275
3276 if (types & (EV_IO | EV_EMBED))
3277 for (i = 0; i < anfdmax; ++i)
3278 for (wl = anfds [i].head; wl; )
3279 {
3280 wn = wl->next;
3281
3282#if EV_EMBED_ENABLE
3283 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3284 {
3285 if (types & EV_EMBED)
3286 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3287 }
3288 else
3289#endif
3290#if EV_USE_INOTIFY
3291 if (ev_cb ((ev_io *)wl) == infy_cb)
3292 ;
3293 else
3294#endif
3295 if ((ev_io *)wl != &pipe_w)
3296 if (types & EV_IO)
3297 cb (EV_A_ EV_IO, wl);
3298
3299 wl = wn;
3300 }
3301
3302 if (types & (EV_TIMER | EV_STAT))
3303 for (i = timercnt + HEAP0; i-- > HEAP0; )
3304#if EV_STAT_ENABLE
3305 /*TODO: timer is not always active*/
3306 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3307 {
3308 if (types & EV_STAT)
3309 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3310 }
3311 else
3312#endif
3313 if (types & EV_TIMER)
3314 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3315
3316#if EV_PERIODIC_ENABLE
3317 if (types & EV_PERIODIC)
3318 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3319 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3320#endif
3321
3322#if EV_IDLE_ENABLE
3323 if (types & EV_IDLE)
3324 for (j = NUMPRI; i--; )
3325 for (i = idlecnt [j]; i--; )
3326 cb (EV_A_ EV_IDLE, idles [j][i]);
3327#endif
3328
3329#if EV_FORK_ENABLE
3330 if (types & EV_FORK)
3331 for (i = forkcnt; i--; )
3332 if (ev_cb (forks [i]) != embed_fork_cb)
3333 cb (EV_A_ EV_FORK, forks [i]);
3334#endif
3335
3336#if EV_ASYNC_ENABLE
3337 if (types & EV_ASYNC)
3338 for (i = asynccnt; i--; )
3339 cb (EV_A_ EV_ASYNC, asyncs [i]);
3340#endif
3341
3342 if (types & EV_PREPARE)
3343 for (i = preparecnt; i--; )
3344#if EV_EMBED_ENABLE
3345 if (ev_cb (prepares [i]) != embed_prepare_cb)
3346#endif
3347 cb (EV_A_ EV_PREPARE, prepares [i]);
3348
3349 if (types & EV_CHECK)
3350 for (i = checkcnt; i--; )
3351 cb (EV_A_ EV_CHECK, checks [i]);
3352
3353 if (types & EV_SIGNAL)
3354 for (i = 0; i < signalmax; ++i)
3355 for (wl = signals [i].head; wl; )
3356 {
3357 wn = wl->next;
3358 cb (EV_A_ EV_SIGNAL, wl);
3359 wl = wn;
3360 }
3361
3362 if (types & EV_CHILD)
3363 for (i = EV_PID_HASHSIZE; i--; )
3364 for (wl = childs [i]; wl; )
3365 {
3366 wn = wl->next;
3367 cb (EV_A_ EV_CHILD, wl);
3368 wl = wn;
3369 }
3370/* EV_STAT 0x00001000 /* stat data changed */
3371/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3372}
3373#endif
3374
2616#if EV_MULTIPLICITY 3375#if EV_MULTIPLICITY
2617 #include "ev_wrap.h" 3376 #include "ev_wrap.h"
2618#endif 3377#endif
2619 3378
2620#ifdef __cplusplus 3379#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines