ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.242 by root, Fri May 9 14:07:19 2008 UTC vs.
Revision 1.294 by root, Wed Jul 8 02:46:05 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
126# define EV_USE_EVENTFD 1 140# define EV_USE_EVENTFD 1
127# else 141# else
128# define EV_USE_EVENTFD 0 142# define EV_USE_EVENTFD 0
129# endif 143# endif
130# endif 144# endif
131 145
132#endif 146#endif
133 147
134#include <math.h> 148#include <math.h>
135#include <stdlib.h> 149#include <stdlib.h>
136#include <fcntl.h> 150#include <fcntl.h>
154#ifndef _WIN32 168#ifndef _WIN32
155# include <sys/time.h> 169# include <sys/time.h>
156# include <sys/wait.h> 170# include <sys/wait.h>
157# include <unistd.h> 171# include <unistd.h>
158#else 172#else
173# include <io.h>
159# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 175# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
163# endif 178# endif
164#endif 179#endif
165 180
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
167 182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
190
168#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
169# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
170#endif 197#endif
171 198
172#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 201#endif
175 202
176#ifndef EV_USE_NANOSLEEP 203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
177# define EV_USE_NANOSLEEP 0 207# define EV_USE_NANOSLEEP 0
208# endif
178#endif 209#endif
179 210
180#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
182#endif 213#endif
235# else 266# else
236# define EV_USE_EVENTFD 0 267# define EV_USE_EVENTFD 0
237# endif 268# endif
238#endif 269#endif
239 270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 304
242#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
259# include <sys/select.h> 322# include <sys/select.h>
260# endif 323# endif
261#endif 324#endif
262 325
263#if EV_USE_INOTIFY 326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
264# include <sys/inotify.h> 329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
265#endif 335#endif
266 336
267#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 338# include <winsock.h>
269#endif 339#endif
279} 349}
280# endif 350# endif
281#endif 351#endif
282 352
283/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
284 360
285/* 361/*
286 * This is used to avoid floating point rounding problems. 362 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 363 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 364 * to ensure progress, time-wise, even when rounding
328typedef ev_watcher_time *WT; 404typedef ev_watcher_time *WT;
329 405
330#define ev_active(w) ((W)(w))->active 406#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 407#define ev_at(w) ((WT)(w))->at
332 408
333#if EV_USE_MONOTONIC 409#if EV_USE_REALTIME
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 410/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */ 411/* giving it a reasonably high chance of working on typical architetcures */
412static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
413#endif
414
415#if EV_USE_MONOTONIC
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 416static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif 417#endif
338 418
339#ifdef _WIN32 419#ifdef _WIN32
340# include "ev_win32.c" 420# include "ev_win32.c"
349{ 429{
350 syserr_cb = cb; 430 syserr_cb = cb;
351} 431}
352 432
353static void noinline 433static void noinline
354syserr (const char *msg) 434ev_syserr (const char *msg)
355{ 435{
356 if (!msg) 436 if (!msg)
357 msg = "(libev) system error"; 437 msg = "(libev) system error";
358 438
359 if (syserr_cb) 439 if (syserr_cb)
405#define ev_malloc(size) ev_realloc (0, (size)) 485#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 486#define ev_free(ptr) ev_realloc ((ptr), 0)
407 487
408/*****************************************************************************/ 488/*****************************************************************************/
409 489
490/* file descriptor info structure */
410typedef struct 491typedef struct
411{ 492{
412 WL head; 493 WL head;
413 unsigned char events; 494 unsigned char events; /* the events watched for */
495 unsigned char reify; /* flag set when this ANFD needs reification */
496 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
414 unsigned char reify; 497 unsigned char unused;
498#if EV_USE_EPOLL
499 unsigned int egen; /* generation counter to counter epoll bugs */
500#endif
415#if EV_SELECT_IS_WINSOCKET 501#if EV_SELECT_IS_WINSOCKET
416 SOCKET handle; 502 SOCKET handle;
417#endif 503#endif
418} ANFD; 504} ANFD;
419 505
506/* stores the pending event set for a given watcher */
420typedef struct 507typedef struct
421{ 508{
422 W w; 509 W w;
423 int events; 510 int events; /* the pending event set for the given watcher */
424} ANPENDING; 511} ANPENDING;
425 512
426#if EV_USE_INOTIFY 513#if EV_USE_INOTIFY
427/* hash table entry per inotify-id */ 514/* hash table entry per inotify-id */
428typedef struct 515typedef struct
430 WL head; 517 WL head;
431} ANFS; 518} ANFS;
432#endif 519#endif
433 520
434/* Heap Entry */ 521/* Heap Entry */
435#define EV_HEAP_CACHE_AT 0
436#if EV_HEAP_CACHE_AT 522#if EV_HEAP_CACHE_AT
523 /* a heap element */
437 typedef struct { 524 typedef struct {
525 ev_tstamp at;
438 WT w; 526 WT w;
439 ev_tstamp at;
440 } ANHE; 527 } ANHE;
441 528
442 #define ANHE_w(he) (he).w /* access watcher, read-write */ 529 #define ANHE_w(he) (he).w /* access watcher, read-write */
443 #define ANHE_at(he) (he).at /* access cached at, read-only */ 530 #define ANHE_at(he) (he).at /* access cached at, read-only */
444 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 531 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
445#else 532#else
533 /* a heap element */
446 typedef WT ANHE; 534 typedef WT ANHE;
447 535
448 #define ANHE_w(he) (he) 536 #define ANHE_w(he) (he)
449 #define ANHE_at(he) (he)->at 537 #define ANHE_at(he) (he)->at
450 #define ANHE_at_set(he) 538 #define ANHE_at_cache(he)
451#endif 539#endif
452 540
453#if EV_MULTIPLICITY 541#if EV_MULTIPLICITY
454 542
455 struct ev_loop 543 struct ev_loop
476 564
477#endif 565#endif
478 566
479/*****************************************************************************/ 567/*****************************************************************************/
480 568
569#ifndef EV_HAVE_EV_TIME
481ev_tstamp 570ev_tstamp
482ev_time (void) 571ev_time (void)
483{ 572{
484#if EV_USE_REALTIME 573#if EV_USE_REALTIME
574 if (expect_true (have_realtime))
575 {
485 struct timespec ts; 576 struct timespec ts;
486 clock_gettime (CLOCK_REALTIME, &ts); 577 clock_gettime (CLOCK_REALTIME, &ts);
487 return ts.tv_sec + ts.tv_nsec * 1e-9; 578 return ts.tv_sec + ts.tv_nsec * 1e-9;
488#else 579 }
580#endif
581
489 struct timeval tv; 582 struct timeval tv;
490 gettimeofday (&tv, 0); 583 gettimeofday (&tv, 0);
491 return tv.tv_sec + tv.tv_usec * 1e-6; 584 return tv.tv_sec + tv.tv_usec * 1e-6;
492#endif
493} 585}
586#endif
494 587
495ev_tstamp inline_size 588inline_size ev_tstamp
496get_clock (void) 589get_clock (void)
497{ 590{
498#if EV_USE_MONOTONIC 591#if EV_USE_MONOTONIC
499 if (expect_true (have_monotonic)) 592 if (expect_true (have_monotonic))
500 { 593 {
533 struct timeval tv; 626 struct timeval tv;
534 627
535 tv.tv_sec = (time_t)delay; 628 tv.tv_sec = (time_t)delay;
536 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 629 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
537 630
631 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
632 /* somehting not guaranteed by newer posix versions, but guaranteed */
633 /* by older ones */
538 select (0, 0, 0, 0, &tv); 634 select (0, 0, 0, 0, &tv);
539#endif 635#endif
540 } 636 }
541} 637}
542 638
543/*****************************************************************************/ 639/*****************************************************************************/
544 640
545#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 641#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
546 642
547int inline_size 643/* find a suitable new size for the given array, */
644/* hopefully by rounding to a ncie-to-malloc size */
645inline_size int
548array_nextsize (int elem, int cur, int cnt) 646array_nextsize (int elem, int cur, int cnt)
549{ 647{
550 int ncur = cur + 1; 648 int ncur = cur + 1;
551 649
552 do 650 do
569array_realloc (int elem, void *base, int *cur, int cnt) 667array_realloc (int elem, void *base, int *cur, int cnt)
570{ 668{
571 *cur = array_nextsize (elem, *cur, cnt); 669 *cur = array_nextsize (elem, *cur, cnt);
572 return ev_realloc (base, elem * *cur); 670 return ev_realloc (base, elem * *cur);
573} 671}
672
673#define array_init_zero(base,count) \
674 memset ((void *)(base), 0, sizeof (*(base)) * (count))
574 675
575#define array_needsize(type,base,cur,cnt,init) \ 676#define array_needsize(type,base,cur,cnt,init) \
576 if (expect_false ((cnt) > (cur))) \ 677 if (expect_false ((cnt) > (cur))) \
577 { \ 678 { \
578 int ocur_ = (cur); \ 679 int ocur_ = (cur); \
590 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 691 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
591 } 692 }
592#endif 693#endif
593 694
594#define array_free(stem, idx) \ 695#define array_free(stem, idx) \
595 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 696 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
596 697
597/*****************************************************************************/ 698/*****************************************************************************/
699
700/* dummy callback for pending events */
701static void noinline
702pendingcb (EV_P_ ev_prepare *w, int revents)
703{
704}
598 705
599void noinline 706void noinline
600ev_feed_event (EV_P_ void *w, int revents) 707ev_feed_event (EV_P_ void *w, int revents)
601{ 708{
602 W w_ = (W)w; 709 W w_ = (W)w;
611 pendings [pri][w_->pending - 1].w = w_; 718 pendings [pri][w_->pending - 1].w = w_;
612 pendings [pri][w_->pending - 1].events = revents; 719 pendings [pri][w_->pending - 1].events = revents;
613 } 720 }
614} 721}
615 722
616void inline_speed 723inline_speed void
724feed_reverse (EV_P_ W w)
725{
726 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
727 rfeeds [rfeedcnt++] = w;
728}
729
730inline_size void
731feed_reverse_done (EV_P_ int revents)
732{
733 do
734 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
735 while (rfeedcnt);
736}
737
738inline_speed void
617queue_events (EV_P_ W *events, int eventcnt, int type) 739queue_events (EV_P_ W *events, int eventcnt, int type)
618{ 740{
619 int i; 741 int i;
620 742
621 for (i = 0; i < eventcnt; ++i) 743 for (i = 0; i < eventcnt; ++i)
622 ev_feed_event (EV_A_ events [i], type); 744 ev_feed_event (EV_A_ events [i], type);
623} 745}
624 746
625/*****************************************************************************/ 747/*****************************************************************************/
626 748
627void inline_size 749inline_speed void
628anfds_init (ANFD *base, int count)
629{
630 while (count--)
631 {
632 base->head = 0;
633 base->events = EV_NONE;
634 base->reify = 0;
635
636 ++base;
637 }
638}
639
640void inline_speed
641fd_event (EV_P_ int fd, int revents) 750fd_event (EV_P_ int fd, int revents)
642{ 751{
643 ANFD *anfd = anfds + fd; 752 ANFD *anfd = anfds + fd;
644 ev_io *w; 753 ev_io *w;
645 754
657{ 766{
658 if (fd >= 0 && fd < anfdmax) 767 if (fd >= 0 && fd < anfdmax)
659 fd_event (EV_A_ fd, revents); 768 fd_event (EV_A_ fd, revents);
660} 769}
661 770
662void inline_size 771/* make sure the external fd watch events are in-sync */
772/* with the kernel/libev internal state */
773inline_size void
663fd_reify (EV_P) 774fd_reify (EV_P)
664{ 775{
665 int i; 776 int i;
666 777
667 for (i = 0; i < fdchangecnt; ++i) 778 for (i = 0; i < fdchangecnt; ++i)
676 events |= (unsigned char)w->events; 787 events |= (unsigned char)w->events;
677 788
678#if EV_SELECT_IS_WINSOCKET 789#if EV_SELECT_IS_WINSOCKET
679 if (events) 790 if (events)
680 { 791 {
681 unsigned long argp; 792 unsigned long arg;
682 #ifdef EV_FD_TO_WIN32_HANDLE 793 #ifdef EV_FD_TO_WIN32_HANDLE
683 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 794 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
684 #else 795 #else
685 anfd->handle = _get_osfhandle (fd); 796 anfd->handle = _get_osfhandle (fd);
686 #endif 797 #endif
687 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 798 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
688 } 799 }
689#endif 800#endif
690 801
691 { 802 {
692 unsigned char o_events = anfd->events; 803 unsigned char o_events = anfd->events;
693 unsigned char o_reify = anfd->reify; 804 unsigned char o_reify = anfd->reify;
694 805
695 anfd->reify = 0; 806 anfd->reify = 0;
696 anfd->events = events; 807 anfd->events = events;
697 808
698 if (o_events != events || o_reify & EV_IOFDSET) 809 if (o_events != events || o_reify & EV__IOFDSET)
699 backend_modify (EV_A_ fd, o_events, events); 810 backend_modify (EV_A_ fd, o_events, events);
700 } 811 }
701 } 812 }
702 813
703 fdchangecnt = 0; 814 fdchangecnt = 0;
704} 815}
705 816
706void inline_size 817/* something about the given fd changed */
818inline_size void
707fd_change (EV_P_ int fd, int flags) 819fd_change (EV_P_ int fd, int flags)
708{ 820{
709 unsigned char reify = anfds [fd].reify; 821 unsigned char reify = anfds [fd].reify;
710 anfds [fd].reify |= flags; 822 anfds [fd].reify |= flags;
711 823
715 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 827 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
716 fdchanges [fdchangecnt - 1] = fd; 828 fdchanges [fdchangecnt - 1] = fd;
717 } 829 }
718} 830}
719 831
720void inline_speed 832/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
833inline_speed void
721fd_kill (EV_P_ int fd) 834fd_kill (EV_P_ int fd)
722{ 835{
723 ev_io *w; 836 ev_io *w;
724 837
725 while ((w = (ev_io *)anfds [fd].head)) 838 while ((w = (ev_io *)anfds [fd].head))
727 ev_io_stop (EV_A_ w); 840 ev_io_stop (EV_A_ w);
728 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 841 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
729 } 842 }
730} 843}
731 844
732int inline_size 845/* check whether the given fd is atcually valid, for error recovery */
846inline_size int
733fd_valid (int fd) 847fd_valid (int fd)
734{ 848{
735#ifdef _WIN32 849#ifdef _WIN32
736 return _get_osfhandle (fd) != -1; 850 return _get_osfhandle (fd) != -1;
737#else 851#else
745{ 859{
746 int fd; 860 int fd;
747 861
748 for (fd = 0; fd < anfdmax; ++fd) 862 for (fd = 0; fd < anfdmax; ++fd)
749 if (anfds [fd].events) 863 if (anfds [fd].events)
750 if (!fd_valid (fd) == -1 && errno == EBADF) 864 if (!fd_valid (fd) && errno == EBADF)
751 fd_kill (EV_A_ fd); 865 fd_kill (EV_A_ fd);
752} 866}
753 867
754/* called on ENOMEM in select/poll to kill some fds and retry */ 868/* called on ENOMEM in select/poll to kill some fds and retry */
755static void noinline 869static void noinline
773 887
774 for (fd = 0; fd < anfdmax; ++fd) 888 for (fd = 0; fd < anfdmax; ++fd)
775 if (anfds [fd].events) 889 if (anfds [fd].events)
776 { 890 {
777 anfds [fd].events = 0; 891 anfds [fd].events = 0;
892 anfds [fd].emask = 0;
778 fd_change (EV_A_ fd, EV_IOFDSET | 1); 893 fd_change (EV_A_ fd, EV__IOFDSET | 1);
779 } 894 }
780} 895}
781 896
782/*****************************************************************************/ 897/*****************************************************************************/
783 898
791 * at the moment we allow libev the luxury of two heaps, 906 * at the moment we allow libev the luxury of two heaps,
792 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 907 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
793 * which is more cache-efficient. 908 * which is more cache-efficient.
794 * the difference is about 5% with 50000+ watchers. 909 * the difference is about 5% with 50000+ watchers.
795 */ 910 */
796#define EV_USE_4HEAP !EV_MINIMAL
797#if EV_USE_4HEAP 911#if EV_USE_4HEAP
798 912
799#define DHEAP 4 913#define DHEAP 4
800#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 914#define HEAP0 (DHEAP - 1) /* index of first element in heap */
801 915#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
802/* towards the root */ 916#define UPHEAP_DONE(p,k) ((p) == (k))
803void inline_speed
804upheap (ANHE *heap, int k)
805{
806 ANHE he = heap [k];
807
808 for (;;)
809 {
810 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
811
812 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
813 break;
814
815 heap [k] = heap [p];
816 ev_active (ANHE_w (heap [k])) = k;
817 k = p;
818 }
819
820 ev_active (ANHE_w (he)) = k;
821 heap [k] = he;
822}
823 917
824/* away from the root */ 918/* away from the root */
825void inline_speed 919inline_speed void
826downheap (ANHE *heap, int N, int k) 920downheap (ANHE *heap, int N, int k)
827{ 921{
828 ANHE he = heap [k]; 922 ANHE he = heap [k];
829 ANHE *E = heap + N + HEAP0; 923 ANHE *E = heap + N + HEAP0;
830 924
831 for (;;) 925 for (;;)
832 { 926 {
833 ev_tstamp minat; 927 ev_tstamp minat;
834 ANHE *minpos; 928 ANHE *minpos;
835 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 929 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
836 930
837 // find minimum child 931 /* find minimum child */
838 if (expect_true (pos + DHEAP - 1 < E)) 932 if (expect_true (pos + DHEAP - 1 < E))
839 { 933 {
840 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 934 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
841 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 935 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
842 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 936 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
843 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 937 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
844 } 938 }
845 else if (pos < E) 939 else if (pos < E)
846 { 940 {
847 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 941 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 942 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
853 break; 947 break;
854 948
855 if (ANHE_at (he) <= minat) 949 if (ANHE_at (he) <= minat)
856 break; 950 break;
857 951
952 heap [k] = *minpos;
858 ev_active (ANHE_w (*minpos)) = k; 953 ev_active (ANHE_w (*minpos)) = k;
859 heap [k] = *minpos;
860 954
861 k = minpos - heap; 955 k = minpos - heap;
862 } 956 }
863 957
958 heap [k] = he;
864 ev_active (ANHE_w (he)) = k; 959 ev_active (ANHE_w (he)) = k;
865 heap [k] = he;
866} 960}
867 961
868#else // 4HEAP 962#else /* 4HEAP */
869 963
870#define HEAP0 1 964#define HEAP0 1
965#define HPARENT(k) ((k) >> 1)
966#define UPHEAP_DONE(p,k) (!(p))
871 967
872/* towards the root */ 968/* away from the root */
873void inline_speed 969inline_speed void
874upheap (ANHE *heap, int k) 970downheap (ANHE *heap, int N, int k)
875{ 971{
876 ANHE he = heap [k]; 972 ANHE he = heap [k];
877 973
878 for (;;) 974 for (;;)
879 { 975 {
880 int p = k >> 1; 976 int c = k << 1;
881 977
882 /* maybe we could use a dummy element at heap [0]? */ 978 if (c > N + HEAP0 - 1)
883 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
884 break; 979 break;
885 980
886 heap [k] = heap [p];
887 ev_active (ANHE_w (heap [k])) = k;
888 k = p;
889 }
890
891 heap [k] = w;
892 ev_active (ANHE_w (heap [k])) = k;
893}
894
895/* away from the root */
896void inline_speed
897downheap (ANHE *heap, int N, int k)
898{
899 ANHE he = heap [k];
900
901 for (;;)
902 {
903 int c = k << 1;
904
905 if (c > N)
906 break;
907
908 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 981 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
909 ? 1 : 0; 982 ? 1 : 0;
910 983
911 if (w->at <= ANHE_at (heap [c])) 984 if (ANHE_at (he) <= ANHE_at (heap [c]))
912 break; 985 break;
913 986
914 heap [k] = heap [c]; 987 heap [k] = heap [c];
915 ev_active (ANHE_w (heap [k])) = k; 988 ev_active (ANHE_w (heap [k])) = k;
916 989
920 heap [k] = he; 993 heap [k] = he;
921 ev_active (ANHE_w (he)) = k; 994 ev_active (ANHE_w (he)) = k;
922} 995}
923#endif 996#endif
924 997
925void inline_size 998/* towards the root */
999inline_speed void
1000upheap (ANHE *heap, int k)
1001{
1002 ANHE he = heap [k];
1003
1004 for (;;)
1005 {
1006 int p = HPARENT (k);
1007
1008 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1009 break;
1010
1011 heap [k] = heap [p];
1012 ev_active (ANHE_w (heap [k])) = k;
1013 k = p;
1014 }
1015
1016 heap [k] = he;
1017 ev_active (ANHE_w (he)) = k;
1018}
1019
1020/* move an element suitably so it is in a correct place */
1021inline_size void
926adjustheap (ANHE *heap, int N, int k) 1022adjustheap (ANHE *heap, int N, int k)
927{ 1023{
1024 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
928 upheap (heap, k); 1025 upheap (heap, k);
1026 else
929 downheap (heap, N, k); 1027 downheap (heap, N, k);
1028}
1029
1030/* rebuild the heap: this function is used only once and executed rarely */
1031inline_size void
1032reheap (ANHE *heap, int N)
1033{
1034 int i;
1035
1036 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1037 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1038 for (i = 0; i < N; ++i)
1039 upheap (heap, i + HEAP0);
930} 1040}
931 1041
932/*****************************************************************************/ 1042/*****************************************************************************/
933 1043
1044/* associate signal watchers to a signal signal */
934typedef struct 1045typedef struct
935{ 1046{
936 WL head; 1047 WL head;
937 EV_ATOMIC_T gotsig; 1048 EV_ATOMIC_T gotsig;
938} ANSIG; 1049} ANSIG;
940static ANSIG *signals; 1051static ANSIG *signals;
941static int signalmax; 1052static int signalmax;
942 1053
943static EV_ATOMIC_T gotsig; 1054static EV_ATOMIC_T gotsig;
944 1055
945void inline_size
946signals_init (ANSIG *base, int count)
947{
948 while (count--)
949 {
950 base->head = 0;
951 base->gotsig = 0;
952
953 ++base;
954 }
955}
956
957/*****************************************************************************/ 1056/*****************************************************************************/
958 1057
959void inline_speed 1058/* used to prepare libev internal fd's */
1059/* this is not fork-safe */
1060inline_speed void
960fd_intern (int fd) 1061fd_intern (int fd)
961{ 1062{
962#ifdef _WIN32 1063#ifdef _WIN32
963 int arg = 1; 1064 unsigned long arg = 1;
964 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1065 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
965#else 1066#else
966 fcntl (fd, F_SETFD, FD_CLOEXEC); 1067 fcntl (fd, F_SETFD, FD_CLOEXEC);
967 fcntl (fd, F_SETFL, O_NONBLOCK); 1068 fcntl (fd, F_SETFL, O_NONBLOCK);
968#endif 1069#endif
969} 1070}
970 1071
971static void noinline 1072static void noinline
972evpipe_init (EV_P) 1073evpipe_init (EV_P)
973{ 1074{
974 if (!ev_is_active (&pipeev)) 1075 if (!ev_is_active (&pipe_w))
975 { 1076 {
976#if EV_USE_EVENTFD 1077#if EV_USE_EVENTFD
977 if ((evfd = eventfd (0, 0)) >= 0) 1078 if ((evfd = eventfd (0, 0)) >= 0)
978 { 1079 {
979 evpipe [0] = -1; 1080 evpipe [0] = -1;
980 fd_intern (evfd); 1081 fd_intern (evfd);
981 ev_io_set (&pipeev, evfd, EV_READ); 1082 ev_io_set (&pipe_w, evfd, EV_READ);
982 } 1083 }
983 else 1084 else
984#endif 1085#endif
985 { 1086 {
986 while (pipe (evpipe)) 1087 while (pipe (evpipe))
987 syserr ("(libev) error creating signal/async pipe"); 1088 ev_syserr ("(libev) error creating signal/async pipe");
988 1089
989 fd_intern (evpipe [0]); 1090 fd_intern (evpipe [0]);
990 fd_intern (evpipe [1]); 1091 fd_intern (evpipe [1]);
991 ev_io_set (&pipeev, evpipe [0], EV_READ); 1092 ev_io_set (&pipe_w, evpipe [0], EV_READ);
992 } 1093 }
993 1094
994 ev_io_start (EV_A_ &pipeev); 1095 ev_io_start (EV_A_ &pipe_w);
995 ev_unref (EV_A); /* watcher should not keep loop alive */ 1096 ev_unref (EV_A); /* watcher should not keep loop alive */
996 } 1097 }
997} 1098}
998 1099
999void inline_size 1100inline_size void
1000evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1101evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1001{ 1102{
1002 if (!*flag) 1103 if (!*flag)
1003 { 1104 {
1004 int old_errno = errno; /* save errno because write might clobber it */ 1105 int old_errno = errno; /* save errno because write might clobber it */
1017 1118
1018 errno = old_errno; 1119 errno = old_errno;
1019 } 1120 }
1020} 1121}
1021 1122
1123/* called whenever the libev signal pipe */
1124/* got some events (signal, async) */
1022static void 1125static void
1023pipecb (EV_P_ ev_io *iow, int revents) 1126pipecb (EV_P_ ev_io *iow, int revents)
1024{ 1127{
1025#if EV_USE_EVENTFD 1128#if EV_USE_EVENTFD
1026 if (evfd >= 0) 1129 if (evfd >= 0)
1082ev_feed_signal_event (EV_P_ int signum) 1185ev_feed_signal_event (EV_P_ int signum)
1083{ 1186{
1084 WL w; 1187 WL w;
1085 1188
1086#if EV_MULTIPLICITY 1189#if EV_MULTIPLICITY
1087 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1190 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1088#endif 1191#endif
1089 1192
1090 --signum; 1193 --signum;
1091 1194
1092 if (signum < 0 || signum >= signalmax) 1195 if (signum < 0 || signum >= signalmax)
1108 1211
1109#ifndef WIFCONTINUED 1212#ifndef WIFCONTINUED
1110# define WIFCONTINUED(status) 0 1213# define WIFCONTINUED(status) 0
1111#endif 1214#endif
1112 1215
1113void inline_speed 1216/* handle a single child status event */
1217inline_speed void
1114child_reap (EV_P_ int chain, int pid, int status) 1218child_reap (EV_P_ int chain, int pid, int status)
1115{ 1219{
1116 ev_child *w; 1220 ev_child *w;
1117 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1221 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1118 1222
1131 1235
1132#ifndef WCONTINUED 1236#ifndef WCONTINUED
1133# define WCONTINUED 0 1237# define WCONTINUED 0
1134#endif 1238#endif
1135 1239
1240/* called on sigchld etc., calls waitpid */
1136static void 1241static void
1137childcb (EV_P_ ev_signal *sw, int revents) 1242childcb (EV_P_ ev_signal *sw, int revents)
1138{ 1243{
1139 int pid, status; 1244 int pid, status;
1140 1245
1221 /* kqueue is borked on everything but netbsd apparently */ 1326 /* kqueue is borked on everything but netbsd apparently */
1222 /* it usually doesn't work correctly on anything but sockets and pipes */ 1327 /* it usually doesn't work correctly on anything but sockets and pipes */
1223 flags &= ~EVBACKEND_KQUEUE; 1328 flags &= ~EVBACKEND_KQUEUE;
1224#endif 1329#endif
1225#ifdef __APPLE__ 1330#ifdef __APPLE__
1226 // flags &= ~EVBACKEND_KQUEUE; for documentation 1331 /* only select works correctly on that "unix-certified" platform */
1227 flags &= ~EVBACKEND_POLL; 1332 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1333 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1228#endif 1334#endif
1229 1335
1230 return flags; 1336 return flags;
1231} 1337}
1232 1338
1252ev_loop_count (EV_P) 1358ev_loop_count (EV_P)
1253{ 1359{
1254 return loop_count; 1360 return loop_count;
1255} 1361}
1256 1362
1363unsigned int
1364ev_loop_depth (EV_P)
1365{
1366 return loop_depth;
1367}
1368
1257void 1369void
1258ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1370ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1259{ 1371{
1260 io_blocktime = interval; 1372 io_blocktime = interval;
1261} 1373}
1264ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1376ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1265{ 1377{
1266 timeout_blocktime = interval; 1378 timeout_blocktime = interval;
1267} 1379}
1268 1380
1381/* initialise a loop structure, must be zero-initialised */
1269static void noinline 1382static void noinline
1270loop_init (EV_P_ unsigned int flags) 1383loop_init (EV_P_ unsigned int flags)
1271{ 1384{
1272 if (!backend) 1385 if (!backend)
1273 { 1386 {
1387#if EV_USE_REALTIME
1388 if (!have_realtime)
1389 {
1390 struct timespec ts;
1391
1392 if (!clock_gettime (CLOCK_REALTIME, &ts))
1393 have_realtime = 1;
1394 }
1395#endif
1396
1274#if EV_USE_MONOTONIC 1397#if EV_USE_MONOTONIC
1398 if (!have_monotonic)
1275 { 1399 {
1276 struct timespec ts; 1400 struct timespec ts;
1401
1277 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1402 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1278 have_monotonic = 1; 1403 have_monotonic = 1;
1279 } 1404 }
1280#endif 1405#endif
1281 1406
1282 ev_rt_now = ev_time (); 1407 ev_rt_now = ev_time ();
1283 mn_now = get_clock (); 1408 mn_now = get_clock ();
1284 now_floor = mn_now; 1409 now_floor = mn_now;
1321#endif 1446#endif
1322#if EV_USE_SELECT 1447#if EV_USE_SELECT
1323 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1448 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1324#endif 1449#endif
1325 1450
1451 ev_prepare_init (&pending_w, pendingcb);
1452
1326 ev_init (&pipeev, pipecb); 1453 ev_init (&pipe_w, pipecb);
1327 ev_set_priority (&pipeev, EV_MAXPRI); 1454 ev_set_priority (&pipe_w, EV_MAXPRI);
1328 } 1455 }
1329} 1456}
1330 1457
1458/* free up a loop structure */
1331static void noinline 1459static void noinline
1332loop_destroy (EV_P) 1460loop_destroy (EV_P)
1333{ 1461{
1334 int i; 1462 int i;
1335 1463
1336 if (ev_is_active (&pipeev)) 1464 if (ev_is_active (&pipe_w))
1337 { 1465 {
1338 ev_ref (EV_A); /* signal watcher */ 1466 ev_ref (EV_A); /* signal watcher */
1339 ev_io_stop (EV_A_ &pipeev); 1467 ev_io_stop (EV_A_ &pipe_w);
1340 1468
1341#if EV_USE_EVENTFD 1469#if EV_USE_EVENTFD
1342 if (evfd >= 0) 1470 if (evfd >= 0)
1343 close (evfd); 1471 close (evfd);
1344#endif 1472#endif
1383 } 1511 }
1384 1512
1385 ev_free (anfds); anfdmax = 0; 1513 ev_free (anfds); anfdmax = 0;
1386 1514
1387 /* have to use the microsoft-never-gets-it-right macro */ 1515 /* have to use the microsoft-never-gets-it-right macro */
1516 array_free (rfeed, EMPTY);
1388 array_free (fdchange, EMPTY); 1517 array_free (fdchange, EMPTY);
1389 array_free (timer, EMPTY); 1518 array_free (timer, EMPTY);
1390#if EV_PERIODIC_ENABLE 1519#if EV_PERIODIC_ENABLE
1391 array_free (periodic, EMPTY); 1520 array_free (periodic, EMPTY);
1392#endif 1521#endif
1401 1530
1402 backend = 0; 1531 backend = 0;
1403} 1532}
1404 1533
1405#if EV_USE_INOTIFY 1534#if EV_USE_INOTIFY
1406void inline_size infy_fork (EV_P); 1535inline_size void infy_fork (EV_P);
1407#endif 1536#endif
1408 1537
1409void inline_size 1538inline_size void
1410loop_fork (EV_P) 1539loop_fork (EV_P)
1411{ 1540{
1412#if EV_USE_PORT 1541#if EV_USE_PORT
1413 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1542 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1414#endif 1543#endif
1420#endif 1549#endif
1421#if EV_USE_INOTIFY 1550#if EV_USE_INOTIFY
1422 infy_fork (EV_A); 1551 infy_fork (EV_A);
1423#endif 1552#endif
1424 1553
1425 if (ev_is_active (&pipeev)) 1554 if (ev_is_active (&pipe_w))
1426 { 1555 {
1427 /* this "locks" the handlers against writing to the pipe */ 1556 /* this "locks" the handlers against writing to the pipe */
1428 /* while we modify the fd vars */ 1557 /* while we modify the fd vars */
1429 gotsig = 1; 1558 gotsig = 1;
1430#if EV_ASYNC_ENABLE 1559#if EV_ASYNC_ENABLE
1431 gotasync = 1; 1560 gotasync = 1;
1432#endif 1561#endif
1433 1562
1434 ev_ref (EV_A); 1563 ev_ref (EV_A);
1435 ev_io_stop (EV_A_ &pipeev); 1564 ev_io_stop (EV_A_ &pipe_w);
1436 1565
1437#if EV_USE_EVENTFD 1566#if EV_USE_EVENTFD
1438 if (evfd >= 0) 1567 if (evfd >= 0)
1439 close (evfd); 1568 close (evfd);
1440#endif 1569#endif
1445 close (evpipe [1]); 1574 close (evpipe [1]);
1446 } 1575 }
1447 1576
1448 evpipe_init (EV_A); 1577 evpipe_init (EV_A);
1449 /* now iterate over everything, in case we missed something */ 1578 /* now iterate over everything, in case we missed something */
1450 pipecb (EV_A_ &pipeev, EV_READ); 1579 pipecb (EV_A_ &pipe_w, EV_READ);
1451 } 1580 }
1452 1581
1453 postfork = 0; 1582 postfork = 0;
1454} 1583}
1455 1584
1456#if EV_MULTIPLICITY 1585#if EV_MULTIPLICITY
1586
1457struct ev_loop * 1587struct ev_loop *
1458ev_loop_new (unsigned int flags) 1588ev_loop_new (unsigned int flags)
1459{ 1589{
1460 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1590 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1461 1591
1479void 1609void
1480ev_loop_fork (EV_P) 1610ev_loop_fork (EV_P)
1481{ 1611{
1482 postfork = 1; /* must be in line with ev_default_fork */ 1612 postfork = 1; /* must be in line with ev_default_fork */
1483} 1613}
1614
1615#if EV_VERIFY
1616static void noinline
1617verify_watcher (EV_P_ W w)
1618{
1619 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1620
1621 if (w->pending)
1622 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1623}
1624
1625static void noinline
1626verify_heap (EV_P_ ANHE *heap, int N)
1627{
1628 int i;
1629
1630 for (i = HEAP0; i < N + HEAP0; ++i)
1631 {
1632 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1633 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1634 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1635
1636 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1637 }
1638}
1639
1640static void noinline
1641array_verify (EV_P_ W *ws, int cnt)
1642{
1643 while (cnt--)
1644 {
1645 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1646 verify_watcher (EV_A_ ws [cnt]);
1647 }
1648}
1649#endif
1650
1651void
1652ev_loop_verify (EV_P)
1653{
1654#if EV_VERIFY
1655 int i;
1656 WL w;
1657
1658 assert (activecnt >= -1);
1659
1660 assert (fdchangemax >= fdchangecnt);
1661 for (i = 0; i < fdchangecnt; ++i)
1662 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1663
1664 assert (anfdmax >= 0);
1665 for (i = 0; i < anfdmax; ++i)
1666 for (w = anfds [i].head; w; w = w->next)
1667 {
1668 verify_watcher (EV_A_ (W)w);
1669 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1670 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1671 }
1672
1673 assert (timermax >= timercnt);
1674 verify_heap (EV_A_ timers, timercnt);
1675
1676#if EV_PERIODIC_ENABLE
1677 assert (periodicmax >= periodiccnt);
1678 verify_heap (EV_A_ periodics, periodiccnt);
1679#endif
1680
1681 for (i = NUMPRI; i--; )
1682 {
1683 assert (pendingmax [i] >= pendingcnt [i]);
1684#if EV_IDLE_ENABLE
1685 assert (idleall >= 0);
1686 assert (idlemax [i] >= idlecnt [i]);
1687 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1688#endif
1689 }
1690
1691#if EV_FORK_ENABLE
1692 assert (forkmax >= forkcnt);
1693 array_verify (EV_A_ (W *)forks, forkcnt);
1694#endif
1695
1696#if EV_ASYNC_ENABLE
1697 assert (asyncmax >= asynccnt);
1698 array_verify (EV_A_ (W *)asyncs, asynccnt);
1699#endif
1700
1701 assert (preparemax >= preparecnt);
1702 array_verify (EV_A_ (W *)prepares, preparecnt);
1703
1704 assert (checkmax >= checkcnt);
1705 array_verify (EV_A_ (W *)checks, checkcnt);
1706
1707# if 0
1708 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1709 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1484#endif 1710# endif
1711#endif
1712}
1713
1714#endif /* multiplicity */
1485 1715
1486#if EV_MULTIPLICITY 1716#if EV_MULTIPLICITY
1487struct ev_loop * 1717struct ev_loop *
1488ev_default_loop_init (unsigned int flags) 1718ev_default_loop_init (unsigned int flags)
1489#else 1719#else
1522{ 1752{
1523#if EV_MULTIPLICITY 1753#if EV_MULTIPLICITY
1524 struct ev_loop *loop = ev_default_loop_ptr; 1754 struct ev_loop *loop = ev_default_loop_ptr;
1525#endif 1755#endif
1526 1756
1757 ev_default_loop_ptr = 0;
1758
1527#ifndef _WIN32 1759#ifndef _WIN32
1528 ev_ref (EV_A); /* child watcher */ 1760 ev_ref (EV_A); /* child watcher */
1529 ev_signal_stop (EV_A_ &childev); 1761 ev_signal_stop (EV_A_ &childev);
1530#endif 1762#endif
1531 1763
1537{ 1769{
1538#if EV_MULTIPLICITY 1770#if EV_MULTIPLICITY
1539 struct ev_loop *loop = ev_default_loop_ptr; 1771 struct ev_loop *loop = ev_default_loop_ptr;
1540#endif 1772#endif
1541 1773
1542 if (backend)
1543 postfork = 1; /* must be in line with ev_loop_fork */ 1774 postfork = 1; /* must be in line with ev_loop_fork */
1544} 1775}
1545 1776
1546/*****************************************************************************/ 1777/*****************************************************************************/
1547 1778
1548void 1779void
1549ev_invoke (EV_P_ void *w, int revents) 1780ev_invoke (EV_P_ void *w, int revents)
1550{ 1781{
1551 EV_CB_INVOKE ((W)w, revents); 1782 EV_CB_INVOKE ((W)w, revents);
1552} 1783}
1553 1784
1554void inline_speed 1785inline_speed void
1555call_pending (EV_P) 1786call_pending (EV_P)
1556{ 1787{
1557 int pri; 1788 int pri;
1558 1789
1559 for (pri = NUMPRI; pri--; ) 1790 for (pri = NUMPRI; pri--; )
1560 while (pendingcnt [pri]) 1791 while (pendingcnt [pri])
1561 { 1792 {
1562 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1793 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1563 1794
1564 if (expect_true (p->w))
1565 {
1566 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1795 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1796 /* ^ this is no longer true, as pending_w could be here */
1567 1797
1568 p->w->pending = 0; 1798 p->w->pending = 0;
1569 EV_CB_INVOKE (p->w, p->events); 1799 EV_CB_INVOKE (p->w, p->events);
1570 } 1800 EV_FREQUENT_CHECK;
1571 } 1801 }
1572} 1802}
1573 1803
1574#if EV_IDLE_ENABLE 1804#if EV_IDLE_ENABLE
1575void inline_size 1805/* make idle watchers pending. this handles the "call-idle */
1806/* only when higher priorities are idle" logic */
1807inline_size void
1576idle_reify (EV_P) 1808idle_reify (EV_P)
1577{ 1809{
1578 if (expect_false (idleall)) 1810 if (expect_false (idleall))
1579 { 1811 {
1580 int pri; 1812 int pri;
1592 } 1824 }
1593 } 1825 }
1594} 1826}
1595#endif 1827#endif
1596 1828
1597void inline_size 1829/* make timers pending */
1830inline_size void
1598timers_reify (EV_P) 1831timers_reify (EV_P)
1599{ 1832{
1833 EV_FREQUENT_CHECK;
1834
1600 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now) 1835 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1601 { 1836 {
1602 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 1837 do
1603
1604 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1605
1606 /* first reschedule or stop timer */
1607 if (w->repeat)
1608 { 1838 {
1839 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1840
1841 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1842
1843 /* first reschedule or stop timer */
1844 if (w->repeat)
1845 {
1846 ev_at (w) += w->repeat;
1847 if (ev_at (w) < mn_now)
1848 ev_at (w) = mn_now;
1849
1609 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1850 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1610 1851
1611 ev_at (w) += w->repeat;
1612 if (ev_at (w) < mn_now)
1613 ev_at (w) = mn_now;
1614
1615 ANHE_at_set (timers [HEAP0]); 1852 ANHE_at_cache (timers [HEAP0]);
1616 downheap (timers, timercnt, HEAP0); 1853 downheap (timers, timercnt, HEAP0);
1854 }
1855 else
1856 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1857
1858 EV_FREQUENT_CHECK;
1859 feed_reverse (EV_A_ (W)w);
1617 } 1860 }
1618 else 1861 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1619 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1620 1862
1621 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1863 feed_reverse_done (EV_A_ EV_TIMEOUT);
1622 } 1864 }
1623} 1865}
1624 1866
1625#if EV_PERIODIC_ENABLE 1867#if EV_PERIODIC_ENABLE
1626void inline_size 1868/* make periodics pending */
1869inline_size void
1627periodics_reify (EV_P) 1870periodics_reify (EV_P)
1628{ 1871{
1872 EV_FREQUENT_CHECK;
1873
1629 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now) 1874 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1630 { 1875 {
1631 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 1876 int feed_count = 0;
1632 1877
1633 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1878 do
1634
1635 /* first reschedule or stop timer */
1636 if (w->reschedule_cb)
1637 { 1879 {
1880 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1881
1882 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1883
1884 /* first reschedule or stop timer */
1885 if (w->reschedule_cb)
1886 {
1638 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1887 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1888
1639 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 1889 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1890
1640 ANHE_at_set (periodics [HEAP0]); 1891 ANHE_at_cache (periodics [HEAP0]);
1641 downheap (periodics, periodiccnt, HEAP0); 1892 downheap (periodics, periodiccnt, HEAP0);
1893 }
1894 else if (w->interval)
1895 {
1896 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1897 /* if next trigger time is not sufficiently in the future, put it there */
1898 /* this might happen because of floating point inexactness */
1899 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1900 {
1901 ev_at (w) += w->interval;
1902
1903 /* if interval is unreasonably low we might still have a time in the past */
1904 /* so correct this. this will make the periodic very inexact, but the user */
1905 /* has effectively asked to get triggered more often than possible */
1906 if (ev_at (w) < ev_rt_now)
1907 ev_at (w) = ev_rt_now;
1908 }
1909
1910 ANHE_at_cache (periodics [HEAP0]);
1911 downheap (periodics, periodiccnt, HEAP0);
1912 }
1913 else
1914 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1915
1916 EV_FREQUENT_CHECK;
1917 feed_reverse (EV_A_ (W)w);
1642 } 1918 }
1643 else if (w->interval) 1919 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1644 {
1645 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1646 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1647 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1648 ANHE_at_set (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0);
1650 }
1651 else
1652 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1653 1920
1654 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1921 feed_reverse_done (EV_A_ EV_PERIODIC);
1655 } 1922 }
1656} 1923}
1657 1924
1925/* simply recalculate all periodics */
1926/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1658static void noinline 1927static void noinline
1659periodics_reschedule (EV_P) 1928periodics_reschedule (EV_P)
1660{ 1929{
1661 int i; 1930 int i;
1662 1931
1668 if (w->reschedule_cb) 1937 if (w->reschedule_cb)
1669 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1938 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1670 else if (w->interval) 1939 else if (w->interval)
1671 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1940 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1672 1941
1673 ANHE_at_set (periodics [i]); 1942 ANHE_at_cache (periodics [i]);
1943 }
1944
1945 reheap (periodics, periodiccnt);
1946}
1947#endif
1948
1949/* adjust all timers by a given offset */
1950static void noinline
1951timers_reschedule (EV_P_ ev_tstamp adjust)
1952{
1953 int i;
1954
1955 for (i = 0; i < timercnt; ++i)
1674 } 1956 {
1675 1957 ANHE *he = timers + i + HEAP0;
1676 /* now rebuild the heap, this for the 2-heap, inefficient for the 4-heap, but correct */ 1958 ANHE_w (*he)->at += adjust;
1677 for (i = periodiccnt >> 1; --i; ) 1959 ANHE_at_cache (*he);
1678 downheap (periodics, periodiccnt, i + HEAP0); 1960 }
1679} 1961}
1680#endif
1681 1962
1682void inline_speed 1963/* fetch new monotonic and realtime times from the kernel */
1964/* also detetc if there was a timejump, and act accordingly */
1965inline_speed void
1683time_update (EV_P_ ev_tstamp max_block) 1966time_update (EV_P_ ev_tstamp max_block)
1684{ 1967{
1685 int i;
1686
1687#if EV_USE_MONOTONIC 1968#if EV_USE_MONOTONIC
1688 if (expect_true (have_monotonic)) 1969 if (expect_true (have_monotonic))
1689 { 1970 {
1971 int i;
1690 ev_tstamp odiff = rtmn_diff; 1972 ev_tstamp odiff = rtmn_diff;
1691 1973
1692 mn_now = get_clock (); 1974 mn_now = get_clock ();
1693 1975
1694 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 1976 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1720 ev_rt_now = ev_time (); 2002 ev_rt_now = ev_time ();
1721 mn_now = get_clock (); 2003 mn_now = get_clock ();
1722 now_floor = mn_now; 2004 now_floor = mn_now;
1723 } 2005 }
1724 2006
2007 /* no timer adjustment, as the monotonic clock doesn't jump */
2008 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1725# if EV_PERIODIC_ENABLE 2009# if EV_PERIODIC_ENABLE
1726 periodics_reschedule (EV_A); 2010 periodics_reschedule (EV_A);
1727# endif 2011# endif
1728 /* no timer adjustment, as the monotonic clock doesn't jump */
1729 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1730 } 2012 }
1731 else 2013 else
1732#endif 2014#endif
1733 { 2015 {
1734 ev_rt_now = ev_time (); 2016 ev_rt_now = ev_time ();
1735 2017
1736 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2018 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1737 { 2019 {
2020 /* adjust timers. this is easy, as the offset is the same for all of them */
2021 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1738#if EV_PERIODIC_ENABLE 2022#if EV_PERIODIC_ENABLE
1739 periodics_reschedule (EV_A); 2023 periodics_reschedule (EV_A);
1740#endif 2024#endif
1741 /* adjust timers. this is easy, as the offset is the same for all of them */
1742 for (i = 0; i < timercnt; ++i)
1743 {
1744 ANHE *he = timers + i + HEAP0;
1745 ANHE_w (*he)->at += ev_rt_now - mn_now;
1746 ANHE_at_set (*he);
1747 }
1748 } 2025 }
1749 2026
1750 mn_now = ev_rt_now; 2027 mn_now = ev_rt_now;
1751 } 2028 }
1752} 2029}
1753 2030
1754void 2031void
1755ev_ref (EV_P)
1756{
1757 ++activecnt;
1758}
1759
1760void
1761ev_unref (EV_P)
1762{
1763 --activecnt;
1764}
1765
1766static int loop_done;
1767
1768void
1769ev_loop (EV_P_ int flags) 2032ev_loop (EV_P_ int flags)
1770{ 2033{
2034 ++loop_depth;
2035
1771 loop_done = EVUNLOOP_CANCEL; 2036 loop_done = EVUNLOOP_CANCEL;
1772 2037
1773 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2038 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1774 2039
1775 do 2040 do
1776 { 2041 {
2042#if EV_VERIFY >= 2
2043 ev_loop_verify (EV_A);
2044#endif
2045
1777#ifndef _WIN32 2046#ifndef _WIN32
1778 if (expect_false (curpid)) /* penalise the forking check even more */ 2047 if (expect_false (curpid)) /* penalise the forking check even more */
1779 if (expect_false (getpid () != curpid)) 2048 if (expect_false (getpid () != curpid))
1780 { 2049 {
1781 curpid = getpid (); 2050 curpid = getpid ();
1798 { 2067 {
1799 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2068 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1800 call_pending (EV_A); 2069 call_pending (EV_A);
1801 } 2070 }
1802 2071
1803 if (expect_false (!activecnt))
1804 break;
1805
1806 /* we might have forked, so reify kernel state if necessary */ 2072 /* we might have forked, so reify kernel state if necessary */
1807 if (expect_false (postfork)) 2073 if (expect_false (postfork))
1808 loop_fork (EV_A); 2074 loop_fork (EV_A);
1809 2075
1810 /* update fd-related kernel structures */ 2076 /* update fd-related kernel structures */
1815 ev_tstamp waittime = 0.; 2081 ev_tstamp waittime = 0.;
1816 ev_tstamp sleeptime = 0.; 2082 ev_tstamp sleeptime = 0.;
1817 2083
1818 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2084 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1819 { 2085 {
2086 /* remember old timestamp for io_blocktime calculation */
2087 ev_tstamp prev_mn_now = mn_now;
2088
1820 /* update time to cancel out callback processing overhead */ 2089 /* update time to cancel out callback processing overhead */
1821 time_update (EV_A_ 1e100); 2090 time_update (EV_A_ 1e100);
1822 2091
1823 waittime = MAX_BLOCKTIME; 2092 waittime = MAX_BLOCKTIME;
1824 2093
1834 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2103 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1835 if (waittime > to) waittime = to; 2104 if (waittime > to) waittime = to;
1836 } 2105 }
1837#endif 2106#endif
1838 2107
2108 /* don't let timeouts decrease the waittime below timeout_blocktime */
1839 if (expect_false (waittime < timeout_blocktime)) 2109 if (expect_false (waittime < timeout_blocktime))
1840 waittime = timeout_blocktime; 2110 waittime = timeout_blocktime;
1841 2111
1842 sleeptime = waittime - backend_fudge; 2112 /* extra check because io_blocktime is commonly 0 */
1843
1844 if (expect_true (sleeptime > io_blocktime)) 2113 if (expect_false (io_blocktime))
1845 sleeptime = io_blocktime;
1846
1847 if (sleeptime)
1848 { 2114 {
2115 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2116
2117 if (sleeptime > waittime - backend_fudge)
2118 sleeptime = waittime - backend_fudge;
2119
2120 if (expect_true (sleeptime > 0.))
2121 {
1849 ev_sleep (sleeptime); 2122 ev_sleep (sleeptime);
1850 waittime -= sleeptime; 2123 waittime -= sleeptime;
2124 }
1851 } 2125 }
1852 } 2126 }
1853 2127
1854 ++loop_count; 2128 ++loop_count;
1855 backend_poll (EV_A_ waittime); 2129 backend_poll (EV_A_ waittime);
1881 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2155 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1882 )); 2156 ));
1883 2157
1884 if (loop_done == EVUNLOOP_ONE) 2158 if (loop_done == EVUNLOOP_ONE)
1885 loop_done = EVUNLOOP_CANCEL; 2159 loop_done = EVUNLOOP_CANCEL;
2160
2161 --loop_depth;
1886} 2162}
1887 2163
1888void 2164void
1889ev_unloop (EV_P_ int how) 2165ev_unloop (EV_P_ int how)
1890{ 2166{
1891 loop_done = how; 2167 loop_done = how;
1892} 2168}
1893 2169
2170void
2171ev_ref (EV_P)
2172{
2173 ++activecnt;
2174}
2175
2176void
2177ev_unref (EV_P)
2178{
2179 --activecnt;
2180}
2181
2182void
2183ev_now_update (EV_P)
2184{
2185 time_update (EV_A_ 1e100);
2186}
2187
2188void
2189ev_suspend (EV_P)
2190{
2191 ev_now_update (EV_A);
2192}
2193
2194void
2195ev_resume (EV_P)
2196{
2197 ev_tstamp mn_prev = mn_now;
2198
2199 ev_now_update (EV_A);
2200 timers_reschedule (EV_A_ mn_now - mn_prev);
2201#if EV_PERIODIC_ENABLE
2202 /* TODO: really do this? */
2203 periodics_reschedule (EV_A);
2204#endif
2205}
2206
1894/*****************************************************************************/ 2207/*****************************************************************************/
2208/* singly-linked list management, used when the expected list length is short */
1895 2209
1896void inline_size 2210inline_size void
1897wlist_add (WL *head, WL elem) 2211wlist_add (WL *head, WL elem)
1898{ 2212{
1899 elem->next = *head; 2213 elem->next = *head;
1900 *head = elem; 2214 *head = elem;
1901} 2215}
1902 2216
1903void inline_size 2217inline_size void
1904wlist_del (WL *head, WL elem) 2218wlist_del (WL *head, WL elem)
1905{ 2219{
1906 while (*head) 2220 while (*head)
1907 { 2221 {
1908 if (*head == elem) 2222 if (*head == elem)
1913 2227
1914 head = &(*head)->next; 2228 head = &(*head)->next;
1915 } 2229 }
1916} 2230}
1917 2231
1918void inline_speed 2232/* internal, faster, version of ev_clear_pending */
2233inline_speed void
1919clear_pending (EV_P_ W w) 2234clear_pending (EV_P_ W w)
1920{ 2235{
1921 if (w->pending) 2236 if (w->pending)
1922 { 2237 {
1923 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2238 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1924 w->pending = 0; 2239 w->pending = 0;
1925 } 2240 }
1926} 2241}
1927 2242
1928int 2243int
1932 int pending = w_->pending; 2247 int pending = w_->pending;
1933 2248
1934 if (expect_true (pending)) 2249 if (expect_true (pending))
1935 { 2250 {
1936 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2251 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2252 p->w = (W)&pending_w;
1937 w_->pending = 0; 2253 w_->pending = 0;
1938 p->w = 0;
1939 return p->events; 2254 return p->events;
1940 } 2255 }
1941 else 2256 else
1942 return 0; 2257 return 0;
1943} 2258}
1944 2259
1945void inline_size 2260inline_size void
1946pri_adjust (EV_P_ W w) 2261pri_adjust (EV_P_ W w)
1947{ 2262{
1948 int pri = w->priority; 2263 int pri = w->priority;
1949 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2264 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1950 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2265 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1951 w->priority = pri; 2266 w->priority = pri;
1952} 2267}
1953 2268
1954void inline_speed 2269inline_speed void
1955ev_start (EV_P_ W w, int active) 2270ev_start (EV_P_ W w, int active)
1956{ 2271{
1957 pri_adjust (EV_A_ w); 2272 pri_adjust (EV_A_ w);
1958 w->active = active; 2273 w->active = active;
1959 ev_ref (EV_A); 2274 ev_ref (EV_A);
1960} 2275}
1961 2276
1962void inline_size 2277inline_size void
1963ev_stop (EV_P_ W w) 2278ev_stop (EV_P_ W w)
1964{ 2279{
1965 ev_unref (EV_A); 2280 ev_unref (EV_A);
1966 w->active = 0; 2281 w->active = 0;
1967} 2282}
1974 int fd = w->fd; 2289 int fd = w->fd;
1975 2290
1976 if (expect_false (ev_is_active (w))) 2291 if (expect_false (ev_is_active (w)))
1977 return; 2292 return;
1978 2293
1979 assert (("ev_io_start called with negative fd", fd >= 0)); 2294 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2295 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2296
2297 EV_FREQUENT_CHECK;
1980 2298
1981 ev_start (EV_A_ (W)w, 1); 2299 ev_start (EV_A_ (W)w, 1);
1982 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2300 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1983 wlist_add (&anfds[fd].head, (WL)w); 2301 wlist_add (&anfds[fd].head, (WL)w);
1984 2302
1985 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2303 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1986 w->events &= ~EV_IOFDSET; 2304 w->events &= ~EV__IOFDSET;
2305
2306 EV_FREQUENT_CHECK;
1987} 2307}
1988 2308
1989void noinline 2309void noinline
1990ev_io_stop (EV_P_ ev_io *w) 2310ev_io_stop (EV_P_ ev_io *w)
1991{ 2311{
1992 clear_pending (EV_A_ (W)w); 2312 clear_pending (EV_A_ (W)w);
1993 if (expect_false (!ev_is_active (w))) 2313 if (expect_false (!ev_is_active (w)))
1994 return; 2314 return;
1995 2315
1996 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2316 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2317
2318 EV_FREQUENT_CHECK;
1997 2319
1998 wlist_del (&anfds[w->fd].head, (WL)w); 2320 wlist_del (&anfds[w->fd].head, (WL)w);
1999 ev_stop (EV_A_ (W)w); 2321 ev_stop (EV_A_ (W)w);
2000 2322
2001 fd_change (EV_A_ w->fd, 1); 2323 fd_change (EV_A_ w->fd, 1);
2324
2325 EV_FREQUENT_CHECK;
2002} 2326}
2003 2327
2004void noinline 2328void noinline
2005ev_timer_start (EV_P_ ev_timer *w) 2329ev_timer_start (EV_P_ ev_timer *w)
2006{ 2330{
2007 if (expect_false (ev_is_active (w))) 2331 if (expect_false (ev_is_active (w)))
2008 return; 2332 return;
2009 2333
2010 ev_at (w) += mn_now; 2334 ev_at (w) += mn_now;
2011 2335
2012 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2336 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2013 2337
2338 EV_FREQUENT_CHECK;
2339
2340 ++timercnt;
2014 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2341 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2015 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 2342 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2016 ANHE_w (timers [ev_active (w)]) = (WT)w; 2343 ANHE_w (timers [ev_active (w)]) = (WT)w;
2017 ANHE_at_set (timers [ev_active (w)]); 2344 ANHE_at_cache (timers [ev_active (w)]);
2018 upheap (timers, ev_active (w)); 2345 upheap (timers, ev_active (w));
2019 2346
2347 EV_FREQUENT_CHECK;
2348
2020 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2349 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2021} 2350}
2022 2351
2023void noinline 2352void noinline
2024ev_timer_stop (EV_P_ ev_timer *w) 2353ev_timer_stop (EV_P_ ev_timer *w)
2025{ 2354{
2026 clear_pending (EV_A_ (W)w); 2355 clear_pending (EV_A_ (W)w);
2027 if (expect_false (!ev_is_active (w))) 2356 if (expect_false (!ev_is_active (w)))
2028 return; 2357 return;
2029 2358
2359 EV_FREQUENT_CHECK;
2360
2030 { 2361 {
2031 int active = ev_active (w); 2362 int active = ev_active (w);
2032 2363
2033 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2364 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2034 2365
2366 --timercnt;
2367
2035 if (expect_true (active < timercnt + HEAP0 - 1)) 2368 if (expect_true (active < timercnt + HEAP0))
2036 { 2369 {
2037 timers [active] = timers [timercnt + HEAP0 - 1]; 2370 timers [active] = timers [timercnt + HEAP0];
2038 adjustheap (timers, timercnt, active); 2371 adjustheap (timers, timercnt, active);
2039 } 2372 }
2040
2041 --timercnt;
2042 } 2373 }
2374
2375 EV_FREQUENT_CHECK;
2043 2376
2044 ev_at (w) -= mn_now; 2377 ev_at (w) -= mn_now;
2045 2378
2046 ev_stop (EV_A_ (W)w); 2379 ev_stop (EV_A_ (W)w);
2047} 2380}
2048 2381
2049void noinline 2382void noinline
2050ev_timer_again (EV_P_ ev_timer *w) 2383ev_timer_again (EV_P_ ev_timer *w)
2051{ 2384{
2385 EV_FREQUENT_CHECK;
2386
2052 if (ev_is_active (w)) 2387 if (ev_is_active (w))
2053 { 2388 {
2054 if (w->repeat) 2389 if (w->repeat)
2055 { 2390 {
2056 ev_at (w) = mn_now + w->repeat; 2391 ev_at (w) = mn_now + w->repeat;
2057 ANHE_at_set (timers [ev_active (w)]); 2392 ANHE_at_cache (timers [ev_active (w)]);
2058 adjustheap (timers, timercnt, ev_active (w)); 2393 adjustheap (timers, timercnt, ev_active (w));
2059 } 2394 }
2060 else 2395 else
2061 ev_timer_stop (EV_A_ w); 2396 ev_timer_stop (EV_A_ w);
2062 } 2397 }
2063 else if (w->repeat) 2398 else if (w->repeat)
2064 { 2399 {
2065 ev_at (w) = w->repeat; 2400 ev_at (w) = w->repeat;
2066 ev_timer_start (EV_A_ w); 2401 ev_timer_start (EV_A_ w);
2067 } 2402 }
2403
2404 EV_FREQUENT_CHECK;
2068} 2405}
2069 2406
2070#if EV_PERIODIC_ENABLE 2407#if EV_PERIODIC_ENABLE
2071void noinline 2408void noinline
2072ev_periodic_start (EV_P_ ev_periodic *w) 2409ev_periodic_start (EV_P_ ev_periodic *w)
2076 2413
2077 if (w->reschedule_cb) 2414 if (w->reschedule_cb)
2078 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2415 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2079 else if (w->interval) 2416 else if (w->interval)
2080 { 2417 {
2081 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2418 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2082 /* this formula differs from the one in periodic_reify because we do not always round up */ 2419 /* this formula differs from the one in periodic_reify because we do not always round up */
2083 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2420 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2084 } 2421 }
2085 else 2422 else
2086 ev_at (w) = w->offset; 2423 ev_at (w) = w->offset;
2087 2424
2425 EV_FREQUENT_CHECK;
2426
2427 ++periodiccnt;
2088 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2428 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2089 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 2429 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2090 ANHE_w (periodics [ev_active (w)]) = (WT)w; 2430 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2431 ANHE_at_cache (periodics [ev_active (w)]);
2091 upheap (periodics, ev_active (w)); 2432 upheap (periodics, ev_active (w));
2092 2433
2434 EV_FREQUENT_CHECK;
2435
2093 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2436 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2094} 2437}
2095 2438
2096void noinline 2439void noinline
2097ev_periodic_stop (EV_P_ ev_periodic *w) 2440ev_periodic_stop (EV_P_ ev_periodic *w)
2098{ 2441{
2099 clear_pending (EV_A_ (W)w); 2442 clear_pending (EV_A_ (W)w);
2100 if (expect_false (!ev_is_active (w))) 2443 if (expect_false (!ev_is_active (w)))
2101 return; 2444 return;
2102 2445
2446 EV_FREQUENT_CHECK;
2447
2103 { 2448 {
2104 int active = ev_active (w); 2449 int active = ev_active (w);
2105 2450
2106 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2451 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2107 2452
2453 --periodiccnt;
2454
2108 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2455 if (expect_true (active < periodiccnt + HEAP0))
2109 { 2456 {
2110 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2457 periodics [active] = periodics [periodiccnt + HEAP0];
2111 adjustheap (periodics, periodiccnt, active); 2458 adjustheap (periodics, periodiccnt, active);
2112 } 2459 }
2113
2114 --periodiccnt;
2115 } 2460 }
2461
2462 EV_FREQUENT_CHECK;
2116 2463
2117 ev_stop (EV_A_ (W)w); 2464 ev_stop (EV_A_ (W)w);
2118} 2465}
2119 2466
2120void noinline 2467void noinline
2132 2479
2133void noinline 2480void noinline
2134ev_signal_start (EV_P_ ev_signal *w) 2481ev_signal_start (EV_P_ ev_signal *w)
2135{ 2482{
2136#if EV_MULTIPLICITY 2483#if EV_MULTIPLICITY
2137 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2484 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2138#endif 2485#endif
2139 if (expect_false (ev_is_active (w))) 2486 if (expect_false (ev_is_active (w)))
2140 return; 2487 return;
2141 2488
2142 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2489 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2143 2490
2144 evpipe_init (EV_A); 2491 evpipe_init (EV_A);
2492
2493 EV_FREQUENT_CHECK;
2145 2494
2146 { 2495 {
2147#ifndef _WIN32 2496#ifndef _WIN32
2148 sigset_t full, prev; 2497 sigset_t full, prev;
2149 sigfillset (&full); 2498 sigfillset (&full);
2150 sigprocmask (SIG_SETMASK, &full, &prev); 2499 sigprocmask (SIG_SETMASK, &full, &prev);
2151#endif 2500#endif
2152 2501
2153 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2502 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2154 2503
2155#ifndef _WIN32 2504#ifndef _WIN32
2156 sigprocmask (SIG_SETMASK, &prev, 0); 2505 sigprocmask (SIG_SETMASK, &prev, 0);
2157#endif 2506#endif
2158 } 2507 }
2170 sigfillset (&sa.sa_mask); 2519 sigfillset (&sa.sa_mask);
2171 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2520 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2172 sigaction (w->signum, &sa, 0); 2521 sigaction (w->signum, &sa, 0);
2173#endif 2522#endif
2174 } 2523 }
2524
2525 EV_FREQUENT_CHECK;
2175} 2526}
2176 2527
2177void noinline 2528void noinline
2178ev_signal_stop (EV_P_ ev_signal *w) 2529ev_signal_stop (EV_P_ ev_signal *w)
2179{ 2530{
2180 clear_pending (EV_A_ (W)w); 2531 clear_pending (EV_A_ (W)w);
2181 if (expect_false (!ev_is_active (w))) 2532 if (expect_false (!ev_is_active (w)))
2182 return; 2533 return;
2183 2534
2535 EV_FREQUENT_CHECK;
2536
2184 wlist_del (&signals [w->signum - 1].head, (WL)w); 2537 wlist_del (&signals [w->signum - 1].head, (WL)w);
2185 ev_stop (EV_A_ (W)w); 2538 ev_stop (EV_A_ (W)w);
2186 2539
2187 if (!signals [w->signum - 1].head) 2540 if (!signals [w->signum - 1].head)
2188 signal (w->signum, SIG_DFL); 2541 signal (w->signum, SIG_DFL);
2542
2543 EV_FREQUENT_CHECK;
2189} 2544}
2190 2545
2191void 2546void
2192ev_child_start (EV_P_ ev_child *w) 2547ev_child_start (EV_P_ ev_child *w)
2193{ 2548{
2194#if EV_MULTIPLICITY 2549#if EV_MULTIPLICITY
2195 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2550 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2196#endif 2551#endif
2197 if (expect_false (ev_is_active (w))) 2552 if (expect_false (ev_is_active (w)))
2198 return; 2553 return;
2199 2554
2555 EV_FREQUENT_CHECK;
2556
2200 ev_start (EV_A_ (W)w, 1); 2557 ev_start (EV_A_ (W)w, 1);
2201 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2558 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2559
2560 EV_FREQUENT_CHECK;
2202} 2561}
2203 2562
2204void 2563void
2205ev_child_stop (EV_P_ ev_child *w) 2564ev_child_stop (EV_P_ ev_child *w)
2206{ 2565{
2207 clear_pending (EV_A_ (W)w); 2566 clear_pending (EV_A_ (W)w);
2208 if (expect_false (!ev_is_active (w))) 2567 if (expect_false (!ev_is_active (w)))
2209 return; 2568 return;
2210 2569
2570 EV_FREQUENT_CHECK;
2571
2211 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2572 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2212 ev_stop (EV_A_ (W)w); 2573 ev_stop (EV_A_ (W)w);
2574
2575 EV_FREQUENT_CHECK;
2213} 2576}
2214 2577
2215#if EV_STAT_ENABLE 2578#if EV_STAT_ENABLE
2216 2579
2217# ifdef _WIN32 2580# ifdef _WIN32
2218# undef lstat 2581# undef lstat
2219# define lstat(a,b) _stati64 (a,b) 2582# define lstat(a,b) _stati64 (a,b)
2220# endif 2583# endif
2221 2584
2222#define DEF_STAT_INTERVAL 5.0074891 2585#define DEF_STAT_INTERVAL 5.0074891
2586#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2223#define MIN_STAT_INTERVAL 0.1074891 2587#define MIN_STAT_INTERVAL 0.1074891
2224 2588
2225static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2589static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2226 2590
2227#if EV_USE_INOTIFY 2591#if EV_USE_INOTIFY
2228# define EV_INOTIFY_BUFSIZE 8192 2592# define EV_INOTIFY_BUFSIZE 8192
2232{ 2596{
2233 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2597 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2234 2598
2235 if (w->wd < 0) 2599 if (w->wd < 0)
2236 { 2600 {
2601 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2237 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2602 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2238 2603
2239 /* monitor some parent directory for speedup hints */ 2604 /* monitor some parent directory for speedup hints */
2240 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2605 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2241 /* but an efficiency issue only */ 2606 /* but an efficiency issue only */
2242 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2607 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2243 { 2608 {
2244 char path [4096]; 2609 char path [4096];
2245 strcpy (path, w->path); 2610 strcpy (path, w->path);
2249 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2614 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2250 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2615 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2251 2616
2252 char *pend = strrchr (path, '/'); 2617 char *pend = strrchr (path, '/');
2253 2618
2254 if (!pend) 2619 if (!pend || pend == path)
2255 break; /* whoops, no '/', complain to your admin */ 2620 break;
2256 2621
2257 *pend = 0; 2622 *pend = 0;
2258 w->wd = inotify_add_watch (fs_fd, path, mask); 2623 w->wd = inotify_add_watch (fs_fd, path, mask);
2259 } 2624 }
2260 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2625 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2261 } 2626 }
2262 } 2627 }
2263 else
2264 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2265 2628
2266 if (w->wd >= 0) 2629 if (w->wd >= 0)
2630 {
2267 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2631 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2632
2633 /* now local changes will be tracked by inotify, but remote changes won't */
2634 /* unless the filesystem it known to be local, we therefore still poll */
2635 /* also do poll on <2.6.25, but with normal frequency */
2636 struct statfs sfs;
2637
2638 if (fs_2625 && !statfs (w->path, &sfs))
2639 if (sfs.f_type == 0x1373 /* devfs */
2640 || sfs.f_type == 0xEF53 /* ext2/3 */
2641 || sfs.f_type == 0x3153464a /* jfs */
2642 || sfs.f_type == 0x52654973 /* reiser3 */
2643 || sfs.f_type == 0x01021994 /* tempfs */
2644 || sfs.f_type == 0x58465342 /* xfs */)
2645 return;
2646
2647 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2648 ev_timer_again (EV_A_ &w->timer);
2649 }
2268} 2650}
2269 2651
2270static void noinline 2652static void noinline
2271infy_del (EV_P_ ev_stat *w) 2653infy_del (EV_P_ ev_stat *w)
2272{ 2654{
2286 2668
2287static void noinline 2669static void noinline
2288infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2670infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2289{ 2671{
2290 if (slot < 0) 2672 if (slot < 0)
2291 /* overflow, need to check for all hahs slots */ 2673 /* overflow, need to check for all hash slots */
2292 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2674 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2293 infy_wd (EV_A_ slot, wd, ev); 2675 infy_wd (EV_A_ slot, wd, ev);
2294 else 2676 else
2295 { 2677 {
2296 WL w_; 2678 WL w_;
2302 2684
2303 if (w->wd == wd || wd == -1) 2685 if (w->wd == wd || wd == -1)
2304 { 2686 {
2305 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2687 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2306 { 2688 {
2689 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2307 w->wd = -1; 2690 w->wd = -1;
2308 infy_add (EV_A_ w); /* re-add, no matter what */ 2691 infy_add (EV_A_ w); /* re-add, no matter what */
2309 } 2692 }
2310 2693
2311 stat_timer_cb (EV_A_ &w->timer, 0); 2694 stat_timer_cb (EV_A_ &w->timer, 0);
2324 2707
2325 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2708 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2326 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2709 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2327} 2710}
2328 2711
2329void inline_size 2712inline_size void
2713check_2625 (EV_P)
2714{
2715 /* kernels < 2.6.25 are borked
2716 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2717 */
2718 struct utsname buf;
2719 int major, minor, micro;
2720
2721 if (uname (&buf))
2722 return;
2723
2724 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2725 return;
2726
2727 if (major < 2
2728 || (major == 2 && minor < 6)
2729 || (major == 2 && minor == 6 && micro < 25))
2730 return;
2731
2732 fs_2625 = 1;
2733}
2734
2735inline_size void
2330infy_init (EV_P) 2736infy_init (EV_P)
2331{ 2737{
2332 if (fs_fd != -2) 2738 if (fs_fd != -2)
2333 return; 2739 return;
2740
2741 fs_fd = -1;
2742
2743 check_2625 (EV_A);
2334 2744
2335 fs_fd = inotify_init (); 2745 fs_fd = inotify_init ();
2336 2746
2337 if (fs_fd >= 0) 2747 if (fs_fd >= 0)
2338 { 2748 {
2340 ev_set_priority (&fs_w, EV_MAXPRI); 2750 ev_set_priority (&fs_w, EV_MAXPRI);
2341 ev_io_start (EV_A_ &fs_w); 2751 ev_io_start (EV_A_ &fs_w);
2342 } 2752 }
2343} 2753}
2344 2754
2345void inline_size 2755inline_size void
2346infy_fork (EV_P) 2756infy_fork (EV_P)
2347{ 2757{
2348 int slot; 2758 int slot;
2349 2759
2350 if (fs_fd < 0) 2760 if (fs_fd < 0)
2366 w->wd = -1; 2776 w->wd = -1;
2367 2777
2368 if (fs_fd >= 0) 2778 if (fs_fd >= 0)
2369 infy_add (EV_A_ w); /* re-add, no matter what */ 2779 infy_add (EV_A_ w); /* re-add, no matter what */
2370 else 2780 else
2371 ev_timer_start (EV_A_ &w->timer); 2781 ev_timer_again (EV_A_ &w->timer);
2372 } 2782 }
2373
2374 } 2783 }
2375} 2784}
2376 2785
2786#endif
2787
2788#ifdef _WIN32
2789# define EV_LSTAT(p,b) _stati64 (p, b)
2790#else
2791# define EV_LSTAT(p,b) lstat (p, b)
2377#endif 2792#endif
2378 2793
2379void 2794void
2380ev_stat_stat (EV_P_ ev_stat *w) 2795ev_stat_stat (EV_P_ ev_stat *w)
2381{ 2796{
2408 || w->prev.st_atime != w->attr.st_atime 2823 || w->prev.st_atime != w->attr.st_atime
2409 || w->prev.st_mtime != w->attr.st_mtime 2824 || w->prev.st_mtime != w->attr.st_mtime
2410 || w->prev.st_ctime != w->attr.st_ctime 2825 || w->prev.st_ctime != w->attr.st_ctime
2411 ) { 2826 ) {
2412 #if EV_USE_INOTIFY 2827 #if EV_USE_INOTIFY
2828 if (fs_fd >= 0)
2829 {
2413 infy_del (EV_A_ w); 2830 infy_del (EV_A_ w);
2414 infy_add (EV_A_ w); 2831 infy_add (EV_A_ w);
2415 ev_stat_stat (EV_A_ w); /* avoid race... */ 2832 ev_stat_stat (EV_A_ w); /* avoid race... */
2833 }
2416 #endif 2834 #endif
2417 2835
2418 ev_feed_event (EV_A_ w, EV_STAT); 2836 ev_feed_event (EV_A_ w, EV_STAT);
2419 } 2837 }
2420} 2838}
2423ev_stat_start (EV_P_ ev_stat *w) 2841ev_stat_start (EV_P_ ev_stat *w)
2424{ 2842{
2425 if (expect_false (ev_is_active (w))) 2843 if (expect_false (ev_is_active (w)))
2426 return; 2844 return;
2427 2845
2428 /* since we use memcmp, we need to clear any padding data etc. */
2429 memset (&w->prev, 0, sizeof (ev_statdata));
2430 memset (&w->attr, 0, sizeof (ev_statdata));
2431
2432 ev_stat_stat (EV_A_ w); 2846 ev_stat_stat (EV_A_ w);
2433 2847
2848 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2434 if (w->interval < MIN_STAT_INTERVAL) 2849 w->interval = MIN_STAT_INTERVAL;
2435 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2436 2850
2437 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2851 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2438 ev_set_priority (&w->timer, ev_priority (w)); 2852 ev_set_priority (&w->timer, ev_priority (w));
2439 2853
2440#if EV_USE_INOTIFY 2854#if EV_USE_INOTIFY
2441 infy_init (EV_A); 2855 infy_init (EV_A);
2442 2856
2443 if (fs_fd >= 0) 2857 if (fs_fd >= 0)
2444 infy_add (EV_A_ w); 2858 infy_add (EV_A_ w);
2445 else 2859 else
2446#endif 2860#endif
2447 ev_timer_start (EV_A_ &w->timer); 2861 ev_timer_again (EV_A_ &w->timer);
2448 2862
2449 ev_start (EV_A_ (W)w, 1); 2863 ev_start (EV_A_ (W)w, 1);
2864
2865 EV_FREQUENT_CHECK;
2450} 2866}
2451 2867
2452void 2868void
2453ev_stat_stop (EV_P_ ev_stat *w) 2869ev_stat_stop (EV_P_ ev_stat *w)
2454{ 2870{
2455 clear_pending (EV_A_ (W)w); 2871 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w))) 2872 if (expect_false (!ev_is_active (w)))
2457 return; 2873 return;
2458 2874
2875 EV_FREQUENT_CHECK;
2876
2459#if EV_USE_INOTIFY 2877#if EV_USE_INOTIFY
2460 infy_del (EV_A_ w); 2878 infy_del (EV_A_ w);
2461#endif 2879#endif
2462 ev_timer_stop (EV_A_ &w->timer); 2880 ev_timer_stop (EV_A_ &w->timer);
2463 2881
2464 ev_stop (EV_A_ (W)w); 2882 ev_stop (EV_A_ (W)w);
2883
2884 EV_FREQUENT_CHECK;
2465} 2885}
2466#endif 2886#endif
2467 2887
2468#if EV_IDLE_ENABLE 2888#if EV_IDLE_ENABLE
2469void 2889void
2471{ 2891{
2472 if (expect_false (ev_is_active (w))) 2892 if (expect_false (ev_is_active (w)))
2473 return; 2893 return;
2474 2894
2475 pri_adjust (EV_A_ (W)w); 2895 pri_adjust (EV_A_ (W)w);
2896
2897 EV_FREQUENT_CHECK;
2476 2898
2477 { 2899 {
2478 int active = ++idlecnt [ABSPRI (w)]; 2900 int active = ++idlecnt [ABSPRI (w)];
2479 2901
2480 ++idleall; 2902 ++idleall;
2481 ev_start (EV_A_ (W)w, active); 2903 ev_start (EV_A_ (W)w, active);
2482 2904
2483 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2905 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2484 idles [ABSPRI (w)][active - 1] = w; 2906 idles [ABSPRI (w)][active - 1] = w;
2485 } 2907 }
2908
2909 EV_FREQUENT_CHECK;
2486} 2910}
2487 2911
2488void 2912void
2489ev_idle_stop (EV_P_ ev_idle *w) 2913ev_idle_stop (EV_P_ ev_idle *w)
2490{ 2914{
2491 clear_pending (EV_A_ (W)w); 2915 clear_pending (EV_A_ (W)w);
2492 if (expect_false (!ev_is_active (w))) 2916 if (expect_false (!ev_is_active (w)))
2493 return; 2917 return;
2494 2918
2919 EV_FREQUENT_CHECK;
2920
2495 { 2921 {
2496 int active = ev_active (w); 2922 int active = ev_active (w);
2497 2923
2498 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2924 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2499 ev_active (idles [ABSPRI (w)][active - 1]) = active; 2925 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2500 2926
2501 ev_stop (EV_A_ (W)w); 2927 ev_stop (EV_A_ (W)w);
2502 --idleall; 2928 --idleall;
2503 } 2929 }
2930
2931 EV_FREQUENT_CHECK;
2504} 2932}
2505#endif 2933#endif
2506 2934
2507void 2935void
2508ev_prepare_start (EV_P_ ev_prepare *w) 2936ev_prepare_start (EV_P_ ev_prepare *w)
2509{ 2937{
2510 if (expect_false (ev_is_active (w))) 2938 if (expect_false (ev_is_active (w)))
2511 return; 2939 return;
2940
2941 EV_FREQUENT_CHECK;
2512 2942
2513 ev_start (EV_A_ (W)w, ++preparecnt); 2943 ev_start (EV_A_ (W)w, ++preparecnt);
2514 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2944 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2515 prepares [preparecnt - 1] = w; 2945 prepares [preparecnt - 1] = w;
2946
2947 EV_FREQUENT_CHECK;
2516} 2948}
2517 2949
2518void 2950void
2519ev_prepare_stop (EV_P_ ev_prepare *w) 2951ev_prepare_stop (EV_P_ ev_prepare *w)
2520{ 2952{
2521 clear_pending (EV_A_ (W)w); 2953 clear_pending (EV_A_ (W)w);
2522 if (expect_false (!ev_is_active (w))) 2954 if (expect_false (!ev_is_active (w)))
2523 return; 2955 return;
2524 2956
2957 EV_FREQUENT_CHECK;
2958
2525 { 2959 {
2526 int active = ev_active (w); 2960 int active = ev_active (w);
2527 2961
2528 prepares [active - 1] = prepares [--preparecnt]; 2962 prepares [active - 1] = prepares [--preparecnt];
2529 ev_active (prepares [active - 1]) = active; 2963 ev_active (prepares [active - 1]) = active;
2530 } 2964 }
2531 2965
2532 ev_stop (EV_A_ (W)w); 2966 ev_stop (EV_A_ (W)w);
2967
2968 EV_FREQUENT_CHECK;
2533} 2969}
2534 2970
2535void 2971void
2536ev_check_start (EV_P_ ev_check *w) 2972ev_check_start (EV_P_ ev_check *w)
2537{ 2973{
2538 if (expect_false (ev_is_active (w))) 2974 if (expect_false (ev_is_active (w)))
2539 return; 2975 return;
2976
2977 EV_FREQUENT_CHECK;
2540 2978
2541 ev_start (EV_A_ (W)w, ++checkcnt); 2979 ev_start (EV_A_ (W)w, ++checkcnt);
2542 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2980 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2543 checks [checkcnt - 1] = w; 2981 checks [checkcnt - 1] = w;
2982
2983 EV_FREQUENT_CHECK;
2544} 2984}
2545 2985
2546void 2986void
2547ev_check_stop (EV_P_ ev_check *w) 2987ev_check_stop (EV_P_ ev_check *w)
2548{ 2988{
2549 clear_pending (EV_A_ (W)w); 2989 clear_pending (EV_A_ (W)w);
2550 if (expect_false (!ev_is_active (w))) 2990 if (expect_false (!ev_is_active (w)))
2551 return; 2991 return;
2552 2992
2993 EV_FREQUENT_CHECK;
2994
2553 { 2995 {
2554 int active = ev_active (w); 2996 int active = ev_active (w);
2555 2997
2556 checks [active - 1] = checks [--checkcnt]; 2998 checks [active - 1] = checks [--checkcnt];
2557 ev_active (checks [active - 1]) = active; 2999 ev_active (checks [active - 1]) = active;
2558 } 3000 }
2559 3001
2560 ev_stop (EV_A_ (W)w); 3002 ev_stop (EV_A_ (W)w);
3003
3004 EV_FREQUENT_CHECK;
2561} 3005}
2562 3006
2563#if EV_EMBED_ENABLE 3007#if EV_EMBED_ENABLE
2564void noinline 3008void noinline
2565ev_embed_sweep (EV_P_ ev_embed *w) 3009ev_embed_sweep (EV_P_ ev_embed *w)
2592 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3036 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2593 } 3037 }
2594 } 3038 }
2595} 3039}
2596 3040
3041static void
3042embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3043{
3044 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3045
3046 ev_embed_stop (EV_A_ w);
3047
3048 {
3049 struct ev_loop *loop = w->other;
3050
3051 ev_loop_fork (EV_A);
3052 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3053 }
3054
3055 ev_embed_start (EV_A_ w);
3056}
3057
2597#if 0 3058#if 0
2598static void 3059static void
2599embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3060embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2600{ 3061{
2601 ev_idle_stop (EV_A_ idle); 3062 ev_idle_stop (EV_A_ idle);
2608 if (expect_false (ev_is_active (w))) 3069 if (expect_false (ev_is_active (w)))
2609 return; 3070 return;
2610 3071
2611 { 3072 {
2612 struct ev_loop *loop = w->other; 3073 struct ev_loop *loop = w->other;
2613 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3074 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2614 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3075 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2615 } 3076 }
3077
3078 EV_FREQUENT_CHECK;
2616 3079
2617 ev_set_priority (&w->io, ev_priority (w)); 3080 ev_set_priority (&w->io, ev_priority (w));
2618 ev_io_start (EV_A_ &w->io); 3081 ev_io_start (EV_A_ &w->io);
2619 3082
2620 ev_prepare_init (&w->prepare, embed_prepare_cb); 3083 ev_prepare_init (&w->prepare, embed_prepare_cb);
2621 ev_set_priority (&w->prepare, EV_MINPRI); 3084 ev_set_priority (&w->prepare, EV_MINPRI);
2622 ev_prepare_start (EV_A_ &w->prepare); 3085 ev_prepare_start (EV_A_ &w->prepare);
2623 3086
3087 ev_fork_init (&w->fork, embed_fork_cb);
3088 ev_fork_start (EV_A_ &w->fork);
3089
2624 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3090 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2625 3091
2626 ev_start (EV_A_ (W)w, 1); 3092 ev_start (EV_A_ (W)w, 1);
3093
3094 EV_FREQUENT_CHECK;
2627} 3095}
2628 3096
2629void 3097void
2630ev_embed_stop (EV_P_ ev_embed *w) 3098ev_embed_stop (EV_P_ ev_embed *w)
2631{ 3099{
2632 clear_pending (EV_A_ (W)w); 3100 clear_pending (EV_A_ (W)w);
2633 if (expect_false (!ev_is_active (w))) 3101 if (expect_false (!ev_is_active (w)))
2634 return; 3102 return;
2635 3103
3104 EV_FREQUENT_CHECK;
3105
2636 ev_io_stop (EV_A_ &w->io); 3106 ev_io_stop (EV_A_ &w->io);
2637 ev_prepare_stop (EV_A_ &w->prepare); 3107 ev_prepare_stop (EV_A_ &w->prepare);
3108 ev_fork_stop (EV_A_ &w->fork);
2638 3109
2639 ev_stop (EV_A_ (W)w); 3110 EV_FREQUENT_CHECK;
2640} 3111}
2641#endif 3112#endif
2642 3113
2643#if EV_FORK_ENABLE 3114#if EV_FORK_ENABLE
2644void 3115void
2645ev_fork_start (EV_P_ ev_fork *w) 3116ev_fork_start (EV_P_ ev_fork *w)
2646{ 3117{
2647 if (expect_false (ev_is_active (w))) 3118 if (expect_false (ev_is_active (w)))
2648 return; 3119 return;
3120
3121 EV_FREQUENT_CHECK;
2649 3122
2650 ev_start (EV_A_ (W)w, ++forkcnt); 3123 ev_start (EV_A_ (W)w, ++forkcnt);
2651 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3124 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2652 forks [forkcnt - 1] = w; 3125 forks [forkcnt - 1] = w;
3126
3127 EV_FREQUENT_CHECK;
2653} 3128}
2654 3129
2655void 3130void
2656ev_fork_stop (EV_P_ ev_fork *w) 3131ev_fork_stop (EV_P_ ev_fork *w)
2657{ 3132{
2658 clear_pending (EV_A_ (W)w); 3133 clear_pending (EV_A_ (W)w);
2659 if (expect_false (!ev_is_active (w))) 3134 if (expect_false (!ev_is_active (w)))
2660 return; 3135 return;
2661 3136
3137 EV_FREQUENT_CHECK;
3138
2662 { 3139 {
2663 int active = ev_active (w); 3140 int active = ev_active (w);
2664 3141
2665 forks [active - 1] = forks [--forkcnt]; 3142 forks [active - 1] = forks [--forkcnt];
2666 ev_active (forks [active - 1]) = active; 3143 ev_active (forks [active - 1]) = active;
2667 } 3144 }
2668 3145
2669 ev_stop (EV_A_ (W)w); 3146 ev_stop (EV_A_ (W)w);
3147
3148 EV_FREQUENT_CHECK;
2670} 3149}
2671#endif 3150#endif
2672 3151
2673#if EV_ASYNC_ENABLE 3152#if EV_ASYNC_ENABLE
2674void 3153void
2676{ 3155{
2677 if (expect_false (ev_is_active (w))) 3156 if (expect_false (ev_is_active (w)))
2678 return; 3157 return;
2679 3158
2680 evpipe_init (EV_A); 3159 evpipe_init (EV_A);
3160
3161 EV_FREQUENT_CHECK;
2681 3162
2682 ev_start (EV_A_ (W)w, ++asynccnt); 3163 ev_start (EV_A_ (W)w, ++asynccnt);
2683 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3164 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2684 asyncs [asynccnt - 1] = w; 3165 asyncs [asynccnt - 1] = w;
3166
3167 EV_FREQUENT_CHECK;
2685} 3168}
2686 3169
2687void 3170void
2688ev_async_stop (EV_P_ ev_async *w) 3171ev_async_stop (EV_P_ ev_async *w)
2689{ 3172{
2690 clear_pending (EV_A_ (W)w); 3173 clear_pending (EV_A_ (W)w);
2691 if (expect_false (!ev_is_active (w))) 3174 if (expect_false (!ev_is_active (w)))
2692 return; 3175 return;
2693 3176
3177 EV_FREQUENT_CHECK;
3178
2694 { 3179 {
2695 int active = ev_active (w); 3180 int active = ev_active (w);
2696 3181
2697 asyncs [active - 1] = asyncs [--asynccnt]; 3182 asyncs [active - 1] = asyncs [--asynccnt];
2698 ev_active (asyncs [active - 1]) = active; 3183 ev_active (asyncs [active - 1]) = active;
2699 } 3184 }
2700 3185
2701 ev_stop (EV_A_ (W)w); 3186 ev_stop (EV_A_ (W)w);
3187
3188 EV_FREQUENT_CHECK;
2702} 3189}
2703 3190
2704void 3191void
2705ev_async_send (EV_P_ ev_async *w) 3192ev_async_send (EV_P_ ev_async *w)
2706{ 3193{
2723once_cb (EV_P_ struct ev_once *once, int revents) 3210once_cb (EV_P_ struct ev_once *once, int revents)
2724{ 3211{
2725 void (*cb)(int revents, void *arg) = once->cb; 3212 void (*cb)(int revents, void *arg) = once->cb;
2726 void *arg = once->arg; 3213 void *arg = once->arg;
2727 3214
2728 ev_io_stop (EV_A_ &once->io); 3215 ev_io_stop (EV_A_ &once->io);
2729 ev_timer_stop (EV_A_ &once->to); 3216 ev_timer_stop (EV_A_ &once->to);
2730 ev_free (once); 3217 ev_free (once);
2731 3218
2732 cb (revents, arg); 3219 cb (revents, arg);
2733} 3220}
2734 3221
2735static void 3222static void
2736once_cb_io (EV_P_ ev_io *w, int revents) 3223once_cb_io (EV_P_ ev_io *w, int revents)
2737{ 3224{
2738 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3225 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3226
3227 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2739} 3228}
2740 3229
2741static void 3230static void
2742once_cb_to (EV_P_ ev_timer *w, int revents) 3231once_cb_to (EV_P_ ev_timer *w, int revents)
2743{ 3232{
2744 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3233 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3234
3235 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2745} 3236}
2746 3237
2747void 3238void
2748ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3239ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2749{ 3240{
2771 ev_timer_set (&once->to, timeout, 0.); 3262 ev_timer_set (&once->to, timeout, 0.);
2772 ev_timer_start (EV_A_ &once->to); 3263 ev_timer_start (EV_A_ &once->to);
2773 } 3264 }
2774} 3265}
2775 3266
3267/*****************************************************************************/
3268
3269#if EV_WALK_ENABLE
3270void
3271ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3272{
3273 int i, j;
3274 ev_watcher_list *wl, *wn;
3275
3276 if (types & (EV_IO | EV_EMBED))
3277 for (i = 0; i < anfdmax; ++i)
3278 for (wl = anfds [i].head; wl; )
3279 {
3280 wn = wl->next;
3281
3282#if EV_EMBED_ENABLE
3283 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3284 {
3285 if (types & EV_EMBED)
3286 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3287 }
3288 else
3289#endif
3290#if EV_USE_INOTIFY
3291 if (ev_cb ((ev_io *)wl) == infy_cb)
3292 ;
3293 else
3294#endif
3295 if ((ev_io *)wl != &pipe_w)
3296 if (types & EV_IO)
3297 cb (EV_A_ EV_IO, wl);
3298
3299 wl = wn;
3300 }
3301
3302 if (types & (EV_TIMER | EV_STAT))
3303 for (i = timercnt + HEAP0; i-- > HEAP0; )
3304#if EV_STAT_ENABLE
3305 /*TODO: timer is not always active*/
3306 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3307 {
3308 if (types & EV_STAT)
3309 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3310 }
3311 else
3312#endif
3313 if (types & EV_TIMER)
3314 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3315
3316#if EV_PERIODIC_ENABLE
3317 if (types & EV_PERIODIC)
3318 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3319 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3320#endif
3321
3322#if EV_IDLE_ENABLE
3323 if (types & EV_IDLE)
3324 for (j = NUMPRI; i--; )
3325 for (i = idlecnt [j]; i--; )
3326 cb (EV_A_ EV_IDLE, idles [j][i]);
3327#endif
3328
3329#if EV_FORK_ENABLE
3330 if (types & EV_FORK)
3331 for (i = forkcnt; i--; )
3332 if (ev_cb (forks [i]) != embed_fork_cb)
3333 cb (EV_A_ EV_FORK, forks [i]);
3334#endif
3335
3336#if EV_ASYNC_ENABLE
3337 if (types & EV_ASYNC)
3338 for (i = asynccnt; i--; )
3339 cb (EV_A_ EV_ASYNC, asyncs [i]);
3340#endif
3341
3342 if (types & EV_PREPARE)
3343 for (i = preparecnt; i--; )
3344#if EV_EMBED_ENABLE
3345 if (ev_cb (prepares [i]) != embed_prepare_cb)
3346#endif
3347 cb (EV_A_ EV_PREPARE, prepares [i]);
3348
3349 if (types & EV_CHECK)
3350 for (i = checkcnt; i--; )
3351 cb (EV_A_ EV_CHECK, checks [i]);
3352
3353 if (types & EV_SIGNAL)
3354 for (i = 0; i < signalmax; ++i)
3355 for (wl = signals [i].head; wl; )
3356 {
3357 wn = wl->next;
3358 cb (EV_A_ EV_SIGNAL, wl);
3359 wl = wn;
3360 }
3361
3362 if (types & EV_CHILD)
3363 for (i = EV_PID_HASHSIZE; i--; )
3364 for (wl = childs [i]; wl; )
3365 {
3366 wn = wl->next;
3367 cb (EV_A_ EV_CHILD, wl);
3368 wl = wn;
3369 }
3370/* EV_STAT 0x00001000 /* stat data changed */
3371/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3372}
3373#endif
3374
2776#if EV_MULTIPLICITY 3375#if EV_MULTIPLICITY
2777 #include "ev_wrap.h" 3376 #include "ev_wrap.h"
2778#endif 3377#endif
2779 3378
2780#ifdef __cplusplus 3379#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines