ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.273 by root, Mon Nov 3 14:27:06 2008 UTC vs.
Revision 1.294 by root, Wed Jul 8 02:46:05 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
164# endif 178# endif
165#endif 179#endif
166 180
167/* this block tries to deduce configuration from header-defined symbols and defaults */ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
168 182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
190
169#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1 193# define EV_USE_MONOTONIC 1
172# else 194# else
173# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
174# endif 196# endif
175#endif 197#endif
176 198
177#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
179#endif 201#endif
180 202
181#ifndef EV_USE_NANOSLEEP 203#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L 204# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1 205# define EV_USE_NANOSLEEP 1
260# define EV_USE_4HEAP !EV_MINIMAL 282# define EV_USE_4HEAP !EV_MINIMAL
261#endif 283#endif
262 284
263#ifndef EV_HEAP_CACHE_AT 285#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL 286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
265#endif 301#endif
266 302
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
268 304
269#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
368typedef ev_watcher_time *WT; 404typedef ev_watcher_time *WT;
369 405
370#define ev_active(w) ((W)(w))->active 406#define ev_active(w) ((W)(w))->active
371#define ev_at(w) ((WT)(w))->at 407#define ev_at(w) ((WT)(w))->at
372 408
373#if EV_USE_MONOTONIC 409#if EV_USE_REALTIME
374/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 410/* sig_atomic_t is used to avoid per-thread variables or locking but still */
375/* giving it a reasonably high chance of working on typical architetcures */ 411/* giving it a reasonably high chance of working on typical architetcures */
412static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
413#endif
414
415#if EV_USE_MONOTONIC
376static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 416static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
377#endif 417#endif
378 418
379#ifdef _WIN32 419#ifdef _WIN32
380# include "ev_win32.c" 420# include "ev_win32.c"
445#define ev_malloc(size) ev_realloc (0, (size)) 485#define ev_malloc(size) ev_realloc (0, (size))
446#define ev_free(ptr) ev_realloc ((ptr), 0) 486#define ev_free(ptr) ev_realloc ((ptr), 0)
447 487
448/*****************************************************************************/ 488/*****************************************************************************/
449 489
490/* file descriptor info structure */
450typedef struct 491typedef struct
451{ 492{
452 WL head; 493 WL head;
453 unsigned char events; 494 unsigned char events; /* the events watched for */
454 unsigned char reify; 495 unsigned char reify; /* flag set when this ANFD needs reification */
455 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 496 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
456 unsigned char unused; 497 unsigned char unused;
457#if EV_USE_EPOLL 498#if EV_USE_EPOLL
458 unsigned int egen; /* generation counter to counter epoll bugs */ 499 unsigned int egen; /* generation counter to counter epoll bugs */
459#endif 500#endif
460#if EV_SELECT_IS_WINSOCKET 501#if EV_SELECT_IS_WINSOCKET
461 SOCKET handle; 502 SOCKET handle;
462#endif 503#endif
463} ANFD; 504} ANFD;
464 505
506/* stores the pending event set for a given watcher */
465typedef struct 507typedef struct
466{ 508{
467 W w; 509 W w;
468 int events; 510 int events; /* the pending event set for the given watcher */
469} ANPENDING; 511} ANPENDING;
470 512
471#if EV_USE_INOTIFY 513#if EV_USE_INOTIFY
472/* hash table entry per inotify-id */ 514/* hash table entry per inotify-id */
473typedef struct 515typedef struct
476} ANFS; 518} ANFS;
477#endif 519#endif
478 520
479/* Heap Entry */ 521/* Heap Entry */
480#if EV_HEAP_CACHE_AT 522#if EV_HEAP_CACHE_AT
523 /* a heap element */
481 typedef struct { 524 typedef struct {
482 ev_tstamp at; 525 ev_tstamp at;
483 WT w; 526 WT w;
484 } ANHE; 527 } ANHE;
485 528
486 #define ANHE_w(he) (he).w /* access watcher, read-write */ 529 #define ANHE_w(he) (he).w /* access watcher, read-write */
487 #define ANHE_at(he) (he).at /* access cached at, read-only */ 530 #define ANHE_at(he) (he).at /* access cached at, read-only */
488 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 531 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
489#else 532#else
533 /* a heap element */
490 typedef WT ANHE; 534 typedef WT ANHE;
491 535
492 #define ANHE_w(he) (he) 536 #define ANHE_w(he) (he)
493 #define ANHE_at(he) (he)->at 537 #define ANHE_at(he) (he)->at
494 #define ANHE_at_cache(he) 538 #define ANHE_at_cache(he)
520 564
521#endif 565#endif
522 566
523/*****************************************************************************/ 567/*****************************************************************************/
524 568
569#ifndef EV_HAVE_EV_TIME
525ev_tstamp 570ev_tstamp
526ev_time (void) 571ev_time (void)
527{ 572{
528#if EV_USE_REALTIME 573#if EV_USE_REALTIME
574 if (expect_true (have_realtime))
575 {
529 struct timespec ts; 576 struct timespec ts;
530 clock_gettime (CLOCK_REALTIME, &ts); 577 clock_gettime (CLOCK_REALTIME, &ts);
531 return ts.tv_sec + ts.tv_nsec * 1e-9; 578 return ts.tv_sec + ts.tv_nsec * 1e-9;
532#else 579 }
580#endif
581
533 struct timeval tv; 582 struct timeval tv;
534 gettimeofday (&tv, 0); 583 gettimeofday (&tv, 0);
535 return tv.tv_sec + tv.tv_usec * 1e-6; 584 return tv.tv_sec + tv.tv_usec * 1e-6;
536#endif
537} 585}
586#endif
538 587
539ev_tstamp inline_size 588inline_size ev_tstamp
540get_clock (void) 589get_clock (void)
541{ 590{
542#if EV_USE_MONOTONIC 591#if EV_USE_MONOTONIC
543 if (expect_true (have_monotonic)) 592 if (expect_true (have_monotonic))
544 { 593 {
578 627
579 tv.tv_sec = (time_t)delay; 628 tv.tv_sec = (time_t)delay;
580 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 629 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
581 630
582 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 631 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
583 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 632 /* somehting not guaranteed by newer posix versions, but guaranteed */
584 /* by older ones */ 633 /* by older ones */
585 select (0, 0, 0, 0, &tv); 634 select (0, 0, 0, 0, &tv);
586#endif 635#endif
587 } 636 }
588} 637}
589 638
590/*****************************************************************************/ 639/*****************************************************************************/
591 640
592#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 641#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
593 642
594int inline_size 643/* find a suitable new size for the given array, */
644/* hopefully by rounding to a ncie-to-malloc size */
645inline_size int
595array_nextsize (int elem, int cur, int cnt) 646array_nextsize (int elem, int cur, int cnt)
596{ 647{
597 int ncur = cur + 1; 648 int ncur = cur + 1;
598 649
599 do 650 do
640 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 691 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
641 } 692 }
642#endif 693#endif
643 694
644#define array_free(stem, idx) \ 695#define array_free(stem, idx) \
645 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 696 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
646 697
647/*****************************************************************************/ 698/*****************************************************************************/
699
700/* dummy callback for pending events */
701static void noinline
702pendingcb (EV_P_ ev_prepare *w, int revents)
703{
704}
648 705
649void noinline 706void noinline
650ev_feed_event (EV_P_ void *w, int revents) 707ev_feed_event (EV_P_ void *w, int revents)
651{ 708{
652 W w_ = (W)w; 709 W w_ = (W)w;
661 pendings [pri][w_->pending - 1].w = w_; 718 pendings [pri][w_->pending - 1].w = w_;
662 pendings [pri][w_->pending - 1].events = revents; 719 pendings [pri][w_->pending - 1].events = revents;
663 } 720 }
664} 721}
665 722
666void inline_speed 723inline_speed void
724feed_reverse (EV_P_ W w)
725{
726 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
727 rfeeds [rfeedcnt++] = w;
728}
729
730inline_size void
731feed_reverse_done (EV_P_ int revents)
732{
733 do
734 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
735 while (rfeedcnt);
736}
737
738inline_speed void
667queue_events (EV_P_ W *events, int eventcnt, int type) 739queue_events (EV_P_ W *events, int eventcnt, int type)
668{ 740{
669 int i; 741 int i;
670 742
671 for (i = 0; i < eventcnt; ++i) 743 for (i = 0; i < eventcnt; ++i)
672 ev_feed_event (EV_A_ events [i], type); 744 ev_feed_event (EV_A_ events [i], type);
673} 745}
674 746
675/*****************************************************************************/ 747/*****************************************************************************/
676 748
677void inline_speed 749inline_speed void
678fd_event (EV_P_ int fd, int revents) 750fd_event (EV_P_ int fd, int revents)
679{ 751{
680 ANFD *anfd = anfds + fd; 752 ANFD *anfd = anfds + fd;
681 ev_io *w; 753 ev_io *w;
682 754
694{ 766{
695 if (fd >= 0 && fd < anfdmax) 767 if (fd >= 0 && fd < anfdmax)
696 fd_event (EV_A_ fd, revents); 768 fd_event (EV_A_ fd, revents);
697} 769}
698 770
699void inline_size 771/* make sure the external fd watch events are in-sync */
772/* with the kernel/libev internal state */
773inline_size void
700fd_reify (EV_P) 774fd_reify (EV_P)
701{ 775{
702 int i; 776 int i;
703 777
704 for (i = 0; i < fdchangecnt; ++i) 778 for (i = 0; i < fdchangecnt; ++i)
719 #ifdef EV_FD_TO_WIN32_HANDLE 793 #ifdef EV_FD_TO_WIN32_HANDLE
720 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 794 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
721 #else 795 #else
722 anfd->handle = _get_osfhandle (fd); 796 anfd->handle = _get_osfhandle (fd);
723 #endif 797 #endif
724 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 798 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
725 } 799 }
726#endif 800#endif
727 801
728 { 802 {
729 unsigned char o_events = anfd->events; 803 unsigned char o_events = anfd->events;
730 unsigned char o_reify = anfd->reify; 804 unsigned char o_reify = anfd->reify;
731 805
732 anfd->reify = 0; 806 anfd->reify = 0;
733 anfd->events = events; 807 anfd->events = events;
734 808
735 if (o_events != events || o_reify & EV_IOFDSET) 809 if (o_events != events || o_reify & EV__IOFDSET)
736 backend_modify (EV_A_ fd, o_events, events); 810 backend_modify (EV_A_ fd, o_events, events);
737 } 811 }
738 } 812 }
739 813
740 fdchangecnt = 0; 814 fdchangecnt = 0;
741} 815}
742 816
743void inline_size 817/* something about the given fd changed */
818inline_size void
744fd_change (EV_P_ int fd, int flags) 819fd_change (EV_P_ int fd, int flags)
745{ 820{
746 unsigned char reify = anfds [fd].reify; 821 unsigned char reify = anfds [fd].reify;
747 anfds [fd].reify |= flags; 822 anfds [fd].reify |= flags;
748 823
752 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 827 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
753 fdchanges [fdchangecnt - 1] = fd; 828 fdchanges [fdchangecnt - 1] = fd;
754 } 829 }
755} 830}
756 831
757void inline_speed 832/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
833inline_speed void
758fd_kill (EV_P_ int fd) 834fd_kill (EV_P_ int fd)
759{ 835{
760 ev_io *w; 836 ev_io *w;
761 837
762 while ((w = (ev_io *)anfds [fd].head)) 838 while ((w = (ev_io *)anfds [fd].head))
764 ev_io_stop (EV_A_ w); 840 ev_io_stop (EV_A_ w);
765 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 841 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
766 } 842 }
767} 843}
768 844
769int inline_size 845/* check whether the given fd is atcually valid, for error recovery */
846inline_size int
770fd_valid (int fd) 847fd_valid (int fd)
771{ 848{
772#ifdef _WIN32 849#ifdef _WIN32
773 return _get_osfhandle (fd) != -1; 850 return _get_osfhandle (fd) != -1;
774#else 851#else
811 for (fd = 0; fd < anfdmax; ++fd) 888 for (fd = 0; fd < anfdmax; ++fd)
812 if (anfds [fd].events) 889 if (anfds [fd].events)
813 { 890 {
814 anfds [fd].events = 0; 891 anfds [fd].events = 0;
815 anfds [fd].emask = 0; 892 anfds [fd].emask = 0;
816 fd_change (EV_A_ fd, EV_IOFDSET | 1); 893 fd_change (EV_A_ fd, EV__IOFDSET | 1);
817 } 894 }
818} 895}
819 896
820/*****************************************************************************/ 897/*****************************************************************************/
821 898
837#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 914#define HEAP0 (DHEAP - 1) /* index of first element in heap */
838#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 915#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
839#define UPHEAP_DONE(p,k) ((p) == (k)) 916#define UPHEAP_DONE(p,k) ((p) == (k))
840 917
841/* away from the root */ 918/* away from the root */
842void inline_speed 919inline_speed void
843downheap (ANHE *heap, int N, int k) 920downheap (ANHE *heap, int N, int k)
844{ 921{
845 ANHE he = heap [k]; 922 ANHE he = heap [k];
846 ANHE *E = heap + N + HEAP0; 923 ANHE *E = heap + N + HEAP0;
847 924
887#define HEAP0 1 964#define HEAP0 1
888#define HPARENT(k) ((k) >> 1) 965#define HPARENT(k) ((k) >> 1)
889#define UPHEAP_DONE(p,k) (!(p)) 966#define UPHEAP_DONE(p,k) (!(p))
890 967
891/* away from the root */ 968/* away from the root */
892void inline_speed 969inline_speed void
893downheap (ANHE *heap, int N, int k) 970downheap (ANHE *heap, int N, int k)
894{ 971{
895 ANHE he = heap [k]; 972 ANHE he = heap [k];
896 973
897 for (;;) 974 for (;;)
917 ev_active (ANHE_w (he)) = k; 994 ev_active (ANHE_w (he)) = k;
918} 995}
919#endif 996#endif
920 997
921/* towards the root */ 998/* towards the root */
922void inline_speed 999inline_speed void
923upheap (ANHE *heap, int k) 1000upheap (ANHE *heap, int k)
924{ 1001{
925 ANHE he = heap [k]; 1002 ANHE he = heap [k];
926 1003
927 for (;;) 1004 for (;;)
938 1015
939 heap [k] = he; 1016 heap [k] = he;
940 ev_active (ANHE_w (he)) = k; 1017 ev_active (ANHE_w (he)) = k;
941} 1018}
942 1019
943void inline_size 1020/* move an element suitably so it is in a correct place */
1021inline_size void
944adjustheap (ANHE *heap, int N, int k) 1022adjustheap (ANHE *heap, int N, int k)
945{ 1023{
946 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1024 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
947 upheap (heap, k); 1025 upheap (heap, k);
948 else 1026 else
949 downheap (heap, N, k); 1027 downheap (heap, N, k);
950} 1028}
951 1029
952/* rebuild the heap: this function is used only once and executed rarely */ 1030/* rebuild the heap: this function is used only once and executed rarely */
953void inline_size 1031inline_size void
954reheap (ANHE *heap, int N) 1032reheap (ANHE *heap, int N)
955{ 1033{
956 int i; 1034 int i;
957 1035
958 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1036 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
961 upheap (heap, i + HEAP0); 1039 upheap (heap, i + HEAP0);
962} 1040}
963 1041
964/*****************************************************************************/ 1042/*****************************************************************************/
965 1043
1044/* associate signal watchers to a signal signal */
966typedef struct 1045typedef struct
967{ 1046{
968 WL head; 1047 WL head;
969 EV_ATOMIC_T gotsig; 1048 EV_ATOMIC_T gotsig;
970} ANSIG; 1049} ANSIG;
974 1053
975static EV_ATOMIC_T gotsig; 1054static EV_ATOMIC_T gotsig;
976 1055
977/*****************************************************************************/ 1056/*****************************************************************************/
978 1057
979void inline_speed 1058/* used to prepare libev internal fd's */
1059/* this is not fork-safe */
1060inline_speed void
980fd_intern (int fd) 1061fd_intern (int fd)
981{ 1062{
982#ifdef _WIN32 1063#ifdef _WIN32
983 unsigned long arg = 1; 1064 unsigned long arg = 1;
984 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1065 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
989} 1070}
990 1071
991static void noinline 1072static void noinline
992evpipe_init (EV_P) 1073evpipe_init (EV_P)
993{ 1074{
994 if (!ev_is_active (&pipeev)) 1075 if (!ev_is_active (&pipe_w))
995 { 1076 {
996#if EV_USE_EVENTFD 1077#if EV_USE_EVENTFD
997 if ((evfd = eventfd (0, 0)) >= 0) 1078 if ((evfd = eventfd (0, 0)) >= 0)
998 { 1079 {
999 evpipe [0] = -1; 1080 evpipe [0] = -1;
1000 fd_intern (evfd); 1081 fd_intern (evfd);
1001 ev_io_set (&pipeev, evfd, EV_READ); 1082 ev_io_set (&pipe_w, evfd, EV_READ);
1002 } 1083 }
1003 else 1084 else
1004#endif 1085#endif
1005 { 1086 {
1006 while (pipe (evpipe)) 1087 while (pipe (evpipe))
1007 ev_syserr ("(libev) error creating signal/async pipe"); 1088 ev_syserr ("(libev) error creating signal/async pipe");
1008 1089
1009 fd_intern (evpipe [0]); 1090 fd_intern (evpipe [0]);
1010 fd_intern (evpipe [1]); 1091 fd_intern (evpipe [1]);
1011 ev_io_set (&pipeev, evpipe [0], EV_READ); 1092 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1012 } 1093 }
1013 1094
1014 ev_io_start (EV_A_ &pipeev); 1095 ev_io_start (EV_A_ &pipe_w);
1015 ev_unref (EV_A); /* watcher should not keep loop alive */ 1096 ev_unref (EV_A); /* watcher should not keep loop alive */
1016 } 1097 }
1017} 1098}
1018 1099
1019void inline_size 1100inline_size void
1020evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1101evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1021{ 1102{
1022 if (!*flag) 1103 if (!*flag)
1023 { 1104 {
1024 int old_errno = errno; /* save errno because write might clobber it */ 1105 int old_errno = errno; /* save errno because write might clobber it */
1037 1118
1038 errno = old_errno; 1119 errno = old_errno;
1039 } 1120 }
1040} 1121}
1041 1122
1123/* called whenever the libev signal pipe */
1124/* got some events (signal, async) */
1042static void 1125static void
1043pipecb (EV_P_ ev_io *iow, int revents) 1126pipecb (EV_P_ ev_io *iow, int revents)
1044{ 1127{
1045#if EV_USE_EVENTFD 1128#if EV_USE_EVENTFD
1046 if (evfd >= 0) 1129 if (evfd >= 0)
1102ev_feed_signal_event (EV_P_ int signum) 1185ev_feed_signal_event (EV_P_ int signum)
1103{ 1186{
1104 WL w; 1187 WL w;
1105 1188
1106#if EV_MULTIPLICITY 1189#if EV_MULTIPLICITY
1107 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1190 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1108#endif 1191#endif
1109 1192
1110 --signum; 1193 --signum;
1111 1194
1112 if (signum < 0 || signum >= signalmax) 1195 if (signum < 0 || signum >= signalmax)
1128 1211
1129#ifndef WIFCONTINUED 1212#ifndef WIFCONTINUED
1130# define WIFCONTINUED(status) 0 1213# define WIFCONTINUED(status) 0
1131#endif 1214#endif
1132 1215
1133void inline_speed 1216/* handle a single child status event */
1217inline_speed void
1134child_reap (EV_P_ int chain, int pid, int status) 1218child_reap (EV_P_ int chain, int pid, int status)
1135{ 1219{
1136 ev_child *w; 1220 ev_child *w;
1137 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1221 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1138 1222
1151 1235
1152#ifndef WCONTINUED 1236#ifndef WCONTINUED
1153# define WCONTINUED 0 1237# define WCONTINUED 0
1154#endif 1238#endif
1155 1239
1240/* called on sigchld etc., calls waitpid */
1156static void 1241static void
1157childcb (EV_P_ ev_signal *sw, int revents) 1242childcb (EV_P_ ev_signal *sw, int revents)
1158{ 1243{
1159 int pid, status; 1244 int pid, status;
1160 1245
1241 /* kqueue is borked on everything but netbsd apparently */ 1326 /* kqueue is borked on everything but netbsd apparently */
1242 /* it usually doesn't work correctly on anything but sockets and pipes */ 1327 /* it usually doesn't work correctly on anything but sockets and pipes */
1243 flags &= ~EVBACKEND_KQUEUE; 1328 flags &= ~EVBACKEND_KQUEUE;
1244#endif 1329#endif
1245#ifdef __APPLE__ 1330#ifdef __APPLE__
1246 // flags &= ~EVBACKEND_KQUEUE; for documentation 1331 /* only select works correctly on that "unix-certified" platform */
1247 flags &= ~EVBACKEND_POLL; 1332 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1333 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1248#endif 1334#endif
1249 1335
1250 return flags; 1336 return flags;
1251} 1337}
1252 1338
1272ev_loop_count (EV_P) 1358ev_loop_count (EV_P)
1273{ 1359{
1274 return loop_count; 1360 return loop_count;
1275} 1361}
1276 1362
1363unsigned int
1364ev_loop_depth (EV_P)
1365{
1366 return loop_depth;
1367}
1368
1277void 1369void
1278ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1370ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1279{ 1371{
1280 io_blocktime = interval; 1372 io_blocktime = interval;
1281} 1373}
1284ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1376ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1285{ 1377{
1286 timeout_blocktime = interval; 1378 timeout_blocktime = interval;
1287} 1379}
1288 1380
1381/* initialise a loop structure, must be zero-initialised */
1289static void noinline 1382static void noinline
1290loop_init (EV_P_ unsigned int flags) 1383loop_init (EV_P_ unsigned int flags)
1291{ 1384{
1292 if (!backend) 1385 if (!backend)
1293 { 1386 {
1387#if EV_USE_REALTIME
1388 if (!have_realtime)
1389 {
1390 struct timespec ts;
1391
1392 if (!clock_gettime (CLOCK_REALTIME, &ts))
1393 have_realtime = 1;
1394 }
1395#endif
1396
1294#if EV_USE_MONOTONIC 1397#if EV_USE_MONOTONIC
1398 if (!have_monotonic)
1295 { 1399 {
1296 struct timespec ts; 1400 struct timespec ts;
1401
1297 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1402 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1298 have_monotonic = 1; 1403 have_monotonic = 1;
1299 } 1404 }
1300#endif 1405#endif
1301 1406
1302 ev_rt_now = ev_time (); 1407 ev_rt_now = ev_time ();
1303 mn_now = get_clock (); 1408 mn_now = get_clock ();
1304 now_floor = mn_now; 1409 now_floor = mn_now;
1341#endif 1446#endif
1342#if EV_USE_SELECT 1447#if EV_USE_SELECT
1343 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1448 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1344#endif 1449#endif
1345 1450
1451 ev_prepare_init (&pending_w, pendingcb);
1452
1346 ev_init (&pipeev, pipecb); 1453 ev_init (&pipe_w, pipecb);
1347 ev_set_priority (&pipeev, EV_MAXPRI); 1454 ev_set_priority (&pipe_w, EV_MAXPRI);
1348 } 1455 }
1349} 1456}
1350 1457
1458/* free up a loop structure */
1351static void noinline 1459static void noinline
1352loop_destroy (EV_P) 1460loop_destroy (EV_P)
1353{ 1461{
1354 int i; 1462 int i;
1355 1463
1356 if (ev_is_active (&pipeev)) 1464 if (ev_is_active (&pipe_w))
1357 { 1465 {
1358 ev_ref (EV_A); /* signal watcher */ 1466 ev_ref (EV_A); /* signal watcher */
1359 ev_io_stop (EV_A_ &pipeev); 1467 ev_io_stop (EV_A_ &pipe_w);
1360 1468
1361#if EV_USE_EVENTFD 1469#if EV_USE_EVENTFD
1362 if (evfd >= 0) 1470 if (evfd >= 0)
1363 close (evfd); 1471 close (evfd);
1364#endif 1472#endif
1403 } 1511 }
1404 1512
1405 ev_free (anfds); anfdmax = 0; 1513 ev_free (anfds); anfdmax = 0;
1406 1514
1407 /* have to use the microsoft-never-gets-it-right macro */ 1515 /* have to use the microsoft-never-gets-it-right macro */
1516 array_free (rfeed, EMPTY);
1408 array_free (fdchange, EMPTY); 1517 array_free (fdchange, EMPTY);
1409 array_free (timer, EMPTY); 1518 array_free (timer, EMPTY);
1410#if EV_PERIODIC_ENABLE 1519#if EV_PERIODIC_ENABLE
1411 array_free (periodic, EMPTY); 1520 array_free (periodic, EMPTY);
1412#endif 1521#endif
1421 1530
1422 backend = 0; 1531 backend = 0;
1423} 1532}
1424 1533
1425#if EV_USE_INOTIFY 1534#if EV_USE_INOTIFY
1426void inline_size infy_fork (EV_P); 1535inline_size void infy_fork (EV_P);
1427#endif 1536#endif
1428 1537
1429void inline_size 1538inline_size void
1430loop_fork (EV_P) 1539loop_fork (EV_P)
1431{ 1540{
1432#if EV_USE_PORT 1541#if EV_USE_PORT
1433 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1542 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1434#endif 1543#endif
1440#endif 1549#endif
1441#if EV_USE_INOTIFY 1550#if EV_USE_INOTIFY
1442 infy_fork (EV_A); 1551 infy_fork (EV_A);
1443#endif 1552#endif
1444 1553
1445 if (ev_is_active (&pipeev)) 1554 if (ev_is_active (&pipe_w))
1446 { 1555 {
1447 /* this "locks" the handlers against writing to the pipe */ 1556 /* this "locks" the handlers against writing to the pipe */
1448 /* while we modify the fd vars */ 1557 /* while we modify the fd vars */
1449 gotsig = 1; 1558 gotsig = 1;
1450#if EV_ASYNC_ENABLE 1559#if EV_ASYNC_ENABLE
1451 gotasync = 1; 1560 gotasync = 1;
1452#endif 1561#endif
1453 1562
1454 ev_ref (EV_A); 1563 ev_ref (EV_A);
1455 ev_io_stop (EV_A_ &pipeev); 1564 ev_io_stop (EV_A_ &pipe_w);
1456 1565
1457#if EV_USE_EVENTFD 1566#if EV_USE_EVENTFD
1458 if (evfd >= 0) 1567 if (evfd >= 0)
1459 close (evfd); 1568 close (evfd);
1460#endif 1569#endif
1465 close (evpipe [1]); 1574 close (evpipe [1]);
1466 } 1575 }
1467 1576
1468 evpipe_init (EV_A); 1577 evpipe_init (EV_A);
1469 /* now iterate over everything, in case we missed something */ 1578 /* now iterate over everything, in case we missed something */
1470 pipecb (EV_A_ &pipeev, EV_READ); 1579 pipecb (EV_A_ &pipe_w, EV_READ);
1471 } 1580 }
1472 1581
1473 postfork = 0; 1582 postfork = 0;
1474} 1583}
1475 1584
1505 1614
1506#if EV_VERIFY 1615#if EV_VERIFY
1507static void noinline 1616static void noinline
1508verify_watcher (EV_P_ W w) 1617verify_watcher (EV_P_ W w)
1509{ 1618{
1510 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 1619 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1511 1620
1512 if (w->pending) 1621 if (w->pending)
1513 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 1622 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1514} 1623}
1515 1624
1516static void noinline 1625static void noinline
1517verify_heap (EV_P_ ANHE *heap, int N) 1626verify_heap (EV_P_ ANHE *heap, int N)
1518{ 1627{
1519 int i; 1628 int i;
1520 1629
1521 for (i = HEAP0; i < N + HEAP0; ++i) 1630 for (i = HEAP0; i < N + HEAP0; ++i)
1522 { 1631 {
1523 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 1632 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1524 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 1633 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1525 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 1634 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1526 1635
1527 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 1636 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1528 } 1637 }
1529} 1638}
1530 1639
1531static void noinline 1640static void noinline
1532array_verify (EV_P_ W *ws, int cnt) 1641array_verify (EV_P_ W *ws, int cnt)
1533{ 1642{
1534 while (cnt--) 1643 while (cnt--)
1535 { 1644 {
1536 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 1645 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1537 verify_watcher (EV_A_ ws [cnt]); 1646 verify_watcher (EV_A_ ws [cnt]);
1538 } 1647 }
1539} 1648}
1540#endif 1649#endif
1541 1650
1548 1657
1549 assert (activecnt >= -1); 1658 assert (activecnt >= -1);
1550 1659
1551 assert (fdchangemax >= fdchangecnt); 1660 assert (fdchangemax >= fdchangecnt);
1552 for (i = 0; i < fdchangecnt; ++i) 1661 for (i = 0; i < fdchangecnt; ++i)
1553 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 1662 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1554 1663
1555 assert (anfdmax >= 0); 1664 assert (anfdmax >= 0);
1556 for (i = 0; i < anfdmax; ++i) 1665 for (i = 0; i < anfdmax; ++i)
1557 for (w = anfds [i].head; w; w = w->next) 1666 for (w = anfds [i].head; w; w = w->next)
1558 { 1667 {
1559 verify_watcher (EV_A_ (W)w); 1668 verify_watcher (EV_A_ (W)w);
1560 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 1669 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1561 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 1670 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1562 } 1671 }
1563 1672
1564 assert (timermax >= timercnt); 1673 assert (timermax >= timercnt);
1565 verify_heap (EV_A_ timers, timercnt); 1674 verify_heap (EV_A_ timers, timercnt);
1566 1675
1671ev_invoke (EV_P_ void *w, int revents) 1780ev_invoke (EV_P_ void *w, int revents)
1672{ 1781{
1673 EV_CB_INVOKE ((W)w, revents); 1782 EV_CB_INVOKE ((W)w, revents);
1674} 1783}
1675 1784
1676void inline_speed 1785inline_speed void
1677call_pending (EV_P) 1786call_pending (EV_P)
1678{ 1787{
1679 int pri; 1788 int pri;
1680 1789
1681 for (pri = NUMPRI; pri--; ) 1790 for (pri = NUMPRI; pri--; )
1682 while (pendingcnt [pri]) 1791 while (pendingcnt [pri])
1683 { 1792 {
1684 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1793 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1685 1794
1686 if (expect_true (p->w))
1687 {
1688 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1795 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1796 /* ^ this is no longer true, as pending_w could be here */
1689 1797
1690 p->w->pending = 0; 1798 p->w->pending = 0;
1691 EV_CB_INVOKE (p->w, p->events); 1799 EV_CB_INVOKE (p->w, p->events);
1692 EV_FREQUENT_CHECK; 1800 EV_FREQUENT_CHECK;
1693 }
1694 } 1801 }
1695} 1802}
1696 1803
1697#if EV_IDLE_ENABLE 1804#if EV_IDLE_ENABLE
1698void inline_size 1805/* make idle watchers pending. this handles the "call-idle */
1806/* only when higher priorities are idle" logic */
1807inline_size void
1699idle_reify (EV_P) 1808idle_reify (EV_P)
1700{ 1809{
1701 if (expect_false (idleall)) 1810 if (expect_false (idleall))
1702 { 1811 {
1703 int pri; 1812 int pri;
1715 } 1824 }
1716 } 1825 }
1717} 1826}
1718#endif 1827#endif
1719 1828
1720void inline_size 1829/* make timers pending */
1830inline_size void
1721timers_reify (EV_P) 1831timers_reify (EV_P)
1722{ 1832{
1723 EV_FREQUENT_CHECK; 1833 EV_FREQUENT_CHECK;
1724 1834
1725 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 1835 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1726 { 1836 {
1727 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 1837 do
1728
1729 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1730
1731 /* first reschedule or stop timer */
1732 if (w->repeat)
1733 { 1838 {
1839 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1840
1841 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1842
1843 /* first reschedule or stop timer */
1844 if (w->repeat)
1845 {
1734 ev_at (w) += w->repeat; 1846 ev_at (w) += w->repeat;
1735 if (ev_at (w) < mn_now) 1847 if (ev_at (w) < mn_now)
1736 ev_at (w) = mn_now; 1848 ev_at (w) = mn_now;
1737 1849
1738 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1850 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1739 1851
1740 ANHE_at_cache (timers [HEAP0]); 1852 ANHE_at_cache (timers [HEAP0]);
1741 downheap (timers, timercnt, HEAP0); 1853 downheap (timers, timercnt, HEAP0);
1854 }
1855 else
1856 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1857
1858 EV_FREQUENT_CHECK;
1859 feed_reverse (EV_A_ (W)w);
1742 } 1860 }
1743 else 1861 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1744 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1745 1862
1746 EV_FREQUENT_CHECK;
1747 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1863 feed_reverse_done (EV_A_ EV_TIMEOUT);
1748 } 1864 }
1749} 1865}
1750 1866
1751#if EV_PERIODIC_ENABLE 1867#if EV_PERIODIC_ENABLE
1752void inline_size 1868/* make periodics pending */
1869inline_size void
1753periodics_reify (EV_P) 1870periodics_reify (EV_P)
1754{ 1871{
1755 EV_FREQUENT_CHECK; 1872 EV_FREQUENT_CHECK;
1756 1873
1757 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 1874 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1758 { 1875 {
1759 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 1876 int feed_count = 0;
1760 1877
1761 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1878 do
1762
1763 /* first reschedule or stop timer */
1764 if (w->reschedule_cb)
1765 { 1879 {
1880 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1881
1882 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1883
1884 /* first reschedule or stop timer */
1885 if (w->reschedule_cb)
1886 {
1766 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1887 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1767 1888
1768 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 1889 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1769 1890
1770 ANHE_at_cache (periodics [HEAP0]); 1891 ANHE_at_cache (periodics [HEAP0]);
1771 downheap (periodics, periodiccnt, HEAP0); 1892 downheap (periodics, periodiccnt, HEAP0);
1893 }
1894 else if (w->interval)
1895 {
1896 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1897 /* if next trigger time is not sufficiently in the future, put it there */
1898 /* this might happen because of floating point inexactness */
1899 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1900 {
1901 ev_at (w) += w->interval;
1902
1903 /* if interval is unreasonably low we might still have a time in the past */
1904 /* so correct this. this will make the periodic very inexact, but the user */
1905 /* has effectively asked to get triggered more often than possible */
1906 if (ev_at (w) < ev_rt_now)
1907 ev_at (w) = ev_rt_now;
1908 }
1909
1910 ANHE_at_cache (periodics [HEAP0]);
1911 downheap (periodics, periodiccnt, HEAP0);
1912 }
1913 else
1914 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1915
1916 EV_FREQUENT_CHECK;
1917 feed_reverse (EV_A_ (W)w);
1772 } 1918 }
1773 else if (w->interval) 1919 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1774 {
1775 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1776 /* if next trigger time is not sufficiently in the future, put it there */
1777 /* this might happen because of floating point inexactness */
1778 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1779 {
1780 ev_at (w) += w->interval;
1781 1920
1782 /* if interval is unreasonably low we might still have a time in the past */
1783 /* so correct this. this will make the periodic very inexact, but the user */
1784 /* has effectively asked to get triggered more often than possible */
1785 if (ev_at (w) < ev_rt_now)
1786 ev_at (w) = ev_rt_now;
1787 }
1788
1789 ANHE_at_cache (periodics [HEAP0]);
1790 downheap (periodics, periodiccnt, HEAP0);
1791 }
1792 else
1793 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1794
1795 EV_FREQUENT_CHECK;
1796 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1921 feed_reverse_done (EV_A_ EV_PERIODIC);
1797 } 1922 }
1798} 1923}
1799 1924
1925/* simply recalculate all periodics */
1926/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1800static void noinline 1927static void noinline
1801periodics_reschedule (EV_P) 1928periodics_reschedule (EV_P)
1802{ 1929{
1803 int i; 1930 int i;
1804 1931
1817 1944
1818 reheap (periodics, periodiccnt); 1945 reheap (periodics, periodiccnt);
1819} 1946}
1820#endif 1947#endif
1821 1948
1822void inline_speed 1949/* adjust all timers by a given offset */
1950static void noinline
1951timers_reschedule (EV_P_ ev_tstamp adjust)
1952{
1953 int i;
1954
1955 for (i = 0; i < timercnt; ++i)
1956 {
1957 ANHE *he = timers + i + HEAP0;
1958 ANHE_w (*he)->at += adjust;
1959 ANHE_at_cache (*he);
1960 }
1961}
1962
1963/* fetch new monotonic and realtime times from the kernel */
1964/* also detetc if there was a timejump, and act accordingly */
1965inline_speed void
1823time_update (EV_P_ ev_tstamp max_block) 1966time_update (EV_P_ ev_tstamp max_block)
1824{ 1967{
1825 int i;
1826
1827#if EV_USE_MONOTONIC 1968#if EV_USE_MONOTONIC
1828 if (expect_true (have_monotonic)) 1969 if (expect_true (have_monotonic))
1829 { 1970 {
1971 int i;
1830 ev_tstamp odiff = rtmn_diff; 1972 ev_tstamp odiff = rtmn_diff;
1831 1973
1832 mn_now = get_clock (); 1974 mn_now = get_clock ();
1833 1975
1834 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 1976 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1860 ev_rt_now = ev_time (); 2002 ev_rt_now = ev_time ();
1861 mn_now = get_clock (); 2003 mn_now = get_clock ();
1862 now_floor = mn_now; 2004 now_floor = mn_now;
1863 } 2005 }
1864 2006
2007 /* no timer adjustment, as the monotonic clock doesn't jump */
2008 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1865# if EV_PERIODIC_ENABLE 2009# if EV_PERIODIC_ENABLE
1866 periodics_reschedule (EV_A); 2010 periodics_reschedule (EV_A);
1867# endif 2011# endif
1868 /* no timer adjustment, as the monotonic clock doesn't jump */
1869 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1870 } 2012 }
1871 else 2013 else
1872#endif 2014#endif
1873 { 2015 {
1874 ev_rt_now = ev_time (); 2016 ev_rt_now = ev_time ();
1875 2017
1876 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2018 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1877 { 2019 {
2020 /* adjust timers. this is easy, as the offset is the same for all of them */
2021 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1878#if EV_PERIODIC_ENABLE 2022#if EV_PERIODIC_ENABLE
1879 periodics_reschedule (EV_A); 2023 periodics_reschedule (EV_A);
1880#endif 2024#endif
1881 /* adjust timers. this is easy, as the offset is the same for all of them */
1882 for (i = 0; i < timercnt; ++i)
1883 {
1884 ANHE *he = timers + i + HEAP0;
1885 ANHE_w (*he)->at += ev_rt_now - mn_now;
1886 ANHE_at_cache (*he);
1887 }
1888 } 2025 }
1889 2026
1890 mn_now = ev_rt_now; 2027 mn_now = ev_rt_now;
1891 } 2028 }
1892} 2029}
1893 2030
1894void 2031void
1895ev_ref (EV_P)
1896{
1897 ++activecnt;
1898}
1899
1900void
1901ev_unref (EV_P)
1902{
1903 --activecnt;
1904}
1905
1906void
1907ev_now_update (EV_P)
1908{
1909 time_update (EV_A_ 1e100);
1910}
1911
1912static int loop_done;
1913
1914void
1915ev_loop (EV_P_ int flags) 2032ev_loop (EV_P_ int flags)
1916{ 2033{
2034 ++loop_depth;
2035
1917 loop_done = EVUNLOOP_CANCEL; 2036 loop_done = EVUNLOOP_CANCEL;
1918 2037
1919 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2038 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1920 2039
1921 do 2040 do
1948 { 2067 {
1949 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2068 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1950 call_pending (EV_A); 2069 call_pending (EV_A);
1951 } 2070 }
1952 2071
1953 if (expect_false (!activecnt))
1954 break;
1955
1956 /* we might have forked, so reify kernel state if necessary */ 2072 /* we might have forked, so reify kernel state if necessary */
1957 if (expect_false (postfork)) 2073 if (expect_false (postfork))
1958 loop_fork (EV_A); 2074 loop_fork (EV_A);
1959 2075
1960 /* update fd-related kernel structures */ 2076 /* update fd-related kernel structures */
1965 ev_tstamp waittime = 0.; 2081 ev_tstamp waittime = 0.;
1966 ev_tstamp sleeptime = 0.; 2082 ev_tstamp sleeptime = 0.;
1967 2083
1968 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2084 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1969 { 2085 {
2086 /* remember old timestamp for io_blocktime calculation */
2087 ev_tstamp prev_mn_now = mn_now;
2088
1970 /* update time to cancel out callback processing overhead */ 2089 /* update time to cancel out callback processing overhead */
1971 time_update (EV_A_ 1e100); 2090 time_update (EV_A_ 1e100);
1972 2091
1973 waittime = MAX_BLOCKTIME; 2092 waittime = MAX_BLOCKTIME;
1974 2093
1984 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2103 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1985 if (waittime > to) waittime = to; 2104 if (waittime > to) waittime = to;
1986 } 2105 }
1987#endif 2106#endif
1988 2107
2108 /* don't let timeouts decrease the waittime below timeout_blocktime */
1989 if (expect_false (waittime < timeout_blocktime)) 2109 if (expect_false (waittime < timeout_blocktime))
1990 waittime = timeout_blocktime; 2110 waittime = timeout_blocktime;
1991 2111
1992 sleeptime = waittime - backend_fudge; 2112 /* extra check because io_blocktime is commonly 0 */
1993
1994 if (expect_true (sleeptime > io_blocktime)) 2113 if (expect_false (io_blocktime))
1995 sleeptime = io_blocktime;
1996
1997 if (sleeptime)
1998 { 2114 {
2115 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2116
2117 if (sleeptime > waittime - backend_fudge)
2118 sleeptime = waittime - backend_fudge;
2119
2120 if (expect_true (sleeptime > 0.))
2121 {
1999 ev_sleep (sleeptime); 2122 ev_sleep (sleeptime);
2000 waittime -= sleeptime; 2123 waittime -= sleeptime;
2124 }
2001 } 2125 }
2002 } 2126 }
2003 2127
2004 ++loop_count; 2128 ++loop_count;
2005 backend_poll (EV_A_ waittime); 2129 backend_poll (EV_A_ waittime);
2031 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2155 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2032 )); 2156 ));
2033 2157
2034 if (loop_done == EVUNLOOP_ONE) 2158 if (loop_done == EVUNLOOP_ONE)
2035 loop_done = EVUNLOOP_CANCEL; 2159 loop_done = EVUNLOOP_CANCEL;
2160
2161 --loop_depth;
2036} 2162}
2037 2163
2038void 2164void
2039ev_unloop (EV_P_ int how) 2165ev_unloop (EV_P_ int how)
2040{ 2166{
2041 loop_done = how; 2167 loop_done = how;
2042} 2168}
2043 2169
2170void
2171ev_ref (EV_P)
2172{
2173 ++activecnt;
2174}
2175
2176void
2177ev_unref (EV_P)
2178{
2179 --activecnt;
2180}
2181
2182void
2183ev_now_update (EV_P)
2184{
2185 time_update (EV_A_ 1e100);
2186}
2187
2188void
2189ev_suspend (EV_P)
2190{
2191 ev_now_update (EV_A);
2192}
2193
2194void
2195ev_resume (EV_P)
2196{
2197 ev_tstamp mn_prev = mn_now;
2198
2199 ev_now_update (EV_A);
2200 timers_reschedule (EV_A_ mn_now - mn_prev);
2201#if EV_PERIODIC_ENABLE
2202 /* TODO: really do this? */
2203 periodics_reschedule (EV_A);
2204#endif
2205}
2206
2044/*****************************************************************************/ 2207/*****************************************************************************/
2208/* singly-linked list management, used when the expected list length is short */
2045 2209
2046void inline_size 2210inline_size void
2047wlist_add (WL *head, WL elem) 2211wlist_add (WL *head, WL elem)
2048{ 2212{
2049 elem->next = *head; 2213 elem->next = *head;
2050 *head = elem; 2214 *head = elem;
2051} 2215}
2052 2216
2053void inline_size 2217inline_size void
2054wlist_del (WL *head, WL elem) 2218wlist_del (WL *head, WL elem)
2055{ 2219{
2056 while (*head) 2220 while (*head)
2057 { 2221 {
2058 if (*head == elem) 2222 if (*head == elem)
2063 2227
2064 head = &(*head)->next; 2228 head = &(*head)->next;
2065 } 2229 }
2066} 2230}
2067 2231
2068void inline_speed 2232/* internal, faster, version of ev_clear_pending */
2233inline_speed void
2069clear_pending (EV_P_ W w) 2234clear_pending (EV_P_ W w)
2070{ 2235{
2071 if (w->pending) 2236 if (w->pending)
2072 { 2237 {
2073 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2238 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2074 w->pending = 0; 2239 w->pending = 0;
2075 } 2240 }
2076} 2241}
2077 2242
2078int 2243int
2082 int pending = w_->pending; 2247 int pending = w_->pending;
2083 2248
2084 if (expect_true (pending)) 2249 if (expect_true (pending))
2085 { 2250 {
2086 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2251 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2252 p->w = (W)&pending_w;
2087 w_->pending = 0; 2253 w_->pending = 0;
2088 p->w = 0;
2089 return p->events; 2254 return p->events;
2090 } 2255 }
2091 else 2256 else
2092 return 0; 2257 return 0;
2093} 2258}
2094 2259
2095void inline_size 2260inline_size void
2096pri_adjust (EV_P_ W w) 2261pri_adjust (EV_P_ W w)
2097{ 2262{
2098 int pri = w->priority; 2263 int pri = w->priority;
2099 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2264 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2100 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2265 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2101 w->priority = pri; 2266 w->priority = pri;
2102} 2267}
2103 2268
2104void inline_speed 2269inline_speed void
2105ev_start (EV_P_ W w, int active) 2270ev_start (EV_P_ W w, int active)
2106{ 2271{
2107 pri_adjust (EV_A_ w); 2272 pri_adjust (EV_A_ w);
2108 w->active = active; 2273 w->active = active;
2109 ev_ref (EV_A); 2274 ev_ref (EV_A);
2110} 2275}
2111 2276
2112void inline_size 2277inline_size void
2113ev_stop (EV_P_ W w) 2278ev_stop (EV_P_ W w)
2114{ 2279{
2115 ev_unref (EV_A); 2280 ev_unref (EV_A);
2116 w->active = 0; 2281 w->active = 0;
2117} 2282}
2124 int fd = w->fd; 2289 int fd = w->fd;
2125 2290
2126 if (expect_false (ev_is_active (w))) 2291 if (expect_false (ev_is_active (w)))
2127 return; 2292 return;
2128 2293
2129 assert (("ev_io_start called with negative fd", fd >= 0)); 2294 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2130 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE)))); 2295 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2131 2296
2132 EV_FREQUENT_CHECK; 2297 EV_FREQUENT_CHECK;
2133 2298
2134 ev_start (EV_A_ (W)w, 1); 2299 ev_start (EV_A_ (W)w, 1);
2135 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 2300 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2136 wlist_add (&anfds[fd].head, (WL)w); 2301 wlist_add (&anfds[fd].head, (WL)w);
2137 2302
2138 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2303 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
2139 w->events &= ~EV_IOFDSET; 2304 w->events &= ~EV__IOFDSET;
2140 2305
2141 EV_FREQUENT_CHECK; 2306 EV_FREQUENT_CHECK;
2142} 2307}
2143 2308
2144void noinline 2309void noinline
2146{ 2311{
2147 clear_pending (EV_A_ (W)w); 2312 clear_pending (EV_A_ (W)w);
2148 if (expect_false (!ev_is_active (w))) 2313 if (expect_false (!ev_is_active (w)))
2149 return; 2314 return;
2150 2315
2151 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2316 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2152 2317
2153 EV_FREQUENT_CHECK; 2318 EV_FREQUENT_CHECK;
2154 2319
2155 wlist_del (&anfds[w->fd].head, (WL)w); 2320 wlist_del (&anfds[w->fd].head, (WL)w);
2156 ev_stop (EV_A_ (W)w); 2321 ev_stop (EV_A_ (W)w);
2166 if (expect_false (ev_is_active (w))) 2331 if (expect_false (ev_is_active (w)))
2167 return; 2332 return;
2168 2333
2169 ev_at (w) += mn_now; 2334 ev_at (w) += mn_now;
2170 2335
2171 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2336 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2172 2337
2173 EV_FREQUENT_CHECK; 2338 EV_FREQUENT_CHECK;
2174 2339
2175 ++timercnt; 2340 ++timercnt;
2176 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 2341 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2179 ANHE_at_cache (timers [ev_active (w)]); 2344 ANHE_at_cache (timers [ev_active (w)]);
2180 upheap (timers, ev_active (w)); 2345 upheap (timers, ev_active (w));
2181 2346
2182 EV_FREQUENT_CHECK; 2347 EV_FREQUENT_CHECK;
2183 2348
2184 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2349 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2185} 2350}
2186 2351
2187void noinline 2352void noinline
2188ev_timer_stop (EV_P_ ev_timer *w) 2353ev_timer_stop (EV_P_ ev_timer *w)
2189{ 2354{
2194 EV_FREQUENT_CHECK; 2359 EV_FREQUENT_CHECK;
2195 2360
2196 { 2361 {
2197 int active = ev_active (w); 2362 int active = ev_active (w);
2198 2363
2199 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2364 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2200 2365
2201 --timercnt; 2366 --timercnt;
2202 2367
2203 if (expect_true (active < timercnt + HEAP0)) 2368 if (expect_true (active < timercnt + HEAP0))
2204 { 2369 {
2248 2413
2249 if (w->reschedule_cb) 2414 if (w->reschedule_cb)
2250 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2415 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2251 else if (w->interval) 2416 else if (w->interval)
2252 { 2417 {
2253 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2418 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2254 /* this formula differs from the one in periodic_reify because we do not always round up */ 2419 /* this formula differs from the one in periodic_reify because we do not always round up */
2255 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2420 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2256 } 2421 }
2257 else 2422 else
2258 ev_at (w) = w->offset; 2423 ev_at (w) = w->offset;
2266 ANHE_at_cache (periodics [ev_active (w)]); 2431 ANHE_at_cache (periodics [ev_active (w)]);
2267 upheap (periodics, ev_active (w)); 2432 upheap (periodics, ev_active (w));
2268 2433
2269 EV_FREQUENT_CHECK; 2434 EV_FREQUENT_CHECK;
2270 2435
2271 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2436 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2272} 2437}
2273 2438
2274void noinline 2439void noinline
2275ev_periodic_stop (EV_P_ ev_periodic *w) 2440ev_periodic_stop (EV_P_ ev_periodic *w)
2276{ 2441{
2281 EV_FREQUENT_CHECK; 2446 EV_FREQUENT_CHECK;
2282 2447
2283 { 2448 {
2284 int active = ev_active (w); 2449 int active = ev_active (w);
2285 2450
2286 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2451 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2287 2452
2288 --periodiccnt; 2453 --periodiccnt;
2289 2454
2290 if (expect_true (active < periodiccnt + HEAP0)) 2455 if (expect_true (active < periodiccnt + HEAP0))
2291 { 2456 {
2314 2479
2315void noinline 2480void noinline
2316ev_signal_start (EV_P_ ev_signal *w) 2481ev_signal_start (EV_P_ ev_signal *w)
2317{ 2482{
2318#if EV_MULTIPLICITY 2483#if EV_MULTIPLICITY
2319 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2484 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2320#endif 2485#endif
2321 if (expect_false (ev_is_active (w))) 2486 if (expect_false (ev_is_active (w)))
2322 return; 2487 return;
2323 2488
2324 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2489 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2325 2490
2326 evpipe_init (EV_A); 2491 evpipe_init (EV_A);
2327 2492
2328 EV_FREQUENT_CHECK; 2493 EV_FREQUENT_CHECK;
2329 2494
2380 2545
2381void 2546void
2382ev_child_start (EV_P_ ev_child *w) 2547ev_child_start (EV_P_ ev_child *w)
2383{ 2548{
2384#if EV_MULTIPLICITY 2549#if EV_MULTIPLICITY
2385 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2550 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2386#endif 2551#endif
2387 if (expect_false (ev_is_active (w))) 2552 if (expect_false (ev_is_active (w)))
2388 return; 2553 return;
2389 2554
2390 EV_FREQUENT_CHECK; 2555 EV_FREQUENT_CHECK;
2449 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2614 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2450 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2615 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2451 2616
2452 char *pend = strrchr (path, '/'); 2617 char *pend = strrchr (path, '/');
2453 2618
2454 if (!pend) 2619 if (!pend || pend == path)
2455 break; /* whoops, no '/', complain to your admin */ 2620 break;
2456 2621
2457 *pend = 0; 2622 *pend = 0;
2458 w->wd = inotify_add_watch (fs_fd, path, mask); 2623 w->wd = inotify_add_watch (fs_fd, path, mask);
2459 } 2624 }
2460 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2625 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2461 } 2626 }
2462 } 2627 }
2463 else 2628
2629 if (w->wd >= 0)
2464 { 2630 {
2465 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2631 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2466 2632
2467 /* now local changes will be tracked by inotify, but remote changes won't */ 2633 /* now local changes will be tracked by inotify, but remote changes won't */
2468 /* unless the filesystem it known to be local, we therefore still poll */ 2634 /* unless the filesystem it known to be local, we therefore still poll */
2518 2684
2519 if (w->wd == wd || wd == -1) 2685 if (w->wd == wd || wd == -1)
2520 { 2686 {
2521 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2687 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2522 { 2688 {
2689 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2523 w->wd = -1; 2690 w->wd = -1;
2524 infy_add (EV_A_ w); /* re-add, no matter what */ 2691 infy_add (EV_A_ w); /* re-add, no matter what */
2525 } 2692 }
2526 2693
2527 stat_timer_cb (EV_A_ &w->timer, 0); 2694 stat_timer_cb (EV_A_ &w->timer, 0);
2540 2707
2541 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2708 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2542 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2709 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2543} 2710}
2544 2711
2545void inline_size 2712inline_size void
2546check_2625 (EV_P) 2713check_2625 (EV_P)
2547{ 2714{
2548 /* kernels < 2.6.25 are borked 2715 /* kernels < 2.6.25 are borked
2549 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 2716 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2550 */ 2717 */
2563 return; 2730 return;
2564 2731
2565 fs_2625 = 1; 2732 fs_2625 = 1;
2566} 2733}
2567 2734
2568void inline_size 2735inline_size void
2569infy_init (EV_P) 2736infy_init (EV_P)
2570{ 2737{
2571 if (fs_fd != -2) 2738 if (fs_fd != -2)
2572 return; 2739 return;
2573 2740
2583 ev_set_priority (&fs_w, EV_MAXPRI); 2750 ev_set_priority (&fs_w, EV_MAXPRI);
2584 ev_io_start (EV_A_ &fs_w); 2751 ev_io_start (EV_A_ &fs_w);
2585 } 2752 }
2586} 2753}
2587 2754
2588void inline_size 2755inline_size void
2589infy_fork (EV_P) 2756infy_fork (EV_P)
2590{ 2757{
2591 int slot; 2758 int slot;
2592 2759
2593 if (fs_fd < 0) 2760 if (fs_fd < 0)
2874static void 3041static void
2875embed_fork_cb (EV_P_ ev_fork *fork_w, int revents) 3042embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2876{ 3043{
2877 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 3044 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2878 3045
3046 ev_embed_stop (EV_A_ w);
3047
2879 { 3048 {
2880 struct ev_loop *loop = w->other; 3049 struct ev_loop *loop = w->other;
2881 3050
2882 ev_loop_fork (EV_A); 3051 ev_loop_fork (EV_A);
3052 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2883 } 3053 }
3054
3055 ev_embed_start (EV_A_ w);
2884} 3056}
2885 3057
2886#if 0 3058#if 0
2887static void 3059static void
2888embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3060embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2897 if (expect_false (ev_is_active (w))) 3069 if (expect_false (ev_is_active (w)))
2898 return; 3070 return;
2899 3071
2900 { 3072 {
2901 struct ev_loop *loop = w->other; 3073 struct ev_loop *loop = w->other;
2902 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3074 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2903 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3075 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2904 } 3076 }
2905 3077
2906 EV_FREQUENT_CHECK; 3078 EV_FREQUENT_CHECK;
2907 3079
3090 ev_timer_set (&once->to, timeout, 0.); 3262 ev_timer_set (&once->to, timeout, 0.);
3091 ev_timer_start (EV_A_ &once->to); 3263 ev_timer_start (EV_A_ &once->to);
3092 } 3264 }
3093} 3265}
3094 3266
3267/*****************************************************************************/
3268
3269#if EV_WALK_ENABLE
3270void
3271ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3272{
3273 int i, j;
3274 ev_watcher_list *wl, *wn;
3275
3276 if (types & (EV_IO | EV_EMBED))
3277 for (i = 0; i < anfdmax; ++i)
3278 for (wl = anfds [i].head; wl; )
3279 {
3280 wn = wl->next;
3281
3282#if EV_EMBED_ENABLE
3283 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3284 {
3285 if (types & EV_EMBED)
3286 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3287 }
3288 else
3289#endif
3290#if EV_USE_INOTIFY
3291 if (ev_cb ((ev_io *)wl) == infy_cb)
3292 ;
3293 else
3294#endif
3295 if ((ev_io *)wl != &pipe_w)
3296 if (types & EV_IO)
3297 cb (EV_A_ EV_IO, wl);
3298
3299 wl = wn;
3300 }
3301
3302 if (types & (EV_TIMER | EV_STAT))
3303 for (i = timercnt + HEAP0; i-- > HEAP0; )
3304#if EV_STAT_ENABLE
3305 /*TODO: timer is not always active*/
3306 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3307 {
3308 if (types & EV_STAT)
3309 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3310 }
3311 else
3312#endif
3313 if (types & EV_TIMER)
3314 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3315
3316#if EV_PERIODIC_ENABLE
3317 if (types & EV_PERIODIC)
3318 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3319 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3320#endif
3321
3322#if EV_IDLE_ENABLE
3323 if (types & EV_IDLE)
3324 for (j = NUMPRI; i--; )
3325 for (i = idlecnt [j]; i--; )
3326 cb (EV_A_ EV_IDLE, idles [j][i]);
3327#endif
3328
3329#if EV_FORK_ENABLE
3330 if (types & EV_FORK)
3331 for (i = forkcnt; i--; )
3332 if (ev_cb (forks [i]) != embed_fork_cb)
3333 cb (EV_A_ EV_FORK, forks [i]);
3334#endif
3335
3336#if EV_ASYNC_ENABLE
3337 if (types & EV_ASYNC)
3338 for (i = asynccnt; i--; )
3339 cb (EV_A_ EV_ASYNC, asyncs [i]);
3340#endif
3341
3342 if (types & EV_PREPARE)
3343 for (i = preparecnt; i--; )
3344#if EV_EMBED_ENABLE
3345 if (ev_cb (prepares [i]) != embed_prepare_cb)
3346#endif
3347 cb (EV_A_ EV_PREPARE, prepares [i]);
3348
3349 if (types & EV_CHECK)
3350 for (i = checkcnt; i--; )
3351 cb (EV_A_ EV_CHECK, checks [i]);
3352
3353 if (types & EV_SIGNAL)
3354 for (i = 0; i < signalmax; ++i)
3355 for (wl = signals [i].head; wl; )
3356 {
3357 wn = wl->next;
3358 cb (EV_A_ EV_SIGNAL, wl);
3359 wl = wn;
3360 }
3361
3362 if (types & EV_CHILD)
3363 for (i = EV_PID_HASHSIZE; i--; )
3364 for (wl = childs [i]; wl; )
3365 {
3366 wn = wl->next;
3367 cb (EV_A_ EV_CHILD, wl);
3368 wl = wn;
3369 }
3370/* EV_STAT 0x00001000 /* stat data changed */
3371/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3372}
3373#endif
3374
3095#if EV_MULTIPLICITY 3375#if EV_MULTIPLICITY
3096 #include "ev_wrap.h" 3376 #include "ev_wrap.h"
3097#endif 3377#endif
3098 3378
3099#ifdef __cplusplus 3379#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines