ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.275 by root, Fri Dec 12 20:35:21 2008 UTC vs.
Revision 1.294 by root, Wed Jul 8 02:46:05 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
57# endif 57# endif
58# ifndef EV_USE_MONOTONIC 58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1 59# define EV_USE_MONOTONIC 1
60# endif 60# endif
61# endif 61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
62# endif 64# endif
63 65
64# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
67# endif 69# endif
68# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
69# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
70# endif 72# endif
71# else 73# else
72# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
73# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
74# endif 76# endif
193# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
194# endif 196# endif
195#endif 197#endif
196 198
197#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
198# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif 201#endif
200 202
201#ifndef EV_USE_NANOSLEEP 203#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L 204# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1 205# define EV_USE_NANOSLEEP 1
280# define EV_USE_4HEAP !EV_MINIMAL 282# define EV_USE_4HEAP !EV_MINIMAL
281#endif 283#endif
282 284
283#ifndef EV_HEAP_CACHE_AT 285#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL 286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
285#endif 301#endif
286 302
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
288 304
289#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
320 336
321#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h> 338# include <winsock.h>
323#endif 339#endif
324 340
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD 341#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h> 343# include <stdint.h>
337# ifdef __cplusplus 344# ifdef __cplusplus
338extern "C" { 345extern "C" {
397typedef ev_watcher_time *WT; 404typedef ev_watcher_time *WT;
398 405
399#define ev_active(w) ((W)(w))->active 406#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at 407#define ev_at(w) ((WT)(w))->at
401 408
402#if EV_USE_MONOTONIC 409#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 410/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */ 411/* giving it a reasonably high chance of working on typical architetcures */
412static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
413#endif
414
415#if EV_USE_MONOTONIC
405static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 416static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
406#endif 417#endif
407 418
408#ifdef _WIN32 419#ifdef _WIN32
409# include "ev_win32.c" 420# include "ev_win32.c"
474#define ev_malloc(size) ev_realloc (0, (size)) 485#define ev_malloc(size) ev_realloc (0, (size))
475#define ev_free(ptr) ev_realloc ((ptr), 0) 486#define ev_free(ptr) ev_realloc ((ptr), 0)
476 487
477/*****************************************************************************/ 488/*****************************************************************************/
478 489
490/* file descriptor info structure */
479typedef struct 491typedef struct
480{ 492{
481 WL head; 493 WL head;
482 unsigned char events; 494 unsigned char events; /* the events watched for */
483 unsigned char reify; 495 unsigned char reify; /* flag set when this ANFD needs reification */
484 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 496 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
485 unsigned char unused; 497 unsigned char unused;
486#if EV_USE_EPOLL 498#if EV_USE_EPOLL
487 unsigned int egen; /* generation counter to counter epoll bugs */ 499 unsigned int egen; /* generation counter to counter epoll bugs */
488#endif 500#endif
489#if EV_SELECT_IS_WINSOCKET 501#if EV_SELECT_IS_WINSOCKET
490 SOCKET handle; 502 SOCKET handle;
491#endif 503#endif
492} ANFD; 504} ANFD;
493 505
506/* stores the pending event set for a given watcher */
494typedef struct 507typedef struct
495{ 508{
496 W w; 509 W w;
497 int events; 510 int events; /* the pending event set for the given watcher */
498} ANPENDING; 511} ANPENDING;
499 512
500#if EV_USE_INOTIFY 513#if EV_USE_INOTIFY
501/* hash table entry per inotify-id */ 514/* hash table entry per inotify-id */
502typedef struct 515typedef struct
505} ANFS; 518} ANFS;
506#endif 519#endif
507 520
508/* Heap Entry */ 521/* Heap Entry */
509#if EV_HEAP_CACHE_AT 522#if EV_HEAP_CACHE_AT
523 /* a heap element */
510 typedef struct { 524 typedef struct {
511 ev_tstamp at; 525 ev_tstamp at;
512 WT w; 526 WT w;
513 } ANHE; 527 } ANHE;
514 528
515 #define ANHE_w(he) (he).w /* access watcher, read-write */ 529 #define ANHE_w(he) (he).w /* access watcher, read-write */
516 #define ANHE_at(he) (he).at /* access cached at, read-only */ 530 #define ANHE_at(he) (he).at /* access cached at, read-only */
517 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 531 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
518#else 532#else
533 /* a heap element */
519 typedef WT ANHE; 534 typedef WT ANHE;
520 535
521 #define ANHE_w(he) (he) 536 #define ANHE_w(he) (he)
522 #define ANHE_at(he) (he)->at 537 #define ANHE_at(he) (he)->at
523 #define ANHE_at_cache(he) 538 #define ANHE_at_cache(he)
549 564
550#endif 565#endif
551 566
552/*****************************************************************************/ 567/*****************************************************************************/
553 568
569#ifndef EV_HAVE_EV_TIME
554ev_tstamp 570ev_tstamp
555ev_time (void) 571ev_time (void)
556{ 572{
557#if EV_USE_REALTIME 573#if EV_USE_REALTIME
574 if (expect_true (have_realtime))
575 {
558 struct timespec ts; 576 struct timespec ts;
559 clock_gettime (CLOCK_REALTIME, &ts); 577 clock_gettime (CLOCK_REALTIME, &ts);
560 return ts.tv_sec + ts.tv_nsec * 1e-9; 578 return ts.tv_sec + ts.tv_nsec * 1e-9;
561#else 579 }
580#endif
581
562 struct timeval tv; 582 struct timeval tv;
563 gettimeofday (&tv, 0); 583 gettimeofday (&tv, 0);
564 return tv.tv_sec + tv.tv_usec * 1e-6; 584 return tv.tv_sec + tv.tv_usec * 1e-6;
565#endif
566} 585}
586#endif
567 587
568ev_tstamp inline_size 588inline_size ev_tstamp
569get_clock (void) 589get_clock (void)
570{ 590{
571#if EV_USE_MONOTONIC 591#if EV_USE_MONOTONIC
572 if (expect_true (have_monotonic)) 592 if (expect_true (have_monotonic))
573 { 593 {
607 627
608 tv.tv_sec = (time_t)delay; 628 tv.tv_sec = (time_t)delay;
609 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 629 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
610 630
611 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 631 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
612 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 632 /* somehting not guaranteed by newer posix versions, but guaranteed */
613 /* by older ones */ 633 /* by older ones */
614 select (0, 0, 0, 0, &tv); 634 select (0, 0, 0, 0, &tv);
615#endif 635#endif
616 } 636 }
617} 637}
618 638
619/*****************************************************************************/ 639/*****************************************************************************/
620 640
621#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 641#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
622 642
623int inline_size 643/* find a suitable new size for the given array, */
644/* hopefully by rounding to a ncie-to-malloc size */
645inline_size int
624array_nextsize (int elem, int cur, int cnt) 646array_nextsize (int elem, int cur, int cnt)
625{ 647{
626 int ncur = cur + 1; 648 int ncur = cur + 1;
627 649
628 do 650 do
669 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 691 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
670 } 692 }
671#endif 693#endif
672 694
673#define array_free(stem, idx) \ 695#define array_free(stem, idx) \
674 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 696 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
675 697
676/*****************************************************************************/ 698/*****************************************************************************/
699
700/* dummy callback for pending events */
701static void noinline
702pendingcb (EV_P_ ev_prepare *w, int revents)
703{
704}
677 705
678void noinline 706void noinline
679ev_feed_event (EV_P_ void *w, int revents) 707ev_feed_event (EV_P_ void *w, int revents)
680{ 708{
681 W w_ = (W)w; 709 W w_ = (W)w;
690 pendings [pri][w_->pending - 1].w = w_; 718 pendings [pri][w_->pending - 1].w = w_;
691 pendings [pri][w_->pending - 1].events = revents; 719 pendings [pri][w_->pending - 1].events = revents;
692 } 720 }
693} 721}
694 722
695void inline_speed 723inline_speed void
724feed_reverse (EV_P_ W w)
725{
726 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
727 rfeeds [rfeedcnt++] = w;
728}
729
730inline_size void
731feed_reverse_done (EV_P_ int revents)
732{
733 do
734 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
735 while (rfeedcnt);
736}
737
738inline_speed void
696queue_events (EV_P_ W *events, int eventcnt, int type) 739queue_events (EV_P_ W *events, int eventcnt, int type)
697{ 740{
698 int i; 741 int i;
699 742
700 for (i = 0; i < eventcnt; ++i) 743 for (i = 0; i < eventcnt; ++i)
701 ev_feed_event (EV_A_ events [i], type); 744 ev_feed_event (EV_A_ events [i], type);
702} 745}
703 746
704/*****************************************************************************/ 747/*****************************************************************************/
705 748
706void inline_speed 749inline_speed void
707fd_event (EV_P_ int fd, int revents) 750fd_event (EV_P_ int fd, int revents)
708{ 751{
709 ANFD *anfd = anfds + fd; 752 ANFD *anfd = anfds + fd;
710 ev_io *w; 753 ev_io *w;
711 754
723{ 766{
724 if (fd >= 0 && fd < anfdmax) 767 if (fd >= 0 && fd < anfdmax)
725 fd_event (EV_A_ fd, revents); 768 fd_event (EV_A_ fd, revents);
726} 769}
727 770
728void inline_size 771/* make sure the external fd watch events are in-sync */
772/* with the kernel/libev internal state */
773inline_size void
729fd_reify (EV_P) 774fd_reify (EV_P)
730{ 775{
731 int i; 776 int i;
732 777
733 for (i = 0; i < fdchangecnt; ++i) 778 for (i = 0; i < fdchangecnt; ++i)
748 #ifdef EV_FD_TO_WIN32_HANDLE 793 #ifdef EV_FD_TO_WIN32_HANDLE
749 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 794 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
750 #else 795 #else
751 anfd->handle = _get_osfhandle (fd); 796 anfd->handle = _get_osfhandle (fd);
752 #endif 797 #endif
753 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 798 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
754 } 799 }
755#endif 800#endif
756 801
757 { 802 {
758 unsigned char o_events = anfd->events; 803 unsigned char o_events = anfd->events;
759 unsigned char o_reify = anfd->reify; 804 unsigned char o_reify = anfd->reify;
760 805
761 anfd->reify = 0; 806 anfd->reify = 0;
762 anfd->events = events; 807 anfd->events = events;
763 808
764 if (o_events != events || o_reify & EV_IOFDSET) 809 if (o_events != events || o_reify & EV__IOFDSET)
765 backend_modify (EV_A_ fd, o_events, events); 810 backend_modify (EV_A_ fd, o_events, events);
766 } 811 }
767 } 812 }
768 813
769 fdchangecnt = 0; 814 fdchangecnt = 0;
770} 815}
771 816
772void inline_size 817/* something about the given fd changed */
818inline_size void
773fd_change (EV_P_ int fd, int flags) 819fd_change (EV_P_ int fd, int flags)
774{ 820{
775 unsigned char reify = anfds [fd].reify; 821 unsigned char reify = anfds [fd].reify;
776 anfds [fd].reify |= flags; 822 anfds [fd].reify |= flags;
777 823
781 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 827 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
782 fdchanges [fdchangecnt - 1] = fd; 828 fdchanges [fdchangecnt - 1] = fd;
783 } 829 }
784} 830}
785 831
786void inline_speed 832/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
833inline_speed void
787fd_kill (EV_P_ int fd) 834fd_kill (EV_P_ int fd)
788{ 835{
789 ev_io *w; 836 ev_io *w;
790 837
791 while ((w = (ev_io *)anfds [fd].head)) 838 while ((w = (ev_io *)anfds [fd].head))
793 ev_io_stop (EV_A_ w); 840 ev_io_stop (EV_A_ w);
794 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 841 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
795 } 842 }
796} 843}
797 844
798int inline_size 845/* check whether the given fd is atcually valid, for error recovery */
846inline_size int
799fd_valid (int fd) 847fd_valid (int fd)
800{ 848{
801#ifdef _WIN32 849#ifdef _WIN32
802 return _get_osfhandle (fd) != -1; 850 return _get_osfhandle (fd) != -1;
803#else 851#else
840 for (fd = 0; fd < anfdmax; ++fd) 888 for (fd = 0; fd < anfdmax; ++fd)
841 if (anfds [fd].events) 889 if (anfds [fd].events)
842 { 890 {
843 anfds [fd].events = 0; 891 anfds [fd].events = 0;
844 anfds [fd].emask = 0; 892 anfds [fd].emask = 0;
845 fd_change (EV_A_ fd, EV_IOFDSET | 1); 893 fd_change (EV_A_ fd, EV__IOFDSET | 1);
846 } 894 }
847} 895}
848 896
849/*****************************************************************************/ 897/*****************************************************************************/
850 898
866#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 914#define HEAP0 (DHEAP - 1) /* index of first element in heap */
867#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 915#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
868#define UPHEAP_DONE(p,k) ((p) == (k)) 916#define UPHEAP_DONE(p,k) ((p) == (k))
869 917
870/* away from the root */ 918/* away from the root */
871void inline_speed 919inline_speed void
872downheap (ANHE *heap, int N, int k) 920downheap (ANHE *heap, int N, int k)
873{ 921{
874 ANHE he = heap [k]; 922 ANHE he = heap [k];
875 ANHE *E = heap + N + HEAP0; 923 ANHE *E = heap + N + HEAP0;
876 924
916#define HEAP0 1 964#define HEAP0 1
917#define HPARENT(k) ((k) >> 1) 965#define HPARENT(k) ((k) >> 1)
918#define UPHEAP_DONE(p,k) (!(p)) 966#define UPHEAP_DONE(p,k) (!(p))
919 967
920/* away from the root */ 968/* away from the root */
921void inline_speed 969inline_speed void
922downheap (ANHE *heap, int N, int k) 970downheap (ANHE *heap, int N, int k)
923{ 971{
924 ANHE he = heap [k]; 972 ANHE he = heap [k];
925 973
926 for (;;) 974 for (;;)
946 ev_active (ANHE_w (he)) = k; 994 ev_active (ANHE_w (he)) = k;
947} 995}
948#endif 996#endif
949 997
950/* towards the root */ 998/* towards the root */
951void inline_speed 999inline_speed void
952upheap (ANHE *heap, int k) 1000upheap (ANHE *heap, int k)
953{ 1001{
954 ANHE he = heap [k]; 1002 ANHE he = heap [k];
955 1003
956 for (;;) 1004 for (;;)
967 1015
968 heap [k] = he; 1016 heap [k] = he;
969 ev_active (ANHE_w (he)) = k; 1017 ev_active (ANHE_w (he)) = k;
970} 1018}
971 1019
972void inline_size 1020/* move an element suitably so it is in a correct place */
1021inline_size void
973adjustheap (ANHE *heap, int N, int k) 1022adjustheap (ANHE *heap, int N, int k)
974{ 1023{
975 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1024 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
976 upheap (heap, k); 1025 upheap (heap, k);
977 else 1026 else
978 downheap (heap, N, k); 1027 downheap (heap, N, k);
979} 1028}
980 1029
981/* rebuild the heap: this function is used only once and executed rarely */ 1030/* rebuild the heap: this function is used only once and executed rarely */
982void inline_size 1031inline_size void
983reheap (ANHE *heap, int N) 1032reheap (ANHE *heap, int N)
984{ 1033{
985 int i; 1034 int i;
986 1035
987 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1036 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
990 upheap (heap, i + HEAP0); 1039 upheap (heap, i + HEAP0);
991} 1040}
992 1041
993/*****************************************************************************/ 1042/*****************************************************************************/
994 1043
1044/* associate signal watchers to a signal signal */
995typedef struct 1045typedef struct
996{ 1046{
997 WL head; 1047 WL head;
998 EV_ATOMIC_T gotsig; 1048 EV_ATOMIC_T gotsig;
999} ANSIG; 1049} ANSIG;
1003 1053
1004static EV_ATOMIC_T gotsig; 1054static EV_ATOMIC_T gotsig;
1005 1055
1006/*****************************************************************************/ 1056/*****************************************************************************/
1007 1057
1008void inline_speed 1058/* used to prepare libev internal fd's */
1059/* this is not fork-safe */
1060inline_speed void
1009fd_intern (int fd) 1061fd_intern (int fd)
1010{ 1062{
1011#ifdef _WIN32 1063#ifdef _WIN32
1012 unsigned long arg = 1; 1064 unsigned long arg = 1;
1013 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1065 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1018} 1070}
1019 1071
1020static void noinline 1072static void noinline
1021evpipe_init (EV_P) 1073evpipe_init (EV_P)
1022{ 1074{
1023 if (!ev_is_active (&pipeev)) 1075 if (!ev_is_active (&pipe_w))
1024 { 1076 {
1025#if EV_USE_EVENTFD 1077#if EV_USE_EVENTFD
1026 if ((evfd = eventfd (0, 0)) >= 0) 1078 if ((evfd = eventfd (0, 0)) >= 0)
1027 { 1079 {
1028 evpipe [0] = -1; 1080 evpipe [0] = -1;
1029 fd_intern (evfd); 1081 fd_intern (evfd);
1030 ev_io_set (&pipeev, evfd, EV_READ); 1082 ev_io_set (&pipe_w, evfd, EV_READ);
1031 } 1083 }
1032 else 1084 else
1033#endif 1085#endif
1034 { 1086 {
1035 while (pipe (evpipe)) 1087 while (pipe (evpipe))
1036 ev_syserr ("(libev) error creating signal/async pipe"); 1088 ev_syserr ("(libev) error creating signal/async pipe");
1037 1089
1038 fd_intern (evpipe [0]); 1090 fd_intern (evpipe [0]);
1039 fd_intern (evpipe [1]); 1091 fd_intern (evpipe [1]);
1040 ev_io_set (&pipeev, evpipe [0], EV_READ); 1092 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1041 } 1093 }
1042 1094
1043 ev_io_start (EV_A_ &pipeev); 1095 ev_io_start (EV_A_ &pipe_w);
1044 ev_unref (EV_A); /* watcher should not keep loop alive */ 1096 ev_unref (EV_A); /* watcher should not keep loop alive */
1045 } 1097 }
1046} 1098}
1047 1099
1048void inline_size 1100inline_size void
1049evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1101evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1050{ 1102{
1051 if (!*flag) 1103 if (!*flag)
1052 { 1104 {
1053 int old_errno = errno; /* save errno because write might clobber it */ 1105 int old_errno = errno; /* save errno because write might clobber it */
1066 1118
1067 errno = old_errno; 1119 errno = old_errno;
1068 } 1120 }
1069} 1121}
1070 1122
1123/* called whenever the libev signal pipe */
1124/* got some events (signal, async) */
1071static void 1125static void
1072pipecb (EV_P_ ev_io *iow, int revents) 1126pipecb (EV_P_ ev_io *iow, int revents)
1073{ 1127{
1074#if EV_USE_EVENTFD 1128#if EV_USE_EVENTFD
1075 if (evfd >= 0) 1129 if (evfd >= 0)
1131ev_feed_signal_event (EV_P_ int signum) 1185ev_feed_signal_event (EV_P_ int signum)
1132{ 1186{
1133 WL w; 1187 WL w;
1134 1188
1135#if EV_MULTIPLICITY 1189#if EV_MULTIPLICITY
1136 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1190 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1137#endif 1191#endif
1138 1192
1139 --signum; 1193 --signum;
1140 1194
1141 if (signum < 0 || signum >= signalmax) 1195 if (signum < 0 || signum >= signalmax)
1157 1211
1158#ifndef WIFCONTINUED 1212#ifndef WIFCONTINUED
1159# define WIFCONTINUED(status) 0 1213# define WIFCONTINUED(status) 0
1160#endif 1214#endif
1161 1215
1162void inline_speed 1216/* handle a single child status event */
1217inline_speed void
1163child_reap (EV_P_ int chain, int pid, int status) 1218child_reap (EV_P_ int chain, int pid, int status)
1164{ 1219{
1165 ev_child *w; 1220 ev_child *w;
1166 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1221 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1167 1222
1180 1235
1181#ifndef WCONTINUED 1236#ifndef WCONTINUED
1182# define WCONTINUED 0 1237# define WCONTINUED 0
1183#endif 1238#endif
1184 1239
1240/* called on sigchld etc., calls waitpid */
1185static void 1241static void
1186childcb (EV_P_ ev_signal *sw, int revents) 1242childcb (EV_P_ ev_signal *sw, int revents)
1187{ 1243{
1188 int pid, status; 1244 int pid, status;
1189 1245
1270 /* kqueue is borked on everything but netbsd apparently */ 1326 /* kqueue is borked on everything but netbsd apparently */
1271 /* it usually doesn't work correctly on anything but sockets and pipes */ 1327 /* it usually doesn't work correctly on anything but sockets and pipes */
1272 flags &= ~EVBACKEND_KQUEUE; 1328 flags &= ~EVBACKEND_KQUEUE;
1273#endif 1329#endif
1274#ifdef __APPLE__ 1330#ifdef __APPLE__
1275 // flags &= ~EVBACKEND_KQUEUE; for documentation 1331 /* only select works correctly on that "unix-certified" platform */
1276 flags &= ~EVBACKEND_POLL; 1332 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1333 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1277#endif 1334#endif
1278 1335
1279 return flags; 1336 return flags;
1280} 1337}
1281 1338
1301ev_loop_count (EV_P) 1358ev_loop_count (EV_P)
1302{ 1359{
1303 return loop_count; 1360 return loop_count;
1304} 1361}
1305 1362
1363unsigned int
1364ev_loop_depth (EV_P)
1365{
1366 return loop_depth;
1367}
1368
1306void 1369void
1307ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1370ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1308{ 1371{
1309 io_blocktime = interval; 1372 io_blocktime = interval;
1310} 1373}
1313ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1376ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1314{ 1377{
1315 timeout_blocktime = interval; 1378 timeout_blocktime = interval;
1316} 1379}
1317 1380
1381/* initialise a loop structure, must be zero-initialised */
1318static void noinline 1382static void noinline
1319loop_init (EV_P_ unsigned int flags) 1383loop_init (EV_P_ unsigned int flags)
1320{ 1384{
1321 if (!backend) 1385 if (!backend)
1322 { 1386 {
1387#if EV_USE_REALTIME
1388 if (!have_realtime)
1389 {
1390 struct timespec ts;
1391
1392 if (!clock_gettime (CLOCK_REALTIME, &ts))
1393 have_realtime = 1;
1394 }
1395#endif
1396
1323#if EV_USE_MONOTONIC 1397#if EV_USE_MONOTONIC
1398 if (!have_monotonic)
1324 { 1399 {
1325 struct timespec ts; 1400 struct timespec ts;
1401
1326 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1402 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1327 have_monotonic = 1; 1403 have_monotonic = 1;
1328 } 1404 }
1329#endif 1405#endif
1330 1406
1331 ev_rt_now = ev_time (); 1407 ev_rt_now = ev_time ();
1332 mn_now = get_clock (); 1408 mn_now = get_clock ();
1333 now_floor = mn_now; 1409 now_floor = mn_now;
1370#endif 1446#endif
1371#if EV_USE_SELECT 1447#if EV_USE_SELECT
1372 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1448 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1373#endif 1449#endif
1374 1450
1451 ev_prepare_init (&pending_w, pendingcb);
1452
1375 ev_init (&pipeev, pipecb); 1453 ev_init (&pipe_w, pipecb);
1376 ev_set_priority (&pipeev, EV_MAXPRI); 1454 ev_set_priority (&pipe_w, EV_MAXPRI);
1377 } 1455 }
1378} 1456}
1379 1457
1458/* free up a loop structure */
1380static void noinline 1459static void noinline
1381loop_destroy (EV_P) 1460loop_destroy (EV_P)
1382{ 1461{
1383 int i; 1462 int i;
1384 1463
1385 if (ev_is_active (&pipeev)) 1464 if (ev_is_active (&pipe_w))
1386 { 1465 {
1387 ev_ref (EV_A); /* signal watcher */ 1466 ev_ref (EV_A); /* signal watcher */
1388 ev_io_stop (EV_A_ &pipeev); 1467 ev_io_stop (EV_A_ &pipe_w);
1389 1468
1390#if EV_USE_EVENTFD 1469#if EV_USE_EVENTFD
1391 if (evfd >= 0) 1470 if (evfd >= 0)
1392 close (evfd); 1471 close (evfd);
1393#endif 1472#endif
1432 } 1511 }
1433 1512
1434 ev_free (anfds); anfdmax = 0; 1513 ev_free (anfds); anfdmax = 0;
1435 1514
1436 /* have to use the microsoft-never-gets-it-right macro */ 1515 /* have to use the microsoft-never-gets-it-right macro */
1516 array_free (rfeed, EMPTY);
1437 array_free (fdchange, EMPTY); 1517 array_free (fdchange, EMPTY);
1438 array_free (timer, EMPTY); 1518 array_free (timer, EMPTY);
1439#if EV_PERIODIC_ENABLE 1519#if EV_PERIODIC_ENABLE
1440 array_free (periodic, EMPTY); 1520 array_free (periodic, EMPTY);
1441#endif 1521#endif
1450 1530
1451 backend = 0; 1531 backend = 0;
1452} 1532}
1453 1533
1454#if EV_USE_INOTIFY 1534#if EV_USE_INOTIFY
1455void inline_size infy_fork (EV_P); 1535inline_size void infy_fork (EV_P);
1456#endif 1536#endif
1457 1537
1458void inline_size 1538inline_size void
1459loop_fork (EV_P) 1539loop_fork (EV_P)
1460{ 1540{
1461#if EV_USE_PORT 1541#if EV_USE_PORT
1462 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1542 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1463#endif 1543#endif
1469#endif 1549#endif
1470#if EV_USE_INOTIFY 1550#if EV_USE_INOTIFY
1471 infy_fork (EV_A); 1551 infy_fork (EV_A);
1472#endif 1552#endif
1473 1553
1474 if (ev_is_active (&pipeev)) 1554 if (ev_is_active (&pipe_w))
1475 { 1555 {
1476 /* this "locks" the handlers against writing to the pipe */ 1556 /* this "locks" the handlers against writing to the pipe */
1477 /* while we modify the fd vars */ 1557 /* while we modify the fd vars */
1478 gotsig = 1; 1558 gotsig = 1;
1479#if EV_ASYNC_ENABLE 1559#if EV_ASYNC_ENABLE
1480 gotasync = 1; 1560 gotasync = 1;
1481#endif 1561#endif
1482 1562
1483 ev_ref (EV_A); 1563 ev_ref (EV_A);
1484 ev_io_stop (EV_A_ &pipeev); 1564 ev_io_stop (EV_A_ &pipe_w);
1485 1565
1486#if EV_USE_EVENTFD 1566#if EV_USE_EVENTFD
1487 if (evfd >= 0) 1567 if (evfd >= 0)
1488 close (evfd); 1568 close (evfd);
1489#endif 1569#endif
1494 close (evpipe [1]); 1574 close (evpipe [1]);
1495 } 1575 }
1496 1576
1497 evpipe_init (EV_A); 1577 evpipe_init (EV_A);
1498 /* now iterate over everything, in case we missed something */ 1578 /* now iterate over everything, in case we missed something */
1499 pipecb (EV_A_ &pipeev, EV_READ); 1579 pipecb (EV_A_ &pipe_w, EV_READ);
1500 } 1580 }
1501 1581
1502 postfork = 0; 1582 postfork = 0;
1503} 1583}
1504 1584
1534 1614
1535#if EV_VERIFY 1615#if EV_VERIFY
1536static void noinline 1616static void noinline
1537verify_watcher (EV_P_ W w) 1617verify_watcher (EV_P_ W w)
1538{ 1618{
1539 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 1619 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1540 1620
1541 if (w->pending) 1621 if (w->pending)
1542 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 1622 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1543} 1623}
1544 1624
1545static void noinline 1625static void noinline
1546verify_heap (EV_P_ ANHE *heap, int N) 1626verify_heap (EV_P_ ANHE *heap, int N)
1547{ 1627{
1548 int i; 1628 int i;
1549 1629
1550 for (i = HEAP0; i < N + HEAP0; ++i) 1630 for (i = HEAP0; i < N + HEAP0; ++i)
1551 { 1631 {
1552 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 1632 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1553 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 1633 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1554 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 1634 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1555 1635
1556 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 1636 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1557 } 1637 }
1558} 1638}
1559 1639
1560static void noinline 1640static void noinline
1561array_verify (EV_P_ W *ws, int cnt) 1641array_verify (EV_P_ W *ws, int cnt)
1562{ 1642{
1563 while (cnt--) 1643 while (cnt--)
1564 { 1644 {
1565 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 1645 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1566 verify_watcher (EV_A_ ws [cnt]); 1646 verify_watcher (EV_A_ ws [cnt]);
1567 } 1647 }
1568} 1648}
1569#endif 1649#endif
1570 1650
1577 1657
1578 assert (activecnt >= -1); 1658 assert (activecnt >= -1);
1579 1659
1580 assert (fdchangemax >= fdchangecnt); 1660 assert (fdchangemax >= fdchangecnt);
1581 for (i = 0; i < fdchangecnt; ++i) 1661 for (i = 0; i < fdchangecnt; ++i)
1582 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 1662 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1583 1663
1584 assert (anfdmax >= 0); 1664 assert (anfdmax >= 0);
1585 for (i = 0; i < anfdmax; ++i) 1665 for (i = 0; i < anfdmax; ++i)
1586 for (w = anfds [i].head; w; w = w->next) 1666 for (w = anfds [i].head; w; w = w->next)
1587 { 1667 {
1588 verify_watcher (EV_A_ (W)w); 1668 verify_watcher (EV_A_ (W)w);
1589 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 1669 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1590 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 1670 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1591 } 1671 }
1592 1672
1593 assert (timermax >= timercnt); 1673 assert (timermax >= timercnt);
1594 verify_heap (EV_A_ timers, timercnt); 1674 verify_heap (EV_A_ timers, timercnt);
1595 1675
1700ev_invoke (EV_P_ void *w, int revents) 1780ev_invoke (EV_P_ void *w, int revents)
1701{ 1781{
1702 EV_CB_INVOKE ((W)w, revents); 1782 EV_CB_INVOKE ((W)w, revents);
1703} 1783}
1704 1784
1705void inline_speed 1785inline_speed void
1706call_pending (EV_P) 1786call_pending (EV_P)
1707{ 1787{
1708 int pri; 1788 int pri;
1709 1789
1710 for (pri = NUMPRI; pri--; ) 1790 for (pri = NUMPRI; pri--; )
1711 while (pendingcnt [pri]) 1791 while (pendingcnt [pri])
1712 { 1792 {
1713 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1793 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1714 1794
1715 if (expect_true (p->w))
1716 {
1717 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1795 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1796 /* ^ this is no longer true, as pending_w could be here */
1718 1797
1719 p->w->pending = 0; 1798 p->w->pending = 0;
1720 EV_CB_INVOKE (p->w, p->events); 1799 EV_CB_INVOKE (p->w, p->events);
1721 EV_FREQUENT_CHECK; 1800 EV_FREQUENT_CHECK;
1722 }
1723 } 1801 }
1724} 1802}
1725 1803
1726#if EV_IDLE_ENABLE 1804#if EV_IDLE_ENABLE
1727void inline_size 1805/* make idle watchers pending. this handles the "call-idle */
1806/* only when higher priorities are idle" logic */
1807inline_size void
1728idle_reify (EV_P) 1808idle_reify (EV_P)
1729{ 1809{
1730 if (expect_false (idleall)) 1810 if (expect_false (idleall))
1731 { 1811 {
1732 int pri; 1812 int pri;
1744 } 1824 }
1745 } 1825 }
1746} 1826}
1747#endif 1827#endif
1748 1828
1749void inline_size 1829/* make timers pending */
1830inline_size void
1750timers_reify (EV_P) 1831timers_reify (EV_P)
1751{ 1832{
1752 EV_FREQUENT_CHECK; 1833 EV_FREQUENT_CHECK;
1753 1834
1754 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 1835 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1755 { 1836 {
1756 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 1837 do
1757
1758 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1759
1760 /* first reschedule or stop timer */
1761 if (w->repeat)
1762 { 1838 {
1839 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1840
1841 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1842
1843 /* first reschedule or stop timer */
1844 if (w->repeat)
1845 {
1763 ev_at (w) += w->repeat; 1846 ev_at (w) += w->repeat;
1764 if (ev_at (w) < mn_now) 1847 if (ev_at (w) < mn_now)
1765 ev_at (w) = mn_now; 1848 ev_at (w) = mn_now;
1766 1849
1767 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1850 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1768 1851
1769 ANHE_at_cache (timers [HEAP0]); 1852 ANHE_at_cache (timers [HEAP0]);
1770 downheap (timers, timercnt, HEAP0); 1853 downheap (timers, timercnt, HEAP0);
1854 }
1855 else
1856 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1857
1858 EV_FREQUENT_CHECK;
1859 feed_reverse (EV_A_ (W)w);
1771 } 1860 }
1772 else 1861 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1773 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1774 1862
1775 EV_FREQUENT_CHECK;
1776 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1863 feed_reverse_done (EV_A_ EV_TIMEOUT);
1777 } 1864 }
1778} 1865}
1779 1866
1780#if EV_PERIODIC_ENABLE 1867#if EV_PERIODIC_ENABLE
1781void inline_size 1868/* make periodics pending */
1869inline_size void
1782periodics_reify (EV_P) 1870periodics_reify (EV_P)
1783{ 1871{
1784 EV_FREQUENT_CHECK; 1872 EV_FREQUENT_CHECK;
1785 1873
1786 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 1874 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1787 { 1875 {
1788 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 1876 int feed_count = 0;
1789 1877
1790 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1878 do
1791
1792 /* first reschedule or stop timer */
1793 if (w->reschedule_cb)
1794 { 1879 {
1880 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1881
1882 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1883
1884 /* first reschedule or stop timer */
1885 if (w->reschedule_cb)
1886 {
1795 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1887 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1796 1888
1797 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 1889 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1798 1890
1799 ANHE_at_cache (periodics [HEAP0]); 1891 ANHE_at_cache (periodics [HEAP0]);
1800 downheap (periodics, periodiccnt, HEAP0); 1892 downheap (periodics, periodiccnt, HEAP0);
1893 }
1894 else if (w->interval)
1895 {
1896 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1897 /* if next trigger time is not sufficiently in the future, put it there */
1898 /* this might happen because of floating point inexactness */
1899 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1900 {
1901 ev_at (w) += w->interval;
1902
1903 /* if interval is unreasonably low we might still have a time in the past */
1904 /* so correct this. this will make the periodic very inexact, but the user */
1905 /* has effectively asked to get triggered more often than possible */
1906 if (ev_at (w) < ev_rt_now)
1907 ev_at (w) = ev_rt_now;
1908 }
1909
1910 ANHE_at_cache (periodics [HEAP0]);
1911 downheap (periodics, periodiccnt, HEAP0);
1912 }
1913 else
1914 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1915
1916 EV_FREQUENT_CHECK;
1917 feed_reverse (EV_A_ (W)w);
1801 } 1918 }
1802 else if (w->interval) 1919 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1803 {
1804 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1805 /* if next trigger time is not sufficiently in the future, put it there */
1806 /* this might happen because of floating point inexactness */
1807 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1808 {
1809 ev_at (w) += w->interval;
1810 1920
1811 /* if interval is unreasonably low we might still have a time in the past */
1812 /* so correct this. this will make the periodic very inexact, but the user */
1813 /* has effectively asked to get triggered more often than possible */
1814 if (ev_at (w) < ev_rt_now)
1815 ev_at (w) = ev_rt_now;
1816 }
1817
1818 ANHE_at_cache (periodics [HEAP0]);
1819 downheap (periodics, periodiccnt, HEAP0);
1820 }
1821 else
1822 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1823
1824 EV_FREQUENT_CHECK;
1825 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1921 feed_reverse_done (EV_A_ EV_PERIODIC);
1826 } 1922 }
1827} 1923}
1828 1924
1925/* simply recalculate all periodics */
1926/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1829static void noinline 1927static void noinline
1830periodics_reschedule (EV_P) 1928periodics_reschedule (EV_P)
1831{ 1929{
1832 int i; 1930 int i;
1833 1931
1846 1944
1847 reheap (periodics, periodiccnt); 1945 reheap (periodics, periodiccnt);
1848} 1946}
1849#endif 1947#endif
1850 1948
1851void inline_speed 1949/* adjust all timers by a given offset */
1950static void noinline
1951timers_reschedule (EV_P_ ev_tstamp adjust)
1952{
1953 int i;
1954
1955 for (i = 0; i < timercnt; ++i)
1956 {
1957 ANHE *he = timers + i + HEAP0;
1958 ANHE_w (*he)->at += adjust;
1959 ANHE_at_cache (*he);
1960 }
1961}
1962
1963/* fetch new monotonic and realtime times from the kernel */
1964/* also detetc if there was a timejump, and act accordingly */
1965inline_speed void
1852time_update (EV_P_ ev_tstamp max_block) 1966time_update (EV_P_ ev_tstamp max_block)
1853{ 1967{
1854 int i;
1855
1856#if EV_USE_MONOTONIC 1968#if EV_USE_MONOTONIC
1857 if (expect_true (have_monotonic)) 1969 if (expect_true (have_monotonic))
1858 { 1970 {
1971 int i;
1859 ev_tstamp odiff = rtmn_diff; 1972 ev_tstamp odiff = rtmn_diff;
1860 1973
1861 mn_now = get_clock (); 1974 mn_now = get_clock ();
1862 1975
1863 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 1976 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1889 ev_rt_now = ev_time (); 2002 ev_rt_now = ev_time ();
1890 mn_now = get_clock (); 2003 mn_now = get_clock ();
1891 now_floor = mn_now; 2004 now_floor = mn_now;
1892 } 2005 }
1893 2006
2007 /* no timer adjustment, as the monotonic clock doesn't jump */
2008 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1894# if EV_PERIODIC_ENABLE 2009# if EV_PERIODIC_ENABLE
1895 periodics_reschedule (EV_A); 2010 periodics_reschedule (EV_A);
1896# endif 2011# endif
1897 /* no timer adjustment, as the monotonic clock doesn't jump */
1898 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1899 } 2012 }
1900 else 2013 else
1901#endif 2014#endif
1902 { 2015 {
1903 ev_rt_now = ev_time (); 2016 ev_rt_now = ev_time ();
1904 2017
1905 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2018 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1906 { 2019 {
2020 /* adjust timers. this is easy, as the offset is the same for all of them */
2021 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1907#if EV_PERIODIC_ENABLE 2022#if EV_PERIODIC_ENABLE
1908 periodics_reschedule (EV_A); 2023 periodics_reschedule (EV_A);
1909#endif 2024#endif
1910 /* adjust timers. this is easy, as the offset is the same for all of them */
1911 for (i = 0; i < timercnt; ++i)
1912 {
1913 ANHE *he = timers + i + HEAP0;
1914 ANHE_w (*he)->at += ev_rt_now - mn_now;
1915 ANHE_at_cache (*he);
1916 }
1917 } 2025 }
1918 2026
1919 mn_now = ev_rt_now; 2027 mn_now = ev_rt_now;
1920 } 2028 }
1921} 2029}
1922 2030
1923void 2031void
1924ev_ref (EV_P)
1925{
1926 ++activecnt;
1927}
1928
1929void
1930ev_unref (EV_P)
1931{
1932 --activecnt;
1933}
1934
1935void
1936ev_now_update (EV_P)
1937{
1938 time_update (EV_A_ 1e100);
1939}
1940
1941static int loop_done;
1942
1943void
1944ev_loop (EV_P_ int flags) 2032ev_loop (EV_P_ int flags)
1945{ 2033{
2034 ++loop_depth;
2035
1946 loop_done = EVUNLOOP_CANCEL; 2036 loop_done = EVUNLOOP_CANCEL;
1947 2037
1948 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2038 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1949 2039
1950 do 2040 do
1977 { 2067 {
1978 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2068 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1979 call_pending (EV_A); 2069 call_pending (EV_A);
1980 } 2070 }
1981 2071
1982 if (expect_false (!activecnt))
1983 break;
1984
1985 /* we might have forked, so reify kernel state if necessary */ 2072 /* we might have forked, so reify kernel state if necessary */
1986 if (expect_false (postfork)) 2073 if (expect_false (postfork))
1987 loop_fork (EV_A); 2074 loop_fork (EV_A);
1988 2075
1989 /* update fd-related kernel structures */ 2076 /* update fd-related kernel structures */
1994 ev_tstamp waittime = 0.; 2081 ev_tstamp waittime = 0.;
1995 ev_tstamp sleeptime = 0.; 2082 ev_tstamp sleeptime = 0.;
1996 2083
1997 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2084 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1998 { 2085 {
2086 /* remember old timestamp for io_blocktime calculation */
2087 ev_tstamp prev_mn_now = mn_now;
2088
1999 /* update time to cancel out callback processing overhead */ 2089 /* update time to cancel out callback processing overhead */
2000 time_update (EV_A_ 1e100); 2090 time_update (EV_A_ 1e100);
2001 2091
2002 waittime = MAX_BLOCKTIME; 2092 waittime = MAX_BLOCKTIME;
2003 2093
2013 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2103 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2014 if (waittime > to) waittime = to; 2104 if (waittime > to) waittime = to;
2015 } 2105 }
2016#endif 2106#endif
2017 2107
2108 /* don't let timeouts decrease the waittime below timeout_blocktime */
2018 if (expect_false (waittime < timeout_blocktime)) 2109 if (expect_false (waittime < timeout_blocktime))
2019 waittime = timeout_blocktime; 2110 waittime = timeout_blocktime;
2020 2111
2021 sleeptime = waittime - backend_fudge; 2112 /* extra check because io_blocktime is commonly 0 */
2022
2023 if (expect_true (sleeptime > io_blocktime)) 2113 if (expect_false (io_blocktime))
2024 sleeptime = io_blocktime;
2025
2026 if (sleeptime)
2027 { 2114 {
2115 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2116
2117 if (sleeptime > waittime - backend_fudge)
2118 sleeptime = waittime - backend_fudge;
2119
2120 if (expect_true (sleeptime > 0.))
2121 {
2028 ev_sleep (sleeptime); 2122 ev_sleep (sleeptime);
2029 waittime -= sleeptime; 2123 waittime -= sleeptime;
2124 }
2030 } 2125 }
2031 } 2126 }
2032 2127
2033 ++loop_count; 2128 ++loop_count;
2034 backend_poll (EV_A_ waittime); 2129 backend_poll (EV_A_ waittime);
2060 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2155 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2061 )); 2156 ));
2062 2157
2063 if (loop_done == EVUNLOOP_ONE) 2158 if (loop_done == EVUNLOOP_ONE)
2064 loop_done = EVUNLOOP_CANCEL; 2159 loop_done = EVUNLOOP_CANCEL;
2160
2161 --loop_depth;
2065} 2162}
2066 2163
2067void 2164void
2068ev_unloop (EV_P_ int how) 2165ev_unloop (EV_P_ int how)
2069{ 2166{
2070 loop_done = how; 2167 loop_done = how;
2071} 2168}
2072 2169
2170void
2171ev_ref (EV_P)
2172{
2173 ++activecnt;
2174}
2175
2176void
2177ev_unref (EV_P)
2178{
2179 --activecnt;
2180}
2181
2182void
2183ev_now_update (EV_P)
2184{
2185 time_update (EV_A_ 1e100);
2186}
2187
2188void
2189ev_suspend (EV_P)
2190{
2191 ev_now_update (EV_A);
2192}
2193
2194void
2195ev_resume (EV_P)
2196{
2197 ev_tstamp mn_prev = mn_now;
2198
2199 ev_now_update (EV_A);
2200 timers_reschedule (EV_A_ mn_now - mn_prev);
2201#if EV_PERIODIC_ENABLE
2202 /* TODO: really do this? */
2203 periodics_reschedule (EV_A);
2204#endif
2205}
2206
2073/*****************************************************************************/ 2207/*****************************************************************************/
2208/* singly-linked list management, used when the expected list length is short */
2074 2209
2075void inline_size 2210inline_size void
2076wlist_add (WL *head, WL elem) 2211wlist_add (WL *head, WL elem)
2077{ 2212{
2078 elem->next = *head; 2213 elem->next = *head;
2079 *head = elem; 2214 *head = elem;
2080} 2215}
2081 2216
2082void inline_size 2217inline_size void
2083wlist_del (WL *head, WL elem) 2218wlist_del (WL *head, WL elem)
2084{ 2219{
2085 while (*head) 2220 while (*head)
2086 { 2221 {
2087 if (*head == elem) 2222 if (*head == elem)
2092 2227
2093 head = &(*head)->next; 2228 head = &(*head)->next;
2094 } 2229 }
2095} 2230}
2096 2231
2097void inline_speed 2232/* internal, faster, version of ev_clear_pending */
2233inline_speed void
2098clear_pending (EV_P_ W w) 2234clear_pending (EV_P_ W w)
2099{ 2235{
2100 if (w->pending) 2236 if (w->pending)
2101 { 2237 {
2102 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2238 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2103 w->pending = 0; 2239 w->pending = 0;
2104 } 2240 }
2105} 2241}
2106 2242
2107int 2243int
2111 int pending = w_->pending; 2247 int pending = w_->pending;
2112 2248
2113 if (expect_true (pending)) 2249 if (expect_true (pending))
2114 { 2250 {
2115 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2251 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2252 p->w = (W)&pending_w;
2116 w_->pending = 0; 2253 w_->pending = 0;
2117 p->w = 0;
2118 return p->events; 2254 return p->events;
2119 } 2255 }
2120 else 2256 else
2121 return 0; 2257 return 0;
2122} 2258}
2123 2259
2124void inline_size 2260inline_size void
2125pri_adjust (EV_P_ W w) 2261pri_adjust (EV_P_ W w)
2126{ 2262{
2127 int pri = w->priority; 2263 int pri = w->priority;
2128 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2264 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2129 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2265 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2130 w->priority = pri; 2266 w->priority = pri;
2131} 2267}
2132 2268
2133void inline_speed 2269inline_speed void
2134ev_start (EV_P_ W w, int active) 2270ev_start (EV_P_ W w, int active)
2135{ 2271{
2136 pri_adjust (EV_A_ w); 2272 pri_adjust (EV_A_ w);
2137 w->active = active; 2273 w->active = active;
2138 ev_ref (EV_A); 2274 ev_ref (EV_A);
2139} 2275}
2140 2276
2141void inline_size 2277inline_size void
2142ev_stop (EV_P_ W w) 2278ev_stop (EV_P_ W w)
2143{ 2279{
2144 ev_unref (EV_A); 2280 ev_unref (EV_A);
2145 w->active = 0; 2281 w->active = 0;
2146} 2282}
2153 int fd = w->fd; 2289 int fd = w->fd;
2154 2290
2155 if (expect_false (ev_is_active (w))) 2291 if (expect_false (ev_is_active (w)))
2156 return; 2292 return;
2157 2293
2158 assert (("ev_io_start called with negative fd", fd >= 0)); 2294 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2159 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE)))); 2295 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2160 2296
2161 EV_FREQUENT_CHECK; 2297 EV_FREQUENT_CHECK;
2162 2298
2163 ev_start (EV_A_ (W)w, 1); 2299 ev_start (EV_A_ (W)w, 1);
2164 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 2300 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2165 wlist_add (&anfds[fd].head, (WL)w); 2301 wlist_add (&anfds[fd].head, (WL)w);
2166 2302
2167 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2303 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
2168 w->events &= ~EV_IOFDSET; 2304 w->events &= ~EV__IOFDSET;
2169 2305
2170 EV_FREQUENT_CHECK; 2306 EV_FREQUENT_CHECK;
2171} 2307}
2172 2308
2173void noinline 2309void noinline
2175{ 2311{
2176 clear_pending (EV_A_ (W)w); 2312 clear_pending (EV_A_ (W)w);
2177 if (expect_false (!ev_is_active (w))) 2313 if (expect_false (!ev_is_active (w)))
2178 return; 2314 return;
2179 2315
2180 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2316 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2181 2317
2182 EV_FREQUENT_CHECK; 2318 EV_FREQUENT_CHECK;
2183 2319
2184 wlist_del (&anfds[w->fd].head, (WL)w); 2320 wlist_del (&anfds[w->fd].head, (WL)w);
2185 ev_stop (EV_A_ (W)w); 2321 ev_stop (EV_A_ (W)w);
2195 if (expect_false (ev_is_active (w))) 2331 if (expect_false (ev_is_active (w)))
2196 return; 2332 return;
2197 2333
2198 ev_at (w) += mn_now; 2334 ev_at (w) += mn_now;
2199 2335
2200 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2336 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2201 2337
2202 EV_FREQUENT_CHECK; 2338 EV_FREQUENT_CHECK;
2203 2339
2204 ++timercnt; 2340 ++timercnt;
2205 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 2341 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2208 ANHE_at_cache (timers [ev_active (w)]); 2344 ANHE_at_cache (timers [ev_active (w)]);
2209 upheap (timers, ev_active (w)); 2345 upheap (timers, ev_active (w));
2210 2346
2211 EV_FREQUENT_CHECK; 2347 EV_FREQUENT_CHECK;
2212 2348
2213 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2349 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2214} 2350}
2215 2351
2216void noinline 2352void noinline
2217ev_timer_stop (EV_P_ ev_timer *w) 2353ev_timer_stop (EV_P_ ev_timer *w)
2218{ 2354{
2223 EV_FREQUENT_CHECK; 2359 EV_FREQUENT_CHECK;
2224 2360
2225 { 2361 {
2226 int active = ev_active (w); 2362 int active = ev_active (w);
2227 2363
2228 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2364 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2229 2365
2230 --timercnt; 2366 --timercnt;
2231 2367
2232 if (expect_true (active < timercnt + HEAP0)) 2368 if (expect_true (active < timercnt + HEAP0))
2233 { 2369 {
2277 2413
2278 if (w->reschedule_cb) 2414 if (w->reschedule_cb)
2279 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2415 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2280 else if (w->interval) 2416 else if (w->interval)
2281 { 2417 {
2282 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2418 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2283 /* this formula differs from the one in periodic_reify because we do not always round up */ 2419 /* this formula differs from the one in periodic_reify because we do not always round up */
2284 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2420 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2285 } 2421 }
2286 else 2422 else
2287 ev_at (w) = w->offset; 2423 ev_at (w) = w->offset;
2295 ANHE_at_cache (periodics [ev_active (w)]); 2431 ANHE_at_cache (periodics [ev_active (w)]);
2296 upheap (periodics, ev_active (w)); 2432 upheap (periodics, ev_active (w));
2297 2433
2298 EV_FREQUENT_CHECK; 2434 EV_FREQUENT_CHECK;
2299 2435
2300 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2436 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2301} 2437}
2302 2438
2303void noinline 2439void noinline
2304ev_periodic_stop (EV_P_ ev_periodic *w) 2440ev_periodic_stop (EV_P_ ev_periodic *w)
2305{ 2441{
2310 EV_FREQUENT_CHECK; 2446 EV_FREQUENT_CHECK;
2311 2447
2312 { 2448 {
2313 int active = ev_active (w); 2449 int active = ev_active (w);
2314 2450
2315 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2451 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2316 2452
2317 --periodiccnt; 2453 --periodiccnt;
2318 2454
2319 if (expect_true (active < periodiccnt + HEAP0)) 2455 if (expect_true (active < periodiccnt + HEAP0))
2320 { 2456 {
2343 2479
2344void noinline 2480void noinline
2345ev_signal_start (EV_P_ ev_signal *w) 2481ev_signal_start (EV_P_ ev_signal *w)
2346{ 2482{
2347#if EV_MULTIPLICITY 2483#if EV_MULTIPLICITY
2348 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2484 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2349#endif 2485#endif
2350 if (expect_false (ev_is_active (w))) 2486 if (expect_false (ev_is_active (w)))
2351 return; 2487 return;
2352 2488
2353 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2489 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2354 2490
2355 evpipe_init (EV_A); 2491 evpipe_init (EV_A);
2356 2492
2357 EV_FREQUENT_CHECK; 2493 EV_FREQUENT_CHECK;
2358 2494
2409 2545
2410void 2546void
2411ev_child_start (EV_P_ ev_child *w) 2547ev_child_start (EV_P_ ev_child *w)
2412{ 2548{
2413#if EV_MULTIPLICITY 2549#if EV_MULTIPLICITY
2414 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2550 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2415#endif 2551#endif
2416 if (expect_false (ev_is_active (w))) 2552 if (expect_false (ev_is_active (w)))
2417 return; 2553 return;
2418 2554
2419 EV_FREQUENT_CHECK; 2555 EV_FREQUENT_CHECK;
2571 2707
2572 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2708 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2573 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2709 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2574} 2710}
2575 2711
2576void inline_size 2712inline_size void
2577check_2625 (EV_P) 2713check_2625 (EV_P)
2578{ 2714{
2579 /* kernels < 2.6.25 are borked 2715 /* kernels < 2.6.25 are borked
2580 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 2716 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2581 */ 2717 */
2594 return; 2730 return;
2595 2731
2596 fs_2625 = 1; 2732 fs_2625 = 1;
2597} 2733}
2598 2734
2599void inline_size 2735inline_size void
2600infy_init (EV_P) 2736infy_init (EV_P)
2601{ 2737{
2602 if (fs_fd != -2) 2738 if (fs_fd != -2)
2603 return; 2739 return;
2604 2740
2614 ev_set_priority (&fs_w, EV_MAXPRI); 2750 ev_set_priority (&fs_w, EV_MAXPRI);
2615 ev_io_start (EV_A_ &fs_w); 2751 ev_io_start (EV_A_ &fs_w);
2616 } 2752 }
2617} 2753}
2618 2754
2619void inline_size 2755inline_size void
2620infy_fork (EV_P) 2756infy_fork (EV_P)
2621{ 2757{
2622 int slot; 2758 int slot;
2623 2759
2624 if (fs_fd < 0) 2760 if (fs_fd < 0)
2905static void 3041static void
2906embed_fork_cb (EV_P_ ev_fork *fork_w, int revents) 3042embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2907{ 3043{
2908 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 3044 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2909 3045
3046 ev_embed_stop (EV_A_ w);
3047
2910 { 3048 {
2911 struct ev_loop *loop = w->other; 3049 struct ev_loop *loop = w->other;
2912 3050
2913 ev_loop_fork (EV_A); 3051 ev_loop_fork (EV_A);
3052 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2914 } 3053 }
3054
3055 ev_embed_start (EV_A_ w);
2915} 3056}
2916 3057
2917#if 0 3058#if 0
2918static void 3059static void
2919embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3060embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2928 if (expect_false (ev_is_active (w))) 3069 if (expect_false (ev_is_active (w)))
2929 return; 3070 return;
2930 3071
2931 { 3072 {
2932 struct ev_loop *loop = w->other; 3073 struct ev_loop *loop = w->other;
2933 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3074 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2934 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3075 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2935 } 3076 }
2936 3077
2937 EV_FREQUENT_CHECK; 3078 EV_FREQUENT_CHECK;
2938 3079
3121 ev_timer_set (&once->to, timeout, 0.); 3262 ev_timer_set (&once->to, timeout, 0.);
3122 ev_timer_start (EV_A_ &once->to); 3263 ev_timer_start (EV_A_ &once->to);
3123 } 3264 }
3124} 3265}
3125 3266
3267/*****************************************************************************/
3268
3269#if EV_WALK_ENABLE
3270void
3271ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3272{
3273 int i, j;
3274 ev_watcher_list *wl, *wn;
3275
3276 if (types & (EV_IO | EV_EMBED))
3277 for (i = 0; i < anfdmax; ++i)
3278 for (wl = anfds [i].head; wl; )
3279 {
3280 wn = wl->next;
3281
3282#if EV_EMBED_ENABLE
3283 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3284 {
3285 if (types & EV_EMBED)
3286 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3287 }
3288 else
3289#endif
3290#if EV_USE_INOTIFY
3291 if (ev_cb ((ev_io *)wl) == infy_cb)
3292 ;
3293 else
3294#endif
3295 if ((ev_io *)wl != &pipe_w)
3296 if (types & EV_IO)
3297 cb (EV_A_ EV_IO, wl);
3298
3299 wl = wn;
3300 }
3301
3302 if (types & (EV_TIMER | EV_STAT))
3303 for (i = timercnt + HEAP0; i-- > HEAP0; )
3304#if EV_STAT_ENABLE
3305 /*TODO: timer is not always active*/
3306 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3307 {
3308 if (types & EV_STAT)
3309 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3310 }
3311 else
3312#endif
3313 if (types & EV_TIMER)
3314 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3315
3316#if EV_PERIODIC_ENABLE
3317 if (types & EV_PERIODIC)
3318 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3319 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3320#endif
3321
3322#if EV_IDLE_ENABLE
3323 if (types & EV_IDLE)
3324 for (j = NUMPRI; i--; )
3325 for (i = idlecnt [j]; i--; )
3326 cb (EV_A_ EV_IDLE, idles [j][i]);
3327#endif
3328
3329#if EV_FORK_ENABLE
3330 if (types & EV_FORK)
3331 for (i = forkcnt; i--; )
3332 if (ev_cb (forks [i]) != embed_fork_cb)
3333 cb (EV_A_ EV_FORK, forks [i]);
3334#endif
3335
3336#if EV_ASYNC_ENABLE
3337 if (types & EV_ASYNC)
3338 for (i = asynccnt; i--; )
3339 cb (EV_A_ EV_ASYNC, asyncs [i]);
3340#endif
3341
3342 if (types & EV_PREPARE)
3343 for (i = preparecnt; i--; )
3344#if EV_EMBED_ENABLE
3345 if (ev_cb (prepares [i]) != embed_prepare_cb)
3346#endif
3347 cb (EV_A_ EV_PREPARE, prepares [i]);
3348
3349 if (types & EV_CHECK)
3350 for (i = checkcnt; i--; )
3351 cb (EV_A_ EV_CHECK, checks [i]);
3352
3353 if (types & EV_SIGNAL)
3354 for (i = 0; i < signalmax; ++i)
3355 for (wl = signals [i].head; wl; )
3356 {
3357 wn = wl->next;
3358 cb (EV_A_ EV_SIGNAL, wl);
3359 wl = wn;
3360 }
3361
3362 if (types & EV_CHILD)
3363 for (i = EV_PID_HASHSIZE; i--; )
3364 for (wl = childs [i]; wl; )
3365 {
3366 wn = wl->next;
3367 cb (EV_A_ EV_CHILD, wl);
3368 wl = wn;
3369 }
3370/* EV_STAT 0x00001000 /* stat data changed */
3371/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3372}
3373#endif
3374
3126#if EV_MULTIPLICITY 3375#if EV_MULTIPLICITY
3127 #include "ev_wrap.h" 3376 #include "ev_wrap.h"
3128#endif 3377#endif
3129 3378
3130#ifdef __cplusplus 3379#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines