ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.28 by root, Thu Nov 1 06:48:49 2007 UTC vs.
Revision 1.294 by root, Wed Jul 8 02:46:05 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
6 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
7 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
8 * 27 *
9 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
10 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
11 * 30 * in which case the provisions of the GPL are applicable instead of
12 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
13 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
14 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
15 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
16 * 35 * and other provisions required by the GPL. If you do not delete the
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
66# if HAVE_CLOCK_GETTIME
67# ifndef EV_USE_MONOTONIC
68# define EV_USE_MONOTONIC 1
69# endif
70# ifndef EV_USE_REALTIME
71# define EV_USE_REALTIME 0
72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
90# ifndef EV_USE_SELECT
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
95# endif
96# endif
97
98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
100# define EV_USE_POLL 1
101# else
102# define EV_USE_POLL 0
103# endif
104# endif
105
106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
108# define EV_USE_EPOLL 1
109# else
110# define EV_USE_EPOLL 0
111# endif
112# endif
113
114# ifndef EV_USE_KQUEUE
115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
119# endif
120# endif
121
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
127# endif
128# endif
129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_EVENTFD
139# if HAVE_EVENTFD
140# define EV_USE_EVENTFD 1
141# else
142# define EV_USE_EVENTFD 0
143# endif
144# endif
145
146#endif
29 147
30#include <math.h> 148#include <math.h>
31#include <stdlib.h> 149#include <stdlib.h>
32#include <unistd.h>
33#include <fcntl.h> 150#include <fcntl.h>
34#include <signal.h>
35#include <stddef.h> 151#include <stddef.h>
36 152
37#include <stdio.h> 153#include <stdio.h>
38 154
39#include <assert.h> 155#include <assert.h>
40#include <errno.h> 156#include <errno.h>
41#include <sys/types.h> 157#include <sys/types.h>
42#include <sys/wait.h>
43#include <sys/time.h>
44#include <time.h> 158#include <time.h>
45 159
46#ifndef HAVE_MONOTONIC 160#include <signal.h>
47# ifdef CLOCK_MONOTONIC 161
48# define HAVE_MONOTONIC 1 162#ifdef EV_H
163# include EV_H
164#else
165# include "ev.h"
166#endif
167
168#ifndef _WIN32
169# include <sys/time.h>
170# include <sys/wait.h>
171# include <unistd.h>
172#else
173# include <io.h>
174# define WIN32_LEAN_AND_MEAN
175# include <windows.h>
176# ifndef EV_SELECT_IS_WINSOCKET
177# define EV_SELECT_IS_WINSOCKET 1
49# endif 178# endif
50#endif 179#endif
51 180
52#ifndef HAVE_SELECT 181/* this block tries to deduce configuration from header-defined symbols and defaults */
53# define HAVE_SELECT 1 182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
54#endif 188# endif
189#endif
55 190
56#ifndef HAVE_EPOLL 191#ifndef EV_USE_MONOTONIC
57# define HAVE_EPOLL 0 192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
195# define EV_USE_MONOTONIC 0
58#endif 196# endif
197#endif
59 198
60#ifndef HAVE_REALTIME 199#ifndef EV_USE_REALTIME
61# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
201#endif
202
203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
207# define EV_USE_NANOSLEEP 0
62#endif 208# endif
209#endif
210
211#ifndef EV_USE_SELECT
212# define EV_USE_SELECT 1
213#endif
214
215#ifndef EV_USE_POLL
216# ifdef _WIN32
217# define EV_USE_POLL 0
218# else
219# define EV_USE_POLL 1
220# endif
221#endif
222
223#ifndef EV_USE_EPOLL
224# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225# define EV_USE_EPOLL 1
226# else
227# define EV_USE_EPOLL 0
228# endif
229#endif
230
231#ifndef EV_USE_KQUEUE
232# define EV_USE_KQUEUE 0
233#endif
234
235#ifndef EV_USE_PORT
236# define EV_USE_PORT 0
237#endif
238
239#ifndef EV_USE_INOTIFY
240# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
241# define EV_USE_INOTIFY 1
242# else
243# define EV_USE_INOTIFY 0
244# endif
245#endif
246
247#ifndef EV_PID_HASHSIZE
248# if EV_MINIMAL
249# define EV_PID_HASHSIZE 1
250# else
251# define EV_PID_HASHSIZE 16
252# endif
253#endif
254
255#ifndef EV_INOTIFY_HASHSIZE
256# if EV_MINIMAL
257# define EV_INOTIFY_HASHSIZE 1
258# else
259# define EV_INOTIFY_HASHSIZE 16
260# endif
261#endif
262
263#ifndef EV_USE_EVENTFD
264# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265# define EV_USE_EVENTFD 1
266# else
267# define EV_USE_EVENTFD 0
268# endif
269#endif
270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
304
305#ifndef CLOCK_MONOTONIC
306# undef EV_USE_MONOTONIC
307# define EV_USE_MONOTONIC 0
308#endif
309
310#ifndef CLOCK_REALTIME
311# undef EV_USE_REALTIME
312# define EV_USE_REALTIME 0
313#endif
314
315#if !EV_STAT_ENABLE
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318#endif
319
320#if !EV_USE_NANOSLEEP
321# ifndef _WIN32
322# include <sys/select.h>
323# endif
324#endif
325
326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
335#endif
336
337#if EV_SELECT_IS_WINSOCKET
338# include <winsock.h>
339#endif
340
341#if EV_USE_EVENTFD
342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343# include <stdint.h>
344# ifdef __cplusplus
345extern "C" {
346# endif
347int eventfd (unsigned int initval, int flags);
348# ifdef __cplusplus
349}
350# endif
351#endif
352
353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
360
361/*
362 * This is used to avoid floating point rounding problems.
363 * It is added to ev_rt_now when scheduling periodics
364 * to ensure progress, time-wise, even when rounding
365 * errors are against us.
366 * This value is good at least till the year 4000.
367 * Better solutions welcome.
368 */
369#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
63 370
64#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 371#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
65#define MAX_BLOCKTIME 60. 372#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
66#define PID_HASHSIZE 16 /* size of pid hahs table, must be power of two */ 373/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
67 374
68#include "ev.h" 375#if __GNUC__ >= 4
376# define expect(expr,value) __builtin_expect ((expr),(value))
377# define noinline __attribute__ ((noinline))
378#else
379# define expect(expr,value) (expr)
380# define noinline
381# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
382# define inline
383# endif
384#endif
69 385
386#define expect_false(expr) expect ((expr) != 0, 0)
387#define expect_true(expr) expect ((expr) != 0, 1)
388#define inline_size static inline
389
390#if EV_MINIMAL
391# define inline_speed static noinline
392#else
393# define inline_speed static inline
394#endif
395
396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
398
399#define EMPTY /* required for microsofts broken pseudo-c compiler */
400#define EMPTY2(a,b) /* used to suppress some warnings */
401
70typedef struct ev_watcher *W; 402typedef ev_watcher *W;
71typedef struct ev_watcher_list *WL; 403typedef ev_watcher_list *WL;
72typedef struct ev_watcher_time *WT; 404typedef ev_watcher_time *WT;
73 405
74static ev_tstamp now, diff; /* monotonic clock */ 406#define ev_active(w) ((W)(w))->active
75ev_tstamp ev_now; 407#define ev_at(w) ((WT)(w))->at
76int ev_method;
77 408
78static int have_monotonic; /* runtime */ 409#if EV_USE_REALTIME
410/* sig_atomic_t is used to avoid per-thread variables or locking but still */
411/* giving it a reasonably high chance of working on typical architetcures */
412static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
413#endif
79 414
80static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 415#if EV_USE_MONOTONIC
81static void (*method_modify)(int fd, int oev, int nev); 416static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
82static void (*method_poll)(ev_tstamp timeout); 417#endif
418
419#ifdef _WIN32
420# include "ev_win32.c"
421#endif
83 422
84/*****************************************************************************/ 423/*****************************************************************************/
85 424
425static void (*syserr_cb)(const char *msg);
426
427void
428ev_set_syserr_cb (void (*cb)(const char *msg))
429{
430 syserr_cb = cb;
431}
432
433static void noinline
434ev_syserr (const char *msg)
435{
436 if (!msg)
437 msg = "(libev) system error";
438
439 if (syserr_cb)
440 syserr_cb (msg);
441 else
442 {
443 perror (msg);
444 abort ();
445 }
446}
447
448static void *
449ev_realloc_emul (void *ptr, long size)
450{
451 /* some systems, notably openbsd and darwin, fail to properly
452 * implement realloc (x, 0) (as required by both ansi c-98 and
453 * the single unix specification, so work around them here.
454 */
455
456 if (size)
457 return realloc (ptr, size);
458
459 free (ptr);
460 return 0;
461}
462
463static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
464
465void
466ev_set_allocator (void *(*cb)(void *ptr, long size))
467{
468 alloc = cb;
469}
470
471inline_speed void *
472ev_realloc (void *ptr, long size)
473{
474 ptr = alloc (ptr, size);
475
476 if (!ptr && size)
477 {
478 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
479 abort ();
480 }
481
482 return ptr;
483}
484
485#define ev_malloc(size) ev_realloc (0, (size))
486#define ev_free(ptr) ev_realloc ((ptr), 0)
487
488/*****************************************************************************/
489
490/* file descriptor info structure */
491typedef struct
492{
493 WL head;
494 unsigned char events; /* the events watched for */
495 unsigned char reify; /* flag set when this ANFD needs reification */
496 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
497 unsigned char unused;
498#if EV_USE_EPOLL
499 unsigned int egen; /* generation counter to counter epoll bugs */
500#endif
501#if EV_SELECT_IS_WINSOCKET
502 SOCKET handle;
503#endif
504} ANFD;
505
506/* stores the pending event set for a given watcher */
507typedef struct
508{
509 W w;
510 int events; /* the pending event set for the given watcher */
511} ANPENDING;
512
513#if EV_USE_INOTIFY
514/* hash table entry per inotify-id */
515typedef struct
516{
517 WL head;
518} ANFS;
519#endif
520
521/* Heap Entry */
522#if EV_HEAP_CACHE_AT
523 /* a heap element */
524 typedef struct {
525 ev_tstamp at;
526 WT w;
527 } ANHE;
528
529 #define ANHE_w(he) (he).w /* access watcher, read-write */
530 #define ANHE_at(he) (he).at /* access cached at, read-only */
531 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
532#else
533 /* a heap element */
534 typedef WT ANHE;
535
536 #define ANHE_w(he) (he)
537 #define ANHE_at(he) (he)->at
538 #define ANHE_at_cache(he)
539#endif
540
541#if EV_MULTIPLICITY
542
543 struct ev_loop
544 {
545 ev_tstamp ev_rt_now;
546 #define ev_rt_now ((loop)->ev_rt_now)
547 #define VAR(name,decl) decl;
548 #include "ev_vars.h"
549 #undef VAR
550 };
551 #include "ev_wrap.h"
552
553 static struct ev_loop default_loop_struct;
554 struct ev_loop *ev_default_loop_ptr;
555
556#else
557
558 ev_tstamp ev_rt_now;
559 #define VAR(name,decl) static decl;
560 #include "ev_vars.h"
561 #undef VAR
562
563 static int ev_default_loop_ptr;
564
565#endif
566
567/*****************************************************************************/
568
569#ifndef EV_HAVE_EV_TIME
86ev_tstamp 570ev_tstamp
87ev_time (void) 571ev_time (void)
88{ 572{
89#if HAVE_REALTIME 573#if EV_USE_REALTIME
574 if (expect_true (have_realtime))
575 {
90 struct timespec ts; 576 struct timespec ts;
91 clock_gettime (CLOCK_REALTIME, &ts); 577 clock_gettime (CLOCK_REALTIME, &ts);
92 return ts.tv_sec + ts.tv_nsec * 1e-9; 578 return ts.tv_sec + ts.tv_nsec * 1e-9;
93#else 579 }
580#endif
581
94 struct timeval tv; 582 struct timeval tv;
95 gettimeofday (&tv, 0); 583 gettimeofday (&tv, 0);
96 return tv.tv_sec + tv.tv_usec * 1e-6; 584 return tv.tv_sec + tv.tv_usec * 1e-6;
97#endif
98} 585}
586#endif
99 587
100static ev_tstamp 588inline_size ev_tstamp
101get_clock (void) 589get_clock (void)
102{ 590{
103#if HAVE_MONOTONIC 591#if EV_USE_MONOTONIC
104 if (have_monotonic) 592 if (expect_true (have_monotonic))
105 { 593 {
106 struct timespec ts; 594 struct timespec ts;
107 clock_gettime (CLOCK_MONOTONIC, &ts); 595 clock_gettime (CLOCK_MONOTONIC, &ts);
108 return ts.tv_sec + ts.tv_nsec * 1e-9; 596 return ts.tv_sec + ts.tv_nsec * 1e-9;
109 } 597 }
110#endif 598#endif
111 599
112 return ev_time (); 600 return ev_time ();
113} 601}
114 602
115#define array_needsize(base,cur,cnt,init) \ 603#if EV_MULTIPLICITY
116 if ((cnt) > cur) \ 604ev_tstamp
117 { \ 605ev_now (EV_P)
118 int newcnt = cur; \ 606{
119 do \ 607 return ev_rt_now;
120 { \ 608}
121 newcnt = (newcnt << 1) | 4 & ~3; \ 609#endif
122 } \ 610
123 while ((cnt) > newcnt); \ 611void
124 \ 612ev_sleep (ev_tstamp delay)
125 base = realloc (base, sizeof (*base) * (newcnt)); \ 613{
126 init (base + cur, newcnt - cur); \ 614 if (delay > 0.)
127 cur = newcnt; \
128 } 615 {
616#if EV_USE_NANOSLEEP
617 struct timespec ts;
618
619 ts.tv_sec = (time_t)delay;
620 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
621
622 nanosleep (&ts, 0);
623#elif defined(_WIN32)
624 Sleep ((unsigned long)(delay * 1e3));
625#else
626 struct timeval tv;
627
628 tv.tv_sec = (time_t)delay;
629 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
630
631 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
632 /* somehting not guaranteed by newer posix versions, but guaranteed */
633 /* by older ones */
634 select (0, 0, 0, 0, &tv);
635#endif
636 }
637}
129 638
130/*****************************************************************************/ 639/*****************************************************************************/
131 640
132typedef struct 641#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
133{
134 struct ev_io *head;
135 int events;
136} ANFD;
137 642
138static ANFD *anfds; 643/* find a suitable new size for the given array, */
139static int anfdmax; 644/* hopefully by rounding to a ncie-to-malloc size */
140 645inline_size int
141static void 646array_nextsize (int elem, int cur, int cnt)
142anfds_init (ANFD *base, int count)
143{ 647{
144 while (count--) 648 int ncur = cur + 1;
145 { 649
146 base->head = 0; 650 do
147 base->events = EV_NONE; 651 ncur <<= 1;
148 ++base; 652 while (cnt > ncur);
653
654 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
655 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
149 } 656 {
150} 657 ncur *= elem;
151 658 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
152typedef struct 659 ncur = ncur - sizeof (void *) * 4;
153{ 660 ncur /= elem;
154 W w;
155 int events;
156} ANPENDING;
157
158static ANPENDING *pendings;
159static int pendingmax, pendingcnt;
160
161static void
162event (W w, int events)
163{
164 if (w->active)
165 { 661 }
662
663 return ncur;
664}
665
666static noinline void *
667array_realloc (int elem, void *base, int *cur, int cnt)
668{
669 *cur = array_nextsize (elem, *cur, cnt);
670 return ev_realloc (base, elem * *cur);
671}
672
673#define array_init_zero(base,count) \
674 memset ((void *)(base), 0, sizeof (*(base)) * (count))
675
676#define array_needsize(type,base,cur,cnt,init) \
677 if (expect_false ((cnt) > (cur))) \
678 { \
679 int ocur_ = (cur); \
680 (base) = (type *)array_realloc \
681 (sizeof (type), (base), &(cur), (cnt)); \
682 init ((base) + (ocur_), (cur) - ocur_); \
683 }
684
685#if 0
686#define array_slim(type,stem) \
687 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
688 { \
689 stem ## max = array_roundsize (stem ## cnt >> 1); \
690 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
691 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
692 }
693#endif
694
695#define array_free(stem, idx) \
696 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
697
698/*****************************************************************************/
699
700/* dummy callback for pending events */
701static void noinline
702pendingcb (EV_P_ ev_prepare *w, int revents)
703{
704}
705
706void noinline
707ev_feed_event (EV_P_ void *w, int revents)
708{
709 W w_ = (W)w;
710 int pri = ABSPRI (w_);
711
712 if (expect_false (w_->pending))
713 pendings [pri][w_->pending - 1].events |= revents;
714 else
715 {
166 w->pending = ++pendingcnt; 716 w_->pending = ++pendingcnt [pri];
167 array_needsize (pendings, pendingmax, pendingcnt, ); 717 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
168 pendings [pendingcnt - 1].w = w; 718 pendings [pri][w_->pending - 1].w = w_;
169 pendings [pendingcnt - 1].events = events; 719 pendings [pri][w_->pending - 1].events = revents;
170 } 720 }
171} 721}
172 722
173static void 723inline_speed void
724feed_reverse (EV_P_ W w)
725{
726 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
727 rfeeds [rfeedcnt++] = w;
728}
729
730inline_size void
731feed_reverse_done (EV_P_ int revents)
732{
733 do
734 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
735 while (rfeedcnt);
736}
737
738inline_speed void
174queue_events (W *events, int eventcnt, int type) 739queue_events (EV_P_ W *events, int eventcnt, int type)
175{ 740{
176 int i; 741 int i;
177 742
178 for (i = 0; i < eventcnt; ++i) 743 for (i = 0; i < eventcnt; ++i)
179 event (events [i], type); 744 ev_feed_event (EV_A_ events [i], type);
180} 745}
181 746
182static void 747/*****************************************************************************/
748
749inline_speed void
183fd_event (int fd, int events) 750fd_event (EV_P_ int fd, int revents)
184{ 751{
185 ANFD *anfd = anfds + fd; 752 ANFD *anfd = anfds + fd;
186 struct ev_io *w; 753 ev_io *w;
187 754
188 for (w = anfd->head; w; w = w->next) 755 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
189 { 756 {
190 int ev = w->events & events; 757 int ev = w->events & revents;
191 758
192 if (ev) 759 if (ev)
193 event ((W)w, ev); 760 ev_feed_event (EV_A_ (W)w, ev);
194 } 761 }
195} 762}
196 763
197/*****************************************************************************/ 764void
765ev_feed_fd_event (EV_P_ int fd, int revents)
766{
767 if (fd >= 0 && fd < anfdmax)
768 fd_event (EV_A_ fd, revents);
769}
198 770
199static int *fdchanges; 771/* make sure the external fd watch events are in-sync */
200static int fdchangemax, fdchangecnt; 772/* with the kernel/libev internal state */
201 773inline_size void
202static void 774fd_reify (EV_P)
203fd_reify (void)
204{ 775{
205 int i; 776 int i;
206 777
207 for (i = 0; i < fdchangecnt; ++i) 778 for (i = 0; i < fdchangecnt; ++i)
208 { 779 {
209 int fd = fdchanges [i]; 780 int fd = fdchanges [i];
210 ANFD *anfd = anfds + fd; 781 ANFD *anfd = anfds + fd;
211 struct ev_io *w; 782 ev_io *w;
212 783
213 int events = 0; 784 unsigned char events = 0;
214 785
215 for (w = anfd->head; w; w = w->next) 786 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
216 events |= w->events; 787 events |= (unsigned char)w->events;
217 788
218 anfd->events &= ~EV_REIFY; 789#if EV_SELECT_IS_WINSOCKET
219 790 if (events)
220 if (anfd->events != events)
221 { 791 {
222 method_modify (fd, anfd->events, events); 792 unsigned long arg;
223 anfd->events = events; 793 #ifdef EV_FD_TO_WIN32_HANDLE
794 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
795 #else
796 anfd->handle = _get_osfhandle (fd);
797 #endif
798 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
224 } 799 }
800#endif
801
802 {
803 unsigned char o_events = anfd->events;
804 unsigned char o_reify = anfd->reify;
805
806 anfd->reify = 0;
807 anfd->events = events;
808
809 if (o_events != events || o_reify & EV__IOFDSET)
810 backend_modify (EV_A_ fd, o_events, events);
811 }
225 } 812 }
226 813
227 fdchangecnt = 0; 814 fdchangecnt = 0;
228} 815}
229 816
230static void 817/* something about the given fd changed */
231fd_change (int fd) 818inline_size void
819fd_change (EV_P_ int fd, int flags)
232{ 820{
233 if (anfds [fd].events & EV_REIFY) 821 unsigned char reify = anfds [fd].reify;
234 return; 822 anfds [fd].reify |= flags;
235 823
236 anfds [fd].events |= EV_REIFY; 824 if (expect_true (!reify))
237 825 {
238 ++fdchangecnt; 826 ++fdchangecnt;
239 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 827 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
240 fdchanges [fdchangecnt - 1] = fd; 828 fdchanges [fdchangecnt - 1] = fd;
829 }
830}
831
832/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
833inline_speed void
834fd_kill (EV_P_ int fd)
835{
836 ev_io *w;
837
838 while ((w = (ev_io *)anfds [fd].head))
839 {
840 ev_io_stop (EV_A_ w);
841 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
842 }
843}
844
845/* check whether the given fd is atcually valid, for error recovery */
846inline_size int
847fd_valid (int fd)
848{
849#ifdef _WIN32
850 return _get_osfhandle (fd) != -1;
851#else
852 return fcntl (fd, F_GETFD) != -1;
853#endif
241} 854}
242 855
243/* called on EBADF to verify fds */ 856/* called on EBADF to verify fds */
244static void 857static void noinline
245fd_recheck (void) 858fd_ebadf (EV_P)
246{ 859{
247 int fd; 860 int fd;
248 861
249 for (fd = 0; fd < anfdmax; ++fd) 862 for (fd = 0; fd < anfdmax; ++fd)
250 if (anfds [fd].events) 863 if (anfds [fd].events)
251 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 864 if (!fd_valid (fd) && errno == EBADF)
252 while (anfds [fd].head) 865 fd_kill (EV_A_ fd);
866}
867
868/* called on ENOMEM in select/poll to kill some fds and retry */
869static void noinline
870fd_enomem (EV_P)
871{
872 int fd;
873
874 for (fd = anfdmax; fd--; )
875 if (anfds [fd].events)
253 { 876 {
254 event ((W)anfds [fd].head, EV_ERROR); 877 fd_kill (EV_A_ fd);
255 ev_io_stop (anfds [fd].head); 878 return;
256 } 879 }
880}
881
882/* usually called after fork if backend needs to re-arm all fds from scratch */
883static void noinline
884fd_rearm_all (EV_P)
885{
886 int fd;
887
888 for (fd = 0; fd < anfdmax; ++fd)
889 if (anfds [fd].events)
890 {
891 anfds [fd].events = 0;
892 anfds [fd].emask = 0;
893 fd_change (EV_A_ fd, EV__IOFDSET | 1);
894 }
257} 895}
258 896
259/*****************************************************************************/ 897/*****************************************************************************/
260 898
261static struct ev_timer **timers; 899/*
262static int timermax, timercnt; 900 * the heap functions want a real array index. array index 0 uis guaranteed to not
901 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
902 * the branching factor of the d-tree.
903 */
263 904
264static struct ev_periodic **periodics; 905/*
265static int periodicmax, periodiccnt; 906 * at the moment we allow libev the luxury of two heaps,
907 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
908 * which is more cache-efficient.
909 * the difference is about 5% with 50000+ watchers.
910 */
911#if EV_USE_4HEAP
266 912
267static void 913#define DHEAP 4
268upheap (WT *timers, int k) 914#define HEAP0 (DHEAP - 1) /* index of first element in heap */
269{ 915#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
270 WT w = timers [k]; 916#define UPHEAP_DONE(p,k) ((p) == (k))
271 917
272 while (k && timers [k >> 1]->at > w->at) 918/* away from the root */
273 { 919inline_speed void
274 timers [k] = timers [k >> 1];
275 timers [k]->active = k + 1;
276 k >>= 1;
277 }
278
279 timers [k] = w;
280 timers [k]->active = k + 1;
281
282}
283
284static void
285downheap (WT *timers, int N, int k) 920downheap (ANHE *heap, int N, int k)
286{ 921{
287 WT w = timers [k]; 922 ANHE he = heap [k];
923 ANHE *E = heap + N + HEAP0;
288 924
289 while (k < (N >> 1)) 925 for (;;)
290 { 926 {
291 int j = k << 1; 927 ev_tstamp minat;
928 ANHE *minpos;
929 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
292 930
293 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 931 /* find minimum child */
932 if (expect_true (pos + DHEAP - 1 < E))
294 ++j; 933 {
295 934 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
296 if (w->at <= timers [j]->at) 935 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
936 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
937 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
938 }
939 else if (pos < E)
940 {
941 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
942 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
943 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
944 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
945 }
946 else
297 break; 947 break;
298 948
299 timers [k] = timers [j]; 949 if (ANHE_at (he) <= minat)
300 timers [k]->active = k + 1; 950 break;
951
952 heap [k] = *minpos;
953 ev_active (ANHE_w (*minpos)) = k;
954
955 k = minpos - heap;
956 }
957
958 heap [k] = he;
959 ev_active (ANHE_w (he)) = k;
960}
961
962#else /* 4HEAP */
963
964#define HEAP0 1
965#define HPARENT(k) ((k) >> 1)
966#define UPHEAP_DONE(p,k) (!(p))
967
968/* away from the root */
969inline_speed void
970downheap (ANHE *heap, int N, int k)
971{
972 ANHE he = heap [k];
973
974 for (;;)
975 {
976 int c = k << 1;
977
978 if (c > N + HEAP0 - 1)
979 break;
980
981 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
982 ? 1 : 0;
983
984 if (ANHE_at (he) <= ANHE_at (heap [c]))
985 break;
986
987 heap [k] = heap [c];
988 ev_active (ANHE_w (heap [k])) = k;
989
301 k = j; 990 k = c;
991 }
992
993 heap [k] = he;
994 ev_active (ANHE_w (he)) = k;
995}
996#endif
997
998/* towards the root */
999inline_speed void
1000upheap (ANHE *heap, int k)
1001{
1002 ANHE he = heap [k];
1003
1004 for (;;)
302 } 1005 {
1006 int p = HPARENT (k);
303 1007
304 timers [k] = w; 1008 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
305 timers [k]->active = k + 1; 1009 break;
1010
1011 heap [k] = heap [p];
1012 ev_active (ANHE_w (heap [k])) = k;
1013 k = p;
1014 }
1015
1016 heap [k] = he;
1017 ev_active (ANHE_w (he)) = k;
1018}
1019
1020/* move an element suitably so it is in a correct place */
1021inline_size void
1022adjustheap (ANHE *heap, int N, int k)
1023{
1024 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
1025 upheap (heap, k);
1026 else
1027 downheap (heap, N, k);
1028}
1029
1030/* rebuild the heap: this function is used only once and executed rarely */
1031inline_size void
1032reheap (ANHE *heap, int N)
1033{
1034 int i;
1035
1036 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1037 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1038 for (i = 0; i < N; ++i)
1039 upheap (heap, i + HEAP0);
306} 1040}
307 1041
308/*****************************************************************************/ 1042/*****************************************************************************/
309 1043
1044/* associate signal watchers to a signal signal */
310typedef struct 1045typedef struct
311{ 1046{
312 struct ev_signal *head; 1047 WL head;
313 sig_atomic_t gotsig; 1048 EV_ATOMIC_T gotsig;
314} ANSIG; 1049} ANSIG;
315 1050
316static ANSIG *signals; 1051static ANSIG *signals;
317static int signalmax; 1052static int signalmax;
318 1053
319static int sigpipe [2]; 1054static EV_ATOMIC_T gotsig;
320static sig_atomic_t gotsig;
321static struct ev_io sigev;
322 1055
1056/*****************************************************************************/
1057
1058/* used to prepare libev internal fd's */
1059/* this is not fork-safe */
1060inline_speed void
1061fd_intern (int fd)
1062{
1063#ifdef _WIN32
1064 unsigned long arg = 1;
1065 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1066#else
1067 fcntl (fd, F_SETFD, FD_CLOEXEC);
1068 fcntl (fd, F_SETFL, O_NONBLOCK);
1069#endif
1070}
1071
1072static void noinline
1073evpipe_init (EV_P)
1074{
1075 if (!ev_is_active (&pipe_w))
1076 {
1077#if EV_USE_EVENTFD
1078 if ((evfd = eventfd (0, 0)) >= 0)
1079 {
1080 evpipe [0] = -1;
1081 fd_intern (evfd);
1082 ev_io_set (&pipe_w, evfd, EV_READ);
1083 }
1084 else
1085#endif
1086 {
1087 while (pipe (evpipe))
1088 ev_syserr ("(libev) error creating signal/async pipe");
1089
1090 fd_intern (evpipe [0]);
1091 fd_intern (evpipe [1]);
1092 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1093 }
1094
1095 ev_io_start (EV_A_ &pipe_w);
1096 ev_unref (EV_A); /* watcher should not keep loop alive */
1097 }
1098}
1099
1100inline_size void
1101evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1102{
1103 if (!*flag)
1104 {
1105 int old_errno = errno; /* save errno because write might clobber it */
1106
1107 *flag = 1;
1108
1109#if EV_USE_EVENTFD
1110 if (evfd >= 0)
1111 {
1112 uint64_t counter = 1;
1113 write (evfd, &counter, sizeof (uint64_t));
1114 }
1115 else
1116#endif
1117 write (evpipe [1], &old_errno, 1);
1118
1119 errno = old_errno;
1120 }
1121}
1122
1123/* called whenever the libev signal pipe */
1124/* got some events (signal, async) */
323static void 1125static void
324signals_init (ANSIG *base, int count) 1126pipecb (EV_P_ ev_io *iow, int revents)
325{ 1127{
326 while (count--) 1128#if EV_USE_EVENTFD
1129 if (evfd >= 0)
1130 {
1131 uint64_t counter;
1132 read (evfd, &counter, sizeof (uint64_t));
327 { 1133 }
328 base->head = 0; 1134 else
1135#endif
1136 {
1137 char dummy;
1138 read (evpipe [0], &dummy, 1);
1139 }
1140
1141 if (gotsig && ev_is_default_loop (EV_A))
1142 {
1143 int signum;
329 base->gotsig = 0; 1144 gotsig = 0;
330 ++base; 1145
1146 for (signum = signalmax; signum--; )
1147 if (signals [signum].gotsig)
1148 ev_feed_signal_event (EV_A_ signum + 1);
1149 }
1150
1151#if EV_ASYNC_ENABLE
1152 if (gotasync)
331 } 1153 {
1154 int i;
1155 gotasync = 0;
1156
1157 for (i = asynccnt; i--; )
1158 if (asyncs [i]->sent)
1159 {
1160 asyncs [i]->sent = 0;
1161 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1162 }
1163 }
1164#endif
332} 1165}
1166
1167/*****************************************************************************/
333 1168
334static void 1169static void
335sighandler (int signum) 1170ev_sighandler (int signum)
336{ 1171{
1172#if EV_MULTIPLICITY
1173 struct ev_loop *loop = &default_loop_struct;
1174#endif
1175
1176#if _WIN32
1177 signal (signum, ev_sighandler);
1178#endif
1179
337 signals [signum - 1].gotsig = 1; 1180 signals [signum - 1].gotsig = 1;
338 1181 evpipe_write (EV_A_ &gotsig);
339 if (!gotsig)
340 {
341 gotsig = 1;
342 write (sigpipe [1], &gotsig, 1);
343 }
344} 1182}
345 1183
346static void 1184void noinline
347sigcb (struct ev_io *iow, int revents) 1185ev_feed_signal_event (EV_P_ int signum)
348{ 1186{
349 struct ev_signal *w; 1187 WL w;
350 int sig;
351 1188
352 gotsig = 0; 1189#if EV_MULTIPLICITY
353 read (sigpipe [0], &revents, 1); 1190 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1191#endif
354 1192
355 for (sig = signalmax; sig--; ) 1193 --signum;
356 if (signals [sig].gotsig) 1194
357 { 1195 if (signum < 0 || signum >= signalmax)
1196 return;
1197
358 signals [sig].gotsig = 0; 1198 signals [signum].gotsig = 0;
359 1199
360 for (w = signals [sig].head; w; w = w->next) 1200 for (w = signals [signum].head; w; w = w->next)
361 event ((W)w, EV_SIGNAL); 1201 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
362 }
363}
364
365static void
366siginit (void)
367{
368 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
369 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
370
371 /* rather than sort out wether we really need nb, set it */
372 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
373 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
374
375 ev_io_set (&sigev, sigpipe [0], EV_READ);
376 ev_io_start (&sigev);
377} 1202}
378 1203
379/*****************************************************************************/ 1204/*****************************************************************************/
380 1205
381static struct ev_idle **idles; 1206static WL childs [EV_PID_HASHSIZE];
382static int idlemax, idlecnt;
383 1207
384static struct ev_prepare **prepares; 1208#ifndef _WIN32
385static int preparemax, preparecnt;
386 1209
387static struct ev_check **checks;
388static int checkmax, checkcnt;
389
390/*****************************************************************************/
391
392static struct ev_child *childs [PID_HASHSIZE];
393static struct ev_signal childev; 1210static ev_signal childev;
1211
1212#ifndef WIFCONTINUED
1213# define WIFCONTINUED(status) 0
1214#endif
1215
1216/* handle a single child status event */
1217inline_speed void
1218child_reap (EV_P_ int chain, int pid, int status)
1219{
1220 ev_child *w;
1221 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1222
1223 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1224 {
1225 if ((w->pid == pid || !w->pid)
1226 && (!traced || (w->flags & 1)))
1227 {
1228 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1229 w->rpid = pid;
1230 w->rstatus = status;
1231 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1232 }
1233 }
1234}
394 1235
395#ifndef WCONTINUED 1236#ifndef WCONTINUED
396# define WCONTINUED 0 1237# define WCONTINUED 0
397#endif 1238#endif
398 1239
1240/* called on sigchld etc., calls waitpid */
399static void 1241static void
400childcb (struct ev_signal *sw, int revents) 1242childcb (EV_P_ ev_signal *sw, int revents)
401{ 1243{
402 struct ev_child *w;
403 int pid, status; 1244 int pid, status;
404 1245
1246 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
405 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 1247 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
406 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 1248 if (!WCONTINUED
407 if (w->pid == pid || w->pid == -1) 1249 || errno != EINVAL
408 { 1250 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
409 w->status = status; 1251 return;
410 event ((W)w, EV_CHILD); 1252
411 } 1253 /* make sure we are called again until all children have been reaped */
1254 /* we need to do it this way so that the callback gets called before we continue */
1255 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1256
1257 child_reap (EV_A_ pid, pid, status);
1258 if (EV_PID_HASHSIZE > 1)
1259 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
412} 1260}
1261
1262#endif
413 1263
414/*****************************************************************************/ 1264/*****************************************************************************/
415 1265
1266#if EV_USE_PORT
1267# include "ev_port.c"
1268#endif
1269#if EV_USE_KQUEUE
1270# include "ev_kqueue.c"
1271#endif
416#if HAVE_EPOLL 1272#if EV_USE_EPOLL
417# include "ev_epoll.c" 1273# include "ev_epoll.c"
418#endif 1274#endif
1275#if EV_USE_POLL
1276# include "ev_poll.c"
1277#endif
419#if HAVE_SELECT 1278#if EV_USE_SELECT
420# include "ev_select.c" 1279# include "ev_select.c"
421#endif 1280#endif
422 1281
423int 1282int
424ev_version_major (void) 1283ev_version_major (void)
430ev_version_minor (void) 1289ev_version_minor (void)
431{ 1290{
432 return EV_VERSION_MINOR; 1291 return EV_VERSION_MINOR;
433} 1292}
434 1293
435int ev_init (int flags) 1294/* return true if we are running with elevated privileges and should ignore env variables */
1295int inline_size
1296enable_secure (void)
436{ 1297{
437 if (!ev_method) 1298#ifdef _WIN32
1299 return 0;
1300#else
1301 return getuid () != geteuid ()
1302 || getgid () != getegid ();
1303#endif
1304}
1305
1306unsigned int
1307ev_supported_backends (void)
1308{
1309 unsigned int flags = 0;
1310
1311 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1312 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1313 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1314 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1315 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1316
1317 return flags;
1318}
1319
1320unsigned int
1321ev_recommended_backends (void)
1322{
1323 unsigned int flags = ev_supported_backends ();
1324
1325#ifndef __NetBSD__
1326 /* kqueue is borked on everything but netbsd apparently */
1327 /* it usually doesn't work correctly on anything but sockets and pipes */
1328 flags &= ~EVBACKEND_KQUEUE;
1329#endif
1330#ifdef __APPLE__
1331 /* only select works correctly on that "unix-certified" platform */
1332 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1333 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1334#endif
1335
1336 return flags;
1337}
1338
1339unsigned int
1340ev_embeddable_backends (void)
1341{
1342 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1343
1344 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1345 /* please fix it and tell me how to detect the fix */
1346 flags &= ~EVBACKEND_EPOLL;
1347
1348 return flags;
1349}
1350
1351unsigned int
1352ev_backend (EV_P)
1353{
1354 return backend;
1355}
1356
1357unsigned int
1358ev_loop_count (EV_P)
1359{
1360 return loop_count;
1361}
1362
1363unsigned int
1364ev_loop_depth (EV_P)
1365{
1366 return loop_depth;
1367}
1368
1369void
1370ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1371{
1372 io_blocktime = interval;
1373}
1374
1375void
1376ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1377{
1378 timeout_blocktime = interval;
1379}
1380
1381/* initialise a loop structure, must be zero-initialised */
1382static void noinline
1383loop_init (EV_P_ unsigned int flags)
1384{
1385 if (!backend)
438 { 1386 {
1387#if EV_USE_REALTIME
1388 if (!have_realtime)
1389 {
1390 struct timespec ts;
1391
1392 if (!clock_gettime (CLOCK_REALTIME, &ts))
1393 have_realtime = 1;
1394 }
1395#endif
1396
439#if HAVE_MONOTONIC 1397#if EV_USE_MONOTONIC
1398 if (!have_monotonic)
1399 {
1400 struct timespec ts;
1401
1402 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1403 have_monotonic = 1;
1404 }
1405#endif
1406
1407 ev_rt_now = ev_time ();
1408 mn_now = get_clock ();
1409 now_floor = mn_now;
1410 rtmn_diff = ev_rt_now - mn_now;
1411
1412 io_blocktime = 0.;
1413 timeout_blocktime = 0.;
1414 backend = 0;
1415 backend_fd = -1;
1416 gotasync = 0;
1417#if EV_USE_INOTIFY
1418 fs_fd = -2;
1419#endif
1420
1421 /* pid check not overridable via env */
1422#ifndef _WIN32
1423 if (flags & EVFLAG_FORKCHECK)
1424 curpid = getpid ();
1425#endif
1426
1427 if (!(flags & EVFLAG_NOENV)
1428 && !enable_secure ()
1429 && getenv ("LIBEV_FLAGS"))
1430 flags = atoi (getenv ("LIBEV_FLAGS"));
1431
1432 if (!(flags & 0x0000ffffU))
1433 flags |= ev_recommended_backends ();
1434
1435#if EV_USE_PORT
1436 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1437#endif
1438#if EV_USE_KQUEUE
1439 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1440#endif
1441#if EV_USE_EPOLL
1442 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1443#endif
1444#if EV_USE_POLL
1445 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1446#endif
1447#if EV_USE_SELECT
1448 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1449#endif
1450
1451 ev_prepare_init (&pending_w, pendingcb);
1452
1453 ev_init (&pipe_w, pipecb);
1454 ev_set_priority (&pipe_w, EV_MAXPRI);
1455 }
1456}
1457
1458/* free up a loop structure */
1459static void noinline
1460loop_destroy (EV_P)
1461{
1462 int i;
1463
1464 if (ev_is_active (&pipe_w))
1465 {
1466 ev_ref (EV_A); /* signal watcher */
1467 ev_io_stop (EV_A_ &pipe_w);
1468
1469#if EV_USE_EVENTFD
1470 if (evfd >= 0)
1471 close (evfd);
1472#endif
1473
1474 if (evpipe [0] >= 0)
1475 {
1476 close (evpipe [0]);
1477 close (evpipe [1]);
1478 }
1479 }
1480
1481#if EV_USE_INOTIFY
1482 if (fs_fd >= 0)
1483 close (fs_fd);
1484#endif
1485
1486 if (backend_fd >= 0)
1487 close (backend_fd);
1488
1489#if EV_USE_PORT
1490 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1491#endif
1492#if EV_USE_KQUEUE
1493 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1494#endif
1495#if EV_USE_EPOLL
1496 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1497#endif
1498#if EV_USE_POLL
1499 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1500#endif
1501#if EV_USE_SELECT
1502 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1503#endif
1504
1505 for (i = NUMPRI; i--; )
1506 {
1507 array_free (pending, [i]);
1508#if EV_IDLE_ENABLE
1509 array_free (idle, [i]);
1510#endif
1511 }
1512
1513 ev_free (anfds); anfdmax = 0;
1514
1515 /* have to use the microsoft-never-gets-it-right macro */
1516 array_free (rfeed, EMPTY);
1517 array_free (fdchange, EMPTY);
1518 array_free (timer, EMPTY);
1519#if EV_PERIODIC_ENABLE
1520 array_free (periodic, EMPTY);
1521#endif
1522#if EV_FORK_ENABLE
1523 array_free (fork, EMPTY);
1524#endif
1525 array_free (prepare, EMPTY);
1526 array_free (check, EMPTY);
1527#if EV_ASYNC_ENABLE
1528 array_free (async, EMPTY);
1529#endif
1530
1531 backend = 0;
1532}
1533
1534#if EV_USE_INOTIFY
1535inline_size void infy_fork (EV_P);
1536#endif
1537
1538inline_size void
1539loop_fork (EV_P)
1540{
1541#if EV_USE_PORT
1542 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1543#endif
1544#if EV_USE_KQUEUE
1545 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1546#endif
1547#if EV_USE_EPOLL
1548 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1549#endif
1550#if EV_USE_INOTIFY
1551 infy_fork (EV_A);
1552#endif
1553
1554 if (ev_is_active (&pipe_w))
1555 {
1556 /* this "locks" the handlers against writing to the pipe */
1557 /* while we modify the fd vars */
1558 gotsig = 1;
1559#if EV_ASYNC_ENABLE
1560 gotasync = 1;
1561#endif
1562
1563 ev_ref (EV_A);
1564 ev_io_stop (EV_A_ &pipe_w);
1565
1566#if EV_USE_EVENTFD
1567 if (evfd >= 0)
1568 close (evfd);
1569#endif
1570
1571 if (evpipe [0] >= 0)
1572 {
1573 close (evpipe [0]);
1574 close (evpipe [1]);
1575 }
1576
1577 evpipe_init (EV_A);
1578 /* now iterate over everything, in case we missed something */
1579 pipecb (EV_A_ &pipe_w, EV_READ);
1580 }
1581
1582 postfork = 0;
1583}
1584
1585#if EV_MULTIPLICITY
1586
1587struct ev_loop *
1588ev_loop_new (unsigned int flags)
1589{
1590 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1591
1592 memset (loop, 0, sizeof (struct ev_loop));
1593
1594 loop_init (EV_A_ flags);
1595
1596 if (ev_backend (EV_A))
1597 return loop;
1598
1599 return 0;
1600}
1601
1602void
1603ev_loop_destroy (EV_P)
1604{
1605 loop_destroy (EV_A);
1606 ev_free (loop);
1607}
1608
1609void
1610ev_loop_fork (EV_P)
1611{
1612 postfork = 1; /* must be in line with ev_default_fork */
1613}
1614
1615#if EV_VERIFY
1616static void noinline
1617verify_watcher (EV_P_ W w)
1618{
1619 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1620
1621 if (w->pending)
1622 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1623}
1624
1625static void noinline
1626verify_heap (EV_P_ ANHE *heap, int N)
1627{
1628 int i;
1629
1630 for (i = HEAP0; i < N + HEAP0; ++i)
1631 {
1632 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1633 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1634 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1635
1636 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1637 }
1638}
1639
1640static void noinline
1641array_verify (EV_P_ W *ws, int cnt)
1642{
1643 while (cnt--)
1644 {
1645 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1646 verify_watcher (EV_A_ ws [cnt]);
1647 }
1648}
1649#endif
1650
1651void
1652ev_loop_verify (EV_P)
1653{
1654#if EV_VERIFY
1655 int i;
1656 WL w;
1657
1658 assert (activecnt >= -1);
1659
1660 assert (fdchangemax >= fdchangecnt);
1661 for (i = 0; i < fdchangecnt; ++i)
1662 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1663
1664 assert (anfdmax >= 0);
1665 for (i = 0; i < anfdmax; ++i)
1666 for (w = anfds [i].head; w; w = w->next)
440 { 1667 {
441 struct timespec ts; 1668 verify_watcher (EV_A_ (W)w);
442 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1669 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
443 have_monotonic = 1; 1670 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
444 } 1671 }
1672
1673 assert (timermax >= timercnt);
1674 verify_heap (EV_A_ timers, timercnt);
1675
1676#if EV_PERIODIC_ENABLE
1677 assert (periodicmax >= periodiccnt);
1678 verify_heap (EV_A_ periodics, periodiccnt);
1679#endif
1680
1681 for (i = NUMPRI; i--; )
1682 {
1683 assert (pendingmax [i] >= pendingcnt [i]);
1684#if EV_IDLE_ENABLE
1685 assert (idleall >= 0);
1686 assert (idlemax [i] >= idlecnt [i]);
1687 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1688#endif
1689 }
1690
1691#if EV_FORK_ENABLE
1692 assert (forkmax >= forkcnt);
1693 array_verify (EV_A_ (W *)forks, forkcnt);
1694#endif
1695
1696#if EV_ASYNC_ENABLE
1697 assert (asyncmax >= asynccnt);
1698 array_verify (EV_A_ (W *)asyncs, asynccnt);
1699#endif
1700
1701 assert (preparemax >= preparecnt);
1702 array_verify (EV_A_ (W *)prepares, preparecnt);
1703
1704 assert (checkmax >= checkcnt);
1705 array_verify (EV_A_ (W *)checks, checkcnt);
1706
1707# if 0
1708 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1709 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
445#endif 1710# endif
446
447 ev_now = ev_time ();
448 now = get_clock ();
449 diff = ev_now - now;
450
451 if (pipe (sigpipe))
452 return 0;
453
454 ev_method = EVMETHOD_NONE;
455#if HAVE_EPOLL
456 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
457#endif 1711#endif
458#if HAVE_SELECT 1712}
459 if (ev_method == EVMETHOD_NONE) select_init (flags);
460#endif
461 1713
462 if (ev_method) 1714#endif /* multiplicity */
1715
1716#if EV_MULTIPLICITY
1717struct ev_loop *
1718ev_default_loop_init (unsigned int flags)
1719#else
1720int
1721ev_default_loop (unsigned int flags)
1722#endif
1723{
1724 if (!ev_default_loop_ptr)
1725 {
1726#if EV_MULTIPLICITY
1727 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1728#else
1729 ev_default_loop_ptr = 1;
1730#endif
1731
1732 loop_init (EV_A_ flags);
1733
1734 if (ev_backend (EV_A))
463 { 1735 {
464 ev_watcher_init (&sigev, sigcb); 1736#ifndef _WIN32
465 siginit ();
466
467 ev_signal_init (&childev, childcb, SIGCHLD); 1737 ev_signal_init (&childev, childcb, SIGCHLD);
1738 ev_set_priority (&childev, EV_MAXPRI);
468 ev_signal_start (&childev); 1739 ev_signal_start (EV_A_ &childev);
469 } 1740 ev_unref (EV_A); /* child watcher should not keep loop alive */
470 }
471
472 return ev_method;
473}
474
475/*****************************************************************************/
476
477void
478ev_prefork (void)
479{
480 /* nop */
481}
482
483void
484ev_postfork_parent (void)
485{
486 /* nop */
487}
488
489void
490ev_postfork_child (void)
491{
492#if HAVE_EPOLL
493 if (ev_method == EVMETHOD_EPOLL)
494 epoll_postfork_child ();
495#endif 1741#endif
496
497 ev_io_stop (&sigev);
498 close (sigpipe [0]);
499 close (sigpipe [1]);
500 pipe (sigpipe);
501 siginit ();
502}
503
504/*****************************************************************************/
505
506static void
507call_pending (void)
508{
509 while (pendingcnt)
510 {
511 ANPENDING *p = pendings + --pendingcnt;
512
513 if (p->w)
514 {
515 p->w->pending = 0;
516 p->w->cb (p->w, p->events);
517 }
518 }
519}
520
521static void
522timers_reify (void)
523{
524 while (timercnt && timers [0]->at <= now)
525 {
526 struct ev_timer *w = timers [0];
527
528 event ((W)w, EV_TIMEOUT);
529
530 /* first reschedule or stop timer */
531 if (w->repeat)
532 {
533 w->at = now + w->repeat;
534 assert (("timer timeout in the past, negative repeat?", w->at > now));
535 downheap ((WT *)timers, timercnt, 0);
536 } 1742 }
537 else 1743 else
538 ev_timer_stop (w); /* nonrepeating: stop timer */ 1744 ev_default_loop_ptr = 0;
539 } 1745 }
540}
541 1746
542static void 1747 return ev_default_loop_ptr;
543periodics_reify (void) 1748}
1749
1750void
1751ev_default_destroy (void)
544{ 1752{
545 while (periodiccnt && periodics [0]->at <= ev_now) 1753#if EV_MULTIPLICITY
1754 struct ev_loop *loop = ev_default_loop_ptr;
1755#endif
1756
1757 ev_default_loop_ptr = 0;
1758
1759#ifndef _WIN32
1760 ev_ref (EV_A); /* child watcher */
1761 ev_signal_stop (EV_A_ &childev);
1762#endif
1763
1764 loop_destroy (EV_A);
1765}
1766
1767void
1768ev_default_fork (void)
1769{
1770#if EV_MULTIPLICITY
1771 struct ev_loop *loop = ev_default_loop_ptr;
1772#endif
1773
1774 postfork = 1; /* must be in line with ev_loop_fork */
1775}
1776
1777/*****************************************************************************/
1778
1779void
1780ev_invoke (EV_P_ void *w, int revents)
1781{
1782 EV_CB_INVOKE ((W)w, revents);
1783}
1784
1785inline_speed void
1786call_pending (EV_P)
1787{
1788 int pri;
1789
1790 for (pri = NUMPRI; pri--; )
1791 while (pendingcnt [pri])
546 { 1792 {
547 struct ev_periodic *w = periodics [0]; 1793 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
548 1794
549 /* first reschedule or stop timer */ 1795 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
550 if (w->interval) 1796 /* ^ this is no longer true, as pending_w could be here */
1797
1798 p->w->pending = 0;
1799 EV_CB_INVOKE (p->w, p->events);
1800 EV_FREQUENT_CHECK;
1801 }
1802}
1803
1804#if EV_IDLE_ENABLE
1805/* make idle watchers pending. this handles the "call-idle */
1806/* only when higher priorities are idle" logic */
1807inline_size void
1808idle_reify (EV_P)
1809{
1810 if (expect_false (idleall))
1811 {
1812 int pri;
1813
1814 for (pri = NUMPRI; pri--; )
551 { 1815 {
552 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 1816 if (pendingcnt [pri])
553 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 1817 break;
554 downheap ((WT *)periodics, periodiccnt, 0);
555 }
556 else
557 ev_periodic_stop (w); /* nonrepeating: stop timer */
558 1818
559 event ((W)w, EV_TIMEOUT); 1819 if (idlecnt [pri])
560 }
561}
562
563static void
564periodics_reschedule (ev_tstamp diff)
565{
566 int i;
567
568 /* adjust periodics after time jump */
569 for (i = 0; i < periodiccnt; ++i)
570 {
571 struct ev_periodic *w = periodics [i];
572
573 if (w->interval)
574 {
575 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval;
576
577 if (fabs (diff) >= 1e-4)
578 { 1820 {
579 ev_periodic_stop (w); 1821 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
580 ev_periodic_start (w); 1822 break;
581
582 i = 0; /* restart loop, inefficient, but time jumps should be rare */
583 } 1823 }
584 } 1824 }
585 } 1825 }
586} 1826}
1827#endif
587 1828
588static void 1829/* make timers pending */
589time_update (void) 1830inline_size void
1831timers_reify (EV_P)
1832{
1833 EV_FREQUENT_CHECK;
1834
1835 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1836 {
1837 do
1838 {
1839 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1840
1841 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1842
1843 /* first reschedule or stop timer */
1844 if (w->repeat)
1845 {
1846 ev_at (w) += w->repeat;
1847 if (ev_at (w) < mn_now)
1848 ev_at (w) = mn_now;
1849
1850 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1851
1852 ANHE_at_cache (timers [HEAP0]);
1853 downheap (timers, timercnt, HEAP0);
1854 }
1855 else
1856 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1857
1858 EV_FREQUENT_CHECK;
1859 feed_reverse (EV_A_ (W)w);
1860 }
1861 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1862
1863 feed_reverse_done (EV_A_ EV_TIMEOUT);
1864 }
1865}
1866
1867#if EV_PERIODIC_ENABLE
1868/* make periodics pending */
1869inline_size void
1870periodics_reify (EV_P)
1871{
1872 EV_FREQUENT_CHECK;
1873
1874 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1875 {
1876 int feed_count = 0;
1877
1878 do
1879 {
1880 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1881
1882 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1883
1884 /* first reschedule or stop timer */
1885 if (w->reschedule_cb)
1886 {
1887 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1888
1889 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1890
1891 ANHE_at_cache (periodics [HEAP0]);
1892 downheap (periodics, periodiccnt, HEAP0);
1893 }
1894 else if (w->interval)
1895 {
1896 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1897 /* if next trigger time is not sufficiently in the future, put it there */
1898 /* this might happen because of floating point inexactness */
1899 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1900 {
1901 ev_at (w) += w->interval;
1902
1903 /* if interval is unreasonably low we might still have a time in the past */
1904 /* so correct this. this will make the periodic very inexact, but the user */
1905 /* has effectively asked to get triggered more often than possible */
1906 if (ev_at (w) < ev_rt_now)
1907 ev_at (w) = ev_rt_now;
1908 }
1909
1910 ANHE_at_cache (periodics [HEAP0]);
1911 downheap (periodics, periodiccnt, HEAP0);
1912 }
1913 else
1914 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1915
1916 EV_FREQUENT_CHECK;
1917 feed_reverse (EV_A_ (W)w);
1918 }
1919 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1920
1921 feed_reverse_done (EV_A_ EV_PERIODIC);
1922 }
1923}
1924
1925/* simply recalculate all periodics */
1926/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1927static void noinline
1928periodics_reschedule (EV_P)
590{ 1929{
591 int i; 1930 int i;
592 1931
593 ev_now = ev_time (); 1932 /* adjust periodics after time jump */
1933 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1934 {
1935 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
594 1936
595 if (have_monotonic) 1937 if (w->reschedule_cb)
1938 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1939 else if (w->interval)
1940 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1941
1942 ANHE_at_cache (periodics [i]);
596 { 1943 }
1944
1945 reheap (periodics, periodiccnt);
1946}
1947#endif
1948
1949/* adjust all timers by a given offset */
1950static void noinline
1951timers_reschedule (EV_P_ ev_tstamp adjust)
1952{
1953 int i;
1954
1955 for (i = 0; i < timercnt; ++i)
1956 {
1957 ANHE *he = timers + i + HEAP0;
1958 ANHE_w (*he)->at += adjust;
1959 ANHE_at_cache (*he);
1960 }
1961}
1962
1963/* fetch new monotonic and realtime times from the kernel */
1964/* also detetc if there was a timejump, and act accordingly */
1965inline_speed void
1966time_update (EV_P_ ev_tstamp max_block)
1967{
1968#if EV_USE_MONOTONIC
1969 if (expect_true (have_monotonic))
1970 {
1971 int i;
597 ev_tstamp odiff = diff; 1972 ev_tstamp odiff = rtmn_diff;
598 1973
599 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1974 mn_now = get_clock ();
1975
1976 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1977 /* interpolate in the meantime */
1978 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
600 { 1979 {
601 now = get_clock (); 1980 ev_rt_now = rtmn_diff + mn_now;
1981 return;
1982 }
1983
1984 now_floor = mn_now;
1985 ev_rt_now = ev_time ();
1986
1987 /* loop a few times, before making important decisions.
1988 * on the choice of "4": one iteration isn't enough,
1989 * in case we get preempted during the calls to
1990 * ev_time and get_clock. a second call is almost guaranteed
1991 * to succeed in that case, though. and looping a few more times
1992 * doesn't hurt either as we only do this on time-jumps or
1993 * in the unlikely event of having been preempted here.
1994 */
1995 for (i = 4; --i; )
1996 {
602 diff = ev_now - now; 1997 rtmn_diff = ev_rt_now - mn_now;
603 1998
604 if (fabs (odiff - diff) < MIN_TIMEJUMP) 1999 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
605 return; /* all is well */ 2000 return; /* all is well */
606 2001
607 ev_now = ev_time (); 2002 ev_rt_now = ev_time ();
2003 mn_now = get_clock ();
2004 now_floor = mn_now;
608 } 2005 }
609 2006
610 periodics_reschedule (diff - odiff);
611 /* no timer adjustment, as the monotonic clock doesn't jump */ 2007 /* no timer adjustment, as the monotonic clock doesn't jump */
2008 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2009# if EV_PERIODIC_ENABLE
2010 periodics_reschedule (EV_A);
2011# endif
612 } 2012 }
613 else 2013 else
2014#endif
614 { 2015 {
615 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 2016 ev_rt_now = ev_time ();
2017
2018 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
616 { 2019 {
617 periodics_reschedule (ev_now - now);
618
619 /* adjust timers. this is easy, as the offset is the same for all */ 2020 /* adjust timers. this is easy, as the offset is the same for all of them */
620 for (i = 0; i < timercnt; ++i) 2021 timers_reschedule (EV_A_ ev_rt_now - mn_now);
621 timers [i]->at += diff; 2022#if EV_PERIODIC_ENABLE
2023 periodics_reschedule (EV_A);
2024#endif
622 } 2025 }
623 2026
624 now = ev_now; 2027 mn_now = ev_rt_now;
625 } 2028 }
626} 2029}
627 2030
628int ev_loop_done; 2031void
629
630void ev_loop (int flags) 2032ev_loop (EV_P_ int flags)
631{ 2033{
632 double block; 2034 ++loop_depth;
633 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2035
2036 loop_done = EVUNLOOP_CANCEL;
2037
2038 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
634 2039
635 do 2040 do
636 { 2041 {
2042#if EV_VERIFY >= 2
2043 ev_loop_verify (EV_A);
2044#endif
2045
2046#ifndef _WIN32
2047 if (expect_false (curpid)) /* penalise the forking check even more */
2048 if (expect_false (getpid () != curpid))
2049 {
2050 curpid = getpid ();
2051 postfork = 1;
2052 }
2053#endif
2054
2055#if EV_FORK_ENABLE
2056 /* we might have forked, so queue fork handlers */
2057 if (expect_false (postfork))
2058 if (forkcnt)
2059 {
2060 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2061 call_pending (EV_A);
2062 }
2063#endif
2064
637 /* queue check watchers (and execute them) */ 2065 /* queue prepare watchers (and execute them) */
638 if (preparecnt) 2066 if (expect_false (preparecnt))
639 { 2067 {
640 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 2068 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
641 call_pending (); 2069 call_pending (EV_A);
642 } 2070 }
643 2071
2072 /* we might have forked, so reify kernel state if necessary */
2073 if (expect_false (postfork))
2074 loop_fork (EV_A);
2075
644 /* update fd-related kernel structures */ 2076 /* update fd-related kernel structures */
645 fd_reify (); 2077 fd_reify (EV_A);
646 2078
647 /* calculate blocking time */ 2079 /* calculate blocking time */
2080 {
2081 ev_tstamp waittime = 0.;
2082 ev_tstamp sleeptime = 0.;
648 2083
649 /* we only need this for !monotonic clockor timers, but as we basically 2084 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
650 always have timers, we just calculate it always */
651 ev_now = ev_time ();
652
653 if (flags & EVLOOP_NONBLOCK || idlecnt)
654 block = 0.;
655 else
656 { 2085 {
2086 /* remember old timestamp for io_blocktime calculation */
2087 ev_tstamp prev_mn_now = mn_now;
2088
2089 /* update time to cancel out callback processing overhead */
2090 time_update (EV_A_ 1e100);
2091
657 block = MAX_BLOCKTIME; 2092 waittime = MAX_BLOCKTIME;
658 2093
659 if (timercnt) 2094 if (timercnt)
660 { 2095 {
661 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 2096 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
662 if (block > to) block = to; 2097 if (waittime > to) waittime = to;
663 } 2098 }
664 2099
2100#if EV_PERIODIC_ENABLE
665 if (periodiccnt) 2101 if (periodiccnt)
666 { 2102 {
667 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 2103 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
668 if (block > to) block = to; 2104 if (waittime > to) waittime = to;
669 } 2105 }
2106#endif
670 2107
671 if (block < 0.) block = 0.; 2108 /* don't let timeouts decrease the waittime below timeout_blocktime */
2109 if (expect_false (waittime < timeout_blocktime))
2110 waittime = timeout_blocktime;
2111
2112 /* extra check because io_blocktime is commonly 0 */
2113 if (expect_false (io_blocktime))
2114 {
2115 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2116
2117 if (sleeptime > waittime - backend_fudge)
2118 sleeptime = waittime - backend_fudge;
2119
2120 if (expect_true (sleeptime > 0.))
2121 {
2122 ev_sleep (sleeptime);
2123 waittime -= sleeptime;
2124 }
2125 }
672 } 2126 }
673 2127
674 method_poll (block); 2128 ++loop_count;
2129 backend_poll (EV_A_ waittime);
675 2130
676 /* update ev_now, do magic */ 2131 /* update ev_rt_now, do magic */
677 time_update (); 2132 time_update (EV_A_ waittime + sleeptime);
2133 }
678 2134
679 /* queue pending timers and reschedule them */ 2135 /* queue pending timers and reschedule them */
680 timers_reify (); /* relative timers called last */ 2136 timers_reify (EV_A); /* relative timers called last */
2137#if EV_PERIODIC_ENABLE
681 periodics_reify (); /* absolute timers called first */ 2138 periodics_reify (EV_A); /* absolute timers called first */
2139#endif
682 2140
2141#if EV_IDLE_ENABLE
683 /* queue idle watchers unless io or timers are pending */ 2142 /* queue idle watchers unless other events are pending */
684 if (!pendingcnt) 2143 idle_reify (EV_A);
685 queue_events ((W *)idles, idlecnt, EV_IDLE); 2144#endif
686 2145
687 /* queue check watchers, to be executed first */ 2146 /* queue check watchers, to be executed first */
688 if (checkcnt) 2147 if (expect_false (checkcnt))
689 queue_events ((W *)checks, checkcnt, EV_CHECK); 2148 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
690 2149
691 call_pending (); 2150 call_pending (EV_A);
692 } 2151 }
693 while (!ev_loop_done); 2152 while (expect_true (
2153 activecnt
2154 && !loop_done
2155 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2156 ));
694 2157
695 if (ev_loop_done != 2) 2158 if (loop_done == EVUNLOOP_ONE)
2159 loop_done = EVUNLOOP_CANCEL;
2160
2161 --loop_depth;
2162}
2163
2164void
2165ev_unloop (EV_P_ int how)
2166{
696 ev_loop_done = 0; 2167 loop_done = how;
2168}
2169
2170void
2171ev_ref (EV_P)
2172{
2173 ++activecnt;
2174}
2175
2176void
2177ev_unref (EV_P)
2178{
2179 --activecnt;
2180}
2181
2182void
2183ev_now_update (EV_P)
2184{
2185 time_update (EV_A_ 1e100);
2186}
2187
2188void
2189ev_suspend (EV_P)
2190{
2191 ev_now_update (EV_A);
2192}
2193
2194void
2195ev_resume (EV_P)
2196{
2197 ev_tstamp mn_prev = mn_now;
2198
2199 ev_now_update (EV_A);
2200 timers_reschedule (EV_A_ mn_now - mn_prev);
2201#if EV_PERIODIC_ENABLE
2202 /* TODO: really do this? */
2203 periodics_reschedule (EV_A);
2204#endif
697} 2205}
698 2206
699/*****************************************************************************/ 2207/*****************************************************************************/
2208/* singly-linked list management, used when the expected list length is short */
700 2209
701static void 2210inline_size void
702wlist_add (WL *head, WL elem) 2211wlist_add (WL *head, WL elem)
703{ 2212{
704 elem->next = *head; 2213 elem->next = *head;
705 *head = elem; 2214 *head = elem;
706} 2215}
707 2216
708static void 2217inline_size void
709wlist_del (WL *head, WL elem) 2218wlist_del (WL *head, WL elem)
710{ 2219{
711 while (*head) 2220 while (*head)
712 { 2221 {
713 if (*head == elem) 2222 if (*head == elem)
718 2227
719 head = &(*head)->next; 2228 head = &(*head)->next;
720 } 2229 }
721} 2230}
722 2231
723static void 2232/* internal, faster, version of ev_clear_pending */
724ev_clear (W w) 2233inline_speed void
2234clear_pending (EV_P_ W w)
725{ 2235{
726 if (w->pending) 2236 if (w->pending)
727 { 2237 {
728 pendings [w->pending - 1].w = 0; 2238 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
729 w->pending = 0; 2239 w->pending = 0;
730 } 2240 }
731} 2241}
732 2242
733static void 2243int
2244ev_clear_pending (EV_P_ void *w)
2245{
2246 W w_ = (W)w;
2247 int pending = w_->pending;
2248
2249 if (expect_true (pending))
2250 {
2251 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2252 p->w = (W)&pending_w;
2253 w_->pending = 0;
2254 return p->events;
2255 }
2256 else
2257 return 0;
2258}
2259
2260inline_size void
2261pri_adjust (EV_P_ W w)
2262{
2263 int pri = w->priority;
2264 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2265 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2266 w->priority = pri;
2267}
2268
2269inline_speed void
734ev_start (W w, int active) 2270ev_start (EV_P_ W w, int active)
735{ 2271{
2272 pri_adjust (EV_A_ w);
736 w->active = active; 2273 w->active = active;
2274 ev_ref (EV_A);
737} 2275}
738 2276
739static void 2277inline_size void
740ev_stop (W w) 2278ev_stop (EV_P_ W w)
741{ 2279{
2280 ev_unref (EV_A);
742 w->active = 0; 2281 w->active = 0;
743} 2282}
744 2283
745/*****************************************************************************/ 2284/*****************************************************************************/
746 2285
747void 2286void noinline
748ev_io_start (struct ev_io *w) 2287ev_io_start (EV_P_ ev_io *w)
749{ 2288{
2289 int fd = w->fd;
2290
750 if (ev_is_active (w)) 2291 if (expect_false (ev_is_active (w)))
751 return; 2292 return;
752 2293
753 int fd = w->fd; 2294 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2295 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
754 2296
2297 EV_FREQUENT_CHECK;
2298
755 ev_start ((W)w, 1); 2299 ev_start (EV_A_ (W)w, 1);
756 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 2300 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
757 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2301 wlist_add (&anfds[fd].head, (WL)w);
758 2302
759 fd_change (fd); 2303 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
760} 2304 w->events &= ~EV__IOFDSET;
761 2305
762void 2306 EV_FREQUENT_CHECK;
2307}
2308
2309void noinline
763ev_io_stop (struct ev_io *w) 2310ev_io_stop (EV_P_ ev_io *w)
764{ 2311{
765 ev_clear ((W)w); 2312 clear_pending (EV_A_ (W)w);
766 if (!ev_is_active (w)) 2313 if (expect_false (!ev_is_active (w)))
767 return; 2314 return;
768 2315
2316 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2317
2318 EV_FREQUENT_CHECK;
2319
769 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2320 wlist_del (&anfds[w->fd].head, (WL)w);
770 ev_stop ((W)w); 2321 ev_stop (EV_A_ (W)w);
771 2322
772 fd_change (w->fd); 2323 fd_change (EV_A_ w->fd, 1);
773}
774 2324
775void 2325 EV_FREQUENT_CHECK;
2326}
2327
2328void noinline
776ev_timer_start (struct ev_timer *w) 2329ev_timer_start (EV_P_ ev_timer *w)
777{ 2330{
778 if (ev_is_active (w)) 2331 if (expect_false (ev_is_active (w)))
779 return; 2332 return;
780 2333
781 w->at += now; 2334 ev_at (w) += mn_now;
782 2335
783 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 2336 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
784 2337
785 ev_start ((W)w, ++timercnt); 2338 EV_FREQUENT_CHECK;
786 array_needsize (timers, timermax, timercnt, );
787 timers [timercnt - 1] = w;
788 upheap ((WT *)timers, timercnt - 1);
789}
790 2339
791void 2340 ++timercnt;
2341 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2342 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2343 ANHE_w (timers [ev_active (w)]) = (WT)w;
2344 ANHE_at_cache (timers [ev_active (w)]);
2345 upheap (timers, ev_active (w));
2346
2347 EV_FREQUENT_CHECK;
2348
2349 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2350}
2351
2352void noinline
792ev_timer_stop (struct ev_timer *w) 2353ev_timer_stop (EV_P_ ev_timer *w)
793{ 2354{
794 ev_clear ((W)w); 2355 clear_pending (EV_A_ (W)w);
795 if (!ev_is_active (w)) 2356 if (expect_false (!ev_is_active (w)))
796 return; 2357 return;
797 2358
798 if (w->active < timercnt--) 2359 EV_FREQUENT_CHECK;
2360
2361 {
2362 int active = ev_active (w);
2363
2364 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2365
2366 --timercnt;
2367
2368 if (expect_true (active < timercnt + HEAP0))
799 { 2369 {
800 timers [w->active - 1] = timers [timercnt]; 2370 timers [active] = timers [timercnt + HEAP0];
801 downheap ((WT *)timers, timercnt, w->active - 1); 2371 adjustheap (timers, timercnt, active);
802 } 2372 }
2373 }
803 2374
804 w->at = w->repeat; 2375 EV_FREQUENT_CHECK;
805 2376
2377 ev_at (w) -= mn_now;
2378
806 ev_stop ((W)w); 2379 ev_stop (EV_A_ (W)w);
807} 2380}
808 2381
809void 2382void noinline
810ev_timer_again (struct ev_timer *w) 2383ev_timer_again (EV_P_ ev_timer *w)
811{ 2384{
2385 EV_FREQUENT_CHECK;
2386
812 if (ev_is_active (w)) 2387 if (ev_is_active (w))
813 { 2388 {
814 if (w->repeat) 2389 if (w->repeat)
815 { 2390 {
816 w->at = now + w->repeat; 2391 ev_at (w) = mn_now + w->repeat;
2392 ANHE_at_cache (timers [ev_active (w)]);
817 downheap ((WT *)timers, timercnt, w->active - 1); 2393 adjustheap (timers, timercnt, ev_active (w));
818 } 2394 }
819 else 2395 else
820 ev_timer_stop (w); 2396 ev_timer_stop (EV_A_ w);
821 } 2397 }
822 else if (w->repeat) 2398 else if (w->repeat)
2399 {
2400 ev_at (w) = w->repeat;
823 ev_timer_start (w); 2401 ev_timer_start (EV_A_ w);
824} 2402 }
825 2403
826void 2404 EV_FREQUENT_CHECK;
2405}
2406
2407#if EV_PERIODIC_ENABLE
2408void noinline
827ev_periodic_start (struct ev_periodic *w) 2409ev_periodic_start (EV_P_ ev_periodic *w)
828{ 2410{
829 if (ev_is_active (w)) 2411 if (expect_false (ev_is_active (w)))
830 return; 2412 return;
831 2413
832 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 2414 if (w->reschedule_cb)
833 2415 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2416 else if (w->interval)
2417 {
2418 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
834 /* this formula differs from the one in periodic_reify because we do not always round up */ 2419 /* this formula differs from the one in periodic_reify because we do not always round up */
835 if (w->interval)
836 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 2420 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2421 }
2422 else
2423 ev_at (w) = w->offset;
837 2424
2425 EV_FREQUENT_CHECK;
2426
2427 ++periodiccnt;
838 ev_start ((W)w, ++periodiccnt); 2428 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
839 array_needsize (periodics, periodicmax, periodiccnt, ); 2429 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
840 periodics [periodiccnt - 1] = w; 2430 ANHE_w (periodics [ev_active (w)]) = (WT)w;
841 upheap ((WT *)periodics, periodiccnt - 1); 2431 ANHE_at_cache (periodics [ev_active (w)]);
842} 2432 upheap (periodics, ev_active (w));
843 2433
844void 2434 EV_FREQUENT_CHECK;
2435
2436 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2437}
2438
2439void noinline
845ev_periodic_stop (struct ev_periodic *w) 2440ev_periodic_stop (EV_P_ ev_periodic *w)
846{ 2441{
847 ev_clear ((W)w); 2442 clear_pending (EV_A_ (W)w);
848 if (!ev_is_active (w)) 2443 if (expect_false (!ev_is_active (w)))
849 return; 2444 return;
850 2445
851 if (w->active < periodiccnt--) 2446 EV_FREQUENT_CHECK;
2447
2448 {
2449 int active = ev_active (w);
2450
2451 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2452
2453 --periodiccnt;
2454
2455 if (expect_true (active < periodiccnt + HEAP0))
852 { 2456 {
853 periodics [w->active - 1] = periodics [periodiccnt]; 2457 periodics [active] = periodics [periodiccnt + HEAP0];
854 downheap ((WT *)periodics, periodiccnt, w->active - 1); 2458 adjustheap (periodics, periodiccnt, active);
855 } 2459 }
2460 }
856 2461
2462 EV_FREQUENT_CHECK;
2463
857 ev_stop ((W)w); 2464 ev_stop (EV_A_ (W)w);
858} 2465}
859 2466
860void 2467void noinline
2468ev_periodic_again (EV_P_ ev_periodic *w)
2469{
2470 /* TODO: use adjustheap and recalculation */
2471 ev_periodic_stop (EV_A_ w);
2472 ev_periodic_start (EV_A_ w);
2473}
2474#endif
2475
2476#ifndef SA_RESTART
2477# define SA_RESTART 0
2478#endif
2479
2480void noinline
861ev_signal_start (struct ev_signal *w) 2481ev_signal_start (EV_P_ ev_signal *w)
862{ 2482{
2483#if EV_MULTIPLICITY
2484 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2485#endif
863 if (ev_is_active (w)) 2486 if (expect_false (ev_is_active (w)))
864 return; 2487 return;
865 2488
2489 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2490
2491 evpipe_init (EV_A);
2492
2493 EV_FREQUENT_CHECK;
2494
2495 {
2496#ifndef _WIN32
2497 sigset_t full, prev;
2498 sigfillset (&full);
2499 sigprocmask (SIG_SETMASK, &full, &prev);
2500#endif
2501
2502 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2503
2504#ifndef _WIN32
2505 sigprocmask (SIG_SETMASK, &prev, 0);
2506#endif
2507 }
2508
866 ev_start ((W)w, 1); 2509 ev_start (EV_A_ (W)w, 1);
867 array_needsize (signals, signalmax, w->signum, signals_init);
868 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2510 wlist_add (&signals [w->signum - 1].head, (WL)w);
869 2511
870 if (!w->next) 2512 if (!((WL)w)->next)
871 { 2513 {
2514#if _WIN32
2515 signal (w->signum, ev_sighandler);
2516#else
872 struct sigaction sa; 2517 struct sigaction sa;
873 sa.sa_handler = sighandler; 2518 sa.sa_handler = ev_sighandler;
874 sigfillset (&sa.sa_mask); 2519 sigfillset (&sa.sa_mask);
875 sa.sa_flags = 0; 2520 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
876 sigaction (w->signum, &sa, 0); 2521 sigaction (w->signum, &sa, 0);
2522#endif
877 } 2523 }
878}
879 2524
880void 2525 EV_FREQUENT_CHECK;
2526}
2527
2528void noinline
881ev_signal_stop (struct ev_signal *w) 2529ev_signal_stop (EV_P_ ev_signal *w)
882{ 2530{
883 ev_clear ((W)w); 2531 clear_pending (EV_A_ (W)w);
884 if (!ev_is_active (w)) 2532 if (expect_false (!ev_is_active (w)))
885 return; 2533 return;
886 2534
2535 EV_FREQUENT_CHECK;
2536
887 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2537 wlist_del (&signals [w->signum - 1].head, (WL)w);
888 ev_stop ((W)w); 2538 ev_stop (EV_A_ (W)w);
889 2539
890 if (!signals [w->signum - 1].head) 2540 if (!signals [w->signum - 1].head)
891 signal (w->signum, SIG_DFL); 2541 signal (w->signum, SIG_DFL);
892}
893 2542
2543 EV_FREQUENT_CHECK;
2544}
2545
894void 2546void
895ev_idle_start (struct ev_idle *w) 2547ev_child_start (EV_P_ ev_child *w)
896{ 2548{
2549#if EV_MULTIPLICITY
2550 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2551#endif
897 if (ev_is_active (w)) 2552 if (expect_false (ev_is_active (w)))
898 return; 2553 return;
899 2554
900 ev_start ((W)w, ++idlecnt); 2555 EV_FREQUENT_CHECK;
901 array_needsize (idles, idlemax, idlecnt, );
902 idles [idlecnt - 1] = w;
903}
904 2556
2557 ev_start (EV_A_ (W)w, 1);
2558 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2559
2560 EV_FREQUENT_CHECK;
2561}
2562
905void 2563void
906ev_idle_stop (struct ev_idle *w) 2564ev_child_stop (EV_P_ ev_child *w)
907{ 2565{
908 ev_clear ((W)w); 2566 clear_pending (EV_A_ (W)w);
909 if (ev_is_active (w)) 2567 if (expect_false (!ev_is_active (w)))
910 return; 2568 return;
911 2569
912 idles [w->active - 1] = idles [--idlecnt]; 2570 EV_FREQUENT_CHECK;
2571
2572 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
913 ev_stop ((W)w); 2573 ev_stop (EV_A_ (W)w);
914}
915 2574
916void 2575 EV_FREQUENT_CHECK;
917ev_prepare_start (struct ev_prepare *w) 2576}
2577
2578#if EV_STAT_ENABLE
2579
2580# ifdef _WIN32
2581# undef lstat
2582# define lstat(a,b) _stati64 (a,b)
2583# endif
2584
2585#define DEF_STAT_INTERVAL 5.0074891
2586#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2587#define MIN_STAT_INTERVAL 0.1074891
2588
2589static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2590
2591#if EV_USE_INOTIFY
2592# define EV_INOTIFY_BUFSIZE 8192
2593
2594static void noinline
2595infy_add (EV_P_ ev_stat *w)
918{ 2596{
919 if (ev_is_active (w)) 2597 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2598
2599 if (w->wd < 0)
2600 {
2601 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2602 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2603
2604 /* monitor some parent directory for speedup hints */
2605 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2606 /* but an efficiency issue only */
2607 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2608 {
2609 char path [4096];
2610 strcpy (path, w->path);
2611
2612 do
2613 {
2614 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2615 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2616
2617 char *pend = strrchr (path, '/');
2618
2619 if (!pend || pend == path)
2620 break;
2621
2622 *pend = 0;
2623 w->wd = inotify_add_watch (fs_fd, path, mask);
2624 }
2625 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2626 }
2627 }
2628
2629 if (w->wd >= 0)
2630 {
2631 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2632
2633 /* now local changes will be tracked by inotify, but remote changes won't */
2634 /* unless the filesystem it known to be local, we therefore still poll */
2635 /* also do poll on <2.6.25, but with normal frequency */
2636 struct statfs sfs;
2637
2638 if (fs_2625 && !statfs (w->path, &sfs))
2639 if (sfs.f_type == 0x1373 /* devfs */
2640 || sfs.f_type == 0xEF53 /* ext2/3 */
2641 || sfs.f_type == 0x3153464a /* jfs */
2642 || sfs.f_type == 0x52654973 /* reiser3 */
2643 || sfs.f_type == 0x01021994 /* tempfs */
2644 || sfs.f_type == 0x58465342 /* xfs */)
2645 return;
2646
2647 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2648 ev_timer_again (EV_A_ &w->timer);
2649 }
2650}
2651
2652static void noinline
2653infy_del (EV_P_ ev_stat *w)
2654{
2655 int slot;
2656 int wd = w->wd;
2657
2658 if (wd < 0)
920 return; 2659 return;
921 2660
2661 w->wd = -2;
2662 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2663 wlist_del (&fs_hash [slot].head, (WL)w);
2664
2665 /* remove this watcher, if others are watching it, they will rearm */
2666 inotify_rm_watch (fs_fd, wd);
2667}
2668
2669static void noinline
2670infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2671{
2672 if (slot < 0)
2673 /* overflow, need to check for all hash slots */
2674 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2675 infy_wd (EV_A_ slot, wd, ev);
2676 else
2677 {
2678 WL w_;
2679
2680 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2681 {
2682 ev_stat *w = (ev_stat *)w_;
2683 w_ = w_->next; /* lets us remove this watcher and all before it */
2684
2685 if (w->wd == wd || wd == -1)
2686 {
2687 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2688 {
2689 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2690 w->wd = -1;
2691 infy_add (EV_A_ w); /* re-add, no matter what */
2692 }
2693
2694 stat_timer_cb (EV_A_ &w->timer, 0);
2695 }
2696 }
2697 }
2698}
2699
2700static void
2701infy_cb (EV_P_ ev_io *w, int revents)
2702{
2703 char buf [EV_INOTIFY_BUFSIZE];
2704 struct inotify_event *ev = (struct inotify_event *)buf;
2705 int ofs;
2706 int len = read (fs_fd, buf, sizeof (buf));
2707
2708 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2709 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2710}
2711
2712inline_size void
2713check_2625 (EV_P)
2714{
2715 /* kernels < 2.6.25 are borked
2716 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2717 */
2718 struct utsname buf;
2719 int major, minor, micro;
2720
2721 if (uname (&buf))
2722 return;
2723
2724 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2725 return;
2726
2727 if (major < 2
2728 || (major == 2 && minor < 6)
2729 || (major == 2 && minor == 6 && micro < 25))
2730 return;
2731
2732 fs_2625 = 1;
2733}
2734
2735inline_size void
2736infy_init (EV_P)
2737{
2738 if (fs_fd != -2)
2739 return;
2740
2741 fs_fd = -1;
2742
2743 check_2625 (EV_A);
2744
2745 fs_fd = inotify_init ();
2746
2747 if (fs_fd >= 0)
2748 {
2749 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2750 ev_set_priority (&fs_w, EV_MAXPRI);
2751 ev_io_start (EV_A_ &fs_w);
2752 }
2753}
2754
2755inline_size void
2756infy_fork (EV_P)
2757{
2758 int slot;
2759
2760 if (fs_fd < 0)
2761 return;
2762
2763 close (fs_fd);
2764 fs_fd = inotify_init ();
2765
2766 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2767 {
2768 WL w_ = fs_hash [slot].head;
2769 fs_hash [slot].head = 0;
2770
2771 while (w_)
2772 {
2773 ev_stat *w = (ev_stat *)w_;
2774 w_ = w_->next; /* lets us add this watcher */
2775
2776 w->wd = -1;
2777
2778 if (fs_fd >= 0)
2779 infy_add (EV_A_ w); /* re-add, no matter what */
2780 else
2781 ev_timer_again (EV_A_ &w->timer);
2782 }
2783 }
2784}
2785
2786#endif
2787
2788#ifdef _WIN32
2789# define EV_LSTAT(p,b) _stati64 (p, b)
2790#else
2791# define EV_LSTAT(p,b) lstat (p, b)
2792#endif
2793
2794void
2795ev_stat_stat (EV_P_ ev_stat *w)
2796{
2797 if (lstat (w->path, &w->attr) < 0)
2798 w->attr.st_nlink = 0;
2799 else if (!w->attr.st_nlink)
2800 w->attr.st_nlink = 1;
2801}
2802
2803static void noinline
2804stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2805{
2806 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2807
2808 /* we copy this here each the time so that */
2809 /* prev has the old value when the callback gets invoked */
2810 w->prev = w->attr;
2811 ev_stat_stat (EV_A_ w);
2812
2813 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2814 if (
2815 w->prev.st_dev != w->attr.st_dev
2816 || w->prev.st_ino != w->attr.st_ino
2817 || w->prev.st_mode != w->attr.st_mode
2818 || w->prev.st_nlink != w->attr.st_nlink
2819 || w->prev.st_uid != w->attr.st_uid
2820 || w->prev.st_gid != w->attr.st_gid
2821 || w->prev.st_rdev != w->attr.st_rdev
2822 || w->prev.st_size != w->attr.st_size
2823 || w->prev.st_atime != w->attr.st_atime
2824 || w->prev.st_mtime != w->attr.st_mtime
2825 || w->prev.st_ctime != w->attr.st_ctime
2826 ) {
2827 #if EV_USE_INOTIFY
2828 if (fs_fd >= 0)
2829 {
2830 infy_del (EV_A_ w);
2831 infy_add (EV_A_ w);
2832 ev_stat_stat (EV_A_ w); /* avoid race... */
2833 }
2834 #endif
2835
2836 ev_feed_event (EV_A_ w, EV_STAT);
2837 }
2838}
2839
2840void
2841ev_stat_start (EV_P_ ev_stat *w)
2842{
2843 if (expect_false (ev_is_active (w)))
2844 return;
2845
2846 ev_stat_stat (EV_A_ w);
2847
2848 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2849 w->interval = MIN_STAT_INTERVAL;
2850
2851 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2852 ev_set_priority (&w->timer, ev_priority (w));
2853
2854#if EV_USE_INOTIFY
2855 infy_init (EV_A);
2856
2857 if (fs_fd >= 0)
2858 infy_add (EV_A_ w);
2859 else
2860#endif
2861 ev_timer_again (EV_A_ &w->timer);
2862
2863 ev_start (EV_A_ (W)w, 1);
2864
2865 EV_FREQUENT_CHECK;
2866}
2867
2868void
2869ev_stat_stop (EV_P_ ev_stat *w)
2870{
2871 clear_pending (EV_A_ (W)w);
2872 if (expect_false (!ev_is_active (w)))
2873 return;
2874
2875 EV_FREQUENT_CHECK;
2876
2877#if EV_USE_INOTIFY
2878 infy_del (EV_A_ w);
2879#endif
2880 ev_timer_stop (EV_A_ &w->timer);
2881
2882 ev_stop (EV_A_ (W)w);
2883
2884 EV_FREQUENT_CHECK;
2885}
2886#endif
2887
2888#if EV_IDLE_ENABLE
2889void
2890ev_idle_start (EV_P_ ev_idle *w)
2891{
2892 if (expect_false (ev_is_active (w)))
2893 return;
2894
2895 pri_adjust (EV_A_ (W)w);
2896
2897 EV_FREQUENT_CHECK;
2898
2899 {
2900 int active = ++idlecnt [ABSPRI (w)];
2901
2902 ++idleall;
2903 ev_start (EV_A_ (W)w, active);
2904
2905 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2906 idles [ABSPRI (w)][active - 1] = w;
2907 }
2908
2909 EV_FREQUENT_CHECK;
2910}
2911
2912void
2913ev_idle_stop (EV_P_ ev_idle *w)
2914{
2915 clear_pending (EV_A_ (W)w);
2916 if (expect_false (!ev_is_active (w)))
2917 return;
2918
2919 EV_FREQUENT_CHECK;
2920
2921 {
2922 int active = ev_active (w);
2923
2924 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2925 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2926
2927 ev_stop (EV_A_ (W)w);
2928 --idleall;
2929 }
2930
2931 EV_FREQUENT_CHECK;
2932}
2933#endif
2934
2935void
2936ev_prepare_start (EV_P_ ev_prepare *w)
2937{
2938 if (expect_false (ev_is_active (w)))
2939 return;
2940
2941 EV_FREQUENT_CHECK;
2942
922 ev_start ((W)w, ++preparecnt); 2943 ev_start (EV_A_ (W)w, ++preparecnt);
923 array_needsize (prepares, preparemax, preparecnt, ); 2944 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
924 prepares [preparecnt - 1] = w; 2945 prepares [preparecnt - 1] = w;
925}
926 2946
2947 EV_FREQUENT_CHECK;
2948}
2949
927void 2950void
928ev_prepare_stop (struct ev_prepare *w) 2951ev_prepare_stop (EV_P_ ev_prepare *w)
929{ 2952{
930 ev_clear ((W)w); 2953 clear_pending (EV_A_ (W)w);
931 if (ev_is_active (w)) 2954 if (expect_false (!ev_is_active (w)))
932 return; 2955 return;
933 2956
2957 EV_FREQUENT_CHECK;
2958
2959 {
2960 int active = ev_active (w);
2961
934 prepares [w->active - 1] = prepares [--preparecnt]; 2962 prepares [active - 1] = prepares [--preparecnt];
2963 ev_active (prepares [active - 1]) = active;
2964 }
2965
935 ev_stop ((W)w); 2966 ev_stop (EV_A_ (W)w);
936}
937 2967
2968 EV_FREQUENT_CHECK;
2969}
2970
938void 2971void
939ev_check_start (struct ev_check *w) 2972ev_check_start (EV_P_ ev_check *w)
940{ 2973{
941 if (ev_is_active (w)) 2974 if (expect_false (ev_is_active (w)))
942 return; 2975 return;
943 2976
2977 EV_FREQUENT_CHECK;
2978
944 ev_start ((W)w, ++checkcnt); 2979 ev_start (EV_A_ (W)w, ++checkcnt);
945 array_needsize (checks, checkmax, checkcnt, ); 2980 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
946 checks [checkcnt - 1] = w; 2981 checks [checkcnt - 1] = w;
947}
948 2982
2983 EV_FREQUENT_CHECK;
2984}
2985
949void 2986void
950ev_check_stop (struct ev_check *w) 2987ev_check_stop (EV_P_ ev_check *w)
951{ 2988{
952 ev_clear ((W)w); 2989 clear_pending (EV_A_ (W)w);
953 if (ev_is_active (w)) 2990 if (expect_false (!ev_is_active (w)))
954 return; 2991 return;
955 2992
2993 EV_FREQUENT_CHECK;
2994
2995 {
2996 int active = ev_active (w);
2997
956 checks [w->active - 1] = checks [--checkcnt]; 2998 checks [active - 1] = checks [--checkcnt];
2999 ev_active (checks [active - 1]) = active;
3000 }
3001
957 ev_stop ((W)w); 3002 ev_stop (EV_A_ (W)w);
958}
959 3003
960void 3004 EV_FREQUENT_CHECK;
961ev_child_start (struct ev_child *w) 3005}
3006
3007#if EV_EMBED_ENABLE
3008void noinline
3009ev_embed_sweep (EV_P_ ev_embed *w)
962{ 3010{
3011 ev_loop (w->other, EVLOOP_NONBLOCK);
3012}
3013
3014static void
3015embed_io_cb (EV_P_ ev_io *io, int revents)
3016{
3017 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3018
963 if (ev_is_active (w)) 3019 if (ev_cb (w))
3020 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3021 else
3022 ev_loop (w->other, EVLOOP_NONBLOCK);
3023}
3024
3025static void
3026embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3027{
3028 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3029
3030 {
3031 struct ev_loop *loop = w->other;
3032
3033 while (fdchangecnt)
3034 {
3035 fd_reify (EV_A);
3036 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3037 }
3038 }
3039}
3040
3041static void
3042embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3043{
3044 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3045
3046 ev_embed_stop (EV_A_ w);
3047
3048 {
3049 struct ev_loop *loop = w->other;
3050
3051 ev_loop_fork (EV_A);
3052 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3053 }
3054
3055 ev_embed_start (EV_A_ w);
3056}
3057
3058#if 0
3059static void
3060embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3061{
3062 ev_idle_stop (EV_A_ idle);
3063}
3064#endif
3065
3066void
3067ev_embed_start (EV_P_ ev_embed *w)
3068{
3069 if (expect_false (ev_is_active (w)))
964 return; 3070 return;
965 3071
3072 {
3073 struct ev_loop *loop = w->other;
3074 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3075 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3076 }
3077
3078 EV_FREQUENT_CHECK;
3079
3080 ev_set_priority (&w->io, ev_priority (w));
3081 ev_io_start (EV_A_ &w->io);
3082
3083 ev_prepare_init (&w->prepare, embed_prepare_cb);
3084 ev_set_priority (&w->prepare, EV_MINPRI);
3085 ev_prepare_start (EV_A_ &w->prepare);
3086
3087 ev_fork_init (&w->fork, embed_fork_cb);
3088 ev_fork_start (EV_A_ &w->fork);
3089
3090 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3091
966 ev_start ((W)w, 1); 3092 ev_start (EV_A_ (W)w, 1);
967 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
968}
969 3093
3094 EV_FREQUENT_CHECK;
3095}
3096
970void 3097void
971ev_child_stop (struct ev_child *w) 3098ev_embed_stop (EV_P_ ev_embed *w)
972{ 3099{
973 ev_clear ((W)w); 3100 clear_pending (EV_A_ (W)w);
974 if (ev_is_active (w)) 3101 if (expect_false (!ev_is_active (w)))
975 return; 3102 return;
976 3103
977 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3104 EV_FREQUENT_CHECK;
3105
3106 ev_io_stop (EV_A_ &w->io);
3107 ev_prepare_stop (EV_A_ &w->prepare);
3108 ev_fork_stop (EV_A_ &w->fork);
3109
3110 EV_FREQUENT_CHECK;
3111}
3112#endif
3113
3114#if EV_FORK_ENABLE
3115void
3116ev_fork_start (EV_P_ ev_fork *w)
3117{
3118 if (expect_false (ev_is_active (w)))
3119 return;
3120
3121 EV_FREQUENT_CHECK;
3122
3123 ev_start (EV_A_ (W)w, ++forkcnt);
3124 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3125 forks [forkcnt - 1] = w;
3126
3127 EV_FREQUENT_CHECK;
3128}
3129
3130void
3131ev_fork_stop (EV_P_ ev_fork *w)
3132{
3133 clear_pending (EV_A_ (W)w);
3134 if (expect_false (!ev_is_active (w)))
3135 return;
3136
3137 EV_FREQUENT_CHECK;
3138
3139 {
3140 int active = ev_active (w);
3141
3142 forks [active - 1] = forks [--forkcnt];
3143 ev_active (forks [active - 1]) = active;
3144 }
3145
978 ev_stop ((W)w); 3146 ev_stop (EV_A_ (W)w);
3147
3148 EV_FREQUENT_CHECK;
979} 3149}
3150#endif
3151
3152#if EV_ASYNC_ENABLE
3153void
3154ev_async_start (EV_P_ ev_async *w)
3155{
3156 if (expect_false (ev_is_active (w)))
3157 return;
3158
3159 evpipe_init (EV_A);
3160
3161 EV_FREQUENT_CHECK;
3162
3163 ev_start (EV_A_ (W)w, ++asynccnt);
3164 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3165 asyncs [asynccnt - 1] = w;
3166
3167 EV_FREQUENT_CHECK;
3168}
3169
3170void
3171ev_async_stop (EV_P_ ev_async *w)
3172{
3173 clear_pending (EV_A_ (W)w);
3174 if (expect_false (!ev_is_active (w)))
3175 return;
3176
3177 EV_FREQUENT_CHECK;
3178
3179 {
3180 int active = ev_active (w);
3181
3182 asyncs [active - 1] = asyncs [--asynccnt];
3183 ev_active (asyncs [active - 1]) = active;
3184 }
3185
3186 ev_stop (EV_A_ (W)w);
3187
3188 EV_FREQUENT_CHECK;
3189}
3190
3191void
3192ev_async_send (EV_P_ ev_async *w)
3193{
3194 w->sent = 1;
3195 evpipe_write (EV_A_ &gotasync);
3196}
3197#endif
980 3198
981/*****************************************************************************/ 3199/*****************************************************************************/
982 3200
983struct ev_once 3201struct ev_once
984{ 3202{
985 struct ev_io io; 3203 ev_io io;
986 struct ev_timer to; 3204 ev_timer to;
987 void (*cb)(int revents, void *arg); 3205 void (*cb)(int revents, void *arg);
988 void *arg; 3206 void *arg;
989}; 3207};
990 3208
991static void 3209static void
992once_cb (struct ev_once *once, int revents) 3210once_cb (EV_P_ struct ev_once *once, int revents)
993{ 3211{
994 void (*cb)(int revents, void *arg) = once->cb; 3212 void (*cb)(int revents, void *arg) = once->cb;
995 void *arg = once->arg; 3213 void *arg = once->arg;
996 3214
997 ev_io_stop (&once->io); 3215 ev_io_stop (EV_A_ &once->io);
998 ev_timer_stop (&once->to); 3216 ev_timer_stop (EV_A_ &once->to);
999 free (once); 3217 ev_free (once);
1000 3218
1001 cb (revents, arg); 3219 cb (revents, arg);
1002} 3220}
1003 3221
1004static void 3222static void
1005once_cb_io (struct ev_io *w, int revents) 3223once_cb_io (EV_P_ ev_io *w, int revents)
1006{ 3224{
1007 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3225 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3226
3227 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1008} 3228}
1009 3229
1010static void 3230static void
1011once_cb_to (struct ev_timer *w, int revents) 3231once_cb_to (EV_P_ ev_timer *w, int revents)
1012{ 3232{
1013 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3233 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
1014}
1015 3234
3235 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3236}
3237
1016void 3238void
1017ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3239ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1018{ 3240{
1019 struct ev_once *once = malloc (sizeof (struct ev_once)); 3241 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1020 3242
1021 if (!once) 3243 if (expect_false (!once))
1022 cb (EV_ERROR, arg); 3244 {
1023 else 3245 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3246 return;
1024 { 3247 }
3248
1025 once->cb = cb; 3249 once->cb = cb;
1026 once->arg = arg; 3250 once->arg = arg;
1027 3251
1028 ev_watcher_init (&once->io, once_cb_io); 3252 ev_init (&once->io, once_cb_io);
1029
1030 if (fd >= 0) 3253 if (fd >= 0)
3254 {
3255 ev_io_set (&once->io, fd, events);
3256 ev_io_start (EV_A_ &once->io);
3257 }
3258
3259 ev_init (&once->to, once_cb_to);
3260 if (timeout >= 0.)
3261 {
3262 ev_timer_set (&once->to, timeout, 0.);
3263 ev_timer_start (EV_A_ &once->to);
3264 }
3265}
3266
3267/*****************************************************************************/
3268
3269#if EV_WALK_ENABLE
3270void
3271ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3272{
3273 int i, j;
3274 ev_watcher_list *wl, *wn;
3275
3276 if (types & (EV_IO | EV_EMBED))
3277 for (i = 0; i < anfdmax; ++i)
3278 for (wl = anfds [i].head; wl; )
1031 { 3279 {
1032 ev_io_set (&once->io, fd, events); 3280 wn = wl->next;
1033 ev_io_start (&once->io); 3281
3282#if EV_EMBED_ENABLE
3283 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3284 {
3285 if (types & EV_EMBED)
3286 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3287 }
3288 else
3289#endif
3290#if EV_USE_INOTIFY
3291 if (ev_cb ((ev_io *)wl) == infy_cb)
3292 ;
3293 else
3294#endif
3295 if ((ev_io *)wl != &pipe_w)
3296 if (types & EV_IO)
3297 cb (EV_A_ EV_IO, wl);
3298
3299 wl = wn;
1034 } 3300 }
1035 3301
1036 ev_watcher_init (&once->to, once_cb_to); 3302 if (types & (EV_TIMER | EV_STAT))
1037 3303 for (i = timercnt + HEAP0; i-- > HEAP0; )
1038 if (timeout >= 0.) 3304#if EV_STAT_ENABLE
3305 /*TODO: timer is not always active*/
3306 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1039 { 3307 {
1040 ev_timer_set (&once->to, timeout, 0.); 3308 if (types & EV_STAT)
1041 ev_timer_start (&once->to); 3309 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1042 } 3310 }
1043 } 3311 else
1044} 3312#endif
3313 if (types & EV_TIMER)
3314 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1045 3315
1046/*****************************************************************************/ 3316#if EV_PERIODIC_ENABLE
3317 if (types & EV_PERIODIC)
3318 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3319 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3320#endif
1047 3321
1048#if 0 3322#if EV_IDLE_ENABLE
3323 if (types & EV_IDLE)
3324 for (j = NUMPRI; i--; )
3325 for (i = idlecnt [j]; i--; )
3326 cb (EV_A_ EV_IDLE, idles [j][i]);
3327#endif
1049 3328
1050struct ev_io wio; 3329#if EV_FORK_ENABLE
3330 if (types & EV_FORK)
3331 for (i = forkcnt; i--; )
3332 if (ev_cb (forks [i]) != embed_fork_cb)
3333 cb (EV_A_ EV_FORK, forks [i]);
3334#endif
1051 3335
1052static void 3336#if EV_ASYNC_ENABLE
1053sin_cb (struct ev_io *w, int revents) 3337 if (types & EV_ASYNC)
1054{ 3338 for (i = asynccnt; i--; )
1055 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents); 3339 cb (EV_A_ EV_ASYNC, asyncs [i]);
1056} 3340#endif
1057 3341
1058static void 3342 if (types & EV_PREPARE)
1059ocb (struct ev_timer *w, int revents) 3343 for (i = preparecnt; i--; )
1060{ 3344#if EV_EMBED_ENABLE
1061 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data); 3345 if (ev_cb (prepares [i]) != embed_prepare_cb)
1062 ev_timer_stop (w); 3346#endif
1063 ev_timer_start (w); 3347 cb (EV_A_ EV_PREPARE, prepares [i]);
1064}
1065 3348
1066static void 3349 if (types & EV_CHECK)
1067scb (struct ev_signal *w, int revents) 3350 for (i = checkcnt; i--; )
1068{ 3351 cb (EV_A_ EV_CHECK, checks [i]);
1069 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1070 ev_io_stop (&wio);
1071 ev_io_start (&wio);
1072}
1073 3352
1074static void 3353 if (types & EV_SIGNAL)
1075gcb (struct ev_signal *w, int revents)
1076{
1077 fprintf (stderr, "generic %x\n", revents);
1078
1079}
1080
1081int main (void)
1082{
1083 ev_init (0);
1084
1085 ev_io_init (&wio, sin_cb, 0, EV_READ);
1086 ev_io_start (&wio);
1087
1088 struct ev_timer t[10000];
1089
1090#if 0
1091 int i;
1092 for (i = 0; i < 10000; ++i) 3354 for (i = 0; i < signalmax; ++i)
1093 { 3355 for (wl = signals [i].head; wl; )
1094 struct ev_timer *w = t + i; 3356 {
1095 ev_watcher_init (w, ocb, i); 3357 wn = wl->next;
1096 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533); 3358 cb (EV_A_ EV_SIGNAL, wl);
1097 ev_timer_start (w); 3359 wl = wn;
1098 if (drand48 () < 0.5) 3360 }
1099 ev_timer_stop (w);
1100 }
1101#endif
1102 3361
1103 struct ev_timer t1; 3362 if (types & EV_CHILD)
1104 ev_timer_init (&t1, ocb, 5, 10); 3363 for (i = EV_PID_HASHSIZE; i--; )
1105 ev_timer_start (&t1); 3364 for (wl = childs [i]; wl; )
1106 3365 {
1107 struct ev_signal sig; 3366 wn = wl->next;
1108 ev_signal_init (&sig, scb, SIGQUIT); 3367 cb (EV_A_ EV_CHILD, wl);
1109 ev_signal_start (&sig); 3368 wl = wn;
1110 3369 }
1111 struct ev_check cw; 3370/* EV_STAT 0x00001000 /* stat data changed */
1112 ev_check_init (&cw, gcb); 3371/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
1113 ev_check_start (&cw);
1114
1115 struct ev_idle iw;
1116 ev_idle_init (&iw, gcb);
1117 ev_idle_start (&iw);
1118
1119 ev_loop (0);
1120
1121 return 0;
1122} 3372}
1123
1124#endif 3373#endif
1125 3374
3375#if EV_MULTIPLICITY
3376 #include "ev_wrap.h"
3377#endif
1126 3378
3379#ifdef __cplusplus
3380}
3381#endif
1127 3382
1128

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines