ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.76 by root, Wed Nov 7 18:47:26 2007 UTC vs.
Revision 1.294 by root, Wed Jul 8 02:46:05 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
33 65
34# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
67# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
69# endif
70# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
79# endif
37# endif 80# endif
38 81
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
41# endif 88# endif
42 89
43# if HAVE_POLL && HAVE_POLL_H 90# ifndef EV_USE_SELECT
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
95# endif
45# endif 96# endif
46 97
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 100# define EV_USE_POLL 1
101# else
102# define EV_USE_POLL 0
103# endif
49# endif 104# endif
50 105
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
52# define EV_USE_KQUEUE 1 108# define EV_USE_EPOLL 1
109# else
110# define EV_USE_EPOLL 0
111# endif
53# endif 112# endif
113
114# ifndef EV_USE_KQUEUE
115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
119# endif
120# endif
121
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
127# endif
128# endif
54 129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_EVENTFD
139# if HAVE_EVENTFD
140# define EV_USE_EVENTFD 1
141# else
142# define EV_USE_EVENTFD 0
143# endif
144# endif
145
55#endif 146#endif
56 147
57#include <math.h> 148#include <math.h>
58#include <stdlib.h> 149#include <stdlib.h>
59#include <fcntl.h> 150#include <fcntl.h>
66#include <sys/types.h> 157#include <sys/types.h>
67#include <time.h> 158#include <time.h>
68 159
69#include <signal.h> 160#include <signal.h>
70 161
162#ifdef EV_H
163# include EV_H
164#else
165# include "ev.h"
166#endif
167
71#ifndef WIN32 168#ifndef _WIN32
72# include <unistd.h>
73# include <sys/time.h> 169# include <sys/time.h>
74# include <sys/wait.h> 170# include <sys/wait.h>
171# include <unistd.h>
172#else
173# include <io.h>
174# define WIN32_LEAN_AND_MEAN
175# include <windows.h>
176# ifndef EV_SELECT_IS_WINSOCKET
177# define EV_SELECT_IS_WINSOCKET 1
75#endif 178# endif
76/**/ 179#endif
180
181/* this block tries to deduce configuration from header-defined symbols and defaults */
182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
77 190
78#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
79# define EV_USE_MONOTONIC 1 193# define EV_USE_MONOTONIC 1
194# else
195# define EV_USE_MONOTONIC 0
196# endif
197#endif
198
199#ifndef EV_USE_REALTIME
200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
201#endif
202
203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
207# define EV_USE_NANOSLEEP 0
208# endif
80#endif 209#endif
81 210
82#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
84#endif 213#endif
85 214
86#ifndef EV_USE_POLL 215#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 216# ifdef _WIN32
217# define EV_USE_POLL 0
218# else
219# define EV_USE_POLL 1
220# endif
88#endif 221#endif
89 222
90#ifndef EV_USE_EPOLL 223#ifndef EV_USE_EPOLL
224# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225# define EV_USE_EPOLL 1
226# else
91# define EV_USE_EPOLL 0 227# define EV_USE_EPOLL 0
228# endif
92#endif 229#endif
93 230
94#ifndef EV_USE_KQUEUE 231#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0 232# define EV_USE_KQUEUE 0
96#endif 233#endif
97 234
235#ifndef EV_USE_PORT
236# define EV_USE_PORT 0
237#endif
238
98#ifndef EV_USE_WIN32 239#ifndef EV_USE_INOTIFY
99# ifdef WIN32 240# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1 241# define EV_USE_INOTIFY 1
103# else 242# else
104# define EV_USE_WIN32 0 243# define EV_USE_INOTIFY 0
105# endif 244# endif
106#endif 245#endif
107 246
108#ifndef EV_USE_REALTIME 247#ifndef EV_PID_HASHSIZE
109# define EV_USE_REALTIME 1 248# if EV_MINIMAL
249# define EV_PID_HASHSIZE 1
250# else
251# define EV_PID_HASHSIZE 16
110#endif 252# endif
253#endif
111 254
112/**/ 255#ifndef EV_INOTIFY_HASHSIZE
256# if EV_MINIMAL
257# define EV_INOTIFY_HASHSIZE 1
258# else
259# define EV_INOTIFY_HASHSIZE 16
260# endif
261#endif
262
263#ifndef EV_USE_EVENTFD
264# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265# define EV_USE_EVENTFD 1
266# else
267# define EV_USE_EVENTFD 0
268# endif
269#endif
270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
113 304
114#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
117#endif 308#endif
119#ifndef CLOCK_REALTIME 310#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME 311# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0 312# define EV_USE_REALTIME 0
122#endif 313#endif
123 314
315#if !EV_STAT_ENABLE
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318#endif
319
320#if !EV_USE_NANOSLEEP
321# ifndef _WIN32
322# include <sys/select.h>
323# endif
324#endif
325
326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
335#endif
336
337#if EV_SELECT_IS_WINSOCKET
338# include <winsock.h>
339#endif
340
341#if EV_USE_EVENTFD
342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343# include <stdint.h>
344# ifdef __cplusplus
345extern "C" {
346# endif
347int eventfd (unsigned int initval, int flags);
348# ifdef __cplusplus
349}
350# endif
351#endif
352
124/**/ 353/**/
125 354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
360
361/*
362 * This is used to avoid floating point rounding problems.
363 * It is added to ev_rt_now when scheduling periodics
364 * to ensure progress, time-wise, even when rounding
365 * errors are against us.
366 * This value is good at least till the year 4000.
367 * Better solutions welcome.
368 */
369#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
370
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 371#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 372#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 373/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
130 374
131#include "ev.h"
132
133#if __GNUC__ >= 3 375#if __GNUC__ >= 4
134# define expect(expr,value) __builtin_expect ((expr),(value)) 376# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline 377# define noinline __attribute__ ((noinline))
136#else 378#else
137# define expect(expr,value) (expr) 379# define expect(expr,value) (expr)
138# define inline static 380# define noinline
381# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
382# define inline
383# endif
139#endif 384#endif
140 385
141#define expect_false(expr) expect ((expr) != 0, 0) 386#define expect_false(expr) expect ((expr) != 0, 0)
142#define expect_true(expr) expect ((expr) != 0, 1) 387#define expect_true(expr) expect ((expr) != 0, 1)
388#define inline_size static inline
389
390#if EV_MINIMAL
391# define inline_speed static noinline
392#else
393# define inline_speed static inline
394#endif
143 395
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
145#define ABSPRI(w) ((w)->priority - EV_MINPRI) 397#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
146 398
399#define EMPTY /* required for microsofts broken pseudo-c compiler */
400#define EMPTY2(a,b) /* used to suppress some warnings */
401
147typedef struct ev_watcher *W; 402typedef ev_watcher *W;
148typedef struct ev_watcher_list *WL; 403typedef ev_watcher_list *WL;
149typedef struct ev_watcher_time *WT; 404typedef ev_watcher_time *WT;
150 405
406#define ev_active(w) ((W)(w))->active
407#define ev_at(w) ((WT)(w))->at
408
409#if EV_USE_REALTIME
410/* sig_atomic_t is used to avoid per-thread variables or locking but still */
411/* giving it a reasonably high chance of working on typical architetcures */
412static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
413#endif
414
415#if EV_USE_MONOTONIC
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 416static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
417#endif
152 418
419#ifdef _WIN32
153#include "ev_win32.c" 420# include "ev_win32.c"
421#endif
154 422
155/*****************************************************************************/ 423/*****************************************************************************/
156 424
157static void (*syserr_cb)(const char *msg); 425static void (*syserr_cb)(const char *msg);
158 426
427void
159void ev_set_syserr_cb (void (*cb)(const char *msg)) 428ev_set_syserr_cb (void (*cb)(const char *msg))
160{ 429{
161 syserr_cb = cb; 430 syserr_cb = cb;
162} 431}
163 432
164static void 433static void noinline
165syserr (const char *msg) 434ev_syserr (const char *msg)
166{ 435{
167 if (!msg) 436 if (!msg)
168 msg = "(libev) system error"; 437 msg = "(libev) system error";
169 438
170 if (syserr_cb) 439 if (syserr_cb)
174 perror (msg); 443 perror (msg);
175 abort (); 444 abort ();
176 } 445 }
177} 446}
178 447
448static void *
449ev_realloc_emul (void *ptr, long size)
450{
451 /* some systems, notably openbsd and darwin, fail to properly
452 * implement realloc (x, 0) (as required by both ansi c-98 and
453 * the single unix specification, so work around them here.
454 */
455
456 if (size)
457 return realloc (ptr, size);
458
459 free (ptr);
460 return 0;
461}
462
179static void *(*alloc)(void *ptr, long size); 463static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
180 464
465void
181void ev_set_allocator (void *(*cb)(void *ptr, long size)) 466ev_set_allocator (void *(*cb)(void *ptr, long size))
182{ 467{
183 alloc = cb; 468 alloc = cb;
184} 469}
185 470
186static void * 471inline_speed void *
187ev_realloc (void *ptr, long size) 472ev_realloc (void *ptr, long size)
188{ 473{
189 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 474 ptr = alloc (ptr, size);
190 475
191 if (!ptr && size) 476 if (!ptr && size)
192 { 477 {
193 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 478 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
194 abort (); 479 abort ();
200#define ev_malloc(size) ev_realloc (0, (size)) 485#define ev_malloc(size) ev_realloc (0, (size))
201#define ev_free(ptr) ev_realloc ((ptr), 0) 486#define ev_free(ptr) ev_realloc ((ptr), 0)
202 487
203/*****************************************************************************/ 488/*****************************************************************************/
204 489
490/* file descriptor info structure */
205typedef struct 491typedef struct
206{ 492{
207 WL head; 493 WL head;
208 unsigned char events; 494 unsigned char events; /* the events watched for */
495 unsigned char reify; /* flag set when this ANFD needs reification */
496 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
209 unsigned char reify; 497 unsigned char unused;
498#if EV_USE_EPOLL
499 unsigned int egen; /* generation counter to counter epoll bugs */
500#endif
501#if EV_SELECT_IS_WINSOCKET
502 SOCKET handle;
503#endif
210} ANFD; 504} ANFD;
211 505
506/* stores the pending event set for a given watcher */
212typedef struct 507typedef struct
213{ 508{
214 W w; 509 W w;
215 int events; 510 int events; /* the pending event set for the given watcher */
216} ANPENDING; 511} ANPENDING;
217 512
513#if EV_USE_INOTIFY
514/* hash table entry per inotify-id */
515typedef struct
516{
517 WL head;
518} ANFS;
519#endif
520
521/* Heap Entry */
522#if EV_HEAP_CACHE_AT
523 /* a heap element */
524 typedef struct {
525 ev_tstamp at;
526 WT w;
527 } ANHE;
528
529 #define ANHE_w(he) (he).w /* access watcher, read-write */
530 #define ANHE_at(he) (he).at /* access cached at, read-only */
531 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
532#else
533 /* a heap element */
534 typedef WT ANHE;
535
536 #define ANHE_w(he) (he)
537 #define ANHE_at(he) (he)->at
538 #define ANHE_at_cache(he)
539#endif
540
218#if EV_MULTIPLICITY 541#if EV_MULTIPLICITY
219 542
220struct ev_loop 543 struct ev_loop
221{ 544 {
545 ev_tstamp ev_rt_now;
546 #define ev_rt_now ((loop)->ev_rt_now)
222# define VAR(name,decl) decl; 547 #define VAR(name,decl) decl;
223# include "ev_vars.h" 548 #include "ev_vars.h"
224};
225# undef VAR 549 #undef VAR
550 };
226# include "ev_wrap.h" 551 #include "ev_wrap.h"
552
553 static struct ev_loop default_loop_struct;
554 struct ev_loop *ev_default_loop_ptr;
227 555
228#else 556#else
229 557
558 ev_tstamp ev_rt_now;
230# define VAR(name,decl) static decl; 559 #define VAR(name,decl) static decl;
231# include "ev_vars.h" 560 #include "ev_vars.h"
232# undef VAR 561 #undef VAR
562
563 static int ev_default_loop_ptr;
233 564
234#endif 565#endif
235 566
236/*****************************************************************************/ 567/*****************************************************************************/
237 568
238inline ev_tstamp 569#ifndef EV_HAVE_EV_TIME
570ev_tstamp
239ev_time (void) 571ev_time (void)
240{ 572{
241#if EV_USE_REALTIME 573#if EV_USE_REALTIME
574 if (expect_true (have_realtime))
575 {
242 struct timespec ts; 576 struct timespec ts;
243 clock_gettime (CLOCK_REALTIME, &ts); 577 clock_gettime (CLOCK_REALTIME, &ts);
244 return ts.tv_sec + ts.tv_nsec * 1e-9; 578 return ts.tv_sec + ts.tv_nsec * 1e-9;
245#else 579 }
580#endif
581
246 struct timeval tv; 582 struct timeval tv;
247 gettimeofday (&tv, 0); 583 gettimeofday (&tv, 0);
248 return tv.tv_sec + tv.tv_usec * 1e-6; 584 return tv.tv_sec + tv.tv_usec * 1e-6;
249#endif
250} 585}
586#endif
251 587
252inline ev_tstamp 588inline_size ev_tstamp
253get_clock (void) 589get_clock (void)
254{ 590{
255#if EV_USE_MONOTONIC 591#if EV_USE_MONOTONIC
256 if (expect_true (have_monotonic)) 592 if (expect_true (have_monotonic))
257 { 593 {
262#endif 598#endif
263 599
264 return ev_time (); 600 return ev_time ();
265} 601}
266 602
603#if EV_MULTIPLICITY
267ev_tstamp 604ev_tstamp
268ev_now (EV_P) 605ev_now (EV_P)
269{ 606{
270 return rt_now; 607 return ev_rt_now;
271} 608}
609#endif
272 610
273#define array_roundsize(type,n) ((n) | 4 & ~3) 611void
612ev_sleep (ev_tstamp delay)
613{
614 if (delay > 0.)
615 {
616#if EV_USE_NANOSLEEP
617 struct timespec ts;
618
619 ts.tv_sec = (time_t)delay;
620 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
621
622 nanosleep (&ts, 0);
623#elif defined(_WIN32)
624 Sleep ((unsigned long)(delay * 1e3));
625#else
626 struct timeval tv;
627
628 tv.tv_sec = (time_t)delay;
629 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
630
631 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
632 /* somehting not guaranteed by newer posix versions, but guaranteed */
633 /* by older ones */
634 select (0, 0, 0, 0, &tv);
635#endif
636 }
637}
638
639/*****************************************************************************/
640
641#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
642
643/* find a suitable new size for the given array, */
644/* hopefully by rounding to a ncie-to-malloc size */
645inline_size int
646array_nextsize (int elem, int cur, int cnt)
647{
648 int ncur = cur + 1;
649
650 do
651 ncur <<= 1;
652 while (cnt > ncur);
653
654 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
655 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
656 {
657 ncur *= elem;
658 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
659 ncur = ncur - sizeof (void *) * 4;
660 ncur /= elem;
661 }
662
663 return ncur;
664}
665
666static noinline void *
667array_realloc (int elem, void *base, int *cur, int cnt)
668{
669 *cur = array_nextsize (elem, *cur, cnt);
670 return ev_realloc (base, elem * *cur);
671}
672
673#define array_init_zero(base,count) \
674 memset ((void *)(base), 0, sizeof (*(base)) * (count))
274 675
275#define array_needsize(type,base,cur,cnt,init) \ 676#define array_needsize(type,base,cur,cnt,init) \
276 if (expect_false ((cnt) > cur)) \ 677 if (expect_false ((cnt) > (cur))) \
277 { \ 678 { \
278 int newcnt = cur; \ 679 int ocur_ = (cur); \
279 do \ 680 (base) = (type *)array_realloc \
280 { \ 681 (sizeof (type), (base), &(cur), (cnt)); \
281 newcnt = array_roundsize (type, newcnt << 1); \ 682 init ((base) + (ocur_), (cur) - ocur_); \
282 } \
283 while ((cnt) > newcnt); \
284 \
285 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
286 init (base + cur, newcnt - cur); \
287 cur = newcnt; \
288 } 683 }
289 684
685#if 0
290#define array_slim(type,stem) \ 686#define array_slim(type,stem) \
291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 687 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
292 { \ 688 { \
293 stem ## max = array_roundsize (stem ## cnt >> 1); \ 689 stem ## max = array_roundsize (stem ## cnt >> 1); \
294 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 690 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 691 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
296 } 692 }
297 693#endif
298/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
299/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
300#define array_free_microshit(stem) \
301 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
302 694
303#define array_free(stem, idx) \ 695#define array_free(stem, idx) \
304 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 696 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
305 697
306/*****************************************************************************/ 698/*****************************************************************************/
307 699
308static void 700/* dummy callback for pending events */
309anfds_init (ANFD *base, int count) 701static void noinline
702pendingcb (EV_P_ ev_prepare *w, int revents)
310{ 703{
311 while (count--) 704}
312 {
313 base->head = 0;
314 base->events = EV_NONE;
315 base->reify = 0;
316 705
317 ++base; 706void noinline
707ev_feed_event (EV_P_ void *w, int revents)
708{
709 W w_ = (W)w;
710 int pri = ABSPRI (w_);
711
712 if (expect_false (w_->pending))
713 pendings [pri][w_->pending - 1].events |= revents;
714 else
318 } 715 {
319} 716 w_->pending = ++pendingcnt [pri];
320 717 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
321static void 718 pendings [pri][w_->pending - 1].w = w_;
322event (EV_P_ W w, int events)
323{
324 if (w->pending)
325 {
326 pendings [ABSPRI (w)][w->pending - 1].events |= events; 719 pendings [pri][w_->pending - 1].events = revents;
327 return;
328 } 720 }
329
330 w->pending = ++pendingcnt [ABSPRI (w)];
331 array_needsize (ANPENDING, pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void));
332 pendings [ABSPRI (w)][w->pending - 1].w = w;
333 pendings [ABSPRI (w)][w->pending - 1].events = events;
334} 721}
335 722
336static void 723inline_speed void
724feed_reverse (EV_P_ W w)
725{
726 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
727 rfeeds [rfeedcnt++] = w;
728}
729
730inline_size void
731feed_reverse_done (EV_P_ int revents)
732{
733 do
734 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
735 while (rfeedcnt);
736}
737
738inline_speed void
337queue_events (EV_P_ W *events, int eventcnt, int type) 739queue_events (EV_P_ W *events, int eventcnt, int type)
338{ 740{
339 int i; 741 int i;
340 742
341 for (i = 0; i < eventcnt; ++i) 743 for (i = 0; i < eventcnt; ++i)
342 event (EV_A_ events [i], type); 744 ev_feed_event (EV_A_ events [i], type);
343} 745}
344 746
345static void 747/*****************************************************************************/
748
749inline_speed void
346fd_event (EV_P_ int fd, int events) 750fd_event (EV_P_ int fd, int revents)
347{ 751{
348 ANFD *anfd = anfds + fd; 752 ANFD *anfd = anfds + fd;
349 struct ev_io *w; 753 ev_io *w;
350 754
351 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 755 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
352 { 756 {
353 int ev = w->events & events; 757 int ev = w->events & revents;
354 758
355 if (ev) 759 if (ev)
356 event (EV_A_ (W)w, ev); 760 ev_feed_event (EV_A_ (W)w, ev);
357 } 761 }
358} 762}
359 763
360/*****************************************************************************/ 764void
765ev_feed_fd_event (EV_P_ int fd, int revents)
766{
767 if (fd >= 0 && fd < anfdmax)
768 fd_event (EV_A_ fd, revents);
769}
361 770
362static void 771/* make sure the external fd watch events are in-sync */
772/* with the kernel/libev internal state */
773inline_size void
363fd_reify (EV_P) 774fd_reify (EV_P)
364{ 775{
365 int i; 776 int i;
366 777
367 for (i = 0; i < fdchangecnt; ++i) 778 for (i = 0; i < fdchangecnt; ++i)
368 { 779 {
369 int fd = fdchanges [i]; 780 int fd = fdchanges [i];
370 ANFD *anfd = anfds + fd; 781 ANFD *anfd = anfds + fd;
371 struct ev_io *w; 782 ev_io *w;
372 783
373 int events = 0; 784 unsigned char events = 0;
374 785
375 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 786 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
376 events |= w->events; 787 events |= (unsigned char)w->events;
377 788
789#if EV_SELECT_IS_WINSOCKET
790 if (events)
791 {
792 unsigned long arg;
793 #ifdef EV_FD_TO_WIN32_HANDLE
794 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
795 #else
796 anfd->handle = _get_osfhandle (fd);
797 #endif
798 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
799 }
800#endif
801
802 {
803 unsigned char o_events = anfd->events;
804 unsigned char o_reify = anfd->reify;
805
378 anfd->reify = 0; 806 anfd->reify = 0;
379
380 method_modify (EV_A_ fd, anfd->events, events);
381 anfd->events = events; 807 anfd->events = events;
808
809 if (o_events != events || o_reify & EV__IOFDSET)
810 backend_modify (EV_A_ fd, o_events, events);
811 }
382 } 812 }
383 813
384 fdchangecnt = 0; 814 fdchangecnt = 0;
385} 815}
386 816
387static void 817/* something about the given fd changed */
818inline_size void
388fd_change (EV_P_ int fd) 819fd_change (EV_P_ int fd, int flags)
389{ 820{
390 if (anfds [fd].reify) 821 unsigned char reify = anfds [fd].reify;
391 return;
392
393 anfds [fd].reify = 1; 822 anfds [fd].reify |= flags;
394 823
824 if (expect_true (!reify))
825 {
395 ++fdchangecnt; 826 ++fdchangecnt;
396 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 827 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
397 fdchanges [fdchangecnt - 1] = fd; 828 fdchanges [fdchangecnt - 1] = fd;
829 }
398} 830}
399 831
400static void 832/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
833inline_speed void
401fd_kill (EV_P_ int fd) 834fd_kill (EV_P_ int fd)
402{ 835{
403 struct ev_io *w; 836 ev_io *w;
404 837
405 while ((w = (struct ev_io *)anfds [fd].head)) 838 while ((w = (ev_io *)anfds [fd].head))
406 { 839 {
407 ev_io_stop (EV_A_ w); 840 ev_io_stop (EV_A_ w);
408 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 841 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
409 } 842 }
410} 843}
411 844
412static int 845/* check whether the given fd is atcually valid, for error recovery */
846inline_size int
413fd_valid (int fd) 847fd_valid (int fd)
414{ 848{
415#ifdef WIN32 849#ifdef _WIN32
416 return !!win32_get_osfhandle (fd); 850 return _get_osfhandle (fd) != -1;
417#else 851#else
418 return fcntl (fd, F_GETFD) != -1; 852 return fcntl (fd, F_GETFD) != -1;
419#endif 853#endif
420} 854}
421 855
422/* called on EBADF to verify fds */ 856/* called on EBADF to verify fds */
423static void 857static void noinline
424fd_ebadf (EV_P) 858fd_ebadf (EV_P)
425{ 859{
426 int fd; 860 int fd;
427 861
428 for (fd = 0; fd < anfdmax; ++fd) 862 for (fd = 0; fd < anfdmax; ++fd)
429 if (anfds [fd].events) 863 if (anfds [fd].events)
430 if (!fd_valid (fd) == -1 && errno == EBADF) 864 if (!fd_valid (fd) && errno == EBADF)
431 fd_kill (EV_A_ fd); 865 fd_kill (EV_A_ fd);
432} 866}
433 867
434/* called on ENOMEM in select/poll to kill some fds and retry */ 868/* called on ENOMEM in select/poll to kill some fds and retry */
435static void 869static void noinline
436fd_enomem (EV_P) 870fd_enomem (EV_P)
437{ 871{
438 int fd; 872 int fd;
439 873
440 for (fd = anfdmax; fd--; ) 874 for (fd = anfdmax; fd--; )
443 fd_kill (EV_A_ fd); 877 fd_kill (EV_A_ fd);
444 return; 878 return;
445 } 879 }
446} 880}
447 881
448/* usually called after fork if method needs to re-arm all fds from scratch */ 882/* usually called after fork if backend needs to re-arm all fds from scratch */
449static void 883static void noinline
450fd_rearm_all (EV_P) 884fd_rearm_all (EV_P)
451{ 885{
452 int fd; 886 int fd;
453 887
454 /* this should be highly optimised to not do anything but set a flag */
455 for (fd = 0; fd < anfdmax; ++fd) 888 for (fd = 0; fd < anfdmax; ++fd)
456 if (anfds [fd].events) 889 if (anfds [fd].events)
457 { 890 {
458 anfds [fd].events = 0; 891 anfds [fd].events = 0;
892 anfds [fd].emask = 0;
459 fd_change (EV_A_ fd); 893 fd_change (EV_A_ fd, EV__IOFDSET | 1);
460 } 894 }
461} 895}
462 896
463/*****************************************************************************/ 897/*****************************************************************************/
464 898
465static void 899/*
466upheap (WT *heap, int k) 900 * the heap functions want a real array index. array index 0 uis guaranteed to not
467{ 901 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
468 WT w = heap [k]; 902 * the branching factor of the d-tree.
903 */
469 904
470 while (k && heap [k >> 1]->at > w->at) 905/*
471 { 906 * at the moment we allow libev the luxury of two heaps,
472 heap [k] = heap [k >> 1]; 907 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
473 ((W)heap [k])->active = k + 1; 908 * which is more cache-efficient.
474 k >>= 1; 909 * the difference is about 5% with 50000+ watchers.
475 } 910 */
911#if EV_USE_4HEAP
476 912
477 heap [k] = w; 913#define DHEAP 4
478 ((W)heap [k])->active = k + 1; 914#define HEAP0 (DHEAP - 1) /* index of first element in heap */
915#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
916#define UPHEAP_DONE(p,k) ((p) == (k))
479 917
480} 918/* away from the root */
481 919inline_speed void
482static void
483downheap (WT *heap, int N, int k) 920downheap (ANHE *heap, int N, int k)
484{ 921{
485 WT w = heap [k]; 922 ANHE he = heap [k];
923 ANHE *E = heap + N + HEAP0;
486 924
487 while (k < (N >> 1)) 925 for (;;)
488 { 926 {
489 int j = k << 1; 927 ev_tstamp minat;
928 ANHE *minpos;
929 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
490 930
491 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 931 /* find minimum child */
932 if (expect_true (pos + DHEAP - 1 < E))
492 ++j; 933 {
493 934 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
494 if (w->at <= heap [j]->at) 935 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
936 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
937 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
938 }
939 else if (pos < E)
940 {
941 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
942 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
943 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
944 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
945 }
946 else
495 break; 947 break;
496 948
949 if (ANHE_at (he) <= minat)
950 break;
951
952 heap [k] = *minpos;
953 ev_active (ANHE_w (*minpos)) = k;
954
955 k = minpos - heap;
956 }
957
958 heap [k] = he;
959 ev_active (ANHE_w (he)) = k;
960}
961
962#else /* 4HEAP */
963
964#define HEAP0 1
965#define HPARENT(k) ((k) >> 1)
966#define UPHEAP_DONE(p,k) (!(p))
967
968/* away from the root */
969inline_speed void
970downheap (ANHE *heap, int N, int k)
971{
972 ANHE he = heap [k];
973
974 for (;;)
975 {
976 int c = k << 1;
977
978 if (c > N + HEAP0 - 1)
979 break;
980
981 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
982 ? 1 : 0;
983
984 if (ANHE_at (he) <= ANHE_at (heap [c]))
985 break;
986
497 heap [k] = heap [j]; 987 heap [k] = heap [c];
498 ((W)heap [k])->active = k + 1; 988 ev_active (ANHE_w (heap [k])) = k;
989
499 k = j; 990 k = c;
500 } 991 }
501 992
502 heap [k] = w; 993 heap [k] = he;
503 ((W)heap [k])->active = k + 1; 994 ev_active (ANHE_w (he)) = k;
995}
996#endif
997
998/* towards the root */
999inline_speed void
1000upheap (ANHE *heap, int k)
1001{
1002 ANHE he = heap [k];
1003
1004 for (;;)
1005 {
1006 int p = HPARENT (k);
1007
1008 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1009 break;
1010
1011 heap [k] = heap [p];
1012 ev_active (ANHE_w (heap [k])) = k;
1013 k = p;
1014 }
1015
1016 heap [k] = he;
1017 ev_active (ANHE_w (he)) = k;
1018}
1019
1020/* move an element suitably so it is in a correct place */
1021inline_size void
1022adjustheap (ANHE *heap, int N, int k)
1023{
1024 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
1025 upheap (heap, k);
1026 else
1027 downheap (heap, N, k);
1028}
1029
1030/* rebuild the heap: this function is used only once and executed rarely */
1031inline_size void
1032reheap (ANHE *heap, int N)
1033{
1034 int i;
1035
1036 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1037 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1038 for (i = 0; i < N; ++i)
1039 upheap (heap, i + HEAP0);
504} 1040}
505 1041
506/*****************************************************************************/ 1042/*****************************************************************************/
507 1043
1044/* associate signal watchers to a signal signal */
508typedef struct 1045typedef struct
509{ 1046{
510 WL head; 1047 WL head;
511 sig_atomic_t volatile gotsig; 1048 EV_ATOMIC_T gotsig;
512} ANSIG; 1049} ANSIG;
513 1050
514static ANSIG *signals; 1051static ANSIG *signals;
515static int signalmax; 1052static int signalmax;
516 1053
517static int sigpipe [2]; 1054static EV_ATOMIC_T gotsig;
518static sig_atomic_t volatile gotsig;
519static struct ev_io sigev;
520 1055
1056/*****************************************************************************/
1057
1058/* used to prepare libev internal fd's */
1059/* this is not fork-safe */
1060inline_speed void
1061fd_intern (int fd)
1062{
1063#ifdef _WIN32
1064 unsigned long arg = 1;
1065 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1066#else
1067 fcntl (fd, F_SETFD, FD_CLOEXEC);
1068 fcntl (fd, F_SETFL, O_NONBLOCK);
1069#endif
1070}
1071
1072static void noinline
1073evpipe_init (EV_P)
1074{
1075 if (!ev_is_active (&pipe_w))
1076 {
1077#if EV_USE_EVENTFD
1078 if ((evfd = eventfd (0, 0)) >= 0)
1079 {
1080 evpipe [0] = -1;
1081 fd_intern (evfd);
1082 ev_io_set (&pipe_w, evfd, EV_READ);
1083 }
1084 else
1085#endif
1086 {
1087 while (pipe (evpipe))
1088 ev_syserr ("(libev) error creating signal/async pipe");
1089
1090 fd_intern (evpipe [0]);
1091 fd_intern (evpipe [1]);
1092 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1093 }
1094
1095 ev_io_start (EV_A_ &pipe_w);
1096 ev_unref (EV_A); /* watcher should not keep loop alive */
1097 }
1098}
1099
1100inline_size void
1101evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1102{
1103 if (!*flag)
1104 {
1105 int old_errno = errno; /* save errno because write might clobber it */
1106
1107 *flag = 1;
1108
1109#if EV_USE_EVENTFD
1110 if (evfd >= 0)
1111 {
1112 uint64_t counter = 1;
1113 write (evfd, &counter, sizeof (uint64_t));
1114 }
1115 else
1116#endif
1117 write (evpipe [1], &old_errno, 1);
1118
1119 errno = old_errno;
1120 }
1121}
1122
1123/* called whenever the libev signal pipe */
1124/* got some events (signal, async) */
521static void 1125static void
522signals_init (ANSIG *base, int count) 1126pipecb (EV_P_ ev_io *iow, int revents)
523{ 1127{
524 while (count--) 1128#if EV_USE_EVENTFD
1129 if (evfd >= 0)
1130 {
1131 uint64_t counter;
1132 read (evfd, &counter, sizeof (uint64_t));
525 { 1133 }
526 base->head = 0; 1134 else
1135#endif
1136 {
1137 char dummy;
1138 read (evpipe [0], &dummy, 1);
1139 }
1140
1141 if (gotsig && ev_is_default_loop (EV_A))
1142 {
1143 int signum;
527 base->gotsig = 0; 1144 gotsig = 0;
528 1145
529 ++base; 1146 for (signum = signalmax; signum--; )
1147 if (signals [signum].gotsig)
1148 ev_feed_signal_event (EV_A_ signum + 1);
1149 }
1150
1151#if EV_ASYNC_ENABLE
1152 if (gotasync)
530 } 1153 {
1154 int i;
1155 gotasync = 0;
1156
1157 for (i = asynccnt; i--; )
1158 if (asyncs [i]->sent)
1159 {
1160 asyncs [i]->sent = 0;
1161 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1162 }
1163 }
1164#endif
531} 1165}
1166
1167/*****************************************************************************/
532 1168
533static void 1169static void
534sighandler (int signum) 1170ev_sighandler (int signum)
535{ 1171{
1172#if EV_MULTIPLICITY
1173 struct ev_loop *loop = &default_loop_struct;
1174#endif
1175
536#if WIN32 1176#if _WIN32
537 signal (signum, sighandler); 1177 signal (signum, ev_sighandler);
538#endif 1178#endif
539 1179
540 signals [signum - 1].gotsig = 1; 1180 signals [signum - 1].gotsig = 1;
541 1181 evpipe_write (EV_A_ &gotsig);
542 if (!gotsig)
543 {
544 int old_errno = errno;
545 gotsig = 1;
546#ifdef WIN32
547 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
548#else
549 write (sigpipe [1], &signum, 1);
550#endif
551 errno = old_errno;
552 }
553} 1182}
554 1183
555static void 1184void noinline
556sigcb (EV_P_ struct ev_io *iow, int revents) 1185ev_feed_signal_event (EV_P_ int signum)
557{ 1186{
558 WL w; 1187 WL w;
1188
1189#if EV_MULTIPLICITY
1190 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1191#endif
1192
559 int signum; 1193 --signum;
560 1194
561#ifdef WIN32 1195 if (signum < 0 || signum >= signalmax)
562 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT); 1196 return;
563#else
564 read (sigpipe [0], &revents, 1);
565#endif
566 gotsig = 0;
567 1197
568 for (signum = signalmax; signum--; )
569 if (signals [signum].gotsig)
570 {
571 signals [signum].gotsig = 0; 1198 signals [signum].gotsig = 0;
572 1199
573 for (w = signals [signum].head; w; w = w->next) 1200 for (w = signals [signum].head; w; w = w->next)
574 event (EV_A_ (W)w, EV_SIGNAL); 1201 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
575 }
576}
577
578static void
579siginit (EV_P)
580{
581#ifndef WIN32
582 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
583 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
584
585 /* rather than sort out wether we really need nb, set it */
586 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
587 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
588#endif
589
590 ev_io_set (&sigev, sigpipe [0], EV_READ);
591 ev_io_start (EV_A_ &sigev);
592 ev_unref (EV_A); /* child watcher should not keep loop alive */
593} 1202}
594 1203
595/*****************************************************************************/ 1204/*****************************************************************************/
596 1205
597static struct ev_child *childs [PID_HASHSIZE]; 1206static WL childs [EV_PID_HASHSIZE];
598 1207
599#ifndef WIN32 1208#ifndef _WIN32
600 1209
601static struct ev_signal childev; 1210static ev_signal childev;
1211
1212#ifndef WIFCONTINUED
1213# define WIFCONTINUED(status) 0
1214#endif
1215
1216/* handle a single child status event */
1217inline_speed void
1218child_reap (EV_P_ int chain, int pid, int status)
1219{
1220 ev_child *w;
1221 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1222
1223 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1224 {
1225 if ((w->pid == pid || !w->pid)
1226 && (!traced || (w->flags & 1)))
1227 {
1228 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1229 w->rpid = pid;
1230 w->rstatus = status;
1231 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1232 }
1233 }
1234}
602 1235
603#ifndef WCONTINUED 1236#ifndef WCONTINUED
604# define WCONTINUED 0 1237# define WCONTINUED 0
605#endif 1238#endif
606 1239
1240/* called on sigchld etc., calls waitpid */
607static void 1241static void
608child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
609{
610 struct ev_child *w;
611
612 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
613 if (w->pid == pid || !w->pid)
614 {
615 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
616 w->rpid = pid;
617 w->rstatus = status;
618 event (EV_A_ (W)w, EV_CHILD);
619 }
620}
621
622static void
623childcb (EV_P_ struct ev_signal *sw, int revents) 1242childcb (EV_P_ ev_signal *sw, int revents)
624{ 1243{
625 int pid, status; 1244 int pid, status;
626 1245
1246 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
627 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1247 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
628 { 1248 if (!WCONTINUED
1249 || errno != EINVAL
1250 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1251 return;
1252
629 /* make sure we are called again until all childs have been reaped */ 1253 /* make sure we are called again until all children have been reaped */
1254 /* we need to do it this way so that the callback gets called before we continue */
630 event (EV_A_ (W)sw, EV_SIGNAL); 1255 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
631 1256
632 child_reap (EV_A_ sw, pid, pid, status); 1257 child_reap (EV_A_ pid, pid, status);
1258 if (EV_PID_HASHSIZE > 1)
633 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1259 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
634 }
635} 1260}
636 1261
637#endif 1262#endif
638 1263
639/*****************************************************************************/ 1264/*****************************************************************************/
640 1265
1266#if EV_USE_PORT
1267# include "ev_port.c"
1268#endif
641#if EV_USE_KQUEUE 1269#if EV_USE_KQUEUE
642# include "ev_kqueue.c" 1270# include "ev_kqueue.c"
643#endif 1271#endif
644#if EV_USE_EPOLL 1272#if EV_USE_EPOLL
645# include "ev_epoll.c" 1273# include "ev_epoll.c"
662{ 1290{
663 return EV_VERSION_MINOR; 1291 return EV_VERSION_MINOR;
664} 1292}
665 1293
666/* return true if we are running with elevated privileges and should ignore env variables */ 1294/* return true if we are running with elevated privileges and should ignore env variables */
667static int 1295int inline_size
668enable_secure (void) 1296enable_secure (void)
669{ 1297{
670#ifdef WIN32 1298#ifdef _WIN32
671 return 0; 1299 return 0;
672#else 1300#else
673 return getuid () != geteuid () 1301 return getuid () != geteuid ()
674 || getgid () != getegid (); 1302 || getgid () != getegid ();
675#endif 1303#endif
676} 1304}
677 1305
678int 1306unsigned int
679ev_method (EV_P) 1307ev_supported_backends (void)
680{ 1308{
681 return method; 1309 unsigned int flags = 0;
682}
683 1310
684static void 1311 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
685loop_init (EV_P_ int methods) 1312 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1313 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1314 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1315 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1316
1317 return flags;
1318}
1319
1320unsigned int
1321ev_recommended_backends (void)
686{ 1322{
687 if (!method) 1323 unsigned int flags = ev_supported_backends ();
1324
1325#ifndef __NetBSD__
1326 /* kqueue is borked on everything but netbsd apparently */
1327 /* it usually doesn't work correctly on anything but sockets and pipes */
1328 flags &= ~EVBACKEND_KQUEUE;
1329#endif
1330#ifdef __APPLE__
1331 /* only select works correctly on that "unix-certified" platform */
1332 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1333 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1334#endif
1335
1336 return flags;
1337}
1338
1339unsigned int
1340ev_embeddable_backends (void)
1341{
1342 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1343
1344 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1345 /* please fix it and tell me how to detect the fix */
1346 flags &= ~EVBACKEND_EPOLL;
1347
1348 return flags;
1349}
1350
1351unsigned int
1352ev_backend (EV_P)
1353{
1354 return backend;
1355}
1356
1357unsigned int
1358ev_loop_count (EV_P)
1359{
1360 return loop_count;
1361}
1362
1363unsigned int
1364ev_loop_depth (EV_P)
1365{
1366 return loop_depth;
1367}
1368
1369void
1370ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1371{
1372 io_blocktime = interval;
1373}
1374
1375void
1376ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1377{
1378 timeout_blocktime = interval;
1379}
1380
1381/* initialise a loop structure, must be zero-initialised */
1382static void noinline
1383loop_init (EV_P_ unsigned int flags)
1384{
1385 if (!backend)
688 { 1386 {
1387#if EV_USE_REALTIME
1388 if (!have_realtime)
1389 {
1390 struct timespec ts;
1391
1392 if (!clock_gettime (CLOCK_REALTIME, &ts))
1393 have_realtime = 1;
1394 }
1395#endif
1396
689#if EV_USE_MONOTONIC 1397#if EV_USE_MONOTONIC
1398 if (!have_monotonic)
1399 {
1400 struct timespec ts;
1401
1402 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1403 have_monotonic = 1;
1404 }
1405#endif
1406
1407 ev_rt_now = ev_time ();
1408 mn_now = get_clock ();
1409 now_floor = mn_now;
1410 rtmn_diff = ev_rt_now - mn_now;
1411
1412 io_blocktime = 0.;
1413 timeout_blocktime = 0.;
1414 backend = 0;
1415 backend_fd = -1;
1416 gotasync = 0;
1417#if EV_USE_INOTIFY
1418 fs_fd = -2;
1419#endif
1420
1421 /* pid check not overridable via env */
1422#ifndef _WIN32
1423 if (flags & EVFLAG_FORKCHECK)
1424 curpid = getpid ();
1425#endif
1426
1427 if (!(flags & EVFLAG_NOENV)
1428 && !enable_secure ()
1429 && getenv ("LIBEV_FLAGS"))
1430 flags = atoi (getenv ("LIBEV_FLAGS"));
1431
1432 if (!(flags & 0x0000ffffU))
1433 flags |= ev_recommended_backends ();
1434
1435#if EV_USE_PORT
1436 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1437#endif
1438#if EV_USE_KQUEUE
1439 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1440#endif
1441#if EV_USE_EPOLL
1442 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1443#endif
1444#if EV_USE_POLL
1445 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1446#endif
1447#if EV_USE_SELECT
1448 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1449#endif
1450
1451 ev_prepare_init (&pending_w, pendingcb);
1452
1453 ev_init (&pipe_w, pipecb);
1454 ev_set_priority (&pipe_w, EV_MAXPRI);
1455 }
1456}
1457
1458/* free up a loop structure */
1459static void noinline
1460loop_destroy (EV_P)
1461{
1462 int i;
1463
1464 if (ev_is_active (&pipe_w))
1465 {
1466 ev_ref (EV_A); /* signal watcher */
1467 ev_io_stop (EV_A_ &pipe_w);
1468
1469#if EV_USE_EVENTFD
1470 if (evfd >= 0)
1471 close (evfd);
1472#endif
1473
1474 if (evpipe [0] >= 0)
1475 {
1476 close (evpipe [0]);
1477 close (evpipe [1]);
1478 }
1479 }
1480
1481#if EV_USE_INOTIFY
1482 if (fs_fd >= 0)
1483 close (fs_fd);
1484#endif
1485
1486 if (backend_fd >= 0)
1487 close (backend_fd);
1488
1489#if EV_USE_PORT
1490 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1491#endif
1492#if EV_USE_KQUEUE
1493 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1494#endif
1495#if EV_USE_EPOLL
1496 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1497#endif
1498#if EV_USE_POLL
1499 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1500#endif
1501#if EV_USE_SELECT
1502 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1503#endif
1504
1505 for (i = NUMPRI; i--; )
1506 {
1507 array_free (pending, [i]);
1508#if EV_IDLE_ENABLE
1509 array_free (idle, [i]);
1510#endif
1511 }
1512
1513 ev_free (anfds); anfdmax = 0;
1514
1515 /* have to use the microsoft-never-gets-it-right macro */
1516 array_free (rfeed, EMPTY);
1517 array_free (fdchange, EMPTY);
1518 array_free (timer, EMPTY);
1519#if EV_PERIODIC_ENABLE
1520 array_free (periodic, EMPTY);
1521#endif
1522#if EV_FORK_ENABLE
1523 array_free (fork, EMPTY);
1524#endif
1525 array_free (prepare, EMPTY);
1526 array_free (check, EMPTY);
1527#if EV_ASYNC_ENABLE
1528 array_free (async, EMPTY);
1529#endif
1530
1531 backend = 0;
1532}
1533
1534#if EV_USE_INOTIFY
1535inline_size void infy_fork (EV_P);
1536#endif
1537
1538inline_size void
1539loop_fork (EV_P)
1540{
1541#if EV_USE_PORT
1542 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1543#endif
1544#if EV_USE_KQUEUE
1545 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1546#endif
1547#if EV_USE_EPOLL
1548 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1549#endif
1550#if EV_USE_INOTIFY
1551 infy_fork (EV_A);
1552#endif
1553
1554 if (ev_is_active (&pipe_w))
1555 {
1556 /* this "locks" the handlers against writing to the pipe */
1557 /* while we modify the fd vars */
1558 gotsig = 1;
1559#if EV_ASYNC_ENABLE
1560 gotasync = 1;
1561#endif
1562
1563 ev_ref (EV_A);
1564 ev_io_stop (EV_A_ &pipe_w);
1565
1566#if EV_USE_EVENTFD
1567 if (evfd >= 0)
1568 close (evfd);
1569#endif
1570
1571 if (evpipe [0] >= 0)
1572 {
1573 close (evpipe [0]);
1574 close (evpipe [1]);
1575 }
1576
1577 evpipe_init (EV_A);
1578 /* now iterate over everything, in case we missed something */
1579 pipecb (EV_A_ &pipe_w, EV_READ);
1580 }
1581
1582 postfork = 0;
1583}
1584
1585#if EV_MULTIPLICITY
1586
1587struct ev_loop *
1588ev_loop_new (unsigned int flags)
1589{
1590 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1591
1592 memset (loop, 0, sizeof (struct ev_loop));
1593
1594 loop_init (EV_A_ flags);
1595
1596 if (ev_backend (EV_A))
1597 return loop;
1598
1599 return 0;
1600}
1601
1602void
1603ev_loop_destroy (EV_P)
1604{
1605 loop_destroy (EV_A);
1606 ev_free (loop);
1607}
1608
1609void
1610ev_loop_fork (EV_P)
1611{
1612 postfork = 1; /* must be in line with ev_default_fork */
1613}
1614
1615#if EV_VERIFY
1616static void noinline
1617verify_watcher (EV_P_ W w)
1618{
1619 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1620
1621 if (w->pending)
1622 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1623}
1624
1625static void noinline
1626verify_heap (EV_P_ ANHE *heap, int N)
1627{
1628 int i;
1629
1630 for (i = HEAP0; i < N + HEAP0; ++i)
1631 {
1632 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1633 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1634 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1635
1636 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1637 }
1638}
1639
1640static void noinline
1641array_verify (EV_P_ W *ws, int cnt)
1642{
1643 while (cnt--)
1644 {
1645 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1646 verify_watcher (EV_A_ ws [cnt]);
1647 }
1648}
1649#endif
1650
1651void
1652ev_loop_verify (EV_P)
1653{
1654#if EV_VERIFY
1655 int i;
1656 WL w;
1657
1658 assert (activecnt >= -1);
1659
1660 assert (fdchangemax >= fdchangecnt);
1661 for (i = 0; i < fdchangecnt; ++i)
1662 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1663
1664 assert (anfdmax >= 0);
1665 for (i = 0; i < anfdmax; ++i)
1666 for (w = anfds [i].head; w; w = w->next)
690 { 1667 {
691 struct timespec ts; 1668 verify_watcher (EV_A_ (W)w);
692 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1669 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
693 have_monotonic = 1; 1670 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
694 } 1671 }
695#endif
696 1672
697 rt_now = ev_time (); 1673 assert (timermax >= timercnt);
698 mn_now = get_clock (); 1674 verify_heap (EV_A_ timers, timercnt);
699 now_floor = mn_now;
700 rtmn_diff = rt_now - mn_now;
701 1675
702 if (methods == EVMETHOD_AUTO) 1676#if EV_PERIODIC_ENABLE
703 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1677 assert (periodicmax >= periodiccnt);
704 methods = atoi (getenv ("LIBEV_METHODS")); 1678 verify_heap (EV_A_ periodics, periodiccnt);
705 else
706 methods = EVMETHOD_ANY;
707
708 method = 0;
709#if EV_USE_WIN32
710 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
711#endif
712#if EV_USE_KQUEUE
713 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
714#endif
715#if EV_USE_EPOLL
716 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
717#endif
718#if EV_USE_POLL
719 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
720#endif
721#if EV_USE_SELECT
722 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
723#endif
724
725 ev_watcher_init (&sigev, sigcb);
726 ev_set_priority (&sigev, EV_MAXPRI);
727 }
728}
729
730void
731loop_destroy (EV_P)
732{
733 int i;
734
735#if EV_USE_WIN32
736 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
737#endif
738#if EV_USE_KQUEUE
739 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
740#endif
741#if EV_USE_EPOLL
742 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
743#endif
744#if EV_USE_POLL
745 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
746#endif
747#if EV_USE_SELECT
748 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
749#endif 1679#endif
750 1680
751 for (i = NUMPRI; i--; ) 1681 for (i = NUMPRI; i--; )
752 array_free (pending, [i]); 1682 {
1683 assert (pendingmax [i] >= pendingcnt [i]);
1684#if EV_IDLE_ENABLE
1685 assert (idleall >= 0);
1686 assert (idlemax [i] >= idlecnt [i]);
1687 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1688#endif
1689 }
753 1690
754 /* have to use the microsoft-never-gets-it-right macro */ 1691#if EV_FORK_ENABLE
755 array_free_microshit (fdchange); 1692 assert (forkmax >= forkcnt);
756 array_free_microshit (timer); 1693 array_verify (EV_A_ (W *)forks, forkcnt);
757 array_free_microshit (periodic); 1694#endif
758 array_free_microshit (idle);
759 array_free_microshit (prepare);
760 array_free_microshit (check);
761 1695
762 method = 0; 1696#if EV_ASYNC_ENABLE
763} 1697 assert (asyncmax >= asynccnt);
1698 array_verify (EV_A_ (W *)asyncs, asynccnt);
1699#endif
764 1700
765static void 1701 assert (preparemax >= preparecnt);
766loop_fork (EV_P) 1702 array_verify (EV_A_ (W *)prepares, preparecnt);
767{ 1703
768#if EV_USE_EPOLL 1704 assert (checkmax >= checkcnt);
769 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1705 array_verify (EV_A_ (W *)checks, checkcnt);
1706
1707# if 0
1708 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1709 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
770#endif 1710# endif
771#if EV_USE_KQUEUE
772 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
773#endif 1711#endif
774
775 if (ev_is_active (&sigev))
776 {
777 /* default loop */
778
779 ev_ref (EV_A);
780 ev_io_stop (EV_A_ &sigev);
781 close (sigpipe [0]);
782 close (sigpipe [1]);
783
784 while (pipe (sigpipe))
785 syserr ("(libev) error creating pipe");
786
787 siginit (EV_A);
788 }
789
790 postfork = 0;
791} 1712}
1713
1714#endif /* multiplicity */
792 1715
793#if EV_MULTIPLICITY 1716#if EV_MULTIPLICITY
794struct ev_loop * 1717struct ev_loop *
795ev_loop_new (int methods) 1718ev_default_loop_init (unsigned int flags)
796{ 1719#else
797 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1720int
798 1721ev_default_loop (unsigned int flags)
799 memset (loop, 0, sizeof (struct ev_loop));
800
801 loop_init (EV_A_ methods);
802
803 if (ev_method (EV_A))
804 return loop;
805
806 return 0;
807}
808
809void
810ev_loop_destroy (EV_P)
811{
812 loop_destroy (EV_A);
813 ev_free (loop);
814}
815
816void
817ev_loop_fork (EV_P)
818{
819 postfork = 1;
820}
821
822#endif 1722#endif
823 1723{
1724 if (!ev_default_loop_ptr)
1725 {
824#if EV_MULTIPLICITY 1726#if EV_MULTIPLICITY
825struct ev_loop default_loop_struct; 1727 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
826static struct ev_loop *default_loop;
827
828struct ev_loop *
829#else 1728#else
830static int default_loop;
831
832int
833#endif
834ev_default_loop (int methods)
835{
836 if (sigpipe [0] == sigpipe [1])
837 if (pipe (sigpipe))
838 return 0;
839
840 if (!default_loop)
841 {
842#if EV_MULTIPLICITY
843 struct ev_loop *loop = default_loop = &default_loop_struct;
844#else
845 default_loop = 1; 1729 ev_default_loop_ptr = 1;
846#endif 1730#endif
847 1731
848 loop_init (EV_A_ methods); 1732 loop_init (EV_A_ flags);
849 1733
850 if (ev_method (EV_A)) 1734 if (ev_backend (EV_A))
851 { 1735 {
852 siginit (EV_A);
853
854#ifndef WIN32 1736#ifndef _WIN32
855 ev_signal_init (&childev, childcb, SIGCHLD); 1737 ev_signal_init (&childev, childcb, SIGCHLD);
856 ev_set_priority (&childev, EV_MAXPRI); 1738 ev_set_priority (&childev, EV_MAXPRI);
857 ev_signal_start (EV_A_ &childev); 1739 ev_signal_start (EV_A_ &childev);
858 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1740 ev_unref (EV_A); /* child watcher should not keep loop alive */
859#endif 1741#endif
860 } 1742 }
861 else 1743 else
862 default_loop = 0; 1744 ev_default_loop_ptr = 0;
863 } 1745 }
864 1746
865 return default_loop; 1747 return ev_default_loop_ptr;
866} 1748}
867 1749
868void 1750void
869ev_default_destroy (void) 1751ev_default_destroy (void)
870{ 1752{
871#if EV_MULTIPLICITY 1753#if EV_MULTIPLICITY
872 struct ev_loop *loop = default_loop; 1754 struct ev_loop *loop = ev_default_loop_ptr;
873#endif 1755#endif
874 1756
1757 ev_default_loop_ptr = 0;
1758
875#ifndef WIN32 1759#ifndef _WIN32
876 ev_ref (EV_A); /* child watcher */ 1760 ev_ref (EV_A); /* child watcher */
877 ev_signal_stop (EV_A_ &childev); 1761 ev_signal_stop (EV_A_ &childev);
878#endif 1762#endif
879 1763
880 ev_ref (EV_A); /* signal watcher */
881 ev_io_stop (EV_A_ &sigev);
882
883 close (sigpipe [0]); sigpipe [0] = 0;
884 close (sigpipe [1]); sigpipe [1] = 0;
885
886 loop_destroy (EV_A); 1764 loop_destroy (EV_A);
887} 1765}
888 1766
889void 1767void
890ev_default_fork (void) 1768ev_default_fork (void)
891{ 1769{
892#if EV_MULTIPLICITY 1770#if EV_MULTIPLICITY
893 struct ev_loop *loop = default_loop; 1771 struct ev_loop *loop = ev_default_loop_ptr;
894#endif 1772#endif
895 1773
896 if (method) 1774 postfork = 1; /* must be in line with ev_loop_fork */
897 postfork = 1;
898} 1775}
899 1776
900/*****************************************************************************/ 1777/*****************************************************************************/
901 1778
902static int 1779void
903any_pending (EV_P) 1780ev_invoke (EV_P_ void *w, int revents)
904{ 1781{
905 int pri; 1782 EV_CB_INVOKE ((W)w, revents);
906
907 for (pri = NUMPRI; pri--; )
908 if (pendingcnt [pri])
909 return 1;
910
911 return 0;
912} 1783}
913 1784
914static void 1785inline_speed void
915call_pending (EV_P) 1786call_pending (EV_P)
916{ 1787{
917 int pri; 1788 int pri;
918 1789
919 for (pri = NUMPRI; pri--; ) 1790 for (pri = NUMPRI; pri--; )
920 while (pendingcnt [pri]) 1791 while (pendingcnt [pri])
921 { 1792 {
922 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1793 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
923 1794
924 if (p->w) 1795 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
925 { 1796 /* ^ this is no longer true, as pending_w could be here */
1797
926 p->w->pending = 0; 1798 p->w->pending = 0;
927 p->w->cb (EV_A_ p->w, p->events); 1799 EV_CB_INVOKE (p->w, p->events);
928 } 1800 EV_FREQUENT_CHECK;
929 } 1801 }
930} 1802}
931 1803
932static void 1804#if EV_IDLE_ENABLE
1805/* make idle watchers pending. this handles the "call-idle */
1806/* only when higher priorities are idle" logic */
1807inline_size void
933timers_reify (EV_P) 1808idle_reify (EV_P)
934{ 1809{
935 while (timercnt && ((WT)timers [0])->at <= mn_now) 1810 if (expect_false (idleall))
936 { 1811 {
937 struct ev_timer *w = timers [0]; 1812 int pri;
938 1813
939 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1814 for (pri = NUMPRI; pri--; )
940
941 /* first reschedule or stop timer */
942 if (w->repeat)
943 { 1815 {
944 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1816 if (pendingcnt [pri])
945 ((WT)w)->at = mn_now + w->repeat; 1817 break;
946 downheap ((WT *)timers, timercnt, 0);
947 }
948 else
949 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
950 1818
951 event (EV_A_ (W)w, EV_TIMEOUT); 1819 if (idlecnt [pri])
952 }
953}
954
955static void
956periodics_reify (EV_P)
957{
958 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
959 {
960 struct ev_periodic *w = periodics [0];
961
962 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
963
964 /* first reschedule or stop timer */
965 if (w->interval)
966 {
967 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
968 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
969 downheap ((WT *)periodics, periodiccnt, 0);
970 }
971 else
972 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
973
974 event (EV_A_ (W)w, EV_PERIODIC);
975 }
976}
977
978static void
979periodics_reschedule (EV_P)
980{
981 int i;
982
983 /* adjust periodics after time jump */
984 for (i = 0; i < periodiccnt; ++i)
985 {
986 struct ev_periodic *w = periodics [i];
987
988 if (w->interval)
989 {
990 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
991
992 if (fabs (diff) >= 1e-4)
993 { 1820 {
994 ev_periodic_stop (EV_A_ w); 1821 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
995 ev_periodic_start (EV_A_ w); 1822 break;
996
997 i = 0; /* restart loop, inefficient, but time jumps should be rare */
998 } 1823 }
999 } 1824 }
1000 } 1825 }
1001} 1826}
1827#endif
1002 1828
1003inline int 1829/* make timers pending */
1004time_update_monotonic (EV_P) 1830inline_size void
1831timers_reify (EV_P)
1005{ 1832{
1006 mn_now = get_clock (); 1833 EV_FREQUENT_CHECK;
1007 1834
1008 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1835 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1009 {
1010 rt_now = rtmn_diff + mn_now;
1011 return 0;
1012 } 1836 {
1013 else 1837 do
1838 {
1839 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1840
1841 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1842
1843 /* first reschedule or stop timer */
1844 if (w->repeat)
1845 {
1846 ev_at (w) += w->repeat;
1847 if (ev_at (w) < mn_now)
1848 ev_at (w) = mn_now;
1849
1850 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1851
1852 ANHE_at_cache (timers [HEAP0]);
1853 downheap (timers, timercnt, HEAP0);
1854 }
1855 else
1856 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1857
1858 EV_FREQUENT_CHECK;
1859 feed_reverse (EV_A_ (W)w);
1860 }
1861 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1862
1863 feed_reverse_done (EV_A_ EV_TIMEOUT);
1014 { 1864 }
1015 now_floor = mn_now; 1865}
1016 rt_now = ev_time (); 1866
1017 return 1; 1867#if EV_PERIODIC_ENABLE
1868/* make periodics pending */
1869inline_size void
1870periodics_reify (EV_P)
1871{
1872 EV_FREQUENT_CHECK;
1873
1874 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1018 } 1875 {
1019} 1876 int feed_count = 0;
1020 1877
1021static void 1878 do
1022time_update (EV_P) 1879 {
1880 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1881
1882 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1883
1884 /* first reschedule or stop timer */
1885 if (w->reschedule_cb)
1886 {
1887 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1888
1889 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1890
1891 ANHE_at_cache (periodics [HEAP0]);
1892 downheap (periodics, periodiccnt, HEAP0);
1893 }
1894 else if (w->interval)
1895 {
1896 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1897 /* if next trigger time is not sufficiently in the future, put it there */
1898 /* this might happen because of floating point inexactness */
1899 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1900 {
1901 ev_at (w) += w->interval;
1902
1903 /* if interval is unreasonably low we might still have a time in the past */
1904 /* so correct this. this will make the periodic very inexact, but the user */
1905 /* has effectively asked to get triggered more often than possible */
1906 if (ev_at (w) < ev_rt_now)
1907 ev_at (w) = ev_rt_now;
1908 }
1909
1910 ANHE_at_cache (periodics [HEAP0]);
1911 downheap (periodics, periodiccnt, HEAP0);
1912 }
1913 else
1914 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1915
1916 EV_FREQUENT_CHECK;
1917 feed_reverse (EV_A_ (W)w);
1918 }
1919 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1920
1921 feed_reverse_done (EV_A_ EV_PERIODIC);
1922 }
1923}
1924
1925/* simply recalculate all periodics */
1926/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1927static void noinline
1928periodics_reschedule (EV_P)
1023{ 1929{
1024 int i; 1930 int i;
1025 1931
1932 /* adjust periodics after time jump */
1933 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1934 {
1935 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1936
1937 if (w->reschedule_cb)
1938 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1939 else if (w->interval)
1940 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1941
1942 ANHE_at_cache (periodics [i]);
1943 }
1944
1945 reheap (periodics, periodiccnt);
1946}
1947#endif
1948
1949/* adjust all timers by a given offset */
1950static void noinline
1951timers_reschedule (EV_P_ ev_tstamp adjust)
1952{
1953 int i;
1954
1955 for (i = 0; i < timercnt; ++i)
1956 {
1957 ANHE *he = timers + i + HEAP0;
1958 ANHE_w (*he)->at += adjust;
1959 ANHE_at_cache (*he);
1960 }
1961}
1962
1963/* fetch new monotonic and realtime times from the kernel */
1964/* also detetc if there was a timejump, and act accordingly */
1965inline_speed void
1966time_update (EV_P_ ev_tstamp max_block)
1967{
1026#if EV_USE_MONOTONIC 1968#if EV_USE_MONOTONIC
1027 if (expect_true (have_monotonic)) 1969 if (expect_true (have_monotonic))
1028 { 1970 {
1029 if (time_update_monotonic (EV_A)) 1971 int i;
1972 ev_tstamp odiff = rtmn_diff;
1973
1974 mn_now = get_clock ();
1975
1976 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1977 /* interpolate in the meantime */
1978 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1030 { 1979 {
1031 ev_tstamp odiff = rtmn_diff; 1980 ev_rt_now = rtmn_diff + mn_now;
1981 return;
1982 }
1032 1983
1984 now_floor = mn_now;
1985 ev_rt_now = ev_time ();
1986
1033 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1987 /* loop a few times, before making important decisions.
1988 * on the choice of "4": one iteration isn't enough,
1989 * in case we get preempted during the calls to
1990 * ev_time and get_clock. a second call is almost guaranteed
1991 * to succeed in that case, though. and looping a few more times
1992 * doesn't hurt either as we only do this on time-jumps or
1993 * in the unlikely event of having been preempted here.
1994 */
1995 for (i = 4; --i; )
1034 { 1996 {
1035 rtmn_diff = rt_now - mn_now; 1997 rtmn_diff = ev_rt_now - mn_now;
1036 1998
1037 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1999 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1038 return; /* all is well */ 2000 return; /* all is well */
1039 2001
1040 rt_now = ev_time (); 2002 ev_rt_now = ev_time ();
1041 mn_now = get_clock (); 2003 mn_now = get_clock ();
1042 now_floor = mn_now; 2004 now_floor = mn_now;
1043 } 2005 }
1044 2006
2007 /* no timer adjustment, as the monotonic clock doesn't jump */
2008 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2009# if EV_PERIODIC_ENABLE
2010 periodics_reschedule (EV_A);
2011# endif
2012 }
2013 else
2014#endif
2015 {
2016 ev_rt_now = ev_time ();
2017
2018 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2019 {
2020 /* adjust timers. this is easy, as the offset is the same for all of them */
2021 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2022#if EV_PERIODIC_ENABLE
1045 periodics_reschedule (EV_A); 2023 periodics_reschedule (EV_A);
1046 /* no timer adjustment, as the monotonic clock doesn't jump */ 2024#endif
1047 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1048 } 2025 }
1049 }
1050 else
1051#endif
1052 {
1053 rt_now = ev_time ();
1054 2026
1055 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1056 {
1057 periodics_reschedule (EV_A);
1058
1059 /* adjust timers. this is easy, as the offset is the same for all */
1060 for (i = 0; i < timercnt; ++i)
1061 ((WT)timers [i])->at += rt_now - mn_now;
1062 }
1063
1064 mn_now = rt_now; 2027 mn_now = ev_rt_now;
1065 } 2028 }
1066} 2029}
1067
1068void
1069ev_ref (EV_P)
1070{
1071 ++activecnt;
1072}
1073
1074void
1075ev_unref (EV_P)
1076{
1077 --activecnt;
1078}
1079
1080static int loop_done;
1081 2030
1082void 2031void
1083ev_loop (EV_P_ int flags) 2032ev_loop (EV_P_ int flags)
1084{ 2033{
1085 double block; 2034 ++loop_depth;
1086 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2035
2036 loop_done = EVUNLOOP_CANCEL;
2037
2038 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1087 2039
1088 do 2040 do
1089 { 2041 {
2042#if EV_VERIFY >= 2
2043 ev_loop_verify (EV_A);
2044#endif
2045
2046#ifndef _WIN32
2047 if (expect_false (curpid)) /* penalise the forking check even more */
2048 if (expect_false (getpid () != curpid))
2049 {
2050 curpid = getpid ();
2051 postfork = 1;
2052 }
2053#endif
2054
2055#if EV_FORK_ENABLE
2056 /* we might have forked, so queue fork handlers */
2057 if (expect_false (postfork))
2058 if (forkcnt)
2059 {
2060 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2061 call_pending (EV_A);
2062 }
2063#endif
2064
1090 /* queue check watchers (and execute them) */ 2065 /* queue prepare watchers (and execute them) */
1091 if (expect_false (preparecnt)) 2066 if (expect_false (preparecnt))
1092 { 2067 {
1093 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2068 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1094 call_pending (EV_A); 2069 call_pending (EV_A);
1095 } 2070 }
1100 2075
1101 /* update fd-related kernel structures */ 2076 /* update fd-related kernel structures */
1102 fd_reify (EV_A); 2077 fd_reify (EV_A);
1103 2078
1104 /* calculate blocking time */ 2079 /* calculate blocking time */
2080 {
2081 ev_tstamp waittime = 0.;
2082 ev_tstamp sleeptime = 0.;
1105 2083
1106 /* we only need this for !monotonic clock or timers, but as we basically 2084 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1107 always have timers, we just calculate it always */
1108#if EV_USE_MONOTONIC
1109 if (expect_true (have_monotonic))
1110 time_update_monotonic (EV_A);
1111 else
1112#endif
1113 { 2085 {
1114 rt_now = ev_time (); 2086 /* remember old timestamp for io_blocktime calculation */
1115 mn_now = rt_now; 2087 ev_tstamp prev_mn_now = mn_now;
1116 }
1117 2088
1118 if (flags & EVLOOP_NONBLOCK || idlecnt) 2089 /* update time to cancel out callback processing overhead */
1119 block = 0.; 2090 time_update (EV_A_ 1e100);
1120 else 2091
1121 {
1122 block = MAX_BLOCKTIME; 2092 waittime = MAX_BLOCKTIME;
1123 2093
1124 if (timercnt) 2094 if (timercnt)
1125 { 2095 {
1126 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2096 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1127 if (block > to) block = to; 2097 if (waittime > to) waittime = to;
1128 } 2098 }
1129 2099
2100#if EV_PERIODIC_ENABLE
1130 if (periodiccnt) 2101 if (periodiccnt)
1131 { 2102 {
1132 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 2103 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1133 if (block > to) block = to; 2104 if (waittime > to) waittime = to;
1134 } 2105 }
2106#endif
1135 2107
1136 if (block < 0.) block = 0.; 2108 /* don't let timeouts decrease the waittime below timeout_blocktime */
2109 if (expect_false (waittime < timeout_blocktime))
2110 waittime = timeout_blocktime;
2111
2112 /* extra check because io_blocktime is commonly 0 */
2113 if (expect_false (io_blocktime))
2114 {
2115 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2116
2117 if (sleeptime > waittime - backend_fudge)
2118 sleeptime = waittime - backend_fudge;
2119
2120 if (expect_true (sleeptime > 0.))
2121 {
2122 ev_sleep (sleeptime);
2123 waittime -= sleeptime;
2124 }
2125 }
1137 } 2126 }
1138 2127
1139 method_poll (EV_A_ block); 2128 ++loop_count;
2129 backend_poll (EV_A_ waittime);
1140 2130
1141 /* update rt_now, do magic */ 2131 /* update ev_rt_now, do magic */
1142 time_update (EV_A); 2132 time_update (EV_A_ waittime + sleeptime);
2133 }
1143 2134
1144 /* queue pending timers and reschedule them */ 2135 /* queue pending timers and reschedule them */
1145 timers_reify (EV_A); /* relative timers called last */ 2136 timers_reify (EV_A); /* relative timers called last */
2137#if EV_PERIODIC_ENABLE
1146 periodics_reify (EV_A); /* absolute timers called first */ 2138 periodics_reify (EV_A); /* absolute timers called first */
2139#endif
1147 2140
2141#if EV_IDLE_ENABLE
1148 /* queue idle watchers unless io or timers are pending */ 2142 /* queue idle watchers unless other events are pending */
1149 if (idlecnt && !any_pending (EV_A)) 2143 idle_reify (EV_A);
1150 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2144#endif
1151 2145
1152 /* queue check watchers, to be executed first */ 2146 /* queue check watchers, to be executed first */
1153 if (checkcnt) 2147 if (expect_false (checkcnt))
1154 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2148 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1155 2149
1156 call_pending (EV_A); 2150 call_pending (EV_A);
1157 } 2151 }
1158 while (activecnt && !loop_done); 2152 while (expect_true (
2153 activecnt
2154 && !loop_done
2155 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2156 ));
1159 2157
1160 if (loop_done != 2) 2158 if (loop_done == EVUNLOOP_ONE)
1161 loop_done = 0; 2159 loop_done = EVUNLOOP_CANCEL;
2160
2161 --loop_depth;
1162} 2162}
1163 2163
1164void 2164void
1165ev_unloop (EV_P_ int how) 2165ev_unloop (EV_P_ int how)
1166{ 2166{
1167 loop_done = how; 2167 loop_done = how;
1168} 2168}
1169 2169
2170void
2171ev_ref (EV_P)
2172{
2173 ++activecnt;
2174}
2175
2176void
2177ev_unref (EV_P)
2178{
2179 --activecnt;
2180}
2181
2182void
2183ev_now_update (EV_P)
2184{
2185 time_update (EV_A_ 1e100);
2186}
2187
2188void
2189ev_suspend (EV_P)
2190{
2191 ev_now_update (EV_A);
2192}
2193
2194void
2195ev_resume (EV_P)
2196{
2197 ev_tstamp mn_prev = mn_now;
2198
2199 ev_now_update (EV_A);
2200 timers_reschedule (EV_A_ mn_now - mn_prev);
2201#if EV_PERIODIC_ENABLE
2202 /* TODO: really do this? */
2203 periodics_reschedule (EV_A);
2204#endif
2205}
2206
1170/*****************************************************************************/ 2207/*****************************************************************************/
2208/* singly-linked list management, used when the expected list length is short */
1171 2209
1172inline void 2210inline_size void
1173wlist_add (WL *head, WL elem) 2211wlist_add (WL *head, WL elem)
1174{ 2212{
1175 elem->next = *head; 2213 elem->next = *head;
1176 *head = elem; 2214 *head = elem;
1177} 2215}
1178 2216
1179inline void 2217inline_size void
1180wlist_del (WL *head, WL elem) 2218wlist_del (WL *head, WL elem)
1181{ 2219{
1182 while (*head) 2220 while (*head)
1183 { 2221 {
1184 if (*head == elem) 2222 if (*head == elem)
1189 2227
1190 head = &(*head)->next; 2228 head = &(*head)->next;
1191 } 2229 }
1192} 2230}
1193 2231
2232/* internal, faster, version of ev_clear_pending */
1194inline void 2233inline_speed void
1195ev_clear_pending (EV_P_ W w) 2234clear_pending (EV_P_ W w)
1196{ 2235{
1197 if (w->pending) 2236 if (w->pending)
1198 { 2237 {
1199 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2238 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1200 w->pending = 0; 2239 w->pending = 0;
1201 } 2240 }
1202} 2241}
1203 2242
2243int
2244ev_clear_pending (EV_P_ void *w)
2245{
2246 W w_ = (W)w;
2247 int pending = w_->pending;
2248
2249 if (expect_true (pending))
2250 {
2251 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2252 p->w = (W)&pending_w;
2253 w_->pending = 0;
2254 return p->events;
2255 }
2256 else
2257 return 0;
2258}
2259
1204inline void 2260inline_size void
2261pri_adjust (EV_P_ W w)
2262{
2263 int pri = w->priority;
2264 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2265 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2266 w->priority = pri;
2267}
2268
2269inline_speed void
1205ev_start (EV_P_ W w, int active) 2270ev_start (EV_P_ W w, int active)
1206{ 2271{
1207 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2272 pri_adjust (EV_A_ w);
1208 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1209
1210 w->active = active; 2273 w->active = active;
1211 ev_ref (EV_A); 2274 ev_ref (EV_A);
1212} 2275}
1213 2276
1214inline void 2277inline_size void
1215ev_stop (EV_P_ W w) 2278ev_stop (EV_P_ W w)
1216{ 2279{
1217 ev_unref (EV_A); 2280 ev_unref (EV_A);
1218 w->active = 0; 2281 w->active = 0;
1219} 2282}
1220 2283
1221/*****************************************************************************/ 2284/*****************************************************************************/
1222 2285
1223void 2286void noinline
1224ev_io_start (EV_P_ struct ev_io *w) 2287ev_io_start (EV_P_ ev_io *w)
1225{ 2288{
1226 int fd = w->fd; 2289 int fd = w->fd;
1227 2290
1228 if (ev_is_active (w)) 2291 if (expect_false (ev_is_active (w)))
1229 return; 2292 return;
1230 2293
1231 assert (("ev_io_start called with negative fd", fd >= 0)); 2294 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2295 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2296
2297 EV_FREQUENT_CHECK;
1232 2298
1233 ev_start (EV_A_ (W)w, 1); 2299 ev_start (EV_A_ (W)w, 1);
1234 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2300 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1235 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2301 wlist_add (&anfds[fd].head, (WL)w);
1236 2302
1237 fd_change (EV_A_ fd); 2303 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1238} 2304 w->events &= ~EV__IOFDSET;
1239 2305
1240void 2306 EV_FREQUENT_CHECK;
2307}
2308
2309void noinline
1241ev_io_stop (EV_P_ struct ev_io *w) 2310ev_io_stop (EV_P_ ev_io *w)
1242{ 2311{
1243 ev_clear_pending (EV_A_ (W)w); 2312 clear_pending (EV_A_ (W)w);
1244 if (!ev_is_active (w)) 2313 if (expect_false (!ev_is_active (w)))
1245 return; 2314 return;
1246 2315
2316 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2317
2318 EV_FREQUENT_CHECK;
2319
1247 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2320 wlist_del (&anfds[w->fd].head, (WL)w);
1248 ev_stop (EV_A_ (W)w); 2321 ev_stop (EV_A_ (W)w);
1249 2322
1250 fd_change (EV_A_ w->fd); 2323 fd_change (EV_A_ w->fd, 1);
1251}
1252 2324
1253void 2325 EV_FREQUENT_CHECK;
2326}
2327
2328void noinline
1254ev_timer_start (EV_P_ struct ev_timer *w) 2329ev_timer_start (EV_P_ ev_timer *w)
1255{ 2330{
1256 if (ev_is_active (w)) 2331 if (expect_false (ev_is_active (w)))
1257 return; 2332 return;
1258 2333
1259 ((WT)w)->at += mn_now; 2334 ev_at (w) += mn_now;
1260 2335
1261 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2336 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1262 2337
2338 EV_FREQUENT_CHECK;
2339
2340 ++timercnt;
1263 ev_start (EV_A_ (W)w, ++timercnt); 2341 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1264 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 2342 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1265 timers [timercnt - 1] = w; 2343 ANHE_w (timers [ev_active (w)]) = (WT)w;
1266 upheap ((WT *)timers, timercnt - 1); 2344 ANHE_at_cache (timers [ev_active (w)]);
2345 upheap (timers, ev_active (w));
1267 2346
2347 EV_FREQUENT_CHECK;
2348
1268 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2349 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1269} 2350}
1270 2351
1271void 2352void noinline
1272ev_timer_stop (EV_P_ struct ev_timer *w) 2353ev_timer_stop (EV_P_ ev_timer *w)
1273{ 2354{
1274 ev_clear_pending (EV_A_ (W)w); 2355 clear_pending (EV_A_ (W)w);
1275 if (!ev_is_active (w)) 2356 if (expect_false (!ev_is_active (w)))
1276 return; 2357 return;
1277 2358
2359 EV_FREQUENT_CHECK;
2360
2361 {
2362 int active = ev_active (w);
2363
1278 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2364 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1279 2365
1280 if (((W)w)->active < timercnt--) 2366 --timercnt;
2367
2368 if (expect_true (active < timercnt + HEAP0))
1281 { 2369 {
1282 timers [((W)w)->active - 1] = timers [timercnt]; 2370 timers [active] = timers [timercnt + HEAP0];
1283 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2371 adjustheap (timers, timercnt, active);
1284 } 2372 }
2373 }
1285 2374
1286 ((WT)w)->at = w->repeat; 2375 EV_FREQUENT_CHECK;
2376
2377 ev_at (w) -= mn_now;
1287 2378
1288 ev_stop (EV_A_ (W)w); 2379 ev_stop (EV_A_ (W)w);
1289} 2380}
1290 2381
1291void 2382void noinline
1292ev_timer_again (EV_P_ struct ev_timer *w) 2383ev_timer_again (EV_P_ ev_timer *w)
1293{ 2384{
2385 EV_FREQUENT_CHECK;
2386
1294 if (ev_is_active (w)) 2387 if (ev_is_active (w))
1295 { 2388 {
1296 if (w->repeat) 2389 if (w->repeat)
1297 { 2390 {
1298 ((WT)w)->at = mn_now + w->repeat; 2391 ev_at (w) = mn_now + w->repeat;
1299 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2392 ANHE_at_cache (timers [ev_active (w)]);
2393 adjustheap (timers, timercnt, ev_active (w));
1300 } 2394 }
1301 else 2395 else
1302 ev_timer_stop (EV_A_ w); 2396 ev_timer_stop (EV_A_ w);
1303 } 2397 }
1304 else if (w->repeat) 2398 else if (w->repeat)
2399 {
2400 ev_at (w) = w->repeat;
1305 ev_timer_start (EV_A_ w); 2401 ev_timer_start (EV_A_ w);
1306} 2402 }
1307 2403
1308void 2404 EV_FREQUENT_CHECK;
2405}
2406
2407#if EV_PERIODIC_ENABLE
2408void noinline
1309ev_periodic_start (EV_P_ struct ev_periodic *w) 2409ev_periodic_start (EV_P_ ev_periodic *w)
1310{ 2410{
1311 if (ev_is_active (w)) 2411 if (expect_false (ev_is_active (w)))
1312 return; 2412 return;
1313 2413
2414 if (w->reschedule_cb)
2415 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2416 else if (w->interval)
2417 {
1314 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2418 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1315
1316 /* this formula differs from the one in periodic_reify because we do not always round up */ 2419 /* this formula differs from the one in periodic_reify because we do not always round up */
1317 if (w->interval)
1318 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 2420 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2421 }
2422 else
2423 ev_at (w) = w->offset;
1319 2424
2425 EV_FREQUENT_CHECK;
2426
2427 ++periodiccnt;
1320 ev_start (EV_A_ (W)w, ++periodiccnt); 2428 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1321 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 2429 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1322 periodics [periodiccnt - 1] = w; 2430 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1323 upheap ((WT *)periodics, periodiccnt - 1); 2431 ANHE_at_cache (periodics [ev_active (w)]);
2432 upheap (periodics, ev_active (w));
1324 2433
2434 EV_FREQUENT_CHECK;
2435
1325 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2436 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1326} 2437}
1327 2438
1328void 2439void noinline
1329ev_periodic_stop (EV_P_ struct ev_periodic *w) 2440ev_periodic_stop (EV_P_ ev_periodic *w)
1330{ 2441{
1331 ev_clear_pending (EV_A_ (W)w); 2442 clear_pending (EV_A_ (W)w);
1332 if (!ev_is_active (w)) 2443 if (expect_false (!ev_is_active (w)))
1333 return; 2444 return;
1334 2445
2446 EV_FREQUENT_CHECK;
2447
2448 {
2449 int active = ev_active (w);
2450
1335 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2451 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1336 2452
1337 if (((W)w)->active < periodiccnt--) 2453 --periodiccnt;
2454
2455 if (expect_true (active < periodiccnt + HEAP0))
1338 { 2456 {
1339 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2457 periodics [active] = periodics [periodiccnt + HEAP0];
1340 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2458 adjustheap (periodics, periodiccnt, active);
1341 } 2459 }
2460 }
2461
2462 EV_FREQUENT_CHECK;
1342 2463
1343 ev_stop (EV_A_ (W)w); 2464 ev_stop (EV_A_ (W)w);
1344} 2465}
1345 2466
1346void 2467void noinline
1347ev_idle_start (EV_P_ struct ev_idle *w) 2468ev_periodic_again (EV_P_ ev_periodic *w)
1348{ 2469{
1349 if (ev_is_active (w)) 2470 /* TODO: use adjustheap and recalculation */
1350 return;
1351
1352 ev_start (EV_A_ (W)w, ++idlecnt);
1353 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1354 idles [idlecnt - 1] = w;
1355}
1356
1357void
1358ev_idle_stop (EV_P_ struct ev_idle *w)
1359{
1360 ev_clear_pending (EV_A_ (W)w);
1361 if (ev_is_active (w))
1362 return;
1363
1364 idles [((W)w)->active - 1] = idles [--idlecnt];
1365 ev_stop (EV_A_ (W)w); 2471 ev_periodic_stop (EV_A_ w);
2472 ev_periodic_start (EV_A_ w);
1366} 2473}
1367 2474#endif
1368void
1369ev_prepare_start (EV_P_ struct ev_prepare *w)
1370{
1371 if (ev_is_active (w))
1372 return;
1373
1374 ev_start (EV_A_ (W)w, ++preparecnt);
1375 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1376 prepares [preparecnt - 1] = w;
1377}
1378
1379void
1380ev_prepare_stop (EV_P_ struct ev_prepare *w)
1381{
1382 ev_clear_pending (EV_A_ (W)w);
1383 if (ev_is_active (w))
1384 return;
1385
1386 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1387 ev_stop (EV_A_ (W)w);
1388}
1389
1390void
1391ev_check_start (EV_P_ struct ev_check *w)
1392{
1393 if (ev_is_active (w))
1394 return;
1395
1396 ev_start (EV_A_ (W)w, ++checkcnt);
1397 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1398 checks [checkcnt - 1] = w;
1399}
1400
1401void
1402ev_check_stop (EV_P_ struct ev_check *w)
1403{
1404 ev_clear_pending (EV_A_ (W)w);
1405 if (ev_is_active (w))
1406 return;
1407
1408 checks [((W)w)->active - 1] = checks [--checkcnt];
1409 ev_stop (EV_A_ (W)w);
1410}
1411 2475
1412#ifndef SA_RESTART 2476#ifndef SA_RESTART
1413# define SA_RESTART 0 2477# define SA_RESTART 0
1414#endif 2478#endif
1415 2479
1416void 2480void noinline
1417ev_signal_start (EV_P_ struct ev_signal *w) 2481ev_signal_start (EV_P_ ev_signal *w)
1418{ 2482{
1419#if EV_MULTIPLICITY 2483#if EV_MULTIPLICITY
1420 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2484 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1421#endif 2485#endif
1422 if (ev_is_active (w)) 2486 if (expect_false (ev_is_active (w)))
1423 return; 2487 return;
1424 2488
1425 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2489 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2490
2491 evpipe_init (EV_A);
2492
2493 EV_FREQUENT_CHECK;
2494
2495 {
2496#ifndef _WIN32
2497 sigset_t full, prev;
2498 sigfillset (&full);
2499 sigprocmask (SIG_SETMASK, &full, &prev);
2500#endif
2501
2502 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2503
2504#ifndef _WIN32
2505 sigprocmask (SIG_SETMASK, &prev, 0);
2506#endif
2507 }
1426 2508
1427 ev_start (EV_A_ (W)w, 1); 2509 ev_start (EV_A_ (W)w, 1);
1428 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1429 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2510 wlist_add (&signals [w->signum - 1].head, (WL)w);
1430 2511
1431 if (!((WL)w)->next) 2512 if (!((WL)w)->next)
1432 { 2513 {
1433#if WIN32 2514#if _WIN32
1434 signal (w->signum, sighandler); 2515 signal (w->signum, ev_sighandler);
1435#else 2516#else
1436 struct sigaction sa; 2517 struct sigaction sa;
1437 sa.sa_handler = sighandler; 2518 sa.sa_handler = ev_sighandler;
1438 sigfillset (&sa.sa_mask); 2519 sigfillset (&sa.sa_mask);
1439 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2520 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1440 sigaction (w->signum, &sa, 0); 2521 sigaction (w->signum, &sa, 0);
1441#endif 2522#endif
1442 } 2523 }
1443}
1444 2524
1445void 2525 EV_FREQUENT_CHECK;
2526}
2527
2528void noinline
1446ev_signal_stop (EV_P_ struct ev_signal *w) 2529ev_signal_stop (EV_P_ ev_signal *w)
1447{ 2530{
1448 ev_clear_pending (EV_A_ (W)w); 2531 clear_pending (EV_A_ (W)w);
1449 if (!ev_is_active (w)) 2532 if (expect_false (!ev_is_active (w)))
1450 return; 2533 return;
1451 2534
2535 EV_FREQUENT_CHECK;
2536
1452 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2537 wlist_del (&signals [w->signum - 1].head, (WL)w);
1453 ev_stop (EV_A_ (W)w); 2538 ev_stop (EV_A_ (W)w);
1454 2539
1455 if (!signals [w->signum - 1].head) 2540 if (!signals [w->signum - 1].head)
1456 signal (w->signum, SIG_DFL); 2541 signal (w->signum, SIG_DFL);
1457}
1458 2542
2543 EV_FREQUENT_CHECK;
2544}
2545
1459void 2546void
1460ev_child_start (EV_P_ struct ev_child *w) 2547ev_child_start (EV_P_ ev_child *w)
1461{ 2548{
1462#if EV_MULTIPLICITY 2549#if EV_MULTIPLICITY
1463 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2550 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1464#endif 2551#endif
1465 if (ev_is_active (w)) 2552 if (expect_false (ev_is_active (w)))
1466 return; 2553 return;
1467 2554
2555 EV_FREQUENT_CHECK;
2556
1468 ev_start (EV_A_ (W)w, 1); 2557 ev_start (EV_A_ (W)w, 1);
1469 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2558 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1470}
1471 2559
2560 EV_FREQUENT_CHECK;
2561}
2562
1472void 2563void
1473ev_child_stop (EV_P_ struct ev_child *w) 2564ev_child_stop (EV_P_ ev_child *w)
1474{ 2565{
1475 ev_clear_pending (EV_A_ (W)w); 2566 clear_pending (EV_A_ (W)w);
1476 if (ev_is_active (w)) 2567 if (expect_false (!ev_is_active (w)))
1477 return; 2568 return;
1478 2569
2570 EV_FREQUENT_CHECK;
2571
1479 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2572 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1480 ev_stop (EV_A_ (W)w); 2573 ev_stop (EV_A_ (W)w);
2574
2575 EV_FREQUENT_CHECK;
1481} 2576}
2577
2578#if EV_STAT_ENABLE
2579
2580# ifdef _WIN32
2581# undef lstat
2582# define lstat(a,b) _stati64 (a,b)
2583# endif
2584
2585#define DEF_STAT_INTERVAL 5.0074891
2586#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2587#define MIN_STAT_INTERVAL 0.1074891
2588
2589static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2590
2591#if EV_USE_INOTIFY
2592# define EV_INOTIFY_BUFSIZE 8192
2593
2594static void noinline
2595infy_add (EV_P_ ev_stat *w)
2596{
2597 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2598
2599 if (w->wd < 0)
2600 {
2601 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2602 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2603
2604 /* monitor some parent directory for speedup hints */
2605 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2606 /* but an efficiency issue only */
2607 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2608 {
2609 char path [4096];
2610 strcpy (path, w->path);
2611
2612 do
2613 {
2614 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2615 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2616
2617 char *pend = strrchr (path, '/');
2618
2619 if (!pend || pend == path)
2620 break;
2621
2622 *pend = 0;
2623 w->wd = inotify_add_watch (fs_fd, path, mask);
2624 }
2625 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2626 }
2627 }
2628
2629 if (w->wd >= 0)
2630 {
2631 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2632
2633 /* now local changes will be tracked by inotify, but remote changes won't */
2634 /* unless the filesystem it known to be local, we therefore still poll */
2635 /* also do poll on <2.6.25, but with normal frequency */
2636 struct statfs sfs;
2637
2638 if (fs_2625 && !statfs (w->path, &sfs))
2639 if (sfs.f_type == 0x1373 /* devfs */
2640 || sfs.f_type == 0xEF53 /* ext2/3 */
2641 || sfs.f_type == 0x3153464a /* jfs */
2642 || sfs.f_type == 0x52654973 /* reiser3 */
2643 || sfs.f_type == 0x01021994 /* tempfs */
2644 || sfs.f_type == 0x58465342 /* xfs */)
2645 return;
2646
2647 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2648 ev_timer_again (EV_A_ &w->timer);
2649 }
2650}
2651
2652static void noinline
2653infy_del (EV_P_ ev_stat *w)
2654{
2655 int slot;
2656 int wd = w->wd;
2657
2658 if (wd < 0)
2659 return;
2660
2661 w->wd = -2;
2662 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2663 wlist_del (&fs_hash [slot].head, (WL)w);
2664
2665 /* remove this watcher, if others are watching it, they will rearm */
2666 inotify_rm_watch (fs_fd, wd);
2667}
2668
2669static void noinline
2670infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2671{
2672 if (slot < 0)
2673 /* overflow, need to check for all hash slots */
2674 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2675 infy_wd (EV_A_ slot, wd, ev);
2676 else
2677 {
2678 WL w_;
2679
2680 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2681 {
2682 ev_stat *w = (ev_stat *)w_;
2683 w_ = w_->next; /* lets us remove this watcher and all before it */
2684
2685 if (w->wd == wd || wd == -1)
2686 {
2687 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2688 {
2689 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2690 w->wd = -1;
2691 infy_add (EV_A_ w); /* re-add, no matter what */
2692 }
2693
2694 stat_timer_cb (EV_A_ &w->timer, 0);
2695 }
2696 }
2697 }
2698}
2699
2700static void
2701infy_cb (EV_P_ ev_io *w, int revents)
2702{
2703 char buf [EV_INOTIFY_BUFSIZE];
2704 struct inotify_event *ev = (struct inotify_event *)buf;
2705 int ofs;
2706 int len = read (fs_fd, buf, sizeof (buf));
2707
2708 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2709 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2710}
2711
2712inline_size void
2713check_2625 (EV_P)
2714{
2715 /* kernels < 2.6.25 are borked
2716 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2717 */
2718 struct utsname buf;
2719 int major, minor, micro;
2720
2721 if (uname (&buf))
2722 return;
2723
2724 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2725 return;
2726
2727 if (major < 2
2728 || (major == 2 && minor < 6)
2729 || (major == 2 && minor == 6 && micro < 25))
2730 return;
2731
2732 fs_2625 = 1;
2733}
2734
2735inline_size void
2736infy_init (EV_P)
2737{
2738 if (fs_fd != -2)
2739 return;
2740
2741 fs_fd = -1;
2742
2743 check_2625 (EV_A);
2744
2745 fs_fd = inotify_init ();
2746
2747 if (fs_fd >= 0)
2748 {
2749 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2750 ev_set_priority (&fs_w, EV_MAXPRI);
2751 ev_io_start (EV_A_ &fs_w);
2752 }
2753}
2754
2755inline_size void
2756infy_fork (EV_P)
2757{
2758 int slot;
2759
2760 if (fs_fd < 0)
2761 return;
2762
2763 close (fs_fd);
2764 fs_fd = inotify_init ();
2765
2766 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2767 {
2768 WL w_ = fs_hash [slot].head;
2769 fs_hash [slot].head = 0;
2770
2771 while (w_)
2772 {
2773 ev_stat *w = (ev_stat *)w_;
2774 w_ = w_->next; /* lets us add this watcher */
2775
2776 w->wd = -1;
2777
2778 if (fs_fd >= 0)
2779 infy_add (EV_A_ w); /* re-add, no matter what */
2780 else
2781 ev_timer_again (EV_A_ &w->timer);
2782 }
2783 }
2784}
2785
2786#endif
2787
2788#ifdef _WIN32
2789# define EV_LSTAT(p,b) _stati64 (p, b)
2790#else
2791# define EV_LSTAT(p,b) lstat (p, b)
2792#endif
2793
2794void
2795ev_stat_stat (EV_P_ ev_stat *w)
2796{
2797 if (lstat (w->path, &w->attr) < 0)
2798 w->attr.st_nlink = 0;
2799 else if (!w->attr.st_nlink)
2800 w->attr.st_nlink = 1;
2801}
2802
2803static void noinline
2804stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2805{
2806 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2807
2808 /* we copy this here each the time so that */
2809 /* prev has the old value when the callback gets invoked */
2810 w->prev = w->attr;
2811 ev_stat_stat (EV_A_ w);
2812
2813 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2814 if (
2815 w->prev.st_dev != w->attr.st_dev
2816 || w->prev.st_ino != w->attr.st_ino
2817 || w->prev.st_mode != w->attr.st_mode
2818 || w->prev.st_nlink != w->attr.st_nlink
2819 || w->prev.st_uid != w->attr.st_uid
2820 || w->prev.st_gid != w->attr.st_gid
2821 || w->prev.st_rdev != w->attr.st_rdev
2822 || w->prev.st_size != w->attr.st_size
2823 || w->prev.st_atime != w->attr.st_atime
2824 || w->prev.st_mtime != w->attr.st_mtime
2825 || w->prev.st_ctime != w->attr.st_ctime
2826 ) {
2827 #if EV_USE_INOTIFY
2828 if (fs_fd >= 0)
2829 {
2830 infy_del (EV_A_ w);
2831 infy_add (EV_A_ w);
2832 ev_stat_stat (EV_A_ w); /* avoid race... */
2833 }
2834 #endif
2835
2836 ev_feed_event (EV_A_ w, EV_STAT);
2837 }
2838}
2839
2840void
2841ev_stat_start (EV_P_ ev_stat *w)
2842{
2843 if (expect_false (ev_is_active (w)))
2844 return;
2845
2846 ev_stat_stat (EV_A_ w);
2847
2848 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2849 w->interval = MIN_STAT_INTERVAL;
2850
2851 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2852 ev_set_priority (&w->timer, ev_priority (w));
2853
2854#if EV_USE_INOTIFY
2855 infy_init (EV_A);
2856
2857 if (fs_fd >= 0)
2858 infy_add (EV_A_ w);
2859 else
2860#endif
2861 ev_timer_again (EV_A_ &w->timer);
2862
2863 ev_start (EV_A_ (W)w, 1);
2864
2865 EV_FREQUENT_CHECK;
2866}
2867
2868void
2869ev_stat_stop (EV_P_ ev_stat *w)
2870{
2871 clear_pending (EV_A_ (W)w);
2872 if (expect_false (!ev_is_active (w)))
2873 return;
2874
2875 EV_FREQUENT_CHECK;
2876
2877#if EV_USE_INOTIFY
2878 infy_del (EV_A_ w);
2879#endif
2880 ev_timer_stop (EV_A_ &w->timer);
2881
2882 ev_stop (EV_A_ (W)w);
2883
2884 EV_FREQUENT_CHECK;
2885}
2886#endif
2887
2888#if EV_IDLE_ENABLE
2889void
2890ev_idle_start (EV_P_ ev_idle *w)
2891{
2892 if (expect_false (ev_is_active (w)))
2893 return;
2894
2895 pri_adjust (EV_A_ (W)w);
2896
2897 EV_FREQUENT_CHECK;
2898
2899 {
2900 int active = ++idlecnt [ABSPRI (w)];
2901
2902 ++idleall;
2903 ev_start (EV_A_ (W)w, active);
2904
2905 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2906 idles [ABSPRI (w)][active - 1] = w;
2907 }
2908
2909 EV_FREQUENT_CHECK;
2910}
2911
2912void
2913ev_idle_stop (EV_P_ ev_idle *w)
2914{
2915 clear_pending (EV_A_ (W)w);
2916 if (expect_false (!ev_is_active (w)))
2917 return;
2918
2919 EV_FREQUENT_CHECK;
2920
2921 {
2922 int active = ev_active (w);
2923
2924 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2925 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2926
2927 ev_stop (EV_A_ (W)w);
2928 --idleall;
2929 }
2930
2931 EV_FREQUENT_CHECK;
2932}
2933#endif
2934
2935void
2936ev_prepare_start (EV_P_ ev_prepare *w)
2937{
2938 if (expect_false (ev_is_active (w)))
2939 return;
2940
2941 EV_FREQUENT_CHECK;
2942
2943 ev_start (EV_A_ (W)w, ++preparecnt);
2944 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2945 prepares [preparecnt - 1] = w;
2946
2947 EV_FREQUENT_CHECK;
2948}
2949
2950void
2951ev_prepare_stop (EV_P_ ev_prepare *w)
2952{
2953 clear_pending (EV_A_ (W)w);
2954 if (expect_false (!ev_is_active (w)))
2955 return;
2956
2957 EV_FREQUENT_CHECK;
2958
2959 {
2960 int active = ev_active (w);
2961
2962 prepares [active - 1] = prepares [--preparecnt];
2963 ev_active (prepares [active - 1]) = active;
2964 }
2965
2966 ev_stop (EV_A_ (W)w);
2967
2968 EV_FREQUENT_CHECK;
2969}
2970
2971void
2972ev_check_start (EV_P_ ev_check *w)
2973{
2974 if (expect_false (ev_is_active (w)))
2975 return;
2976
2977 EV_FREQUENT_CHECK;
2978
2979 ev_start (EV_A_ (W)w, ++checkcnt);
2980 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2981 checks [checkcnt - 1] = w;
2982
2983 EV_FREQUENT_CHECK;
2984}
2985
2986void
2987ev_check_stop (EV_P_ ev_check *w)
2988{
2989 clear_pending (EV_A_ (W)w);
2990 if (expect_false (!ev_is_active (w)))
2991 return;
2992
2993 EV_FREQUENT_CHECK;
2994
2995 {
2996 int active = ev_active (w);
2997
2998 checks [active - 1] = checks [--checkcnt];
2999 ev_active (checks [active - 1]) = active;
3000 }
3001
3002 ev_stop (EV_A_ (W)w);
3003
3004 EV_FREQUENT_CHECK;
3005}
3006
3007#if EV_EMBED_ENABLE
3008void noinline
3009ev_embed_sweep (EV_P_ ev_embed *w)
3010{
3011 ev_loop (w->other, EVLOOP_NONBLOCK);
3012}
3013
3014static void
3015embed_io_cb (EV_P_ ev_io *io, int revents)
3016{
3017 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3018
3019 if (ev_cb (w))
3020 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3021 else
3022 ev_loop (w->other, EVLOOP_NONBLOCK);
3023}
3024
3025static void
3026embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3027{
3028 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3029
3030 {
3031 struct ev_loop *loop = w->other;
3032
3033 while (fdchangecnt)
3034 {
3035 fd_reify (EV_A);
3036 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3037 }
3038 }
3039}
3040
3041static void
3042embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3043{
3044 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3045
3046 ev_embed_stop (EV_A_ w);
3047
3048 {
3049 struct ev_loop *loop = w->other;
3050
3051 ev_loop_fork (EV_A);
3052 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3053 }
3054
3055 ev_embed_start (EV_A_ w);
3056}
3057
3058#if 0
3059static void
3060embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3061{
3062 ev_idle_stop (EV_A_ idle);
3063}
3064#endif
3065
3066void
3067ev_embed_start (EV_P_ ev_embed *w)
3068{
3069 if (expect_false (ev_is_active (w)))
3070 return;
3071
3072 {
3073 struct ev_loop *loop = w->other;
3074 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3075 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3076 }
3077
3078 EV_FREQUENT_CHECK;
3079
3080 ev_set_priority (&w->io, ev_priority (w));
3081 ev_io_start (EV_A_ &w->io);
3082
3083 ev_prepare_init (&w->prepare, embed_prepare_cb);
3084 ev_set_priority (&w->prepare, EV_MINPRI);
3085 ev_prepare_start (EV_A_ &w->prepare);
3086
3087 ev_fork_init (&w->fork, embed_fork_cb);
3088 ev_fork_start (EV_A_ &w->fork);
3089
3090 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3091
3092 ev_start (EV_A_ (W)w, 1);
3093
3094 EV_FREQUENT_CHECK;
3095}
3096
3097void
3098ev_embed_stop (EV_P_ ev_embed *w)
3099{
3100 clear_pending (EV_A_ (W)w);
3101 if (expect_false (!ev_is_active (w)))
3102 return;
3103
3104 EV_FREQUENT_CHECK;
3105
3106 ev_io_stop (EV_A_ &w->io);
3107 ev_prepare_stop (EV_A_ &w->prepare);
3108 ev_fork_stop (EV_A_ &w->fork);
3109
3110 EV_FREQUENT_CHECK;
3111}
3112#endif
3113
3114#if EV_FORK_ENABLE
3115void
3116ev_fork_start (EV_P_ ev_fork *w)
3117{
3118 if (expect_false (ev_is_active (w)))
3119 return;
3120
3121 EV_FREQUENT_CHECK;
3122
3123 ev_start (EV_A_ (W)w, ++forkcnt);
3124 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3125 forks [forkcnt - 1] = w;
3126
3127 EV_FREQUENT_CHECK;
3128}
3129
3130void
3131ev_fork_stop (EV_P_ ev_fork *w)
3132{
3133 clear_pending (EV_A_ (W)w);
3134 if (expect_false (!ev_is_active (w)))
3135 return;
3136
3137 EV_FREQUENT_CHECK;
3138
3139 {
3140 int active = ev_active (w);
3141
3142 forks [active - 1] = forks [--forkcnt];
3143 ev_active (forks [active - 1]) = active;
3144 }
3145
3146 ev_stop (EV_A_ (W)w);
3147
3148 EV_FREQUENT_CHECK;
3149}
3150#endif
3151
3152#if EV_ASYNC_ENABLE
3153void
3154ev_async_start (EV_P_ ev_async *w)
3155{
3156 if (expect_false (ev_is_active (w)))
3157 return;
3158
3159 evpipe_init (EV_A);
3160
3161 EV_FREQUENT_CHECK;
3162
3163 ev_start (EV_A_ (W)w, ++asynccnt);
3164 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3165 asyncs [asynccnt - 1] = w;
3166
3167 EV_FREQUENT_CHECK;
3168}
3169
3170void
3171ev_async_stop (EV_P_ ev_async *w)
3172{
3173 clear_pending (EV_A_ (W)w);
3174 if (expect_false (!ev_is_active (w)))
3175 return;
3176
3177 EV_FREQUENT_CHECK;
3178
3179 {
3180 int active = ev_active (w);
3181
3182 asyncs [active - 1] = asyncs [--asynccnt];
3183 ev_active (asyncs [active - 1]) = active;
3184 }
3185
3186 ev_stop (EV_A_ (W)w);
3187
3188 EV_FREQUENT_CHECK;
3189}
3190
3191void
3192ev_async_send (EV_P_ ev_async *w)
3193{
3194 w->sent = 1;
3195 evpipe_write (EV_A_ &gotasync);
3196}
3197#endif
1482 3198
1483/*****************************************************************************/ 3199/*****************************************************************************/
1484 3200
1485struct ev_once 3201struct ev_once
1486{ 3202{
1487 struct ev_io io; 3203 ev_io io;
1488 struct ev_timer to; 3204 ev_timer to;
1489 void (*cb)(int revents, void *arg); 3205 void (*cb)(int revents, void *arg);
1490 void *arg; 3206 void *arg;
1491}; 3207};
1492 3208
1493static void 3209static void
1494once_cb (EV_P_ struct ev_once *once, int revents) 3210once_cb (EV_P_ struct ev_once *once, int revents)
1495{ 3211{
1496 void (*cb)(int revents, void *arg) = once->cb; 3212 void (*cb)(int revents, void *arg) = once->cb;
1497 void *arg = once->arg; 3213 void *arg = once->arg;
1498 3214
1499 ev_io_stop (EV_A_ &once->io); 3215 ev_io_stop (EV_A_ &once->io);
1500 ev_timer_stop (EV_A_ &once->to); 3216 ev_timer_stop (EV_A_ &once->to);
1501 ev_free (once); 3217 ev_free (once);
1502 3218
1503 cb (revents, arg); 3219 cb (revents, arg);
1504} 3220}
1505 3221
1506static void 3222static void
1507once_cb_io (EV_P_ struct ev_io *w, int revents) 3223once_cb_io (EV_P_ ev_io *w, int revents)
1508{ 3224{
1509 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3225 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3226
3227 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1510} 3228}
1511 3229
1512static void 3230static void
1513once_cb_to (EV_P_ struct ev_timer *w, int revents) 3231once_cb_to (EV_P_ ev_timer *w, int revents)
1514{ 3232{
1515 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3233 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3234
3235 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1516} 3236}
1517 3237
1518void 3238void
1519ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3239ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1520{ 3240{
1521 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3241 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1522 3242
1523 if (!once) 3243 if (expect_false (!once))
3244 {
1524 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3245 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1525 else 3246 return;
1526 { 3247 }
3248
1527 once->cb = cb; 3249 once->cb = cb;
1528 once->arg = arg; 3250 once->arg = arg;
1529 3251
1530 ev_watcher_init (&once->io, once_cb_io); 3252 ev_init (&once->io, once_cb_io);
1531 if (fd >= 0) 3253 if (fd >= 0)
3254 {
3255 ev_io_set (&once->io, fd, events);
3256 ev_io_start (EV_A_ &once->io);
3257 }
3258
3259 ev_init (&once->to, once_cb_to);
3260 if (timeout >= 0.)
3261 {
3262 ev_timer_set (&once->to, timeout, 0.);
3263 ev_timer_start (EV_A_ &once->to);
3264 }
3265}
3266
3267/*****************************************************************************/
3268
3269#if EV_WALK_ENABLE
3270void
3271ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3272{
3273 int i, j;
3274 ev_watcher_list *wl, *wn;
3275
3276 if (types & (EV_IO | EV_EMBED))
3277 for (i = 0; i < anfdmax; ++i)
3278 for (wl = anfds [i].head; wl; )
1532 { 3279 {
1533 ev_io_set (&once->io, fd, events); 3280 wn = wl->next;
1534 ev_io_start (EV_A_ &once->io); 3281
3282#if EV_EMBED_ENABLE
3283 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3284 {
3285 if (types & EV_EMBED)
3286 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3287 }
3288 else
3289#endif
3290#if EV_USE_INOTIFY
3291 if (ev_cb ((ev_io *)wl) == infy_cb)
3292 ;
3293 else
3294#endif
3295 if ((ev_io *)wl != &pipe_w)
3296 if (types & EV_IO)
3297 cb (EV_A_ EV_IO, wl);
3298
3299 wl = wn;
1535 } 3300 }
1536 3301
1537 ev_watcher_init (&once->to, once_cb_to); 3302 if (types & (EV_TIMER | EV_STAT))
1538 if (timeout >= 0.) 3303 for (i = timercnt + HEAP0; i-- > HEAP0; )
3304#if EV_STAT_ENABLE
3305 /*TODO: timer is not always active*/
3306 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1539 { 3307 {
1540 ev_timer_set (&once->to, timeout, 0.); 3308 if (types & EV_STAT)
1541 ev_timer_start (EV_A_ &once->to); 3309 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1542 } 3310 }
1543 } 3311 else
1544} 3312#endif
3313 if (types & EV_TIMER)
3314 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1545 3315
3316#if EV_PERIODIC_ENABLE
3317 if (types & EV_PERIODIC)
3318 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3319 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3320#endif
3321
3322#if EV_IDLE_ENABLE
3323 if (types & EV_IDLE)
3324 for (j = NUMPRI; i--; )
3325 for (i = idlecnt [j]; i--; )
3326 cb (EV_A_ EV_IDLE, idles [j][i]);
3327#endif
3328
3329#if EV_FORK_ENABLE
3330 if (types & EV_FORK)
3331 for (i = forkcnt; i--; )
3332 if (ev_cb (forks [i]) != embed_fork_cb)
3333 cb (EV_A_ EV_FORK, forks [i]);
3334#endif
3335
3336#if EV_ASYNC_ENABLE
3337 if (types & EV_ASYNC)
3338 for (i = asynccnt; i--; )
3339 cb (EV_A_ EV_ASYNC, asyncs [i]);
3340#endif
3341
3342 if (types & EV_PREPARE)
3343 for (i = preparecnt; i--; )
3344#if EV_EMBED_ENABLE
3345 if (ev_cb (prepares [i]) != embed_prepare_cb)
3346#endif
3347 cb (EV_A_ EV_PREPARE, prepares [i]);
3348
3349 if (types & EV_CHECK)
3350 for (i = checkcnt; i--; )
3351 cb (EV_A_ EV_CHECK, checks [i]);
3352
3353 if (types & EV_SIGNAL)
3354 for (i = 0; i < signalmax; ++i)
3355 for (wl = signals [i].head; wl; )
3356 {
3357 wn = wl->next;
3358 cb (EV_A_ EV_SIGNAL, wl);
3359 wl = wn;
3360 }
3361
3362 if (types & EV_CHILD)
3363 for (i = EV_PID_HASHSIZE; i--; )
3364 for (wl = childs [i]; wl; )
3365 {
3366 wn = wl->next;
3367 cb (EV_A_ EV_CHILD, wl);
3368 wl = wn;
3369 }
3370/* EV_STAT 0x00001000 /* stat data changed */
3371/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3372}
3373#endif
3374
3375#if EV_MULTIPLICITY
3376 #include "ev_wrap.h"
3377#endif
3378
3379#ifdef __cplusplus
3380}
3381#endif
3382

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines