ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.157 by root, Wed Nov 28 20:58:32 2007 UTC vs.
Revision 1.295 by root, Wed Jul 8 04:29:31 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
56# endif 87# endif
57# endif 88# endif
58 89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 133# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
104# endif 135# endif
105# endif 136# endif
106 137
138# ifndef EV_USE_EVENTFD
139# if HAVE_EVENTFD
140# define EV_USE_EVENTFD 1
141# else
142# define EV_USE_EVENTFD 0
143# endif
144# endif
145
107#endif 146#endif
108 147
109#include <math.h> 148#include <math.h>
110#include <stdlib.h> 149#include <stdlib.h>
111#include <fcntl.h> 150#include <fcntl.h>
129#ifndef _WIN32 168#ifndef _WIN32
130# include <sys/time.h> 169# include <sys/time.h>
131# include <sys/wait.h> 170# include <sys/wait.h>
132# include <unistd.h> 171# include <unistd.h>
133#else 172#else
173# include <io.h>
134# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 175# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
138# endif 178# endif
139#endif 179#endif
140 180
141/**/ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
142 190
143#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
144# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
145#endif 197#endif
146 198
147#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
201#endif
202
203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
207# define EV_USE_NANOSLEEP 0
208# endif
149#endif 209#endif
150 210
151#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
153#endif 213#endif
159# define EV_USE_POLL 1 219# define EV_USE_POLL 1
160# endif 220# endif
161#endif 221#endif
162 222
163#ifndef EV_USE_EPOLL 223#ifndef EV_USE_EPOLL
224# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225# define EV_USE_EPOLL 1
226# else
164# define EV_USE_EPOLL 0 227# define EV_USE_EPOLL 0
228# endif
165#endif 229#endif
166 230
167#ifndef EV_USE_KQUEUE 231#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 232# define EV_USE_KQUEUE 0
169#endif 233#endif
171#ifndef EV_USE_PORT 235#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 236# define EV_USE_PORT 0
173#endif 237#endif
174 238
175#ifndef EV_USE_INOTIFY 239#ifndef EV_USE_INOTIFY
240# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
241# define EV_USE_INOTIFY 1
242# else
176# define EV_USE_INOTIFY 0 243# define EV_USE_INOTIFY 0
244# endif
177#endif 245#endif
178 246
179#ifndef EV_PID_HASHSIZE 247#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 248# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 249# define EV_PID_HASHSIZE 1
190# else 258# else
191# define EV_INOTIFY_HASHSIZE 16 259# define EV_INOTIFY_HASHSIZE 16
192# endif 260# endif
193#endif 261#endif
194 262
195/**/ 263#ifndef EV_USE_EVENTFD
264# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265# define EV_USE_EVENTFD 1
266# else
267# define EV_USE_EVENTFD 0
268# endif
269#endif
270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 304
197#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
200#endif 308#endif
202#ifndef CLOCK_REALTIME 310#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 311# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 312# define EV_USE_REALTIME 0
205#endif 313#endif
206 314
315#if !EV_STAT_ENABLE
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318#endif
319
320#if !EV_USE_NANOSLEEP
321# ifndef _WIN32
322# include <sys/select.h>
323# endif
324#endif
325
326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
335#endif
336
207#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 338# include <winsock.h>
209#endif 339#endif
210 340
211#if !EV_STAT_ENABLE 341#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343# include <stdint.h>
344# ifdef __cplusplus
345extern "C" {
213#endif 346# endif
214 347int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 348# ifdef __cplusplus
216# include <sys/inotify.h> 349}
350# endif
217#endif 351#endif
218 352
219/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
360
361/*
362 * This is used to avoid floating point rounding problems.
363 * It is added to ev_rt_now when scheduling periodics
364 * to ensure progress, time-wise, even when rounding
365 * errors are against us.
366 * This value is good at least till the year 4000.
367 * Better solutions welcome.
368 */
369#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 370
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 371#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 372#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 373/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 374
225#if __GNUC__ >= 3 375#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 376# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 377# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 378#else
236# define expect(expr,value) (expr) 379# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 380# define noinline
381# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
382# define inline
383# endif
240#endif 384#endif
241 385
242#define expect_false(expr) expect ((expr) != 0, 0) 386#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 387#define expect_true(expr) expect ((expr) != 0, 1)
388#define inline_size static inline
244 389
390#if EV_MINIMAL
391# define inline_speed static noinline
392#else
393# define inline_speed static inline
394#endif
395
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
247 403
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 404#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 405#define EMPTY2(a,b) /* used to suppress some warnings */
250 406
251typedef ev_watcher *W; 407typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 408typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
254 410
411#define ev_active(w) ((W)(w))->active
412#define ev_at(w) ((WT)(w))->at
413
414#if EV_USE_REALTIME
415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
419
420#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
422#endif
256 423
257#ifdef _WIN32 424#ifdef _WIN32
258# include "ev_win32.c" 425# include "ev_win32.c"
259#endif 426#endif
260 427
267{ 434{
268 syserr_cb = cb; 435 syserr_cb = cb;
269} 436}
270 437
271static void noinline 438static void noinline
272syserr (const char *msg) 439ev_syserr (const char *msg)
273{ 440{
274 if (!msg) 441 if (!msg)
275 msg = "(libev) system error"; 442 msg = "(libev) system error";
276 443
277 if (syserr_cb) 444 if (syserr_cb)
281 perror (msg); 448 perror (msg);
282 abort (); 449 abort ();
283 } 450 }
284} 451}
285 452
453static void *
454ev_realloc_emul (void *ptr, long size)
455{
456 /* some systems, notably openbsd and darwin, fail to properly
457 * implement realloc (x, 0) (as required by both ansi c-98 and
458 * the single unix specification, so work around them here.
459 */
460
461 if (size)
462 return realloc (ptr, size);
463
464 free (ptr);
465 return 0;
466}
467
286static void *(*alloc)(void *ptr, long size); 468static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 469
288void 470void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 471ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 472{
291 alloc = cb; 473 alloc = cb;
292} 474}
293 475
294inline_speed void * 476inline_speed void *
295ev_realloc (void *ptr, long size) 477ev_realloc (void *ptr, long size)
296{ 478{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 479 ptr = alloc (ptr, size);
298 480
299 if (!ptr && size) 481 if (!ptr && size)
300 { 482 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 483 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 484 abort ();
308#define ev_malloc(size) ev_realloc (0, (size)) 490#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 491#define ev_free(ptr) ev_realloc ((ptr), 0)
310 492
311/*****************************************************************************/ 493/*****************************************************************************/
312 494
495/* file descriptor info structure */
313typedef struct 496typedef struct
314{ 497{
315 WL head; 498 WL head;
316 unsigned char events; 499 unsigned char events; /* the events watched for */
500 unsigned char reify; /* flag set when this ANFD needs reification */
501 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 502 unsigned char unused;
503#if EV_USE_EPOLL
504 unsigned int egen; /* generation counter to counter epoll bugs */
505#endif
318#if EV_SELECT_IS_WINSOCKET 506#if EV_SELECT_IS_WINSOCKET
319 SOCKET handle; 507 SOCKET handle;
320#endif 508#endif
321} ANFD; 509} ANFD;
322 510
511/* stores the pending event set for a given watcher */
323typedef struct 512typedef struct
324{ 513{
325 W w; 514 W w;
326 int events; 515 int events; /* the pending event set for the given watcher */
327} ANPENDING; 516} ANPENDING;
328 517
329#if EV_USE_INOTIFY 518#if EV_USE_INOTIFY
519/* hash table entry per inotify-id */
330typedef struct 520typedef struct
331{ 521{
332 WL head; 522 WL head;
333} ANFS; 523} ANFS;
524#endif
525
526/* Heap Entry */
527#if EV_HEAP_CACHE_AT
528 /* a heap element */
529 typedef struct {
530 ev_tstamp at;
531 WT w;
532 } ANHE;
533
534 #define ANHE_w(he) (he).w /* access watcher, read-write */
535 #define ANHE_at(he) (he).at /* access cached at, read-only */
536 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
537#else
538 /* a heap element */
539 typedef WT ANHE;
540
541 #define ANHE_w(he) (he)
542 #define ANHE_at(he) (he)->at
543 #define ANHE_at_cache(he)
334#endif 544#endif
335 545
336#if EV_MULTIPLICITY 546#if EV_MULTIPLICITY
337 547
338 struct ev_loop 548 struct ev_loop
359 569
360#endif 570#endif
361 571
362/*****************************************************************************/ 572/*****************************************************************************/
363 573
574#ifndef EV_HAVE_EV_TIME
364ev_tstamp 575ev_tstamp
365ev_time (void) 576ev_time (void)
366{ 577{
367#if EV_USE_REALTIME 578#if EV_USE_REALTIME
579 if (expect_true (have_realtime))
580 {
368 struct timespec ts; 581 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 582 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 583 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 584 }
585#endif
586
372 struct timeval tv; 587 struct timeval tv;
373 gettimeofday (&tv, 0); 588 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 589 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 590}
591#endif
377 592
378ev_tstamp inline_size 593inline_size ev_tstamp
379get_clock (void) 594get_clock (void)
380{ 595{
381#if EV_USE_MONOTONIC 596#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 597 if (expect_true (have_monotonic))
383 { 598 {
396{ 611{
397 return ev_rt_now; 612 return ev_rt_now;
398} 613}
399#endif 614#endif
400 615
401#define array_roundsize(type,n) (((n) | 4) & ~3) 616void
617ev_sleep (ev_tstamp delay)
618{
619 if (delay > 0.)
620 {
621#if EV_USE_NANOSLEEP
622 struct timespec ts;
623
624 ts.tv_sec = (time_t)delay;
625 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
626
627 nanosleep (&ts, 0);
628#elif defined(_WIN32)
629 Sleep ((unsigned long)(delay * 1e3));
630#else
631 struct timeval tv;
632
633 tv.tv_sec = (time_t)delay;
634 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
635
636 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
637 /* somehting not guaranteed by newer posix versions, but guaranteed */
638 /* by older ones */
639 select (0, 0, 0, 0, &tv);
640#endif
641 }
642}
643
644/*****************************************************************************/
645
646#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
647
648/* find a suitable new size for the given array, */
649/* hopefully by rounding to a ncie-to-malloc size */
650inline_size int
651array_nextsize (int elem, int cur, int cnt)
652{
653 int ncur = cur + 1;
654
655 do
656 ncur <<= 1;
657 while (cnt > ncur);
658
659 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
660 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
661 {
662 ncur *= elem;
663 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
664 ncur = ncur - sizeof (void *) * 4;
665 ncur /= elem;
666 }
667
668 return ncur;
669}
670
671static noinline void *
672array_realloc (int elem, void *base, int *cur, int cnt)
673{
674 *cur = array_nextsize (elem, *cur, cnt);
675 return ev_realloc (base, elem * *cur);
676}
677
678#define array_init_zero(base,count) \
679 memset ((void *)(base), 0, sizeof (*(base)) * (count))
402 680
403#define array_needsize(type,base,cur,cnt,init) \ 681#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 682 if (expect_false ((cnt) > (cur))) \
405 { \ 683 { \
406 int newcnt = cur; \ 684 int ocur_ = (cur); \
407 do \ 685 (base) = (type *)array_realloc \
408 { \ 686 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 687 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 688 }
417 689
690#if 0
418#define array_slim(type,stem) \ 691#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 692 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 693 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 694 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 695 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 696 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 697 }
698#endif
425 699
426#define array_free(stem, idx) \ 700#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 701 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
428 702
429/*****************************************************************************/ 703/*****************************************************************************/
704
705/* dummy callback for pending events */
706static void noinline
707pendingcb (EV_P_ ev_prepare *w, int revents)
708{
709}
430 710
431void noinline 711void noinline
432ev_feed_event (EV_P_ void *w, int revents) 712ev_feed_event (EV_P_ void *w, int revents)
433{ 713{
434 W w_ = (W)w; 714 W w_ = (W)w;
715 int pri = ABSPRI (w_);
435 716
436 if (expect_false (w_->pending)) 717 if (expect_false (w_->pending))
718 pendings [pri][w_->pending - 1].events |= revents;
719 else
437 { 720 {
721 w_->pending = ++pendingcnt [pri];
722 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
723 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 724 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 725 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 726}
447 727
448void inline_size 728inline_speed void
729feed_reverse (EV_P_ W w)
730{
731 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
732 rfeeds [rfeedcnt++] = w;
733}
734
735inline_size void
736feed_reverse_done (EV_P_ int revents)
737{
738 do
739 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
740 while (rfeedcnt);
741}
742
743inline_speed void
449queue_events (EV_P_ W *events, int eventcnt, int type) 744queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 745{
451 int i; 746 int i;
452 747
453 for (i = 0; i < eventcnt; ++i) 748 for (i = 0; i < eventcnt; ++i)
454 ev_feed_event (EV_A_ events [i], type); 749 ev_feed_event (EV_A_ events [i], type);
455} 750}
456 751
457/*****************************************************************************/ 752/*****************************************************************************/
458 753
459void inline_size 754inline_speed void
460anfds_init (ANFD *base, int count)
461{
462 while (count--)
463 {
464 base->head = 0;
465 base->events = EV_NONE;
466 base->reify = 0;
467
468 ++base;
469 }
470}
471
472void inline_speed
473fd_event (EV_P_ int fd, int revents) 755fd_event (EV_P_ int fd, int revents)
474{ 756{
475 ANFD *anfd = anfds + fd; 757 ANFD *anfd = anfds + fd;
476 ev_io *w; 758 ev_io *w;
477 759
485} 767}
486 768
487void 769void
488ev_feed_fd_event (EV_P_ int fd, int revents) 770ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 771{
772 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 773 fd_event (EV_A_ fd, revents);
491} 774}
492 775
493void inline_size 776/* make sure the external fd watch events are in-sync */
777/* with the kernel/libev internal state */
778inline_size void
494fd_reify (EV_P) 779fd_reify (EV_P)
495{ 780{
496 int i; 781 int i;
497 782
498 for (i = 0; i < fdchangecnt; ++i) 783 for (i = 0; i < fdchangecnt; ++i)
499 { 784 {
500 int fd = fdchanges [i]; 785 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 786 ANFD *anfd = anfds + fd;
502 ev_io *w; 787 ev_io *w;
503 788
504 int events = 0; 789 unsigned char events = 0;
505 790
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 791 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 792 events |= (unsigned char)w->events;
508 793
509#if EV_SELECT_IS_WINSOCKET 794#if EV_SELECT_IS_WINSOCKET
510 if (events) 795 if (events)
511 { 796 {
512 unsigned long argp; 797 unsigned long arg;
798 #ifdef EV_FD_TO_WIN32_HANDLE
799 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
800 #else
513 anfd->handle = _get_osfhandle (fd); 801 anfd->handle = _get_osfhandle (fd);
802 #endif
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 803 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
515 } 804 }
516#endif 805#endif
517 806
807 {
808 unsigned char o_events = anfd->events;
809 unsigned char o_reify = anfd->reify;
810
518 anfd->reify = 0; 811 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 812 anfd->events = events;
813
814 if (o_events != events || o_reify & EV__IOFDSET)
815 backend_modify (EV_A_ fd, o_events, events);
816 }
522 } 817 }
523 818
524 fdchangecnt = 0; 819 fdchangecnt = 0;
525} 820}
526 821
527void inline_size 822/* something about the given fd changed */
823inline_size void
528fd_change (EV_P_ int fd) 824fd_change (EV_P_ int fd, int flags)
529{ 825{
530 if (expect_false (anfds [fd].reify)) 826 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 827 anfds [fd].reify |= flags;
534 828
829 if (expect_true (!reify))
830 {
535 ++fdchangecnt; 831 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 832 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 833 fdchanges [fdchangecnt - 1] = fd;
834 }
538} 835}
539 836
540void inline_speed 837/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
838inline_speed void
541fd_kill (EV_P_ int fd) 839fd_kill (EV_P_ int fd)
542{ 840{
543 ev_io *w; 841 ev_io *w;
544 842
545 while ((w = (ev_io *)anfds [fd].head)) 843 while ((w = (ev_io *)anfds [fd].head))
547 ev_io_stop (EV_A_ w); 845 ev_io_stop (EV_A_ w);
548 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 846 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
549 } 847 }
550} 848}
551 849
552int inline_size 850/* check whether the given fd is atcually valid, for error recovery */
851inline_size int
553fd_valid (int fd) 852fd_valid (int fd)
554{ 853{
555#ifdef _WIN32 854#ifdef _WIN32
556 return _get_osfhandle (fd) != -1; 855 return _get_osfhandle (fd) != -1;
557#else 856#else
565{ 864{
566 int fd; 865 int fd;
567 866
568 for (fd = 0; fd < anfdmax; ++fd) 867 for (fd = 0; fd < anfdmax; ++fd)
569 if (anfds [fd].events) 868 if (anfds [fd].events)
570 if (!fd_valid (fd) == -1 && errno == EBADF) 869 if (!fd_valid (fd) && errno == EBADF)
571 fd_kill (EV_A_ fd); 870 fd_kill (EV_A_ fd);
572} 871}
573 872
574/* called on ENOMEM in select/poll to kill some fds and retry */ 873/* called on ENOMEM in select/poll to kill some fds and retry */
575static void noinline 874static void noinline
593 892
594 for (fd = 0; fd < anfdmax; ++fd) 893 for (fd = 0; fd < anfdmax; ++fd)
595 if (anfds [fd].events) 894 if (anfds [fd].events)
596 { 895 {
597 anfds [fd].events = 0; 896 anfds [fd].events = 0;
897 anfds [fd].emask = 0;
598 fd_change (EV_A_ fd); 898 fd_change (EV_A_ fd, EV__IOFDSET | 1);
599 } 899 }
600} 900}
601 901
602/*****************************************************************************/ 902/*****************************************************************************/
603 903
604void inline_speed 904/*
605upheap (WT *heap, int k) 905 * the heap functions want a real array index. array index 0 uis guaranteed to not
606{ 906 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
607 WT w = heap [k]; 907 * the branching factor of the d-tree.
908 */
608 909
609 while (k && heap [k >> 1]->at > w->at) 910/*
610 { 911 * at the moment we allow libev the luxury of two heaps,
611 heap [k] = heap [k >> 1]; 912 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
612 ((W)heap [k])->active = k + 1; 913 * which is more cache-efficient.
613 k >>= 1; 914 * the difference is about 5% with 50000+ watchers.
614 } 915 */
916#if EV_USE_4HEAP
615 917
616 heap [k] = w; 918#define DHEAP 4
617 ((W)heap [k])->active = k + 1; 919#define HEAP0 (DHEAP - 1) /* index of first element in heap */
920#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
921#define UPHEAP_DONE(p,k) ((p) == (k))
618 922
619} 923/* away from the root */
620 924inline_speed void
621void inline_speed
622downheap (WT *heap, int N, int k) 925downheap (ANHE *heap, int N, int k)
623{ 926{
624 WT w = heap [k]; 927 ANHE he = heap [k];
928 ANHE *E = heap + N + HEAP0;
625 929
626 while (k < (N >> 1)) 930 for (;;)
627 { 931 {
628 int j = k << 1; 932 ev_tstamp minat;
933 ANHE *minpos;
934 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
629 935
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 936 /* find minimum child */
937 if (expect_true (pos + DHEAP - 1 < E))
631 ++j; 938 {
632 939 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
633 if (w->at <= heap [j]->at) 940 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
941 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
942 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
943 }
944 else if (pos < E)
945 {
946 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
947 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
948 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
949 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
950 }
951 else
634 break; 952 break;
635 953
954 if (ANHE_at (he) <= minat)
955 break;
956
957 heap [k] = *minpos;
958 ev_active (ANHE_w (*minpos)) = k;
959
960 k = minpos - heap;
961 }
962
963 heap [k] = he;
964 ev_active (ANHE_w (he)) = k;
965}
966
967#else /* 4HEAP */
968
969#define HEAP0 1
970#define HPARENT(k) ((k) >> 1)
971#define UPHEAP_DONE(p,k) (!(p))
972
973/* away from the root */
974inline_speed void
975downheap (ANHE *heap, int N, int k)
976{
977 ANHE he = heap [k];
978
979 for (;;)
980 {
981 int c = k << 1;
982
983 if (c > N + HEAP0 - 1)
984 break;
985
986 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
987 ? 1 : 0;
988
989 if (ANHE_at (he) <= ANHE_at (heap [c]))
990 break;
991
636 heap [k] = heap [j]; 992 heap [k] = heap [c];
637 ((W)heap [k])->active = k + 1; 993 ev_active (ANHE_w (heap [k])) = k;
994
638 k = j; 995 k = c;
639 } 996 }
640 997
641 heap [k] = w; 998 heap [k] = he;
642 ((W)heap [k])->active = k + 1; 999 ev_active (ANHE_w (he)) = k;
643} 1000}
1001#endif
644 1002
645void inline_size 1003/* towards the root */
1004inline_speed void
1005upheap (ANHE *heap, int k)
1006{
1007 ANHE he = heap [k];
1008
1009 for (;;)
1010 {
1011 int p = HPARENT (k);
1012
1013 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1014 break;
1015
1016 heap [k] = heap [p];
1017 ev_active (ANHE_w (heap [k])) = k;
1018 k = p;
1019 }
1020
1021 heap [k] = he;
1022 ev_active (ANHE_w (he)) = k;
1023}
1024
1025/* move an element suitably so it is in a correct place */
1026inline_size void
646adjustheap (WT *heap, int N, int k) 1027adjustheap (ANHE *heap, int N, int k)
647{ 1028{
1029 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
648 upheap (heap, k); 1030 upheap (heap, k);
1031 else
649 downheap (heap, N, k); 1032 downheap (heap, N, k);
1033}
1034
1035/* rebuild the heap: this function is used only once and executed rarely */
1036inline_size void
1037reheap (ANHE *heap, int N)
1038{
1039 int i;
1040
1041 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1042 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1043 for (i = 0; i < N; ++i)
1044 upheap (heap, i + HEAP0);
650} 1045}
651 1046
652/*****************************************************************************/ 1047/*****************************************************************************/
653 1048
1049/* associate signal watchers to a signal signal */
654typedef struct 1050typedef struct
655{ 1051{
656 WL head; 1052 WL head;
657 sig_atomic_t volatile gotsig; 1053 EV_ATOMIC_T gotsig;
658} ANSIG; 1054} ANSIG;
659 1055
660static ANSIG *signals; 1056static ANSIG *signals;
661static int signalmax; 1057static int signalmax;
662 1058
663static int sigpipe [2]; 1059static EV_ATOMIC_T gotsig;
664static sig_atomic_t volatile gotsig;
665static ev_io sigev;
666 1060
667void inline_size 1061/*****************************************************************************/
668signals_init (ANSIG *base, int count)
669{
670 while (count--)
671 {
672 base->head = 0;
673 base->gotsig = 0;
674 1062
675 ++base; 1063/* used to prepare libev internal fd's */
676 } 1064/* this is not fork-safe */
677} 1065inline_speed void
678
679static void
680sighandler (int signum)
681{
682#if _WIN32
683 signal (signum, sighandler);
684#endif
685
686 signals [signum - 1].gotsig = 1;
687
688 if (!gotsig)
689 {
690 int old_errno = errno;
691 gotsig = 1;
692 write (sigpipe [1], &signum, 1);
693 errno = old_errno;
694 }
695}
696
697void noinline
698ev_feed_signal_event (EV_P_ int signum)
699{
700 WL w;
701
702#if EV_MULTIPLICITY
703 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
704#endif
705
706 --signum;
707
708 if (signum < 0 || signum >= signalmax)
709 return;
710
711 signals [signum].gotsig = 0;
712
713 for (w = signals [signum].head; w; w = w->next)
714 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
715}
716
717static void
718sigcb (EV_P_ ev_io *iow, int revents)
719{
720 int signum;
721
722 read (sigpipe [0], &revents, 1);
723 gotsig = 0;
724
725 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1);
728}
729
730void inline_size
731fd_intern (int fd) 1066fd_intern (int fd)
732{ 1067{
733#ifdef _WIN32 1068#ifdef _WIN32
734 int arg = 1; 1069 unsigned long arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1070 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
736#else 1071#else
737 fcntl (fd, F_SETFD, FD_CLOEXEC); 1072 fcntl (fd, F_SETFD, FD_CLOEXEC);
738 fcntl (fd, F_SETFL, O_NONBLOCK); 1073 fcntl (fd, F_SETFL, O_NONBLOCK);
739#endif 1074#endif
740} 1075}
741 1076
742static void noinline 1077static void noinline
743siginit (EV_P) 1078evpipe_init (EV_P)
744{ 1079{
1080 if (!ev_is_active (&pipe_w))
1081 {
1082#if EV_USE_EVENTFD
1083 if ((evfd = eventfd (0, 0)) >= 0)
1084 {
1085 evpipe [0] = -1;
1086 fd_intern (evfd);
1087 ev_io_set (&pipe_w, evfd, EV_READ);
1088 }
1089 else
1090#endif
1091 {
1092 while (pipe (evpipe))
1093 ev_syserr ("(libev) error creating signal/async pipe");
1094
745 fd_intern (sigpipe [0]); 1095 fd_intern (evpipe [0]);
746 fd_intern (sigpipe [1]); 1096 fd_intern (evpipe [1]);
1097 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1098 }
747 1099
748 ev_io_set (&sigev, sigpipe [0], EV_READ);
749 ev_io_start (EV_A_ &sigev); 1100 ev_io_start (EV_A_ &pipe_w);
750 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1101 ev_unref (EV_A); /* watcher should not keep loop alive */
1102 }
1103}
1104
1105inline_size void
1106evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1107{
1108 if (!*flag)
1109 {
1110 int old_errno = errno; /* save errno because write might clobber it */
1111
1112 *flag = 1;
1113
1114#if EV_USE_EVENTFD
1115 if (evfd >= 0)
1116 {
1117 uint64_t counter = 1;
1118 write (evfd, &counter, sizeof (uint64_t));
1119 }
1120 else
1121#endif
1122 write (evpipe [1], &old_errno, 1);
1123
1124 errno = old_errno;
1125 }
1126}
1127
1128/* called whenever the libev signal pipe */
1129/* got some events (signal, async) */
1130static void
1131pipecb (EV_P_ ev_io *iow, int revents)
1132{
1133#if EV_USE_EVENTFD
1134 if (evfd >= 0)
1135 {
1136 uint64_t counter;
1137 read (evfd, &counter, sizeof (uint64_t));
1138 }
1139 else
1140#endif
1141 {
1142 char dummy;
1143 read (evpipe [0], &dummy, 1);
1144 }
1145
1146 if (gotsig && ev_is_default_loop (EV_A))
1147 {
1148 int signum;
1149 gotsig = 0;
1150
1151 for (signum = signalmax; signum--; )
1152 if (signals [signum].gotsig)
1153 ev_feed_signal_event (EV_A_ signum + 1);
1154 }
1155
1156#if EV_ASYNC_ENABLE
1157 if (gotasync)
1158 {
1159 int i;
1160 gotasync = 0;
1161
1162 for (i = asynccnt; i--; )
1163 if (asyncs [i]->sent)
1164 {
1165 asyncs [i]->sent = 0;
1166 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1167 }
1168 }
1169#endif
751} 1170}
752 1171
753/*****************************************************************************/ 1172/*****************************************************************************/
754 1173
1174static void
1175ev_sighandler (int signum)
1176{
1177#if EV_MULTIPLICITY
1178 struct ev_loop *loop = &default_loop_struct;
1179#endif
1180
1181#if _WIN32
1182 signal (signum, ev_sighandler);
1183#endif
1184
1185 signals [signum - 1].gotsig = 1;
1186 evpipe_write (EV_A_ &gotsig);
1187}
1188
1189void noinline
1190ev_feed_signal_event (EV_P_ int signum)
1191{
1192 WL w;
1193
1194#if EV_MULTIPLICITY
1195 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1196#endif
1197
1198 --signum;
1199
1200 if (signum < 0 || signum >= signalmax)
1201 return;
1202
1203 signals [signum].gotsig = 0;
1204
1205 for (w = signals [signum].head; w; w = w->next)
1206 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1207}
1208
1209/*****************************************************************************/
1210
755static ev_child *childs [EV_PID_HASHSIZE]; 1211static WL childs [EV_PID_HASHSIZE];
756 1212
757#ifndef _WIN32 1213#ifndef _WIN32
758 1214
759static ev_signal childev; 1215static ev_signal childev;
760 1216
761void inline_speed 1217#ifndef WIFCONTINUED
1218# define WIFCONTINUED(status) 0
1219#endif
1220
1221/* handle a single child status event */
1222inline_speed void
762child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1223child_reap (EV_P_ int chain, int pid, int status)
763{ 1224{
764 ev_child *w; 1225 ev_child *w;
1226 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
765 1227
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1228 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1229 {
767 if (w->pid == pid || !w->pid) 1230 if ((w->pid == pid || !w->pid)
1231 && (!traced || (w->flags & 1)))
768 { 1232 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1233 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
770 w->rpid = pid; 1234 w->rpid = pid;
771 w->rstatus = status; 1235 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1236 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 1237 }
1238 }
774} 1239}
775 1240
776#ifndef WCONTINUED 1241#ifndef WCONTINUED
777# define WCONTINUED 0 1242# define WCONTINUED 0
778#endif 1243#endif
779 1244
1245/* called on sigchld etc., calls waitpid */
780static void 1246static void
781childcb (EV_P_ ev_signal *sw, int revents) 1247childcb (EV_P_ ev_signal *sw, int revents)
782{ 1248{
783 int pid, status; 1249 int pid, status;
784 1250
787 if (!WCONTINUED 1253 if (!WCONTINUED
788 || errno != EINVAL 1254 || errno != EINVAL
789 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1255 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
790 return; 1256 return;
791 1257
792 /* make sure we are called again until all childs have been reaped */ 1258 /* make sure we are called again until all children have been reaped */
793 /* we need to do it this way so that the callback gets called before we continue */ 1259 /* we need to do it this way so that the callback gets called before we continue */
794 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1260 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
795 1261
796 child_reap (EV_A_ sw, pid, pid, status); 1262 child_reap (EV_A_ pid, pid, status);
797 if (EV_PID_HASHSIZE > 1) 1263 if (EV_PID_HASHSIZE > 1)
798 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1264 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
799} 1265}
800 1266
801#endif 1267#endif
802 1268
803/*****************************************************************************/ 1269/*****************************************************************************/
865 /* kqueue is borked on everything but netbsd apparently */ 1331 /* kqueue is borked on everything but netbsd apparently */
866 /* it usually doesn't work correctly on anything but sockets and pipes */ 1332 /* it usually doesn't work correctly on anything but sockets and pipes */
867 flags &= ~EVBACKEND_KQUEUE; 1333 flags &= ~EVBACKEND_KQUEUE;
868#endif 1334#endif
869#ifdef __APPLE__ 1335#ifdef __APPLE__
870 // flags &= ~EVBACKEND_KQUEUE; for documentation 1336 /* only select works correctly on that "unix-certified" platform */
871 flags &= ~EVBACKEND_POLL; 1337 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1338 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
872#endif 1339#endif
873 1340
874 return flags; 1341 return flags;
875} 1342}
876 1343
877unsigned int 1344unsigned int
878ev_embeddable_backends (void) 1345ev_embeddable_backends (void)
879{ 1346{
880 return EVBACKEND_EPOLL 1347 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
881 | EVBACKEND_KQUEUE 1348
882 | EVBACKEND_PORT; 1349 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1350 /* please fix it and tell me how to detect the fix */
1351 flags &= ~EVBACKEND_EPOLL;
1352
1353 return flags;
883} 1354}
884 1355
885unsigned int 1356unsigned int
886ev_backend (EV_P) 1357ev_backend (EV_P)
887{ 1358{
888 return backend; 1359 return backend;
889} 1360}
890 1361
1362unsigned int
1363ev_loop_count (EV_P)
1364{
1365 return loop_count;
1366}
1367
1368unsigned int
1369ev_loop_depth (EV_P)
1370{
1371 return loop_depth;
1372}
1373
1374void
1375ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1376{
1377 io_blocktime = interval;
1378}
1379
1380void
1381ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1382{
1383 timeout_blocktime = interval;
1384}
1385
1386/* initialise a loop structure, must be zero-initialised */
891static void noinline 1387static void noinline
892loop_init (EV_P_ unsigned int flags) 1388loop_init (EV_P_ unsigned int flags)
893{ 1389{
894 if (!backend) 1390 if (!backend)
895 { 1391 {
1392#if EV_USE_REALTIME
1393 if (!have_realtime)
1394 {
1395 struct timespec ts;
1396
1397 if (!clock_gettime (CLOCK_REALTIME, &ts))
1398 have_realtime = 1;
1399 }
1400#endif
1401
896#if EV_USE_MONOTONIC 1402#if EV_USE_MONOTONIC
1403 if (!have_monotonic)
897 { 1404 {
898 struct timespec ts; 1405 struct timespec ts;
1406
899 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1407 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
900 have_monotonic = 1; 1408 have_monotonic = 1;
901 } 1409 }
902#endif 1410#endif
903 1411
904 ev_rt_now = ev_time (); 1412 ev_rt_now = ev_time ();
905 mn_now = get_clock (); 1413 mn_now = get_clock ();
906 now_floor = mn_now; 1414 now_floor = mn_now;
907 rtmn_diff = ev_rt_now - mn_now; 1415 rtmn_diff = ev_rt_now - mn_now;
1416
1417 io_blocktime = 0.;
1418 timeout_blocktime = 0.;
1419 backend = 0;
1420 backend_fd = -1;
1421 gotasync = 0;
1422#if EV_USE_INOTIFY
1423 fs_fd = -2;
1424#endif
1425
1426 /* pid check not overridable via env */
1427#ifndef _WIN32
1428 if (flags & EVFLAG_FORKCHECK)
1429 curpid = getpid ();
1430#endif
908 1431
909 if (!(flags & EVFLAG_NOENV) 1432 if (!(flags & EVFLAG_NOENV)
910 && !enable_secure () 1433 && !enable_secure ()
911 && getenv ("LIBEV_FLAGS")) 1434 && getenv ("LIBEV_FLAGS"))
912 flags = atoi (getenv ("LIBEV_FLAGS")); 1435 flags = atoi (getenv ("LIBEV_FLAGS"));
913 1436
914 if (!(flags & 0x0000ffffUL)) 1437 if (!(flags & 0x0000ffffU))
915 flags |= ev_recommended_backends (); 1438 flags |= ev_recommended_backends ();
916
917 backend = 0;
918 backend_fd = -1;
919#if EV_USE_INOTIFY
920 fs_fd = -2;
921#endif
922 1439
923#if EV_USE_PORT 1440#if EV_USE_PORT
924 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1441 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
925#endif 1442#endif
926#if EV_USE_KQUEUE 1443#if EV_USE_KQUEUE
934#endif 1451#endif
935#if EV_USE_SELECT 1452#if EV_USE_SELECT
936 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1453 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
937#endif 1454#endif
938 1455
1456 ev_prepare_init (&pending_w, pendingcb);
1457
939 ev_init (&sigev, sigcb); 1458 ev_init (&pipe_w, pipecb);
940 ev_set_priority (&sigev, EV_MAXPRI); 1459 ev_set_priority (&pipe_w, EV_MAXPRI);
941 } 1460 }
942} 1461}
943 1462
1463/* free up a loop structure */
944static void noinline 1464static void noinline
945loop_destroy (EV_P) 1465loop_destroy (EV_P)
946{ 1466{
947 int i; 1467 int i;
1468
1469 if (ev_is_active (&pipe_w))
1470 {
1471 ev_ref (EV_A); /* signal watcher */
1472 ev_io_stop (EV_A_ &pipe_w);
1473
1474#if EV_USE_EVENTFD
1475 if (evfd >= 0)
1476 close (evfd);
1477#endif
1478
1479 if (evpipe [0] >= 0)
1480 {
1481 close (evpipe [0]);
1482 close (evpipe [1]);
1483 }
1484 }
948 1485
949#if EV_USE_INOTIFY 1486#if EV_USE_INOTIFY
950 if (fs_fd >= 0) 1487 if (fs_fd >= 0)
951 close (fs_fd); 1488 close (fs_fd);
952#endif 1489#endif
969#if EV_USE_SELECT 1506#if EV_USE_SELECT
970 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1507 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
971#endif 1508#endif
972 1509
973 for (i = NUMPRI; i--; ) 1510 for (i = NUMPRI; i--; )
1511 {
974 array_free (pending, [i]); 1512 array_free (pending, [i]);
1513#if EV_IDLE_ENABLE
1514 array_free (idle, [i]);
1515#endif
1516 }
1517
1518 ev_free (anfds); anfdmax = 0;
975 1519
976 /* have to use the microsoft-never-gets-it-right macro */ 1520 /* have to use the microsoft-never-gets-it-right macro */
1521 array_free (rfeed, EMPTY);
977 array_free (fdchange, EMPTY0); 1522 array_free (fdchange, EMPTY);
978 array_free (timer, EMPTY0); 1523 array_free (timer, EMPTY);
979#if EV_PERIODIC_ENABLE 1524#if EV_PERIODIC_ENABLE
980 array_free (periodic, EMPTY0); 1525 array_free (periodic, EMPTY);
981#endif 1526#endif
1527#if EV_FORK_ENABLE
982 array_free (idle, EMPTY0); 1528 array_free (fork, EMPTY);
1529#endif
983 array_free (prepare, EMPTY0); 1530 array_free (prepare, EMPTY);
984 array_free (check, EMPTY0); 1531 array_free (check, EMPTY);
1532#if EV_ASYNC_ENABLE
1533 array_free (async, EMPTY);
1534#endif
985 1535
986 backend = 0; 1536 backend = 0;
987} 1537}
988 1538
1539#if EV_USE_INOTIFY
989void inline_size infy_fork (EV_P); 1540inline_size void infy_fork (EV_P);
1541#endif
990 1542
991void inline_size 1543inline_size void
992loop_fork (EV_P) 1544loop_fork (EV_P)
993{ 1545{
994#if EV_USE_PORT 1546#if EV_USE_PORT
995 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1547 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
996#endif 1548#endif
1002#endif 1554#endif
1003#if EV_USE_INOTIFY 1555#if EV_USE_INOTIFY
1004 infy_fork (EV_A); 1556 infy_fork (EV_A);
1005#endif 1557#endif
1006 1558
1007 if (ev_is_active (&sigev)) 1559 if (ev_is_active (&pipe_w))
1008 { 1560 {
1009 /* default loop */ 1561 /* this "locks" the handlers against writing to the pipe */
1562 /* while we modify the fd vars */
1563 gotsig = 1;
1564#if EV_ASYNC_ENABLE
1565 gotasync = 1;
1566#endif
1010 1567
1011 ev_ref (EV_A); 1568 ev_ref (EV_A);
1012 ev_io_stop (EV_A_ &sigev); 1569 ev_io_stop (EV_A_ &pipe_w);
1570
1571#if EV_USE_EVENTFD
1572 if (evfd >= 0)
1573 close (evfd);
1574#endif
1575
1576 if (evpipe [0] >= 0)
1577 {
1013 close (sigpipe [0]); 1578 close (evpipe [0]);
1014 close (sigpipe [1]); 1579 close (evpipe [1]);
1580 }
1015 1581
1016 while (pipe (sigpipe))
1017 syserr ("(libev) error creating pipe");
1018
1019 siginit (EV_A); 1582 evpipe_init (EV_A);
1583 /* now iterate over everything, in case we missed something */
1584 pipecb (EV_A_ &pipe_w, EV_READ);
1020 } 1585 }
1021 1586
1022 postfork = 0; 1587 postfork = 0;
1023} 1588}
1024 1589
1025#if EV_MULTIPLICITY 1590#if EV_MULTIPLICITY
1591
1026struct ev_loop * 1592struct ev_loop *
1027ev_loop_new (unsigned int flags) 1593ev_loop_new (unsigned int flags)
1028{ 1594{
1029 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1595 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1030 1596
1046} 1612}
1047 1613
1048void 1614void
1049ev_loop_fork (EV_P) 1615ev_loop_fork (EV_P)
1050{ 1616{
1051 postfork = 1; 1617 postfork = 1; /* must be in line with ev_default_fork */
1052} 1618}
1053 1619
1620#if EV_VERIFY
1621static void noinline
1622verify_watcher (EV_P_ W w)
1623{
1624 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1625
1626 if (w->pending)
1627 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1628}
1629
1630static void noinline
1631verify_heap (EV_P_ ANHE *heap, int N)
1632{
1633 int i;
1634
1635 for (i = HEAP0; i < N + HEAP0; ++i)
1636 {
1637 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1638 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1639 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1640
1641 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1642 }
1643}
1644
1645static void noinline
1646array_verify (EV_P_ W *ws, int cnt)
1647{
1648 while (cnt--)
1649 {
1650 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1651 verify_watcher (EV_A_ ws [cnt]);
1652 }
1653}
1654#endif
1655
1656void
1657ev_loop_verify (EV_P)
1658{
1659#if EV_VERIFY
1660 int i;
1661 WL w;
1662
1663 assert (activecnt >= -1);
1664
1665 assert (fdchangemax >= fdchangecnt);
1666 for (i = 0; i < fdchangecnt; ++i)
1667 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1668
1669 assert (anfdmax >= 0);
1670 for (i = 0; i < anfdmax; ++i)
1671 for (w = anfds [i].head; w; w = w->next)
1672 {
1673 verify_watcher (EV_A_ (W)w);
1674 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1675 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1676 }
1677
1678 assert (timermax >= timercnt);
1679 verify_heap (EV_A_ timers, timercnt);
1680
1681#if EV_PERIODIC_ENABLE
1682 assert (periodicmax >= periodiccnt);
1683 verify_heap (EV_A_ periodics, periodiccnt);
1684#endif
1685
1686 for (i = NUMPRI; i--; )
1687 {
1688 assert (pendingmax [i] >= pendingcnt [i]);
1689#if EV_IDLE_ENABLE
1690 assert (idleall >= 0);
1691 assert (idlemax [i] >= idlecnt [i]);
1692 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1693#endif
1694 }
1695
1696#if EV_FORK_ENABLE
1697 assert (forkmax >= forkcnt);
1698 array_verify (EV_A_ (W *)forks, forkcnt);
1699#endif
1700
1701#if EV_ASYNC_ENABLE
1702 assert (asyncmax >= asynccnt);
1703 array_verify (EV_A_ (W *)asyncs, asynccnt);
1704#endif
1705
1706 assert (preparemax >= preparecnt);
1707 array_verify (EV_A_ (W *)prepares, preparecnt);
1708
1709 assert (checkmax >= checkcnt);
1710 array_verify (EV_A_ (W *)checks, checkcnt);
1711
1712# if 0
1713 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1714 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1054#endif 1715# endif
1716#endif
1717}
1718
1719#endif /* multiplicity */
1055 1720
1056#if EV_MULTIPLICITY 1721#if EV_MULTIPLICITY
1057struct ev_loop * 1722struct ev_loop *
1058ev_default_loop_init (unsigned int flags) 1723ev_default_loop_init (unsigned int flags)
1059#else 1724#else
1060int 1725int
1061ev_default_loop (unsigned int flags) 1726ev_default_loop (unsigned int flags)
1062#endif 1727#endif
1063{ 1728{
1064 if (sigpipe [0] == sigpipe [1])
1065 if (pipe (sigpipe))
1066 return 0;
1067
1068 if (!ev_default_loop_ptr) 1729 if (!ev_default_loop_ptr)
1069 { 1730 {
1070#if EV_MULTIPLICITY 1731#if EV_MULTIPLICITY
1071 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1732 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1072#else 1733#else
1075 1736
1076 loop_init (EV_A_ flags); 1737 loop_init (EV_A_ flags);
1077 1738
1078 if (ev_backend (EV_A)) 1739 if (ev_backend (EV_A))
1079 { 1740 {
1080 siginit (EV_A);
1081
1082#ifndef _WIN32 1741#ifndef _WIN32
1083 ev_signal_init (&childev, childcb, SIGCHLD); 1742 ev_signal_init (&childev, childcb, SIGCHLD);
1084 ev_set_priority (&childev, EV_MAXPRI); 1743 ev_set_priority (&childev, EV_MAXPRI);
1085 ev_signal_start (EV_A_ &childev); 1744 ev_signal_start (EV_A_ &childev);
1086 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1745 ev_unref (EV_A); /* child watcher should not keep loop alive */
1098{ 1757{
1099#if EV_MULTIPLICITY 1758#if EV_MULTIPLICITY
1100 struct ev_loop *loop = ev_default_loop_ptr; 1759 struct ev_loop *loop = ev_default_loop_ptr;
1101#endif 1760#endif
1102 1761
1762 ev_default_loop_ptr = 0;
1763
1103#ifndef _WIN32 1764#ifndef _WIN32
1104 ev_ref (EV_A); /* child watcher */ 1765 ev_ref (EV_A); /* child watcher */
1105 ev_signal_stop (EV_A_ &childev); 1766 ev_signal_stop (EV_A_ &childev);
1106#endif 1767#endif
1107 1768
1108 ev_ref (EV_A); /* signal watcher */
1109 ev_io_stop (EV_A_ &sigev);
1110
1111 close (sigpipe [0]); sigpipe [0] = 0;
1112 close (sigpipe [1]); sigpipe [1] = 0;
1113
1114 loop_destroy (EV_A); 1769 loop_destroy (EV_A);
1115} 1770}
1116 1771
1117void 1772void
1118ev_default_fork (void) 1773ev_default_fork (void)
1119{ 1774{
1120#if EV_MULTIPLICITY 1775#if EV_MULTIPLICITY
1121 struct ev_loop *loop = ev_default_loop_ptr; 1776 struct ev_loop *loop = ev_default_loop_ptr;
1122#endif 1777#endif
1123 1778
1124 if (backend) 1779 postfork = 1; /* must be in line with ev_loop_fork */
1125 postfork = 1;
1126} 1780}
1127 1781
1128/*****************************************************************************/ 1782/*****************************************************************************/
1129 1783
1130int inline_size 1784void
1131any_pending (EV_P) 1785ev_invoke (EV_P_ void *w, int revents)
1132{ 1786{
1133 int pri; 1787 EV_CB_INVOKE ((W)w, revents);
1134
1135 for (pri = NUMPRI; pri--; )
1136 if (pendingcnt [pri])
1137 return 1;
1138
1139 return 0;
1140} 1788}
1141 1789
1142void inline_speed 1790inline_speed void
1143call_pending (EV_P) 1791call_pending (EV_P)
1144{ 1792{
1145 int pri; 1793 int pri;
1146 1794
1147 for (pri = NUMPRI; pri--; ) 1795 for (pri = NUMPRI; pri--; )
1148 while (pendingcnt [pri]) 1796 while (pendingcnt [pri])
1149 { 1797 {
1150 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1798 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1151 1799
1152 if (expect_true (p->w))
1153 {
1154 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1800 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1801 /* ^ this is no longer true, as pending_w could be here */
1155 1802
1156 p->w->pending = 0; 1803 p->w->pending = 0;
1157 EV_CB_INVOKE (p->w, p->events); 1804 EV_CB_INVOKE (p->w, p->events);
1158 } 1805 EV_FREQUENT_CHECK;
1159 } 1806 }
1160} 1807}
1161 1808
1162void inline_size 1809#if EV_IDLE_ENABLE
1810/* make idle watchers pending. this handles the "call-idle */
1811/* only when higher priorities are idle" logic */
1812inline_size void
1813idle_reify (EV_P)
1814{
1815 if (expect_false (idleall))
1816 {
1817 int pri;
1818
1819 for (pri = NUMPRI; pri--; )
1820 {
1821 if (pendingcnt [pri])
1822 break;
1823
1824 if (idlecnt [pri])
1825 {
1826 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1827 break;
1828 }
1829 }
1830 }
1831}
1832#endif
1833
1834/* make timers pending */
1835inline_size void
1163timers_reify (EV_P) 1836timers_reify (EV_P)
1164{ 1837{
1838 EV_FREQUENT_CHECK;
1839
1165 while (timercnt && ((WT)timers [0])->at <= mn_now) 1840 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1166 { 1841 {
1167 ev_timer *w = timers [0]; 1842 do
1168
1169 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1170
1171 /* first reschedule or stop timer */
1172 if (w->repeat)
1173 { 1843 {
1844 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1845
1846 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1847
1848 /* first reschedule or stop timer */
1849 if (w->repeat)
1850 {
1851 ev_at (w) += w->repeat;
1852 if (ev_at (w) < mn_now)
1853 ev_at (w) = mn_now;
1854
1174 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1855 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1175 1856
1176 ((WT)w)->at += w->repeat; 1857 ANHE_at_cache (timers [HEAP0]);
1177 if (((WT)w)->at < mn_now)
1178 ((WT)w)->at = mn_now;
1179
1180 downheap ((WT *)timers, timercnt, 0); 1858 downheap (timers, timercnt, HEAP0);
1859 }
1860 else
1861 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1862
1863 EV_FREQUENT_CHECK;
1864 feed_reverse (EV_A_ (W)w);
1181 } 1865 }
1182 else 1866 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1183 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1184 1867
1185 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1868 feed_reverse_done (EV_A_ EV_TIMEOUT);
1186 } 1869 }
1187} 1870}
1188 1871
1189#if EV_PERIODIC_ENABLE 1872#if EV_PERIODIC_ENABLE
1190void inline_size 1873/* make periodics pending */
1874inline_size void
1191periodics_reify (EV_P) 1875periodics_reify (EV_P)
1192{ 1876{
1877 EV_FREQUENT_CHECK;
1878
1193 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1879 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1194 { 1880 {
1195 ev_periodic *w = periodics [0]; 1881 int feed_count = 0;
1196 1882
1197 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1883 do
1198
1199 /* first reschedule or stop timer */
1200 if (w->reschedule_cb)
1201 { 1884 {
1885 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1886
1887 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1888
1889 /* first reschedule or stop timer */
1890 if (w->reschedule_cb)
1891 {
1202 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1892 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1893
1203 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1894 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1895
1896 ANHE_at_cache (periodics [HEAP0]);
1204 downheap ((WT *)periodics, periodiccnt, 0); 1897 downheap (periodics, periodiccnt, HEAP0);
1898 }
1899 else if (w->interval)
1900 {
1901 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1902 /* if next trigger time is not sufficiently in the future, put it there */
1903 /* this might happen because of floating point inexactness */
1904 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1905 {
1906 ev_at (w) += w->interval;
1907
1908 /* if interval is unreasonably low we might still have a time in the past */
1909 /* so correct this. this will make the periodic very inexact, but the user */
1910 /* has effectively asked to get triggered more often than possible */
1911 if (ev_at (w) < ev_rt_now)
1912 ev_at (w) = ev_rt_now;
1913 }
1914
1915 ANHE_at_cache (periodics [HEAP0]);
1916 downheap (periodics, periodiccnt, HEAP0);
1917 }
1918 else
1919 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1920
1921 EV_FREQUENT_CHECK;
1922 feed_reverse (EV_A_ (W)w);
1205 } 1923 }
1206 else if (w->interval) 1924 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1207 {
1208 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1209 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1210 downheap ((WT *)periodics, periodiccnt, 0);
1211 }
1212 else
1213 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1214 1925
1215 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1926 feed_reverse_done (EV_A_ EV_PERIODIC);
1216 } 1927 }
1217} 1928}
1218 1929
1930/* simply recalculate all periodics */
1931/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1219static void noinline 1932static void noinline
1220periodics_reschedule (EV_P) 1933periodics_reschedule (EV_P)
1221{ 1934{
1222 int i; 1935 int i;
1223 1936
1224 /* adjust periodics after time jump */ 1937 /* adjust periodics after time jump */
1225 for (i = 0; i < periodiccnt; ++i) 1938 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1226 { 1939 {
1227 ev_periodic *w = periodics [i]; 1940 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1228 1941
1229 if (w->reschedule_cb) 1942 if (w->reschedule_cb)
1230 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1943 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1231 else if (w->interval) 1944 else if (w->interval)
1232 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1945 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1946
1947 ANHE_at_cache (periodics [i]);
1948 }
1949
1950 reheap (periodics, periodiccnt);
1951}
1952#endif
1953
1954/* adjust all timers by a given offset */
1955static void noinline
1956timers_reschedule (EV_P_ ev_tstamp adjust)
1957{
1958 int i;
1959
1960 for (i = 0; i < timercnt; ++i)
1233 } 1961 {
1234 1962 ANHE *he = timers + i + HEAP0;
1235 /* now rebuild the heap */ 1963 ANHE_w (*he)->at += adjust;
1236 for (i = periodiccnt >> 1; i--; ) 1964 ANHE_at_cache (*he);
1237 downheap ((WT *)periodics, periodiccnt, i); 1965 }
1238} 1966}
1239#endif
1240 1967
1241int inline_size 1968/* fetch new monotonic and realtime times from the kernel */
1242time_update_monotonic (EV_P) 1969/* also detetc if there was a timejump, and act accordingly */
1970inline_speed void
1971time_update (EV_P_ ev_tstamp max_block)
1243{ 1972{
1973#if EV_USE_MONOTONIC
1974 if (expect_true (have_monotonic))
1975 {
1976 int i;
1977 ev_tstamp odiff = rtmn_diff;
1978
1244 mn_now = get_clock (); 1979 mn_now = get_clock ();
1245 1980
1981 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1982 /* interpolate in the meantime */
1246 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1983 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1247 { 1984 {
1248 ev_rt_now = rtmn_diff + mn_now; 1985 ev_rt_now = rtmn_diff + mn_now;
1249 return 0; 1986 return;
1250 } 1987 }
1251 else 1988
1252 {
1253 now_floor = mn_now; 1989 now_floor = mn_now;
1254 ev_rt_now = ev_time (); 1990 ev_rt_now = ev_time ();
1255 return 1;
1256 }
1257}
1258 1991
1259void inline_size 1992 /* loop a few times, before making important decisions.
1260time_update (EV_P) 1993 * on the choice of "4": one iteration isn't enough,
1261{ 1994 * in case we get preempted during the calls to
1262 int i; 1995 * ev_time and get_clock. a second call is almost guaranteed
1263 1996 * to succeed in that case, though. and looping a few more times
1264#if EV_USE_MONOTONIC 1997 * doesn't hurt either as we only do this on time-jumps or
1265 if (expect_true (have_monotonic)) 1998 * in the unlikely event of having been preempted here.
1266 { 1999 */
1267 if (time_update_monotonic (EV_A)) 2000 for (i = 4; --i; )
1268 { 2001 {
1269 ev_tstamp odiff = rtmn_diff;
1270
1271 /* loop a few times, before making important decisions.
1272 * on the choice of "4": one iteration isn't enough,
1273 * in case we get preempted during the calls to
1274 * ev_time and get_clock. a second call is almost guaranteed
1275 * to succeed in that case, though. and looping a few more times
1276 * doesn't hurt either as we only do this on time-jumps or
1277 * in the unlikely event of having been preempted here.
1278 */
1279 for (i = 4; --i; )
1280 {
1281 rtmn_diff = ev_rt_now - mn_now; 2002 rtmn_diff = ev_rt_now - mn_now;
1282 2003
1283 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2004 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1284 return; /* all is well */ 2005 return; /* all is well */
1285 2006
1286 ev_rt_now = ev_time (); 2007 ev_rt_now = ev_time ();
1287 mn_now = get_clock (); 2008 mn_now = get_clock ();
1288 now_floor = mn_now; 2009 now_floor = mn_now;
1289 } 2010 }
1290 2011
2012 /* no timer adjustment, as the monotonic clock doesn't jump */
2013 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1291# if EV_PERIODIC_ENABLE 2014# if EV_PERIODIC_ENABLE
1292 periodics_reschedule (EV_A); 2015 periodics_reschedule (EV_A);
1293# endif 2016# endif
1294 /* no timer adjustment, as the monotonic clock doesn't jump */
1295 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1296 }
1297 } 2017 }
1298 else 2018 else
1299#endif 2019#endif
1300 { 2020 {
1301 ev_rt_now = ev_time (); 2021 ev_rt_now = ev_time ();
1302 2022
1303 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2023 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1304 { 2024 {
2025 /* adjust timers. this is easy, as the offset is the same for all of them */
2026 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1305#if EV_PERIODIC_ENABLE 2027#if EV_PERIODIC_ENABLE
1306 periodics_reschedule (EV_A); 2028 periodics_reschedule (EV_A);
1307#endif 2029#endif
1308
1309 /* adjust timers. this is easy, as the offset is the same for all of them */
1310 for (i = 0; i < timercnt; ++i)
1311 ((WT)timers [i])->at += ev_rt_now - mn_now;
1312 } 2030 }
1313 2031
1314 mn_now = ev_rt_now; 2032 mn_now = ev_rt_now;
1315 } 2033 }
1316} 2034}
1317 2035
1318void 2036void
1319ev_ref (EV_P)
1320{
1321 ++activecnt;
1322}
1323
1324void
1325ev_unref (EV_P)
1326{
1327 --activecnt;
1328}
1329
1330static int loop_done;
1331
1332void
1333ev_loop (EV_P_ int flags) 2037ev_loop (EV_P_ int flags)
1334{ 2038{
1335 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2039 ++loop_depth;
1336 ? EVUNLOOP_ONE
1337 : EVUNLOOP_CANCEL;
1338 2040
1339 while (activecnt) 2041 loop_done = EVUNLOOP_CANCEL;
2042
2043 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
2044
2045 do
1340 { 2046 {
2047#if EV_VERIFY >= 2
2048 ev_loop_verify (EV_A);
2049#endif
2050
2051#ifndef _WIN32
2052 if (expect_false (curpid)) /* penalise the forking check even more */
2053 if (expect_false (getpid () != curpid))
2054 {
2055 curpid = getpid ();
2056 postfork = 1;
2057 }
2058#endif
2059
1341#if EV_FORK_ENABLE 2060#if EV_FORK_ENABLE
1342 /* we might have forked, so queue fork handlers */ 2061 /* we might have forked, so queue fork handlers */
1343 if (expect_false (postfork)) 2062 if (expect_false (postfork))
1344 if (forkcnt) 2063 if (forkcnt)
1345 { 2064 {
1346 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2065 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1347 call_pending (EV_A); 2066 call_pending (EV_A);
1348 } 2067 }
1349#endif 2068#endif
1350 2069
1351 /* queue check watchers (and execute them) */ 2070 /* queue prepare watchers (and execute them) */
1352 if (expect_false (preparecnt)) 2071 if (expect_false (preparecnt))
1353 { 2072 {
1354 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2073 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1355 call_pending (EV_A); 2074 call_pending (EV_A);
1356 } 2075 }
1362 /* update fd-related kernel structures */ 2081 /* update fd-related kernel structures */
1363 fd_reify (EV_A); 2082 fd_reify (EV_A);
1364 2083
1365 /* calculate blocking time */ 2084 /* calculate blocking time */
1366 { 2085 {
1367 ev_tstamp block; 2086 ev_tstamp waittime = 0.;
2087 ev_tstamp sleeptime = 0.;
1368 2088
1369 if (flags & EVLOOP_NONBLOCK || idlecnt) 2089 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1370 block = 0.; /* do not block at all */
1371 else
1372 { 2090 {
2091 /* remember old timestamp for io_blocktime calculation */
2092 ev_tstamp prev_mn_now = mn_now;
2093
1373 /* update time to cancel out callback processing overhead */ 2094 /* update time to cancel out callback processing overhead */
1374#if EV_USE_MONOTONIC
1375 if (expect_true (have_monotonic))
1376 time_update_monotonic (EV_A); 2095 time_update (EV_A_ 1e100);
1377 else
1378#endif
1379 {
1380 ev_rt_now = ev_time ();
1381 mn_now = ev_rt_now;
1382 }
1383 2096
1384 block = MAX_BLOCKTIME; 2097 waittime = MAX_BLOCKTIME;
1385 2098
1386 if (timercnt) 2099 if (timercnt)
1387 { 2100 {
1388 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2101 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1389 if (block > to) block = to; 2102 if (waittime > to) waittime = to;
1390 } 2103 }
1391 2104
1392#if EV_PERIODIC_ENABLE 2105#if EV_PERIODIC_ENABLE
1393 if (periodiccnt) 2106 if (periodiccnt)
1394 { 2107 {
1395 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2108 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1396 if (block > to) block = to; 2109 if (waittime > to) waittime = to;
1397 } 2110 }
1398#endif 2111#endif
1399 2112
2113 /* don't let timeouts decrease the waittime below timeout_blocktime */
2114 if (expect_false (waittime < timeout_blocktime))
2115 waittime = timeout_blocktime;
2116
2117 /* extra check because io_blocktime is commonly 0 */
1400 if (expect_false (block < 0.)) block = 0.; 2118 if (expect_false (io_blocktime))
2119 {
2120 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2121
2122 if (sleeptime > waittime - backend_fudge)
2123 sleeptime = waittime - backend_fudge;
2124
2125 if (expect_true (sleeptime > 0.))
2126 {
2127 ev_sleep (sleeptime);
2128 waittime -= sleeptime;
2129 }
2130 }
1401 } 2131 }
1402 2132
2133 ++loop_count;
1403 backend_poll (EV_A_ block); 2134 backend_poll (EV_A_ waittime);
2135
2136 /* update ev_rt_now, do magic */
2137 time_update (EV_A_ waittime + sleeptime);
1404 } 2138 }
1405
1406 /* update ev_rt_now, do magic */
1407 time_update (EV_A);
1408 2139
1409 /* queue pending timers and reschedule them */ 2140 /* queue pending timers and reschedule them */
1410 timers_reify (EV_A); /* relative timers called last */ 2141 timers_reify (EV_A); /* relative timers called last */
1411#if EV_PERIODIC_ENABLE 2142#if EV_PERIODIC_ENABLE
1412 periodics_reify (EV_A); /* absolute timers called first */ 2143 periodics_reify (EV_A); /* absolute timers called first */
1413#endif 2144#endif
1414 2145
2146#if EV_IDLE_ENABLE
1415 /* queue idle watchers unless other events are pending */ 2147 /* queue idle watchers unless other events are pending */
1416 if (idlecnt && !any_pending (EV_A)) 2148 idle_reify (EV_A);
1417 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2149#endif
1418 2150
1419 /* queue check watchers, to be executed first */ 2151 /* queue check watchers, to be executed first */
1420 if (expect_false (checkcnt)) 2152 if (expect_false (checkcnt))
1421 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2153 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1422 2154
1423 call_pending (EV_A); 2155 call_pending (EV_A);
1424
1425 if (expect_false (loop_done))
1426 break;
1427 } 2156 }
2157 while (expect_true (
2158 activecnt
2159 && !loop_done
2160 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2161 ));
1428 2162
1429 if (loop_done == EVUNLOOP_ONE) 2163 if (loop_done == EVUNLOOP_ONE)
1430 loop_done = EVUNLOOP_CANCEL; 2164 loop_done = EVUNLOOP_CANCEL;
2165
2166 --loop_depth;
1431} 2167}
1432 2168
1433void 2169void
1434ev_unloop (EV_P_ int how) 2170ev_unloop (EV_P_ int how)
1435{ 2171{
1436 loop_done = how; 2172 loop_done = how;
1437} 2173}
1438 2174
2175void
2176ev_ref (EV_P)
2177{
2178 ++activecnt;
2179}
2180
2181void
2182ev_unref (EV_P)
2183{
2184 --activecnt;
2185}
2186
2187void
2188ev_now_update (EV_P)
2189{
2190 time_update (EV_A_ 1e100);
2191}
2192
2193void
2194ev_suspend (EV_P)
2195{
2196 ev_now_update (EV_A);
2197}
2198
2199void
2200ev_resume (EV_P)
2201{
2202 ev_tstamp mn_prev = mn_now;
2203
2204 ev_now_update (EV_A);
2205 timers_reschedule (EV_A_ mn_now - mn_prev);
2206#if EV_PERIODIC_ENABLE
2207 /* TODO: really do this? */
2208 periodics_reschedule (EV_A);
2209#endif
2210}
2211
1439/*****************************************************************************/ 2212/*****************************************************************************/
2213/* singly-linked list management, used when the expected list length is short */
1440 2214
1441void inline_size 2215inline_size void
1442wlist_add (WL *head, WL elem) 2216wlist_add (WL *head, WL elem)
1443{ 2217{
1444 elem->next = *head; 2218 elem->next = *head;
1445 *head = elem; 2219 *head = elem;
1446} 2220}
1447 2221
1448void inline_size 2222inline_size void
1449wlist_del (WL *head, WL elem) 2223wlist_del (WL *head, WL elem)
1450{ 2224{
1451 while (*head) 2225 while (*head)
1452 { 2226 {
1453 if (*head == elem) 2227 if (*head == elem)
1458 2232
1459 head = &(*head)->next; 2233 head = &(*head)->next;
1460 } 2234 }
1461} 2235}
1462 2236
1463void inline_speed 2237/* internal, faster, version of ev_clear_pending */
2238inline_speed void
1464ev_clear_pending (EV_P_ W w) 2239clear_pending (EV_P_ W w)
1465{ 2240{
1466 if (w->pending) 2241 if (w->pending)
1467 { 2242 {
1468 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2243 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1469 w->pending = 0; 2244 w->pending = 0;
1470 } 2245 }
1471} 2246}
1472 2247
1473void inline_speed 2248int
2249ev_clear_pending (EV_P_ void *w)
2250{
2251 W w_ = (W)w;
2252 int pending = w_->pending;
2253
2254 if (expect_true (pending))
2255 {
2256 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2257 p->w = (W)&pending_w;
2258 w_->pending = 0;
2259 return p->events;
2260 }
2261 else
2262 return 0;
2263}
2264
2265inline_size void
2266pri_adjust (EV_P_ W w)
2267{
2268 int pri = ev_priority (w);
2269 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2270 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2271 ev_set_priority (w, pri);
2272}
2273
2274inline_speed void
1474ev_start (EV_P_ W w, int active) 2275ev_start (EV_P_ W w, int active)
1475{ 2276{
1476 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2277 pri_adjust (EV_A_ w);
1477 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1478
1479 w->active = active; 2278 w->active = active;
1480 ev_ref (EV_A); 2279 ev_ref (EV_A);
1481} 2280}
1482 2281
1483void inline_size 2282inline_size void
1484ev_stop (EV_P_ W w) 2283ev_stop (EV_P_ W w)
1485{ 2284{
1486 ev_unref (EV_A); 2285 ev_unref (EV_A);
1487 w->active = 0; 2286 w->active = 0;
1488} 2287}
1489 2288
1490/*****************************************************************************/ 2289/*****************************************************************************/
1491 2290
1492void 2291void noinline
1493ev_io_start (EV_P_ ev_io *w) 2292ev_io_start (EV_P_ ev_io *w)
1494{ 2293{
1495 int fd = w->fd; 2294 int fd = w->fd;
1496 2295
1497 if (expect_false (ev_is_active (w))) 2296 if (expect_false (ev_is_active (w)))
1498 return; 2297 return;
1499 2298
1500 assert (("ev_io_start called with negative fd", fd >= 0)); 2299 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2300 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2301
2302 EV_FREQUENT_CHECK;
1501 2303
1502 ev_start (EV_A_ (W)w, 1); 2304 ev_start (EV_A_ (W)w, 1);
1503 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2305 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1504 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2306 wlist_add (&anfds[fd].head, (WL)w);
1505 2307
1506 fd_change (EV_A_ fd); 2308 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1507} 2309 w->events &= ~EV__IOFDSET;
1508 2310
1509void 2311 EV_FREQUENT_CHECK;
2312}
2313
2314void noinline
1510ev_io_stop (EV_P_ ev_io *w) 2315ev_io_stop (EV_P_ ev_io *w)
1511{ 2316{
1512 ev_clear_pending (EV_A_ (W)w); 2317 clear_pending (EV_A_ (W)w);
1513 if (expect_false (!ev_is_active (w))) 2318 if (expect_false (!ev_is_active (w)))
1514 return; 2319 return;
1515 2320
1516 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2321 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1517 2322
2323 EV_FREQUENT_CHECK;
2324
1518 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2325 wlist_del (&anfds[w->fd].head, (WL)w);
1519 ev_stop (EV_A_ (W)w); 2326 ev_stop (EV_A_ (W)w);
1520 2327
1521 fd_change (EV_A_ w->fd); 2328 fd_change (EV_A_ w->fd, 1);
1522}
1523 2329
1524void 2330 EV_FREQUENT_CHECK;
2331}
2332
2333void noinline
1525ev_timer_start (EV_P_ ev_timer *w) 2334ev_timer_start (EV_P_ ev_timer *w)
1526{ 2335{
1527 if (expect_false (ev_is_active (w))) 2336 if (expect_false (ev_is_active (w)))
1528 return; 2337 return;
1529 2338
1530 ((WT)w)->at += mn_now; 2339 ev_at (w) += mn_now;
1531 2340
1532 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2341 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1533 2342
2343 EV_FREQUENT_CHECK;
2344
2345 ++timercnt;
1534 ev_start (EV_A_ (W)w, ++timercnt); 2346 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1535 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2347 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1536 timers [timercnt - 1] = w; 2348 ANHE_w (timers [ev_active (w)]) = (WT)w;
1537 upheap ((WT *)timers, timercnt - 1); 2349 ANHE_at_cache (timers [ev_active (w)]);
2350 upheap (timers, ev_active (w));
1538 2351
2352 EV_FREQUENT_CHECK;
2353
1539 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2354 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1540} 2355}
1541 2356
1542void 2357void noinline
1543ev_timer_stop (EV_P_ ev_timer *w) 2358ev_timer_stop (EV_P_ ev_timer *w)
1544{ 2359{
1545 ev_clear_pending (EV_A_ (W)w); 2360 clear_pending (EV_A_ (W)w);
1546 if (expect_false (!ev_is_active (w))) 2361 if (expect_false (!ev_is_active (w)))
1547 return; 2362 return;
1548 2363
1549 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2364 EV_FREQUENT_CHECK;
1550 2365
1551 { 2366 {
1552 int active = ((W)w)->active; 2367 int active = ev_active (w);
1553 2368
2369 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2370
2371 --timercnt;
2372
1554 if (expect_true (--active < --timercnt)) 2373 if (expect_true (active < timercnt + HEAP0))
1555 { 2374 {
1556 timers [active] = timers [timercnt]; 2375 timers [active] = timers [timercnt + HEAP0];
1557 adjustheap ((WT *)timers, timercnt, active); 2376 adjustheap (timers, timercnt, active);
1558 } 2377 }
1559 } 2378 }
1560 2379
1561 ((WT)w)->at -= mn_now; 2380 EV_FREQUENT_CHECK;
2381
2382 ev_at (w) -= mn_now;
1562 2383
1563 ev_stop (EV_A_ (W)w); 2384 ev_stop (EV_A_ (W)w);
1564} 2385}
1565 2386
1566void 2387void noinline
1567ev_timer_again (EV_P_ ev_timer *w) 2388ev_timer_again (EV_P_ ev_timer *w)
1568{ 2389{
2390 EV_FREQUENT_CHECK;
2391
1569 if (ev_is_active (w)) 2392 if (ev_is_active (w))
1570 { 2393 {
1571 if (w->repeat) 2394 if (w->repeat)
1572 { 2395 {
1573 ((WT)w)->at = mn_now + w->repeat; 2396 ev_at (w) = mn_now + w->repeat;
2397 ANHE_at_cache (timers [ev_active (w)]);
1574 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2398 adjustheap (timers, timercnt, ev_active (w));
1575 } 2399 }
1576 else 2400 else
1577 ev_timer_stop (EV_A_ w); 2401 ev_timer_stop (EV_A_ w);
1578 } 2402 }
1579 else if (w->repeat) 2403 else if (w->repeat)
1580 { 2404 {
1581 w->at = w->repeat; 2405 ev_at (w) = w->repeat;
1582 ev_timer_start (EV_A_ w); 2406 ev_timer_start (EV_A_ w);
1583 } 2407 }
2408
2409 EV_FREQUENT_CHECK;
1584} 2410}
1585 2411
1586#if EV_PERIODIC_ENABLE 2412#if EV_PERIODIC_ENABLE
1587void 2413void noinline
1588ev_periodic_start (EV_P_ ev_periodic *w) 2414ev_periodic_start (EV_P_ ev_periodic *w)
1589{ 2415{
1590 if (expect_false (ev_is_active (w))) 2416 if (expect_false (ev_is_active (w)))
1591 return; 2417 return;
1592 2418
1593 if (w->reschedule_cb) 2419 if (w->reschedule_cb)
1594 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2420 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1595 else if (w->interval) 2421 else if (w->interval)
1596 { 2422 {
1597 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2423 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1598 /* this formula differs from the one in periodic_reify because we do not always round up */ 2424 /* this formula differs from the one in periodic_reify because we do not always round up */
1599 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2425 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1600 } 2426 }
2427 else
2428 ev_at (w) = w->offset;
1601 2429
2430 EV_FREQUENT_CHECK;
2431
2432 ++periodiccnt;
1602 ev_start (EV_A_ (W)w, ++periodiccnt); 2433 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1603 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2434 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1604 periodics [periodiccnt - 1] = w; 2435 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1605 upheap ((WT *)periodics, periodiccnt - 1); 2436 ANHE_at_cache (periodics [ev_active (w)]);
2437 upheap (periodics, ev_active (w));
1606 2438
2439 EV_FREQUENT_CHECK;
2440
1607 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2441 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1608} 2442}
1609 2443
1610void 2444void noinline
1611ev_periodic_stop (EV_P_ ev_periodic *w) 2445ev_periodic_stop (EV_P_ ev_periodic *w)
1612{ 2446{
1613 ev_clear_pending (EV_A_ (W)w); 2447 clear_pending (EV_A_ (W)w);
1614 if (expect_false (!ev_is_active (w))) 2448 if (expect_false (!ev_is_active (w)))
1615 return; 2449 return;
1616 2450
1617 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2451 EV_FREQUENT_CHECK;
1618 2452
1619 { 2453 {
1620 int active = ((W)w)->active; 2454 int active = ev_active (w);
1621 2455
2456 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2457
2458 --periodiccnt;
2459
1622 if (expect_true (--active < --periodiccnt)) 2460 if (expect_true (active < periodiccnt + HEAP0))
1623 { 2461 {
1624 periodics [active] = periodics [periodiccnt]; 2462 periodics [active] = periodics [periodiccnt + HEAP0];
1625 adjustheap ((WT *)periodics, periodiccnt, active); 2463 adjustheap (periodics, periodiccnt, active);
1626 } 2464 }
1627 } 2465 }
1628 2466
2467 EV_FREQUENT_CHECK;
2468
1629 ev_stop (EV_A_ (W)w); 2469 ev_stop (EV_A_ (W)w);
1630} 2470}
1631 2471
1632void 2472void noinline
1633ev_periodic_again (EV_P_ ev_periodic *w) 2473ev_periodic_again (EV_P_ ev_periodic *w)
1634{ 2474{
1635 /* TODO: use adjustheap and recalculation */ 2475 /* TODO: use adjustheap and recalculation */
1636 ev_periodic_stop (EV_A_ w); 2476 ev_periodic_stop (EV_A_ w);
1637 ev_periodic_start (EV_A_ w); 2477 ev_periodic_start (EV_A_ w);
1640 2480
1641#ifndef SA_RESTART 2481#ifndef SA_RESTART
1642# define SA_RESTART 0 2482# define SA_RESTART 0
1643#endif 2483#endif
1644 2484
1645void 2485void noinline
1646ev_signal_start (EV_P_ ev_signal *w) 2486ev_signal_start (EV_P_ ev_signal *w)
1647{ 2487{
1648#if EV_MULTIPLICITY 2488#if EV_MULTIPLICITY
1649 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2489 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1650#endif 2490#endif
1651 if (expect_false (ev_is_active (w))) 2491 if (expect_false (ev_is_active (w)))
1652 return; 2492 return;
1653 2493
1654 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2494 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2495
2496 evpipe_init (EV_A);
2497
2498 EV_FREQUENT_CHECK;
2499
2500 {
2501#ifndef _WIN32
2502 sigset_t full, prev;
2503 sigfillset (&full);
2504 sigprocmask (SIG_SETMASK, &full, &prev);
2505#endif
2506
2507 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2508
2509#ifndef _WIN32
2510 sigprocmask (SIG_SETMASK, &prev, 0);
2511#endif
2512 }
1655 2513
1656 ev_start (EV_A_ (W)w, 1); 2514 ev_start (EV_A_ (W)w, 1);
1657 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1658 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2515 wlist_add (&signals [w->signum - 1].head, (WL)w);
1659 2516
1660 if (!((WL)w)->next) 2517 if (!((WL)w)->next)
1661 { 2518 {
1662#if _WIN32 2519#if _WIN32
1663 signal (w->signum, sighandler); 2520 signal (w->signum, ev_sighandler);
1664#else 2521#else
1665 struct sigaction sa; 2522 struct sigaction sa;
1666 sa.sa_handler = sighandler; 2523 sa.sa_handler = ev_sighandler;
1667 sigfillset (&sa.sa_mask); 2524 sigfillset (&sa.sa_mask);
1668 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2525 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1669 sigaction (w->signum, &sa, 0); 2526 sigaction (w->signum, &sa, 0);
1670#endif 2527#endif
1671 } 2528 }
1672}
1673 2529
1674void 2530 EV_FREQUENT_CHECK;
2531}
2532
2533void noinline
1675ev_signal_stop (EV_P_ ev_signal *w) 2534ev_signal_stop (EV_P_ ev_signal *w)
1676{ 2535{
1677 ev_clear_pending (EV_A_ (W)w); 2536 clear_pending (EV_A_ (W)w);
1678 if (expect_false (!ev_is_active (w))) 2537 if (expect_false (!ev_is_active (w)))
1679 return; 2538 return;
1680 2539
2540 EV_FREQUENT_CHECK;
2541
1681 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2542 wlist_del (&signals [w->signum - 1].head, (WL)w);
1682 ev_stop (EV_A_ (W)w); 2543 ev_stop (EV_A_ (W)w);
1683 2544
1684 if (!signals [w->signum - 1].head) 2545 if (!signals [w->signum - 1].head)
1685 signal (w->signum, SIG_DFL); 2546 signal (w->signum, SIG_DFL);
2547
2548 EV_FREQUENT_CHECK;
1686} 2549}
1687 2550
1688void 2551void
1689ev_child_start (EV_P_ ev_child *w) 2552ev_child_start (EV_P_ ev_child *w)
1690{ 2553{
1691#if EV_MULTIPLICITY 2554#if EV_MULTIPLICITY
1692 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2555 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1693#endif 2556#endif
1694 if (expect_false (ev_is_active (w))) 2557 if (expect_false (ev_is_active (w)))
1695 return; 2558 return;
1696 2559
2560 EV_FREQUENT_CHECK;
2561
1697 ev_start (EV_A_ (W)w, 1); 2562 ev_start (EV_A_ (W)w, 1);
1698 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2563 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2564
2565 EV_FREQUENT_CHECK;
1699} 2566}
1700 2567
1701void 2568void
1702ev_child_stop (EV_P_ ev_child *w) 2569ev_child_stop (EV_P_ ev_child *w)
1703{ 2570{
1704 ev_clear_pending (EV_A_ (W)w); 2571 clear_pending (EV_A_ (W)w);
1705 if (expect_false (!ev_is_active (w))) 2572 if (expect_false (!ev_is_active (w)))
1706 return; 2573 return;
1707 2574
2575 EV_FREQUENT_CHECK;
2576
1708 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2577 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1709 ev_stop (EV_A_ (W)w); 2578 ev_stop (EV_A_ (W)w);
2579
2580 EV_FREQUENT_CHECK;
1710} 2581}
1711 2582
1712#if EV_STAT_ENABLE 2583#if EV_STAT_ENABLE
1713 2584
1714# ifdef _WIN32 2585# ifdef _WIN32
1715# undef lstat 2586# undef lstat
1716# define lstat(a,b) _stati64 (a,b) 2587# define lstat(a,b) _stati64 (a,b)
1717# endif 2588# endif
1718 2589
1719#define DEF_STAT_INTERVAL 5.0074891 2590#define DEF_STAT_INTERVAL 5.0074891
2591#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1720#define MIN_STAT_INTERVAL 0.1074891 2592#define MIN_STAT_INTERVAL 0.1074891
1721 2593
1722static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2594static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1723 2595
1724#if EV_USE_INOTIFY 2596#if EV_USE_INOTIFY
1725# define EV_INOTIFY_BUFSIZE 8192 2597# define EV_INOTIFY_BUFSIZE 8192
1729{ 2601{
1730 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2602 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1731 2603
1732 if (w->wd < 0) 2604 if (w->wd < 0)
1733 { 2605 {
2606 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1734 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2607 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1735 2608
1736 /* monitor some parent directory for speedup hints */ 2609 /* monitor some parent directory for speedup hints */
2610 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2611 /* but an efficiency issue only */
1737 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2612 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1738 { 2613 {
1739 char path [4096]; 2614 char path [4096];
1740 strcpy (path, w->path); 2615 strcpy (path, w->path);
1741 2616
1744 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2619 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1745 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2620 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1746 2621
1747 char *pend = strrchr (path, '/'); 2622 char *pend = strrchr (path, '/');
1748 2623
1749 if (!pend) 2624 if (!pend || pend == path)
1750 break; /* whoops, no '/', complain to your admin */ 2625 break;
1751 2626
1752 *pend = 0; 2627 *pend = 0;
1753 w->wd = inotify_add_watch (fs_fd, path, mask); 2628 w->wd = inotify_add_watch (fs_fd, path, mask);
1754 } 2629 }
1755 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2630 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1756 } 2631 }
1757 } 2632 }
1758 else
1759 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1760 2633
1761 if (w->wd >= 0) 2634 if (w->wd >= 0)
2635 {
1762 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2636 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2637
2638 /* now local changes will be tracked by inotify, but remote changes won't */
2639 /* unless the filesystem it known to be local, we therefore still poll */
2640 /* also do poll on <2.6.25, but with normal frequency */
2641 struct statfs sfs;
2642
2643 if (fs_2625 && !statfs (w->path, &sfs))
2644 if (sfs.f_type == 0x1373 /* devfs */
2645 || sfs.f_type == 0xEF53 /* ext2/3 */
2646 || sfs.f_type == 0x3153464a /* jfs */
2647 || sfs.f_type == 0x52654973 /* reiser3 */
2648 || sfs.f_type == 0x01021994 /* tempfs */
2649 || sfs.f_type == 0x58465342 /* xfs */)
2650 return;
2651
2652 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2653 ev_timer_again (EV_A_ &w->timer);
2654 }
1763} 2655}
1764 2656
1765static void noinline 2657static void noinline
1766infy_del (EV_P_ ev_stat *w) 2658infy_del (EV_P_ ev_stat *w)
1767{ 2659{
1781 2673
1782static void noinline 2674static void noinline
1783infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2675infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1784{ 2676{
1785 if (slot < 0) 2677 if (slot < 0)
1786 /* overflow, need to check for all hahs slots */ 2678 /* overflow, need to check for all hash slots */
1787 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2679 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1788 infy_wd (EV_A_ slot, wd, ev); 2680 infy_wd (EV_A_ slot, wd, ev);
1789 else 2681 else
1790 { 2682 {
1791 WL w_; 2683 WL w_;
1797 2689
1798 if (w->wd == wd || wd == -1) 2690 if (w->wd == wd || wd == -1)
1799 { 2691 {
1800 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2692 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1801 { 2693 {
2694 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1802 w->wd = -1; 2695 w->wd = -1;
1803 infy_add (EV_A_ w); /* re-add, no matter what */ 2696 infy_add (EV_A_ w); /* re-add, no matter what */
1804 } 2697 }
1805 2698
1806 stat_timer_cb (EV_A_ &w->timer, 0); 2699 stat_timer_cb (EV_A_ &w->timer, 0);
1819 2712
1820 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2713 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1821 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2714 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1822} 2715}
1823 2716
1824void inline_size 2717inline_size void
2718check_2625 (EV_P)
2719{
2720 /* kernels < 2.6.25 are borked
2721 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2722 */
2723 struct utsname buf;
2724 int major, minor, micro;
2725
2726 if (uname (&buf))
2727 return;
2728
2729 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2730 return;
2731
2732 if (major < 2
2733 || (major == 2 && minor < 6)
2734 || (major == 2 && minor == 6 && micro < 25))
2735 return;
2736
2737 fs_2625 = 1;
2738}
2739
2740inline_size void
1825infy_init (EV_P) 2741infy_init (EV_P)
1826{ 2742{
1827 if (fs_fd != -2) 2743 if (fs_fd != -2)
1828 return; 2744 return;
2745
2746 fs_fd = -1;
2747
2748 check_2625 (EV_A);
1829 2749
1830 fs_fd = inotify_init (); 2750 fs_fd = inotify_init ();
1831 2751
1832 if (fs_fd >= 0) 2752 if (fs_fd >= 0)
1833 { 2753 {
1835 ev_set_priority (&fs_w, EV_MAXPRI); 2755 ev_set_priority (&fs_w, EV_MAXPRI);
1836 ev_io_start (EV_A_ &fs_w); 2756 ev_io_start (EV_A_ &fs_w);
1837 } 2757 }
1838} 2758}
1839 2759
1840void inline_size 2760inline_size void
1841infy_fork (EV_P) 2761infy_fork (EV_P)
1842{ 2762{
1843 int slot; 2763 int slot;
1844 2764
1845 if (fs_fd < 0) 2765 if (fs_fd < 0)
1861 w->wd = -1; 2781 w->wd = -1;
1862 2782
1863 if (fs_fd >= 0) 2783 if (fs_fd >= 0)
1864 infy_add (EV_A_ w); /* re-add, no matter what */ 2784 infy_add (EV_A_ w); /* re-add, no matter what */
1865 else 2785 else
1866 ev_timer_start (EV_A_ &w->timer); 2786 ev_timer_again (EV_A_ &w->timer);
1867 } 2787 }
1868
1869 } 2788 }
1870} 2789}
1871 2790
2791#endif
2792
2793#ifdef _WIN32
2794# define EV_LSTAT(p,b) _stati64 (p, b)
2795#else
2796# define EV_LSTAT(p,b) lstat (p, b)
1872#endif 2797#endif
1873 2798
1874void 2799void
1875ev_stat_stat (EV_P_ ev_stat *w) 2800ev_stat_stat (EV_P_ ev_stat *w)
1876{ 2801{
1903 || w->prev.st_atime != w->attr.st_atime 2828 || w->prev.st_atime != w->attr.st_atime
1904 || w->prev.st_mtime != w->attr.st_mtime 2829 || w->prev.st_mtime != w->attr.st_mtime
1905 || w->prev.st_ctime != w->attr.st_ctime 2830 || w->prev.st_ctime != w->attr.st_ctime
1906 ) { 2831 ) {
1907 #if EV_USE_INOTIFY 2832 #if EV_USE_INOTIFY
2833 if (fs_fd >= 0)
2834 {
1908 infy_del (EV_A_ w); 2835 infy_del (EV_A_ w);
1909 infy_add (EV_A_ w); 2836 infy_add (EV_A_ w);
1910 ev_stat_stat (EV_A_ w); /* avoid race... */ 2837 ev_stat_stat (EV_A_ w); /* avoid race... */
2838 }
1911 #endif 2839 #endif
1912 2840
1913 ev_feed_event (EV_A_ w, EV_STAT); 2841 ev_feed_event (EV_A_ w, EV_STAT);
1914 } 2842 }
1915} 2843}
1918ev_stat_start (EV_P_ ev_stat *w) 2846ev_stat_start (EV_P_ ev_stat *w)
1919{ 2847{
1920 if (expect_false (ev_is_active (w))) 2848 if (expect_false (ev_is_active (w)))
1921 return; 2849 return;
1922 2850
1923 /* since we use memcmp, we need to clear any padding data etc. */
1924 memset (&w->prev, 0, sizeof (ev_statdata));
1925 memset (&w->attr, 0, sizeof (ev_statdata));
1926
1927 ev_stat_stat (EV_A_ w); 2851 ev_stat_stat (EV_A_ w);
1928 2852
2853 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1929 if (w->interval < MIN_STAT_INTERVAL) 2854 w->interval = MIN_STAT_INTERVAL;
1930 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1931 2855
1932 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2856 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1933 ev_set_priority (&w->timer, ev_priority (w)); 2857 ev_set_priority (&w->timer, ev_priority (w));
1934 2858
1935#if EV_USE_INOTIFY 2859#if EV_USE_INOTIFY
1936 infy_init (EV_A); 2860 infy_init (EV_A);
1937 2861
1938 if (fs_fd >= 0) 2862 if (fs_fd >= 0)
1939 infy_add (EV_A_ w); 2863 infy_add (EV_A_ w);
1940 else 2864 else
1941#endif 2865#endif
1942 ev_timer_start (EV_A_ &w->timer); 2866 ev_timer_again (EV_A_ &w->timer);
1943 2867
1944 ev_start (EV_A_ (W)w, 1); 2868 ev_start (EV_A_ (W)w, 1);
2869
2870 EV_FREQUENT_CHECK;
1945} 2871}
1946 2872
1947void 2873void
1948ev_stat_stop (EV_P_ ev_stat *w) 2874ev_stat_stop (EV_P_ ev_stat *w)
1949{ 2875{
1950 ev_clear_pending (EV_A_ (W)w); 2876 clear_pending (EV_A_ (W)w);
1951 if (expect_false (!ev_is_active (w))) 2877 if (expect_false (!ev_is_active (w)))
1952 return; 2878 return;
1953 2879
2880 EV_FREQUENT_CHECK;
2881
1954#if EV_USE_INOTIFY 2882#if EV_USE_INOTIFY
1955 infy_del (EV_A_ w); 2883 infy_del (EV_A_ w);
1956#endif 2884#endif
1957 ev_timer_stop (EV_A_ &w->timer); 2885 ev_timer_stop (EV_A_ &w->timer);
1958 2886
1959 ev_stop (EV_A_ (W)w); 2887 ev_stop (EV_A_ (W)w);
1960}
1961#endif
1962 2888
2889 EV_FREQUENT_CHECK;
2890}
2891#endif
2892
2893#if EV_IDLE_ENABLE
1963void 2894void
1964ev_idle_start (EV_P_ ev_idle *w) 2895ev_idle_start (EV_P_ ev_idle *w)
1965{ 2896{
1966 if (expect_false (ev_is_active (w))) 2897 if (expect_false (ev_is_active (w)))
1967 return; 2898 return;
1968 2899
2900 pri_adjust (EV_A_ (W)w);
2901
2902 EV_FREQUENT_CHECK;
2903
2904 {
2905 int active = ++idlecnt [ABSPRI (w)];
2906
2907 ++idleall;
1969 ev_start (EV_A_ (W)w, ++idlecnt); 2908 ev_start (EV_A_ (W)w, active);
2909
1970 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2910 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1971 idles [idlecnt - 1] = w; 2911 idles [ABSPRI (w)][active - 1] = w;
2912 }
2913
2914 EV_FREQUENT_CHECK;
1972} 2915}
1973 2916
1974void 2917void
1975ev_idle_stop (EV_P_ ev_idle *w) 2918ev_idle_stop (EV_P_ ev_idle *w)
1976{ 2919{
1977 ev_clear_pending (EV_A_ (W)w); 2920 clear_pending (EV_A_ (W)w);
1978 if (expect_false (!ev_is_active (w))) 2921 if (expect_false (!ev_is_active (w)))
1979 return; 2922 return;
1980 2923
2924 EV_FREQUENT_CHECK;
2925
1981 { 2926 {
1982 int active = ((W)w)->active; 2927 int active = ev_active (w);
1983 idles [active - 1] = idles [--idlecnt]; 2928
1984 ((W)idles [active - 1])->active = active; 2929 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2930 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2931
2932 ev_stop (EV_A_ (W)w);
2933 --idleall;
1985 } 2934 }
1986 2935
1987 ev_stop (EV_A_ (W)w); 2936 EV_FREQUENT_CHECK;
1988} 2937}
2938#endif
1989 2939
1990void 2940void
1991ev_prepare_start (EV_P_ ev_prepare *w) 2941ev_prepare_start (EV_P_ ev_prepare *w)
1992{ 2942{
1993 if (expect_false (ev_is_active (w))) 2943 if (expect_false (ev_is_active (w)))
1994 return; 2944 return;
2945
2946 EV_FREQUENT_CHECK;
1995 2947
1996 ev_start (EV_A_ (W)w, ++preparecnt); 2948 ev_start (EV_A_ (W)w, ++preparecnt);
1997 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2949 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1998 prepares [preparecnt - 1] = w; 2950 prepares [preparecnt - 1] = w;
2951
2952 EV_FREQUENT_CHECK;
1999} 2953}
2000 2954
2001void 2955void
2002ev_prepare_stop (EV_P_ ev_prepare *w) 2956ev_prepare_stop (EV_P_ ev_prepare *w)
2003{ 2957{
2004 ev_clear_pending (EV_A_ (W)w); 2958 clear_pending (EV_A_ (W)w);
2005 if (expect_false (!ev_is_active (w))) 2959 if (expect_false (!ev_is_active (w)))
2006 return; 2960 return;
2007 2961
2962 EV_FREQUENT_CHECK;
2963
2008 { 2964 {
2009 int active = ((W)w)->active; 2965 int active = ev_active (w);
2966
2010 prepares [active - 1] = prepares [--preparecnt]; 2967 prepares [active - 1] = prepares [--preparecnt];
2011 ((W)prepares [active - 1])->active = active; 2968 ev_active (prepares [active - 1]) = active;
2012 } 2969 }
2013 2970
2014 ev_stop (EV_A_ (W)w); 2971 ev_stop (EV_A_ (W)w);
2972
2973 EV_FREQUENT_CHECK;
2015} 2974}
2016 2975
2017void 2976void
2018ev_check_start (EV_P_ ev_check *w) 2977ev_check_start (EV_P_ ev_check *w)
2019{ 2978{
2020 if (expect_false (ev_is_active (w))) 2979 if (expect_false (ev_is_active (w)))
2021 return; 2980 return;
2981
2982 EV_FREQUENT_CHECK;
2022 2983
2023 ev_start (EV_A_ (W)w, ++checkcnt); 2984 ev_start (EV_A_ (W)w, ++checkcnt);
2024 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2985 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2025 checks [checkcnt - 1] = w; 2986 checks [checkcnt - 1] = w;
2987
2988 EV_FREQUENT_CHECK;
2026} 2989}
2027 2990
2028void 2991void
2029ev_check_stop (EV_P_ ev_check *w) 2992ev_check_stop (EV_P_ ev_check *w)
2030{ 2993{
2031 ev_clear_pending (EV_A_ (W)w); 2994 clear_pending (EV_A_ (W)w);
2032 if (expect_false (!ev_is_active (w))) 2995 if (expect_false (!ev_is_active (w)))
2033 return; 2996 return;
2034 2997
2998 EV_FREQUENT_CHECK;
2999
2035 { 3000 {
2036 int active = ((W)w)->active; 3001 int active = ev_active (w);
3002
2037 checks [active - 1] = checks [--checkcnt]; 3003 checks [active - 1] = checks [--checkcnt];
2038 ((W)checks [active - 1])->active = active; 3004 ev_active (checks [active - 1]) = active;
2039 } 3005 }
2040 3006
2041 ev_stop (EV_A_ (W)w); 3007 ev_stop (EV_A_ (W)w);
3008
3009 EV_FREQUENT_CHECK;
2042} 3010}
2043 3011
2044#if EV_EMBED_ENABLE 3012#if EV_EMBED_ENABLE
2045void noinline 3013void noinline
2046ev_embed_sweep (EV_P_ ev_embed *w) 3014ev_embed_sweep (EV_P_ ev_embed *w)
2047{ 3015{
2048 ev_loop (w->loop, EVLOOP_NONBLOCK); 3016 ev_loop (w->other, EVLOOP_NONBLOCK);
2049} 3017}
2050 3018
2051static void 3019static void
2052embed_cb (EV_P_ ev_io *io, int revents) 3020embed_io_cb (EV_P_ ev_io *io, int revents)
2053{ 3021{
2054 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3022 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2055 3023
2056 if (ev_cb (w)) 3024 if (ev_cb (w))
2057 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3025 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2058 else 3026 else
2059 ev_embed_sweep (loop, w); 3027 ev_loop (w->other, EVLOOP_NONBLOCK);
2060} 3028}
3029
3030static void
3031embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3032{
3033 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3034
3035 {
3036 struct ev_loop *loop = w->other;
3037
3038 while (fdchangecnt)
3039 {
3040 fd_reify (EV_A);
3041 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3042 }
3043 }
3044}
3045
3046static void
3047embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3048{
3049 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3050
3051 ev_embed_stop (EV_A_ w);
3052
3053 {
3054 struct ev_loop *loop = w->other;
3055
3056 ev_loop_fork (EV_A);
3057 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3058 }
3059
3060 ev_embed_start (EV_A_ w);
3061}
3062
3063#if 0
3064static void
3065embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3066{
3067 ev_idle_stop (EV_A_ idle);
3068}
3069#endif
2061 3070
2062void 3071void
2063ev_embed_start (EV_P_ ev_embed *w) 3072ev_embed_start (EV_P_ ev_embed *w)
2064{ 3073{
2065 if (expect_false (ev_is_active (w))) 3074 if (expect_false (ev_is_active (w)))
2066 return; 3075 return;
2067 3076
2068 { 3077 {
2069 struct ev_loop *loop = w->loop; 3078 struct ev_loop *loop = w->other;
2070 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3079 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2071 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3080 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2072 } 3081 }
3082
3083 EV_FREQUENT_CHECK;
2073 3084
2074 ev_set_priority (&w->io, ev_priority (w)); 3085 ev_set_priority (&w->io, ev_priority (w));
2075 ev_io_start (EV_A_ &w->io); 3086 ev_io_start (EV_A_ &w->io);
2076 3087
3088 ev_prepare_init (&w->prepare, embed_prepare_cb);
3089 ev_set_priority (&w->prepare, EV_MINPRI);
3090 ev_prepare_start (EV_A_ &w->prepare);
3091
3092 ev_fork_init (&w->fork, embed_fork_cb);
3093 ev_fork_start (EV_A_ &w->fork);
3094
3095 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3096
2077 ev_start (EV_A_ (W)w, 1); 3097 ev_start (EV_A_ (W)w, 1);
3098
3099 EV_FREQUENT_CHECK;
2078} 3100}
2079 3101
2080void 3102void
2081ev_embed_stop (EV_P_ ev_embed *w) 3103ev_embed_stop (EV_P_ ev_embed *w)
2082{ 3104{
2083 ev_clear_pending (EV_A_ (W)w); 3105 clear_pending (EV_A_ (W)w);
2084 if (expect_false (!ev_is_active (w))) 3106 if (expect_false (!ev_is_active (w)))
2085 return; 3107 return;
2086 3108
3109 EV_FREQUENT_CHECK;
3110
2087 ev_io_stop (EV_A_ &w->io); 3111 ev_io_stop (EV_A_ &w->io);
3112 ev_prepare_stop (EV_A_ &w->prepare);
3113 ev_fork_stop (EV_A_ &w->fork);
2088 3114
2089 ev_stop (EV_A_ (W)w); 3115 EV_FREQUENT_CHECK;
2090} 3116}
2091#endif 3117#endif
2092 3118
2093#if EV_FORK_ENABLE 3119#if EV_FORK_ENABLE
2094void 3120void
2095ev_fork_start (EV_P_ ev_fork *w) 3121ev_fork_start (EV_P_ ev_fork *w)
2096{ 3122{
2097 if (expect_false (ev_is_active (w))) 3123 if (expect_false (ev_is_active (w)))
2098 return; 3124 return;
3125
3126 EV_FREQUENT_CHECK;
2099 3127
2100 ev_start (EV_A_ (W)w, ++forkcnt); 3128 ev_start (EV_A_ (W)w, ++forkcnt);
2101 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3129 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2102 forks [forkcnt - 1] = w; 3130 forks [forkcnt - 1] = w;
3131
3132 EV_FREQUENT_CHECK;
2103} 3133}
2104 3134
2105void 3135void
2106ev_fork_stop (EV_P_ ev_fork *w) 3136ev_fork_stop (EV_P_ ev_fork *w)
2107{ 3137{
2108 ev_clear_pending (EV_A_ (W)w); 3138 clear_pending (EV_A_ (W)w);
2109 if (expect_false (!ev_is_active (w))) 3139 if (expect_false (!ev_is_active (w)))
2110 return; 3140 return;
2111 3141
3142 EV_FREQUENT_CHECK;
3143
2112 { 3144 {
2113 int active = ((W)w)->active; 3145 int active = ev_active (w);
3146
2114 forks [active - 1] = forks [--forkcnt]; 3147 forks [active - 1] = forks [--forkcnt];
2115 ((W)forks [active - 1])->active = active; 3148 ev_active (forks [active - 1]) = active;
2116 } 3149 }
2117 3150
2118 ev_stop (EV_A_ (W)w); 3151 ev_stop (EV_A_ (W)w);
3152
3153 EV_FREQUENT_CHECK;
3154}
3155#endif
3156
3157#if EV_ASYNC_ENABLE
3158void
3159ev_async_start (EV_P_ ev_async *w)
3160{
3161 if (expect_false (ev_is_active (w)))
3162 return;
3163
3164 evpipe_init (EV_A);
3165
3166 EV_FREQUENT_CHECK;
3167
3168 ev_start (EV_A_ (W)w, ++asynccnt);
3169 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3170 asyncs [asynccnt - 1] = w;
3171
3172 EV_FREQUENT_CHECK;
3173}
3174
3175void
3176ev_async_stop (EV_P_ ev_async *w)
3177{
3178 clear_pending (EV_A_ (W)w);
3179 if (expect_false (!ev_is_active (w)))
3180 return;
3181
3182 EV_FREQUENT_CHECK;
3183
3184 {
3185 int active = ev_active (w);
3186
3187 asyncs [active - 1] = asyncs [--asynccnt];
3188 ev_active (asyncs [active - 1]) = active;
3189 }
3190
3191 ev_stop (EV_A_ (W)w);
3192
3193 EV_FREQUENT_CHECK;
3194}
3195
3196void
3197ev_async_send (EV_P_ ev_async *w)
3198{
3199 w->sent = 1;
3200 evpipe_write (EV_A_ &gotasync);
2119} 3201}
2120#endif 3202#endif
2121 3203
2122/*****************************************************************************/ 3204/*****************************************************************************/
2123 3205
2133once_cb (EV_P_ struct ev_once *once, int revents) 3215once_cb (EV_P_ struct ev_once *once, int revents)
2134{ 3216{
2135 void (*cb)(int revents, void *arg) = once->cb; 3217 void (*cb)(int revents, void *arg) = once->cb;
2136 void *arg = once->arg; 3218 void *arg = once->arg;
2137 3219
2138 ev_io_stop (EV_A_ &once->io); 3220 ev_io_stop (EV_A_ &once->io);
2139 ev_timer_stop (EV_A_ &once->to); 3221 ev_timer_stop (EV_A_ &once->to);
2140 ev_free (once); 3222 ev_free (once);
2141 3223
2142 cb (revents, arg); 3224 cb (revents, arg);
2143} 3225}
2144 3226
2145static void 3227static void
2146once_cb_io (EV_P_ ev_io *w, int revents) 3228once_cb_io (EV_P_ ev_io *w, int revents)
2147{ 3229{
2148 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3230 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3231
3232 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2149} 3233}
2150 3234
2151static void 3235static void
2152once_cb_to (EV_P_ ev_timer *w, int revents) 3236once_cb_to (EV_P_ ev_timer *w, int revents)
2153{ 3237{
2154 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3238 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3239
3240 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2155} 3241}
2156 3242
2157void 3243void
2158ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3244ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2159{ 3245{
2181 ev_timer_set (&once->to, timeout, 0.); 3267 ev_timer_set (&once->to, timeout, 0.);
2182 ev_timer_start (EV_A_ &once->to); 3268 ev_timer_start (EV_A_ &once->to);
2183 } 3269 }
2184} 3270}
2185 3271
3272/*****************************************************************************/
3273
3274#if EV_WALK_ENABLE
3275void
3276ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3277{
3278 int i, j;
3279 ev_watcher_list *wl, *wn;
3280
3281 if (types & (EV_IO | EV_EMBED))
3282 for (i = 0; i < anfdmax; ++i)
3283 for (wl = anfds [i].head; wl; )
3284 {
3285 wn = wl->next;
3286
3287#if EV_EMBED_ENABLE
3288 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3289 {
3290 if (types & EV_EMBED)
3291 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3292 }
3293 else
3294#endif
3295#if EV_USE_INOTIFY
3296 if (ev_cb ((ev_io *)wl) == infy_cb)
3297 ;
3298 else
3299#endif
3300 if ((ev_io *)wl != &pipe_w)
3301 if (types & EV_IO)
3302 cb (EV_A_ EV_IO, wl);
3303
3304 wl = wn;
3305 }
3306
3307 if (types & (EV_TIMER | EV_STAT))
3308 for (i = timercnt + HEAP0; i-- > HEAP0; )
3309#if EV_STAT_ENABLE
3310 /*TODO: timer is not always active*/
3311 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3312 {
3313 if (types & EV_STAT)
3314 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3315 }
3316 else
3317#endif
3318 if (types & EV_TIMER)
3319 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3320
3321#if EV_PERIODIC_ENABLE
3322 if (types & EV_PERIODIC)
3323 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3324 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3325#endif
3326
3327#if EV_IDLE_ENABLE
3328 if (types & EV_IDLE)
3329 for (j = NUMPRI; i--; )
3330 for (i = idlecnt [j]; i--; )
3331 cb (EV_A_ EV_IDLE, idles [j][i]);
3332#endif
3333
3334#if EV_FORK_ENABLE
3335 if (types & EV_FORK)
3336 for (i = forkcnt; i--; )
3337 if (ev_cb (forks [i]) != embed_fork_cb)
3338 cb (EV_A_ EV_FORK, forks [i]);
3339#endif
3340
3341#if EV_ASYNC_ENABLE
3342 if (types & EV_ASYNC)
3343 for (i = asynccnt; i--; )
3344 cb (EV_A_ EV_ASYNC, asyncs [i]);
3345#endif
3346
3347 if (types & EV_PREPARE)
3348 for (i = preparecnt; i--; )
3349#if EV_EMBED_ENABLE
3350 if (ev_cb (prepares [i]) != embed_prepare_cb)
3351#endif
3352 cb (EV_A_ EV_PREPARE, prepares [i]);
3353
3354 if (types & EV_CHECK)
3355 for (i = checkcnt; i--; )
3356 cb (EV_A_ EV_CHECK, checks [i]);
3357
3358 if (types & EV_SIGNAL)
3359 for (i = 0; i < signalmax; ++i)
3360 for (wl = signals [i].head; wl; )
3361 {
3362 wn = wl->next;
3363 cb (EV_A_ EV_SIGNAL, wl);
3364 wl = wn;
3365 }
3366
3367 if (types & EV_CHILD)
3368 for (i = EV_PID_HASHSIZE; i--; )
3369 for (wl = childs [i]; wl; )
3370 {
3371 wn = wl->next;
3372 cb (EV_A_ EV_CHILD, wl);
3373 wl = wn;
3374 }
3375/* EV_STAT 0x00001000 /* stat data changed */
3376/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3377}
3378#endif
3379
3380#if EV_MULTIPLICITY
3381 #include "ev_wrap.h"
3382#endif
3383
2186#ifdef __cplusplus 3384#ifdef __cplusplus
2187} 3385}
2188#endif 3386#endif
2189 3387

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines