ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.199 by root, Tue Dec 25 07:05:45 2007 UTC vs.
Revision 1.295 by root, Wed Jul 8 04:29:31 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
49# endif 50# endif
50 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
51# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
54# endif 69# endif
55# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
57# endif 72# endif
58# else 73# else
59# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
61# endif 76# endif
118# else 133# else
119# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
120# endif 135# endif
121# endif 136# endif
122 137
138# ifndef EV_USE_EVENTFD
139# if HAVE_EVENTFD
140# define EV_USE_EVENTFD 1
141# else
142# define EV_USE_EVENTFD 0
143# endif
144# endif
145
123#endif 146#endif
124 147
125#include <math.h> 148#include <math.h>
126#include <stdlib.h> 149#include <stdlib.h>
127#include <fcntl.h> 150#include <fcntl.h>
145#ifndef _WIN32 168#ifndef _WIN32
146# include <sys/time.h> 169# include <sys/time.h>
147# include <sys/wait.h> 170# include <sys/wait.h>
148# include <unistd.h> 171# include <unistd.h>
149#else 172#else
173# include <io.h>
150# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
151# include <windows.h> 175# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
154# endif 178# endif
155#endif 179#endif
156 180
157/**/ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
158 190
159#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
160# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
161#endif 197#endif
162 198
163#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 201#endif
166 202
167#ifndef EV_USE_NANOSLEEP 203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
168# define EV_USE_NANOSLEEP 0 207# define EV_USE_NANOSLEEP 0
208# endif
169#endif 209#endif
170 210
171#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
173#endif 213#endif
179# define EV_USE_POLL 1 219# define EV_USE_POLL 1
180# endif 220# endif
181#endif 221#endif
182 222
183#ifndef EV_USE_EPOLL 223#ifndef EV_USE_EPOLL
224# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225# define EV_USE_EPOLL 1
226# else
184# define EV_USE_EPOLL 0 227# define EV_USE_EPOLL 0
228# endif
185#endif 229#endif
186 230
187#ifndef EV_USE_KQUEUE 231#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 232# define EV_USE_KQUEUE 0
189#endif 233#endif
191#ifndef EV_USE_PORT 235#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 236# define EV_USE_PORT 0
193#endif 237#endif
194 238
195#ifndef EV_USE_INOTIFY 239#ifndef EV_USE_INOTIFY
240# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
241# define EV_USE_INOTIFY 1
242# else
196# define EV_USE_INOTIFY 0 243# define EV_USE_INOTIFY 0
244# endif
197#endif 245#endif
198 246
199#ifndef EV_PID_HASHSIZE 247#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 248# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 249# define EV_PID_HASHSIZE 1
210# else 258# else
211# define EV_INOTIFY_HASHSIZE 16 259# define EV_INOTIFY_HASHSIZE 16
212# endif 260# endif
213#endif 261#endif
214 262
215/**/ 263#ifndef EV_USE_EVENTFD
264# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265# define EV_USE_EVENTFD 1
266# else
267# define EV_USE_EVENTFD 0
268# endif
269#endif
270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 304
217#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
220#endif 308#endif
234# include <sys/select.h> 322# include <sys/select.h>
235# endif 323# endif
236#endif 324#endif
237 325
238#if EV_USE_INOTIFY 326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
239# include <sys/inotify.h> 329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
240#endif 335#endif
241 336
242#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 338# include <winsock.h>
244#endif 339#endif
245 340
341#if EV_USE_EVENTFD
342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343# include <stdint.h>
344# ifdef __cplusplus
345extern "C" {
346# endif
347int eventfd (unsigned int initval, int flags);
348# ifdef __cplusplus
349}
350# endif
351#endif
352
246/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
247 360
248/* 361/*
249 * This is used to avoid floating point rounding problems. 362 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics 363 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding 364 * to ensure progress, time-wise, even when rounding
263# define expect(expr,value) __builtin_expect ((expr),(value)) 376# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 377# define noinline __attribute__ ((noinline))
265#else 378#else
266# define expect(expr,value) (expr) 379# define expect(expr,value) (expr)
267# define noinline 380# define noinline
268# if __STDC_VERSION__ < 199901L 381# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 382# define inline
270# endif 383# endif
271#endif 384#endif
272 385
273#define expect_false(expr) expect ((expr) != 0, 0) 386#define expect_false(expr) expect ((expr) != 0, 0)
278# define inline_speed static noinline 391# define inline_speed static noinline
279#else 392#else
280# define inline_speed static inline 393# define inline_speed static inline
281#endif 394#endif
282 395
283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
285 403
286#define EMPTY /* required for microsofts broken pseudo-c compiler */ 404#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */ 405#define EMPTY2(a,b) /* used to suppress some warnings */
288 406
289typedef ev_watcher *W; 407typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 408typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
292 410
293#if EV_USE_MONOTONIC 411#define ev_active(w) ((W)(w))->active
412#define ev_at(w) ((WT)(w))->at
413
414#if EV_USE_REALTIME
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
419
420#if EV_USE_MONOTONIC
296static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif 422#endif
298 423
299#ifdef _WIN32 424#ifdef _WIN32
300# include "ev_win32.c" 425# include "ev_win32.c"
301#endif 426#endif
309{ 434{
310 syserr_cb = cb; 435 syserr_cb = cb;
311} 436}
312 437
313static void noinline 438static void noinline
314syserr (const char *msg) 439ev_syserr (const char *msg)
315{ 440{
316 if (!msg) 441 if (!msg)
317 msg = "(libev) system error"; 442 msg = "(libev) system error";
318 443
319 if (syserr_cb) 444 if (syserr_cb)
323 perror (msg); 448 perror (msg);
324 abort (); 449 abort ();
325 } 450 }
326} 451}
327 452
453static void *
454ev_realloc_emul (void *ptr, long size)
455{
456 /* some systems, notably openbsd and darwin, fail to properly
457 * implement realloc (x, 0) (as required by both ansi c-98 and
458 * the single unix specification, so work around them here.
459 */
460
461 if (size)
462 return realloc (ptr, size);
463
464 free (ptr);
465 return 0;
466}
467
328static void *(*alloc)(void *ptr, long size); 468static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 469
330void 470void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 471ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 472{
333 alloc = cb; 473 alloc = cb;
334} 474}
335 475
336inline_speed void * 476inline_speed void *
337ev_realloc (void *ptr, long size) 477ev_realloc (void *ptr, long size)
338{ 478{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 479 ptr = alloc (ptr, size);
340 480
341 if (!ptr && size) 481 if (!ptr && size)
342 { 482 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 483 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 484 abort ();
350#define ev_malloc(size) ev_realloc (0, (size)) 490#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 491#define ev_free(ptr) ev_realloc ((ptr), 0)
352 492
353/*****************************************************************************/ 493/*****************************************************************************/
354 494
495/* file descriptor info structure */
355typedef struct 496typedef struct
356{ 497{
357 WL head; 498 WL head;
358 unsigned char events; 499 unsigned char events; /* the events watched for */
500 unsigned char reify; /* flag set when this ANFD needs reification */
501 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
359 unsigned char reify; 502 unsigned char unused;
503#if EV_USE_EPOLL
504 unsigned int egen; /* generation counter to counter epoll bugs */
505#endif
360#if EV_SELECT_IS_WINSOCKET 506#if EV_SELECT_IS_WINSOCKET
361 SOCKET handle; 507 SOCKET handle;
362#endif 508#endif
363} ANFD; 509} ANFD;
364 510
511/* stores the pending event set for a given watcher */
365typedef struct 512typedef struct
366{ 513{
367 W w; 514 W w;
368 int events; 515 int events; /* the pending event set for the given watcher */
369} ANPENDING; 516} ANPENDING;
370 517
371#if EV_USE_INOTIFY 518#if EV_USE_INOTIFY
519/* hash table entry per inotify-id */
372typedef struct 520typedef struct
373{ 521{
374 WL head; 522 WL head;
375} ANFS; 523} ANFS;
524#endif
525
526/* Heap Entry */
527#if EV_HEAP_CACHE_AT
528 /* a heap element */
529 typedef struct {
530 ev_tstamp at;
531 WT w;
532 } ANHE;
533
534 #define ANHE_w(he) (he).w /* access watcher, read-write */
535 #define ANHE_at(he) (he).at /* access cached at, read-only */
536 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
537#else
538 /* a heap element */
539 typedef WT ANHE;
540
541 #define ANHE_w(he) (he)
542 #define ANHE_at(he) (he)->at
543 #define ANHE_at_cache(he)
376#endif 544#endif
377 545
378#if EV_MULTIPLICITY 546#if EV_MULTIPLICITY
379 547
380 struct ev_loop 548 struct ev_loop
401 569
402#endif 570#endif
403 571
404/*****************************************************************************/ 572/*****************************************************************************/
405 573
574#ifndef EV_HAVE_EV_TIME
406ev_tstamp 575ev_tstamp
407ev_time (void) 576ev_time (void)
408{ 577{
409#if EV_USE_REALTIME 578#if EV_USE_REALTIME
579 if (expect_true (have_realtime))
580 {
410 struct timespec ts; 581 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 582 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 583 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 584 }
585#endif
586
414 struct timeval tv; 587 struct timeval tv;
415 gettimeofday (&tv, 0); 588 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 589 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 590}
591#endif
419 592
420ev_tstamp inline_size 593inline_size ev_tstamp
421get_clock (void) 594get_clock (void)
422{ 595{
423#if EV_USE_MONOTONIC 596#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 597 if (expect_true (have_monotonic))
425 { 598 {
451 ts.tv_sec = (time_t)delay; 624 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 625 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 626
454 nanosleep (&ts, 0); 627 nanosleep (&ts, 0);
455#elif defined(_WIN32) 628#elif defined(_WIN32)
456 Sleep (delay * 1e3); 629 Sleep ((unsigned long)(delay * 1e3));
457#else 630#else
458 struct timeval tv; 631 struct timeval tv;
459 632
460 tv.tv_sec = (time_t)delay; 633 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 634 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462 635
636 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
637 /* somehting not guaranteed by newer posix versions, but guaranteed */
638 /* by older ones */
463 select (0, 0, 0, 0, &tv); 639 select (0, 0, 0, 0, &tv);
464#endif 640#endif
465 } 641 }
466} 642}
467 643
468/*****************************************************************************/ 644/*****************************************************************************/
469 645
470int inline_size 646#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
647
648/* find a suitable new size for the given array, */
649/* hopefully by rounding to a ncie-to-malloc size */
650inline_size int
471array_nextsize (int elem, int cur, int cnt) 651array_nextsize (int elem, int cur, int cnt)
472{ 652{
473 int ncur = cur + 1; 653 int ncur = cur + 1;
474 654
475 do 655 do
476 ncur <<= 1; 656 ncur <<= 1;
477 while (cnt > ncur); 657 while (cnt > ncur);
478 658
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 659 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 660 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 661 {
482 ncur *= elem; 662 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 663 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 664 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 665 ncur /= elem;
486 } 666 }
487 667
488 return ncur; 668 return ncur;
492array_realloc (int elem, void *base, int *cur, int cnt) 672array_realloc (int elem, void *base, int *cur, int cnt)
493{ 673{
494 *cur = array_nextsize (elem, *cur, cnt); 674 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 675 return ev_realloc (base, elem * *cur);
496} 676}
677
678#define array_init_zero(base,count) \
679 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 680
498#define array_needsize(type,base,cur,cnt,init) \ 681#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 682 if (expect_false ((cnt) > (cur))) \
500 { \ 683 { \
501 int ocur_ = (cur); \ 684 int ocur_ = (cur); \
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 696 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 697 }
515#endif 698#endif
516 699
517#define array_free(stem, idx) \ 700#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 701 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 702
520/*****************************************************************************/ 703/*****************************************************************************/
704
705/* dummy callback for pending events */
706static void noinline
707pendingcb (EV_P_ ev_prepare *w, int revents)
708{
709}
521 710
522void noinline 711void noinline
523ev_feed_event (EV_P_ void *w, int revents) 712ev_feed_event (EV_P_ void *w, int revents)
524{ 713{
525 W w_ = (W)w; 714 W w_ = (W)w;
534 pendings [pri][w_->pending - 1].w = w_; 723 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 724 pendings [pri][w_->pending - 1].events = revents;
536 } 725 }
537} 726}
538 727
539void inline_speed 728inline_speed void
729feed_reverse (EV_P_ W w)
730{
731 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
732 rfeeds [rfeedcnt++] = w;
733}
734
735inline_size void
736feed_reverse_done (EV_P_ int revents)
737{
738 do
739 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
740 while (rfeedcnt);
741}
742
743inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 744queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 745{
542 int i; 746 int i;
543 747
544 for (i = 0; i < eventcnt; ++i) 748 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 749 ev_feed_event (EV_A_ events [i], type);
546} 750}
547 751
548/*****************************************************************************/ 752/*****************************************************************************/
549 753
550void inline_size 754inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 755fd_event (EV_P_ int fd, int revents)
565{ 756{
566 ANFD *anfd = anfds + fd; 757 ANFD *anfd = anfds + fd;
567 ev_io *w; 758 ev_io *w;
568 759
580{ 771{
581 if (fd >= 0 && fd < anfdmax) 772 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 773 fd_event (EV_A_ fd, revents);
583} 774}
584 775
585void inline_size 776/* make sure the external fd watch events are in-sync */
777/* with the kernel/libev internal state */
778inline_size void
586fd_reify (EV_P) 779fd_reify (EV_P)
587{ 780{
588 int i; 781 int i;
589 782
590 for (i = 0; i < fdchangecnt; ++i) 783 for (i = 0; i < fdchangecnt; ++i)
599 events |= (unsigned char)w->events; 792 events |= (unsigned char)w->events;
600 793
601#if EV_SELECT_IS_WINSOCKET 794#if EV_SELECT_IS_WINSOCKET
602 if (events) 795 if (events)
603 { 796 {
604 unsigned long argp; 797 unsigned long arg;
798 #ifdef EV_FD_TO_WIN32_HANDLE
799 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
800 #else
605 anfd->handle = _get_osfhandle (fd); 801 anfd->handle = _get_osfhandle (fd);
802 #endif
606 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 803 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
607 } 804 }
608#endif 805#endif
609 806
610 { 807 {
611 unsigned char o_events = anfd->events; 808 unsigned char o_events = anfd->events;
612 unsigned char o_reify = anfd->reify; 809 unsigned char o_reify = anfd->reify;
613 810
614 anfd->reify = 0; 811 anfd->reify = 0;
615 anfd->events = events; 812 anfd->events = events;
616 813
617 if (o_events != events || o_reify & EV_IOFDSET) 814 if (o_events != events || o_reify & EV__IOFDSET)
618 backend_modify (EV_A_ fd, o_events, events); 815 backend_modify (EV_A_ fd, o_events, events);
619 } 816 }
620 } 817 }
621 818
622 fdchangecnt = 0; 819 fdchangecnt = 0;
623} 820}
624 821
625void inline_size 822/* something about the given fd changed */
823inline_size void
626fd_change (EV_P_ int fd, int flags) 824fd_change (EV_P_ int fd, int flags)
627{ 825{
628 unsigned char reify = anfds [fd].reify; 826 unsigned char reify = anfds [fd].reify;
629 anfds [fd].reify |= flags; 827 anfds [fd].reify |= flags;
630 828
634 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 832 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
635 fdchanges [fdchangecnt - 1] = fd; 833 fdchanges [fdchangecnt - 1] = fd;
636 } 834 }
637} 835}
638 836
639void inline_speed 837/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
838inline_speed void
640fd_kill (EV_P_ int fd) 839fd_kill (EV_P_ int fd)
641{ 840{
642 ev_io *w; 841 ev_io *w;
643 842
644 while ((w = (ev_io *)anfds [fd].head)) 843 while ((w = (ev_io *)anfds [fd].head))
646 ev_io_stop (EV_A_ w); 845 ev_io_stop (EV_A_ w);
647 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 846 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
648 } 847 }
649} 848}
650 849
651int inline_size 850/* check whether the given fd is atcually valid, for error recovery */
851inline_size int
652fd_valid (int fd) 852fd_valid (int fd)
653{ 853{
654#ifdef _WIN32 854#ifdef _WIN32
655 return _get_osfhandle (fd) != -1; 855 return _get_osfhandle (fd) != -1;
656#else 856#else
664{ 864{
665 int fd; 865 int fd;
666 866
667 for (fd = 0; fd < anfdmax; ++fd) 867 for (fd = 0; fd < anfdmax; ++fd)
668 if (anfds [fd].events) 868 if (anfds [fd].events)
669 if (!fd_valid (fd) == -1 && errno == EBADF) 869 if (!fd_valid (fd) && errno == EBADF)
670 fd_kill (EV_A_ fd); 870 fd_kill (EV_A_ fd);
671} 871}
672 872
673/* called on ENOMEM in select/poll to kill some fds and retry */ 873/* called on ENOMEM in select/poll to kill some fds and retry */
674static void noinline 874static void noinline
692 892
693 for (fd = 0; fd < anfdmax; ++fd) 893 for (fd = 0; fd < anfdmax; ++fd)
694 if (anfds [fd].events) 894 if (anfds [fd].events)
695 { 895 {
696 anfds [fd].events = 0; 896 anfds [fd].events = 0;
897 anfds [fd].emask = 0;
697 fd_change (EV_A_ fd, EV_IOFDSET | 1); 898 fd_change (EV_A_ fd, EV__IOFDSET | 1);
698 } 899 }
699} 900}
700 901
701/*****************************************************************************/ 902/*****************************************************************************/
702 903
703void inline_speed 904/*
704upheap (WT *heap, int k) 905 * the heap functions want a real array index. array index 0 uis guaranteed to not
705{ 906 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
706 WT w = heap [k]; 907 * the branching factor of the d-tree.
908 */
707 909
708 while (k) 910/*
709 { 911 * at the moment we allow libev the luxury of two heaps,
710 int p = (k - 1) >> 1; 912 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
913 * which is more cache-efficient.
914 * the difference is about 5% with 50000+ watchers.
915 */
916#if EV_USE_4HEAP
711 917
712 if (heap [p]->at <= w->at) 918#define DHEAP 4
919#define HEAP0 (DHEAP - 1) /* index of first element in heap */
920#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
921#define UPHEAP_DONE(p,k) ((p) == (k))
922
923/* away from the root */
924inline_speed void
925downheap (ANHE *heap, int N, int k)
926{
927 ANHE he = heap [k];
928 ANHE *E = heap + N + HEAP0;
929
930 for (;;)
931 {
932 ev_tstamp minat;
933 ANHE *minpos;
934 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
935
936 /* find minimum child */
937 if (expect_true (pos + DHEAP - 1 < E))
938 {
939 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
940 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
941 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
942 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
943 }
944 else if (pos < E)
945 {
946 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
947 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
948 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
949 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
950 }
951 else
713 break; 952 break;
714 953
954 if (ANHE_at (he) <= minat)
955 break;
956
957 heap [k] = *minpos;
958 ev_active (ANHE_w (*minpos)) = k;
959
960 k = minpos - heap;
961 }
962
963 heap [k] = he;
964 ev_active (ANHE_w (he)) = k;
965}
966
967#else /* 4HEAP */
968
969#define HEAP0 1
970#define HPARENT(k) ((k) >> 1)
971#define UPHEAP_DONE(p,k) (!(p))
972
973/* away from the root */
974inline_speed void
975downheap (ANHE *heap, int N, int k)
976{
977 ANHE he = heap [k];
978
979 for (;;)
980 {
981 int c = k << 1;
982
983 if (c > N + HEAP0 - 1)
984 break;
985
986 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
987 ? 1 : 0;
988
989 if (ANHE_at (he) <= ANHE_at (heap [c]))
990 break;
991
992 heap [k] = heap [c];
993 ev_active (ANHE_w (heap [k])) = k;
994
995 k = c;
996 }
997
998 heap [k] = he;
999 ev_active (ANHE_w (he)) = k;
1000}
1001#endif
1002
1003/* towards the root */
1004inline_speed void
1005upheap (ANHE *heap, int k)
1006{
1007 ANHE he = heap [k];
1008
1009 for (;;)
1010 {
1011 int p = HPARENT (k);
1012
1013 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1014 break;
1015
715 heap [k] = heap [p]; 1016 heap [k] = heap [p];
716 ((W)heap [k])->active = k + 1; 1017 ev_active (ANHE_w (heap [k])) = k;
717 k = p; 1018 k = p;
718 } 1019 }
719 1020
720 heap [k] = w; 1021 heap [k] = he;
721 ((W)heap [k])->active = k + 1; 1022 ev_active (ANHE_w (he)) = k;
722} 1023}
723 1024
724void inline_speed 1025/* move an element suitably so it is in a correct place */
725downheap (WT *heap, int N, int k) 1026inline_size void
726{
727 WT w = heap [k];
728
729 for (;;)
730 {
731 int c = (k << 1) + 1;
732
733 if (c >= N)
734 break;
735
736 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
737 ? 1 : 0;
738
739 if (w->at <= heap [c]->at)
740 break;
741
742 heap [k] = heap [c];
743 ((W)heap [k])->active = k + 1;
744
745 k = c;
746 }
747
748 heap [k] = w;
749 ((W)heap [k])->active = k + 1;
750}
751
752void inline_size
753adjustheap (WT *heap, int N, int k) 1027adjustheap (ANHE *heap, int N, int k)
754{ 1028{
1029 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
755 upheap (heap, k); 1030 upheap (heap, k);
1031 else
756 downheap (heap, N, k); 1032 downheap (heap, N, k);
1033}
1034
1035/* rebuild the heap: this function is used only once and executed rarely */
1036inline_size void
1037reheap (ANHE *heap, int N)
1038{
1039 int i;
1040
1041 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1042 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1043 for (i = 0; i < N; ++i)
1044 upheap (heap, i + HEAP0);
757} 1045}
758 1046
759/*****************************************************************************/ 1047/*****************************************************************************/
760 1048
1049/* associate signal watchers to a signal signal */
761typedef struct 1050typedef struct
762{ 1051{
763 WL head; 1052 WL head;
764 sig_atomic_t volatile gotsig; 1053 EV_ATOMIC_T gotsig;
765} ANSIG; 1054} ANSIG;
766 1055
767static ANSIG *signals; 1056static ANSIG *signals;
768static int signalmax; 1057static int signalmax;
769 1058
770static int sigpipe [2]; 1059static EV_ATOMIC_T gotsig;
771static sig_atomic_t volatile gotsig;
772static ev_io sigev;
773 1060
774void inline_size 1061/*****************************************************************************/
775signals_init (ANSIG *base, int count)
776{
777 while (count--)
778 {
779 base->head = 0;
780 base->gotsig = 0;
781 1062
782 ++base; 1063/* used to prepare libev internal fd's */
783 } 1064/* this is not fork-safe */
784} 1065inline_speed void
785
786static void
787sighandler (int signum)
788{
789#if _WIN32
790 signal (signum, sighandler);
791#endif
792
793 signals [signum - 1].gotsig = 1;
794
795 if (!gotsig)
796 {
797 int old_errno = errno;
798 gotsig = 1;
799 write (sigpipe [1], &signum, 1);
800 errno = old_errno;
801 }
802}
803
804void noinline
805ev_feed_signal_event (EV_P_ int signum)
806{
807 WL w;
808
809#if EV_MULTIPLICITY
810 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
811#endif
812
813 --signum;
814
815 if (signum < 0 || signum >= signalmax)
816 return;
817
818 signals [signum].gotsig = 0;
819
820 for (w = signals [signum].head; w; w = w->next)
821 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
822}
823
824static void
825sigcb (EV_P_ ev_io *iow, int revents)
826{
827 int signum;
828
829 read (sigpipe [0], &revents, 1);
830 gotsig = 0;
831
832 for (signum = signalmax; signum--; )
833 if (signals [signum].gotsig)
834 ev_feed_signal_event (EV_A_ signum + 1);
835}
836
837void inline_speed
838fd_intern (int fd) 1066fd_intern (int fd)
839{ 1067{
840#ifdef _WIN32 1068#ifdef _WIN32
841 int arg = 1; 1069 unsigned long arg = 1;
842 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1070 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
843#else 1071#else
844 fcntl (fd, F_SETFD, FD_CLOEXEC); 1072 fcntl (fd, F_SETFD, FD_CLOEXEC);
845 fcntl (fd, F_SETFL, O_NONBLOCK); 1073 fcntl (fd, F_SETFL, O_NONBLOCK);
846#endif 1074#endif
847} 1075}
848 1076
849static void noinline 1077static void noinline
850siginit (EV_P) 1078evpipe_init (EV_P)
851{ 1079{
1080 if (!ev_is_active (&pipe_w))
1081 {
1082#if EV_USE_EVENTFD
1083 if ((evfd = eventfd (0, 0)) >= 0)
1084 {
1085 evpipe [0] = -1;
1086 fd_intern (evfd);
1087 ev_io_set (&pipe_w, evfd, EV_READ);
1088 }
1089 else
1090#endif
1091 {
1092 while (pipe (evpipe))
1093 ev_syserr ("(libev) error creating signal/async pipe");
1094
852 fd_intern (sigpipe [0]); 1095 fd_intern (evpipe [0]);
853 fd_intern (sigpipe [1]); 1096 fd_intern (evpipe [1]);
1097 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1098 }
854 1099
855 ev_io_set (&sigev, sigpipe [0], EV_READ);
856 ev_io_start (EV_A_ &sigev); 1100 ev_io_start (EV_A_ &pipe_w);
857 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1101 ev_unref (EV_A); /* watcher should not keep loop alive */
1102 }
1103}
1104
1105inline_size void
1106evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1107{
1108 if (!*flag)
1109 {
1110 int old_errno = errno; /* save errno because write might clobber it */
1111
1112 *flag = 1;
1113
1114#if EV_USE_EVENTFD
1115 if (evfd >= 0)
1116 {
1117 uint64_t counter = 1;
1118 write (evfd, &counter, sizeof (uint64_t));
1119 }
1120 else
1121#endif
1122 write (evpipe [1], &old_errno, 1);
1123
1124 errno = old_errno;
1125 }
1126}
1127
1128/* called whenever the libev signal pipe */
1129/* got some events (signal, async) */
1130static void
1131pipecb (EV_P_ ev_io *iow, int revents)
1132{
1133#if EV_USE_EVENTFD
1134 if (evfd >= 0)
1135 {
1136 uint64_t counter;
1137 read (evfd, &counter, sizeof (uint64_t));
1138 }
1139 else
1140#endif
1141 {
1142 char dummy;
1143 read (evpipe [0], &dummy, 1);
1144 }
1145
1146 if (gotsig && ev_is_default_loop (EV_A))
1147 {
1148 int signum;
1149 gotsig = 0;
1150
1151 for (signum = signalmax; signum--; )
1152 if (signals [signum].gotsig)
1153 ev_feed_signal_event (EV_A_ signum + 1);
1154 }
1155
1156#if EV_ASYNC_ENABLE
1157 if (gotasync)
1158 {
1159 int i;
1160 gotasync = 0;
1161
1162 for (i = asynccnt; i--; )
1163 if (asyncs [i]->sent)
1164 {
1165 asyncs [i]->sent = 0;
1166 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1167 }
1168 }
1169#endif
858} 1170}
859 1171
860/*****************************************************************************/ 1172/*****************************************************************************/
861 1173
1174static void
1175ev_sighandler (int signum)
1176{
1177#if EV_MULTIPLICITY
1178 struct ev_loop *loop = &default_loop_struct;
1179#endif
1180
1181#if _WIN32
1182 signal (signum, ev_sighandler);
1183#endif
1184
1185 signals [signum - 1].gotsig = 1;
1186 evpipe_write (EV_A_ &gotsig);
1187}
1188
1189void noinline
1190ev_feed_signal_event (EV_P_ int signum)
1191{
1192 WL w;
1193
1194#if EV_MULTIPLICITY
1195 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1196#endif
1197
1198 --signum;
1199
1200 if (signum < 0 || signum >= signalmax)
1201 return;
1202
1203 signals [signum].gotsig = 0;
1204
1205 for (w = signals [signum].head; w; w = w->next)
1206 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1207}
1208
1209/*****************************************************************************/
1210
862static WL childs [EV_PID_HASHSIZE]; 1211static WL childs [EV_PID_HASHSIZE];
863 1212
864#ifndef _WIN32 1213#ifndef _WIN32
865 1214
866static ev_signal childev; 1215static ev_signal childev;
867 1216
868void inline_speed 1217#ifndef WIFCONTINUED
1218# define WIFCONTINUED(status) 0
1219#endif
1220
1221/* handle a single child status event */
1222inline_speed void
869child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1223child_reap (EV_P_ int chain, int pid, int status)
870{ 1224{
871 ev_child *w; 1225 ev_child *w;
1226 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
872 1227
873 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1228 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1229 {
874 if (w->pid == pid || !w->pid) 1230 if ((w->pid == pid || !w->pid)
1231 && (!traced || (w->flags & 1)))
875 { 1232 {
876 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1233 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
877 w->rpid = pid; 1234 w->rpid = pid;
878 w->rstatus = status; 1235 w->rstatus = status;
879 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1236 ev_feed_event (EV_A_ (W)w, EV_CHILD);
880 } 1237 }
1238 }
881} 1239}
882 1240
883#ifndef WCONTINUED 1241#ifndef WCONTINUED
884# define WCONTINUED 0 1242# define WCONTINUED 0
885#endif 1243#endif
886 1244
1245/* called on sigchld etc., calls waitpid */
887static void 1246static void
888childcb (EV_P_ ev_signal *sw, int revents) 1247childcb (EV_P_ ev_signal *sw, int revents)
889{ 1248{
890 int pid, status; 1249 int pid, status;
891 1250
894 if (!WCONTINUED 1253 if (!WCONTINUED
895 || errno != EINVAL 1254 || errno != EINVAL
896 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1255 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
897 return; 1256 return;
898 1257
899 /* make sure we are called again until all childs have been reaped */ 1258 /* make sure we are called again until all children have been reaped */
900 /* we need to do it this way so that the callback gets called before we continue */ 1259 /* we need to do it this way so that the callback gets called before we continue */
901 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1260 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
902 1261
903 child_reap (EV_A_ sw, pid, pid, status); 1262 child_reap (EV_A_ pid, pid, status);
904 if (EV_PID_HASHSIZE > 1) 1263 if (EV_PID_HASHSIZE > 1)
905 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1264 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
906} 1265}
907 1266
908#endif 1267#endif
909 1268
910/*****************************************************************************/ 1269/*****************************************************************************/
972 /* kqueue is borked on everything but netbsd apparently */ 1331 /* kqueue is borked on everything but netbsd apparently */
973 /* it usually doesn't work correctly on anything but sockets and pipes */ 1332 /* it usually doesn't work correctly on anything but sockets and pipes */
974 flags &= ~EVBACKEND_KQUEUE; 1333 flags &= ~EVBACKEND_KQUEUE;
975#endif 1334#endif
976#ifdef __APPLE__ 1335#ifdef __APPLE__
977 // flags &= ~EVBACKEND_KQUEUE; for documentation 1336 /* only select works correctly on that "unix-certified" platform */
978 flags &= ~EVBACKEND_POLL; 1337 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1338 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
979#endif 1339#endif
980 1340
981 return flags; 1341 return flags;
982} 1342}
983 1343
1003ev_loop_count (EV_P) 1363ev_loop_count (EV_P)
1004{ 1364{
1005 return loop_count; 1365 return loop_count;
1006} 1366}
1007 1367
1368unsigned int
1369ev_loop_depth (EV_P)
1370{
1371 return loop_depth;
1372}
1373
1008void 1374void
1009ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1375ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1010{ 1376{
1011 io_blocktime = interval; 1377 io_blocktime = interval;
1012} 1378}
1015ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1381ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1016{ 1382{
1017 timeout_blocktime = interval; 1383 timeout_blocktime = interval;
1018} 1384}
1019 1385
1386/* initialise a loop structure, must be zero-initialised */
1020static void noinline 1387static void noinline
1021loop_init (EV_P_ unsigned int flags) 1388loop_init (EV_P_ unsigned int flags)
1022{ 1389{
1023 if (!backend) 1390 if (!backend)
1024 { 1391 {
1392#if EV_USE_REALTIME
1393 if (!have_realtime)
1394 {
1395 struct timespec ts;
1396
1397 if (!clock_gettime (CLOCK_REALTIME, &ts))
1398 have_realtime = 1;
1399 }
1400#endif
1401
1025#if EV_USE_MONOTONIC 1402#if EV_USE_MONOTONIC
1403 if (!have_monotonic)
1026 { 1404 {
1027 struct timespec ts; 1405 struct timespec ts;
1406
1028 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1407 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1029 have_monotonic = 1; 1408 have_monotonic = 1;
1030 } 1409 }
1031#endif 1410#endif
1032 1411
1033 ev_rt_now = ev_time (); 1412 ev_rt_now = ev_time ();
1034 mn_now = get_clock (); 1413 mn_now = get_clock ();
1035 now_floor = mn_now; 1414 now_floor = mn_now;
1036 rtmn_diff = ev_rt_now - mn_now; 1415 rtmn_diff = ev_rt_now - mn_now;
1037 1416
1038 io_blocktime = 0.; 1417 io_blocktime = 0.;
1039 timeout_blocktime = 0.; 1418 timeout_blocktime = 0.;
1419 backend = 0;
1420 backend_fd = -1;
1421 gotasync = 0;
1422#if EV_USE_INOTIFY
1423 fs_fd = -2;
1424#endif
1040 1425
1041 /* pid check not overridable via env */ 1426 /* pid check not overridable via env */
1042#ifndef _WIN32 1427#ifndef _WIN32
1043 if (flags & EVFLAG_FORKCHECK) 1428 if (flags & EVFLAG_FORKCHECK)
1044 curpid = getpid (); 1429 curpid = getpid ();
1047 if (!(flags & EVFLAG_NOENV) 1432 if (!(flags & EVFLAG_NOENV)
1048 && !enable_secure () 1433 && !enable_secure ()
1049 && getenv ("LIBEV_FLAGS")) 1434 && getenv ("LIBEV_FLAGS"))
1050 flags = atoi (getenv ("LIBEV_FLAGS")); 1435 flags = atoi (getenv ("LIBEV_FLAGS"));
1051 1436
1052 if (!(flags & 0x0000ffffUL)) 1437 if (!(flags & 0x0000ffffU))
1053 flags |= ev_recommended_backends (); 1438 flags |= ev_recommended_backends ();
1054
1055 backend = 0;
1056 backend_fd = -1;
1057#if EV_USE_INOTIFY
1058 fs_fd = -2;
1059#endif
1060 1439
1061#if EV_USE_PORT 1440#if EV_USE_PORT
1062 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1441 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1063#endif 1442#endif
1064#if EV_USE_KQUEUE 1443#if EV_USE_KQUEUE
1072#endif 1451#endif
1073#if EV_USE_SELECT 1452#if EV_USE_SELECT
1074 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1453 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1075#endif 1454#endif
1076 1455
1456 ev_prepare_init (&pending_w, pendingcb);
1457
1077 ev_init (&sigev, sigcb); 1458 ev_init (&pipe_w, pipecb);
1078 ev_set_priority (&sigev, EV_MAXPRI); 1459 ev_set_priority (&pipe_w, EV_MAXPRI);
1079 } 1460 }
1080} 1461}
1081 1462
1463/* free up a loop structure */
1082static void noinline 1464static void noinline
1083loop_destroy (EV_P) 1465loop_destroy (EV_P)
1084{ 1466{
1085 int i; 1467 int i;
1468
1469 if (ev_is_active (&pipe_w))
1470 {
1471 ev_ref (EV_A); /* signal watcher */
1472 ev_io_stop (EV_A_ &pipe_w);
1473
1474#if EV_USE_EVENTFD
1475 if (evfd >= 0)
1476 close (evfd);
1477#endif
1478
1479 if (evpipe [0] >= 0)
1480 {
1481 close (evpipe [0]);
1482 close (evpipe [1]);
1483 }
1484 }
1086 1485
1087#if EV_USE_INOTIFY 1486#if EV_USE_INOTIFY
1088 if (fs_fd >= 0) 1487 if (fs_fd >= 0)
1089 close (fs_fd); 1488 close (fs_fd);
1090#endif 1489#endif
1117 } 1516 }
1118 1517
1119 ev_free (anfds); anfdmax = 0; 1518 ev_free (anfds); anfdmax = 0;
1120 1519
1121 /* have to use the microsoft-never-gets-it-right macro */ 1520 /* have to use the microsoft-never-gets-it-right macro */
1521 array_free (rfeed, EMPTY);
1122 array_free (fdchange, EMPTY); 1522 array_free (fdchange, EMPTY);
1123 array_free (timer, EMPTY); 1523 array_free (timer, EMPTY);
1124#if EV_PERIODIC_ENABLE 1524#if EV_PERIODIC_ENABLE
1125 array_free (periodic, EMPTY); 1525 array_free (periodic, EMPTY);
1126#endif 1526#endif
1127#if EV_FORK_ENABLE 1527#if EV_FORK_ENABLE
1128 array_free (fork, EMPTY); 1528 array_free (fork, EMPTY);
1129#endif 1529#endif
1130 array_free (prepare, EMPTY); 1530 array_free (prepare, EMPTY);
1131 array_free (check, EMPTY); 1531 array_free (check, EMPTY);
1532#if EV_ASYNC_ENABLE
1533 array_free (async, EMPTY);
1534#endif
1132 1535
1133 backend = 0; 1536 backend = 0;
1134} 1537}
1135 1538
1539#if EV_USE_INOTIFY
1136void inline_size infy_fork (EV_P); 1540inline_size void infy_fork (EV_P);
1541#endif
1137 1542
1138void inline_size 1543inline_size void
1139loop_fork (EV_P) 1544loop_fork (EV_P)
1140{ 1545{
1141#if EV_USE_PORT 1546#if EV_USE_PORT
1142 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1547 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1143#endif 1548#endif
1149#endif 1554#endif
1150#if EV_USE_INOTIFY 1555#if EV_USE_INOTIFY
1151 infy_fork (EV_A); 1556 infy_fork (EV_A);
1152#endif 1557#endif
1153 1558
1154 if (ev_is_active (&sigev)) 1559 if (ev_is_active (&pipe_w))
1155 { 1560 {
1156 /* default loop */ 1561 /* this "locks" the handlers against writing to the pipe */
1562 /* while we modify the fd vars */
1563 gotsig = 1;
1564#if EV_ASYNC_ENABLE
1565 gotasync = 1;
1566#endif
1157 1567
1158 ev_ref (EV_A); 1568 ev_ref (EV_A);
1159 ev_io_stop (EV_A_ &sigev); 1569 ev_io_stop (EV_A_ &pipe_w);
1570
1571#if EV_USE_EVENTFD
1572 if (evfd >= 0)
1573 close (evfd);
1574#endif
1575
1576 if (evpipe [0] >= 0)
1577 {
1160 close (sigpipe [0]); 1578 close (evpipe [0]);
1161 close (sigpipe [1]); 1579 close (evpipe [1]);
1580 }
1162 1581
1163 while (pipe (sigpipe))
1164 syserr ("(libev) error creating pipe");
1165
1166 siginit (EV_A); 1582 evpipe_init (EV_A);
1583 /* now iterate over everything, in case we missed something */
1584 pipecb (EV_A_ &pipe_w, EV_READ);
1167 } 1585 }
1168 1586
1169 postfork = 0; 1587 postfork = 0;
1170} 1588}
1171 1589
1172#if EV_MULTIPLICITY 1590#if EV_MULTIPLICITY
1591
1173struct ev_loop * 1592struct ev_loop *
1174ev_loop_new (unsigned int flags) 1593ev_loop_new (unsigned int flags)
1175{ 1594{
1176 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1595 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1177 1596
1193} 1612}
1194 1613
1195void 1614void
1196ev_loop_fork (EV_P) 1615ev_loop_fork (EV_P)
1197{ 1616{
1198 postfork = 1; 1617 postfork = 1; /* must be in line with ev_default_fork */
1199} 1618}
1200 1619
1620#if EV_VERIFY
1621static void noinline
1622verify_watcher (EV_P_ W w)
1623{
1624 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1625
1626 if (w->pending)
1627 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1628}
1629
1630static void noinline
1631verify_heap (EV_P_ ANHE *heap, int N)
1632{
1633 int i;
1634
1635 for (i = HEAP0; i < N + HEAP0; ++i)
1636 {
1637 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1638 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1639 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1640
1641 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1642 }
1643}
1644
1645static void noinline
1646array_verify (EV_P_ W *ws, int cnt)
1647{
1648 while (cnt--)
1649 {
1650 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1651 verify_watcher (EV_A_ ws [cnt]);
1652 }
1653}
1654#endif
1655
1656void
1657ev_loop_verify (EV_P)
1658{
1659#if EV_VERIFY
1660 int i;
1661 WL w;
1662
1663 assert (activecnt >= -1);
1664
1665 assert (fdchangemax >= fdchangecnt);
1666 for (i = 0; i < fdchangecnt; ++i)
1667 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1668
1669 assert (anfdmax >= 0);
1670 for (i = 0; i < anfdmax; ++i)
1671 for (w = anfds [i].head; w; w = w->next)
1672 {
1673 verify_watcher (EV_A_ (W)w);
1674 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1675 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1676 }
1677
1678 assert (timermax >= timercnt);
1679 verify_heap (EV_A_ timers, timercnt);
1680
1681#if EV_PERIODIC_ENABLE
1682 assert (periodicmax >= periodiccnt);
1683 verify_heap (EV_A_ periodics, periodiccnt);
1684#endif
1685
1686 for (i = NUMPRI; i--; )
1687 {
1688 assert (pendingmax [i] >= pendingcnt [i]);
1689#if EV_IDLE_ENABLE
1690 assert (idleall >= 0);
1691 assert (idlemax [i] >= idlecnt [i]);
1692 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1693#endif
1694 }
1695
1696#if EV_FORK_ENABLE
1697 assert (forkmax >= forkcnt);
1698 array_verify (EV_A_ (W *)forks, forkcnt);
1699#endif
1700
1701#if EV_ASYNC_ENABLE
1702 assert (asyncmax >= asynccnt);
1703 array_verify (EV_A_ (W *)asyncs, asynccnt);
1704#endif
1705
1706 assert (preparemax >= preparecnt);
1707 array_verify (EV_A_ (W *)prepares, preparecnt);
1708
1709 assert (checkmax >= checkcnt);
1710 array_verify (EV_A_ (W *)checks, checkcnt);
1711
1712# if 0
1713 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1714 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1201#endif 1715# endif
1716#endif
1717}
1718
1719#endif /* multiplicity */
1202 1720
1203#if EV_MULTIPLICITY 1721#if EV_MULTIPLICITY
1204struct ev_loop * 1722struct ev_loop *
1205ev_default_loop_init (unsigned int flags) 1723ev_default_loop_init (unsigned int flags)
1206#else 1724#else
1207int 1725int
1208ev_default_loop (unsigned int flags) 1726ev_default_loop (unsigned int flags)
1209#endif 1727#endif
1210{ 1728{
1211 if (sigpipe [0] == sigpipe [1])
1212 if (pipe (sigpipe))
1213 return 0;
1214
1215 if (!ev_default_loop_ptr) 1729 if (!ev_default_loop_ptr)
1216 { 1730 {
1217#if EV_MULTIPLICITY 1731#if EV_MULTIPLICITY
1218 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1732 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1219#else 1733#else
1222 1736
1223 loop_init (EV_A_ flags); 1737 loop_init (EV_A_ flags);
1224 1738
1225 if (ev_backend (EV_A)) 1739 if (ev_backend (EV_A))
1226 { 1740 {
1227 siginit (EV_A);
1228
1229#ifndef _WIN32 1741#ifndef _WIN32
1230 ev_signal_init (&childev, childcb, SIGCHLD); 1742 ev_signal_init (&childev, childcb, SIGCHLD);
1231 ev_set_priority (&childev, EV_MAXPRI); 1743 ev_set_priority (&childev, EV_MAXPRI);
1232 ev_signal_start (EV_A_ &childev); 1744 ev_signal_start (EV_A_ &childev);
1233 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1745 ev_unref (EV_A); /* child watcher should not keep loop alive */
1245{ 1757{
1246#if EV_MULTIPLICITY 1758#if EV_MULTIPLICITY
1247 struct ev_loop *loop = ev_default_loop_ptr; 1759 struct ev_loop *loop = ev_default_loop_ptr;
1248#endif 1760#endif
1249 1761
1762 ev_default_loop_ptr = 0;
1763
1250#ifndef _WIN32 1764#ifndef _WIN32
1251 ev_ref (EV_A); /* child watcher */ 1765 ev_ref (EV_A); /* child watcher */
1252 ev_signal_stop (EV_A_ &childev); 1766 ev_signal_stop (EV_A_ &childev);
1253#endif 1767#endif
1254 1768
1255 ev_ref (EV_A); /* signal watcher */
1256 ev_io_stop (EV_A_ &sigev);
1257
1258 close (sigpipe [0]); sigpipe [0] = 0;
1259 close (sigpipe [1]); sigpipe [1] = 0;
1260
1261 loop_destroy (EV_A); 1769 loop_destroy (EV_A);
1262} 1770}
1263 1771
1264void 1772void
1265ev_default_fork (void) 1773ev_default_fork (void)
1266{ 1774{
1267#if EV_MULTIPLICITY 1775#if EV_MULTIPLICITY
1268 struct ev_loop *loop = ev_default_loop_ptr; 1776 struct ev_loop *loop = ev_default_loop_ptr;
1269#endif 1777#endif
1270 1778
1271 if (backend) 1779 postfork = 1; /* must be in line with ev_loop_fork */
1272 postfork = 1;
1273} 1780}
1274 1781
1275/*****************************************************************************/ 1782/*****************************************************************************/
1276 1783
1277void 1784void
1278ev_invoke (EV_P_ void *w, int revents) 1785ev_invoke (EV_P_ void *w, int revents)
1279{ 1786{
1280 EV_CB_INVOKE ((W)w, revents); 1787 EV_CB_INVOKE ((W)w, revents);
1281} 1788}
1282 1789
1283void inline_speed 1790inline_speed void
1284call_pending (EV_P) 1791call_pending (EV_P)
1285{ 1792{
1286 int pri; 1793 int pri;
1287 1794
1288 for (pri = NUMPRI; pri--; ) 1795 for (pri = NUMPRI; pri--; )
1289 while (pendingcnt [pri]) 1796 while (pendingcnt [pri])
1290 { 1797 {
1291 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1798 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1292 1799
1293 if (expect_true (p->w))
1294 {
1295 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1800 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1801 /* ^ this is no longer true, as pending_w could be here */
1296 1802
1297 p->w->pending = 0; 1803 p->w->pending = 0;
1298 EV_CB_INVOKE (p->w, p->events); 1804 EV_CB_INVOKE (p->w, p->events);
1299 } 1805 EV_FREQUENT_CHECK;
1300 } 1806 }
1301} 1807}
1302 1808
1303void inline_size
1304timers_reify (EV_P)
1305{
1306 while (timercnt && ((WT)timers [0])->at <= mn_now)
1307 {
1308 ev_timer *w = (ev_timer *)timers [0];
1309
1310 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1311
1312 /* first reschedule or stop timer */
1313 if (w->repeat)
1314 {
1315 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1316
1317 ((WT)w)->at += w->repeat;
1318 if (((WT)w)->at < mn_now)
1319 ((WT)w)->at = mn_now;
1320
1321 downheap (timers, timercnt, 0);
1322 }
1323 else
1324 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1325
1326 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1327 }
1328}
1329
1330#if EV_PERIODIC_ENABLE
1331void inline_size
1332periodics_reify (EV_P)
1333{
1334 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1335 {
1336 ev_periodic *w = (ev_periodic *)periodics [0];
1337
1338 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1339
1340 /* first reschedule or stop timer */
1341 if (w->reschedule_cb)
1342 {
1343 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1344 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1345 downheap (periodics, periodiccnt, 0);
1346 }
1347 else if (w->interval)
1348 {
1349 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1350 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1351 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1352 downheap (periodics, periodiccnt, 0);
1353 }
1354 else
1355 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1356
1357 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1358 }
1359}
1360
1361static void noinline
1362periodics_reschedule (EV_P)
1363{
1364 int i;
1365
1366 /* adjust periodics after time jump */
1367 for (i = 0; i < periodiccnt; ++i)
1368 {
1369 ev_periodic *w = (ev_periodic *)periodics [i];
1370
1371 if (w->reschedule_cb)
1372 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1373 else if (w->interval)
1374 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1375 }
1376
1377 /* now rebuild the heap */
1378 for (i = periodiccnt >> 1; i--; )
1379 downheap (periodics, periodiccnt, i);
1380}
1381#endif
1382
1383#if EV_IDLE_ENABLE 1809#if EV_IDLE_ENABLE
1384void inline_size 1810/* make idle watchers pending. this handles the "call-idle */
1811/* only when higher priorities are idle" logic */
1812inline_size void
1385idle_reify (EV_P) 1813idle_reify (EV_P)
1386{ 1814{
1387 if (expect_false (idleall)) 1815 if (expect_false (idleall))
1388 { 1816 {
1389 int pri; 1817 int pri;
1401 } 1829 }
1402 } 1830 }
1403} 1831}
1404#endif 1832#endif
1405 1833
1406void inline_speed 1834/* make timers pending */
1835inline_size void
1836timers_reify (EV_P)
1837{
1838 EV_FREQUENT_CHECK;
1839
1840 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1841 {
1842 do
1843 {
1844 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1845
1846 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1847
1848 /* first reschedule or stop timer */
1849 if (w->repeat)
1850 {
1851 ev_at (w) += w->repeat;
1852 if (ev_at (w) < mn_now)
1853 ev_at (w) = mn_now;
1854
1855 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1856
1857 ANHE_at_cache (timers [HEAP0]);
1858 downheap (timers, timercnt, HEAP0);
1859 }
1860 else
1861 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1862
1863 EV_FREQUENT_CHECK;
1864 feed_reverse (EV_A_ (W)w);
1865 }
1866 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1867
1868 feed_reverse_done (EV_A_ EV_TIMEOUT);
1869 }
1870}
1871
1872#if EV_PERIODIC_ENABLE
1873/* make periodics pending */
1874inline_size void
1875periodics_reify (EV_P)
1876{
1877 EV_FREQUENT_CHECK;
1878
1879 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1880 {
1881 int feed_count = 0;
1882
1883 do
1884 {
1885 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1886
1887 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1888
1889 /* first reschedule or stop timer */
1890 if (w->reschedule_cb)
1891 {
1892 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1893
1894 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1895
1896 ANHE_at_cache (periodics [HEAP0]);
1897 downheap (periodics, periodiccnt, HEAP0);
1898 }
1899 else if (w->interval)
1900 {
1901 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1902 /* if next trigger time is not sufficiently in the future, put it there */
1903 /* this might happen because of floating point inexactness */
1904 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1905 {
1906 ev_at (w) += w->interval;
1907
1908 /* if interval is unreasonably low we might still have a time in the past */
1909 /* so correct this. this will make the periodic very inexact, but the user */
1910 /* has effectively asked to get triggered more often than possible */
1911 if (ev_at (w) < ev_rt_now)
1912 ev_at (w) = ev_rt_now;
1913 }
1914
1915 ANHE_at_cache (periodics [HEAP0]);
1916 downheap (periodics, periodiccnt, HEAP0);
1917 }
1918 else
1919 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1920
1921 EV_FREQUENT_CHECK;
1922 feed_reverse (EV_A_ (W)w);
1923 }
1924 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1925
1926 feed_reverse_done (EV_A_ EV_PERIODIC);
1927 }
1928}
1929
1930/* simply recalculate all periodics */
1931/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1932static void noinline
1933periodics_reschedule (EV_P)
1934{
1935 int i;
1936
1937 /* adjust periodics after time jump */
1938 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1939 {
1940 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1941
1942 if (w->reschedule_cb)
1943 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1944 else if (w->interval)
1945 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1946
1947 ANHE_at_cache (periodics [i]);
1948 }
1949
1950 reheap (periodics, periodiccnt);
1951}
1952#endif
1953
1954/* adjust all timers by a given offset */
1955static void noinline
1956timers_reschedule (EV_P_ ev_tstamp adjust)
1957{
1958 int i;
1959
1960 for (i = 0; i < timercnt; ++i)
1961 {
1962 ANHE *he = timers + i + HEAP0;
1963 ANHE_w (*he)->at += adjust;
1964 ANHE_at_cache (*he);
1965 }
1966}
1967
1968/* fetch new monotonic and realtime times from the kernel */
1969/* also detetc if there was a timejump, and act accordingly */
1970inline_speed void
1407time_update (EV_P_ ev_tstamp max_block) 1971time_update (EV_P_ ev_tstamp max_block)
1408{ 1972{
1409 int i;
1410
1411#if EV_USE_MONOTONIC 1973#if EV_USE_MONOTONIC
1412 if (expect_true (have_monotonic)) 1974 if (expect_true (have_monotonic))
1413 { 1975 {
1976 int i;
1414 ev_tstamp odiff = rtmn_diff; 1977 ev_tstamp odiff = rtmn_diff;
1415 1978
1416 mn_now = get_clock (); 1979 mn_now = get_clock ();
1417 1980
1418 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 1981 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1436 */ 1999 */
1437 for (i = 4; --i; ) 2000 for (i = 4; --i; )
1438 { 2001 {
1439 rtmn_diff = ev_rt_now - mn_now; 2002 rtmn_diff = ev_rt_now - mn_now;
1440 2003
1441 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2004 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1442 return; /* all is well */ 2005 return; /* all is well */
1443 2006
1444 ev_rt_now = ev_time (); 2007 ev_rt_now = ev_time ();
1445 mn_now = get_clock (); 2008 mn_now = get_clock ();
1446 now_floor = mn_now; 2009 now_floor = mn_now;
1447 } 2010 }
1448 2011
2012 /* no timer adjustment, as the monotonic clock doesn't jump */
2013 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1449# if EV_PERIODIC_ENABLE 2014# if EV_PERIODIC_ENABLE
1450 periodics_reschedule (EV_A); 2015 periodics_reschedule (EV_A);
1451# endif 2016# endif
1452 /* no timer adjustment, as the monotonic clock doesn't jump */
1453 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1454 } 2017 }
1455 else 2018 else
1456#endif 2019#endif
1457 { 2020 {
1458 ev_rt_now = ev_time (); 2021 ev_rt_now = ev_time ();
1459 2022
1460 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2023 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1461 { 2024 {
2025 /* adjust timers. this is easy, as the offset is the same for all of them */
2026 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1462#if EV_PERIODIC_ENABLE 2027#if EV_PERIODIC_ENABLE
1463 periodics_reschedule (EV_A); 2028 periodics_reschedule (EV_A);
1464#endif 2029#endif
1465 /* adjust timers. this is easy, as the offset is the same for all of them */
1466 for (i = 0; i < timercnt; ++i)
1467 ((WT)timers [i])->at += ev_rt_now - mn_now;
1468 } 2030 }
1469 2031
1470 mn_now = ev_rt_now; 2032 mn_now = ev_rt_now;
1471 } 2033 }
1472} 2034}
1473 2035
1474void 2036void
1475ev_ref (EV_P)
1476{
1477 ++activecnt;
1478}
1479
1480void
1481ev_unref (EV_P)
1482{
1483 --activecnt;
1484}
1485
1486static int loop_done;
1487
1488void
1489ev_loop (EV_P_ int flags) 2037ev_loop (EV_P_ int flags)
1490{ 2038{
1491 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2039 ++loop_depth;
1492 ? EVUNLOOP_ONE 2040
1493 : EVUNLOOP_CANCEL; 2041 loop_done = EVUNLOOP_CANCEL;
1494 2042
1495 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2043 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1496 2044
1497 do 2045 do
1498 { 2046 {
2047#if EV_VERIFY >= 2
2048 ev_loop_verify (EV_A);
2049#endif
2050
1499#ifndef _WIN32 2051#ifndef _WIN32
1500 if (expect_false (curpid)) /* penalise the forking check even more */ 2052 if (expect_false (curpid)) /* penalise the forking check even more */
1501 if (expect_false (getpid () != curpid)) 2053 if (expect_false (getpid () != curpid))
1502 { 2054 {
1503 curpid = getpid (); 2055 curpid = getpid ();
1520 { 2072 {
1521 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2073 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1522 call_pending (EV_A); 2074 call_pending (EV_A);
1523 } 2075 }
1524 2076
1525 if (expect_false (!activecnt))
1526 break;
1527
1528 /* we might have forked, so reify kernel state if necessary */ 2077 /* we might have forked, so reify kernel state if necessary */
1529 if (expect_false (postfork)) 2078 if (expect_false (postfork))
1530 loop_fork (EV_A); 2079 loop_fork (EV_A);
1531 2080
1532 /* update fd-related kernel structures */ 2081 /* update fd-related kernel structures */
1537 ev_tstamp waittime = 0.; 2086 ev_tstamp waittime = 0.;
1538 ev_tstamp sleeptime = 0.; 2087 ev_tstamp sleeptime = 0.;
1539 2088
1540 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2089 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1541 { 2090 {
2091 /* remember old timestamp for io_blocktime calculation */
2092 ev_tstamp prev_mn_now = mn_now;
2093
1542 /* update time to cancel out callback processing overhead */ 2094 /* update time to cancel out callback processing overhead */
1543 time_update (EV_A_ 1e100); 2095 time_update (EV_A_ 1e100);
1544 2096
1545 waittime = MAX_BLOCKTIME; 2097 waittime = MAX_BLOCKTIME;
1546 2098
1547 if (timercnt) 2099 if (timercnt)
1548 { 2100 {
1549 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2101 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1550 if (waittime > to) waittime = to; 2102 if (waittime > to) waittime = to;
1551 } 2103 }
1552 2104
1553#if EV_PERIODIC_ENABLE 2105#if EV_PERIODIC_ENABLE
1554 if (periodiccnt) 2106 if (periodiccnt)
1555 { 2107 {
1556 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2108 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1557 if (waittime > to) waittime = to; 2109 if (waittime > to) waittime = to;
1558 } 2110 }
1559#endif 2111#endif
1560 2112
2113 /* don't let timeouts decrease the waittime below timeout_blocktime */
1561 if (expect_false (waittime < timeout_blocktime)) 2114 if (expect_false (waittime < timeout_blocktime))
1562 waittime = timeout_blocktime; 2115 waittime = timeout_blocktime;
1563 2116
1564 sleeptime = waittime - backend_fudge; 2117 /* extra check because io_blocktime is commonly 0 */
1565
1566 if (expect_true (sleeptime > io_blocktime)) 2118 if (expect_false (io_blocktime))
1567 sleeptime = io_blocktime;
1568
1569 if (sleeptime)
1570 { 2119 {
2120 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2121
2122 if (sleeptime > waittime - backend_fudge)
2123 sleeptime = waittime - backend_fudge;
2124
2125 if (expect_true (sleeptime > 0.))
2126 {
1571 ev_sleep (sleeptime); 2127 ev_sleep (sleeptime);
1572 waittime -= sleeptime; 2128 waittime -= sleeptime;
2129 }
1573 } 2130 }
1574 } 2131 }
1575 2132
1576 ++loop_count; 2133 ++loop_count;
1577 backend_poll (EV_A_ waittime); 2134 backend_poll (EV_A_ waittime);
1594 /* queue check watchers, to be executed first */ 2151 /* queue check watchers, to be executed first */
1595 if (expect_false (checkcnt)) 2152 if (expect_false (checkcnt))
1596 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2153 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1597 2154
1598 call_pending (EV_A); 2155 call_pending (EV_A);
1599
1600 } 2156 }
1601 while (expect_true (activecnt && !loop_done)); 2157 while (expect_true (
2158 activecnt
2159 && !loop_done
2160 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2161 ));
1602 2162
1603 if (loop_done == EVUNLOOP_ONE) 2163 if (loop_done == EVUNLOOP_ONE)
1604 loop_done = EVUNLOOP_CANCEL; 2164 loop_done = EVUNLOOP_CANCEL;
2165
2166 --loop_depth;
1605} 2167}
1606 2168
1607void 2169void
1608ev_unloop (EV_P_ int how) 2170ev_unloop (EV_P_ int how)
1609{ 2171{
1610 loop_done = how; 2172 loop_done = how;
1611} 2173}
1612 2174
2175void
2176ev_ref (EV_P)
2177{
2178 ++activecnt;
2179}
2180
2181void
2182ev_unref (EV_P)
2183{
2184 --activecnt;
2185}
2186
2187void
2188ev_now_update (EV_P)
2189{
2190 time_update (EV_A_ 1e100);
2191}
2192
2193void
2194ev_suspend (EV_P)
2195{
2196 ev_now_update (EV_A);
2197}
2198
2199void
2200ev_resume (EV_P)
2201{
2202 ev_tstamp mn_prev = mn_now;
2203
2204 ev_now_update (EV_A);
2205 timers_reschedule (EV_A_ mn_now - mn_prev);
2206#if EV_PERIODIC_ENABLE
2207 /* TODO: really do this? */
2208 periodics_reschedule (EV_A);
2209#endif
2210}
2211
1613/*****************************************************************************/ 2212/*****************************************************************************/
2213/* singly-linked list management, used when the expected list length is short */
1614 2214
1615void inline_size 2215inline_size void
1616wlist_add (WL *head, WL elem) 2216wlist_add (WL *head, WL elem)
1617{ 2217{
1618 elem->next = *head; 2218 elem->next = *head;
1619 *head = elem; 2219 *head = elem;
1620} 2220}
1621 2221
1622void inline_size 2222inline_size void
1623wlist_del (WL *head, WL elem) 2223wlist_del (WL *head, WL elem)
1624{ 2224{
1625 while (*head) 2225 while (*head)
1626 { 2226 {
1627 if (*head == elem) 2227 if (*head == elem)
1632 2232
1633 head = &(*head)->next; 2233 head = &(*head)->next;
1634 } 2234 }
1635} 2235}
1636 2236
1637void inline_speed 2237/* internal, faster, version of ev_clear_pending */
2238inline_speed void
1638clear_pending (EV_P_ W w) 2239clear_pending (EV_P_ W w)
1639{ 2240{
1640 if (w->pending) 2241 if (w->pending)
1641 { 2242 {
1642 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2243 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1643 w->pending = 0; 2244 w->pending = 0;
1644 } 2245 }
1645} 2246}
1646 2247
1647int 2248int
1651 int pending = w_->pending; 2252 int pending = w_->pending;
1652 2253
1653 if (expect_true (pending)) 2254 if (expect_true (pending))
1654 { 2255 {
1655 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2256 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2257 p->w = (W)&pending_w;
1656 w_->pending = 0; 2258 w_->pending = 0;
1657 p->w = 0;
1658 return p->events; 2259 return p->events;
1659 } 2260 }
1660 else 2261 else
1661 return 0; 2262 return 0;
1662} 2263}
1663 2264
1664void inline_size 2265inline_size void
1665pri_adjust (EV_P_ W w) 2266pri_adjust (EV_P_ W w)
1666{ 2267{
1667 int pri = w->priority; 2268 int pri = ev_priority (w);
1668 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2269 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1669 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2270 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1670 w->priority = pri; 2271 ev_set_priority (w, pri);
1671} 2272}
1672 2273
1673void inline_speed 2274inline_speed void
1674ev_start (EV_P_ W w, int active) 2275ev_start (EV_P_ W w, int active)
1675{ 2276{
1676 pri_adjust (EV_A_ w); 2277 pri_adjust (EV_A_ w);
1677 w->active = active; 2278 w->active = active;
1678 ev_ref (EV_A); 2279 ev_ref (EV_A);
1679} 2280}
1680 2281
1681void inline_size 2282inline_size void
1682ev_stop (EV_P_ W w) 2283ev_stop (EV_P_ W w)
1683{ 2284{
1684 ev_unref (EV_A); 2285 ev_unref (EV_A);
1685 w->active = 0; 2286 w->active = 0;
1686} 2287}
1693 int fd = w->fd; 2294 int fd = w->fd;
1694 2295
1695 if (expect_false (ev_is_active (w))) 2296 if (expect_false (ev_is_active (w)))
1696 return; 2297 return;
1697 2298
1698 assert (("ev_io_start called with negative fd", fd >= 0)); 2299 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2300 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2301
2302 EV_FREQUENT_CHECK;
1699 2303
1700 ev_start (EV_A_ (W)w, 1); 2304 ev_start (EV_A_ (W)w, 1);
1701 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2305 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1702 wlist_add (&anfds[fd].head, (WL)w); 2306 wlist_add (&anfds[fd].head, (WL)w);
1703 2307
1704 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2308 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1705 w->events &= ~EV_IOFDSET; 2309 w->events &= ~EV__IOFDSET;
2310
2311 EV_FREQUENT_CHECK;
1706} 2312}
1707 2313
1708void noinline 2314void noinline
1709ev_io_stop (EV_P_ ev_io *w) 2315ev_io_stop (EV_P_ ev_io *w)
1710{ 2316{
1711 clear_pending (EV_A_ (W)w); 2317 clear_pending (EV_A_ (W)w);
1712 if (expect_false (!ev_is_active (w))) 2318 if (expect_false (!ev_is_active (w)))
1713 return; 2319 return;
1714 2320
1715 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2321 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2322
2323 EV_FREQUENT_CHECK;
1716 2324
1717 wlist_del (&anfds[w->fd].head, (WL)w); 2325 wlist_del (&anfds[w->fd].head, (WL)w);
1718 ev_stop (EV_A_ (W)w); 2326 ev_stop (EV_A_ (W)w);
1719 2327
1720 fd_change (EV_A_ w->fd, 1); 2328 fd_change (EV_A_ w->fd, 1);
2329
2330 EV_FREQUENT_CHECK;
1721} 2331}
1722 2332
1723void noinline 2333void noinline
1724ev_timer_start (EV_P_ ev_timer *w) 2334ev_timer_start (EV_P_ ev_timer *w)
1725{ 2335{
1726 if (expect_false (ev_is_active (w))) 2336 if (expect_false (ev_is_active (w)))
1727 return; 2337 return;
1728 2338
1729 ((WT)w)->at += mn_now; 2339 ev_at (w) += mn_now;
1730 2340
1731 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2341 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1732 2342
2343 EV_FREQUENT_CHECK;
2344
2345 ++timercnt;
1733 ev_start (EV_A_ (W)w, ++timercnt); 2346 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1734 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2347 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1735 timers [timercnt - 1] = (WT)w; 2348 ANHE_w (timers [ev_active (w)]) = (WT)w;
1736 upheap (timers, timercnt - 1); 2349 ANHE_at_cache (timers [ev_active (w)]);
2350 upheap (timers, ev_active (w));
1737 2351
2352 EV_FREQUENT_CHECK;
2353
1738 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2354 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1739} 2355}
1740 2356
1741void noinline 2357void noinline
1742ev_timer_stop (EV_P_ ev_timer *w) 2358ev_timer_stop (EV_P_ ev_timer *w)
1743{ 2359{
1744 clear_pending (EV_A_ (W)w); 2360 clear_pending (EV_A_ (W)w);
1745 if (expect_false (!ev_is_active (w))) 2361 if (expect_false (!ev_is_active (w)))
1746 return; 2362 return;
1747 2363
1748 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2364 EV_FREQUENT_CHECK;
1749 2365
1750 { 2366 {
1751 int active = ((W)w)->active; 2367 int active = ev_active (w);
1752 2368
2369 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2370
2371 --timercnt;
2372
1753 if (expect_true (--active < --timercnt)) 2373 if (expect_true (active < timercnt + HEAP0))
1754 { 2374 {
1755 timers [active] = timers [timercnt]; 2375 timers [active] = timers [timercnt + HEAP0];
1756 adjustheap (timers, timercnt, active); 2376 adjustheap (timers, timercnt, active);
1757 } 2377 }
1758 } 2378 }
1759 2379
1760 ((WT)w)->at -= mn_now; 2380 EV_FREQUENT_CHECK;
2381
2382 ev_at (w) -= mn_now;
1761 2383
1762 ev_stop (EV_A_ (W)w); 2384 ev_stop (EV_A_ (W)w);
1763} 2385}
1764 2386
1765void noinline 2387void noinline
1766ev_timer_again (EV_P_ ev_timer *w) 2388ev_timer_again (EV_P_ ev_timer *w)
1767{ 2389{
2390 EV_FREQUENT_CHECK;
2391
1768 if (ev_is_active (w)) 2392 if (ev_is_active (w))
1769 { 2393 {
1770 if (w->repeat) 2394 if (w->repeat)
1771 { 2395 {
1772 ((WT)w)->at = mn_now + w->repeat; 2396 ev_at (w) = mn_now + w->repeat;
2397 ANHE_at_cache (timers [ev_active (w)]);
1773 adjustheap (timers, timercnt, ((W)w)->active - 1); 2398 adjustheap (timers, timercnt, ev_active (w));
1774 } 2399 }
1775 else 2400 else
1776 ev_timer_stop (EV_A_ w); 2401 ev_timer_stop (EV_A_ w);
1777 } 2402 }
1778 else if (w->repeat) 2403 else if (w->repeat)
1779 { 2404 {
1780 w->at = w->repeat; 2405 ev_at (w) = w->repeat;
1781 ev_timer_start (EV_A_ w); 2406 ev_timer_start (EV_A_ w);
1782 } 2407 }
2408
2409 EV_FREQUENT_CHECK;
1783} 2410}
1784 2411
1785#if EV_PERIODIC_ENABLE 2412#if EV_PERIODIC_ENABLE
1786void noinline 2413void noinline
1787ev_periodic_start (EV_P_ ev_periodic *w) 2414ev_periodic_start (EV_P_ ev_periodic *w)
1788{ 2415{
1789 if (expect_false (ev_is_active (w))) 2416 if (expect_false (ev_is_active (w)))
1790 return; 2417 return;
1791 2418
1792 if (w->reschedule_cb) 2419 if (w->reschedule_cb)
1793 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2420 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1794 else if (w->interval) 2421 else if (w->interval)
1795 { 2422 {
1796 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2423 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1797 /* this formula differs from the one in periodic_reify because we do not always round up */ 2424 /* this formula differs from the one in periodic_reify because we do not always round up */
1798 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2425 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1799 } 2426 }
1800 else 2427 else
1801 ((WT)w)->at = w->offset; 2428 ev_at (w) = w->offset;
1802 2429
2430 EV_FREQUENT_CHECK;
2431
2432 ++periodiccnt;
1803 ev_start (EV_A_ (W)w, ++periodiccnt); 2433 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1804 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2434 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1805 periodics [periodiccnt - 1] = (WT)w; 2435 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1806 upheap (periodics, periodiccnt - 1); 2436 ANHE_at_cache (periodics [ev_active (w)]);
2437 upheap (periodics, ev_active (w));
1807 2438
2439 EV_FREQUENT_CHECK;
2440
1808 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2441 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1809} 2442}
1810 2443
1811void noinline 2444void noinline
1812ev_periodic_stop (EV_P_ ev_periodic *w) 2445ev_periodic_stop (EV_P_ ev_periodic *w)
1813{ 2446{
1814 clear_pending (EV_A_ (W)w); 2447 clear_pending (EV_A_ (W)w);
1815 if (expect_false (!ev_is_active (w))) 2448 if (expect_false (!ev_is_active (w)))
1816 return; 2449 return;
1817 2450
1818 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2451 EV_FREQUENT_CHECK;
1819 2452
1820 { 2453 {
1821 int active = ((W)w)->active; 2454 int active = ev_active (w);
1822 2455
2456 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2457
2458 --periodiccnt;
2459
1823 if (expect_true (--active < --periodiccnt)) 2460 if (expect_true (active < periodiccnt + HEAP0))
1824 { 2461 {
1825 periodics [active] = periodics [periodiccnt]; 2462 periodics [active] = periodics [periodiccnt + HEAP0];
1826 adjustheap (periodics, periodiccnt, active); 2463 adjustheap (periodics, periodiccnt, active);
1827 } 2464 }
1828 } 2465 }
1829 2466
2467 EV_FREQUENT_CHECK;
2468
1830 ev_stop (EV_A_ (W)w); 2469 ev_stop (EV_A_ (W)w);
1831} 2470}
1832 2471
1833void noinline 2472void noinline
1834ev_periodic_again (EV_P_ ev_periodic *w) 2473ev_periodic_again (EV_P_ ev_periodic *w)
1845 2484
1846void noinline 2485void noinline
1847ev_signal_start (EV_P_ ev_signal *w) 2486ev_signal_start (EV_P_ ev_signal *w)
1848{ 2487{
1849#if EV_MULTIPLICITY 2488#if EV_MULTIPLICITY
1850 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2489 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1851#endif 2490#endif
1852 if (expect_false (ev_is_active (w))) 2491 if (expect_false (ev_is_active (w)))
1853 return; 2492 return;
1854 2493
1855 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2494 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2495
2496 evpipe_init (EV_A);
2497
2498 EV_FREQUENT_CHECK;
1856 2499
1857 { 2500 {
1858#ifndef _WIN32 2501#ifndef _WIN32
1859 sigset_t full, prev; 2502 sigset_t full, prev;
1860 sigfillset (&full); 2503 sigfillset (&full);
1861 sigprocmask (SIG_SETMASK, &full, &prev); 2504 sigprocmask (SIG_SETMASK, &full, &prev);
1862#endif 2505#endif
1863 2506
1864 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2507 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
1865 2508
1866#ifndef _WIN32 2509#ifndef _WIN32
1867 sigprocmask (SIG_SETMASK, &prev, 0); 2510 sigprocmask (SIG_SETMASK, &prev, 0);
1868#endif 2511#endif
1869 } 2512 }
1872 wlist_add (&signals [w->signum - 1].head, (WL)w); 2515 wlist_add (&signals [w->signum - 1].head, (WL)w);
1873 2516
1874 if (!((WL)w)->next) 2517 if (!((WL)w)->next)
1875 { 2518 {
1876#if _WIN32 2519#if _WIN32
1877 signal (w->signum, sighandler); 2520 signal (w->signum, ev_sighandler);
1878#else 2521#else
1879 struct sigaction sa; 2522 struct sigaction sa;
1880 sa.sa_handler = sighandler; 2523 sa.sa_handler = ev_sighandler;
1881 sigfillset (&sa.sa_mask); 2524 sigfillset (&sa.sa_mask);
1882 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2525 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1883 sigaction (w->signum, &sa, 0); 2526 sigaction (w->signum, &sa, 0);
1884#endif 2527#endif
1885 } 2528 }
2529
2530 EV_FREQUENT_CHECK;
1886} 2531}
1887 2532
1888void noinline 2533void noinline
1889ev_signal_stop (EV_P_ ev_signal *w) 2534ev_signal_stop (EV_P_ ev_signal *w)
1890{ 2535{
1891 clear_pending (EV_A_ (W)w); 2536 clear_pending (EV_A_ (W)w);
1892 if (expect_false (!ev_is_active (w))) 2537 if (expect_false (!ev_is_active (w)))
1893 return; 2538 return;
1894 2539
2540 EV_FREQUENT_CHECK;
2541
1895 wlist_del (&signals [w->signum - 1].head, (WL)w); 2542 wlist_del (&signals [w->signum - 1].head, (WL)w);
1896 ev_stop (EV_A_ (W)w); 2543 ev_stop (EV_A_ (W)w);
1897 2544
1898 if (!signals [w->signum - 1].head) 2545 if (!signals [w->signum - 1].head)
1899 signal (w->signum, SIG_DFL); 2546 signal (w->signum, SIG_DFL);
2547
2548 EV_FREQUENT_CHECK;
1900} 2549}
1901 2550
1902void 2551void
1903ev_child_start (EV_P_ ev_child *w) 2552ev_child_start (EV_P_ ev_child *w)
1904{ 2553{
1905#if EV_MULTIPLICITY 2554#if EV_MULTIPLICITY
1906 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2555 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1907#endif 2556#endif
1908 if (expect_false (ev_is_active (w))) 2557 if (expect_false (ev_is_active (w)))
1909 return; 2558 return;
1910 2559
2560 EV_FREQUENT_CHECK;
2561
1911 ev_start (EV_A_ (W)w, 1); 2562 ev_start (EV_A_ (W)w, 1);
1912 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2563 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2564
2565 EV_FREQUENT_CHECK;
1913} 2566}
1914 2567
1915void 2568void
1916ev_child_stop (EV_P_ ev_child *w) 2569ev_child_stop (EV_P_ ev_child *w)
1917{ 2570{
1918 clear_pending (EV_A_ (W)w); 2571 clear_pending (EV_A_ (W)w);
1919 if (expect_false (!ev_is_active (w))) 2572 if (expect_false (!ev_is_active (w)))
1920 return; 2573 return;
1921 2574
2575 EV_FREQUENT_CHECK;
2576
1922 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2577 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1923 ev_stop (EV_A_ (W)w); 2578 ev_stop (EV_A_ (W)w);
2579
2580 EV_FREQUENT_CHECK;
1924} 2581}
1925 2582
1926#if EV_STAT_ENABLE 2583#if EV_STAT_ENABLE
1927 2584
1928# ifdef _WIN32 2585# ifdef _WIN32
1929# undef lstat 2586# undef lstat
1930# define lstat(a,b) _stati64 (a,b) 2587# define lstat(a,b) _stati64 (a,b)
1931# endif 2588# endif
1932 2589
1933#define DEF_STAT_INTERVAL 5.0074891 2590#define DEF_STAT_INTERVAL 5.0074891
2591#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1934#define MIN_STAT_INTERVAL 0.1074891 2592#define MIN_STAT_INTERVAL 0.1074891
1935 2593
1936static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2594static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1937 2595
1938#if EV_USE_INOTIFY 2596#if EV_USE_INOTIFY
1939# define EV_INOTIFY_BUFSIZE 8192 2597# define EV_INOTIFY_BUFSIZE 8192
1943{ 2601{
1944 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2602 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1945 2603
1946 if (w->wd < 0) 2604 if (w->wd < 0)
1947 { 2605 {
2606 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1948 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2607 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1949 2608
1950 /* monitor some parent directory for speedup hints */ 2609 /* monitor some parent directory for speedup hints */
2610 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2611 /* but an efficiency issue only */
1951 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2612 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1952 { 2613 {
1953 char path [4096]; 2614 char path [4096];
1954 strcpy (path, w->path); 2615 strcpy (path, w->path);
1955 2616
1958 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2619 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1959 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2620 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1960 2621
1961 char *pend = strrchr (path, '/'); 2622 char *pend = strrchr (path, '/');
1962 2623
1963 if (!pend) 2624 if (!pend || pend == path)
1964 break; /* whoops, no '/', complain to your admin */ 2625 break;
1965 2626
1966 *pend = 0; 2627 *pend = 0;
1967 w->wd = inotify_add_watch (fs_fd, path, mask); 2628 w->wd = inotify_add_watch (fs_fd, path, mask);
1968 } 2629 }
1969 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2630 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1970 } 2631 }
1971 } 2632 }
1972 else
1973 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1974 2633
1975 if (w->wd >= 0) 2634 if (w->wd >= 0)
2635 {
1976 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2636 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2637
2638 /* now local changes will be tracked by inotify, but remote changes won't */
2639 /* unless the filesystem it known to be local, we therefore still poll */
2640 /* also do poll on <2.6.25, but with normal frequency */
2641 struct statfs sfs;
2642
2643 if (fs_2625 && !statfs (w->path, &sfs))
2644 if (sfs.f_type == 0x1373 /* devfs */
2645 || sfs.f_type == 0xEF53 /* ext2/3 */
2646 || sfs.f_type == 0x3153464a /* jfs */
2647 || sfs.f_type == 0x52654973 /* reiser3 */
2648 || sfs.f_type == 0x01021994 /* tempfs */
2649 || sfs.f_type == 0x58465342 /* xfs */)
2650 return;
2651
2652 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2653 ev_timer_again (EV_A_ &w->timer);
2654 }
1977} 2655}
1978 2656
1979static void noinline 2657static void noinline
1980infy_del (EV_P_ ev_stat *w) 2658infy_del (EV_P_ ev_stat *w)
1981{ 2659{
1995 2673
1996static void noinline 2674static void noinline
1997infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2675infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1998{ 2676{
1999 if (slot < 0) 2677 if (slot < 0)
2000 /* overflow, need to check for all hahs slots */ 2678 /* overflow, need to check for all hash slots */
2001 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2679 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2002 infy_wd (EV_A_ slot, wd, ev); 2680 infy_wd (EV_A_ slot, wd, ev);
2003 else 2681 else
2004 { 2682 {
2005 WL w_; 2683 WL w_;
2011 2689
2012 if (w->wd == wd || wd == -1) 2690 if (w->wd == wd || wd == -1)
2013 { 2691 {
2014 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2692 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2015 { 2693 {
2694 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2016 w->wd = -1; 2695 w->wd = -1;
2017 infy_add (EV_A_ w); /* re-add, no matter what */ 2696 infy_add (EV_A_ w); /* re-add, no matter what */
2018 } 2697 }
2019 2698
2020 stat_timer_cb (EV_A_ &w->timer, 0); 2699 stat_timer_cb (EV_A_ &w->timer, 0);
2033 2712
2034 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2713 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2035 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2714 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2036} 2715}
2037 2716
2038void inline_size 2717inline_size void
2718check_2625 (EV_P)
2719{
2720 /* kernels < 2.6.25 are borked
2721 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2722 */
2723 struct utsname buf;
2724 int major, minor, micro;
2725
2726 if (uname (&buf))
2727 return;
2728
2729 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2730 return;
2731
2732 if (major < 2
2733 || (major == 2 && minor < 6)
2734 || (major == 2 && minor == 6 && micro < 25))
2735 return;
2736
2737 fs_2625 = 1;
2738}
2739
2740inline_size void
2039infy_init (EV_P) 2741infy_init (EV_P)
2040{ 2742{
2041 if (fs_fd != -2) 2743 if (fs_fd != -2)
2042 return; 2744 return;
2745
2746 fs_fd = -1;
2747
2748 check_2625 (EV_A);
2043 2749
2044 fs_fd = inotify_init (); 2750 fs_fd = inotify_init ();
2045 2751
2046 if (fs_fd >= 0) 2752 if (fs_fd >= 0)
2047 { 2753 {
2049 ev_set_priority (&fs_w, EV_MAXPRI); 2755 ev_set_priority (&fs_w, EV_MAXPRI);
2050 ev_io_start (EV_A_ &fs_w); 2756 ev_io_start (EV_A_ &fs_w);
2051 } 2757 }
2052} 2758}
2053 2759
2054void inline_size 2760inline_size void
2055infy_fork (EV_P) 2761infy_fork (EV_P)
2056{ 2762{
2057 int slot; 2763 int slot;
2058 2764
2059 if (fs_fd < 0) 2765 if (fs_fd < 0)
2075 w->wd = -1; 2781 w->wd = -1;
2076 2782
2077 if (fs_fd >= 0) 2783 if (fs_fd >= 0)
2078 infy_add (EV_A_ w); /* re-add, no matter what */ 2784 infy_add (EV_A_ w); /* re-add, no matter what */
2079 else 2785 else
2080 ev_timer_start (EV_A_ &w->timer); 2786 ev_timer_again (EV_A_ &w->timer);
2081 } 2787 }
2082
2083 } 2788 }
2084} 2789}
2085 2790
2791#endif
2792
2793#ifdef _WIN32
2794# define EV_LSTAT(p,b) _stati64 (p, b)
2795#else
2796# define EV_LSTAT(p,b) lstat (p, b)
2086#endif 2797#endif
2087 2798
2088void 2799void
2089ev_stat_stat (EV_P_ ev_stat *w) 2800ev_stat_stat (EV_P_ ev_stat *w)
2090{ 2801{
2117 || w->prev.st_atime != w->attr.st_atime 2828 || w->prev.st_atime != w->attr.st_atime
2118 || w->prev.st_mtime != w->attr.st_mtime 2829 || w->prev.st_mtime != w->attr.st_mtime
2119 || w->prev.st_ctime != w->attr.st_ctime 2830 || w->prev.st_ctime != w->attr.st_ctime
2120 ) { 2831 ) {
2121 #if EV_USE_INOTIFY 2832 #if EV_USE_INOTIFY
2833 if (fs_fd >= 0)
2834 {
2122 infy_del (EV_A_ w); 2835 infy_del (EV_A_ w);
2123 infy_add (EV_A_ w); 2836 infy_add (EV_A_ w);
2124 ev_stat_stat (EV_A_ w); /* avoid race... */ 2837 ev_stat_stat (EV_A_ w); /* avoid race... */
2838 }
2125 #endif 2839 #endif
2126 2840
2127 ev_feed_event (EV_A_ w, EV_STAT); 2841 ev_feed_event (EV_A_ w, EV_STAT);
2128 } 2842 }
2129} 2843}
2132ev_stat_start (EV_P_ ev_stat *w) 2846ev_stat_start (EV_P_ ev_stat *w)
2133{ 2847{
2134 if (expect_false (ev_is_active (w))) 2848 if (expect_false (ev_is_active (w)))
2135 return; 2849 return;
2136 2850
2137 /* since we use memcmp, we need to clear any padding data etc. */
2138 memset (&w->prev, 0, sizeof (ev_statdata));
2139 memset (&w->attr, 0, sizeof (ev_statdata));
2140
2141 ev_stat_stat (EV_A_ w); 2851 ev_stat_stat (EV_A_ w);
2142 2852
2853 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2143 if (w->interval < MIN_STAT_INTERVAL) 2854 w->interval = MIN_STAT_INTERVAL;
2144 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2145 2855
2146 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2856 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2147 ev_set_priority (&w->timer, ev_priority (w)); 2857 ev_set_priority (&w->timer, ev_priority (w));
2148 2858
2149#if EV_USE_INOTIFY 2859#if EV_USE_INOTIFY
2150 infy_init (EV_A); 2860 infy_init (EV_A);
2151 2861
2152 if (fs_fd >= 0) 2862 if (fs_fd >= 0)
2153 infy_add (EV_A_ w); 2863 infy_add (EV_A_ w);
2154 else 2864 else
2155#endif 2865#endif
2156 ev_timer_start (EV_A_ &w->timer); 2866 ev_timer_again (EV_A_ &w->timer);
2157 2867
2158 ev_start (EV_A_ (W)w, 1); 2868 ev_start (EV_A_ (W)w, 1);
2869
2870 EV_FREQUENT_CHECK;
2159} 2871}
2160 2872
2161void 2873void
2162ev_stat_stop (EV_P_ ev_stat *w) 2874ev_stat_stop (EV_P_ ev_stat *w)
2163{ 2875{
2164 clear_pending (EV_A_ (W)w); 2876 clear_pending (EV_A_ (W)w);
2165 if (expect_false (!ev_is_active (w))) 2877 if (expect_false (!ev_is_active (w)))
2166 return; 2878 return;
2167 2879
2880 EV_FREQUENT_CHECK;
2881
2168#if EV_USE_INOTIFY 2882#if EV_USE_INOTIFY
2169 infy_del (EV_A_ w); 2883 infy_del (EV_A_ w);
2170#endif 2884#endif
2171 ev_timer_stop (EV_A_ &w->timer); 2885 ev_timer_stop (EV_A_ &w->timer);
2172 2886
2173 ev_stop (EV_A_ (W)w); 2887 ev_stop (EV_A_ (W)w);
2888
2889 EV_FREQUENT_CHECK;
2174} 2890}
2175#endif 2891#endif
2176 2892
2177#if EV_IDLE_ENABLE 2893#if EV_IDLE_ENABLE
2178void 2894void
2180{ 2896{
2181 if (expect_false (ev_is_active (w))) 2897 if (expect_false (ev_is_active (w)))
2182 return; 2898 return;
2183 2899
2184 pri_adjust (EV_A_ (W)w); 2900 pri_adjust (EV_A_ (W)w);
2901
2902 EV_FREQUENT_CHECK;
2185 2903
2186 { 2904 {
2187 int active = ++idlecnt [ABSPRI (w)]; 2905 int active = ++idlecnt [ABSPRI (w)];
2188 2906
2189 ++idleall; 2907 ++idleall;
2190 ev_start (EV_A_ (W)w, active); 2908 ev_start (EV_A_ (W)w, active);
2191 2909
2192 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2910 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2193 idles [ABSPRI (w)][active - 1] = w; 2911 idles [ABSPRI (w)][active - 1] = w;
2194 } 2912 }
2913
2914 EV_FREQUENT_CHECK;
2195} 2915}
2196 2916
2197void 2917void
2198ev_idle_stop (EV_P_ ev_idle *w) 2918ev_idle_stop (EV_P_ ev_idle *w)
2199{ 2919{
2200 clear_pending (EV_A_ (W)w); 2920 clear_pending (EV_A_ (W)w);
2201 if (expect_false (!ev_is_active (w))) 2921 if (expect_false (!ev_is_active (w)))
2202 return; 2922 return;
2203 2923
2924 EV_FREQUENT_CHECK;
2925
2204 { 2926 {
2205 int active = ((W)w)->active; 2927 int active = ev_active (w);
2206 2928
2207 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2929 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2208 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2930 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2209 2931
2210 ev_stop (EV_A_ (W)w); 2932 ev_stop (EV_A_ (W)w);
2211 --idleall; 2933 --idleall;
2212 } 2934 }
2935
2936 EV_FREQUENT_CHECK;
2213} 2937}
2214#endif 2938#endif
2215 2939
2216void 2940void
2217ev_prepare_start (EV_P_ ev_prepare *w) 2941ev_prepare_start (EV_P_ ev_prepare *w)
2218{ 2942{
2219 if (expect_false (ev_is_active (w))) 2943 if (expect_false (ev_is_active (w)))
2220 return; 2944 return;
2945
2946 EV_FREQUENT_CHECK;
2221 2947
2222 ev_start (EV_A_ (W)w, ++preparecnt); 2948 ev_start (EV_A_ (W)w, ++preparecnt);
2223 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2949 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2224 prepares [preparecnt - 1] = w; 2950 prepares [preparecnt - 1] = w;
2951
2952 EV_FREQUENT_CHECK;
2225} 2953}
2226 2954
2227void 2955void
2228ev_prepare_stop (EV_P_ ev_prepare *w) 2956ev_prepare_stop (EV_P_ ev_prepare *w)
2229{ 2957{
2230 clear_pending (EV_A_ (W)w); 2958 clear_pending (EV_A_ (W)w);
2231 if (expect_false (!ev_is_active (w))) 2959 if (expect_false (!ev_is_active (w)))
2232 return; 2960 return;
2233 2961
2962 EV_FREQUENT_CHECK;
2963
2234 { 2964 {
2235 int active = ((W)w)->active; 2965 int active = ev_active (w);
2966
2236 prepares [active - 1] = prepares [--preparecnt]; 2967 prepares [active - 1] = prepares [--preparecnt];
2237 ((W)prepares [active - 1])->active = active; 2968 ev_active (prepares [active - 1]) = active;
2238 } 2969 }
2239 2970
2240 ev_stop (EV_A_ (W)w); 2971 ev_stop (EV_A_ (W)w);
2972
2973 EV_FREQUENT_CHECK;
2241} 2974}
2242 2975
2243void 2976void
2244ev_check_start (EV_P_ ev_check *w) 2977ev_check_start (EV_P_ ev_check *w)
2245{ 2978{
2246 if (expect_false (ev_is_active (w))) 2979 if (expect_false (ev_is_active (w)))
2247 return; 2980 return;
2981
2982 EV_FREQUENT_CHECK;
2248 2983
2249 ev_start (EV_A_ (W)w, ++checkcnt); 2984 ev_start (EV_A_ (W)w, ++checkcnt);
2250 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2985 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2251 checks [checkcnt - 1] = w; 2986 checks [checkcnt - 1] = w;
2987
2988 EV_FREQUENT_CHECK;
2252} 2989}
2253 2990
2254void 2991void
2255ev_check_stop (EV_P_ ev_check *w) 2992ev_check_stop (EV_P_ ev_check *w)
2256{ 2993{
2257 clear_pending (EV_A_ (W)w); 2994 clear_pending (EV_A_ (W)w);
2258 if (expect_false (!ev_is_active (w))) 2995 if (expect_false (!ev_is_active (w)))
2259 return; 2996 return;
2260 2997
2998 EV_FREQUENT_CHECK;
2999
2261 { 3000 {
2262 int active = ((W)w)->active; 3001 int active = ev_active (w);
3002
2263 checks [active - 1] = checks [--checkcnt]; 3003 checks [active - 1] = checks [--checkcnt];
2264 ((W)checks [active - 1])->active = active; 3004 ev_active (checks [active - 1]) = active;
2265 } 3005 }
2266 3006
2267 ev_stop (EV_A_ (W)w); 3007 ev_stop (EV_A_ (W)w);
3008
3009 EV_FREQUENT_CHECK;
2268} 3010}
2269 3011
2270#if EV_EMBED_ENABLE 3012#if EV_EMBED_ENABLE
2271void noinline 3013void noinline
2272ev_embed_sweep (EV_P_ ev_embed *w) 3014ev_embed_sweep (EV_P_ ev_embed *w)
2299 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3041 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2300 } 3042 }
2301 } 3043 }
2302} 3044}
2303 3045
3046static void
3047embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3048{
3049 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3050
3051 ev_embed_stop (EV_A_ w);
3052
3053 {
3054 struct ev_loop *loop = w->other;
3055
3056 ev_loop_fork (EV_A);
3057 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3058 }
3059
3060 ev_embed_start (EV_A_ w);
3061}
3062
2304#if 0 3063#if 0
2305static void 3064static void
2306embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3065embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2307{ 3066{
2308 ev_idle_stop (EV_A_ idle); 3067 ev_idle_stop (EV_A_ idle);
2315 if (expect_false (ev_is_active (w))) 3074 if (expect_false (ev_is_active (w)))
2316 return; 3075 return;
2317 3076
2318 { 3077 {
2319 struct ev_loop *loop = w->other; 3078 struct ev_loop *loop = w->other;
2320 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3079 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2321 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3080 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2322 } 3081 }
3082
3083 EV_FREQUENT_CHECK;
2323 3084
2324 ev_set_priority (&w->io, ev_priority (w)); 3085 ev_set_priority (&w->io, ev_priority (w));
2325 ev_io_start (EV_A_ &w->io); 3086 ev_io_start (EV_A_ &w->io);
2326 3087
2327 ev_prepare_init (&w->prepare, embed_prepare_cb); 3088 ev_prepare_init (&w->prepare, embed_prepare_cb);
2328 ev_set_priority (&w->prepare, EV_MINPRI); 3089 ev_set_priority (&w->prepare, EV_MINPRI);
2329 ev_prepare_start (EV_A_ &w->prepare); 3090 ev_prepare_start (EV_A_ &w->prepare);
2330 3091
3092 ev_fork_init (&w->fork, embed_fork_cb);
3093 ev_fork_start (EV_A_ &w->fork);
3094
2331 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3095 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2332 3096
2333 ev_start (EV_A_ (W)w, 1); 3097 ev_start (EV_A_ (W)w, 1);
3098
3099 EV_FREQUENT_CHECK;
2334} 3100}
2335 3101
2336void 3102void
2337ev_embed_stop (EV_P_ ev_embed *w) 3103ev_embed_stop (EV_P_ ev_embed *w)
2338{ 3104{
2339 clear_pending (EV_A_ (W)w); 3105 clear_pending (EV_A_ (W)w);
2340 if (expect_false (!ev_is_active (w))) 3106 if (expect_false (!ev_is_active (w)))
2341 return; 3107 return;
2342 3108
3109 EV_FREQUENT_CHECK;
3110
2343 ev_io_stop (EV_A_ &w->io); 3111 ev_io_stop (EV_A_ &w->io);
2344 ev_prepare_stop (EV_A_ &w->prepare); 3112 ev_prepare_stop (EV_A_ &w->prepare);
3113 ev_fork_stop (EV_A_ &w->fork);
2345 3114
2346 ev_stop (EV_A_ (W)w); 3115 EV_FREQUENT_CHECK;
2347} 3116}
2348#endif 3117#endif
2349 3118
2350#if EV_FORK_ENABLE 3119#if EV_FORK_ENABLE
2351void 3120void
2352ev_fork_start (EV_P_ ev_fork *w) 3121ev_fork_start (EV_P_ ev_fork *w)
2353{ 3122{
2354 if (expect_false (ev_is_active (w))) 3123 if (expect_false (ev_is_active (w)))
2355 return; 3124 return;
3125
3126 EV_FREQUENT_CHECK;
2356 3127
2357 ev_start (EV_A_ (W)w, ++forkcnt); 3128 ev_start (EV_A_ (W)w, ++forkcnt);
2358 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3129 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2359 forks [forkcnt - 1] = w; 3130 forks [forkcnt - 1] = w;
3131
3132 EV_FREQUENT_CHECK;
2360} 3133}
2361 3134
2362void 3135void
2363ev_fork_stop (EV_P_ ev_fork *w) 3136ev_fork_stop (EV_P_ ev_fork *w)
2364{ 3137{
2365 clear_pending (EV_A_ (W)w); 3138 clear_pending (EV_A_ (W)w);
2366 if (expect_false (!ev_is_active (w))) 3139 if (expect_false (!ev_is_active (w)))
2367 return; 3140 return;
2368 3141
3142 EV_FREQUENT_CHECK;
3143
2369 { 3144 {
2370 int active = ((W)w)->active; 3145 int active = ev_active (w);
3146
2371 forks [active - 1] = forks [--forkcnt]; 3147 forks [active - 1] = forks [--forkcnt];
2372 ((W)forks [active - 1])->active = active; 3148 ev_active (forks [active - 1]) = active;
2373 } 3149 }
2374 3150
2375 ev_stop (EV_A_ (W)w); 3151 ev_stop (EV_A_ (W)w);
3152
3153 EV_FREQUENT_CHECK;
3154}
3155#endif
3156
3157#if EV_ASYNC_ENABLE
3158void
3159ev_async_start (EV_P_ ev_async *w)
3160{
3161 if (expect_false (ev_is_active (w)))
3162 return;
3163
3164 evpipe_init (EV_A);
3165
3166 EV_FREQUENT_CHECK;
3167
3168 ev_start (EV_A_ (W)w, ++asynccnt);
3169 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3170 asyncs [asynccnt - 1] = w;
3171
3172 EV_FREQUENT_CHECK;
3173}
3174
3175void
3176ev_async_stop (EV_P_ ev_async *w)
3177{
3178 clear_pending (EV_A_ (W)w);
3179 if (expect_false (!ev_is_active (w)))
3180 return;
3181
3182 EV_FREQUENT_CHECK;
3183
3184 {
3185 int active = ev_active (w);
3186
3187 asyncs [active - 1] = asyncs [--asynccnt];
3188 ev_active (asyncs [active - 1]) = active;
3189 }
3190
3191 ev_stop (EV_A_ (W)w);
3192
3193 EV_FREQUENT_CHECK;
3194}
3195
3196void
3197ev_async_send (EV_P_ ev_async *w)
3198{
3199 w->sent = 1;
3200 evpipe_write (EV_A_ &gotasync);
2376} 3201}
2377#endif 3202#endif
2378 3203
2379/*****************************************************************************/ 3204/*****************************************************************************/
2380 3205
2390once_cb (EV_P_ struct ev_once *once, int revents) 3215once_cb (EV_P_ struct ev_once *once, int revents)
2391{ 3216{
2392 void (*cb)(int revents, void *arg) = once->cb; 3217 void (*cb)(int revents, void *arg) = once->cb;
2393 void *arg = once->arg; 3218 void *arg = once->arg;
2394 3219
2395 ev_io_stop (EV_A_ &once->io); 3220 ev_io_stop (EV_A_ &once->io);
2396 ev_timer_stop (EV_A_ &once->to); 3221 ev_timer_stop (EV_A_ &once->to);
2397 ev_free (once); 3222 ev_free (once);
2398 3223
2399 cb (revents, arg); 3224 cb (revents, arg);
2400} 3225}
2401 3226
2402static void 3227static void
2403once_cb_io (EV_P_ ev_io *w, int revents) 3228once_cb_io (EV_P_ ev_io *w, int revents)
2404{ 3229{
2405 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3230 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3231
3232 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2406} 3233}
2407 3234
2408static void 3235static void
2409once_cb_to (EV_P_ ev_timer *w, int revents) 3236once_cb_to (EV_P_ ev_timer *w, int revents)
2410{ 3237{
2411 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3238 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3239
3240 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2412} 3241}
2413 3242
2414void 3243void
2415ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3244ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2416{ 3245{
2438 ev_timer_set (&once->to, timeout, 0.); 3267 ev_timer_set (&once->to, timeout, 0.);
2439 ev_timer_start (EV_A_ &once->to); 3268 ev_timer_start (EV_A_ &once->to);
2440 } 3269 }
2441} 3270}
2442 3271
3272/*****************************************************************************/
3273
3274#if EV_WALK_ENABLE
3275void
3276ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3277{
3278 int i, j;
3279 ev_watcher_list *wl, *wn;
3280
3281 if (types & (EV_IO | EV_EMBED))
3282 for (i = 0; i < anfdmax; ++i)
3283 for (wl = anfds [i].head; wl; )
3284 {
3285 wn = wl->next;
3286
3287#if EV_EMBED_ENABLE
3288 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3289 {
3290 if (types & EV_EMBED)
3291 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3292 }
3293 else
3294#endif
3295#if EV_USE_INOTIFY
3296 if (ev_cb ((ev_io *)wl) == infy_cb)
3297 ;
3298 else
3299#endif
3300 if ((ev_io *)wl != &pipe_w)
3301 if (types & EV_IO)
3302 cb (EV_A_ EV_IO, wl);
3303
3304 wl = wn;
3305 }
3306
3307 if (types & (EV_TIMER | EV_STAT))
3308 for (i = timercnt + HEAP0; i-- > HEAP0; )
3309#if EV_STAT_ENABLE
3310 /*TODO: timer is not always active*/
3311 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3312 {
3313 if (types & EV_STAT)
3314 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3315 }
3316 else
3317#endif
3318 if (types & EV_TIMER)
3319 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3320
3321#if EV_PERIODIC_ENABLE
3322 if (types & EV_PERIODIC)
3323 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3324 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3325#endif
3326
3327#if EV_IDLE_ENABLE
3328 if (types & EV_IDLE)
3329 for (j = NUMPRI; i--; )
3330 for (i = idlecnt [j]; i--; )
3331 cb (EV_A_ EV_IDLE, idles [j][i]);
3332#endif
3333
3334#if EV_FORK_ENABLE
3335 if (types & EV_FORK)
3336 for (i = forkcnt; i--; )
3337 if (ev_cb (forks [i]) != embed_fork_cb)
3338 cb (EV_A_ EV_FORK, forks [i]);
3339#endif
3340
3341#if EV_ASYNC_ENABLE
3342 if (types & EV_ASYNC)
3343 for (i = asynccnt; i--; )
3344 cb (EV_A_ EV_ASYNC, asyncs [i]);
3345#endif
3346
3347 if (types & EV_PREPARE)
3348 for (i = preparecnt; i--; )
3349#if EV_EMBED_ENABLE
3350 if (ev_cb (prepares [i]) != embed_prepare_cb)
3351#endif
3352 cb (EV_A_ EV_PREPARE, prepares [i]);
3353
3354 if (types & EV_CHECK)
3355 for (i = checkcnt; i--; )
3356 cb (EV_A_ EV_CHECK, checks [i]);
3357
3358 if (types & EV_SIGNAL)
3359 for (i = 0; i < signalmax; ++i)
3360 for (wl = signals [i].head; wl; )
3361 {
3362 wn = wl->next;
3363 cb (EV_A_ EV_SIGNAL, wl);
3364 wl = wn;
3365 }
3366
3367 if (types & EV_CHILD)
3368 for (i = EV_PID_HASHSIZE; i--; )
3369 for (wl = childs [i]; wl; )
3370 {
3371 wn = wl->next;
3372 cb (EV_A_ EV_CHILD, wl);
3373 wl = wn;
3374 }
3375/* EV_STAT 0x00001000 /* stat data changed */
3376/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3377}
3378#endif
3379
2443#if EV_MULTIPLICITY 3380#if EV_MULTIPLICITY
2444 #include "ev_wrap.h" 3381 #include "ev_wrap.h"
2445#endif 3382#endif
2446 3383
2447#ifdef __cplusplus 3384#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines