ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.227 by root, Fri May 2 07:20:01 2008 UTC vs.
Revision 1.295 by root, Wed Jul 8 04:29:31 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
126# define EV_USE_EVENTFD 1 140# define EV_USE_EVENTFD 1
127# else 141# else
128# define EV_USE_EVENTFD 0 142# define EV_USE_EVENTFD 0
129# endif 143# endif
130# endif 144# endif
131 145
132#endif 146#endif
133 147
134#include <math.h> 148#include <math.h>
135#include <stdlib.h> 149#include <stdlib.h>
136#include <fcntl.h> 150#include <fcntl.h>
154#ifndef _WIN32 168#ifndef _WIN32
155# include <sys/time.h> 169# include <sys/time.h>
156# include <sys/wait.h> 170# include <sys/wait.h>
157# include <unistd.h> 171# include <unistd.h>
158#else 172#else
173# include <io.h>
159# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 175# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
163# endif 178# endif
164#endif 179#endif
165 180
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
167 182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
190
168#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
169# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
170#endif 197#endif
171 198
172#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 201#endif
175 202
176#ifndef EV_USE_NANOSLEEP 203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
177# define EV_USE_NANOSLEEP 0 207# define EV_USE_NANOSLEEP 0
208# endif
178#endif 209#endif
179 210
180#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
182#endif 213#endif
235# else 266# else
236# define EV_USE_EVENTFD 0 267# define EV_USE_EVENTFD 0
237# endif 268# endif
238#endif 269#endif
239 270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 304
242#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
259# include <sys/select.h> 322# include <sys/select.h>
260# endif 323# endif
261#endif 324#endif
262 325
263#if EV_USE_INOTIFY 326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
264# include <sys/inotify.h> 329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
265#endif 335#endif
266 336
267#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 338# include <winsock.h>
269#endif 339#endif
279} 349}
280# endif 350# endif
281#endif 351#endif
282 352
283/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
284 360
285/* 361/*
286 * This is used to avoid floating point rounding problems. 362 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 363 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 364 * to ensure progress, time-wise, even when rounding
315# define inline_speed static noinline 391# define inline_speed static noinline
316#else 392#else
317# define inline_speed static inline 393# define inline_speed static inline
318#endif 394#endif
319 395
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
322 403
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 404#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 405#define EMPTY2(a,b) /* used to suppress some warnings */
325 406
326typedef ev_watcher *W; 407typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 408typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
329 410
330#if EV_USE_MONOTONIC 411#define ev_active(w) ((W)(w))->active
412#define ev_at(w) ((WT)(w))->at
413
414#if EV_USE_REALTIME
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */ 416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
419
420#if EV_USE_MONOTONIC
333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
334#endif 422#endif
335 423
336#ifdef _WIN32 424#ifdef _WIN32
337# include "ev_win32.c" 425# include "ev_win32.c"
346{ 434{
347 syserr_cb = cb; 435 syserr_cb = cb;
348} 436}
349 437
350static void noinline 438static void noinline
351syserr (const char *msg) 439ev_syserr (const char *msg)
352{ 440{
353 if (!msg) 441 if (!msg)
354 msg = "(libev) system error"; 442 msg = "(libev) system error";
355 443
356 if (syserr_cb) 444 if (syserr_cb)
402#define ev_malloc(size) ev_realloc (0, (size)) 490#define ev_malloc(size) ev_realloc (0, (size))
403#define ev_free(ptr) ev_realloc ((ptr), 0) 491#define ev_free(ptr) ev_realloc ((ptr), 0)
404 492
405/*****************************************************************************/ 493/*****************************************************************************/
406 494
495/* file descriptor info structure */
407typedef struct 496typedef struct
408{ 497{
409 WL head; 498 WL head;
410 unsigned char events; 499 unsigned char events; /* the events watched for */
500 unsigned char reify; /* flag set when this ANFD needs reification */
501 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
411 unsigned char reify; 502 unsigned char unused;
503#if EV_USE_EPOLL
504 unsigned int egen; /* generation counter to counter epoll bugs */
505#endif
412#if EV_SELECT_IS_WINSOCKET 506#if EV_SELECT_IS_WINSOCKET
413 SOCKET handle; 507 SOCKET handle;
414#endif 508#endif
415} ANFD; 509} ANFD;
416 510
511/* stores the pending event set for a given watcher */
417typedef struct 512typedef struct
418{ 513{
419 W w; 514 W w;
420 int events; 515 int events; /* the pending event set for the given watcher */
421} ANPENDING; 516} ANPENDING;
422 517
423#if EV_USE_INOTIFY 518#if EV_USE_INOTIFY
519/* hash table entry per inotify-id */
424typedef struct 520typedef struct
425{ 521{
426 WL head; 522 WL head;
427} ANFS; 523} ANFS;
524#endif
525
526/* Heap Entry */
527#if EV_HEAP_CACHE_AT
528 /* a heap element */
529 typedef struct {
530 ev_tstamp at;
531 WT w;
532 } ANHE;
533
534 #define ANHE_w(he) (he).w /* access watcher, read-write */
535 #define ANHE_at(he) (he).at /* access cached at, read-only */
536 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
537#else
538 /* a heap element */
539 typedef WT ANHE;
540
541 #define ANHE_w(he) (he)
542 #define ANHE_at(he) (he)->at
543 #define ANHE_at_cache(he)
428#endif 544#endif
429 545
430#if EV_MULTIPLICITY 546#if EV_MULTIPLICITY
431 547
432 struct ev_loop 548 struct ev_loop
453 569
454#endif 570#endif
455 571
456/*****************************************************************************/ 572/*****************************************************************************/
457 573
574#ifndef EV_HAVE_EV_TIME
458ev_tstamp 575ev_tstamp
459ev_time (void) 576ev_time (void)
460{ 577{
461#if EV_USE_REALTIME 578#if EV_USE_REALTIME
579 if (expect_true (have_realtime))
580 {
462 struct timespec ts; 581 struct timespec ts;
463 clock_gettime (CLOCK_REALTIME, &ts); 582 clock_gettime (CLOCK_REALTIME, &ts);
464 return ts.tv_sec + ts.tv_nsec * 1e-9; 583 return ts.tv_sec + ts.tv_nsec * 1e-9;
465#else 584 }
585#endif
586
466 struct timeval tv; 587 struct timeval tv;
467 gettimeofday (&tv, 0); 588 gettimeofday (&tv, 0);
468 return tv.tv_sec + tv.tv_usec * 1e-6; 589 return tv.tv_sec + tv.tv_usec * 1e-6;
469#endif
470} 590}
591#endif
471 592
472ev_tstamp inline_size 593inline_size ev_tstamp
473get_clock (void) 594get_clock (void)
474{ 595{
475#if EV_USE_MONOTONIC 596#if EV_USE_MONOTONIC
476 if (expect_true (have_monotonic)) 597 if (expect_true (have_monotonic))
477 { 598 {
510 struct timeval tv; 631 struct timeval tv;
511 632
512 tv.tv_sec = (time_t)delay; 633 tv.tv_sec = (time_t)delay;
513 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 634 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
514 635
636 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
637 /* somehting not guaranteed by newer posix versions, but guaranteed */
638 /* by older ones */
515 select (0, 0, 0, 0, &tv); 639 select (0, 0, 0, 0, &tv);
516#endif 640#endif
517 } 641 }
518} 642}
519 643
520/*****************************************************************************/ 644/*****************************************************************************/
521 645
522int inline_size 646#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
647
648/* find a suitable new size for the given array, */
649/* hopefully by rounding to a ncie-to-malloc size */
650inline_size int
523array_nextsize (int elem, int cur, int cnt) 651array_nextsize (int elem, int cur, int cnt)
524{ 652{
525 int ncur = cur + 1; 653 int ncur = cur + 1;
526 654
527 do 655 do
528 ncur <<= 1; 656 ncur <<= 1;
529 while (cnt > ncur); 657 while (cnt > ncur);
530 658
531 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 659 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
532 if (elem * ncur > 4096) 660 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
533 { 661 {
534 ncur *= elem; 662 ncur *= elem;
535 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 663 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
536 ncur = ncur - sizeof (void *) * 4; 664 ncur = ncur - sizeof (void *) * 4;
537 ncur /= elem; 665 ncur /= elem;
538 } 666 }
539 667
540 return ncur; 668 return ncur;
544array_realloc (int elem, void *base, int *cur, int cnt) 672array_realloc (int elem, void *base, int *cur, int cnt)
545{ 673{
546 *cur = array_nextsize (elem, *cur, cnt); 674 *cur = array_nextsize (elem, *cur, cnt);
547 return ev_realloc (base, elem * *cur); 675 return ev_realloc (base, elem * *cur);
548} 676}
677
678#define array_init_zero(base,count) \
679 memset ((void *)(base), 0, sizeof (*(base)) * (count))
549 680
550#define array_needsize(type,base,cur,cnt,init) \ 681#define array_needsize(type,base,cur,cnt,init) \
551 if (expect_false ((cnt) > (cur))) \ 682 if (expect_false ((cnt) > (cur))) \
552 { \ 683 { \
553 int ocur_ = (cur); \ 684 int ocur_ = (cur); \
565 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 696 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
566 } 697 }
567#endif 698#endif
568 699
569#define array_free(stem, idx) \ 700#define array_free(stem, idx) \
570 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 701 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
571 702
572/*****************************************************************************/ 703/*****************************************************************************/
704
705/* dummy callback for pending events */
706static void noinline
707pendingcb (EV_P_ ev_prepare *w, int revents)
708{
709}
573 710
574void noinline 711void noinline
575ev_feed_event (EV_P_ void *w, int revents) 712ev_feed_event (EV_P_ void *w, int revents)
576{ 713{
577 W w_ = (W)w; 714 W w_ = (W)w;
586 pendings [pri][w_->pending - 1].w = w_; 723 pendings [pri][w_->pending - 1].w = w_;
587 pendings [pri][w_->pending - 1].events = revents; 724 pendings [pri][w_->pending - 1].events = revents;
588 } 725 }
589} 726}
590 727
591void inline_speed 728inline_speed void
729feed_reverse (EV_P_ W w)
730{
731 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
732 rfeeds [rfeedcnt++] = w;
733}
734
735inline_size void
736feed_reverse_done (EV_P_ int revents)
737{
738 do
739 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
740 while (rfeedcnt);
741}
742
743inline_speed void
592queue_events (EV_P_ W *events, int eventcnt, int type) 744queue_events (EV_P_ W *events, int eventcnt, int type)
593{ 745{
594 int i; 746 int i;
595 747
596 for (i = 0; i < eventcnt; ++i) 748 for (i = 0; i < eventcnt; ++i)
597 ev_feed_event (EV_A_ events [i], type); 749 ev_feed_event (EV_A_ events [i], type);
598} 750}
599 751
600/*****************************************************************************/ 752/*****************************************************************************/
601 753
602void inline_size 754inline_speed void
603anfds_init (ANFD *base, int count)
604{
605 while (count--)
606 {
607 base->head = 0;
608 base->events = EV_NONE;
609 base->reify = 0;
610
611 ++base;
612 }
613}
614
615void inline_speed
616fd_event (EV_P_ int fd, int revents) 755fd_event (EV_P_ int fd, int revents)
617{ 756{
618 ANFD *anfd = anfds + fd; 757 ANFD *anfd = anfds + fd;
619 ev_io *w; 758 ev_io *w;
620 759
632{ 771{
633 if (fd >= 0 && fd < anfdmax) 772 if (fd >= 0 && fd < anfdmax)
634 fd_event (EV_A_ fd, revents); 773 fd_event (EV_A_ fd, revents);
635} 774}
636 775
637void inline_size 776/* make sure the external fd watch events are in-sync */
777/* with the kernel/libev internal state */
778inline_size void
638fd_reify (EV_P) 779fd_reify (EV_P)
639{ 780{
640 int i; 781 int i;
641 782
642 for (i = 0; i < fdchangecnt; ++i) 783 for (i = 0; i < fdchangecnt; ++i)
651 events |= (unsigned char)w->events; 792 events |= (unsigned char)w->events;
652 793
653#if EV_SELECT_IS_WINSOCKET 794#if EV_SELECT_IS_WINSOCKET
654 if (events) 795 if (events)
655 { 796 {
656 unsigned long argp; 797 unsigned long arg;
657 #ifdef EV_FD_TO_WIN32_HANDLE 798 #ifdef EV_FD_TO_WIN32_HANDLE
658 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 799 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
659 #else 800 #else
660 anfd->handle = _get_osfhandle (fd); 801 anfd->handle = _get_osfhandle (fd);
661 #endif 802 #endif
662 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 803 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
663 } 804 }
664#endif 805#endif
665 806
666 { 807 {
667 unsigned char o_events = anfd->events; 808 unsigned char o_events = anfd->events;
668 unsigned char o_reify = anfd->reify; 809 unsigned char o_reify = anfd->reify;
669 810
670 anfd->reify = 0; 811 anfd->reify = 0;
671 anfd->events = events; 812 anfd->events = events;
672 813
673 if (o_events != events || o_reify & EV_IOFDSET) 814 if (o_events != events || o_reify & EV__IOFDSET)
674 backend_modify (EV_A_ fd, o_events, events); 815 backend_modify (EV_A_ fd, o_events, events);
675 } 816 }
676 } 817 }
677 818
678 fdchangecnt = 0; 819 fdchangecnt = 0;
679} 820}
680 821
681void inline_size 822/* something about the given fd changed */
823inline_size void
682fd_change (EV_P_ int fd, int flags) 824fd_change (EV_P_ int fd, int flags)
683{ 825{
684 unsigned char reify = anfds [fd].reify; 826 unsigned char reify = anfds [fd].reify;
685 anfds [fd].reify |= flags; 827 anfds [fd].reify |= flags;
686 828
690 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 832 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
691 fdchanges [fdchangecnt - 1] = fd; 833 fdchanges [fdchangecnt - 1] = fd;
692 } 834 }
693} 835}
694 836
695void inline_speed 837/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
838inline_speed void
696fd_kill (EV_P_ int fd) 839fd_kill (EV_P_ int fd)
697{ 840{
698 ev_io *w; 841 ev_io *w;
699 842
700 while ((w = (ev_io *)anfds [fd].head)) 843 while ((w = (ev_io *)anfds [fd].head))
702 ev_io_stop (EV_A_ w); 845 ev_io_stop (EV_A_ w);
703 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 846 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
704 } 847 }
705} 848}
706 849
707int inline_size 850/* check whether the given fd is atcually valid, for error recovery */
851inline_size int
708fd_valid (int fd) 852fd_valid (int fd)
709{ 853{
710#ifdef _WIN32 854#ifdef _WIN32
711 return _get_osfhandle (fd) != -1; 855 return _get_osfhandle (fd) != -1;
712#else 856#else
720{ 864{
721 int fd; 865 int fd;
722 866
723 for (fd = 0; fd < anfdmax; ++fd) 867 for (fd = 0; fd < anfdmax; ++fd)
724 if (anfds [fd].events) 868 if (anfds [fd].events)
725 if (!fd_valid (fd) == -1 && errno == EBADF) 869 if (!fd_valid (fd) && errno == EBADF)
726 fd_kill (EV_A_ fd); 870 fd_kill (EV_A_ fd);
727} 871}
728 872
729/* called on ENOMEM in select/poll to kill some fds and retry */ 873/* called on ENOMEM in select/poll to kill some fds and retry */
730static void noinline 874static void noinline
748 892
749 for (fd = 0; fd < anfdmax; ++fd) 893 for (fd = 0; fd < anfdmax; ++fd)
750 if (anfds [fd].events) 894 if (anfds [fd].events)
751 { 895 {
752 anfds [fd].events = 0; 896 anfds [fd].events = 0;
897 anfds [fd].emask = 0;
753 fd_change (EV_A_ fd, EV_IOFDSET | 1); 898 fd_change (EV_A_ fd, EV__IOFDSET | 1);
754 } 899 }
755} 900}
756 901
757/*****************************************************************************/ 902/*****************************************************************************/
758 903
904/*
905 * the heap functions want a real array index. array index 0 uis guaranteed to not
906 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
907 * the branching factor of the d-tree.
908 */
909
910/*
911 * at the moment we allow libev the luxury of two heaps,
912 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
913 * which is more cache-efficient.
914 * the difference is about 5% with 50000+ watchers.
915 */
916#if EV_USE_4HEAP
917
918#define DHEAP 4
919#define HEAP0 (DHEAP - 1) /* index of first element in heap */
920#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
921#define UPHEAP_DONE(p,k) ((p) == (k))
922
923/* away from the root */
924inline_speed void
925downheap (ANHE *heap, int N, int k)
926{
927 ANHE he = heap [k];
928 ANHE *E = heap + N + HEAP0;
929
930 for (;;)
931 {
932 ev_tstamp minat;
933 ANHE *minpos;
934 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
935
936 /* find minimum child */
937 if (expect_true (pos + DHEAP - 1 < E))
938 {
939 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
940 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
941 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
942 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
943 }
944 else if (pos < E)
945 {
946 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
947 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
948 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
949 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
950 }
951 else
952 break;
953
954 if (ANHE_at (he) <= minat)
955 break;
956
957 heap [k] = *minpos;
958 ev_active (ANHE_w (*minpos)) = k;
959
960 k = minpos - heap;
961 }
962
963 heap [k] = he;
964 ev_active (ANHE_w (he)) = k;
965}
966
967#else /* 4HEAP */
968
969#define HEAP0 1
970#define HPARENT(k) ((k) >> 1)
971#define UPHEAP_DONE(p,k) (!(p))
972
973/* away from the root */
974inline_speed void
975downheap (ANHE *heap, int N, int k)
976{
977 ANHE he = heap [k];
978
979 for (;;)
980 {
981 int c = k << 1;
982
983 if (c > N + HEAP0 - 1)
984 break;
985
986 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
987 ? 1 : 0;
988
989 if (ANHE_at (he) <= ANHE_at (heap [c]))
990 break;
991
992 heap [k] = heap [c];
993 ev_active (ANHE_w (heap [k])) = k;
994
995 k = c;
996 }
997
998 heap [k] = he;
999 ev_active (ANHE_w (he)) = k;
1000}
1001#endif
1002
759/* towards the root */ 1003/* towards the root */
760void inline_speed 1004inline_speed void
761upheap (WT *heap, int k) 1005upheap (ANHE *heap, int k)
762{ 1006{
763 WT w = heap [k]; 1007 ANHE he = heap [k];
764 1008
765 while (k) 1009 for (;;)
766 { 1010 {
767 int p = (k - 1) >> 1; 1011 int p = HPARENT (k);
768 1012
769 if (heap [p]->at <= w->at) 1013 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
770 break; 1014 break;
771 1015
772 heap [k] = heap [p]; 1016 heap [k] = heap [p];
773 ((W)heap [k])->active = k + 1; 1017 ev_active (ANHE_w (heap [k])) = k;
774 k = p; 1018 k = p;
775 } 1019 }
776 1020
777 heap [k] = w; 1021 heap [k] = he;
778 ((W)heap [k])->active = k + 1; 1022 ev_active (ANHE_w (he)) = k;
779} 1023}
780 1024
781/* away from the root */ 1025/* move an element suitably so it is in a correct place */
782void inline_speed 1026inline_size void
783downheap (WT *heap, int N, int k)
784{
785 WT w = heap [k];
786
787 for (;;)
788 {
789 int c = (k << 1) + 1;
790
791 if (c >= N)
792 break;
793
794 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
795 ? 1 : 0;
796
797 if (w->at <= heap [c]->at)
798 break;
799
800 heap [k] = heap [c];
801 ((W)heap [k])->active = k + 1;
802
803 k = c;
804 }
805
806 heap [k] = w;
807 ((W)heap [k])->active = k + 1;
808}
809
810void inline_size
811adjustheap (WT *heap, int N, int k) 1027adjustheap (ANHE *heap, int N, int k)
812{ 1028{
1029 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
813 upheap (heap, k); 1030 upheap (heap, k);
1031 else
814 downheap (heap, N, k); 1032 downheap (heap, N, k);
1033}
1034
1035/* rebuild the heap: this function is used only once and executed rarely */
1036inline_size void
1037reheap (ANHE *heap, int N)
1038{
1039 int i;
1040
1041 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1042 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1043 for (i = 0; i < N; ++i)
1044 upheap (heap, i + HEAP0);
815} 1045}
816 1046
817/*****************************************************************************/ 1047/*****************************************************************************/
818 1048
1049/* associate signal watchers to a signal signal */
819typedef struct 1050typedef struct
820{ 1051{
821 WL head; 1052 WL head;
822 EV_ATOMIC_T gotsig; 1053 EV_ATOMIC_T gotsig;
823} ANSIG; 1054} ANSIG;
825static ANSIG *signals; 1056static ANSIG *signals;
826static int signalmax; 1057static int signalmax;
827 1058
828static EV_ATOMIC_T gotsig; 1059static EV_ATOMIC_T gotsig;
829 1060
830void inline_size
831signals_init (ANSIG *base, int count)
832{
833 while (count--)
834 {
835 base->head = 0;
836 base->gotsig = 0;
837
838 ++base;
839 }
840}
841
842/*****************************************************************************/ 1061/*****************************************************************************/
843 1062
844void inline_speed 1063/* used to prepare libev internal fd's */
1064/* this is not fork-safe */
1065inline_speed void
845fd_intern (int fd) 1066fd_intern (int fd)
846{ 1067{
847#ifdef _WIN32 1068#ifdef _WIN32
848 int arg = 1; 1069 unsigned long arg = 1;
849 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1070 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
850#else 1071#else
851 fcntl (fd, F_SETFD, FD_CLOEXEC); 1072 fcntl (fd, F_SETFD, FD_CLOEXEC);
852 fcntl (fd, F_SETFL, O_NONBLOCK); 1073 fcntl (fd, F_SETFL, O_NONBLOCK);
853#endif 1074#endif
854} 1075}
855 1076
856static void noinline 1077static void noinline
857evpipe_init (EV_P) 1078evpipe_init (EV_P)
858{ 1079{
859 if (!ev_is_active (&pipeev)) 1080 if (!ev_is_active (&pipe_w))
860 { 1081 {
861#if EV_USE_EVENTFD 1082#if EV_USE_EVENTFD
862 if ((evfd = eventfd (0, 0)) >= 0) 1083 if ((evfd = eventfd (0, 0)) >= 0)
863 { 1084 {
864 evpipe [0] = -1; 1085 evpipe [0] = -1;
865 fd_intern (evfd); 1086 fd_intern (evfd);
866 ev_io_set (&pipeev, evfd, EV_READ); 1087 ev_io_set (&pipe_w, evfd, EV_READ);
867 } 1088 }
868 else 1089 else
869#endif 1090#endif
870 { 1091 {
871 while (pipe (evpipe)) 1092 while (pipe (evpipe))
872 syserr ("(libev) error creating signal/async pipe"); 1093 ev_syserr ("(libev) error creating signal/async pipe");
873 1094
874 fd_intern (evpipe [0]); 1095 fd_intern (evpipe [0]);
875 fd_intern (evpipe [1]); 1096 fd_intern (evpipe [1]);
876 ev_io_set (&pipeev, evpipe [0], EV_READ); 1097 ev_io_set (&pipe_w, evpipe [0], EV_READ);
877 } 1098 }
878 1099
879 ev_io_start (EV_A_ &pipeev); 1100 ev_io_start (EV_A_ &pipe_w);
880 ev_unref (EV_A); /* watcher should not keep loop alive */ 1101 ev_unref (EV_A); /* watcher should not keep loop alive */
881 } 1102 }
882} 1103}
883 1104
884void inline_size 1105inline_size void
885evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1106evpipe_write (EV_P_ EV_ATOMIC_T *flag)
886{ 1107{
887 if (!*flag) 1108 if (!*flag)
888 { 1109 {
889 int old_errno = errno; /* save errno because write might clobber it */ 1110 int old_errno = errno; /* save errno because write might clobber it */
902 1123
903 errno = old_errno; 1124 errno = old_errno;
904 } 1125 }
905} 1126}
906 1127
1128/* called whenever the libev signal pipe */
1129/* got some events (signal, async) */
907static void 1130static void
908pipecb (EV_P_ ev_io *iow, int revents) 1131pipecb (EV_P_ ev_io *iow, int revents)
909{ 1132{
910#if EV_USE_EVENTFD 1133#if EV_USE_EVENTFD
911 if (evfd >= 0) 1134 if (evfd >= 0)
912 { 1135 {
913 uint64_t counter = 1; 1136 uint64_t counter;
914 read (evfd, &counter, sizeof (uint64_t)); 1137 read (evfd, &counter, sizeof (uint64_t));
915 } 1138 }
916 else 1139 else
917#endif 1140#endif
918 { 1141 {
967ev_feed_signal_event (EV_P_ int signum) 1190ev_feed_signal_event (EV_P_ int signum)
968{ 1191{
969 WL w; 1192 WL w;
970 1193
971#if EV_MULTIPLICITY 1194#if EV_MULTIPLICITY
972 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1195 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
973#endif 1196#endif
974 1197
975 --signum; 1198 --signum;
976 1199
977 if (signum < 0 || signum >= signalmax) 1200 if (signum < 0 || signum >= signalmax)
993 1216
994#ifndef WIFCONTINUED 1217#ifndef WIFCONTINUED
995# define WIFCONTINUED(status) 0 1218# define WIFCONTINUED(status) 0
996#endif 1219#endif
997 1220
998void inline_speed 1221/* handle a single child status event */
1222inline_speed void
999child_reap (EV_P_ int chain, int pid, int status) 1223child_reap (EV_P_ int chain, int pid, int status)
1000{ 1224{
1001 ev_child *w; 1225 ev_child *w;
1002 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1226 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1003 1227
1016 1240
1017#ifndef WCONTINUED 1241#ifndef WCONTINUED
1018# define WCONTINUED 0 1242# define WCONTINUED 0
1019#endif 1243#endif
1020 1244
1245/* called on sigchld etc., calls waitpid */
1021static void 1246static void
1022childcb (EV_P_ ev_signal *sw, int revents) 1247childcb (EV_P_ ev_signal *sw, int revents)
1023{ 1248{
1024 int pid, status; 1249 int pid, status;
1025 1250
1106 /* kqueue is borked on everything but netbsd apparently */ 1331 /* kqueue is borked on everything but netbsd apparently */
1107 /* it usually doesn't work correctly on anything but sockets and pipes */ 1332 /* it usually doesn't work correctly on anything but sockets and pipes */
1108 flags &= ~EVBACKEND_KQUEUE; 1333 flags &= ~EVBACKEND_KQUEUE;
1109#endif 1334#endif
1110#ifdef __APPLE__ 1335#ifdef __APPLE__
1111 // flags &= ~EVBACKEND_KQUEUE; for documentation 1336 /* only select works correctly on that "unix-certified" platform */
1112 flags &= ~EVBACKEND_POLL; 1337 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1338 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1113#endif 1339#endif
1114 1340
1115 return flags; 1341 return flags;
1116} 1342}
1117 1343
1137ev_loop_count (EV_P) 1363ev_loop_count (EV_P)
1138{ 1364{
1139 return loop_count; 1365 return loop_count;
1140} 1366}
1141 1367
1368unsigned int
1369ev_loop_depth (EV_P)
1370{
1371 return loop_depth;
1372}
1373
1142void 1374void
1143ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1375ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1144{ 1376{
1145 io_blocktime = interval; 1377 io_blocktime = interval;
1146} 1378}
1149ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1381ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1150{ 1382{
1151 timeout_blocktime = interval; 1383 timeout_blocktime = interval;
1152} 1384}
1153 1385
1386/* initialise a loop structure, must be zero-initialised */
1154static void noinline 1387static void noinline
1155loop_init (EV_P_ unsigned int flags) 1388loop_init (EV_P_ unsigned int flags)
1156{ 1389{
1157 if (!backend) 1390 if (!backend)
1158 { 1391 {
1392#if EV_USE_REALTIME
1393 if (!have_realtime)
1394 {
1395 struct timespec ts;
1396
1397 if (!clock_gettime (CLOCK_REALTIME, &ts))
1398 have_realtime = 1;
1399 }
1400#endif
1401
1159#if EV_USE_MONOTONIC 1402#if EV_USE_MONOTONIC
1403 if (!have_monotonic)
1160 { 1404 {
1161 struct timespec ts; 1405 struct timespec ts;
1406
1162 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1407 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1163 have_monotonic = 1; 1408 have_monotonic = 1;
1164 } 1409 }
1165#endif 1410#endif
1166 1411
1167 ev_rt_now = ev_time (); 1412 ev_rt_now = ev_time ();
1168 mn_now = get_clock (); 1413 mn_now = get_clock ();
1169 now_floor = mn_now; 1414 now_floor = mn_now;
1206#endif 1451#endif
1207#if EV_USE_SELECT 1452#if EV_USE_SELECT
1208 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1453 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1209#endif 1454#endif
1210 1455
1456 ev_prepare_init (&pending_w, pendingcb);
1457
1211 ev_init (&pipeev, pipecb); 1458 ev_init (&pipe_w, pipecb);
1212 ev_set_priority (&pipeev, EV_MAXPRI); 1459 ev_set_priority (&pipe_w, EV_MAXPRI);
1213 } 1460 }
1214} 1461}
1215 1462
1463/* free up a loop structure */
1216static void noinline 1464static void noinline
1217loop_destroy (EV_P) 1465loop_destroy (EV_P)
1218{ 1466{
1219 int i; 1467 int i;
1220 1468
1221 if (ev_is_active (&pipeev)) 1469 if (ev_is_active (&pipe_w))
1222 { 1470 {
1223 ev_ref (EV_A); /* signal watcher */ 1471 ev_ref (EV_A); /* signal watcher */
1224 ev_io_stop (EV_A_ &pipeev); 1472 ev_io_stop (EV_A_ &pipe_w);
1225 1473
1226#if EV_USE_EVENTFD 1474#if EV_USE_EVENTFD
1227 if (evfd >= 0) 1475 if (evfd >= 0)
1228 close (evfd); 1476 close (evfd);
1229#endif 1477#endif
1268 } 1516 }
1269 1517
1270 ev_free (anfds); anfdmax = 0; 1518 ev_free (anfds); anfdmax = 0;
1271 1519
1272 /* have to use the microsoft-never-gets-it-right macro */ 1520 /* have to use the microsoft-never-gets-it-right macro */
1521 array_free (rfeed, EMPTY);
1273 array_free (fdchange, EMPTY); 1522 array_free (fdchange, EMPTY);
1274 array_free (timer, EMPTY); 1523 array_free (timer, EMPTY);
1275#if EV_PERIODIC_ENABLE 1524#if EV_PERIODIC_ENABLE
1276 array_free (periodic, EMPTY); 1525 array_free (periodic, EMPTY);
1277#endif 1526#endif
1286 1535
1287 backend = 0; 1536 backend = 0;
1288} 1537}
1289 1538
1290#if EV_USE_INOTIFY 1539#if EV_USE_INOTIFY
1291void inline_size infy_fork (EV_P); 1540inline_size void infy_fork (EV_P);
1292#endif 1541#endif
1293 1542
1294void inline_size 1543inline_size void
1295loop_fork (EV_P) 1544loop_fork (EV_P)
1296{ 1545{
1297#if EV_USE_PORT 1546#if EV_USE_PORT
1298 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1547 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1299#endif 1548#endif
1305#endif 1554#endif
1306#if EV_USE_INOTIFY 1555#if EV_USE_INOTIFY
1307 infy_fork (EV_A); 1556 infy_fork (EV_A);
1308#endif 1557#endif
1309 1558
1310 if (ev_is_active (&pipeev)) 1559 if (ev_is_active (&pipe_w))
1311 { 1560 {
1312 /* this "locks" the handlers against writing to the pipe */ 1561 /* this "locks" the handlers against writing to the pipe */
1313 /* while we modify the fd vars */ 1562 /* while we modify the fd vars */
1314 gotsig = 1; 1563 gotsig = 1;
1315#if EV_ASYNC_ENABLE 1564#if EV_ASYNC_ENABLE
1316 gotasync = 1; 1565 gotasync = 1;
1317#endif 1566#endif
1318 1567
1319 ev_ref (EV_A); 1568 ev_ref (EV_A);
1320 ev_io_stop (EV_A_ &pipeev); 1569 ev_io_stop (EV_A_ &pipe_w);
1321 1570
1322#if EV_USE_EVENTFD 1571#if EV_USE_EVENTFD
1323 if (evfd >= 0) 1572 if (evfd >= 0)
1324 close (evfd); 1573 close (evfd);
1325#endif 1574#endif
1330 close (evpipe [1]); 1579 close (evpipe [1]);
1331 } 1580 }
1332 1581
1333 evpipe_init (EV_A); 1582 evpipe_init (EV_A);
1334 /* now iterate over everything, in case we missed something */ 1583 /* now iterate over everything, in case we missed something */
1335 pipecb (EV_A_ &pipeev, EV_READ); 1584 pipecb (EV_A_ &pipe_w, EV_READ);
1336 } 1585 }
1337 1586
1338 postfork = 0; 1587 postfork = 0;
1339} 1588}
1340 1589
1341#if EV_MULTIPLICITY 1590#if EV_MULTIPLICITY
1591
1342struct ev_loop * 1592struct ev_loop *
1343ev_loop_new (unsigned int flags) 1593ev_loop_new (unsigned int flags)
1344{ 1594{
1345 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1595 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1346 1596
1365ev_loop_fork (EV_P) 1615ev_loop_fork (EV_P)
1366{ 1616{
1367 postfork = 1; /* must be in line with ev_default_fork */ 1617 postfork = 1; /* must be in line with ev_default_fork */
1368} 1618}
1369 1619
1620#if EV_VERIFY
1621static void noinline
1622verify_watcher (EV_P_ W w)
1623{
1624 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1625
1626 if (w->pending)
1627 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1628}
1629
1630static void noinline
1631verify_heap (EV_P_ ANHE *heap, int N)
1632{
1633 int i;
1634
1635 for (i = HEAP0; i < N + HEAP0; ++i)
1636 {
1637 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1638 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1639 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1640
1641 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1642 }
1643}
1644
1645static void noinline
1646array_verify (EV_P_ W *ws, int cnt)
1647{
1648 while (cnt--)
1649 {
1650 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1651 verify_watcher (EV_A_ ws [cnt]);
1652 }
1653}
1654#endif
1655
1656void
1657ev_loop_verify (EV_P)
1658{
1659#if EV_VERIFY
1660 int i;
1661 WL w;
1662
1663 assert (activecnt >= -1);
1664
1665 assert (fdchangemax >= fdchangecnt);
1666 for (i = 0; i < fdchangecnt; ++i)
1667 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1668
1669 assert (anfdmax >= 0);
1670 for (i = 0; i < anfdmax; ++i)
1671 for (w = anfds [i].head; w; w = w->next)
1672 {
1673 verify_watcher (EV_A_ (W)w);
1674 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1675 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1676 }
1677
1678 assert (timermax >= timercnt);
1679 verify_heap (EV_A_ timers, timercnt);
1680
1681#if EV_PERIODIC_ENABLE
1682 assert (periodicmax >= periodiccnt);
1683 verify_heap (EV_A_ periodics, periodiccnt);
1684#endif
1685
1686 for (i = NUMPRI; i--; )
1687 {
1688 assert (pendingmax [i] >= pendingcnt [i]);
1689#if EV_IDLE_ENABLE
1690 assert (idleall >= 0);
1691 assert (idlemax [i] >= idlecnt [i]);
1692 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1693#endif
1694 }
1695
1696#if EV_FORK_ENABLE
1697 assert (forkmax >= forkcnt);
1698 array_verify (EV_A_ (W *)forks, forkcnt);
1699#endif
1700
1701#if EV_ASYNC_ENABLE
1702 assert (asyncmax >= asynccnt);
1703 array_verify (EV_A_ (W *)asyncs, asynccnt);
1704#endif
1705
1706 assert (preparemax >= preparecnt);
1707 array_verify (EV_A_ (W *)prepares, preparecnt);
1708
1709 assert (checkmax >= checkcnt);
1710 array_verify (EV_A_ (W *)checks, checkcnt);
1711
1712# if 0
1713 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1714 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1370#endif 1715# endif
1716#endif
1717}
1718
1719#endif /* multiplicity */
1371 1720
1372#if EV_MULTIPLICITY 1721#if EV_MULTIPLICITY
1373struct ev_loop * 1722struct ev_loop *
1374ev_default_loop_init (unsigned int flags) 1723ev_default_loop_init (unsigned int flags)
1375#else 1724#else
1408{ 1757{
1409#if EV_MULTIPLICITY 1758#if EV_MULTIPLICITY
1410 struct ev_loop *loop = ev_default_loop_ptr; 1759 struct ev_loop *loop = ev_default_loop_ptr;
1411#endif 1760#endif
1412 1761
1762 ev_default_loop_ptr = 0;
1763
1413#ifndef _WIN32 1764#ifndef _WIN32
1414 ev_ref (EV_A); /* child watcher */ 1765 ev_ref (EV_A); /* child watcher */
1415 ev_signal_stop (EV_A_ &childev); 1766 ev_signal_stop (EV_A_ &childev);
1416#endif 1767#endif
1417 1768
1423{ 1774{
1424#if EV_MULTIPLICITY 1775#if EV_MULTIPLICITY
1425 struct ev_loop *loop = ev_default_loop_ptr; 1776 struct ev_loop *loop = ev_default_loop_ptr;
1426#endif 1777#endif
1427 1778
1428 if (backend)
1429 postfork = 1; /* must be in line with ev_loop_fork */ 1779 postfork = 1; /* must be in line with ev_loop_fork */
1430} 1780}
1431 1781
1432/*****************************************************************************/ 1782/*****************************************************************************/
1433 1783
1434void 1784void
1435ev_invoke (EV_P_ void *w, int revents) 1785ev_invoke (EV_P_ void *w, int revents)
1436{ 1786{
1437 EV_CB_INVOKE ((W)w, revents); 1787 EV_CB_INVOKE ((W)w, revents);
1438} 1788}
1439 1789
1440void inline_speed 1790inline_speed void
1441call_pending (EV_P) 1791call_pending (EV_P)
1442{ 1792{
1443 int pri; 1793 int pri;
1444 1794
1445 for (pri = NUMPRI; pri--; ) 1795 for (pri = NUMPRI; pri--; )
1446 while (pendingcnt [pri]) 1796 while (pendingcnt [pri])
1447 { 1797 {
1448 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1798 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1449 1799
1450 if (expect_true (p->w))
1451 {
1452 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1800 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1801 /* ^ this is no longer true, as pending_w could be here */
1453 1802
1454 p->w->pending = 0; 1803 p->w->pending = 0;
1455 EV_CB_INVOKE (p->w, p->events); 1804 EV_CB_INVOKE (p->w, p->events);
1456 } 1805 EV_FREQUENT_CHECK;
1457 } 1806 }
1458} 1807}
1459 1808
1460void inline_size
1461timers_reify (EV_P)
1462{
1463 while (timercnt && ((WT)timers [0])->at <= mn_now)
1464 {
1465 ev_timer *w = (ev_timer *)timers [0];
1466
1467 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1468
1469 /* first reschedule or stop timer */
1470 if (w->repeat)
1471 {
1472 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1473
1474 ((WT)w)->at += w->repeat;
1475 if (((WT)w)->at < mn_now)
1476 ((WT)w)->at = mn_now;
1477
1478 downheap (timers, timercnt, 0);
1479 }
1480 else
1481 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1482
1483 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1484 }
1485}
1486
1487#if EV_PERIODIC_ENABLE
1488void inline_size
1489periodics_reify (EV_P)
1490{
1491 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1492 {
1493 ev_periodic *w = (ev_periodic *)periodics [0];
1494
1495 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1496
1497 /* first reschedule or stop timer */
1498 if (w->reschedule_cb)
1499 {
1500 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1501 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1502 downheap (periodics, periodiccnt, 0);
1503 }
1504 else if (w->interval)
1505 {
1506 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1507 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1508 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1509 downheap (periodics, periodiccnt, 0);
1510 }
1511 else
1512 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1513
1514 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1515 }
1516}
1517
1518static void noinline
1519periodics_reschedule (EV_P)
1520{
1521 int i;
1522
1523 /* adjust periodics after time jump */
1524 for (i = 0; i < periodiccnt; ++i)
1525 {
1526 ev_periodic *w = (ev_periodic *)periodics [i];
1527
1528 if (w->reschedule_cb)
1529 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1530 else if (w->interval)
1531 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1532 }
1533
1534 /* now rebuild the heap */
1535 for (i = periodiccnt >> 1; i--; )
1536 downheap (periodics, periodiccnt, i);
1537}
1538#endif
1539
1540#if EV_IDLE_ENABLE 1809#if EV_IDLE_ENABLE
1541void inline_size 1810/* make idle watchers pending. this handles the "call-idle */
1811/* only when higher priorities are idle" logic */
1812inline_size void
1542idle_reify (EV_P) 1813idle_reify (EV_P)
1543{ 1814{
1544 if (expect_false (idleall)) 1815 if (expect_false (idleall))
1545 { 1816 {
1546 int pri; 1817 int pri;
1558 } 1829 }
1559 } 1830 }
1560} 1831}
1561#endif 1832#endif
1562 1833
1563void inline_speed 1834/* make timers pending */
1835inline_size void
1836timers_reify (EV_P)
1837{
1838 EV_FREQUENT_CHECK;
1839
1840 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1841 {
1842 do
1843 {
1844 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1845
1846 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1847
1848 /* first reschedule or stop timer */
1849 if (w->repeat)
1850 {
1851 ev_at (w) += w->repeat;
1852 if (ev_at (w) < mn_now)
1853 ev_at (w) = mn_now;
1854
1855 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1856
1857 ANHE_at_cache (timers [HEAP0]);
1858 downheap (timers, timercnt, HEAP0);
1859 }
1860 else
1861 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1862
1863 EV_FREQUENT_CHECK;
1864 feed_reverse (EV_A_ (W)w);
1865 }
1866 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1867
1868 feed_reverse_done (EV_A_ EV_TIMEOUT);
1869 }
1870}
1871
1872#if EV_PERIODIC_ENABLE
1873/* make periodics pending */
1874inline_size void
1875periodics_reify (EV_P)
1876{
1877 EV_FREQUENT_CHECK;
1878
1879 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1880 {
1881 int feed_count = 0;
1882
1883 do
1884 {
1885 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1886
1887 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1888
1889 /* first reschedule or stop timer */
1890 if (w->reschedule_cb)
1891 {
1892 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1893
1894 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1895
1896 ANHE_at_cache (periodics [HEAP0]);
1897 downheap (periodics, periodiccnt, HEAP0);
1898 }
1899 else if (w->interval)
1900 {
1901 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1902 /* if next trigger time is not sufficiently in the future, put it there */
1903 /* this might happen because of floating point inexactness */
1904 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1905 {
1906 ev_at (w) += w->interval;
1907
1908 /* if interval is unreasonably low we might still have a time in the past */
1909 /* so correct this. this will make the periodic very inexact, but the user */
1910 /* has effectively asked to get triggered more often than possible */
1911 if (ev_at (w) < ev_rt_now)
1912 ev_at (w) = ev_rt_now;
1913 }
1914
1915 ANHE_at_cache (periodics [HEAP0]);
1916 downheap (periodics, periodiccnt, HEAP0);
1917 }
1918 else
1919 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1920
1921 EV_FREQUENT_CHECK;
1922 feed_reverse (EV_A_ (W)w);
1923 }
1924 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1925
1926 feed_reverse_done (EV_A_ EV_PERIODIC);
1927 }
1928}
1929
1930/* simply recalculate all periodics */
1931/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1932static void noinline
1933periodics_reschedule (EV_P)
1934{
1935 int i;
1936
1937 /* adjust periodics after time jump */
1938 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1939 {
1940 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1941
1942 if (w->reschedule_cb)
1943 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1944 else if (w->interval)
1945 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1946
1947 ANHE_at_cache (periodics [i]);
1948 }
1949
1950 reheap (periodics, periodiccnt);
1951}
1952#endif
1953
1954/* adjust all timers by a given offset */
1955static void noinline
1956timers_reschedule (EV_P_ ev_tstamp adjust)
1957{
1958 int i;
1959
1960 for (i = 0; i < timercnt; ++i)
1961 {
1962 ANHE *he = timers + i + HEAP0;
1963 ANHE_w (*he)->at += adjust;
1964 ANHE_at_cache (*he);
1965 }
1966}
1967
1968/* fetch new monotonic and realtime times from the kernel */
1969/* also detetc if there was a timejump, and act accordingly */
1970inline_speed void
1564time_update (EV_P_ ev_tstamp max_block) 1971time_update (EV_P_ ev_tstamp max_block)
1565{ 1972{
1566 int i;
1567
1568#if EV_USE_MONOTONIC 1973#if EV_USE_MONOTONIC
1569 if (expect_true (have_monotonic)) 1974 if (expect_true (have_monotonic))
1570 { 1975 {
1976 int i;
1571 ev_tstamp odiff = rtmn_diff; 1977 ev_tstamp odiff = rtmn_diff;
1572 1978
1573 mn_now = get_clock (); 1979 mn_now = get_clock ();
1574 1980
1575 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 1981 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1593 */ 1999 */
1594 for (i = 4; --i; ) 2000 for (i = 4; --i; )
1595 { 2001 {
1596 rtmn_diff = ev_rt_now - mn_now; 2002 rtmn_diff = ev_rt_now - mn_now;
1597 2003
1598 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2004 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1599 return; /* all is well */ 2005 return; /* all is well */
1600 2006
1601 ev_rt_now = ev_time (); 2007 ev_rt_now = ev_time ();
1602 mn_now = get_clock (); 2008 mn_now = get_clock ();
1603 now_floor = mn_now; 2009 now_floor = mn_now;
1604 } 2010 }
1605 2011
2012 /* no timer adjustment, as the monotonic clock doesn't jump */
2013 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1606# if EV_PERIODIC_ENABLE 2014# if EV_PERIODIC_ENABLE
1607 periodics_reschedule (EV_A); 2015 periodics_reschedule (EV_A);
1608# endif 2016# endif
1609 /* no timer adjustment, as the monotonic clock doesn't jump */
1610 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1611 } 2017 }
1612 else 2018 else
1613#endif 2019#endif
1614 { 2020 {
1615 ev_rt_now = ev_time (); 2021 ev_rt_now = ev_time ();
1616 2022
1617 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2023 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1618 { 2024 {
2025 /* adjust timers. this is easy, as the offset is the same for all of them */
2026 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1619#if EV_PERIODIC_ENABLE 2027#if EV_PERIODIC_ENABLE
1620 periodics_reschedule (EV_A); 2028 periodics_reschedule (EV_A);
1621#endif 2029#endif
1622 /* adjust timers. this is easy, as the offset is the same for all of them */
1623 for (i = 0; i < timercnt; ++i)
1624 ((WT)timers [i])->at += ev_rt_now - mn_now;
1625 } 2030 }
1626 2031
1627 mn_now = ev_rt_now; 2032 mn_now = ev_rt_now;
1628 } 2033 }
1629} 2034}
1630 2035
1631void 2036void
1632ev_ref (EV_P)
1633{
1634 ++activecnt;
1635}
1636
1637void
1638ev_unref (EV_P)
1639{
1640 --activecnt;
1641}
1642
1643static int loop_done;
1644
1645void
1646ev_loop (EV_P_ int flags) 2037ev_loop (EV_P_ int flags)
1647{ 2038{
2039 ++loop_depth;
2040
1648 loop_done = EVUNLOOP_CANCEL; 2041 loop_done = EVUNLOOP_CANCEL;
1649 2042
1650 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2043 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1651 2044
1652 do 2045 do
1653 { 2046 {
2047#if EV_VERIFY >= 2
2048 ev_loop_verify (EV_A);
2049#endif
2050
1654#ifndef _WIN32 2051#ifndef _WIN32
1655 if (expect_false (curpid)) /* penalise the forking check even more */ 2052 if (expect_false (curpid)) /* penalise the forking check even more */
1656 if (expect_false (getpid () != curpid)) 2053 if (expect_false (getpid () != curpid))
1657 { 2054 {
1658 curpid = getpid (); 2055 curpid = getpid ();
1675 { 2072 {
1676 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2073 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1677 call_pending (EV_A); 2074 call_pending (EV_A);
1678 } 2075 }
1679 2076
1680 if (expect_false (!activecnt))
1681 break;
1682
1683 /* we might have forked, so reify kernel state if necessary */ 2077 /* we might have forked, so reify kernel state if necessary */
1684 if (expect_false (postfork)) 2078 if (expect_false (postfork))
1685 loop_fork (EV_A); 2079 loop_fork (EV_A);
1686 2080
1687 /* update fd-related kernel structures */ 2081 /* update fd-related kernel structures */
1692 ev_tstamp waittime = 0.; 2086 ev_tstamp waittime = 0.;
1693 ev_tstamp sleeptime = 0.; 2087 ev_tstamp sleeptime = 0.;
1694 2088
1695 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2089 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1696 { 2090 {
2091 /* remember old timestamp for io_blocktime calculation */
2092 ev_tstamp prev_mn_now = mn_now;
2093
1697 /* update time to cancel out callback processing overhead */ 2094 /* update time to cancel out callback processing overhead */
1698 time_update (EV_A_ 1e100); 2095 time_update (EV_A_ 1e100);
1699 2096
1700 waittime = MAX_BLOCKTIME; 2097 waittime = MAX_BLOCKTIME;
1701 2098
1702 if (timercnt) 2099 if (timercnt)
1703 { 2100 {
1704 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2101 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1705 if (waittime > to) waittime = to; 2102 if (waittime > to) waittime = to;
1706 } 2103 }
1707 2104
1708#if EV_PERIODIC_ENABLE 2105#if EV_PERIODIC_ENABLE
1709 if (periodiccnt) 2106 if (periodiccnt)
1710 { 2107 {
1711 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2108 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1712 if (waittime > to) waittime = to; 2109 if (waittime > to) waittime = to;
1713 } 2110 }
1714#endif 2111#endif
1715 2112
2113 /* don't let timeouts decrease the waittime below timeout_blocktime */
1716 if (expect_false (waittime < timeout_blocktime)) 2114 if (expect_false (waittime < timeout_blocktime))
1717 waittime = timeout_blocktime; 2115 waittime = timeout_blocktime;
1718 2116
1719 sleeptime = waittime - backend_fudge; 2117 /* extra check because io_blocktime is commonly 0 */
1720
1721 if (expect_true (sleeptime > io_blocktime)) 2118 if (expect_false (io_blocktime))
1722 sleeptime = io_blocktime;
1723
1724 if (sleeptime)
1725 { 2119 {
2120 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2121
2122 if (sleeptime > waittime - backend_fudge)
2123 sleeptime = waittime - backend_fudge;
2124
2125 if (expect_true (sleeptime > 0.))
2126 {
1726 ev_sleep (sleeptime); 2127 ev_sleep (sleeptime);
1727 waittime -= sleeptime; 2128 waittime -= sleeptime;
2129 }
1728 } 2130 }
1729 } 2131 }
1730 2132
1731 ++loop_count; 2133 ++loop_count;
1732 backend_poll (EV_A_ waittime); 2134 backend_poll (EV_A_ waittime);
1758 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2160 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1759 )); 2161 ));
1760 2162
1761 if (loop_done == EVUNLOOP_ONE) 2163 if (loop_done == EVUNLOOP_ONE)
1762 loop_done = EVUNLOOP_CANCEL; 2164 loop_done = EVUNLOOP_CANCEL;
2165
2166 --loop_depth;
1763} 2167}
1764 2168
1765void 2169void
1766ev_unloop (EV_P_ int how) 2170ev_unloop (EV_P_ int how)
1767{ 2171{
1768 loop_done = how; 2172 loop_done = how;
1769} 2173}
1770 2174
2175void
2176ev_ref (EV_P)
2177{
2178 ++activecnt;
2179}
2180
2181void
2182ev_unref (EV_P)
2183{
2184 --activecnt;
2185}
2186
2187void
2188ev_now_update (EV_P)
2189{
2190 time_update (EV_A_ 1e100);
2191}
2192
2193void
2194ev_suspend (EV_P)
2195{
2196 ev_now_update (EV_A);
2197}
2198
2199void
2200ev_resume (EV_P)
2201{
2202 ev_tstamp mn_prev = mn_now;
2203
2204 ev_now_update (EV_A);
2205 timers_reschedule (EV_A_ mn_now - mn_prev);
2206#if EV_PERIODIC_ENABLE
2207 /* TODO: really do this? */
2208 periodics_reschedule (EV_A);
2209#endif
2210}
2211
1771/*****************************************************************************/ 2212/*****************************************************************************/
2213/* singly-linked list management, used when the expected list length is short */
1772 2214
1773void inline_size 2215inline_size void
1774wlist_add (WL *head, WL elem) 2216wlist_add (WL *head, WL elem)
1775{ 2217{
1776 elem->next = *head; 2218 elem->next = *head;
1777 *head = elem; 2219 *head = elem;
1778} 2220}
1779 2221
1780void inline_size 2222inline_size void
1781wlist_del (WL *head, WL elem) 2223wlist_del (WL *head, WL elem)
1782{ 2224{
1783 while (*head) 2225 while (*head)
1784 { 2226 {
1785 if (*head == elem) 2227 if (*head == elem)
1790 2232
1791 head = &(*head)->next; 2233 head = &(*head)->next;
1792 } 2234 }
1793} 2235}
1794 2236
1795void inline_speed 2237/* internal, faster, version of ev_clear_pending */
2238inline_speed void
1796clear_pending (EV_P_ W w) 2239clear_pending (EV_P_ W w)
1797{ 2240{
1798 if (w->pending) 2241 if (w->pending)
1799 { 2242 {
1800 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2243 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1801 w->pending = 0; 2244 w->pending = 0;
1802 } 2245 }
1803} 2246}
1804 2247
1805int 2248int
1809 int pending = w_->pending; 2252 int pending = w_->pending;
1810 2253
1811 if (expect_true (pending)) 2254 if (expect_true (pending))
1812 { 2255 {
1813 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2256 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2257 p->w = (W)&pending_w;
1814 w_->pending = 0; 2258 w_->pending = 0;
1815 p->w = 0;
1816 return p->events; 2259 return p->events;
1817 } 2260 }
1818 else 2261 else
1819 return 0; 2262 return 0;
1820} 2263}
1821 2264
1822void inline_size 2265inline_size void
1823pri_adjust (EV_P_ W w) 2266pri_adjust (EV_P_ W w)
1824{ 2267{
1825 int pri = w->priority; 2268 int pri = ev_priority (w);
1826 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2269 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1827 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2270 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1828 w->priority = pri; 2271 ev_set_priority (w, pri);
1829} 2272}
1830 2273
1831void inline_speed 2274inline_speed void
1832ev_start (EV_P_ W w, int active) 2275ev_start (EV_P_ W w, int active)
1833{ 2276{
1834 pri_adjust (EV_A_ w); 2277 pri_adjust (EV_A_ w);
1835 w->active = active; 2278 w->active = active;
1836 ev_ref (EV_A); 2279 ev_ref (EV_A);
1837} 2280}
1838 2281
1839void inline_size 2282inline_size void
1840ev_stop (EV_P_ W w) 2283ev_stop (EV_P_ W w)
1841{ 2284{
1842 ev_unref (EV_A); 2285 ev_unref (EV_A);
1843 w->active = 0; 2286 w->active = 0;
1844} 2287}
1851 int fd = w->fd; 2294 int fd = w->fd;
1852 2295
1853 if (expect_false (ev_is_active (w))) 2296 if (expect_false (ev_is_active (w)))
1854 return; 2297 return;
1855 2298
1856 assert (("ev_io_start called with negative fd", fd >= 0)); 2299 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2300 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2301
2302 EV_FREQUENT_CHECK;
1857 2303
1858 ev_start (EV_A_ (W)w, 1); 2304 ev_start (EV_A_ (W)w, 1);
1859 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2305 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1860 wlist_add (&anfds[fd].head, (WL)w); 2306 wlist_add (&anfds[fd].head, (WL)w);
1861 2307
1862 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2308 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1863 w->events &= ~EV_IOFDSET; 2309 w->events &= ~EV__IOFDSET;
2310
2311 EV_FREQUENT_CHECK;
1864} 2312}
1865 2313
1866void noinline 2314void noinline
1867ev_io_stop (EV_P_ ev_io *w) 2315ev_io_stop (EV_P_ ev_io *w)
1868{ 2316{
1869 clear_pending (EV_A_ (W)w); 2317 clear_pending (EV_A_ (W)w);
1870 if (expect_false (!ev_is_active (w))) 2318 if (expect_false (!ev_is_active (w)))
1871 return; 2319 return;
1872 2320
1873 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2321 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2322
2323 EV_FREQUENT_CHECK;
1874 2324
1875 wlist_del (&anfds[w->fd].head, (WL)w); 2325 wlist_del (&anfds[w->fd].head, (WL)w);
1876 ev_stop (EV_A_ (W)w); 2326 ev_stop (EV_A_ (W)w);
1877 2327
1878 fd_change (EV_A_ w->fd, 1); 2328 fd_change (EV_A_ w->fd, 1);
2329
2330 EV_FREQUENT_CHECK;
1879} 2331}
1880 2332
1881void noinline 2333void noinline
1882ev_timer_start (EV_P_ ev_timer *w) 2334ev_timer_start (EV_P_ ev_timer *w)
1883{ 2335{
1884 if (expect_false (ev_is_active (w))) 2336 if (expect_false (ev_is_active (w)))
1885 return; 2337 return;
1886 2338
1887 ((WT)w)->at += mn_now; 2339 ev_at (w) += mn_now;
1888 2340
1889 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2341 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1890 2342
2343 EV_FREQUENT_CHECK;
2344
2345 ++timercnt;
1891 ev_start (EV_A_ (W)w, ++timercnt); 2346 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1892 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2347 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1893 timers [timercnt - 1] = (WT)w; 2348 ANHE_w (timers [ev_active (w)]) = (WT)w;
1894 upheap (timers, timercnt - 1); 2349 ANHE_at_cache (timers [ev_active (w)]);
2350 upheap (timers, ev_active (w));
1895 2351
2352 EV_FREQUENT_CHECK;
2353
1896 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2354 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1897} 2355}
1898 2356
1899void noinline 2357void noinline
1900ev_timer_stop (EV_P_ ev_timer *w) 2358ev_timer_stop (EV_P_ ev_timer *w)
1901{ 2359{
1902 clear_pending (EV_A_ (W)w); 2360 clear_pending (EV_A_ (W)w);
1903 if (expect_false (!ev_is_active (w))) 2361 if (expect_false (!ev_is_active (w)))
1904 return; 2362 return;
1905 2363
1906 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2364 EV_FREQUENT_CHECK;
1907 2365
1908 { 2366 {
1909 int active = ((W)w)->active; 2367 int active = ev_active (w);
1910 2368
2369 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2370
2371 --timercnt;
2372
1911 if (expect_true (--active < --timercnt)) 2373 if (expect_true (active < timercnt + HEAP0))
1912 { 2374 {
1913 timers [active] = timers [timercnt]; 2375 timers [active] = timers [timercnt + HEAP0];
1914 adjustheap (timers, timercnt, active); 2376 adjustheap (timers, timercnt, active);
1915 } 2377 }
1916 } 2378 }
1917 2379
1918 ((WT)w)->at -= mn_now; 2380 EV_FREQUENT_CHECK;
2381
2382 ev_at (w) -= mn_now;
1919 2383
1920 ev_stop (EV_A_ (W)w); 2384 ev_stop (EV_A_ (W)w);
1921} 2385}
1922 2386
1923void noinline 2387void noinline
1924ev_timer_again (EV_P_ ev_timer *w) 2388ev_timer_again (EV_P_ ev_timer *w)
1925{ 2389{
2390 EV_FREQUENT_CHECK;
2391
1926 if (ev_is_active (w)) 2392 if (ev_is_active (w))
1927 { 2393 {
1928 if (w->repeat) 2394 if (w->repeat)
1929 { 2395 {
1930 ((WT)w)->at = mn_now + w->repeat; 2396 ev_at (w) = mn_now + w->repeat;
2397 ANHE_at_cache (timers [ev_active (w)]);
1931 adjustheap (timers, timercnt, ((W)w)->active - 1); 2398 adjustheap (timers, timercnt, ev_active (w));
1932 } 2399 }
1933 else 2400 else
1934 ev_timer_stop (EV_A_ w); 2401 ev_timer_stop (EV_A_ w);
1935 } 2402 }
1936 else if (w->repeat) 2403 else if (w->repeat)
1937 { 2404 {
1938 w->at = w->repeat; 2405 ev_at (w) = w->repeat;
1939 ev_timer_start (EV_A_ w); 2406 ev_timer_start (EV_A_ w);
1940 } 2407 }
2408
2409 EV_FREQUENT_CHECK;
1941} 2410}
1942 2411
1943#if EV_PERIODIC_ENABLE 2412#if EV_PERIODIC_ENABLE
1944void noinline 2413void noinline
1945ev_periodic_start (EV_P_ ev_periodic *w) 2414ev_periodic_start (EV_P_ ev_periodic *w)
1946{ 2415{
1947 if (expect_false (ev_is_active (w))) 2416 if (expect_false (ev_is_active (w)))
1948 return; 2417 return;
1949 2418
1950 if (w->reschedule_cb) 2419 if (w->reschedule_cb)
1951 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2420 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1952 else if (w->interval) 2421 else if (w->interval)
1953 { 2422 {
1954 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2423 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1955 /* this formula differs from the one in periodic_reify because we do not always round up */ 2424 /* this formula differs from the one in periodic_reify because we do not always round up */
1956 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2425 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1957 } 2426 }
1958 else 2427 else
1959 ((WT)w)->at = w->offset; 2428 ev_at (w) = w->offset;
1960 2429
2430 EV_FREQUENT_CHECK;
2431
2432 ++periodiccnt;
1961 ev_start (EV_A_ (W)w, ++periodiccnt); 2433 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1962 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2434 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1963 periodics [periodiccnt - 1] = (WT)w; 2435 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1964 upheap (periodics, periodiccnt - 1); 2436 ANHE_at_cache (periodics [ev_active (w)]);
2437 upheap (periodics, ev_active (w));
1965 2438
2439 EV_FREQUENT_CHECK;
2440
1966 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2441 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1967} 2442}
1968 2443
1969void noinline 2444void noinline
1970ev_periodic_stop (EV_P_ ev_periodic *w) 2445ev_periodic_stop (EV_P_ ev_periodic *w)
1971{ 2446{
1972 clear_pending (EV_A_ (W)w); 2447 clear_pending (EV_A_ (W)w);
1973 if (expect_false (!ev_is_active (w))) 2448 if (expect_false (!ev_is_active (w)))
1974 return; 2449 return;
1975 2450
1976 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2451 EV_FREQUENT_CHECK;
1977 2452
1978 { 2453 {
1979 int active = ((W)w)->active; 2454 int active = ev_active (w);
1980 2455
2456 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2457
2458 --periodiccnt;
2459
1981 if (expect_true (--active < --periodiccnt)) 2460 if (expect_true (active < periodiccnt + HEAP0))
1982 { 2461 {
1983 periodics [active] = periodics [periodiccnt]; 2462 periodics [active] = periodics [periodiccnt + HEAP0];
1984 adjustheap (periodics, periodiccnt, active); 2463 adjustheap (periodics, periodiccnt, active);
1985 } 2464 }
1986 } 2465 }
1987 2466
2467 EV_FREQUENT_CHECK;
2468
1988 ev_stop (EV_A_ (W)w); 2469 ev_stop (EV_A_ (W)w);
1989} 2470}
1990 2471
1991void noinline 2472void noinline
1992ev_periodic_again (EV_P_ ev_periodic *w) 2473ev_periodic_again (EV_P_ ev_periodic *w)
2003 2484
2004void noinline 2485void noinline
2005ev_signal_start (EV_P_ ev_signal *w) 2486ev_signal_start (EV_P_ ev_signal *w)
2006{ 2487{
2007#if EV_MULTIPLICITY 2488#if EV_MULTIPLICITY
2008 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2489 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2009#endif 2490#endif
2010 if (expect_false (ev_is_active (w))) 2491 if (expect_false (ev_is_active (w)))
2011 return; 2492 return;
2012 2493
2013 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2494 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2014 2495
2015 evpipe_init (EV_A); 2496 evpipe_init (EV_A);
2497
2498 EV_FREQUENT_CHECK;
2016 2499
2017 { 2500 {
2018#ifndef _WIN32 2501#ifndef _WIN32
2019 sigset_t full, prev; 2502 sigset_t full, prev;
2020 sigfillset (&full); 2503 sigfillset (&full);
2021 sigprocmask (SIG_SETMASK, &full, &prev); 2504 sigprocmask (SIG_SETMASK, &full, &prev);
2022#endif 2505#endif
2023 2506
2024 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2507 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2025 2508
2026#ifndef _WIN32 2509#ifndef _WIN32
2027 sigprocmask (SIG_SETMASK, &prev, 0); 2510 sigprocmask (SIG_SETMASK, &prev, 0);
2028#endif 2511#endif
2029 } 2512 }
2041 sigfillset (&sa.sa_mask); 2524 sigfillset (&sa.sa_mask);
2042 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2525 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2043 sigaction (w->signum, &sa, 0); 2526 sigaction (w->signum, &sa, 0);
2044#endif 2527#endif
2045 } 2528 }
2529
2530 EV_FREQUENT_CHECK;
2046} 2531}
2047 2532
2048void noinline 2533void noinline
2049ev_signal_stop (EV_P_ ev_signal *w) 2534ev_signal_stop (EV_P_ ev_signal *w)
2050{ 2535{
2051 clear_pending (EV_A_ (W)w); 2536 clear_pending (EV_A_ (W)w);
2052 if (expect_false (!ev_is_active (w))) 2537 if (expect_false (!ev_is_active (w)))
2053 return; 2538 return;
2054 2539
2540 EV_FREQUENT_CHECK;
2541
2055 wlist_del (&signals [w->signum - 1].head, (WL)w); 2542 wlist_del (&signals [w->signum - 1].head, (WL)w);
2056 ev_stop (EV_A_ (W)w); 2543 ev_stop (EV_A_ (W)w);
2057 2544
2058 if (!signals [w->signum - 1].head) 2545 if (!signals [w->signum - 1].head)
2059 signal (w->signum, SIG_DFL); 2546 signal (w->signum, SIG_DFL);
2547
2548 EV_FREQUENT_CHECK;
2060} 2549}
2061 2550
2062void 2551void
2063ev_child_start (EV_P_ ev_child *w) 2552ev_child_start (EV_P_ ev_child *w)
2064{ 2553{
2065#if EV_MULTIPLICITY 2554#if EV_MULTIPLICITY
2066 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2555 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2067#endif 2556#endif
2068 if (expect_false (ev_is_active (w))) 2557 if (expect_false (ev_is_active (w)))
2069 return; 2558 return;
2070 2559
2560 EV_FREQUENT_CHECK;
2561
2071 ev_start (EV_A_ (W)w, 1); 2562 ev_start (EV_A_ (W)w, 1);
2072 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2563 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2564
2565 EV_FREQUENT_CHECK;
2073} 2566}
2074 2567
2075void 2568void
2076ev_child_stop (EV_P_ ev_child *w) 2569ev_child_stop (EV_P_ ev_child *w)
2077{ 2570{
2078 clear_pending (EV_A_ (W)w); 2571 clear_pending (EV_A_ (W)w);
2079 if (expect_false (!ev_is_active (w))) 2572 if (expect_false (!ev_is_active (w)))
2080 return; 2573 return;
2081 2574
2575 EV_FREQUENT_CHECK;
2576
2082 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2577 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2083 ev_stop (EV_A_ (W)w); 2578 ev_stop (EV_A_ (W)w);
2579
2580 EV_FREQUENT_CHECK;
2084} 2581}
2085 2582
2086#if EV_STAT_ENABLE 2583#if EV_STAT_ENABLE
2087 2584
2088# ifdef _WIN32 2585# ifdef _WIN32
2089# undef lstat 2586# undef lstat
2090# define lstat(a,b) _stati64 (a,b) 2587# define lstat(a,b) _stati64 (a,b)
2091# endif 2588# endif
2092 2589
2093#define DEF_STAT_INTERVAL 5.0074891 2590#define DEF_STAT_INTERVAL 5.0074891
2591#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2094#define MIN_STAT_INTERVAL 0.1074891 2592#define MIN_STAT_INTERVAL 0.1074891
2095 2593
2096static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2594static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2097 2595
2098#if EV_USE_INOTIFY 2596#if EV_USE_INOTIFY
2099# define EV_INOTIFY_BUFSIZE 8192 2597# define EV_INOTIFY_BUFSIZE 8192
2103{ 2601{
2104 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2602 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2105 2603
2106 if (w->wd < 0) 2604 if (w->wd < 0)
2107 { 2605 {
2606 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2108 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2607 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2109 2608
2110 /* monitor some parent directory for speedup hints */ 2609 /* monitor some parent directory for speedup hints */
2610 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2611 /* but an efficiency issue only */
2111 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2612 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2112 { 2613 {
2113 char path [4096]; 2614 char path [4096];
2114 strcpy (path, w->path); 2615 strcpy (path, w->path);
2115 2616
2118 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2619 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2119 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2620 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2120 2621
2121 char *pend = strrchr (path, '/'); 2622 char *pend = strrchr (path, '/');
2122 2623
2123 if (!pend) 2624 if (!pend || pend == path)
2124 break; /* whoops, no '/', complain to your admin */ 2625 break;
2125 2626
2126 *pend = 0; 2627 *pend = 0;
2127 w->wd = inotify_add_watch (fs_fd, path, mask); 2628 w->wd = inotify_add_watch (fs_fd, path, mask);
2128 } 2629 }
2129 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2630 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2130 } 2631 }
2131 } 2632 }
2132 else
2133 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2134 2633
2135 if (w->wd >= 0) 2634 if (w->wd >= 0)
2635 {
2136 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2636 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2637
2638 /* now local changes will be tracked by inotify, but remote changes won't */
2639 /* unless the filesystem it known to be local, we therefore still poll */
2640 /* also do poll on <2.6.25, but with normal frequency */
2641 struct statfs sfs;
2642
2643 if (fs_2625 && !statfs (w->path, &sfs))
2644 if (sfs.f_type == 0x1373 /* devfs */
2645 || sfs.f_type == 0xEF53 /* ext2/3 */
2646 || sfs.f_type == 0x3153464a /* jfs */
2647 || sfs.f_type == 0x52654973 /* reiser3 */
2648 || sfs.f_type == 0x01021994 /* tempfs */
2649 || sfs.f_type == 0x58465342 /* xfs */)
2650 return;
2651
2652 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2653 ev_timer_again (EV_A_ &w->timer);
2654 }
2137} 2655}
2138 2656
2139static void noinline 2657static void noinline
2140infy_del (EV_P_ ev_stat *w) 2658infy_del (EV_P_ ev_stat *w)
2141{ 2659{
2155 2673
2156static void noinline 2674static void noinline
2157infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2675infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2158{ 2676{
2159 if (slot < 0) 2677 if (slot < 0)
2160 /* overflow, need to check for all hahs slots */ 2678 /* overflow, need to check for all hash slots */
2161 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2679 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2162 infy_wd (EV_A_ slot, wd, ev); 2680 infy_wd (EV_A_ slot, wd, ev);
2163 else 2681 else
2164 { 2682 {
2165 WL w_; 2683 WL w_;
2171 2689
2172 if (w->wd == wd || wd == -1) 2690 if (w->wd == wd || wd == -1)
2173 { 2691 {
2174 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2692 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2175 { 2693 {
2694 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2176 w->wd = -1; 2695 w->wd = -1;
2177 infy_add (EV_A_ w); /* re-add, no matter what */ 2696 infy_add (EV_A_ w); /* re-add, no matter what */
2178 } 2697 }
2179 2698
2180 stat_timer_cb (EV_A_ &w->timer, 0); 2699 stat_timer_cb (EV_A_ &w->timer, 0);
2193 2712
2194 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2713 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2195 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2714 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2196} 2715}
2197 2716
2198void inline_size 2717inline_size void
2718check_2625 (EV_P)
2719{
2720 /* kernels < 2.6.25 are borked
2721 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2722 */
2723 struct utsname buf;
2724 int major, minor, micro;
2725
2726 if (uname (&buf))
2727 return;
2728
2729 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2730 return;
2731
2732 if (major < 2
2733 || (major == 2 && minor < 6)
2734 || (major == 2 && minor == 6 && micro < 25))
2735 return;
2736
2737 fs_2625 = 1;
2738}
2739
2740inline_size void
2199infy_init (EV_P) 2741infy_init (EV_P)
2200{ 2742{
2201 if (fs_fd != -2) 2743 if (fs_fd != -2)
2202 return; 2744 return;
2745
2746 fs_fd = -1;
2747
2748 check_2625 (EV_A);
2203 2749
2204 fs_fd = inotify_init (); 2750 fs_fd = inotify_init ();
2205 2751
2206 if (fs_fd >= 0) 2752 if (fs_fd >= 0)
2207 { 2753 {
2209 ev_set_priority (&fs_w, EV_MAXPRI); 2755 ev_set_priority (&fs_w, EV_MAXPRI);
2210 ev_io_start (EV_A_ &fs_w); 2756 ev_io_start (EV_A_ &fs_w);
2211 } 2757 }
2212} 2758}
2213 2759
2214void inline_size 2760inline_size void
2215infy_fork (EV_P) 2761infy_fork (EV_P)
2216{ 2762{
2217 int slot; 2763 int slot;
2218 2764
2219 if (fs_fd < 0) 2765 if (fs_fd < 0)
2235 w->wd = -1; 2781 w->wd = -1;
2236 2782
2237 if (fs_fd >= 0) 2783 if (fs_fd >= 0)
2238 infy_add (EV_A_ w); /* re-add, no matter what */ 2784 infy_add (EV_A_ w); /* re-add, no matter what */
2239 else 2785 else
2240 ev_timer_start (EV_A_ &w->timer); 2786 ev_timer_again (EV_A_ &w->timer);
2241 } 2787 }
2242
2243 } 2788 }
2244} 2789}
2245 2790
2791#endif
2792
2793#ifdef _WIN32
2794# define EV_LSTAT(p,b) _stati64 (p, b)
2795#else
2796# define EV_LSTAT(p,b) lstat (p, b)
2246#endif 2797#endif
2247 2798
2248void 2799void
2249ev_stat_stat (EV_P_ ev_stat *w) 2800ev_stat_stat (EV_P_ ev_stat *w)
2250{ 2801{
2277 || w->prev.st_atime != w->attr.st_atime 2828 || w->prev.st_atime != w->attr.st_atime
2278 || w->prev.st_mtime != w->attr.st_mtime 2829 || w->prev.st_mtime != w->attr.st_mtime
2279 || w->prev.st_ctime != w->attr.st_ctime 2830 || w->prev.st_ctime != w->attr.st_ctime
2280 ) { 2831 ) {
2281 #if EV_USE_INOTIFY 2832 #if EV_USE_INOTIFY
2833 if (fs_fd >= 0)
2834 {
2282 infy_del (EV_A_ w); 2835 infy_del (EV_A_ w);
2283 infy_add (EV_A_ w); 2836 infy_add (EV_A_ w);
2284 ev_stat_stat (EV_A_ w); /* avoid race... */ 2837 ev_stat_stat (EV_A_ w); /* avoid race... */
2838 }
2285 #endif 2839 #endif
2286 2840
2287 ev_feed_event (EV_A_ w, EV_STAT); 2841 ev_feed_event (EV_A_ w, EV_STAT);
2288 } 2842 }
2289} 2843}
2292ev_stat_start (EV_P_ ev_stat *w) 2846ev_stat_start (EV_P_ ev_stat *w)
2293{ 2847{
2294 if (expect_false (ev_is_active (w))) 2848 if (expect_false (ev_is_active (w)))
2295 return; 2849 return;
2296 2850
2297 /* since we use memcmp, we need to clear any padding data etc. */
2298 memset (&w->prev, 0, sizeof (ev_statdata));
2299 memset (&w->attr, 0, sizeof (ev_statdata));
2300
2301 ev_stat_stat (EV_A_ w); 2851 ev_stat_stat (EV_A_ w);
2302 2852
2853 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2303 if (w->interval < MIN_STAT_INTERVAL) 2854 w->interval = MIN_STAT_INTERVAL;
2304 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2305 2855
2306 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2856 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2307 ev_set_priority (&w->timer, ev_priority (w)); 2857 ev_set_priority (&w->timer, ev_priority (w));
2308 2858
2309#if EV_USE_INOTIFY 2859#if EV_USE_INOTIFY
2310 infy_init (EV_A); 2860 infy_init (EV_A);
2311 2861
2312 if (fs_fd >= 0) 2862 if (fs_fd >= 0)
2313 infy_add (EV_A_ w); 2863 infy_add (EV_A_ w);
2314 else 2864 else
2315#endif 2865#endif
2316 ev_timer_start (EV_A_ &w->timer); 2866 ev_timer_again (EV_A_ &w->timer);
2317 2867
2318 ev_start (EV_A_ (W)w, 1); 2868 ev_start (EV_A_ (W)w, 1);
2869
2870 EV_FREQUENT_CHECK;
2319} 2871}
2320 2872
2321void 2873void
2322ev_stat_stop (EV_P_ ev_stat *w) 2874ev_stat_stop (EV_P_ ev_stat *w)
2323{ 2875{
2324 clear_pending (EV_A_ (W)w); 2876 clear_pending (EV_A_ (W)w);
2325 if (expect_false (!ev_is_active (w))) 2877 if (expect_false (!ev_is_active (w)))
2326 return; 2878 return;
2327 2879
2880 EV_FREQUENT_CHECK;
2881
2328#if EV_USE_INOTIFY 2882#if EV_USE_INOTIFY
2329 infy_del (EV_A_ w); 2883 infy_del (EV_A_ w);
2330#endif 2884#endif
2331 ev_timer_stop (EV_A_ &w->timer); 2885 ev_timer_stop (EV_A_ &w->timer);
2332 2886
2333 ev_stop (EV_A_ (W)w); 2887 ev_stop (EV_A_ (W)w);
2888
2889 EV_FREQUENT_CHECK;
2334} 2890}
2335#endif 2891#endif
2336 2892
2337#if EV_IDLE_ENABLE 2893#if EV_IDLE_ENABLE
2338void 2894void
2340{ 2896{
2341 if (expect_false (ev_is_active (w))) 2897 if (expect_false (ev_is_active (w)))
2342 return; 2898 return;
2343 2899
2344 pri_adjust (EV_A_ (W)w); 2900 pri_adjust (EV_A_ (W)w);
2901
2902 EV_FREQUENT_CHECK;
2345 2903
2346 { 2904 {
2347 int active = ++idlecnt [ABSPRI (w)]; 2905 int active = ++idlecnt [ABSPRI (w)];
2348 2906
2349 ++idleall; 2907 ++idleall;
2350 ev_start (EV_A_ (W)w, active); 2908 ev_start (EV_A_ (W)w, active);
2351 2909
2352 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2910 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2353 idles [ABSPRI (w)][active - 1] = w; 2911 idles [ABSPRI (w)][active - 1] = w;
2354 } 2912 }
2913
2914 EV_FREQUENT_CHECK;
2355} 2915}
2356 2916
2357void 2917void
2358ev_idle_stop (EV_P_ ev_idle *w) 2918ev_idle_stop (EV_P_ ev_idle *w)
2359{ 2919{
2360 clear_pending (EV_A_ (W)w); 2920 clear_pending (EV_A_ (W)w);
2361 if (expect_false (!ev_is_active (w))) 2921 if (expect_false (!ev_is_active (w)))
2362 return; 2922 return;
2363 2923
2924 EV_FREQUENT_CHECK;
2925
2364 { 2926 {
2365 int active = ((W)w)->active; 2927 int active = ev_active (w);
2366 2928
2367 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2929 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2368 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2930 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2369 2931
2370 ev_stop (EV_A_ (W)w); 2932 ev_stop (EV_A_ (W)w);
2371 --idleall; 2933 --idleall;
2372 } 2934 }
2935
2936 EV_FREQUENT_CHECK;
2373} 2937}
2374#endif 2938#endif
2375 2939
2376void 2940void
2377ev_prepare_start (EV_P_ ev_prepare *w) 2941ev_prepare_start (EV_P_ ev_prepare *w)
2378{ 2942{
2379 if (expect_false (ev_is_active (w))) 2943 if (expect_false (ev_is_active (w)))
2380 return; 2944 return;
2945
2946 EV_FREQUENT_CHECK;
2381 2947
2382 ev_start (EV_A_ (W)w, ++preparecnt); 2948 ev_start (EV_A_ (W)w, ++preparecnt);
2383 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2949 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2384 prepares [preparecnt - 1] = w; 2950 prepares [preparecnt - 1] = w;
2951
2952 EV_FREQUENT_CHECK;
2385} 2953}
2386 2954
2387void 2955void
2388ev_prepare_stop (EV_P_ ev_prepare *w) 2956ev_prepare_stop (EV_P_ ev_prepare *w)
2389{ 2957{
2390 clear_pending (EV_A_ (W)w); 2958 clear_pending (EV_A_ (W)w);
2391 if (expect_false (!ev_is_active (w))) 2959 if (expect_false (!ev_is_active (w)))
2392 return; 2960 return;
2393 2961
2962 EV_FREQUENT_CHECK;
2963
2394 { 2964 {
2395 int active = ((W)w)->active; 2965 int active = ev_active (w);
2966
2396 prepares [active - 1] = prepares [--preparecnt]; 2967 prepares [active - 1] = prepares [--preparecnt];
2397 ((W)prepares [active - 1])->active = active; 2968 ev_active (prepares [active - 1]) = active;
2398 } 2969 }
2399 2970
2400 ev_stop (EV_A_ (W)w); 2971 ev_stop (EV_A_ (W)w);
2972
2973 EV_FREQUENT_CHECK;
2401} 2974}
2402 2975
2403void 2976void
2404ev_check_start (EV_P_ ev_check *w) 2977ev_check_start (EV_P_ ev_check *w)
2405{ 2978{
2406 if (expect_false (ev_is_active (w))) 2979 if (expect_false (ev_is_active (w)))
2407 return; 2980 return;
2981
2982 EV_FREQUENT_CHECK;
2408 2983
2409 ev_start (EV_A_ (W)w, ++checkcnt); 2984 ev_start (EV_A_ (W)w, ++checkcnt);
2410 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2985 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2411 checks [checkcnt - 1] = w; 2986 checks [checkcnt - 1] = w;
2987
2988 EV_FREQUENT_CHECK;
2412} 2989}
2413 2990
2414void 2991void
2415ev_check_stop (EV_P_ ev_check *w) 2992ev_check_stop (EV_P_ ev_check *w)
2416{ 2993{
2417 clear_pending (EV_A_ (W)w); 2994 clear_pending (EV_A_ (W)w);
2418 if (expect_false (!ev_is_active (w))) 2995 if (expect_false (!ev_is_active (w)))
2419 return; 2996 return;
2420 2997
2998 EV_FREQUENT_CHECK;
2999
2421 { 3000 {
2422 int active = ((W)w)->active; 3001 int active = ev_active (w);
3002
2423 checks [active - 1] = checks [--checkcnt]; 3003 checks [active - 1] = checks [--checkcnt];
2424 ((W)checks [active - 1])->active = active; 3004 ev_active (checks [active - 1]) = active;
2425 } 3005 }
2426 3006
2427 ev_stop (EV_A_ (W)w); 3007 ev_stop (EV_A_ (W)w);
3008
3009 EV_FREQUENT_CHECK;
2428} 3010}
2429 3011
2430#if EV_EMBED_ENABLE 3012#if EV_EMBED_ENABLE
2431void noinline 3013void noinline
2432ev_embed_sweep (EV_P_ ev_embed *w) 3014ev_embed_sweep (EV_P_ ev_embed *w)
2459 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3041 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2460 } 3042 }
2461 } 3043 }
2462} 3044}
2463 3045
3046static void
3047embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3048{
3049 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3050
3051 ev_embed_stop (EV_A_ w);
3052
3053 {
3054 struct ev_loop *loop = w->other;
3055
3056 ev_loop_fork (EV_A);
3057 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3058 }
3059
3060 ev_embed_start (EV_A_ w);
3061}
3062
2464#if 0 3063#if 0
2465static void 3064static void
2466embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3065embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2467{ 3066{
2468 ev_idle_stop (EV_A_ idle); 3067 ev_idle_stop (EV_A_ idle);
2475 if (expect_false (ev_is_active (w))) 3074 if (expect_false (ev_is_active (w)))
2476 return; 3075 return;
2477 3076
2478 { 3077 {
2479 struct ev_loop *loop = w->other; 3078 struct ev_loop *loop = w->other;
2480 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3079 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2481 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3080 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2482 } 3081 }
3082
3083 EV_FREQUENT_CHECK;
2483 3084
2484 ev_set_priority (&w->io, ev_priority (w)); 3085 ev_set_priority (&w->io, ev_priority (w));
2485 ev_io_start (EV_A_ &w->io); 3086 ev_io_start (EV_A_ &w->io);
2486 3087
2487 ev_prepare_init (&w->prepare, embed_prepare_cb); 3088 ev_prepare_init (&w->prepare, embed_prepare_cb);
2488 ev_set_priority (&w->prepare, EV_MINPRI); 3089 ev_set_priority (&w->prepare, EV_MINPRI);
2489 ev_prepare_start (EV_A_ &w->prepare); 3090 ev_prepare_start (EV_A_ &w->prepare);
2490 3091
3092 ev_fork_init (&w->fork, embed_fork_cb);
3093 ev_fork_start (EV_A_ &w->fork);
3094
2491 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3095 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2492 3096
2493 ev_start (EV_A_ (W)w, 1); 3097 ev_start (EV_A_ (W)w, 1);
3098
3099 EV_FREQUENT_CHECK;
2494} 3100}
2495 3101
2496void 3102void
2497ev_embed_stop (EV_P_ ev_embed *w) 3103ev_embed_stop (EV_P_ ev_embed *w)
2498{ 3104{
2499 clear_pending (EV_A_ (W)w); 3105 clear_pending (EV_A_ (W)w);
2500 if (expect_false (!ev_is_active (w))) 3106 if (expect_false (!ev_is_active (w)))
2501 return; 3107 return;
2502 3108
3109 EV_FREQUENT_CHECK;
3110
2503 ev_io_stop (EV_A_ &w->io); 3111 ev_io_stop (EV_A_ &w->io);
2504 ev_prepare_stop (EV_A_ &w->prepare); 3112 ev_prepare_stop (EV_A_ &w->prepare);
3113 ev_fork_stop (EV_A_ &w->fork);
2505 3114
2506 ev_stop (EV_A_ (W)w); 3115 EV_FREQUENT_CHECK;
2507} 3116}
2508#endif 3117#endif
2509 3118
2510#if EV_FORK_ENABLE 3119#if EV_FORK_ENABLE
2511void 3120void
2512ev_fork_start (EV_P_ ev_fork *w) 3121ev_fork_start (EV_P_ ev_fork *w)
2513{ 3122{
2514 if (expect_false (ev_is_active (w))) 3123 if (expect_false (ev_is_active (w)))
2515 return; 3124 return;
3125
3126 EV_FREQUENT_CHECK;
2516 3127
2517 ev_start (EV_A_ (W)w, ++forkcnt); 3128 ev_start (EV_A_ (W)w, ++forkcnt);
2518 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3129 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2519 forks [forkcnt - 1] = w; 3130 forks [forkcnt - 1] = w;
3131
3132 EV_FREQUENT_CHECK;
2520} 3133}
2521 3134
2522void 3135void
2523ev_fork_stop (EV_P_ ev_fork *w) 3136ev_fork_stop (EV_P_ ev_fork *w)
2524{ 3137{
2525 clear_pending (EV_A_ (W)w); 3138 clear_pending (EV_A_ (W)w);
2526 if (expect_false (!ev_is_active (w))) 3139 if (expect_false (!ev_is_active (w)))
2527 return; 3140 return;
2528 3141
3142 EV_FREQUENT_CHECK;
3143
2529 { 3144 {
2530 int active = ((W)w)->active; 3145 int active = ev_active (w);
3146
2531 forks [active - 1] = forks [--forkcnt]; 3147 forks [active - 1] = forks [--forkcnt];
2532 ((W)forks [active - 1])->active = active; 3148 ev_active (forks [active - 1]) = active;
2533 } 3149 }
2534 3150
2535 ev_stop (EV_A_ (W)w); 3151 ev_stop (EV_A_ (W)w);
3152
3153 EV_FREQUENT_CHECK;
2536} 3154}
2537#endif 3155#endif
2538 3156
2539#if EV_ASYNC_ENABLE 3157#if EV_ASYNC_ENABLE
2540void 3158void
2542{ 3160{
2543 if (expect_false (ev_is_active (w))) 3161 if (expect_false (ev_is_active (w)))
2544 return; 3162 return;
2545 3163
2546 evpipe_init (EV_A); 3164 evpipe_init (EV_A);
3165
3166 EV_FREQUENT_CHECK;
2547 3167
2548 ev_start (EV_A_ (W)w, ++asynccnt); 3168 ev_start (EV_A_ (W)w, ++asynccnt);
2549 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3169 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2550 asyncs [asynccnt - 1] = w; 3170 asyncs [asynccnt - 1] = w;
3171
3172 EV_FREQUENT_CHECK;
2551} 3173}
2552 3174
2553void 3175void
2554ev_async_stop (EV_P_ ev_async *w) 3176ev_async_stop (EV_P_ ev_async *w)
2555{ 3177{
2556 clear_pending (EV_A_ (W)w); 3178 clear_pending (EV_A_ (W)w);
2557 if (expect_false (!ev_is_active (w))) 3179 if (expect_false (!ev_is_active (w)))
2558 return; 3180 return;
2559 3181
3182 EV_FREQUENT_CHECK;
3183
2560 { 3184 {
2561 int active = ((W)w)->active; 3185 int active = ev_active (w);
3186
2562 asyncs [active - 1] = asyncs [--asynccnt]; 3187 asyncs [active - 1] = asyncs [--asynccnt];
2563 ((W)asyncs [active - 1])->active = active; 3188 ev_active (asyncs [active - 1]) = active;
2564 } 3189 }
2565 3190
2566 ev_stop (EV_A_ (W)w); 3191 ev_stop (EV_A_ (W)w);
3192
3193 EV_FREQUENT_CHECK;
2567} 3194}
2568 3195
2569void 3196void
2570ev_async_send (EV_P_ ev_async *w) 3197ev_async_send (EV_P_ ev_async *w)
2571{ 3198{
2588once_cb (EV_P_ struct ev_once *once, int revents) 3215once_cb (EV_P_ struct ev_once *once, int revents)
2589{ 3216{
2590 void (*cb)(int revents, void *arg) = once->cb; 3217 void (*cb)(int revents, void *arg) = once->cb;
2591 void *arg = once->arg; 3218 void *arg = once->arg;
2592 3219
2593 ev_io_stop (EV_A_ &once->io); 3220 ev_io_stop (EV_A_ &once->io);
2594 ev_timer_stop (EV_A_ &once->to); 3221 ev_timer_stop (EV_A_ &once->to);
2595 ev_free (once); 3222 ev_free (once);
2596 3223
2597 cb (revents, arg); 3224 cb (revents, arg);
2598} 3225}
2599 3226
2600static void 3227static void
2601once_cb_io (EV_P_ ev_io *w, int revents) 3228once_cb_io (EV_P_ ev_io *w, int revents)
2602{ 3229{
2603 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3230 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3231
3232 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2604} 3233}
2605 3234
2606static void 3235static void
2607once_cb_to (EV_P_ ev_timer *w, int revents) 3236once_cb_to (EV_P_ ev_timer *w, int revents)
2608{ 3237{
2609 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3238 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3239
3240 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2610} 3241}
2611 3242
2612void 3243void
2613ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3244ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2614{ 3245{
2636 ev_timer_set (&once->to, timeout, 0.); 3267 ev_timer_set (&once->to, timeout, 0.);
2637 ev_timer_start (EV_A_ &once->to); 3268 ev_timer_start (EV_A_ &once->to);
2638 } 3269 }
2639} 3270}
2640 3271
3272/*****************************************************************************/
3273
3274#if EV_WALK_ENABLE
3275void
3276ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3277{
3278 int i, j;
3279 ev_watcher_list *wl, *wn;
3280
3281 if (types & (EV_IO | EV_EMBED))
3282 for (i = 0; i < anfdmax; ++i)
3283 for (wl = anfds [i].head; wl; )
3284 {
3285 wn = wl->next;
3286
3287#if EV_EMBED_ENABLE
3288 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3289 {
3290 if (types & EV_EMBED)
3291 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3292 }
3293 else
3294#endif
3295#if EV_USE_INOTIFY
3296 if (ev_cb ((ev_io *)wl) == infy_cb)
3297 ;
3298 else
3299#endif
3300 if ((ev_io *)wl != &pipe_w)
3301 if (types & EV_IO)
3302 cb (EV_A_ EV_IO, wl);
3303
3304 wl = wn;
3305 }
3306
3307 if (types & (EV_TIMER | EV_STAT))
3308 for (i = timercnt + HEAP0; i-- > HEAP0; )
3309#if EV_STAT_ENABLE
3310 /*TODO: timer is not always active*/
3311 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3312 {
3313 if (types & EV_STAT)
3314 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3315 }
3316 else
3317#endif
3318 if (types & EV_TIMER)
3319 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3320
3321#if EV_PERIODIC_ENABLE
3322 if (types & EV_PERIODIC)
3323 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3324 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3325#endif
3326
3327#if EV_IDLE_ENABLE
3328 if (types & EV_IDLE)
3329 for (j = NUMPRI; i--; )
3330 for (i = idlecnt [j]; i--; )
3331 cb (EV_A_ EV_IDLE, idles [j][i]);
3332#endif
3333
3334#if EV_FORK_ENABLE
3335 if (types & EV_FORK)
3336 for (i = forkcnt; i--; )
3337 if (ev_cb (forks [i]) != embed_fork_cb)
3338 cb (EV_A_ EV_FORK, forks [i]);
3339#endif
3340
3341#if EV_ASYNC_ENABLE
3342 if (types & EV_ASYNC)
3343 for (i = asynccnt; i--; )
3344 cb (EV_A_ EV_ASYNC, asyncs [i]);
3345#endif
3346
3347 if (types & EV_PREPARE)
3348 for (i = preparecnt; i--; )
3349#if EV_EMBED_ENABLE
3350 if (ev_cb (prepares [i]) != embed_prepare_cb)
3351#endif
3352 cb (EV_A_ EV_PREPARE, prepares [i]);
3353
3354 if (types & EV_CHECK)
3355 for (i = checkcnt; i--; )
3356 cb (EV_A_ EV_CHECK, checks [i]);
3357
3358 if (types & EV_SIGNAL)
3359 for (i = 0; i < signalmax; ++i)
3360 for (wl = signals [i].head; wl; )
3361 {
3362 wn = wl->next;
3363 cb (EV_A_ EV_SIGNAL, wl);
3364 wl = wn;
3365 }
3366
3367 if (types & EV_CHILD)
3368 for (i = EV_PID_HASHSIZE; i--; )
3369 for (wl = childs [i]; wl; )
3370 {
3371 wn = wl->next;
3372 cb (EV_A_ EV_CHILD, wl);
3373 wl = wn;
3374 }
3375/* EV_STAT 0x00001000 /* stat data changed */
3376/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3377}
3378#endif
3379
2641#if EV_MULTIPLICITY 3380#if EV_MULTIPLICITY
2642 #include "ev_wrap.h" 3381 #include "ev_wrap.h"
2643#endif 3382#endif
2644 3383
2645#ifdef __cplusplus 3384#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines