ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.29 by root, Thu Nov 1 08:10:03 2007 UTC vs.
Revision 1.295 by root, Wed Jul 8 04:29:31 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
6 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
7 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
8 * 27 *
9 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
10 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
11 * 30 * in which case the provisions of the GPL are applicable instead of
12 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
13 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
14 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
15 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
16 * 35 * and other provisions required by the GPL. If you do not delete the
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE
29#if EV_USE_CONFIG_H 46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
30# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
66# if HAVE_CLOCK_GETTIME
67# ifndef EV_USE_MONOTONIC
68# define EV_USE_MONOTONIC 1
69# endif
70# ifndef EV_USE_REALTIME
71# define EV_USE_REALTIME 0
72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
90# ifndef EV_USE_SELECT
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
95# endif
96# endif
97
98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
100# define EV_USE_POLL 1
101# else
102# define EV_USE_POLL 0
103# endif
104# endif
105
106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
108# define EV_USE_EPOLL 1
109# else
110# define EV_USE_EPOLL 0
111# endif
112# endif
113
114# ifndef EV_USE_KQUEUE
115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
119# endif
120# endif
121
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
127# endif
128# endif
129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_EVENTFD
139# if HAVE_EVENTFD
140# define EV_USE_EVENTFD 1
141# else
142# define EV_USE_EVENTFD 0
143# endif
144# endif
145
31#endif 146#endif
32 147
33#include <math.h> 148#include <math.h>
34#include <stdlib.h> 149#include <stdlib.h>
35#include <unistd.h>
36#include <fcntl.h> 150#include <fcntl.h>
37#include <signal.h>
38#include <stddef.h> 151#include <stddef.h>
39 152
40#include <stdio.h> 153#include <stdio.h>
41 154
42#include <assert.h> 155#include <assert.h>
43#include <errno.h> 156#include <errno.h>
44#include <sys/types.h> 157#include <sys/types.h>
45#include <sys/wait.h>
46#include <sys/time.h>
47#include <time.h> 158#include <time.h>
48 159
160#include <signal.h>
161
162#ifdef EV_H
163# include EV_H
164#else
165# include "ev.h"
166#endif
167
168#ifndef _WIN32
169# include <sys/time.h>
170# include <sys/wait.h>
171# include <unistd.h>
172#else
173# include <io.h>
174# define WIN32_LEAN_AND_MEAN
175# include <windows.h>
176# ifndef EV_SELECT_IS_WINSOCKET
177# define EV_SELECT_IS_WINSOCKET 1
178# endif
179#endif
180
181/* this block tries to deduce configuration from header-defined symbols and defaults */
182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
190
49#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
50# ifdef CLOCK_MONOTONIC 192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
51# define EV_USE_MONOTONIC 1 193# define EV_USE_MONOTONIC 1
194# else
195# define EV_USE_MONOTONIC 0
196# endif
197#endif
198
199#ifndef EV_USE_REALTIME
200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
201#endif
202
203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
207# define EV_USE_NANOSLEEP 0
52# endif 208# endif
53#endif 209#endif
54 210
55#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
56# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
57#endif 213#endif
58 214
215#ifndef EV_USE_POLL
216# ifdef _WIN32
217# define EV_USE_POLL 0
218# else
219# define EV_USE_POLL 1
220# endif
221#endif
222
59#ifndef EV_USE_EPOLL 223#ifndef EV_USE_EPOLL
224# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225# define EV_USE_EPOLL 1
226# else
60# define EV_USE_EPOLL 0 227# define EV_USE_EPOLL 0
61#endif 228# endif
229#endif
62 230
231#ifndef EV_USE_KQUEUE
232# define EV_USE_KQUEUE 0
233#endif
234
63#ifndef EV_USE_REALTIME 235#ifndef EV_USE_PORT
64# define EV_USE_REALTIME 1 /* posix requirement, but might be slower */ 236# define EV_USE_PORT 0
237#endif
238
239#ifndef EV_USE_INOTIFY
240# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
241# define EV_USE_INOTIFY 1
242# else
243# define EV_USE_INOTIFY 0
65#endif 244# endif
245#endif
246
247#ifndef EV_PID_HASHSIZE
248# if EV_MINIMAL
249# define EV_PID_HASHSIZE 1
250# else
251# define EV_PID_HASHSIZE 16
252# endif
253#endif
254
255#ifndef EV_INOTIFY_HASHSIZE
256# if EV_MINIMAL
257# define EV_INOTIFY_HASHSIZE 1
258# else
259# define EV_INOTIFY_HASHSIZE 16
260# endif
261#endif
262
263#ifndef EV_USE_EVENTFD
264# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265# define EV_USE_EVENTFD 1
266# else
267# define EV_USE_EVENTFD 0
268# endif
269#endif
270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
304
305#ifndef CLOCK_MONOTONIC
306# undef EV_USE_MONOTONIC
307# define EV_USE_MONOTONIC 0
308#endif
309
310#ifndef CLOCK_REALTIME
311# undef EV_USE_REALTIME
312# define EV_USE_REALTIME 0
313#endif
314
315#if !EV_STAT_ENABLE
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318#endif
319
320#if !EV_USE_NANOSLEEP
321# ifndef _WIN32
322# include <sys/select.h>
323# endif
324#endif
325
326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
335#endif
336
337#if EV_SELECT_IS_WINSOCKET
338# include <winsock.h>
339#endif
340
341#if EV_USE_EVENTFD
342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343# include <stdint.h>
344# ifdef __cplusplus
345extern "C" {
346# endif
347int eventfd (unsigned int initval, int flags);
348# ifdef __cplusplus
349}
350# endif
351#endif
352
353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
360
361/*
362 * This is used to avoid floating point rounding problems.
363 * It is added to ev_rt_now when scheduling periodics
364 * to ensure progress, time-wise, even when rounding
365 * errors are against us.
366 * This value is good at least till the year 4000.
367 * Better solutions welcome.
368 */
369#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
66 370
67#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 371#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
68#define MAX_BLOCKTIME 59.731 372#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
69#define PID_HASHSIZE 16 /* size of pid hahs table, must be power of two */ 373/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
70 374
71#include "ev.h" 375#if __GNUC__ >= 4
376# define expect(expr,value) __builtin_expect ((expr),(value))
377# define noinline __attribute__ ((noinline))
378#else
379# define expect(expr,value) (expr)
380# define noinline
381# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
382# define inline
383# endif
384#endif
72 385
386#define expect_false(expr) expect ((expr) != 0, 0)
387#define expect_true(expr) expect ((expr) != 0, 1)
388#define inline_size static inline
389
390#if EV_MINIMAL
391# define inline_speed static noinline
392#else
393# define inline_speed static inline
394#endif
395
396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
403
404#define EMPTY /* required for microsofts broken pseudo-c compiler */
405#define EMPTY2(a,b) /* used to suppress some warnings */
406
73typedef struct ev_watcher *W; 407typedef ev_watcher *W;
74typedef struct ev_watcher_list *WL; 408typedef ev_watcher_list *WL;
75typedef struct ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
76 410
77static ev_tstamp now, diff; /* monotonic clock */ 411#define ev_active(w) ((W)(w))->active
78ev_tstamp ev_now; 412#define ev_at(w) ((WT)(w))->at
79int ev_method;
80 413
81static int have_monotonic; /* runtime */ 414#if EV_USE_REALTIME
415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
82 419
83static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 420#if EV_USE_MONOTONIC
84static void (*method_modify)(int fd, int oev, int nev); 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
85static void (*method_poll)(ev_tstamp timeout); 422#endif
423
424#ifdef _WIN32
425# include "ev_win32.c"
426#endif
86 427
87/*****************************************************************************/ 428/*****************************************************************************/
88 429
430static void (*syserr_cb)(const char *msg);
431
432void
433ev_set_syserr_cb (void (*cb)(const char *msg))
434{
435 syserr_cb = cb;
436}
437
438static void noinline
439ev_syserr (const char *msg)
440{
441 if (!msg)
442 msg = "(libev) system error";
443
444 if (syserr_cb)
445 syserr_cb (msg);
446 else
447 {
448 perror (msg);
449 abort ();
450 }
451}
452
453static void *
454ev_realloc_emul (void *ptr, long size)
455{
456 /* some systems, notably openbsd and darwin, fail to properly
457 * implement realloc (x, 0) (as required by both ansi c-98 and
458 * the single unix specification, so work around them here.
459 */
460
461 if (size)
462 return realloc (ptr, size);
463
464 free (ptr);
465 return 0;
466}
467
468static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
469
470void
471ev_set_allocator (void *(*cb)(void *ptr, long size))
472{
473 alloc = cb;
474}
475
476inline_speed void *
477ev_realloc (void *ptr, long size)
478{
479 ptr = alloc (ptr, size);
480
481 if (!ptr && size)
482 {
483 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
484 abort ();
485 }
486
487 return ptr;
488}
489
490#define ev_malloc(size) ev_realloc (0, (size))
491#define ev_free(ptr) ev_realloc ((ptr), 0)
492
493/*****************************************************************************/
494
495/* file descriptor info structure */
496typedef struct
497{
498 WL head;
499 unsigned char events; /* the events watched for */
500 unsigned char reify; /* flag set when this ANFD needs reification */
501 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
502 unsigned char unused;
503#if EV_USE_EPOLL
504 unsigned int egen; /* generation counter to counter epoll bugs */
505#endif
506#if EV_SELECT_IS_WINSOCKET
507 SOCKET handle;
508#endif
509} ANFD;
510
511/* stores the pending event set for a given watcher */
512typedef struct
513{
514 W w;
515 int events; /* the pending event set for the given watcher */
516} ANPENDING;
517
518#if EV_USE_INOTIFY
519/* hash table entry per inotify-id */
520typedef struct
521{
522 WL head;
523} ANFS;
524#endif
525
526/* Heap Entry */
527#if EV_HEAP_CACHE_AT
528 /* a heap element */
529 typedef struct {
530 ev_tstamp at;
531 WT w;
532 } ANHE;
533
534 #define ANHE_w(he) (he).w /* access watcher, read-write */
535 #define ANHE_at(he) (he).at /* access cached at, read-only */
536 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
537#else
538 /* a heap element */
539 typedef WT ANHE;
540
541 #define ANHE_w(he) (he)
542 #define ANHE_at(he) (he)->at
543 #define ANHE_at_cache(he)
544#endif
545
546#if EV_MULTIPLICITY
547
548 struct ev_loop
549 {
550 ev_tstamp ev_rt_now;
551 #define ev_rt_now ((loop)->ev_rt_now)
552 #define VAR(name,decl) decl;
553 #include "ev_vars.h"
554 #undef VAR
555 };
556 #include "ev_wrap.h"
557
558 static struct ev_loop default_loop_struct;
559 struct ev_loop *ev_default_loop_ptr;
560
561#else
562
563 ev_tstamp ev_rt_now;
564 #define VAR(name,decl) static decl;
565 #include "ev_vars.h"
566 #undef VAR
567
568 static int ev_default_loop_ptr;
569
570#endif
571
572/*****************************************************************************/
573
574#ifndef EV_HAVE_EV_TIME
89ev_tstamp 575ev_tstamp
90ev_time (void) 576ev_time (void)
91{ 577{
92#if EV_USE_REALTIME 578#if EV_USE_REALTIME
579 if (expect_true (have_realtime))
580 {
93 struct timespec ts; 581 struct timespec ts;
94 clock_gettime (CLOCK_REALTIME, &ts); 582 clock_gettime (CLOCK_REALTIME, &ts);
95 return ts.tv_sec + ts.tv_nsec * 1e-9; 583 return ts.tv_sec + ts.tv_nsec * 1e-9;
96#else 584 }
585#endif
586
97 struct timeval tv; 587 struct timeval tv;
98 gettimeofday (&tv, 0); 588 gettimeofday (&tv, 0);
99 return tv.tv_sec + tv.tv_usec * 1e-6; 589 return tv.tv_sec + tv.tv_usec * 1e-6;
100#endif
101} 590}
591#endif
102 592
103static ev_tstamp 593inline_size ev_tstamp
104get_clock (void) 594get_clock (void)
105{ 595{
106#if EV_USE_MONOTONIC 596#if EV_USE_MONOTONIC
107 if (have_monotonic) 597 if (expect_true (have_monotonic))
108 { 598 {
109 struct timespec ts; 599 struct timespec ts;
110 clock_gettime (CLOCK_MONOTONIC, &ts); 600 clock_gettime (CLOCK_MONOTONIC, &ts);
111 return ts.tv_sec + ts.tv_nsec * 1e-9; 601 return ts.tv_sec + ts.tv_nsec * 1e-9;
112 } 602 }
113#endif 603#endif
114 604
115 return ev_time (); 605 return ev_time ();
116} 606}
117 607
118#define array_nextsize(n) (((n) << 1) | 4 & ~3) 608#if EV_MULTIPLICITY
119#define array_prevsize(n) (((n) >> 1) | 4 & ~3) 609ev_tstamp
610ev_now (EV_P)
611{
612 return ev_rt_now;
613}
614#endif
120 615
121#define array_needsize(base,cur,cnt,init) \ 616void
122 if ((cnt) > cur) \ 617ev_sleep (ev_tstamp delay)
123 { \ 618{
124 int newcnt = cur; \ 619 if (delay > 0.)
125 do \
126 { \
127 newcnt = array_nextsize (newcnt); \
128 } \
129 while ((cnt) > newcnt); \
130 \
131 base = realloc (base, sizeof (*base) * (newcnt)); \
132 init (base + cur, newcnt - cur); \
133 cur = newcnt; \
134 } 620 {
621#if EV_USE_NANOSLEEP
622 struct timespec ts;
623
624 ts.tv_sec = (time_t)delay;
625 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
626
627 nanosleep (&ts, 0);
628#elif defined(_WIN32)
629 Sleep ((unsigned long)(delay * 1e3));
630#else
631 struct timeval tv;
632
633 tv.tv_sec = (time_t)delay;
634 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
635
636 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
637 /* somehting not guaranteed by newer posix versions, but guaranteed */
638 /* by older ones */
639 select (0, 0, 0, 0, &tv);
640#endif
641 }
642}
135 643
136/*****************************************************************************/ 644/*****************************************************************************/
137 645
138typedef struct 646#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
139{
140 struct ev_io *head;
141 int events;
142} ANFD;
143 647
144static ANFD *anfds; 648/* find a suitable new size for the given array, */
145static int anfdmax; 649/* hopefully by rounding to a ncie-to-malloc size */
146 650inline_size int
147static void 651array_nextsize (int elem, int cur, int cnt)
148anfds_init (ANFD *base, int count)
149{ 652{
150 while (count--) 653 int ncur = cur + 1;
151 { 654
152 base->head = 0; 655 do
153 base->events = EV_NONE; 656 ncur <<= 1;
154 ++base; 657 while (cnt > ncur);
658
659 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
660 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
155 } 661 {
156} 662 ncur *= elem;
157 663 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
158typedef struct 664 ncur = ncur - sizeof (void *) * 4;
159{ 665 ncur /= elem;
160 W w;
161 int events;
162} ANPENDING;
163
164static ANPENDING *pendings;
165static int pendingmax, pendingcnt;
166
167static void
168event (W w, int events)
169{
170 if (w->active)
171 { 666 }
667
668 return ncur;
669}
670
671static noinline void *
672array_realloc (int elem, void *base, int *cur, int cnt)
673{
674 *cur = array_nextsize (elem, *cur, cnt);
675 return ev_realloc (base, elem * *cur);
676}
677
678#define array_init_zero(base,count) \
679 memset ((void *)(base), 0, sizeof (*(base)) * (count))
680
681#define array_needsize(type,base,cur,cnt,init) \
682 if (expect_false ((cnt) > (cur))) \
683 { \
684 int ocur_ = (cur); \
685 (base) = (type *)array_realloc \
686 (sizeof (type), (base), &(cur), (cnt)); \
687 init ((base) + (ocur_), (cur) - ocur_); \
688 }
689
690#if 0
691#define array_slim(type,stem) \
692 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
693 { \
694 stem ## max = array_roundsize (stem ## cnt >> 1); \
695 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
696 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
697 }
698#endif
699
700#define array_free(stem, idx) \
701 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
702
703/*****************************************************************************/
704
705/* dummy callback for pending events */
706static void noinline
707pendingcb (EV_P_ ev_prepare *w, int revents)
708{
709}
710
711void noinline
712ev_feed_event (EV_P_ void *w, int revents)
713{
714 W w_ = (W)w;
715 int pri = ABSPRI (w_);
716
717 if (expect_false (w_->pending))
718 pendings [pri][w_->pending - 1].events |= revents;
719 else
720 {
172 w->pending = ++pendingcnt; 721 w_->pending = ++pendingcnt [pri];
173 array_needsize (pendings, pendingmax, pendingcnt, ); 722 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
174 pendings [pendingcnt - 1].w = w; 723 pendings [pri][w_->pending - 1].w = w_;
175 pendings [pendingcnt - 1].events = events; 724 pendings [pri][w_->pending - 1].events = revents;
176 } 725 }
177} 726}
178 727
179static void 728inline_speed void
729feed_reverse (EV_P_ W w)
730{
731 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
732 rfeeds [rfeedcnt++] = w;
733}
734
735inline_size void
736feed_reverse_done (EV_P_ int revents)
737{
738 do
739 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
740 while (rfeedcnt);
741}
742
743inline_speed void
180queue_events (W *events, int eventcnt, int type) 744queue_events (EV_P_ W *events, int eventcnt, int type)
181{ 745{
182 int i; 746 int i;
183 747
184 for (i = 0; i < eventcnt; ++i) 748 for (i = 0; i < eventcnt; ++i)
185 event (events [i], type); 749 ev_feed_event (EV_A_ events [i], type);
186} 750}
187 751
188static void 752/*****************************************************************************/
753
754inline_speed void
189fd_event (int fd, int events) 755fd_event (EV_P_ int fd, int revents)
190{ 756{
191 ANFD *anfd = anfds + fd; 757 ANFD *anfd = anfds + fd;
192 struct ev_io *w; 758 ev_io *w;
193 759
194 for (w = anfd->head; w; w = w->next) 760 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
195 { 761 {
196 int ev = w->events & events; 762 int ev = w->events & revents;
197 763
198 if (ev) 764 if (ev)
199 event ((W)w, ev); 765 ev_feed_event (EV_A_ (W)w, ev);
200 } 766 }
201} 767}
202 768
203/*****************************************************************************/ 769void
770ev_feed_fd_event (EV_P_ int fd, int revents)
771{
772 if (fd >= 0 && fd < anfdmax)
773 fd_event (EV_A_ fd, revents);
774}
204 775
205static int *fdchanges; 776/* make sure the external fd watch events are in-sync */
206static int fdchangemax, fdchangecnt; 777/* with the kernel/libev internal state */
207 778inline_size void
208static void 779fd_reify (EV_P)
209fd_reify (void)
210{ 780{
211 int i; 781 int i;
212 782
213 for (i = 0; i < fdchangecnt; ++i) 783 for (i = 0; i < fdchangecnt; ++i)
214 { 784 {
215 int fd = fdchanges [i]; 785 int fd = fdchanges [i];
216 ANFD *anfd = anfds + fd; 786 ANFD *anfd = anfds + fd;
217 struct ev_io *w; 787 ev_io *w;
218 788
219 int events = 0; 789 unsigned char events = 0;
220 790
221 for (w = anfd->head; w; w = w->next) 791 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
222 events |= w->events; 792 events |= (unsigned char)w->events;
223 793
224 anfd->events &= ~EV_REIFY; 794#if EV_SELECT_IS_WINSOCKET
225 795 if (events)
226 if (anfd->events != events)
227 { 796 {
228 method_modify (fd, anfd->events, events); 797 unsigned long arg;
229 anfd->events = events; 798 #ifdef EV_FD_TO_WIN32_HANDLE
799 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
800 #else
801 anfd->handle = _get_osfhandle (fd);
802 #endif
803 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
230 } 804 }
805#endif
806
807 {
808 unsigned char o_events = anfd->events;
809 unsigned char o_reify = anfd->reify;
810
811 anfd->reify = 0;
812 anfd->events = events;
813
814 if (o_events != events || o_reify & EV__IOFDSET)
815 backend_modify (EV_A_ fd, o_events, events);
816 }
231 } 817 }
232 818
233 fdchangecnt = 0; 819 fdchangecnt = 0;
234} 820}
235 821
236static void 822/* something about the given fd changed */
237fd_change (int fd) 823inline_size void
824fd_change (EV_P_ int fd, int flags)
238{ 825{
239 if (anfds [fd].events & EV_REIFY || fdchangecnt < 0) 826 unsigned char reify = anfds [fd].reify;
240 return; 827 anfds [fd].reify |= flags;
241 828
242 anfds [fd].events |= EV_REIFY; 829 if (expect_true (!reify))
243 830 {
244 ++fdchangecnt; 831 ++fdchangecnt;
245 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 832 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
246 fdchanges [fdchangecnt - 1] = fd; 833 fdchanges [fdchangecnt - 1] = fd;
834 }
835}
836
837/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
838inline_speed void
839fd_kill (EV_P_ int fd)
840{
841 ev_io *w;
842
843 while ((w = (ev_io *)anfds [fd].head))
844 {
845 ev_io_stop (EV_A_ w);
846 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
847 }
848}
849
850/* check whether the given fd is atcually valid, for error recovery */
851inline_size int
852fd_valid (int fd)
853{
854#ifdef _WIN32
855 return _get_osfhandle (fd) != -1;
856#else
857 return fcntl (fd, F_GETFD) != -1;
858#endif
247} 859}
248 860
249/* called on EBADF to verify fds */ 861/* called on EBADF to verify fds */
250static void 862static void noinline
251fd_recheck (void) 863fd_ebadf (EV_P)
252{ 864{
253 int fd; 865 int fd;
254 866
255 for (fd = 0; fd < anfdmax; ++fd) 867 for (fd = 0; fd < anfdmax; ++fd)
256 if (anfds [fd].events) 868 if (anfds [fd].events)
257 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 869 if (!fd_valid (fd) && errno == EBADF)
258 while (anfds [fd].head) 870 fd_kill (EV_A_ fd);
871}
872
873/* called on ENOMEM in select/poll to kill some fds and retry */
874static void noinline
875fd_enomem (EV_P)
876{
877 int fd;
878
879 for (fd = anfdmax; fd--; )
880 if (anfds [fd].events)
259 { 881 {
260 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT); 882 fd_kill (EV_A_ fd);
261 ev_io_stop (anfds [fd].head); 883 return;
262 } 884 }
885}
886
887/* usually called after fork if backend needs to re-arm all fds from scratch */
888static void noinline
889fd_rearm_all (EV_P)
890{
891 int fd;
892
893 for (fd = 0; fd < anfdmax; ++fd)
894 if (anfds [fd].events)
895 {
896 anfds [fd].events = 0;
897 anfds [fd].emask = 0;
898 fd_change (EV_A_ fd, EV__IOFDSET | 1);
899 }
263} 900}
264 901
265/*****************************************************************************/ 902/*****************************************************************************/
266 903
267static struct ev_timer **timers; 904/*
268static int timermax, timercnt; 905 * the heap functions want a real array index. array index 0 uis guaranteed to not
906 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
907 * the branching factor of the d-tree.
908 */
269 909
270static struct ev_periodic **periodics; 910/*
271static int periodicmax, periodiccnt; 911 * at the moment we allow libev the luxury of two heaps,
912 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
913 * which is more cache-efficient.
914 * the difference is about 5% with 50000+ watchers.
915 */
916#if EV_USE_4HEAP
272 917
273static void 918#define DHEAP 4
274upheap (WT *timers, int k) 919#define HEAP0 (DHEAP - 1) /* index of first element in heap */
275{ 920#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
276 WT w = timers [k]; 921#define UPHEAP_DONE(p,k) ((p) == (k))
277 922
278 while (k && timers [k >> 1]->at > w->at) 923/* away from the root */
279 { 924inline_speed void
280 timers [k] = timers [k >> 1];
281 timers [k]->active = k + 1;
282 k >>= 1;
283 }
284
285 timers [k] = w;
286 timers [k]->active = k + 1;
287
288}
289
290static void
291downheap (WT *timers, int N, int k) 925downheap (ANHE *heap, int N, int k)
292{ 926{
293 WT w = timers [k]; 927 ANHE he = heap [k];
928 ANHE *E = heap + N + HEAP0;
294 929
295 while (k < (N >> 1)) 930 for (;;)
296 { 931 {
297 int j = k << 1; 932 ev_tstamp minat;
933 ANHE *minpos;
934 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
298 935
299 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 936 /* find minimum child */
937 if (expect_true (pos + DHEAP - 1 < E))
300 ++j; 938 {
301 939 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
302 if (w->at <= timers [j]->at) 940 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
941 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
942 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
943 }
944 else if (pos < E)
945 {
946 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
947 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
948 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
949 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
950 }
951 else
303 break; 952 break;
304 953
305 timers [k] = timers [j]; 954 if (ANHE_at (he) <= minat)
306 timers [k]->active = k + 1; 955 break;
956
957 heap [k] = *minpos;
958 ev_active (ANHE_w (*minpos)) = k;
959
960 k = minpos - heap;
961 }
962
963 heap [k] = he;
964 ev_active (ANHE_w (he)) = k;
965}
966
967#else /* 4HEAP */
968
969#define HEAP0 1
970#define HPARENT(k) ((k) >> 1)
971#define UPHEAP_DONE(p,k) (!(p))
972
973/* away from the root */
974inline_speed void
975downheap (ANHE *heap, int N, int k)
976{
977 ANHE he = heap [k];
978
979 for (;;)
980 {
981 int c = k << 1;
982
983 if (c > N + HEAP0 - 1)
984 break;
985
986 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
987 ? 1 : 0;
988
989 if (ANHE_at (he) <= ANHE_at (heap [c]))
990 break;
991
992 heap [k] = heap [c];
993 ev_active (ANHE_w (heap [k])) = k;
994
307 k = j; 995 k = c;
996 }
997
998 heap [k] = he;
999 ev_active (ANHE_w (he)) = k;
1000}
1001#endif
1002
1003/* towards the root */
1004inline_speed void
1005upheap (ANHE *heap, int k)
1006{
1007 ANHE he = heap [k];
1008
1009 for (;;)
308 } 1010 {
1011 int p = HPARENT (k);
309 1012
310 timers [k] = w; 1013 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
311 timers [k]->active = k + 1; 1014 break;
1015
1016 heap [k] = heap [p];
1017 ev_active (ANHE_w (heap [k])) = k;
1018 k = p;
1019 }
1020
1021 heap [k] = he;
1022 ev_active (ANHE_w (he)) = k;
1023}
1024
1025/* move an element suitably so it is in a correct place */
1026inline_size void
1027adjustheap (ANHE *heap, int N, int k)
1028{
1029 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
1030 upheap (heap, k);
1031 else
1032 downheap (heap, N, k);
1033}
1034
1035/* rebuild the heap: this function is used only once and executed rarely */
1036inline_size void
1037reheap (ANHE *heap, int N)
1038{
1039 int i;
1040
1041 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1042 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1043 for (i = 0; i < N; ++i)
1044 upheap (heap, i + HEAP0);
312} 1045}
313 1046
314/*****************************************************************************/ 1047/*****************************************************************************/
315 1048
1049/* associate signal watchers to a signal signal */
316typedef struct 1050typedef struct
317{ 1051{
318 struct ev_signal *head; 1052 WL head;
319 sig_atomic_t gotsig; 1053 EV_ATOMIC_T gotsig;
320} ANSIG; 1054} ANSIG;
321 1055
322static ANSIG *signals; 1056static ANSIG *signals;
323static int signalmax; 1057static int signalmax;
324 1058
325static int sigpipe [2]; 1059static EV_ATOMIC_T gotsig;
326static sig_atomic_t gotsig;
327static struct ev_io sigev;
328 1060
1061/*****************************************************************************/
1062
1063/* used to prepare libev internal fd's */
1064/* this is not fork-safe */
1065inline_speed void
1066fd_intern (int fd)
1067{
1068#ifdef _WIN32
1069 unsigned long arg = 1;
1070 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1071#else
1072 fcntl (fd, F_SETFD, FD_CLOEXEC);
1073 fcntl (fd, F_SETFL, O_NONBLOCK);
1074#endif
1075}
1076
1077static void noinline
1078evpipe_init (EV_P)
1079{
1080 if (!ev_is_active (&pipe_w))
1081 {
1082#if EV_USE_EVENTFD
1083 if ((evfd = eventfd (0, 0)) >= 0)
1084 {
1085 evpipe [0] = -1;
1086 fd_intern (evfd);
1087 ev_io_set (&pipe_w, evfd, EV_READ);
1088 }
1089 else
1090#endif
1091 {
1092 while (pipe (evpipe))
1093 ev_syserr ("(libev) error creating signal/async pipe");
1094
1095 fd_intern (evpipe [0]);
1096 fd_intern (evpipe [1]);
1097 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1098 }
1099
1100 ev_io_start (EV_A_ &pipe_w);
1101 ev_unref (EV_A); /* watcher should not keep loop alive */
1102 }
1103}
1104
1105inline_size void
1106evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1107{
1108 if (!*flag)
1109 {
1110 int old_errno = errno; /* save errno because write might clobber it */
1111
1112 *flag = 1;
1113
1114#if EV_USE_EVENTFD
1115 if (evfd >= 0)
1116 {
1117 uint64_t counter = 1;
1118 write (evfd, &counter, sizeof (uint64_t));
1119 }
1120 else
1121#endif
1122 write (evpipe [1], &old_errno, 1);
1123
1124 errno = old_errno;
1125 }
1126}
1127
1128/* called whenever the libev signal pipe */
1129/* got some events (signal, async) */
329static void 1130static void
330signals_init (ANSIG *base, int count) 1131pipecb (EV_P_ ev_io *iow, int revents)
331{ 1132{
332 while (count--) 1133#if EV_USE_EVENTFD
1134 if (evfd >= 0)
1135 {
1136 uint64_t counter;
1137 read (evfd, &counter, sizeof (uint64_t));
333 { 1138 }
334 base->head = 0; 1139 else
1140#endif
1141 {
1142 char dummy;
1143 read (evpipe [0], &dummy, 1);
1144 }
1145
1146 if (gotsig && ev_is_default_loop (EV_A))
1147 {
1148 int signum;
335 base->gotsig = 0; 1149 gotsig = 0;
336 ++base; 1150
1151 for (signum = signalmax; signum--; )
1152 if (signals [signum].gotsig)
1153 ev_feed_signal_event (EV_A_ signum + 1);
1154 }
1155
1156#if EV_ASYNC_ENABLE
1157 if (gotasync)
337 } 1158 {
1159 int i;
1160 gotasync = 0;
1161
1162 for (i = asynccnt; i--; )
1163 if (asyncs [i]->sent)
1164 {
1165 asyncs [i]->sent = 0;
1166 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1167 }
1168 }
1169#endif
338} 1170}
1171
1172/*****************************************************************************/
339 1173
340static void 1174static void
341sighandler (int signum) 1175ev_sighandler (int signum)
342{ 1176{
1177#if EV_MULTIPLICITY
1178 struct ev_loop *loop = &default_loop_struct;
1179#endif
1180
1181#if _WIN32
1182 signal (signum, ev_sighandler);
1183#endif
1184
343 signals [signum - 1].gotsig = 1; 1185 signals [signum - 1].gotsig = 1;
344 1186 evpipe_write (EV_A_ &gotsig);
345 if (!gotsig)
346 {
347 gotsig = 1;
348 write (sigpipe [1], &gotsig, 1);
349 }
350} 1187}
351 1188
352static void 1189void noinline
353sigcb (struct ev_io *iow, int revents) 1190ev_feed_signal_event (EV_P_ int signum)
354{ 1191{
355 struct ev_signal *w; 1192 WL w;
356 int sig;
357 1193
358 gotsig = 0; 1194#if EV_MULTIPLICITY
359 read (sigpipe [0], &revents, 1); 1195 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1196#endif
360 1197
361 for (sig = signalmax; sig--; ) 1198 --signum;
362 if (signals [sig].gotsig) 1199
363 { 1200 if (signum < 0 || signum >= signalmax)
1201 return;
1202
364 signals [sig].gotsig = 0; 1203 signals [signum].gotsig = 0;
365 1204
366 for (w = signals [sig].head; w; w = w->next) 1205 for (w = signals [signum].head; w; w = w->next)
367 event ((W)w, EV_SIGNAL); 1206 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
368 }
369}
370
371static void
372siginit (void)
373{
374 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
375 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
376
377 /* rather than sort out wether we really need nb, set it */
378 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
379 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
380
381 ev_io_set (&sigev, sigpipe [0], EV_READ);
382 ev_io_start (&sigev);
383} 1207}
384 1208
385/*****************************************************************************/ 1209/*****************************************************************************/
386 1210
387static struct ev_idle **idles; 1211static WL childs [EV_PID_HASHSIZE];
388static int idlemax, idlecnt;
389 1212
390static struct ev_prepare **prepares; 1213#ifndef _WIN32
391static int preparemax, preparecnt;
392 1214
393static struct ev_check **checks;
394static int checkmax, checkcnt;
395
396/*****************************************************************************/
397
398static struct ev_child *childs [PID_HASHSIZE];
399static struct ev_signal childev; 1215static ev_signal childev;
1216
1217#ifndef WIFCONTINUED
1218# define WIFCONTINUED(status) 0
1219#endif
1220
1221/* handle a single child status event */
1222inline_speed void
1223child_reap (EV_P_ int chain, int pid, int status)
1224{
1225 ev_child *w;
1226 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1227
1228 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1229 {
1230 if ((w->pid == pid || !w->pid)
1231 && (!traced || (w->flags & 1)))
1232 {
1233 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1234 w->rpid = pid;
1235 w->rstatus = status;
1236 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1237 }
1238 }
1239}
400 1240
401#ifndef WCONTINUED 1241#ifndef WCONTINUED
402# define WCONTINUED 0 1242# define WCONTINUED 0
403#endif 1243#endif
404 1244
1245/* called on sigchld etc., calls waitpid */
405static void 1246static void
406childcb (struct ev_signal *sw, int revents) 1247childcb (EV_P_ ev_signal *sw, int revents)
407{ 1248{
408 struct ev_child *w;
409 int pid, status; 1249 int pid, status;
410 1250
1251 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
411 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 1252 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
412 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 1253 if (!WCONTINUED
413 if (w->pid == pid || w->pid == -1) 1254 || errno != EINVAL
414 { 1255 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
415 w->status = status; 1256 return;
416 event ((W)w, EV_CHILD); 1257
417 } 1258 /* make sure we are called again until all children have been reaped */
1259 /* we need to do it this way so that the callback gets called before we continue */
1260 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1261
1262 child_reap (EV_A_ pid, pid, status);
1263 if (EV_PID_HASHSIZE > 1)
1264 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
418} 1265}
1266
1267#endif
419 1268
420/*****************************************************************************/ 1269/*****************************************************************************/
421 1270
1271#if EV_USE_PORT
1272# include "ev_port.c"
1273#endif
1274#if EV_USE_KQUEUE
1275# include "ev_kqueue.c"
1276#endif
422#if EV_USE_EPOLL 1277#if EV_USE_EPOLL
423# include "ev_epoll.c" 1278# include "ev_epoll.c"
424#endif 1279#endif
1280#if EV_USE_POLL
1281# include "ev_poll.c"
1282#endif
425#if EV_USE_SELECT 1283#if EV_USE_SELECT
426# include "ev_select.c" 1284# include "ev_select.c"
427#endif 1285#endif
428 1286
429int 1287int
436ev_version_minor (void) 1294ev_version_minor (void)
437{ 1295{
438 return EV_VERSION_MINOR; 1296 return EV_VERSION_MINOR;
439} 1297}
440 1298
441int ev_init (int flags) 1299/* return true if we are running with elevated privileges and should ignore env variables */
1300int inline_size
1301enable_secure (void)
442{ 1302{
443 if (!ev_method) 1303#ifdef _WIN32
1304 return 0;
1305#else
1306 return getuid () != geteuid ()
1307 || getgid () != getegid ();
1308#endif
1309}
1310
1311unsigned int
1312ev_supported_backends (void)
1313{
1314 unsigned int flags = 0;
1315
1316 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1317 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1318 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1319 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1320 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1321
1322 return flags;
1323}
1324
1325unsigned int
1326ev_recommended_backends (void)
1327{
1328 unsigned int flags = ev_supported_backends ();
1329
1330#ifndef __NetBSD__
1331 /* kqueue is borked on everything but netbsd apparently */
1332 /* it usually doesn't work correctly on anything but sockets and pipes */
1333 flags &= ~EVBACKEND_KQUEUE;
1334#endif
1335#ifdef __APPLE__
1336 /* only select works correctly on that "unix-certified" platform */
1337 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1338 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1339#endif
1340
1341 return flags;
1342}
1343
1344unsigned int
1345ev_embeddable_backends (void)
1346{
1347 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1348
1349 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1350 /* please fix it and tell me how to detect the fix */
1351 flags &= ~EVBACKEND_EPOLL;
1352
1353 return flags;
1354}
1355
1356unsigned int
1357ev_backend (EV_P)
1358{
1359 return backend;
1360}
1361
1362unsigned int
1363ev_loop_count (EV_P)
1364{
1365 return loop_count;
1366}
1367
1368unsigned int
1369ev_loop_depth (EV_P)
1370{
1371 return loop_depth;
1372}
1373
1374void
1375ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1376{
1377 io_blocktime = interval;
1378}
1379
1380void
1381ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1382{
1383 timeout_blocktime = interval;
1384}
1385
1386/* initialise a loop structure, must be zero-initialised */
1387static void noinline
1388loop_init (EV_P_ unsigned int flags)
1389{
1390 if (!backend)
444 { 1391 {
1392#if EV_USE_REALTIME
1393 if (!have_realtime)
1394 {
1395 struct timespec ts;
1396
1397 if (!clock_gettime (CLOCK_REALTIME, &ts))
1398 have_realtime = 1;
1399 }
1400#endif
1401
445#if EV_USE_MONOTONIC 1402#if EV_USE_MONOTONIC
1403 if (!have_monotonic)
1404 {
1405 struct timespec ts;
1406
1407 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1408 have_monotonic = 1;
1409 }
1410#endif
1411
1412 ev_rt_now = ev_time ();
1413 mn_now = get_clock ();
1414 now_floor = mn_now;
1415 rtmn_diff = ev_rt_now - mn_now;
1416
1417 io_blocktime = 0.;
1418 timeout_blocktime = 0.;
1419 backend = 0;
1420 backend_fd = -1;
1421 gotasync = 0;
1422#if EV_USE_INOTIFY
1423 fs_fd = -2;
1424#endif
1425
1426 /* pid check not overridable via env */
1427#ifndef _WIN32
1428 if (flags & EVFLAG_FORKCHECK)
1429 curpid = getpid ();
1430#endif
1431
1432 if (!(flags & EVFLAG_NOENV)
1433 && !enable_secure ()
1434 && getenv ("LIBEV_FLAGS"))
1435 flags = atoi (getenv ("LIBEV_FLAGS"));
1436
1437 if (!(flags & 0x0000ffffU))
1438 flags |= ev_recommended_backends ();
1439
1440#if EV_USE_PORT
1441 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1442#endif
1443#if EV_USE_KQUEUE
1444 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1445#endif
1446#if EV_USE_EPOLL
1447 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1448#endif
1449#if EV_USE_POLL
1450 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1451#endif
1452#if EV_USE_SELECT
1453 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1454#endif
1455
1456 ev_prepare_init (&pending_w, pendingcb);
1457
1458 ev_init (&pipe_w, pipecb);
1459 ev_set_priority (&pipe_w, EV_MAXPRI);
1460 }
1461}
1462
1463/* free up a loop structure */
1464static void noinline
1465loop_destroy (EV_P)
1466{
1467 int i;
1468
1469 if (ev_is_active (&pipe_w))
1470 {
1471 ev_ref (EV_A); /* signal watcher */
1472 ev_io_stop (EV_A_ &pipe_w);
1473
1474#if EV_USE_EVENTFD
1475 if (evfd >= 0)
1476 close (evfd);
1477#endif
1478
1479 if (evpipe [0] >= 0)
1480 {
1481 close (evpipe [0]);
1482 close (evpipe [1]);
1483 }
1484 }
1485
1486#if EV_USE_INOTIFY
1487 if (fs_fd >= 0)
1488 close (fs_fd);
1489#endif
1490
1491 if (backend_fd >= 0)
1492 close (backend_fd);
1493
1494#if EV_USE_PORT
1495 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1496#endif
1497#if EV_USE_KQUEUE
1498 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1499#endif
1500#if EV_USE_EPOLL
1501 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1502#endif
1503#if EV_USE_POLL
1504 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1505#endif
1506#if EV_USE_SELECT
1507 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1508#endif
1509
1510 for (i = NUMPRI; i--; )
1511 {
1512 array_free (pending, [i]);
1513#if EV_IDLE_ENABLE
1514 array_free (idle, [i]);
1515#endif
1516 }
1517
1518 ev_free (anfds); anfdmax = 0;
1519
1520 /* have to use the microsoft-never-gets-it-right macro */
1521 array_free (rfeed, EMPTY);
1522 array_free (fdchange, EMPTY);
1523 array_free (timer, EMPTY);
1524#if EV_PERIODIC_ENABLE
1525 array_free (periodic, EMPTY);
1526#endif
1527#if EV_FORK_ENABLE
1528 array_free (fork, EMPTY);
1529#endif
1530 array_free (prepare, EMPTY);
1531 array_free (check, EMPTY);
1532#if EV_ASYNC_ENABLE
1533 array_free (async, EMPTY);
1534#endif
1535
1536 backend = 0;
1537}
1538
1539#if EV_USE_INOTIFY
1540inline_size void infy_fork (EV_P);
1541#endif
1542
1543inline_size void
1544loop_fork (EV_P)
1545{
1546#if EV_USE_PORT
1547 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1548#endif
1549#if EV_USE_KQUEUE
1550 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1551#endif
1552#if EV_USE_EPOLL
1553 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1554#endif
1555#if EV_USE_INOTIFY
1556 infy_fork (EV_A);
1557#endif
1558
1559 if (ev_is_active (&pipe_w))
1560 {
1561 /* this "locks" the handlers against writing to the pipe */
1562 /* while we modify the fd vars */
1563 gotsig = 1;
1564#if EV_ASYNC_ENABLE
1565 gotasync = 1;
1566#endif
1567
1568 ev_ref (EV_A);
1569 ev_io_stop (EV_A_ &pipe_w);
1570
1571#if EV_USE_EVENTFD
1572 if (evfd >= 0)
1573 close (evfd);
1574#endif
1575
1576 if (evpipe [0] >= 0)
1577 {
1578 close (evpipe [0]);
1579 close (evpipe [1]);
1580 }
1581
1582 evpipe_init (EV_A);
1583 /* now iterate over everything, in case we missed something */
1584 pipecb (EV_A_ &pipe_w, EV_READ);
1585 }
1586
1587 postfork = 0;
1588}
1589
1590#if EV_MULTIPLICITY
1591
1592struct ev_loop *
1593ev_loop_new (unsigned int flags)
1594{
1595 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1596
1597 memset (loop, 0, sizeof (struct ev_loop));
1598
1599 loop_init (EV_A_ flags);
1600
1601 if (ev_backend (EV_A))
1602 return loop;
1603
1604 return 0;
1605}
1606
1607void
1608ev_loop_destroy (EV_P)
1609{
1610 loop_destroy (EV_A);
1611 ev_free (loop);
1612}
1613
1614void
1615ev_loop_fork (EV_P)
1616{
1617 postfork = 1; /* must be in line with ev_default_fork */
1618}
1619
1620#if EV_VERIFY
1621static void noinline
1622verify_watcher (EV_P_ W w)
1623{
1624 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1625
1626 if (w->pending)
1627 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1628}
1629
1630static void noinline
1631verify_heap (EV_P_ ANHE *heap, int N)
1632{
1633 int i;
1634
1635 for (i = HEAP0; i < N + HEAP0; ++i)
1636 {
1637 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1638 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1639 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1640
1641 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1642 }
1643}
1644
1645static void noinline
1646array_verify (EV_P_ W *ws, int cnt)
1647{
1648 while (cnt--)
1649 {
1650 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1651 verify_watcher (EV_A_ ws [cnt]);
1652 }
1653}
1654#endif
1655
1656void
1657ev_loop_verify (EV_P)
1658{
1659#if EV_VERIFY
1660 int i;
1661 WL w;
1662
1663 assert (activecnt >= -1);
1664
1665 assert (fdchangemax >= fdchangecnt);
1666 for (i = 0; i < fdchangecnt; ++i)
1667 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1668
1669 assert (anfdmax >= 0);
1670 for (i = 0; i < anfdmax; ++i)
1671 for (w = anfds [i].head; w; w = w->next)
446 { 1672 {
447 struct timespec ts; 1673 verify_watcher (EV_A_ (W)w);
448 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1674 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
449 have_monotonic = 1; 1675 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
450 } 1676 }
1677
1678 assert (timermax >= timercnt);
1679 verify_heap (EV_A_ timers, timercnt);
1680
1681#if EV_PERIODIC_ENABLE
1682 assert (periodicmax >= periodiccnt);
1683 verify_heap (EV_A_ periodics, periodiccnt);
1684#endif
1685
1686 for (i = NUMPRI; i--; )
1687 {
1688 assert (pendingmax [i] >= pendingcnt [i]);
1689#if EV_IDLE_ENABLE
1690 assert (idleall >= 0);
1691 assert (idlemax [i] >= idlecnt [i]);
1692 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1693#endif
1694 }
1695
1696#if EV_FORK_ENABLE
1697 assert (forkmax >= forkcnt);
1698 array_verify (EV_A_ (W *)forks, forkcnt);
1699#endif
1700
1701#if EV_ASYNC_ENABLE
1702 assert (asyncmax >= asynccnt);
1703 array_verify (EV_A_ (W *)asyncs, asynccnt);
1704#endif
1705
1706 assert (preparemax >= preparecnt);
1707 array_verify (EV_A_ (W *)prepares, preparecnt);
1708
1709 assert (checkmax >= checkcnt);
1710 array_verify (EV_A_ (W *)checks, checkcnt);
1711
1712# if 0
1713 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1714 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
451#endif 1715# endif
452
453 ev_now = ev_time ();
454 now = get_clock ();
455 diff = ev_now - now;
456
457 if (pipe (sigpipe))
458 return 0;
459
460 ev_method = EVMETHOD_NONE;
461#if EV_USE_EPOLL
462 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
463#endif 1716#endif
464#if EV_USE_SELECT 1717}
465 if (ev_method == EVMETHOD_NONE) select_init (flags);
466#endif
467 1718
468 if (ev_method) 1719#endif /* multiplicity */
1720
1721#if EV_MULTIPLICITY
1722struct ev_loop *
1723ev_default_loop_init (unsigned int flags)
1724#else
1725int
1726ev_default_loop (unsigned int flags)
1727#endif
1728{
1729 if (!ev_default_loop_ptr)
1730 {
1731#if EV_MULTIPLICITY
1732 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1733#else
1734 ev_default_loop_ptr = 1;
1735#endif
1736
1737 loop_init (EV_A_ flags);
1738
1739 if (ev_backend (EV_A))
469 { 1740 {
470 ev_watcher_init (&sigev, sigcb); 1741#ifndef _WIN32
471 siginit ();
472
473 ev_signal_init (&childev, childcb, SIGCHLD); 1742 ev_signal_init (&childev, childcb, SIGCHLD);
1743 ev_set_priority (&childev, EV_MAXPRI);
474 ev_signal_start (&childev); 1744 ev_signal_start (EV_A_ &childev);
475 } 1745 ev_unref (EV_A); /* child watcher should not keep loop alive */
476 }
477
478 return ev_method;
479}
480
481/*****************************************************************************/
482
483void
484ev_prefork (void)
485{
486 /* nop */
487}
488
489void
490ev_postfork_parent (void)
491{
492 /* nop */
493}
494
495void
496ev_postfork_child (void)
497{
498#if EV_USE_EPOLL
499 if (ev_method == EVMETHOD_EPOLL)
500 epoll_postfork_child ();
501#endif 1746#endif
502
503 ev_io_stop (&sigev);
504 close (sigpipe [0]);
505 close (sigpipe [1]);
506 pipe (sigpipe);
507 siginit ();
508}
509
510/*****************************************************************************/
511
512static void
513call_pending (void)
514{
515 while (pendingcnt)
516 {
517 ANPENDING *p = pendings + --pendingcnt;
518
519 if (p->w)
520 {
521 p->w->pending = 0;
522 p->w->cb (p->w, p->events);
523 }
524 }
525}
526
527static void
528timers_reify (void)
529{
530 while (timercnt && timers [0]->at <= now)
531 {
532 struct ev_timer *w = timers [0];
533
534 event ((W)w, EV_TIMEOUT);
535
536 /* first reschedule or stop timer */
537 if (w->repeat)
538 {
539 w->at = now + w->repeat;
540 assert (("timer timeout in the past, negative repeat?", w->at > now));
541 downheap ((WT *)timers, timercnt, 0);
542 } 1747 }
543 else 1748 else
544 ev_timer_stop (w); /* nonrepeating: stop timer */ 1749 ev_default_loop_ptr = 0;
545 } 1750 }
546}
547 1751
548static void 1752 return ev_default_loop_ptr;
549periodics_reify (void) 1753}
1754
1755void
1756ev_default_destroy (void)
550{ 1757{
551 while (periodiccnt && periodics [0]->at <= ev_now) 1758#if EV_MULTIPLICITY
1759 struct ev_loop *loop = ev_default_loop_ptr;
1760#endif
1761
1762 ev_default_loop_ptr = 0;
1763
1764#ifndef _WIN32
1765 ev_ref (EV_A); /* child watcher */
1766 ev_signal_stop (EV_A_ &childev);
1767#endif
1768
1769 loop_destroy (EV_A);
1770}
1771
1772void
1773ev_default_fork (void)
1774{
1775#if EV_MULTIPLICITY
1776 struct ev_loop *loop = ev_default_loop_ptr;
1777#endif
1778
1779 postfork = 1; /* must be in line with ev_loop_fork */
1780}
1781
1782/*****************************************************************************/
1783
1784void
1785ev_invoke (EV_P_ void *w, int revents)
1786{
1787 EV_CB_INVOKE ((W)w, revents);
1788}
1789
1790inline_speed void
1791call_pending (EV_P)
1792{
1793 int pri;
1794
1795 for (pri = NUMPRI; pri--; )
1796 while (pendingcnt [pri])
552 { 1797 {
553 struct ev_periodic *w = periodics [0]; 1798 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
554 1799
555 /* first reschedule or stop timer */ 1800 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
556 if (w->interval) 1801 /* ^ this is no longer true, as pending_w could be here */
1802
1803 p->w->pending = 0;
1804 EV_CB_INVOKE (p->w, p->events);
1805 EV_FREQUENT_CHECK;
1806 }
1807}
1808
1809#if EV_IDLE_ENABLE
1810/* make idle watchers pending. this handles the "call-idle */
1811/* only when higher priorities are idle" logic */
1812inline_size void
1813idle_reify (EV_P)
1814{
1815 if (expect_false (idleall))
1816 {
1817 int pri;
1818
1819 for (pri = NUMPRI; pri--; )
557 { 1820 {
558 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 1821 if (pendingcnt [pri])
559 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 1822 break;
560 downheap ((WT *)periodics, periodiccnt, 0);
561 }
562 else
563 ev_periodic_stop (w); /* nonrepeating: stop timer */
564 1823
565 event ((W)w, EV_TIMEOUT); 1824 if (idlecnt [pri])
566 }
567}
568
569static void
570periodics_reschedule (ev_tstamp diff)
571{
572 int i;
573
574 /* adjust periodics after time jump */
575 for (i = 0; i < periodiccnt; ++i)
576 {
577 struct ev_periodic *w = periodics [i];
578
579 if (w->interval)
580 {
581 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval;
582
583 if (fabs (diff) >= 1e-4)
584 { 1825 {
585 ev_periodic_stop (w); 1826 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
586 ev_periodic_start (w); 1827 break;
587
588 i = 0; /* restart loop, inefficient, but time jumps should be rare */
589 } 1828 }
590 } 1829 }
591 } 1830 }
592} 1831}
1832#endif
593 1833
594static void 1834/* make timers pending */
595time_update (void) 1835inline_size void
1836timers_reify (EV_P)
1837{
1838 EV_FREQUENT_CHECK;
1839
1840 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1841 {
1842 do
1843 {
1844 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1845
1846 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1847
1848 /* first reschedule or stop timer */
1849 if (w->repeat)
1850 {
1851 ev_at (w) += w->repeat;
1852 if (ev_at (w) < mn_now)
1853 ev_at (w) = mn_now;
1854
1855 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1856
1857 ANHE_at_cache (timers [HEAP0]);
1858 downheap (timers, timercnt, HEAP0);
1859 }
1860 else
1861 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1862
1863 EV_FREQUENT_CHECK;
1864 feed_reverse (EV_A_ (W)w);
1865 }
1866 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1867
1868 feed_reverse_done (EV_A_ EV_TIMEOUT);
1869 }
1870}
1871
1872#if EV_PERIODIC_ENABLE
1873/* make periodics pending */
1874inline_size void
1875periodics_reify (EV_P)
1876{
1877 EV_FREQUENT_CHECK;
1878
1879 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1880 {
1881 int feed_count = 0;
1882
1883 do
1884 {
1885 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1886
1887 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1888
1889 /* first reschedule or stop timer */
1890 if (w->reschedule_cb)
1891 {
1892 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1893
1894 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1895
1896 ANHE_at_cache (periodics [HEAP0]);
1897 downheap (periodics, periodiccnt, HEAP0);
1898 }
1899 else if (w->interval)
1900 {
1901 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1902 /* if next trigger time is not sufficiently in the future, put it there */
1903 /* this might happen because of floating point inexactness */
1904 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1905 {
1906 ev_at (w) += w->interval;
1907
1908 /* if interval is unreasonably low we might still have a time in the past */
1909 /* so correct this. this will make the periodic very inexact, but the user */
1910 /* has effectively asked to get triggered more often than possible */
1911 if (ev_at (w) < ev_rt_now)
1912 ev_at (w) = ev_rt_now;
1913 }
1914
1915 ANHE_at_cache (periodics [HEAP0]);
1916 downheap (periodics, periodiccnt, HEAP0);
1917 }
1918 else
1919 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1920
1921 EV_FREQUENT_CHECK;
1922 feed_reverse (EV_A_ (W)w);
1923 }
1924 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1925
1926 feed_reverse_done (EV_A_ EV_PERIODIC);
1927 }
1928}
1929
1930/* simply recalculate all periodics */
1931/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1932static void noinline
1933periodics_reschedule (EV_P)
596{ 1934{
597 int i; 1935 int i;
598 1936
599 ev_now = ev_time (); 1937 /* adjust periodics after time jump */
1938 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1939 {
1940 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
600 1941
601 if (have_monotonic) 1942 if (w->reschedule_cb)
1943 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1944 else if (w->interval)
1945 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1946
1947 ANHE_at_cache (periodics [i]);
602 { 1948 }
1949
1950 reheap (periodics, periodiccnt);
1951}
1952#endif
1953
1954/* adjust all timers by a given offset */
1955static void noinline
1956timers_reschedule (EV_P_ ev_tstamp adjust)
1957{
1958 int i;
1959
1960 for (i = 0; i < timercnt; ++i)
1961 {
1962 ANHE *he = timers + i + HEAP0;
1963 ANHE_w (*he)->at += adjust;
1964 ANHE_at_cache (*he);
1965 }
1966}
1967
1968/* fetch new monotonic and realtime times from the kernel */
1969/* also detetc if there was a timejump, and act accordingly */
1970inline_speed void
1971time_update (EV_P_ ev_tstamp max_block)
1972{
1973#if EV_USE_MONOTONIC
1974 if (expect_true (have_monotonic))
1975 {
1976 int i;
603 ev_tstamp odiff = diff; 1977 ev_tstamp odiff = rtmn_diff;
604 1978
605 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1979 mn_now = get_clock ();
1980
1981 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1982 /* interpolate in the meantime */
1983 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
606 { 1984 {
607 now = get_clock (); 1985 ev_rt_now = rtmn_diff + mn_now;
1986 return;
1987 }
1988
1989 now_floor = mn_now;
1990 ev_rt_now = ev_time ();
1991
1992 /* loop a few times, before making important decisions.
1993 * on the choice of "4": one iteration isn't enough,
1994 * in case we get preempted during the calls to
1995 * ev_time and get_clock. a second call is almost guaranteed
1996 * to succeed in that case, though. and looping a few more times
1997 * doesn't hurt either as we only do this on time-jumps or
1998 * in the unlikely event of having been preempted here.
1999 */
2000 for (i = 4; --i; )
2001 {
608 diff = ev_now - now; 2002 rtmn_diff = ev_rt_now - mn_now;
609 2003
610 if (fabs (odiff - diff) < MIN_TIMEJUMP) 2004 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
611 return; /* all is well */ 2005 return; /* all is well */
612 2006
613 ev_now = ev_time (); 2007 ev_rt_now = ev_time ();
2008 mn_now = get_clock ();
2009 now_floor = mn_now;
614 } 2010 }
615 2011
616 periodics_reschedule (diff - odiff);
617 /* no timer adjustment, as the monotonic clock doesn't jump */ 2012 /* no timer adjustment, as the monotonic clock doesn't jump */
2013 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2014# if EV_PERIODIC_ENABLE
2015 periodics_reschedule (EV_A);
2016# endif
618 } 2017 }
619 else 2018 else
2019#endif
620 { 2020 {
621 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 2021 ev_rt_now = ev_time ();
2022
2023 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
622 { 2024 {
623 periodics_reschedule (ev_now - now);
624
625 /* adjust timers. this is easy, as the offset is the same for all */ 2025 /* adjust timers. this is easy, as the offset is the same for all of them */
626 for (i = 0; i < timercnt; ++i) 2026 timers_reschedule (EV_A_ ev_rt_now - mn_now);
627 timers [i]->at += diff; 2027#if EV_PERIODIC_ENABLE
2028 periodics_reschedule (EV_A);
2029#endif
628 } 2030 }
629 2031
630 now = ev_now; 2032 mn_now = ev_rt_now;
631 } 2033 }
632} 2034}
633 2035
634int ev_loop_done; 2036void
635
636void ev_loop (int flags) 2037ev_loop (EV_P_ int flags)
637{ 2038{
638 double block; 2039 ++loop_depth;
639 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2040
2041 loop_done = EVUNLOOP_CANCEL;
2042
2043 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
640 2044
641 do 2045 do
642 { 2046 {
2047#if EV_VERIFY >= 2
2048 ev_loop_verify (EV_A);
2049#endif
2050
2051#ifndef _WIN32
2052 if (expect_false (curpid)) /* penalise the forking check even more */
2053 if (expect_false (getpid () != curpid))
2054 {
2055 curpid = getpid ();
2056 postfork = 1;
2057 }
2058#endif
2059
2060#if EV_FORK_ENABLE
2061 /* we might have forked, so queue fork handlers */
2062 if (expect_false (postfork))
2063 if (forkcnt)
2064 {
2065 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2066 call_pending (EV_A);
2067 }
2068#endif
2069
643 /* queue check watchers (and execute them) */ 2070 /* queue prepare watchers (and execute them) */
644 if (preparecnt) 2071 if (expect_false (preparecnt))
645 { 2072 {
646 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 2073 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
647 call_pending (); 2074 call_pending (EV_A);
648 } 2075 }
649 2076
2077 /* we might have forked, so reify kernel state if necessary */
2078 if (expect_false (postfork))
2079 loop_fork (EV_A);
2080
650 /* update fd-related kernel structures */ 2081 /* update fd-related kernel structures */
651 fd_reify (); 2082 fd_reify (EV_A);
652 2083
653 /* calculate blocking time */ 2084 /* calculate blocking time */
2085 {
2086 ev_tstamp waittime = 0.;
2087 ev_tstamp sleeptime = 0.;
654 2088
655 /* we only need this for !monotonic clockor timers, but as we basically 2089 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
656 always have timers, we just calculate it always */
657 ev_now = ev_time ();
658
659 if (flags & EVLOOP_NONBLOCK || idlecnt)
660 block = 0.;
661 else
662 { 2090 {
2091 /* remember old timestamp for io_blocktime calculation */
2092 ev_tstamp prev_mn_now = mn_now;
2093
2094 /* update time to cancel out callback processing overhead */
2095 time_update (EV_A_ 1e100);
2096
663 block = MAX_BLOCKTIME; 2097 waittime = MAX_BLOCKTIME;
664 2098
665 if (timercnt) 2099 if (timercnt)
666 { 2100 {
667 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 2101 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
668 if (block > to) block = to; 2102 if (waittime > to) waittime = to;
669 } 2103 }
670 2104
2105#if EV_PERIODIC_ENABLE
671 if (periodiccnt) 2106 if (periodiccnt)
672 { 2107 {
673 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 2108 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
674 if (block > to) block = to; 2109 if (waittime > to) waittime = to;
675 } 2110 }
2111#endif
676 2112
677 if (block < 0.) block = 0.; 2113 /* don't let timeouts decrease the waittime below timeout_blocktime */
2114 if (expect_false (waittime < timeout_blocktime))
2115 waittime = timeout_blocktime;
2116
2117 /* extra check because io_blocktime is commonly 0 */
2118 if (expect_false (io_blocktime))
2119 {
2120 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2121
2122 if (sleeptime > waittime - backend_fudge)
2123 sleeptime = waittime - backend_fudge;
2124
2125 if (expect_true (sleeptime > 0.))
2126 {
2127 ev_sleep (sleeptime);
2128 waittime -= sleeptime;
2129 }
2130 }
678 } 2131 }
679 2132
680 method_poll (block); 2133 ++loop_count;
2134 backend_poll (EV_A_ waittime);
681 2135
682 /* update ev_now, do magic */ 2136 /* update ev_rt_now, do magic */
683 time_update (); 2137 time_update (EV_A_ waittime + sleeptime);
2138 }
684 2139
685 /* queue pending timers and reschedule them */ 2140 /* queue pending timers and reschedule them */
686 timers_reify (); /* relative timers called last */ 2141 timers_reify (EV_A); /* relative timers called last */
2142#if EV_PERIODIC_ENABLE
687 periodics_reify (); /* absolute timers called first */ 2143 periodics_reify (EV_A); /* absolute timers called first */
2144#endif
688 2145
2146#if EV_IDLE_ENABLE
689 /* queue idle watchers unless io or timers are pending */ 2147 /* queue idle watchers unless other events are pending */
690 if (!pendingcnt) 2148 idle_reify (EV_A);
691 queue_events ((W *)idles, idlecnt, EV_IDLE); 2149#endif
692 2150
693 /* queue check watchers, to be executed first */ 2151 /* queue check watchers, to be executed first */
694 if (checkcnt) 2152 if (expect_false (checkcnt))
695 queue_events ((W *)checks, checkcnt, EV_CHECK); 2153 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
696 2154
697 call_pending (); 2155 call_pending (EV_A);
698 } 2156 }
699 while (!ev_loop_done); 2157 while (expect_true (
2158 activecnt
2159 && !loop_done
2160 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2161 ));
700 2162
701 if (ev_loop_done != 2) 2163 if (loop_done == EVUNLOOP_ONE)
2164 loop_done = EVUNLOOP_CANCEL;
2165
2166 --loop_depth;
2167}
2168
2169void
2170ev_unloop (EV_P_ int how)
2171{
702 ev_loop_done = 0; 2172 loop_done = how;
2173}
2174
2175void
2176ev_ref (EV_P)
2177{
2178 ++activecnt;
2179}
2180
2181void
2182ev_unref (EV_P)
2183{
2184 --activecnt;
2185}
2186
2187void
2188ev_now_update (EV_P)
2189{
2190 time_update (EV_A_ 1e100);
2191}
2192
2193void
2194ev_suspend (EV_P)
2195{
2196 ev_now_update (EV_A);
2197}
2198
2199void
2200ev_resume (EV_P)
2201{
2202 ev_tstamp mn_prev = mn_now;
2203
2204 ev_now_update (EV_A);
2205 timers_reschedule (EV_A_ mn_now - mn_prev);
2206#if EV_PERIODIC_ENABLE
2207 /* TODO: really do this? */
2208 periodics_reschedule (EV_A);
2209#endif
703} 2210}
704 2211
705/*****************************************************************************/ 2212/*****************************************************************************/
2213/* singly-linked list management, used when the expected list length is short */
706 2214
707static void 2215inline_size void
708wlist_add (WL *head, WL elem) 2216wlist_add (WL *head, WL elem)
709{ 2217{
710 elem->next = *head; 2218 elem->next = *head;
711 *head = elem; 2219 *head = elem;
712} 2220}
713 2221
714static void 2222inline_size void
715wlist_del (WL *head, WL elem) 2223wlist_del (WL *head, WL elem)
716{ 2224{
717 while (*head) 2225 while (*head)
718 { 2226 {
719 if (*head == elem) 2227 if (*head == elem)
724 2232
725 head = &(*head)->next; 2233 head = &(*head)->next;
726 } 2234 }
727} 2235}
728 2236
729static void 2237/* internal, faster, version of ev_clear_pending */
730ev_clear (W w) 2238inline_speed void
2239clear_pending (EV_P_ W w)
731{ 2240{
732 if (w->pending) 2241 if (w->pending)
733 { 2242 {
734 pendings [w->pending - 1].w = 0; 2243 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
735 w->pending = 0; 2244 w->pending = 0;
736 } 2245 }
737} 2246}
738 2247
739static void 2248int
2249ev_clear_pending (EV_P_ void *w)
2250{
2251 W w_ = (W)w;
2252 int pending = w_->pending;
2253
2254 if (expect_true (pending))
2255 {
2256 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2257 p->w = (W)&pending_w;
2258 w_->pending = 0;
2259 return p->events;
2260 }
2261 else
2262 return 0;
2263}
2264
2265inline_size void
2266pri_adjust (EV_P_ W w)
2267{
2268 int pri = ev_priority (w);
2269 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2270 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2271 ev_set_priority (w, pri);
2272}
2273
2274inline_speed void
740ev_start (W w, int active) 2275ev_start (EV_P_ W w, int active)
741{ 2276{
2277 pri_adjust (EV_A_ w);
742 w->active = active; 2278 w->active = active;
2279 ev_ref (EV_A);
743} 2280}
744 2281
745static void 2282inline_size void
746ev_stop (W w) 2283ev_stop (EV_P_ W w)
747{ 2284{
2285 ev_unref (EV_A);
748 w->active = 0; 2286 w->active = 0;
749} 2287}
750 2288
751/*****************************************************************************/ 2289/*****************************************************************************/
752 2290
753void 2291void noinline
754ev_io_start (struct ev_io *w) 2292ev_io_start (EV_P_ ev_io *w)
755{ 2293{
2294 int fd = w->fd;
2295
756 if (ev_is_active (w)) 2296 if (expect_false (ev_is_active (w)))
757 return; 2297 return;
758 2298
759 int fd = w->fd; 2299 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2300 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
760 2301
2302 EV_FREQUENT_CHECK;
2303
761 ev_start ((W)w, 1); 2304 ev_start (EV_A_ (W)w, 1);
762 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 2305 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
763 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2306 wlist_add (&anfds[fd].head, (WL)w);
764 2307
765 fd_change (fd); 2308 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
766} 2309 w->events &= ~EV__IOFDSET;
767 2310
768void 2311 EV_FREQUENT_CHECK;
2312}
2313
2314void noinline
769ev_io_stop (struct ev_io *w) 2315ev_io_stop (EV_P_ ev_io *w)
770{ 2316{
771 ev_clear ((W)w); 2317 clear_pending (EV_A_ (W)w);
772 if (!ev_is_active (w)) 2318 if (expect_false (!ev_is_active (w)))
773 return; 2319 return;
774 2320
2321 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2322
2323 EV_FREQUENT_CHECK;
2324
775 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2325 wlist_del (&anfds[w->fd].head, (WL)w);
776 ev_stop ((W)w); 2326 ev_stop (EV_A_ (W)w);
777 2327
778 fd_change (w->fd); 2328 fd_change (EV_A_ w->fd, 1);
779}
780 2329
781void 2330 EV_FREQUENT_CHECK;
2331}
2332
2333void noinline
782ev_timer_start (struct ev_timer *w) 2334ev_timer_start (EV_P_ ev_timer *w)
783{ 2335{
784 if (ev_is_active (w)) 2336 if (expect_false (ev_is_active (w)))
785 return; 2337 return;
786 2338
787 w->at += now; 2339 ev_at (w) += mn_now;
788 2340
789 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 2341 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
790 2342
791 ev_start ((W)w, ++timercnt); 2343 EV_FREQUENT_CHECK;
792 array_needsize (timers, timermax, timercnt, );
793 timers [timercnt - 1] = w;
794 upheap ((WT *)timers, timercnt - 1);
795}
796 2344
797void 2345 ++timercnt;
2346 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2347 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2348 ANHE_w (timers [ev_active (w)]) = (WT)w;
2349 ANHE_at_cache (timers [ev_active (w)]);
2350 upheap (timers, ev_active (w));
2351
2352 EV_FREQUENT_CHECK;
2353
2354 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2355}
2356
2357void noinline
798ev_timer_stop (struct ev_timer *w) 2358ev_timer_stop (EV_P_ ev_timer *w)
799{ 2359{
800 ev_clear ((W)w); 2360 clear_pending (EV_A_ (W)w);
801 if (!ev_is_active (w)) 2361 if (expect_false (!ev_is_active (w)))
802 return; 2362 return;
803 2363
804 if (w->active < timercnt--) 2364 EV_FREQUENT_CHECK;
2365
2366 {
2367 int active = ev_active (w);
2368
2369 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2370
2371 --timercnt;
2372
2373 if (expect_true (active < timercnt + HEAP0))
805 { 2374 {
806 timers [w->active - 1] = timers [timercnt]; 2375 timers [active] = timers [timercnt + HEAP0];
807 downheap ((WT *)timers, timercnt, w->active - 1); 2376 adjustheap (timers, timercnt, active);
808 } 2377 }
2378 }
809 2379
810 w->at = w->repeat; 2380 EV_FREQUENT_CHECK;
811 2381
2382 ev_at (w) -= mn_now;
2383
812 ev_stop ((W)w); 2384 ev_stop (EV_A_ (W)w);
813} 2385}
814 2386
815void 2387void noinline
816ev_timer_again (struct ev_timer *w) 2388ev_timer_again (EV_P_ ev_timer *w)
817{ 2389{
2390 EV_FREQUENT_CHECK;
2391
818 if (ev_is_active (w)) 2392 if (ev_is_active (w))
819 { 2393 {
820 if (w->repeat) 2394 if (w->repeat)
821 { 2395 {
822 w->at = now + w->repeat; 2396 ev_at (w) = mn_now + w->repeat;
2397 ANHE_at_cache (timers [ev_active (w)]);
823 downheap ((WT *)timers, timercnt, w->active - 1); 2398 adjustheap (timers, timercnt, ev_active (w));
824 } 2399 }
825 else 2400 else
826 ev_timer_stop (w); 2401 ev_timer_stop (EV_A_ w);
827 } 2402 }
828 else if (w->repeat) 2403 else if (w->repeat)
2404 {
2405 ev_at (w) = w->repeat;
829 ev_timer_start (w); 2406 ev_timer_start (EV_A_ w);
830} 2407 }
831 2408
832void 2409 EV_FREQUENT_CHECK;
2410}
2411
2412#if EV_PERIODIC_ENABLE
2413void noinline
833ev_periodic_start (struct ev_periodic *w) 2414ev_periodic_start (EV_P_ ev_periodic *w)
834{ 2415{
835 if (ev_is_active (w)) 2416 if (expect_false (ev_is_active (w)))
836 return; 2417 return;
837 2418
838 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 2419 if (w->reschedule_cb)
839 2420 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2421 else if (w->interval)
2422 {
2423 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
840 /* this formula differs from the one in periodic_reify because we do not always round up */ 2424 /* this formula differs from the one in periodic_reify because we do not always round up */
841 if (w->interval)
842 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 2425 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2426 }
2427 else
2428 ev_at (w) = w->offset;
843 2429
2430 EV_FREQUENT_CHECK;
2431
2432 ++periodiccnt;
844 ev_start ((W)w, ++periodiccnt); 2433 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
845 array_needsize (periodics, periodicmax, periodiccnt, ); 2434 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
846 periodics [periodiccnt - 1] = w; 2435 ANHE_w (periodics [ev_active (w)]) = (WT)w;
847 upheap ((WT *)periodics, periodiccnt - 1); 2436 ANHE_at_cache (periodics [ev_active (w)]);
848} 2437 upheap (periodics, ev_active (w));
849 2438
850void 2439 EV_FREQUENT_CHECK;
2440
2441 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2442}
2443
2444void noinline
851ev_periodic_stop (struct ev_periodic *w) 2445ev_periodic_stop (EV_P_ ev_periodic *w)
852{ 2446{
853 ev_clear ((W)w); 2447 clear_pending (EV_A_ (W)w);
854 if (!ev_is_active (w)) 2448 if (expect_false (!ev_is_active (w)))
855 return; 2449 return;
856 2450
857 if (w->active < periodiccnt--) 2451 EV_FREQUENT_CHECK;
2452
2453 {
2454 int active = ev_active (w);
2455
2456 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2457
2458 --periodiccnt;
2459
2460 if (expect_true (active < periodiccnt + HEAP0))
858 { 2461 {
859 periodics [w->active - 1] = periodics [periodiccnt]; 2462 periodics [active] = periodics [periodiccnt + HEAP0];
860 downheap ((WT *)periodics, periodiccnt, w->active - 1); 2463 adjustheap (periodics, periodiccnt, active);
861 } 2464 }
2465 }
862 2466
2467 EV_FREQUENT_CHECK;
2468
863 ev_stop ((W)w); 2469 ev_stop (EV_A_ (W)w);
864} 2470}
865 2471
866void 2472void noinline
2473ev_periodic_again (EV_P_ ev_periodic *w)
2474{
2475 /* TODO: use adjustheap and recalculation */
2476 ev_periodic_stop (EV_A_ w);
2477 ev_periodic_start (EV_A_ w);
2478}
2479#endif
2480
2481#ifndef SA_RESTART
2482# define SA_RESTART 0
2483#endif
2484
2485void noinline
867ev_signal_start (struct ev_signal *w) 2486ev_signal_start (EV_P_ ev_signal *w)
868{ 2487{
2488#if EV_MULTIPLICITY
2489 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2490#endif
869 if (ev_is_active (w)) 2491 if (expect_false (ev_is_active (w)))
870 return; 2492 return;
871 2493
2494 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2495
2496 evpipe_init (EV_A);
2497
2498 EV_FREQUENT_CHECK;
2499
2500 {
2501#ifndef _WIN32
2502 sigset_t full, prev;
2503 sigfillset (&full);
2504 sigprocmask (SIG_SETMASK, &full, &prev);
2505#endif
2506
2507 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2508
2509#ifndef _WIN32
2510 sigprocmask (SIG_SETMASK, &prev, 0);
2511#endif
2512 }
2513
872 ev_start ((W)w, 1); 2514 ev_start (EV_A_ (W)w, 1);
873 array_needsize (signals, signalmax, w->signum, signals_init);
874 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2515 wlist_add (&signals [w->signum - 1].head, (WL)w);
875 2516
876 if (!w->next) 2517 if (!((WL)w)->next)
877 { 2518 {
2519#if _WIN32
2520 signal (w->signum, ev_sighandler);
2521#else
878 struct sigaction sa; 2522 struct sigaction sa;
879 sa.sa_handler = sighandler; 2523 sa.sa_handler = ev_sighandler;
880 sigfillset (&sa.sa_mask); 2524 sigfillset (&sa.sa_mask);
881 sa.sa_flags = 0; 2525 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
882 sigaction (w->signum, &sa, 0); 2526 sigaction (w->signum, &sa, 0);
2527#endif
883 } 2528 }
884}
885 2529
886void 2530 EV_FREQUENT_CHECK;
2531}
2532
2533void noinline
887ev_signal_stop (struct ev_signal *w) 2534ev_signal_stop (EV_P_ ev_signal *w)
888{ 2535{
889 ev_clear ((W)w); 2536 clear_pending (EV_A_ (W)w);
890 if (!ev_is_active (w)) 2537 if (expect_false (!ev_is_active (w)))
891 return; 2538 return;
892 2539
2540 EV_FREQUENT_CHECK;
2541
893 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2542 wlist_del (&signals [w->signum - 1].head, (WL)w);
894 ev_stop ((W)w); 2543 ev_stop (EV_A_ (W)w);
895 2544
896 if (!signals [w->signum - 1].head) 2545 if (!signals [w->signum - 1].head)
897 signal (w->signum, SIG_DFL); 2546 signal (w->signum, SIG_DFL);
898}
899 2547
2548 EV_FREQUENT_CHECK;
2549}
2550
900void 2551void
901ev_idle_start (struct ev_idle *w) 2552ev_child_start (EV_P_ ev_child *w)
902{ 2553{
2554#if EV_MULTIPLICITY
2555 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2556#endif
903 if (ev_is_active (w)) 2557 if (expect_false (ev_is_active (w)))
904 return; 2558 return;
905 2559
906 ev_start ((W)w, ++idlecnt); 2560 EV_FREQUENT_CHECK;
907 array_needsize (idles, idlemax, idlecnt, );
908 idles [idlecnt - 1] = w;
909}
910 2561
2562 ev_start (EV_A_ (W)w, 1);
2563 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2564
2565 EV_FREQUENT_CHECK;
2566}
2567
911void 2568void
912ev_idle_stop (struct ev_idle *w) 2569ev_child_stop (EV_P_ ev_child *w)
913{ 2570{
914 ev_clear ((W)w); 2571 clear_pending (EV_A_ (W)w);
915 if (ev_is_active (w)) 2572 if (expect_false (!ev_is_active (w)))
916 return; 2573 return;
917 2574
918 idles [w->active - 1] = idles [--idlecnt]; 2575 EV_FREQUENT_CHECK;
2576
2577 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
919 ev_stop ((W)w); 2578 ev_stop (EV_A_ (W)w);
920}
921 2579
922void 2580 EV_FREQUENT_CHECK;
923ev_prepare_start (struct ev_prepare *w) 2581}
2582
2583#if EV_STAT_ENABLE
2584
2585# ifdef _WIN32
2586# undef lstat
2587# define lstat(a,b) _stati64 (a,b)
2588# endif
2589
2590#define DEF_STAT_INTERVAL 5.0074891
2591#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2592#define MIN_STAT_INTERVAL 0.1074891
2593
2594static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2595
2596#if EV_USE_INOTIFY
2597# define EV_INOTIFY_BUFSIZE 8192
2598
2599static void noinline
2600infy_add (EV_P_ ev_stat *w)
924{ 2601{
925 if (ev_is_active (w)) 2602 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2603
2604 if (w->wd < 0)
2605 {
2606 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2607 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2608
2609 /* monitor some parent directory for speedup hints */
2610 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2611 /* but an efficiency issue only */
2612 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2613 {
2614 char path [4096];
2615 strcpy (path, w->path);
2616
2617 do
2618 {
2619 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2620 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2621
2622 char *pend = strrchr (path, '/');
2623
2624 if (!pend || pend == path)
2625 break;
2626
2627 *pend = 0;
2628 w->wd = inotify_add_watch (fs_fd, path, mask);
2629 }
2630 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2631 }
2632 }
2633
2634 if (w->wd >= 0)
2635 {
2636 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2637
2638 /* now local changes will be tracked by inotify, but remote changes won't */
2639 /* unless the filesystem it known to be local, we therefore still poll */
2640 /* also do poll on <2.6.25, but with normal frequency */
2641 struct statfs sfs;
2642
2643 if (fs_2625 && !statfs (w->path, &sfs))
2644 if (sfs.f_type == 0x1373 /* devfs */
2645 || sfs.f_type == 0xEF53 /* ext2/3 */
2646 || sfs.f_type == 0x3153464a /* jfs */
2647 || sfs.f_type == 0x52654973 /* reiser3 */
2648 || sfs.f_type == 0x01021994 /* tempfs */
2649 || sfs.f_type == 0x58465342 /* xfs */)
2650 return;
2651
2652 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2653 ev_timer_again (EV_A_ &w->timer);
2654 }
2655}
2656
2657static void noinline
2658infy_del (EV_P_ ev_stat *w)
2659{
2660 int slot;
2661 int wd = w->wd;
2662
2663 if (wd < 0)
926 return; 2664 return;
927 2665
2666 w->wd = -2;
2667 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2668 wlist_del (&fs_hash [slot].head, (WL)w);
2669
2670 /* remove this watcher, if others are watching it, they will rearm */
2671 inotify_rm_watch (fs_fd, wd);
2672}
2673
2674static void noinline
2675infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2676{
2677 if (slot < 0)
2678 /* overflow, need to check for all hash slots */
2679 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2680 infy_wd (EV_A_ slot, wd, ev);
2681 else
2682 {
2683 WL w_;
2684
2685 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2686 {
2687 ev_stat *w = (ev_stat *)w_;
2688 w_ = w_->next; /* lets us remove this watcher and all before it */
2689
2690 if (w->wd == wd || wd == -1)
2691 {
2692 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2693 {
2694 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2695 w->wd = -1;
2696 infy_add (EV_A_ w); /* re-add, no matter what */
2697 }
2698
2699 stat_timer_cb (EV_A_ &w->timer, 0);
2700 }
2701 }
2702 }
2703}
2704
2705static void
2706infy_cb (EV_P_ ev_io *w, int revents)
2707{
2708 char buf [EV_INOTIFY_BUFSIZE];
2709 struct inotify_event *ev = (struct inotify_event *)buf;
2710 int ofs;
2711 int len = read (fs_fd, buf, sizeof (buf));
2712
2713 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2714 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2715}
2716
2717inline_size void
2718check_2625 (EV_P)
2719{
2720 /* kernels < 2.6.25 are borked
2721 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2722 */
2723 struct utsname buf;
2724 int major, minor, micro;
2725
2726 if (uname (&buf))
2727 return;
2728
2729 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2730 return;
2731
2732 if (major < 2
2733 || (major == 2 && minor < 6)
2734 || (major == 2 && minor == 6 && micro < 25))
2735 return;
2736
2737 fs_2625 = 1;
2738}
2739
2740inline_size void
2741infy_init (EV_P)
2742{
2743 if (fs_fd != -2)
2744 return;
2745
2746 fs_fd = -1;
2747
2748 check_2625 (EV_A);
2749
2750 fs_fd = inotify_init ();
2751
2752 if (fs_fd >= 0)
2753 {
2754 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2755 ev_set_priority (&fs_w, EV_MAXPRI);
2756 ev_io_start (EV_A_ &fs_w);
2757 }
2758}
2759
2760inline_size void
2761infy_fork (EV_P)
2762{
2763 int slot;
2764
2765 if (fs_fd < 0)
2766 return;
2767
2768 close (fs_fd);
2769 fs_fd = inotify_init ();
2770
2771 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2772 {
2773 WL w_ = fs_hash [slot].head;
2774 fs_hash [slot].head = 0;
2775
2776 while (w_)
2777 {
2778 ev_stat *w = (ev_stat *)w_;
2779 w_ = w_->next; /* lets us add this watcher */
2780
2781 w->wd = -1;
2782
2783 if (fs_fd >= 0)
2784 infy_add (EV_A_ w); /* re-add, no matter what */
2785 else
2786 ev_timer_again (EV_A_ &w->timer);
2787 }
2788 }
2789}
2790
2791#endif
2792
2793#ifdef _WIN32
2794# define EV_LSTAT(p,b) _stati64 (p, b)
2795#else
2796# define EV_LSTAT(p,b) lstat (p, b)
2797#endif
2798
2799void
2800ev_stat_stat (EV_P_ ev_stat *w)
2801{
2802 if (lstat (w->path, &w->attr) < 0)
2803 w->attr.st_nlink = 0;
2804 else if (!w->attr.st_nlink)
2805 w->attr.st_nlink = 1;
2806}
2807
2808static void noinline
2809stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2810{
2811 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2812
2813 /* we copy this here each the time so that */
2814 /* prev has the old value when the callback gets invoked */
2815 w->prev = w->attr;
2816 ev_stat_stat (EV_A_ w);
2817
2818 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2819 if (
2820 w->prev.st_dev != w->attr.st_dev
2821 || w->prev.st_ino != w->attr.st_ino
2822 || w->prev.st_mode != w->attr.st_mode
2823 || w->prev.st_nlink != w->attr.st_nlink
2824 || w->prev.st_uid != w->attr.st_uid
2825 || w->prev.st_gid != w->attr.st_gid
2826 || w->prev.st_rdev != w->attr.st_rdev
2827 || w->prev.st_size != w->attr.st_size
2828 || w->prev.st_atime != w->attr.st_atime
2829 || w->prev.st_mtime != w->attr.st_mtime
2830 || w->prev.st_ctime != w->attr.st_ctime
2831 ) {
2832 #if EV_USE_INOTIFY
2833 if (fs_fd >= 0)
2834 {
2835 infy_del (EV_A_ w);
2836 infy_add (EV_A_ w);
2837 ev_stat_stat (EV_A_ w); /* avoid race... */
2838 }
2839 #endif
2840
2841 ev_feed_event (EV_A_ w, EV_STAT);
2842 }
2843}
2844
2845void
2846ev_stat_start (EV_P_ ev_stat *w)
2847{
2848 if (expect_false (ev_is_active (w)))
2849 return;
2850
2851 ev_stat_stat (EV_A_ w);
2852
2853 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2854 w->interval = MIN_STAT_INTERVAL;
2855
2856 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2857 ev_set_priority (&w->timer, ev_priority (w));
2858
2859#if EV_USE_INOTIFY
2860 infy_init (EV_A);
2861
2862 if (fs_fd >= 0)
2863 infy_add (EV_A_ w);
2864 else
2865#endif
2866 ev_timer_again (EV_A_ &w->timer);
2867
2868 ev_start (EV_A_ (W)w, 1);
2869
2870 EV_FREQUENT_CHECK;
2871}
2872
2873void
2874ev_stat_stop (EV_P_ ev_stat *w)
2875{
2876 clear_pending (EV_A_ (W)w);
2877 if (expect_false (!ev_is_active (w)))
2878 return;
2879
2880 EV_FREQUENT_CHECK;
2881
2882#if EV_USE_INOTIFY
2883 infy_del (EV_A_ w);
2884#endif
2885 ev_timer_stop (EV_A_ &w->timer);
2886
2887 ev_stop (EV_A_ (W)w);
2888
2889 EV_FREQUENT_CHECK;
2890}
2891#endif
2892
2893#if EV_IDLE_ENABLE
2894void
2895ev_idle_start (EV_P_ ev_idle *w)
2896{
2897 if (expect_false (ev_is_active (w)))
2898 return;
2899
2900 pri_adjust (EV_A_ (W)w);
2901
2902 EV_FREQUENT_CHECK;
2903
2904 {
2905 int active = ++idlecnt [ABSPRI (w)];
2906
2907 ++idleall;
2908 ev_start (EV_A_ (W)w, active);
2909
2910 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2911 idles [ABSPRI (w)][active - 1] = w;
2912 }
2913
2914 EV_FREQUENT_CHECK;
2915}
2916
2917void
2918ev_idle_stop (EV_P_ ev_idle *w)
2919{
2920 clear_pending (EV_A_ (W)w);
2921 if (expect_false (!ev_is_active (w)))
2922 return;
2923
2924 EV_FREQUENT_CHECK;
2925
2926 {
2927 int active = ev_active (w);
2928
2929 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2930 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2931
2932 ev_stop (EV_A_ (W)w);
2933 --idleall;
2934 }
2935
2936 EV_FREQUENT_CHECK;
2937}
2938#endif
2939
2940void
2941ev_prepare_start (EV_P_ ev_prepare *w)
2942{
2943 if (expect_false (ev_is_active (w)))
2944 return;
2945
2946 EV_FREQUENT_CHECK;
2947
928 ev_start ((W)w, ++preparecnt); 2948 ev_start (EV_A_ (W)w, ++preparecnt);
929 array_needsize (prepares, preparemax, preparecnt, ); 2949 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
930 prepares [preparecnt - 1] = w; 2950 prepares [preparecnt - 1] = w;
931}
932 2951
2952 EV_FREQUENT_CHECK;
2953}
2954
933void 2955void
934ev_prepare_stop (struct ev_prepare *w) 2956ev_prepare_stop (EV_P_ ev_prepare *w)
935{ 2957{
936 ev_clear ((W)w); 2958 clear_pending (EV_A_ (W)w);
937 if (ev_is_active (w)) 2959 if (expect_false (!ev_is_active (w)))
938 return; 2960 return;
939 2961
2962 EV_FREQUENT_CHECK;
2963
2964 {
2965 int active = ev_active (w);
2966
940 prepares [w->active - 1] = prepares [--preparecnt]; 2967 prepares [active - 1] = prepares [--preparecnt];
2968 ev_active (prepares [active - 1]) = active;
2969 }
2970
941 ev_stop ((W)w); 2971 ev_stop (EV_A_ (W)w);
942}
943 2972
2973 EV_FREQUENT_CHECK;
2974}
2975
944void 2976void
945ev_check_start (struct ev_check *w) 2977ev_check_start (EV_P_ ev_check *w)
946{ 2978{
947 if (ev_is_active (w)) 2979 if (expect_false (ev_is_active (w)))
948 return; 2980 return;
949 2981
2982 EV_FREQUENT_CHECK;
2983
950 ev_start ((W)w, ++checkcnt); 2984 ev_start (EV_A_ (W)w, ++checkcnt);
951 array_needsize (checks, checkmax, checkcnt, ); 2985 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
952 checks [checkcnt - 1] = w; 2986 checks [checkcnt - 1] = w;
953}
954 2987
2988 EV_FREQUENT_CHECK;
2989}
2990
955void 2991void
956ev_check_stop (struct ev_check *w) 2992ev_check_stop (EV_P_ ev_check *w)
957{ 2993{
958 ev_clear ((W)w); 2994 clear_pending (EV_A_ (W)w);
959 if (ev_is_active (w)) 2995 if (expect_false (!ev_is_active (w)))
960 return; 2996 return;
961 2997
2998 EV_FREQUENT_CHECK;
2999
3000 {
3001 int active = ev_active (w);
3002
962 checks [w->active - 1] = checks [--checkcnt]; 3003 checks [active - 1] = checks [--checkcnt];
3004 ev_active (checks [active - 1]) = active;
3005 }
3006
963 ev_stop ((W)w); 3007 ev_stop (EV_A_ (W)w);
964}
965 3008
966void 3009 EV_FREQUENT_CHECK;
967ev_child_start (struct ev_child *w) 3010}
3011
3012#if EV_EMBED_ENABLE
3013void noinline
3014ev_embed_sweep (EV_P_ ev_embed *w)
968{ 3015{
3016 ev_loop (w->other, EVLOOP_NONBLOCK);
3017}
3018
3019static void
3020embed_io_cb (EV_P_ ev_io *io, int revents)
3021{
3022 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3023
969 if (ev_is_active (w)) 3024 if (ev_cb (w))
3025 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3026 else
3027 ev_loop (w->other, EVLOOP_NONBLOCK);
3028}
3029
3030static void
3031embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3032{
3033 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3034
3035 {
3036 struct ev_loop *loop = w->other;
3037
3038 while (fdchangecnt)
3039 {
3040 fd_reify (EV_A);
3041 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3042 }
3043 }
3044}
3045
3046static void
3047embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3048{
3049 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3050
3051 ev_embed_stop (EV_A_ w);
3052
3053 {
3054 struct ev_loop *loop = w->other;
3055
3056 ev_loop_fork (EV_A);
3057 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3058 }
3059
3060 ev_embed_start (EV_A_ w);
3061}
3062
3063#if 0
3064static void
3065embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3066{
3067 ev_idle_stop (EV_A_ idle);
3068}
3069#endif
3070
3071void
3072ev_embed_start (EV_P_ ev_embed *w)
3073{
3074 if (expect_false (ev_is_active (w)))
970 return; 3075 return;
971 3076
3077 {
3078 struct ev_loop *loop = w->other;
3079 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3080 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3081 }
3082
3083 EV_FREQUENT_CHECK;
3084
3085 ev_set_priority (&w->io, ev_priority (w));
3086 ev_io_start (EV_A_ &w->io);
3087
3088 ev_prepare_init (&w->prepare, embed_prepare_cb);
3089 ev_set_priority (&w->prepare, EV_MINPRI);
3090 ev_prepare_start (EV_A_ &w->prepare);
3091
3092 ev_fork_init (&w->fork, embed_fork_cb);
3093 ev_fork_start (EV_A_ &w->fork);
3094
3095 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3096
972 ev_start ((W)w, 1); 3097 ev_start (EV_A_ (W)w, 1);
973 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
974}
975 3098
3099 EV_FREQUENT_CHECK;
3100}
3101
976void 3102void
977ev_child_stop (struct ev_child *w) 3103ev_embed_stop (EV_P_ ev_embed *w)
978{ 3104{
979 ev_clear ((W)w); 3105 clear_pending (EV_A_ (W)w);
980 if (ev_is_active (w)) 3106 if (expect_false (!ev_is_active (w)))
981 return; 3107 return;
982 3108
983 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3109 EV_FREQUENT_CHECK;
3110
3111 ev_io_stop (EV_A_ &w->io);
3112 ev_prepare_stop (EV_A_ &w->prepare);
3113 ev_fork_stop (EV_A_ &w->fork);
3114
3115 EV_FREQUENT_CHECK;
3116}
3117#endif
3118
3119#if EV_FORK_ENABLE
3120void
3121ev_fork_start (EV_P_ ev_fork *w)
3122{
3123 if (expect_false (ev_is_active (w)))
3124 return;
3125
3126 EV_FREQUENT_CHECK;
3127
3128 ev_start (EV_A_ (W)w, ++forkcnt);
3129 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3130 forks [forkcnt - 1] = w;
3131
3132 EV_FREQUENT_CHECK;
3133}
3134
3135void
3136ev_fork_stop (EV_P_ ev_fork *w)
3137{
3138 clear_pending (EV_A_ (W)w);
3139 if (expect_false (!ev_is_active (w)))
3140 return;
3141
3142 EV_FREQUENT_CHECK;
3143
3144 {
3145 int active = ev_active (w);
3146
3147 forks [active - 1] = forks [--forkcnt];
3148 ev_active (forks [active - 1]) = active;
3149 }
3150
984 ev_stop ((W)w); 3151 ev_stop (EV_A_ (W)w);
3152
3153 EV_FREQUENT_CHECK;
985} 3154}
3155#endif
3156
3157#if EV_ASYNC_ENABLE
3158void
3159ev_async_start (EV_P_ ev_async *w)
3160{
3161 if (expect_false (ev_is_active (w)))
3162 return;
3163
3164 evpipe_init (EV_A);
3165
3166 EV_FREQUENT_CHECK;
3167
3168 ev_start (EV_A_ (W)w, ++asynccnt);
3169 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3170 asyncs [asynccnt - 1] = w;
3171
3172 EV_FREQUENT_CHECK;
3173}
3174
3175void
3176ev_async_stop (EV_P_ ev_async *w)
3177{
3178 clear_pending (EV_A_ (W)w);
3179 if (expect_false (!ev_is_active (w)))
3180 return;
3181
3182 EV_FREQUENT_CHECK;
3183
3184 {
3185 int active = ev_active (w);
3186
3187 asyncs [active - 1] = asyncs [--asynccnt];
3188 ev_active (asyncs [active - 1]) = active;
3189 }
3190
3191 ev_stop (EV_A_ (W)w);
3192
3193 EV_FREQUENT_CHECK;
3194}
3195
3196void
3197ev_async_send (EV_P_ ev_async *w)
3198{
3199 w->sent = 1;
3200 evpipe_write (EV_A_ &gotasync);
3201}
3202#endif
986 3203
987/*****************************************************************************/ 3204/*****************************************************************************/
988 3205
989struct ev_once 3206struct ev_once
990{ 3207{
991 struct ev_io io; 3208 ev_io io;
992 struct ev_timer to; 3209 ev_timer to;
993 void (*cb)(int revents, void *arg); 3210 void (*cb)(int revents, void *arg);
994 void *arg; 3211 void *arg;
995}; 3212};
996 3213
997static void 3214static void
998once_cb (struct ev_once *once, int revents) 3215once_cb (EV_P_ struct ev_once *once, int revents)
999{ 3216{
1000 void (*cb)(int revents, void *arg) = once->cb; 3217 void (*cb)(int revents, void *arg) = once->cb;
1001 void *arg = once->arg; 3218 void *arg = once->arg;
1002 3219
1003 ev_io_stop (&once->io); 3220 ev_io_stop (EV_A_ &once->io);
1004 ev_timer_stop (&once->to); 3221 ev_timer_stop (EV_A_ &once->to);
1005 free (once); 3222 ev_free (once);
1006 3223
1007 cb (revents, arg); 3224 cb (revents, arg);
1008} 3225}
1009 3226
1010static void 3227static void
1011once_cb_io (struct ev_io *w, int revents) 3228once_cb_io (EV_P_ ev_io *w, int revents)
1012{ 3229{
1013 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3230 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3231
3232 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1014} 3233}
1015 3234
1016static void 3235static void
1017once_cb_to (struct ev_timer *w, int revents) 3236once_cb_to (EV_P_ ev_timer *w, int revents)
1018{ 3237{
1019 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3238 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
1020}
1021 3239
3240 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3241}
3242
1022void 3243void
1023ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3244ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1024{ 3245{
1025 struct ev_once *once = malloc (sizeof (struct ev_once)); 3246 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1026 3247
1027 if (!once) 3248 if (expect_false (!once))
3249 {
1028 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3250 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1029 else 3251 return;
1030 { 3252 }
3253
1031 once->cb = cb; 3254 once->cb = cb;
1032 once->arg = arg; 3255 once->arg = arg;
1033 3256
1034 ev_watcher_init (&once->io, once_cb_io); 3257 ev_init (&once->io, once_cb_io);
1035 if (fd >= 0) 3258 if (fd >= 0)
3259 {
3260 ev_io_set (&once->io, fd, events);
3261 ev_io_start (EV_A_ &once->io);
3262 }
3263
3264 ev_init (&once->to, once_cb_to);
3265 if (timeout >= 0.)
3266 {
3267 ev_timer_set (&once->to, timeout, 0.);
3268 ev_timer_start (EV_A_ &once->to);
3269 }
3270}
3271
3272/*****************************************************************************/
3273
3274#if EV_WALK_ENABLE
3275void
3276ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3277{
3278 int i, j;
3279 ev_watcher_list *wl, *wn;
3280
3281 if (types & (EV_IO | EV_EMBED))
3282 for (i = 0; i < anfdmax; ++i)
3283 for (wl = anfds [i].head; wl; )
1036 { 3284 {
1037 ev_io_set (&once->io, fd, events); 3285 wn = wl->next;
1038 ev_io_start (&once->io); 3286
3287#if EV_EMBED_ENABLE
3288 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3289 {
3290 if (types & EV_EMBED)
3291 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3292 }
3293 else
3294#endif
3295#if EV_USE_INOTIFY
3296 if (ev_cb ((ev_io *)wl) == infy_cb)
3297 ;
3298 else
3299#endif
3300 if ((ev_io *)wl != &pipe_w)
3301 if (types & EV_IO)
3302 cb (EV_A_ EV_IO, wl);
3303
3304 wl = wn;
1039 } 3305 }
1040 3306
1041 ev_watcher_init (&once->to, once_cb_to); 3307 if (types & (EV_TIMER | EV_STAT))
1042 if (timeout >= 0.) 3308 for (i = timercnt + HEAP0; i-- > HEAP0; )
3309#if EV_STAT_ENABLE
3310 /*TODO: timer is not always active*/
3311 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1043 { 3312 {
1044 ev_timer_set (&once->to, timeout, 0.); 3313 if (types & EV_STAT)
1045 ev_timer_start (&once->to); 3314 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1046 } 3315 }
1047 } 3316 else
1048} 3317#endif
3318 if (types & EV_TIMER)
3319 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1049 3320
1050/*****************************************************************************/ 3321#if EV_PERIODIC_ENABLE
3322 if (types & EV_PERIODIC)
3323 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3324 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3325#endif
1051 3326
1052#if 0 3327#if EV_IDLE_ENABLE
3328 if (types & EV_IDLE)
3329 for (j = NUMPRI; i--; )
3330 for (i = idlecnt [j]; i--; )
3331 cb (EV_A_ EV_IDLE, idles [j][i]);
3332#endif
1053 3333
1054struct ev_io wio; 3334#if EV_FORK_ENABLE
3335 if (types & EV_FORK)
3336 for (i = forkcnt; i--; )
3337 if (ev_cb (forks [i]) != embed_fork_cb)
3338 cb (EV_A_ EV_FORK, forks [i]);
3339#endif
1055 3340
1056static void 3341#if EV_ASYNC_ENABLE
1057sin_cb (struct ev_io *w, int revents) 3342 if (types & EV_ASYNC)
1058{ 3343 for (i = asynccnt; i--; )
1059 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents); 3344 cb (EV_A_ EV_ASYNC, asyncs [i]);
1060} 3345#endif
1061 3346
1062static void 3347 if (types & EV_PREPARE)
1063ocb (struct ev_timer *w, int revents) 3348 for (i = preparecnt; i--; )
1064{ 3349#if EV_EMBED_ENABLE
1065 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data); 3350 if (ev_cb (prepares [i]) != embed_prepare_cb)
1066 ev_timer_stop (w); 3351#endif
1067 ev_timer_start (w); 3352 cb (EV_A_ EV_PREPARE, prepares [i]);
1068}
1069 3353
1070static void 3354 if (types & EV_CHECK)
1071scb (struct ev_signal *w, int revents) 3355 for (i = checkcnt; i--; )
1072{ 3356 cb (EV_A_ EV_CHECK, checks [i]);
1073 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1074 ev_io_stop (&wio);
1075 ev_io_start (&wio);
1076}
1077 3357
1078static void 3358 if (types & EV_SIGNAL)
1079gcb (struct ev_signal *w, int revents)
1080{
1081 fprintf (stderr, "generic %x\n", revents);
1082
1083}
1084
1085int main (void)
1086{
1087 ev_init (0);
1088
1089 ev_io_init (&wio, sin_cb, 0, EV_READ);
1090 ev_io_start (&wio);
1091
1092 struct ev_timer t[10000];
1093
1094#if 0
1095 int i;
1096 for (i = 0; i < 10000; ++i) 3359 for (i = 0; i < signalmax; ++i)
1097 { 3360 for (wl = signals [i].head; wl; )
1098 struct ev_timer *w = t + i; 3361 {
1099 ev_watcher_init (w, ocb, i); 3362 wn = wl->next;
1100 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533); 3363 cb (EV_A_ EV_SIGNAL, wl);
1101 ev_timer_start (w); 3364 wl = wn;
1102 if (drand48 () < 0.5) 3365 }
1103 ev_timer_stop (w);
1104 }
1105#endif
1106 3366
1107 struct ev_timer t1; 3367 if (types & EV_CHILD)
1108 ev_timer_init (&t1, ocb, 5, 10); 3368 for (i = EV_PID_HASHSIZE; i--; )
1109 ev_timer_start (&t1); 3369 for (wl = childs [i]; wl; )
1110 3370 {
1111 struct ev_signal sig; 3371 wn = wl->next;
1112 ev_signal_init (&sig, scb, SIGQUIT); 3372 cb (EV_A_ EV_CHILD, wl);
1113 ev_signal_start (&sig); 3373 wl = wn;
1114 3374 }
1115 struct ev_check cw; 3375/* EV_STAT 0x00001000 /* stat data changed */
1116 ev_check_init (&cw, gcb); 3376/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
1117 ev_check_start (&cw);
1118
1119 struct ev_idle iw;
1120 ev_idle_init (&iw, gcb);
1121 ev_idle_start (&iw);
1122
1123 ev_loop (0);
1124
1125 return 0;
1126} 3377}
1127
1128#endif 3378#endif
1129 3379
3380#if EV_MULTIPLICITY
3381 #include "ev_wrap.h"
3382#endif
1130 3383
3384#ifdef __cplusplus
3385}
3386#endif
1131 3387
1132

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines