ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.130 by root, Fri Nov 23 05:13:48 2007 UTC vs.
Revision 1.296 by root, Thu Jul 9 09:11:20 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
38 65
39# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
42# endif 69# endif
43# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
45# endif 72# endif
46# else 73# else
47# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
49# endif 76# endif
50# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
52# endif 87# endif
53# endif 88# endif
54 89
55# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
90# else 125# else
91# define EV_USE_PORT 0 126# define EV_USE_PORT 0
92# endif 127# endif
93# endif 128# endif
94 129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_EVENTFD
139# if HAVE_EVENTFD
140# define EV_USE_EVENTFD 1
141# else
142# define EV_USE_EVENTFD 0
143# endif
144# endif
145
95#endif 146#endif
96 147
97#include <math.h> 148#include <math.h>
98#include <stdlib.h> 149#include <stdlib.h>
99#include <fcntl.h> 150#include <fcntl.h>
106#include <sys/types.h> 157#include <sys/types.h>
107#include <time.h> 158#include <time.h>
108 159
109#include <signal.h> 160#include <signal.h>
110 161
162#ifdef EV_H
163# include EV_H
164#else
165# include "ev.h"
166#endif
167
111#ifndef _WIN32 168#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 169# include <sys/time.h>
114# include <sys/wait.h> 170# include <sys/wait.h>
171# include <unistd.h>
115#else 172#else
173# include <io.h>
116# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 175# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
120# endif 178# endif
121#endif 179#endif
122 180
123/**/ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
124 190
125#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
126# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
127#endif 197#endif
128 198
129#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
201#endif
202
203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
207# define EV_USE_NANOSLEEP 0
208# endif
131#endif 209#endif
132 210
133#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
135#endif 213#endif
141# define EV_USE_POLL 1 219# define EV_USE_POLL 1
142# endif 220# endif
143#endif 221#endif
144 222
145#ifndef EV_USE_EPOLL 223#ifndef EV_USE_EPOLL
224# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225# define EV_USE_EPOLL 1
226# else
146# define EV_USE_EPOLL 0 227# define EV_USE_EPOLL 0
228# endif
147#endif 229#endif
148 230
149#ifndef EV_USE_KQUEUE 231#ifndef EV_USE_KQUEUE
150# define EV_USE_KQUEUE 0 232# define EV_USE_KQUEUE 0
151#endif 233#endif
152 234
153#ifndef EV_USE_PORT 235#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 236# define EV_USE_PORT 0
155#endif 237#endif
156 238
157/**/ 239#ifndef EV_USE_INOTIFY
240# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
241# define EV_USE_INOTIFY 1
242# else
243# define EV_USE_INOTIFY 0
244# endif
245#endif
246
247#ifndef EV_PID_HASHSIZE
248# if EV_MINIMAL
249# define EV_PID_HASHSIZE 1
250# else
251# define EV_PID_HASHSIZE 16
252# endif
253#endif
254
255#ifndef EV_INOTIFY_HASHSIZE
256# if EV_MINIMAL
257# define EV_INOTIFY_HASHSIZE 1
258# else
259# define EV_INOTIFY_HASHSIZE 16
260# endif
261#endif
262
263#ifndef EV_USE_EVENTFD
264# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265# define EV_USE_EVENTFD 1
266# else
267# define EV_USE_EVENTFD 0
268# endif
269#endif
270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
158 304
159#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
160# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
161# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
162#endif 308#endif
164#ifndef CLOCK_REALTIME 310#ifndef CLOCK_REALTIME
165# undef EV_USE_REALTIME 311# undef EV_USE_REALTIME
166# define EV_USE_REALTIME 0 312# define EV_USE_REALTIME 0
167#endif 313#endif
168 314
315#if !EV_STAT_ENABLE
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318#endif
319
320#if !EV_USE_NANOSLEEP
321# ifndef _WIN32
322# include <sys/select.h>
323# endif
324#endif
325
326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
335#endif
336
169#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
170# include <winsock.h> 338# include <winsock.h>
171#endif 339#endif
172 340
341#if EV_USE_EVENTFD
342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343# include <stdint.h>
344# ifdef __cplusplus
345extern "C" {
346# endif
347int eventfd (unsigned int initval, int flags);
348# ifdef __cplusplus
349}
350# endif
351#endif
352
173/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
360
361/*
362 * This is used to avoid floating point rounding problems.
363 * It is added to ev_rt_now when scheduling periodics
364 * to ensure progress, time-wise, even when rounding
365 * errors are against us.
366 * This value is good at least till the year 4000.
367 * Better solutions welcome.
368 */
369#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
174 370
175#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 371#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
176#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 372#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
177#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
178/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 373/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
179 374
180#ifdef EV_H
181# include EV_H
182#else
183# include "ev.h"
184#endif
185
186#if __GNUC__ >= 3 375#if __GNUC__ >= 4
187# define expect(expr,value) __builtin_expect ((expr),(value)) 376# define expect(expr,value) __builtin_expect ((expr),(value))
188# define inline static inline 377# define noinline __attribute__ ((noinline))
189#else 378#else
190# define expect(expr,value) (expr) 379# define expect(expr,value) (expr)
191# define inline static 380# define noinline
381# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
382# define inline
383# endif
192#endif 384#endif
193 385
194#define expect_false(expr) expect ((expr) != 0, 0) 386#define expect_false(expr) expect ((expr) != 0, 0)
195#define expect_true(expr) expect ((expr) != 0, 1) 387#define expect_true(expr) expect ((expr) != 0, 1)
388#define inline_size static inline
196 389
390#if EV_MINIMAL
391# define inline_speed static noinline
392#else
393# define inline_speed static inline
394#endif
395
197#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
198#define ABSPRI(w) ((w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
199 403
200#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 404#define EMPTY /* required for microsofts broken pseudo-c compiler */
201#define EMPTY2(a,b) /* used to suppress some warnings */ 405#define EMPTY2(a,b) /* used to suppress some warnings */
202 406
203typedef struct ev_watcher *W; 407typedef ev_watcher *W;
204typedef struct ev_watcher_list *WL; 408typedef ev_watcher_list *WL;
205typedef struct ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
206 410
411#define ev_active(w) ((W)(w))->active
412#define ev_at(w) ((WT)(w))->at
413
414#if EV_USE_REALTIME
415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
419
420#if EV_USE_MONOTONIC
207static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
422#endif
208 423
209#ifdef _WIN32 424#ifdef _WIN32
210# include "ev_win32.c" 425# include "ev_win32.c"
211#endif 426#endif
212 427
213/*****************************************************************************/ 428/*****************************************************************************/
214 429
215static void (*syserr_cb)(const char *msg); 430static void (*syserr_cb)(const char *msg);
216 431
432void
217void ev_set_syserr_cb (void (*cb)(const char *msg)) 433ev_set_syserr_cb (void (*cb)(const char *msg))
218{ 434{
219 syserr_cb = cb; 435 syserr_cb = cb;
220} 436}
221 437
222static void 438static void noinline
223syserr (const char *msg) 439ev_syserr (const char *msg)
224{ 440{
225 if (!msg) 441 if (!msg)
226 msg = "(libev) system error"; 442 msg = "(libev) system error";
227 443
228 if (syserr_cb) 444 if (syserr_cb)
232 perror (msg); 448 perror (msg);
233 abort (); 449 abort ();
234 } 450 }
235} 451}
236 452
453static void *
454ev_realloc_emul (void *ptr, long size)
455{
456 /* some systems, notably openbsd and darwin, fail to properly
457 * implement realloc (x, 0) (as required by both ansi c-98 and
458 * the single unix specification, so work around them here.
459 */
460
461 if (size)
462 return realloc (ptr, size);
463
464 free (ptr);
465 return 0;
466}
467
237static void *(*alloc)(void *ptr, long size); 468static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
238 469
470void
239void ev_set_allocator (void *(*cb)(void *ptr, long size)) 471ev_set_allocator (void *(*cb)(void *ptr, long size))
240{ 472{
241 alloc = cb; 473 alloc = cb;
242} 474}
243 475
244static void * 476inline_speed void *
245ev_realloc (void *ptr, long size) 477ev_realloc (void *ptr, long size)
246{ 478{
247 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 479 ptr = alloc (ptr, size);
248 480
249 if (!ptr && size) 481 if (!ptr && size)
250 { 482 {
251 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 483 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
252 abort (); 484 abort ();
258#define ev_malloc(size) ev_realloc (0, (size)) 490#define ev_malloc(size) ev_realloc (0, (size))
259#define ev_free(ptr) ev_realloc ((ptr), 0) 491#define ev_free(ptr) ev_realloc ((ptr), 0)
260 492
261/*****************************************************************************/ 493/*****************************************************************************/
262 494
495/* file descriptor info structure */
263typedef struct 496typedef struct
264{ 497{
265 WL head; 498 WL head;
266 unsigned char events; 499 unsigned char events; /* the events watched for */
500 unsigned char reify; /* flag set when this ANFD needs reification */
501 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
267 unsigned char reify; 502 unsigned char unused;
503#if EV_USE_EPOLL
504 unsigned int egen; /* generation counter to counter epoll bugs */
505#endif
268#if EV_SELECT_IS_WINSOCKET 506#if EV_SELECT_IS_WINSOCKET
269 SOCKET handle; 507 SOCKET handle;
270#endif 508#endif
271} ANFD; 509} ANFD;
272 510
511/* stores the pending event set for a given watcher */
273typedef struct 512typedef struct
274{ 513{
275 W w; 514 W w;
276 int events; 515 int events; /* the pending event set for the given watcher */
277} ANPENDING; 516} ANPENDING;
517
518#if EV_USE_INOTIFY
519/* hash table entry per inotify-id */
520typedef struct
521{
522 WL head;
523} ANFS;
524#endif
525
526/* Heap Entry */
527#if EV_HEAP_CACHE_AT
528 /* a heap element */
529 typedef struct {
530 ev_tstamp at;
531 WT w;
532 } ANHE;
533
534 #define ANHE_w(he) (he).w /* access watcher, read-write */
535 #define ANHE_at(he) (he).at /* access cached at, read-only */
536 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
537#else
538 /* a heap element */
539 typedef WT ANHE;
540
541 #define ANHE_w(he) (he)
542 #define ANHE_at(he) (he)->at
543 #define ANHE_at_cache(he)
544#endif
278 545
279#if EV_MULTIPLICITY 546#if EV_MULTIPLICITY
280 547
281 struct ev_loop 548 struct ev_loop
282 { 549 {
302 569
303#endif 570#endif
304 571
305/*****************************************************************************/ 572/*****************************************************************************/
306 573
574#ifndef EV_HAVE_EV_TIME
307ev_tstamp 575ev_tstamp
308ev_time (void) 576ev_time (void)
309{ 577{
310#if EV_USE_REALTIME 578#if EV_USE_REALTIME
579 if (expect_true (have_realtime))
580 {
311 struct timespec ts; 581 struct timespec ts;
312 clock_gettime (CLOCK_REALTIME, &ts); 582 clock_gettime (CLOCK_REALTIME, &ts);
313 return ts.tv_sec + ts.tv_nsec * 1e-9; 583 return ts.tv_sec + ts.tv_nsec * 1e-9;
314#else 584 }
585#endif
586
315 struct timeval tv; 587 struct timeval tv;
316 gettimeofday (&tv, 0); 588 gettimeofday (&tv, 0);
317 return tv.tv_sec + tv.tv_usec * 1e-6; 589 return tv.tv_sec + tv.tv_usec * 1e-6;
318#endif
319} 590}
591#endif
320 592
321inline ev_tstamp 593inline_size ev_tstamp
322get_clock (void) 594get_clock (void)
323{ 595{
324#if EV_USE_MONOTONIC 596#if EV_USE_MONOTONIC
325 if (expect_true (have_monotonic)) 597 if (expect_true (have_monotonic))
326 { 598 {
339{ 611{
340 return ev_rt_now; 612 return ev_rt_now;
341} 613}
342#endif 614#endif
343 615
344#define array_roundsize(type,n) (((n) | 4) & ~3) 616void
617ev_sleep (ev_tstamp delay)
618{
619 if (delay > 0.)
620 {
621#if EV_USE_NANOSLEEP
622 struct timespec ts;
623
624 ts.tv_sec = (time_t)delay;
625 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
626
627 nanosleep (&ts, 0);
628#elif defined(_WIN32)
629 Sleep ((unsigned long)(delay * 1e3));
630#else
631 struct timeval tv;
632
633 tv.tv_sec = (time_t)delay;
634 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
635
636 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
637 /* somehting not guaranteed by newer posix versions, but guaranteed */
638 /* by older ones */
639 select (0, 0, 0, 0, &tv);
640#endif
641 }
642}
643
644/*****************************************************************************/
645
646#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
647
648/* find a suitable new size for the given array, */
649/* hopefully by rounding to a ncie-to-malloc size */
650inline_size int
651array_nextsize (int elem, int cur, int cnt)
652{
653 int ncur = cur + 1;
654
655 do
656 ncur <<= 1;
657 while (cnt > ncur);
658
659 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
660 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
661 {
662 ncur *= elem;
663 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
664 ncur = ncur - sizeof (void *) * 4;
665 ncur /= elem;
666 }
667
668 return ncur;
669}
670
671static noinline void *
672array_realloc (int elem, void *base, int *cur, int cnt)
673{
674 *cur = array_nextsize (elem, *cur, cnt);
675 return ev_realloc (base, elem * *cur);
676}
677
678#define array_init_zero(base,count) \
679 memset ((void *)(base), 0, sizeof (*(base)) * (count))
345 680
346#define array_needsize(type,base,cur,cnt,init) \ 681#define array_needsize(type,base,cur,cnt,init) \
347 if (expect_false ((cnt) > cur)) \ 682 if (expect_false ((cnt) > (cur))) \
348 { \ 683 { \
349 int newcnt = cur; \ 684 int ocur_ = (cur); \
350 do \ 685 (base) = (type *)array_realloc \
351 { \ 686 (sizeof (type), (base), &(cur), (cnt)); \
352 newcnt = array_roundsize (type, newcnt << 1); \ 687 init ((base) + (ocur_), (cur) - ocur_); \
353 } \
354 while ((cnt) > newcnt); \
355 \
356 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
357 init (base + cur, newcnt - cur); \
358 cur = newcnt; \
359 } 688 }
360 689
690#if 0
361#define array_slim(type,stem) \ 691#define array_slim(type,stem) \
362 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 692 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
363 { \ 693 { \
364 stem ## max = array_roundsize (stem ## cnt >> 1); \ 694 stem ## max = array_roundsize (stem ## cnt >> 1); \
365 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 695 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
366 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 696 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
367 } 697 }
698#endif
368 699
369#define array_free(stem, idx) \ 700#define array_free(stem, idx) \
370 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 701 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
371 702
372/*****************************************************************************/ 703/*****************************************************************************/
373 704
374static void 705/* dummy callback for pending events */
375anfds_init (ANFD *base, int count) 706static void noinline
707pendingcb (EV_P_ ev_prepare *w, int revents)
376{ 708{
377 while (count--)
378 {
379 base->head = 0;
380 base->events = EV_NONE;
381 base->reify = 0;
382
383 ++base;
384 }
385} 709}
386 710
387void 711void noinline
388ev_feed_event (EV_P_ void *w, int revents) 712ev_feed_event (EV_P_ void *w, int revents)
389{ 713{
390 W w_ = (W)w; 714 W w_ = (W)w;
715 int pri = ABSPRI (w_);
391 716
392 if (expect_false (w_->pending)) 717 if (expect_false (w_->pending))
718 pendings [pri][w_->pending - 1].events |= revents;
719 else
393 { 720 {
721 w_->pending = ++pendingcnt [pri];
722 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
723 pendings [pri][w_->pending - 1].w = w_;
394 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 724 pendings [pri][w_->pending - 1].events = revents;
395 return;
396 } 725 }
397
398 w_->pending = ++pendingcnt [ABSPRI (w_)];
399 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
400 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
401 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
402} 726}
403 727
404static void 728inline_speed void
729feed_reverse (EV_P_ W w)
730{
731 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
732 rfeeds [rfeedcnt++] = w;
733}
734
735inline_size void
736feed_reverse_done (EV_P_ int revents)
737{
738 do
739 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
740 while (rfeedcnt);
741}
742
743inline_speed void
405queue_events (EV_P_ W *events, int eventcnt, int type) 744queue_events (EV_P_ W *events, int eventcnt, int type)
406{ 745{
407 int i; 746 int i;
408 747
409 for (i = 0; i < eventcnt; ++i) 748 for (i = 0; i < eventcnt; ++i)
410 ev_feed_event (EV_A_ events [i], type); 749 ev_feed_event (EV_A_ events [i], type);
411} 750}
412 751
752/*****************************************************************************/
753
413inline void 754inline_speed void
414fd_event (EV_P_ int fd, int revents) 755fd_event (EV_P_ int fd, int revents)
415{ 756{
416 ANFD *anfd = anfds + fd; 757 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 758 ev_io *w;
418 759
419 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 760 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
420 { 761 {
421 int ev = w->events & revents; 762 int ev = w->events & revents;
422 763
423 if (ev) 764 if (ev)
424 ev_feed_event (EV_A_ (W)w, ev); 765 ev_feed_event (EV_A_ (W)w, ev);
426} 767}
427 768
428void 769void
429ev_feed_fd_event (EV_P_ int fd, int revents) 770ev_feed_fd_event (EV_P_ int fd, int revents)
430{ 771{
772 if (fd >= 0 && fd < anfdmax)
431 fd_event (EV_A_ fd, revents); 773 fd_event (EV_A_ fd, revents);
432} 774}
433 775
434/*****************************************************************************/ 776/* make sure the external fd watch events are in-sync */
435 777/* with the kernel/libev internal state */
436inline void 778inline_size void
437fd_reify (EV_P) 779fd_reify (EV_P)
438{ 780{
439 int i; 781 int i;
440 782
441 for (i = 0; i < fdchangecnt; ++i) 783 for (i = 0; i < fdchangecnt; ++i)
442 { 784 {
443 int fd = fdchanges [i]; 785 int fd = fdchanges [i];
444 ANFD *anfd = anfds + fd; 786 ANFD *anfd = anfds + fd;
445 struct ev_io *w; 787 ev_io *w;
446 788
447 int events = 0; 789 unsigned char events = 0;
448 790
449 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 791 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
450 events |= w->events; 792 events |= (unsigned char)w->events;
451 793
452#if EV_SELECT_IS_WINSOCKET 794#if EV_SELECT_IS_WINSOCKET
453 if (events) 795 if (events)
454 { 796 {
455 unsigned long argp; 797 unsigned long arg;
798 #ifdef EV_FD_TO_WIN32_HANDLE
799 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
800 #else
456 anfd->handle = _get_osfhandle (fd); 801 anfd->handle = _get_osfhandle (fd);
802 #endif
457 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 803 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
458 } 804 }
459#endif 805#endif
460 806
807 {
808 unsigned char o_events = anfd->events;
809 unsigned char o_reify = anfd->reify;
810
461 anfd->reify = 0; 811 anfd->reify = 0;
462
463 backend_modify (EV_A_ fd, anfd->events, events);
464 anfd->events = events; 812 anfd->events = events;
813
814 if (o_events != events || o_reify & EV__IOFDSET)
815 backend_modify (EV_A_ fd, o_events, events);
816 }
465 } 817 }
466 818
467 fdchangecnt = 0; 819 fdchangecnt = 0;
468} 820}
469 821
470static void 822/* something about the given fd changed */
823inline_size void
471fd_change (EV_P_ int fd) 824fd_change (EV_P_ int fd, int flags)
472{ 825{
473 if (expect_false (anfds [fd].reify)) 826 unsigned char reify = anfds [fd].reify;
474 return;
475
476 anfds [fd].reify = 1; 827 anfds [fd].reify |= flags;
477 828
829 if (expect_true (!reify))
830 {
478 ++fdchangecnt; 831 ++fdchangecnt;
479 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 832 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
480 fdchanges [fdchangecnt - 1] = fd; 833 fdchanges [fdchangecnt - 1] = fd;
834 }
481} 835}
482 836
483static void 837/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
838inline_speed void
484fd_kill (EV_P_ int fd) 839fd_kill (EV_P_ int fd)
485{ 840{
486 struct ev_io *w; 841 ev_io *w;
487 842
488 while ((w = (struct ev_io *)anfds [fd].head)) 843 while ((w = (ev_io *)anfds [fd].head))
489 { 844 {
490 ev_io_stop (EV_A_ w); 845 ev_io_stop (EV_A_ w);
491 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 846 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
492 } 847 }
493} 848}
494 849
850/* check whether the given fd is atcually valid, for error recovery */
495inline int 851inline_size int
496fd_valid (int fd) 852fd_valid (int fd)
497{ 853{
498#ifdef _WIN32 854#ifdef _WIN32
499 return _get_osfhandle (fd) != -1; 855 return _get_osfhandle (fd) != -1;
500#else 856#else
501 return fcntl (fd, F_GETFD) != -1; 857 return fcntl (fd, F_GETFD) != -1;
502#endif 858#endif
503} 859}
504 860
505/* called on EBADF to verify fds */ 861/* called on EBADF to verify fds */
506static void 862static void noinline
507fd_ebadf (EV_P) 863fd_ebadf (EV_P)
508{ 864{
509 int fd; 865 int fd;
510 866
511 for (fd = 0; fd < anfdmax; ++fd) 867 for (fd = 0; fd < anfdmax; ++fd)
512 if (anfds [fd].events) 868 if (anfds [fd].events)
513 if (!fd_valid (fd) == -1 && errno == EBADF) 869 if (!fd_valid (fd) && errno == EBADF)
514 fd_kill (EV_A_ fd); 870 fd_kill (EV_A_ fd);
515} 871}
516 872
517/* called on ENOMEM in select/poll to kill some fds and retry */ 873/* called on ENOMEM in select/poll to kill some fds and retry */
518static void 874static void noinline
519fd_enomem (EV_P) 875fd_enomem (EV_P)
520{ 876{
521 int fd; 877 int fd;
522 878
523 for (fd = anfdmax; fd--; ) 879 for (fd = anfdmax; fd--; )
527 return; 883 return;
528 } 884 }
529} 885}
530 886
531/* usually called after fork if backend needs to re-arm all fds from scratch */ 887/* usually called after fork if backend needs to re-arm all fds from scratch */
532static void 888static void noinline
533fd_rearm_all (EV_P) 889fd_rearm_all (EV_P)
534{ 890{
535 int fd; 891 int fd;
536 892
537 /* this should be highly optimised to not do anything but set a flag */
538 for (fd = 0; fd < anfdmax; ++fd) 893 for (fd = 0; fd < anfdmax; ++fd)
539 if (anfds [fd].events) 894 if (anfds [fd].events)
540 { 895 {
541 anfds [fd].events = 0; 896 anfds [fd].events = 0;
897 anfds [fd].emask = 0;
542 fd_change (EV_A_ fd); 898 fd_change (EV_A_ fd, EV__IOFDSET | 1);
543 } 899 }
544} 900}
545 901
546/*****************************************************************************/ 902/*****************************************************************************/
547 903
548static void 904/*
549upheap (WT *heap, int k) 905 * the heap functions want a real array index. array index 0 uis guaranteed to not
550{ 906 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
551 WT w = heap [k]; 907 * the branching factor of the d-tree.
908 */
552 909
553 while (k && heap [k >> 1]->at > w->at) 910/*
554 { 911 * at the moment we allow libev the luxury of two heaps,
555 heap [k] = heap [k >> 1]; 912 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
556 ((W)heap [k])->active = k + 1; 913 * which is more cache-efficient.
557 k >>= 1; 914 * the difference is about 5% with 50000+ watchers.
558 } 915 */
916#if EV_USE_4HEAP
559 917
560 heap [k] = w; 918#define DHEAP 4
561 ((W)heap [k])->active = k + 1; 919#define HEAP0 (DHEAP - 1) /* index of first element in heap */
920#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
921#define UPHEAP_DONE(p,k) ((p) == (k))
562 922
563} 923/* away from the root */
564 924inline_speed void
565static void
566downheap (WT *heap, int N, int k) 925downheap (ANHE *heap, int N, int k)
567{ 926{
568 WT w = heap [k]; 927 ANHE he = heap [k];
928 ANHE *E = heap + N + HEAP0;
569 929
570 while (k < (N >> 1)) 930 for (;;)
571 { 931 {
572 int j = k << 1; 932 ev_tstamp minat;
933 ANHE *minpos;
934 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
573 935
574 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 936 /* find minimum child */
937 if (expect_true (pos + DHEAP - 1 < E))
575 ++j; 938 {
576 939 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
577 if (w->at <= heap [j]->at) 940 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
941 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
942 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
943 }
944 else if (pos < E)
945 {
946 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
947 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
948 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
949 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
950 }
951 else
578 break; 952 break;
579 953
954 if (ANHE_at (he) <= minat)
955 break;
956
957 heap [k] = *minpos;
958 ev_active (ANHE_w (*minpos)) = k;
959
960 k = minpos - heap;
961 }
962
963 heap [k] = he;
964 ev_active (ANHE_w (he)) = k;
965}
966
967#else /* 4HEAP */
968
969#define HEAP0 1
970#define HPARENT(k) ((k) >> 1)
971#define UPHEAP_DONE(p,k) (!(p))
972
973/* away from the root */
974inline_speed void
975downheap (ANHE *heap, int N, int k)
976{
977 ANHE he = heap [k];
978
979 for (;;)
980 {
981 int c = k << 1;
982
983 if (c > N + HEAP0 - 1)
984 break;
985
986 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
987 ? 1 : 0;
988
989 if (ANHE_at (he) <= ANHE_at (heap [c]))
990 break;
991
580 heap [k] = heap [j]; 992 heap [k] = heap [c];
581 ((W)heap [k])->active = k + 1; 993 ev_active (ANHE_w (heap [k])) = k;
994
582 k = j; 995 k = c;
583 } 996 }
584 997
585 heap [k] = w; 998 heap [k] = he;
586 ((W)heap [k])->active = k + 1; 999 ev_active (ANHE_w (he)) = k;
587} 1000}
1001#endif
588 1002
1003/* towards the root */
1004inline_speed void
1005upheap (ANHE *heap, int k)
1006{
1007 ANHE he = heap [k];
1008
1009 for (;;)
1010 {
1011 int p = HPARENT (k);
1012
1013 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1014 break;
1015
1016 heap [k] = heap [p];
1017 ev_active (ANHE_w (heap [k])) = k;
1018 k = p;
1019 }
1020
1021 heap [k] = he;
1022 ev_active (ANHE_w (he)) = k;
1023}
1024
1025/* move an element suitably so it is in a correct place */
589inline void 1026inline_size void
590adjustheap (WT *heap, int N, int k) 1027adjustheap (ANHE *heap, int N, int k)
591{ 1028{
1029 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
592 upheap (heap, k); 1030 upheap (heap, k);
1031 else
593 downheap (heap, N, k); 1032 downheap (heap, N, k);
1033}
1034
1035/* rebuild the heap: this function is used only once and executed rarely */
1036inline_size void
1037reheap (ANHE *heap, int N)
1038{
1039 int i;
1040
1041 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1042 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1043 for (i = 0; i < N; ++i)
1044 upheap (heap, i + HEAP0);
594} 1045}
595 1046
596/*****************************************************************************/ 1047/*****************************************************************************/
597 1048
1049/* associate signal watchers to a signal signal */
598typedef struct 1050typedef struct
599{ 1051{
600 WL head; 1052 WL head;
601 sig_atomic_t volatile gotsig; 1053 EV_ATOMIC_T gotsig;
602} ANSIG; 1054} ANSIG;
603 1055
604static ANSIG *signals; 1056static ANSIG *signals;
605static int signalmax; 1057static int signalmax;
606 1058
607static int sigpipe [2]; 1059static EV_ATOMIC_T gotsig;
608static sig_atomic_t volatile gotsig;
609static struct ev_io sigev;
610 1060
611static void 1061/*****************************************************************************/
612signals_init (ANSIG *base, int count)
613{
614 while (count--)
615 {
616 base->head = 0;
617 base->gotsig = 0;
618 1062
619 ++base; 1063/* used to prepare libev internal fd's */
620 } 1064/* this is not fork-safe */
621} 1065inline_speed void
622
623static void
624sighandler (int signum)
625{
626#if _WIN32
627 signal (signum, sighandler);
628#endif
629
630 signals [signum - 1].gotsig = 1;
631
632 if (!gotsig)
633 {
634 int old_errno = errno;
635 gotsig = 1;
636 write (sigpipe [1], &signum, 1);
637 errno = old_errno;
638 }
639}
640
641void
642ev_feed_signal_event (EV_P_ int signum)
643{
644 WL w;
645
646#if EV_MULTIPLICITY
647 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
648#endif
649
650 --signum;
651
652 if (signum < 0 || signum >= signalmax)
653 return;
654
655 signals [signum].gotsig = 0;
656
657 for (w = signals [signum].head; w; w = w->next)
658 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
659}
660
661static void
662sigcb (EV_P_ struct ev_io *iow, int revents)
663{
664 int signum;
665
666 read (sigpipe [0], &revents, 1);
667 gotsig = 0;
668
669 for (signum = signalmax; signum--; )
670 if (signals [signum].gotsig)
671 ev_feed_signal_event (EV_A_ signum + 1);
672}
673
674static void
675fd_intern (int fd) 1066fd_intern (int fd)
676{ 1067{
677#ifdef _WIN32 1068#ifdef _WIN32
678 int arg = 1; 1069 unsigned long arg = 1;
679 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1070 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
680#else 1071#else
681 fcntl (fd, F_SETFD, FD_CLOEXEC); 1072 fcntl (fd, F_SETFD, FD_CLOEXEC);
682 fcntl (fd, F_SETFL, O_NONBLOCK); 1073 fcntl (fd, F_SETFL, O_NONBLOCK);
683#endif 1074#endif
684} 1075}
685 1076
1077static void noinline
1078evpipe_init (EV_P)
1079{
1080 if (!ev_is_active (&pipe_w))
1081 {
1082#if EV_USE_EVENTFD
1083 if ((evfd = eventfd (0, 0)) >= 0)
1084 {
1085 evpipe [0] = -1;
1086 fd_intern (evfd);
1087 ev_io_set (&pipe_w, evfd, EV_READ);
1088 }
1089 else
1090#endif
1091 {
1092 while (pipe (evpipe))
1093 ev_syserr ("(libev) error creating signal/async pipe");
1094
1095 fd_intern (evpipe [0]);
1096 fd_intern (evpipe [1]);
1097 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1098 }
1099
1100 ev_io_start (EV_A_ &pipe_w);
1101 ev_unref (EV_A); /* watcher should not keep loop alive */
1102 }
1103}
1104
1105inline_size void
1106evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1107{
1108 if (!*flag)
1109 {
1110 int old_errno = errno; /* save errno because write might clobber it */
1111
1112 *flag = 1;
1113
1114#if EV_USE_EVENTFD
1115 if (evfd >= 0)
1116 {
1117 uint64_t counter = 1;
1118 write (evfd, &counter, sizeof (uint64_t));
1119 }
1120 else
1121#endif
1122 write (evpipe [1], &old_errno, 1);
1123
1124 errno = old_errno;
1125 }
1126}
1127
1128/* called whenever the libev signal pipe */
1129/* got some events (signal, async) */
686static void 1130static void
687siginit (EV_P) 1131pipecb (EV_P_ ev_io *iow, int revents)
688{ 1132{
689 fd_intern (sigpipe [0]); 1133#if EV_USE_EVENTFD
690 fd_intern (sigpipe [1]); 1134 if (evfd >= 0)
1135 {
1136 uint64_t counter;
1137 read (evfd, &counter, sizeof (uint64_t));
1138 }
1139 else
1140#endif
1141 {
1142 char dummy;
1143 read (evpipe [0], &dummy, 1);
1144 }
691 1145
692 ev_io_set (&sigev, sigpipe [0], EV_READ); 1146 if (gotsig && ev_is_default_loop (EV_A))
693 ev_io_start (EV_A_ &sigev); 1147 {
694 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1148 int signum;
1149 gotsig = 0;
1150
1151 for (signum = signalmax; signum--; )
1152 if (signals [signum].gotsig)
1153 ev_feed_signal_event (EV_A_ signum + 1);
1154 }
1155
1156#if EV_ASYNC_ENABLE
1157 if (gotasync)
1158 {
1159 int i;
1160 gotasync = 0;
1161
1162 for (i = asynccnt; i--; )
1163 if (asyncs [i]->sent)
1164 {
1165 asyncs [i]->sent = 0;
1166 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1167 }
1168 }
1169#endif
695} 1170}
696 1171
697/*****************************************************************************/ 1172/*****************************************************************************/
698 1173
699static struct ev_child *childs [PID_HASHSIZE]; 1174static void
1175ev_sighandler (int signum)
1176{
1177#if EV_MULTIPLICITY
1178 struct ev_loop *loop = &default_loop_struct;
1179#endif
1180
1181#if _WIN32
1182 signal (signum, ev_sighandler);
1183#endif
1184
1185 signals [signum - 1].gotsig = 1;
1186 evpipe_write (EV_A_ &gotsig);
1187}
1188
1189void noinline
1190ev_feed_signal_event (EV_P_ int signum)
1191{
1192 WL w;
1193
1194#if EV_MULTIPLICITY
1195 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1196#endif
1197
1198 --signum;
1199
1200 if (signum < 0 || signum >= signalmax)
1201 return;
1202
1203 signals [signum].gotsig = 0;
1204
1205 for (w = signals [signum].head; w; w = w->next)
1206 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1207}
1208
1209/*****************************************************************************/
1210
1211static WL childs [EV_PID_HASHSIZE];
700 1212
701#ifndef _WIN32 1213#ifndef _WIN32
702 1214
703static struct ev_signal childev; 1215static ev_signal childev;
1216
1217#ifndef WIFCONTINUED
1218# define WIFCONTINUED(status) 0
1219#endif
1220
1221/* handle a single child status event */
1222inline_speed void
1223child_reap (EV_P_ int chain, int pid, int status)
1224{
1225 ev_child *w;
1226 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1227
1228 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1229 {
1230 if ((w->pid == pid || !w->pid)
1231 && (!traced || (w->flags & 1)))
1232 {
1233 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1234 w->rpid = pid;
1235 w->rstatus = status;
1236 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1237 }
1238 }
1239}
704 1240
705#ifndef WCONTINUED 1241#ifndef WCONTINUED
706# define WCONTINUED 0 1242# define WCONTINUED 0
707#endif 1243#endif
708 1244
1245/* called on sigchld etc., calls waitpid */
709static void 1246static void
710child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
711{
712 struct ev_child *w;
713
714 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
715 if (w->pid == pid || !w->pid)
716 {
717 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
718 w->rpid = pid;
719 w->rstatus = status;
720 ev_feed_event (EV_A_ (W)w, EV_CHILD);
721 }
722}
723
724static void
725childcb (EV_P_ struct ev_signal *sw, int revents) 1247childcb (EV_P_ ev_signal *sw, int revents)
726{ 1248{
727 int pid, status; 1249 int pid, status;
728 1250
1251 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
729 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1252 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
730 { 1253 if (!WCONTINUED
1254 || errno != EINVAL
1255 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1256 return;
1257
731 /* make sure we are called again until all childs have been reaped */ 1258 /* make sure we are called again until all children have been reaped */
1259 /* we need to do it this way so that the callback gets called before we continue */
732 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1260 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
733 1261
734 child_reap (EV_A_ sw, pid, pid, status); 1262 child_reap (EV_A_ pid, pid, status);
1263 if (EV_PID_HASHSIZE > 1)
735 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1264 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
736 }
737} 1265}
738 1266
739#endif 1267#endif
740 1268
741/*****************************************************************************/ 1269/*****************************************************************************/
767{ 1295{
768 return EV_VERSION_MINOR; 1296 return EV_VERSION_MINOR;
769} 1297}
770 1298
771/* return true if we are running with elevated privileges and should ignore env variables */ 1299/* return true if we are running with elevated privileges and should ignore env variables */
772static int 1300int inline_size
773enable_secure (void) 1301enable_secure (void)
774{ 1302{
775#ifdef _WIN32 1303#ifdef _WIN32
776 return 0; 1304 return 0;
777#else 1305#else
795} 1323}
796 1324
797unsigned int 1325unsigned int
798ev_recommended_backends (void) 1326ev_recommended_backends (void)
799{ 1327{
800 unsigned int flags = ev_recommended_backends (); 1328 unsigned int flags = ev_supported_backends ();
801 1329
802#ifndef __NetBSD__ 1330#ifndef __NetBSD__
803 /* kqueue is borked on everything but netbsd apparently */ 1331 /* kqueue is borked on everything but netbsd apparently */
804 /* it usually doesn't work correctly on anything but sockets and pipes */ 1332 /* it usually doesn't work correctly on anything but sockets and pipes */
805 flags &= ~EVBACKEND_KQUEUE; 1333 flags &= ~EVBACKEND_KQUEUE;
806#endif 1334#endif
807#ifdef __APPLE__ 1335#ifdef __APPLE__
808 // flags &= ~EVBACKEND_KQUEUE; for documentation 1336 /* only select works correctly on that "unix-certified" platform */
1337 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1338 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1339#endif
1340
1341 return flags;
1342}
1343
1344unsigned int
1345ev_embeddable_backends (void)
1346{
1347 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1348
1349 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1350 /* please fix it and tell me how to detect the fix */
809 flags &= ~EVBACKEND_POLL; 1351 flags &= ~EVBACKEND_EPOLL;
810#endif
811 1352
812 return flags; 1353 return flags;
813} 1354}
814 1355
815unsigned int 1356unsigned int
816ev_backend (EV_P) 1357ev_backend (EV_P)
817{ 1358{
818 return backend; 1359 return backend;
819} 1360}
820 1361
821static void 1362unsigned int
1363ev_loop_count (EV_P)
1364{
1365 return loop_count;
1366}
1367
1368unsigned int
1369ev_loop_depth (EV_P)
1370{
1371 return loop_depth;
1372}
1373
1374void
1375ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1376{
1377 io_blocktime = interval;
1378}
1379
1380void
1381ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1382{
1383 timeout_blocktime = interval;
1384}
1385
1386/* initialise a loop structure, must be zero-initialised */
1387static void noinline
822loop_init (EV_P_ unsigned int flags) 1388loop_init (EV_P_ unsigned int flags)
823{ 1389{
824 if (!backend) 1390 if (!backend)
825 { 1391 {
1392#if EV_USE_REALTIME
1393 if (!have_realtime)
1394 {
1395 struct timespec ts;
1396
1397 if (!clock_gettime (CLOCK_REALTIME, &ts))
1398 have_realtime = 1;
1399 }
1400#endif
1401
826#if EV_USE_MONOTONIC 1402#if EV_USE_MONOTONIC
1403 if (!have_monotonic)
827 { 1404 {
828 struct timespec ts; 1405 struct timespec ts;
1406
829 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1407 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
830 have_monotonic = 1; 1408 have_monotonic = 1;
831 } 1409 }
832#endif 1410#endif
833 1411
834 ev_rt_now = ev_time (); 1412 ev_rt_now = ev_time ();
835 mn_now = get_clock (); 1413 mn_now = get_clock ();
836 now_floor = mn_now; 1414 now_floor = mn_now;
837 rtmn_diff = ev_rt_now - mn_now; 1415 rtmn_diff = ev_rt_now - mn_now;
1416 invoke_cb = ev_invoke_pending;
1417
1418 io_blocktime = 0.;
1419 timeout_blocktime = 0.;
1420 backend = 0;
1421 backend_fd = -1;
1422 gotasync = 0;
1423#if EV_USE_INOTIFY
1424 fs_fd = -2;
1425#endif
1426
1427 /* pid check not overridable via env */
1428#ifndef _WIN32
1429 if (flags & EVFLAG_FORKCHECK)
1430 curpid = getpid ();
1431#endif
838 1432
839 if (!(flags & EVFLAG_NOENV) 1433 if (!(flags & EVFLAG_NOENV)
840 && !enable_secure () 1434 && !enable_secure ()
841 && getenv ("LIBEV_FLAGS")) 1435 && getenv ("LIBEV_FLAGS"))
842 flags = atoi (getenv ("LIBEV_FLAGS")); 1436 flags = atoi (getenv ("LIBEV_FLAGS"));
843 1437
844 if (!(flags & 0x0000ffffUL)) 1438 if (!(flags & 0x0000ffffU))
845 flags |= ev_recommended_backends (); 1439 flags |= ev_recommended_backends ();
846 1440
847 backend = 0;
848#if EV_USE_PORT 1441#if EV_USE_PORT
849 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1442 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
850#endif 1443#endif
851#if EV_USE_KQUEUE 1444#if EV_USE_KQUEUE
852 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1445 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
859#endif 1452#endif
860#if EV_USE_SELECT 1453#if EV_USE_SELECT
861 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1454 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
862#endif 1455#endif
863 1456
1457 ev_prepare_init (&pending_w, pendingcb);
1458
864 ev_init (&sigev, sigcb); 1459 ev_init (&pipe_w, pipecb);
865 ev_set_priority (&sigev, EV_MAXPRI); 1460 ev_set_priority (&pipe_w, EV_MAXPRI);
866 } 1461 }
867} 1462}
868 1463
869static void 1464/* free up a loop structure */
1465static void noinline
870loop_destroy (EV_P) 1466loop_destroy (EV_P)
871{ 1467{
872 int i; 1468 int i;
1469
1470 if (ev_is_active (&pipe_w))
1471 {
1472 ev_ref (EV_A); /* signal watcher */
1473 ev_io_stop (EV_A_ &pipe_w);
1474
1475#if EV_USE_EVENTFD
1476 if (evfd >= 0)
1477 close (evfd);
1478#endif
1479
1480 if (evpipe [0] >= 0)
1481 {
1482 close (evpipe [0]);
1483 close (evpipe [1]);
1484 }
1485 }
1486
1487#if EV_USE_INOTIFY
1488 if (fs_fd >= 0)
1489 close (fs_fd);
1490#endif
1491
1492 if (backend_fd >= 0)
1493 close (backend_fd);
873 1494
874#if EV_USE_PORT 1495#if EV_USE_PORT
875 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1496 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
876#endif 1497#endif
877#if EV_USE_KQUEUE 1498#if EV_USE_KQUEUE
886#if EV_USE_SELECT 1507#if EV_USE_SELECT
887 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1508 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
888#endif 1509#endif
889 1510
890 for (i = NUMPRI; i--; ) 1511 for (i = NUMPRI; i--; )
1512 {
891 array_free (pending, [i]); 1513 array_free (pending, [i]);
1514#if EV_IDLE_ENABLE
1515 array_free (idle, [i]);
1516#endif
1517 }
1518
1519 ev_free (anfds); anfdmax = 0;
892 1520
893 /* have to use the microsoft-never-gets-it-right macro */ 1521 /* have to use the microsoft-never-gets-it-right macro */
1522 array_free (rfeed, EMPTY);
894 array_free (fdchange, EMPTY0); 1523 array_free (fdchange, EMPTY);
895 array_free (timer, EMPTY0); 1524 array_free (timer, EMPTY);
896#if EV_PERIODICS 1525#if EV_PERIODIC_ENABLE
897 array_free (periodic, EMPTY0); 1526 array_free (periodic, EMPTY);
898#endif 1527#endif
1528#if EV_FORK_ENABLE
899 array_free (idle, EMPTY0); 1529 array_free (fork, EMPTY);
1530#endif
900 array_free (prepare, EMPTY0); 1531 array_free (prepare, EMPTY);
901 array_free (check, EMPTY0); 1532 array_free (check, EMPTY);
1533#if EV_ASYNC_ENABLE
1534 array_free (async, EMPTY);
1535#endif
902 1536
903 backend = 0; 1537 backend = 0;
904} 1538}
905 1539
906static void 1540#if EV_USE_INOTIFY
1541inline_size void infy_fork (EV_P);
1542#endif
1543
1544inline_size void
907loop_fork (EV_P) 1545loop_fork (EV_P)
908{ 1546{
909#if EV_USE_PORT 1547#if EV_USE_PORT
910 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1548 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
911#endif 1549#endif
913 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1551 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
914#endif 1552#endif
915#if EV_USE_EPOLL 1553#if EV_USE_EPOLL
916 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1554 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
917#endif 1555#endif
1556#if EV_USE_INOTIFY
1557 infy_fork (EV_A);
1558#endif
918 1559
919 if (ev_is_active (&sigev)) 1560 if (ev_is_active (&pipe_w))
920 { 1561 {
921 /* default loop */ 1562 /* this "locks" the handlers against writing to the pipe */
1563 /* while we modify the fd vars */
1564 gotsig = 1;
1565#if EV_ASYNC_ENABLE
1566 gotasync = 1;
1567#endif
922 1568
923 ev_ref (EV_A); 1569 ev_ref (EV_A);
924 ev_io_stop (EV_A_ &sigev); 1570 ev_io_stop (EV_A_ &pipe_w);
1571
1572#if EV_USE_EVENTFD
1573 if (evfd >= 0)
1574 close (evfd);
1575#endif
1576
1577 if (evpipe [0] >= 0)
1578 {
925 close (sigpipe [0]); 1579 close (evpipe [0]);
926 close (sigpipe [1]); 1580 close (evpipe [1]);
1581 }
927 1582
928 while (pipe (sigpipe))
929 syserr ("(libev) error creating pipe");
930
931 siginit (EV_A); 1583 evpipe_init (EV_A);
1584 /* now iterate over everything, in case we missed something */
1585 pipecb (EV_A_ &pipe_w, EV_READ);
932 } 1586 }
933 1587
934 postfork = 0; 1588 postfork = 0;
935} 1589}
936 1590
937#if EV_MULTIPLICITY 1591#if EV_MULTIPLICITY
1592
938struct ev_loop * 1593struct ev_loop *
939ev_loop_new (unsigned int flags) 1594ev_loop_new (unsigned int flags)
940{ 1595{
941 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1596 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
942 1597
958} 1613}
959 1614
960void 1615void
961ev_loop_fork (EV_P) 1616ev_loop_fork (EV_P)
962{ 1617{
963 postfork = 1; 1618 postfork = 1; /* must be in line with ev_default_fork */
964} 1619}
965 1620
1621#if EV_VERIFY
1622static void noinline
1623verify_watcher (EV_P_ W w)
1624{
1625 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1626
1627 if (w->pending)
1628 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1629}
1630
1631static void noinline
1632verify_heap (EV_P_ ANHE *heap, int N)
1633{
1634 int i;
1635
1636 for (i = HEAP0; i < N + HEAP0; ++i)
1637 {
1638 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1639 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1640 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1641
1642 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1643 }
1644}
1645
1646static void noinline
1647array_verify (EV_P_ W *ws, int cnt)
1648{
1649 while (cnt--)
1650 {
1651 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1652 verify_watcher (EV_A_ ws [cnt]);
1653 }
1654}
1655#endif
1656
1657void
1658ev_loop_verify (EV_P)
1659{
1660#if EV_VERIFY
1661 int i;
1662 WL w;
1663
1664 assert (activecnt >= -1);
1665
1666 assert (fdchangemax >= fdchangecnt);
1667 for (i = 0; i < fdchangecnt; ++i)
1668 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1669
1670 assert (anfdmax >= 0);
1671 for (i = 0; i < anfdmax; ++i)
1672 for (w = anfds [i].head; w; w = w->next)
1673 {
1674 verify_watcher (EV_A_ (W)w);
1675 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1676 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1677 }
1678
1679 assert (timermax >= timercnt);
1680 verify_heap (EV_A_ timers, timercnt);
1681
1682#if EV_PERIODIC_ENABLE
1683 assert (periodicmax >= periodiccnt);
1684 verify_heap (EV_A_ periodics, periodiccnt);
1685#endif
1686
1687 for (i = NUMPRI; i--; )
1688 {
1689 assert (pendingmax [i] >= pendingcnt [i]);
1690#if EV_IDLE_ENABLE
1691 assert (idleall >= 0);
1692 assert (idlemax [i] >= idlecnt [i]);
1693 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1694#endif
1695 }
1696
1697#if EV_FORK_ENABLE
1698 assert (forkmax >= forkcnt);
1699 array_verify (EV_A_ (W *)forks, forkcnt);
1700#endif
1701
1702#if EV_ASYNC_ENABLE
1703 assert (asyncmax >= asynccnt);
1704 array_verify (EV_A_ (W *)asyncs, asynccnt);
1705#endif
1706
1707 assert (preparemax >= preparecnt);
1708 array_verify (EV_A_ (W *)prepares, preparecnt);
1709
1710 assert (checkmax >= checkcnt);
1711 array_verify (EV_A_ (W *)checks, checkcnt);
1712
1713# if 0
1714 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1715 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
966#endif 1716# endif
1717#endif
1718}
1719
1720#endif /* multiplicity */
967 1721
968#if EV_MULTIPLICITY 1722#if EV_MULTIPLICITY
969struct ev_loop * 1723struct ev_loop *
970ev_default_loop_init (unsigned int flags) 1724ev_default_loop_init (unsigned int flags)
971#else 1725#else
972int 1726int
973ev_default_loop (unsigned int flags) 1727ev_default_loop (unsigned int flags)
974#endif 1728#endif
975{ 1729{
976 if (sigpipe [0] == sigpipe [1])
977 if (pipe (sigpipe))
978 return 0;
979
980 if (!ev_default_loop_ptr) 1730 if (!ev_default_loop_ptr)
981 { 1731 {
982#if EV_MULTIPLICITY 1732#if EV_MULTIPLICITY
983 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1733 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
984#else 1734#else
987 1737
988 loop_init (EV_A_ flags); 1738 loop_init (EV_A_ flags);
989 1739
990 if (ev_backend (EV_A)) 1740 if (ev_backend (EV_A))
991 { 1741 {
992 siginit (EV_A);
993
994#ifndef _WIN32 1742#ifndef _WIN32
995 ev_signal_init (&childev, childcb, SIGCHLD); 1743 ev_signal_init (&childev, childcb, SIGCHLD);
996 ev_set_priority (&childev, EV_MAXPRI); 1744 ev_set_priority (&childev, EV_MAXPRI);
997 ev_signal_start (EV_A_ &childev); 1745 ev_signal_start (EV_A_ &childev);
998 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1746 ev_unref (EV_A); /* child watcher should not keep loop alive */
1010{ 1758{
1011#if EV_MULTIPLICITY 1759#if EV_MULTIPLICITY
1012 struct ev_loop *loop = ev_default_loop_ptr; 1760 struct ev_loop *loop = ev_default_loop_ptr;
1013#endif 1761#endif
1014 1762
1763 ev_default_loop_ptr = 0;
1764
1015#ifndef _WIN32 1765#ifndef _WIN32
1016 ev_ref (EV_A); /* child watcher */ 1766 ev_ref (EV_A); /* child watcher */
1017 ev_signal_stop (EV_A_ &childev); 1767 ev_signal_stop (EV_A_ &childev);
1018#endif 1768#endif
1019 1769
1020 ev_ref (EV_A); /* signal watcher */
1021 ev_io_stop (EV_A_ &sigev);
1022
1023 close (sigpipe [0]); sigpipe [0] = 0;
1024 close (sigpipe [1]); sigpipe [1] = 0;
1025
1026 loop_destroy (EV_A); 1770 loop_destroy (EV_A);
1027} 1771}
1028 1772
1029void 1773void
1030ev_default_fork (void) 1774ev_default_fork (void)
1031{ 1775{
1032#if EV_MULTIPLICITY 1776#if EV_MULTIPLICITY
1033 struct ev_loop *loop = ev_default_loop_ptr; 1777 struct ev_loop *loop = ev_default_loop_ptr;
1034#endif 1778#endif
1035 1779
1036 if (backend) 1780 postfork = 1; /* must be in line with ev_loop_fork */
1037 postfork = 1;
1038} 1781}
1039 1782
1040/*****************************************************************************/ 1783/*****************************************************************************/
1041 1784
1042static int 1785void
1786ev_invoke (EV_P_ void *w, int revents)
1787{
1788 EV_CB_INVOKE ((W)w, revents);
1789}
1790
1791void
1043any_pending (EV_P) 1792ev_invoke_pending (EV_P)
1044{
1045 int pri;
1046
1047 for (pri = NUMPRI; pri--; )
1048 if (pendingcnt [pri])
1049 return 1;
1050
1051 return 0;
1052}
1053
1054inline void
1055call_pending (EV_P)
1056{ 1793{
1057 int pri; 1794 int pri;
1058 1795
1059 for (pri = NUMPRI; pri--; ) 1796 for (pri = NUMPRI; pri--; )
1060 while (pendingcnt [pri]) 1797 while (pendingcnt [pri])
1061 { 1798 {
1062 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1799 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1063 1800
1064 if (expect_true (p->w)) 1801 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1065 { 1802 /* ^ this is no longer true, as pending_w could be here */
1803
1066 p->w->pending = 0; 1804 p->w->pending = 0;
1067 EV_CB_INVOKE (p->w, p->events); 1805 EV_CB_INVOKE (p->w, p->events);
1068 } 1806 EV_FREQUENT_CHECK;
1069 } 1807 }
1070} 1808}
1071 1809
1810#if EV_IDLE_ENABLE
1811/* make idle watchers pending. this handles the "call-idle */
1812/* only when higher priorities are idle" logic */
1072inline void 1813inline_size void
1814idle_reify (EV_P)
1815{
1816 if (expect_false (idleall))
1817 {
1818 int pri;
1819
1820 for (pri = NUMPRI; pri--; )
1821 {
1822 if (pendingcnt [pri])
1823 break;
1824
1825 if (idlecnt [pri])
1826 {
1827 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1828 break;
1829 }
1830 }
1831 }
1832}
1833#endif
1834
1835/* make timers pending */
1836inline_size void
1073timers_reify (EV_P) 1837timers_reify (EV_P)
1074{ 1838{
1839 EV_FREQUENT_CHECK;
1840
1075 while (timercnt && ((WT)timers [0])->at <= mn_now) 1841 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1076 { 1842 {
1077 struct ev_timer *w = timers [0]; 1843 do
1078
1079 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1080
1081 /* first reschedule or stop timer */
1082 if (w->repeat)
1083 { 1844 {
1845 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1846
1847 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1848
1849 /* first reschedule or stop timer */
1850 if (w->repeat)
1851 {
1852 ev_at (w) += w->repeat;
1853 if (ev_at (w) < mn_now)
1854 ev_at (w) = mn_now;
1855
1084 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1856 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1085 1857
1086 ((WT)w)->at += w->repeat; 1858 ANHE_at_cache (timers [HEAP0]);
1087 if (((WT)w)->at < mn_now)
1088 ((WT)w)->at = mn_now;
1089
1090 downheap ((WT *)timers, timercnt, 0); 1859 downheap (timers, timercnt, HEAP0);
1860 }
1861 else
1862 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1863
1864 EV_FREQUENT_CHECK;
1865 feed_reverse (EV_A_ (W)w);
1091 } 1866 }
1092 else 1867 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1093 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1094 1868
1095 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1869 feed_reverse_done (EV_A_ EV_TIMEOUT);
1096 } 1870 }
1097} 1871}
1098 1872
1099#if EV_PERIODICS 1873#if EV_PERIODIC_ENABLE
1874/* make periodics pending */
1100inline void 1875inline_size void
1101periodics_reify (EV_P) 1876periodics_reify (EV_P)
1102{ 1877{
1878 EV_FREQUENT_CHECK;
1879
1103 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1880 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1104 { 1881 {
1105 struct ev_periodic *w = periodics [0]; 1882 int feed_count = 0;
1106 1883
1884 do
1885 {
1886 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1887
1107 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1888 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1108 1889
1109 /* first reschedule or stop timer */ 1890 /* first reschedule or stop timer */
1891 if (w->reschedule_cb)
1892 {
1893 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1894
1895 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1896
1897 ANHE_at_cache (periodics [HEAP0]);
1898 downheap (periodics, periodiccnt, HEAP0);
1899 }
1900 else if (w->interval)
1901 {
1902 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1903 /* if next trigger time is not sufficiently in the future, put it there */
1904 /* this might happen because of floating point inexactness */
1905 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1906 {
1907 ev_at (w) += w->interval;
1908
1909 /* if interval is unreasonably low we might still have a time in the past */
1910 /* so correct this. this will make the periodic very inexact, but the user */
1911 /* has effectively asked to get triggered more often than possible */
1912 if (ev_at (w) < ev_rt_now)
1913 ev_at (w) = ev_rt_now;
1914 }
1915
1916 ANHE_at_cache (periodics [HEAP0]);
1917 downheap (periodics, periodiccnt, HEAP0);
1918 }
1919 else
1920 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1921
1922 EV_FREQUENT_CHECK;
1923 feed_reverse (EV_A_ (W)w);
1924 }
1925 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1926
1927 feed_reverse_done (EV_A_ EV_PERIODIC);
1928 }
1929}
1930
1931/* simply recalculate all periodics */
1932/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1933static void noinline
1934periodics_reschedule (EV_P)
1935{
1936 int i;
1937
1938 /* adjust periodics after time jump */
1939 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1940 {
1941 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1942
1110 if (w->reschedule_cb) 1943 if (w->reschedule_cb)
1944 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1945 else if (w->interval)
1946 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1947
1948 ANHE_at_cache (periodics [i]);
1949 }
1950
1951 reheap (periodics, periodiccnt);
1952}
1953#endif
1954
1955/* adjust all timers by a given offset */
1956static void noinline
1957timers_reschedule (EV_P_ ev_tstamp adjust)
1958{
1959 int i;
1960
1961 for (i = 0; i < timercnt; ++i)
1962 {
1963 ANHE *he = timers + i + HEAP0;
1964 ANHE_w (*he)->at += adjust;
1965 ANHE_at_cache (*he);
1966 }
1967}
1968
1969/* fetch new monotonic and realtime times from the kernel */
1970/* also detetc if there was a timejump, and act accordingly */
1971inline_speed void
1972time_update (EV_P_ ev_tstamp max_block)
1973{
1974#if EV_USE_MONOTONIC
1975 if (expect_true (have_monotonic))
1976 {
1977 int i;
1978 ev_tstamp odiff = rtmn_diff;
1979
1980 mn_now = get_clock ();
1981
1982 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1983 /* interpolate in the meantime */
1984 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1111 { 1985 {
1112 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1986 ev_rt_now = rtmn_diff + mn_now;
1113 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1987 return;
1114 downheap ((WT *)periodics, periodiccnt, 0);
1115 } 1988 }
1116 else if (w->interval)
1117 {
1118 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1119 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1120 downheap ((WT *)periodics, periodiccnt, 0);
1121 }
1122 else
1123 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1124 1989
1125 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1126 }
1127}
1128
1129static void
1130periodics_reschedule (EV_P)
1131{
1132 int i;
1133
1134 /* adjust periodics after time jump */
1135 for (i = 0; i < periodiccnt; ++i)
1136 {
1137 struct ev_periodic *w = periodics [i];
1138
1139 if (w->reschedule_cb)
1140 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1141 else if (w->interval)
1142 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1143 }
1144
1145 /* now rebuild the heap */
1146 for (i = periodiccnt >> 1; i--; )
1147 downheap ((WT *)periodics, periodiccnt, i);
1148}
1149#endif
1150
1151inline int
1152time_update_monotonic (EV_P)
1153{
1154 mn_now = get_clock ();
1155
1156 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1157 {
1158 ev_rt_now = rtmn_diff + mn_now;
1159 return 0;
1160 }
1161 else
1162 {
1163 now_floor = mn_now; 1990 now_floor = mn_now;
1164 ev_rt_now = ev_time (); 1991 ev_rt_now = ev_time ();
1165 return 1;
1166 }
1167}
1168 1992
1169inline void 1993 /* loop a few times, before making important decisions.
1170time_update (EV_P) 1994 * on the choice of "4": one iteration isn't enough,
1171{ 1995 * in case we get preempted during the calls to
1172 int i; 1996 * ev_time and get_clock. a second call is almost guaranteed
1173 1997 * to succeed in that case, though. and looping a few more times
1174#if EV_USE_MONOTONIC 1998 * doesn't hurt either as we only do this on time-jumps or
1175 if (expect_true (have_monotonic)) 1999 * in the unlikely event of having been preempted here.
1176 { 2000 */
1177 if (time_update_monotonic (EV_A)) 2001 for (i = 4; --i; )
1178 { 2002 {
1179 ev_tstamp odiff = rtmn_diff;
1180
1181 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1182 {
1183 rtmn_diff = ev_rt_now - mn_now; 2003 rtmn_diff = ev_rt_now - mn_now;
1184 2004
1185 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2005 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1186 return; /* all is well */ 2006 return; /* all is well */
1187 2007
1188 ev_rt_now = ev_time (); 2008 ev_rt_now = ev_time ();
1189 mn_now = get_clock (); 2009 mn_now = get_clock ();
1190 now_floor = mn_now; 2010 now_floor = mn_now;
1191 } 2011 }
1192 2012
2013 /* no timer adjustment, as the monotonic clock doesn't jump */
2014 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1193# if EV_PERIODICS 2015# if EV_PERIODIC_ENABLE
2016 periodics_reschedule (EV_A);
2017# endif
2018 }
2019 else
2020#endif
2021 {
2022 ev_rt_now = ev_time ();
2023
2024 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2025 {
2026 /* adjust timers. this is easy, as the offset is the same for all of them */
2027 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2028#if EV_PERIODIC_ENABLE
1194 periodics_reschedule (EV_A); 2029 periodics_reschedule (EV_A);
1195# endif 2030#endif
1196 /* no timer adjustment, as the monotonic clock doesn't jump */
1197 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1198 } 2031 }
1199 }
1200 else
1201#endif
1202 {
1203 ev_rt_now = ev_time ();
1204
1205 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1206 {
1207#if EV_PERIODICS
1208 periodics_reschedule (EV_A);
1209#endif
1210
1211 /* adjust timers. this is easy, as the offset is the same for all */
1212 for (i = 0; i < timercnt; ++i)
1213 ((WT)timers [i])->at += ev_rt_now - mn_now;
1214 }
1215 2032
1216 mn_now = ev_rt_now; 2033 mn_now = ev_rt_now;
1217 } 2034 }
1218} 2035}
1219 2036
1220void 2037void
1221ev_ref (EV_P)
1222{
1223 ++activecnt;
1224}
1225
1226void
1227ev_unref (EV_P)
1228{
1229 --activecnt;
1230}
1231
1232static int loop_done;
1233
1234void
1235ev_loop (EV_P_ int flags) 2038ev_loop (EV_P_ int flags)
1236{ 2039{
1237 double block; 2040 ++loop_depth;
1238 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1239 2041
1240 while (activecnt) 2042 loop_done = EVUNLOOP_CANCEL;
2043
2044 invoke_cb (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
2045
2046 do
1241 { 2047 {
2048#if EV_VERIFY >= 2
2049 ev_loop_verify (EV_A);
2050#endif
2051
2052#ifndef _WIN32
2053 if (expect_false (curpid)) /* penalise the forking check even more */
2054 if (expect_false (getpid () != curpid))
2055 {
2056 curpid = getpid ();
2057 postfork = 1;
2058 }
2059#endif
2060
2061#if EV_FORK_ENABLE
2062 /* we might have forked, so queue fork handlers */
2063 if (expect_false (postfork))
2064 if (forkcnt)
2065 {
2066 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2067 invoke_cb (EV_A);
2068 }
2069#endif
2070
1242 /* queue check watchers (and execute them) */ 2071 /* queue prepare watchers (and execute them) */
1243 if (expect_false (preparecnt)) 2072 if (expect_false (preparecnt))
1244 { 2073 {
1245 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2074 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1246 call_pending (EV_A); 2075 invoke_cb (EV_A);
1247 } 2076 }
1248 2077
1249 /* we might have forked, so reify kernel state if necessary */ 2078 /* we might have forked, so reify kernel state if necessary */
1250 if (expect_false (postfork)) 2079 if (expect_false (postfork))
1251 loop_fork (EV_A); 2080 loop_fork (EV_A);
1252 2081
1253 /* update fd-related kernel structures */ 2082 /* update fd-related kernel structures */
1254 fd_reify (EV_A); 2083 fd_reify (EV_A);
1255 2084
1256 /* calculate blocking time */ 2085 /* calculate blocking time */
2086 {
2087 ev_tstamp waittime = 0.;
2088 ev_tstamp sleeptime = 0.;
1257 2089
1258 /* we only need this for !monotonic clock or timers, but as we basically 2090 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1259 always have timers, we just calculate it always */
1260#if EV_USE_MONOTONIC
1261 if (expect_true (have_monotonic))
1262 time_update_monotonic (EV_A);
1263 else
1264#endif
1265 { 2091 {
1266 ev_rt_now = ev_time (); 2092 /* remember old timestamp for io_blocktime calculation */
1267 mn_now = ev_rt_now; 2093 ev_tstamp prev_mn_now = mn_now;
1268 }
1269 2094
1270 if (flags & EVLOOP_NONBLOCK || idlecnt) 2095 /* update time to cancel out callback processing overhead */
1271 block = 0.; 2096 time_update (EV_A_ 1e100);
1272 else 2097
1273 {
1274 block = MAX_BLOCKTIME; 2098 waittime = MAX_BLOCKTIME;
1275 2099
1276 if (timercnt) 2100 if (timercnt)
1277 { 2101 {
1278 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2102 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1279 if (block > to) block = to; 2103 if (waittime > to) waittime = to;
1280 } 2104 }
1281 2105
1282#if EV_PERIODICS 2106#if EV_PERIODIC_ENABLE
1283 if (periodiccnt) 2107 if (periodiccnt)
1284 { 2108 {
1285 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2109 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1286 if (block > to) block = to; 2110 if (waittime > to) waittime = to;
1287 } 2111 }
1288#endif 2112#endif
1289 2113
1290 if (expect_false (block < 0.)) block = 0.; 2114 /* don't let timeouts decrease the waittime below timeout_blocktime */
2115 if (expect_false (waittime < timeout_blocktime))
2116 waittime = timeout_blocktime;
2117
2118 /* extra check because io_blocktime is commonly 0 */
2119 if (expect_false (io_blocktime))
2120 {
2121 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2122
2123 if (sleeptime > waittime - backend_fudge)
2124 sleeptime = waittime - backend_fudge;
2125
2126 if (expect_true (sleeptime > 0.))
2127 {
2128 ev_sleep (sleeptime);
2129 waittime -= sleeptime;
2130 }
2131 }
1291 } 2132 }
1292 2133
2134 ++loop_count;
1293 backend_poll (EV_A_ block); 2135 backend_poll (EV_A_ waittime);
1294 2136
1295 /* update ev_rt_now, do magic */ 2137 /* update ev_rt_now, do magic */
1296 time_update (EV_A); 2138 time_update (EV_A_ waittime + sleeptime);
2139 }
1297 2140
1298 /* queue pending timers and reschedule them */ 2141 /* queue pending timers and reschedule them */
1299 timers_reify (EV_A); /* relative timers called last */ 2142 timers_reify (EV_A); /* relative timers called last */
1300#if EV_PERIODICS 2143#if EV_PERIODIC_ENABLE
1301 periodics_reify (EV_A); /* absolute timers called first */ 2144 periodics_reify (EV_A); /* absolute timers called first */
1302#endif 2145#endif
1303 2146
2147#if EV_IDLE_ENABLE
1304 /* queue idle watchers unless io or timers are pending */ 2148 /* queue idle watchers unless other events are pending */
1305 if (idlecnt && !any_pending (EV_A)) 2149 idle_reify (EV_A);
1306 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2150#endif
1307 2151
1308 /* queue check watchers, to be executed first */ 2152 /* queue check watchers, to be executed first */
1309 if (expect_false (checkcnt)) 2153 if (expect_false (checkcnt))
1310 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2154 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1311 2155
1312 call_pending (EV_A); 2156 invoke_cb (EV_A);
1313
1314 if (expect_false (loop_done))
1315 break;
1316 } 2157 }
2158 while (expect_true (
2159 activecnt
2160 && !loop_done
2161 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2162 ));
1317 2163
1318 if (loop_done != 2) 2164 if (loop_done == EVUNLOOP_ONE)
1319 loop_done = 0; 2165 loop_done = EVUNLOOP_CANCEL;
2166
2167 --loop_depth;
1320} 2168}
1321 2169
1322void 2170void
1323ev_unloop (EV_P_ int how) 2171ev_unloop (EV_P_ int how)
1324{ 2172{
1325 loop_done = how; 2173 loop_done = how;
1326} 2174}
1327 2175
2176void
2177ev_ref (EV_P)
2178{
2179 ++activecnt;
2180}
2181
2182void
2183ev_unref (EV_P)
2184{
2185 --activecnt;
2186}
2187
2188void
2189ev_now_update (EV_P)
2190{
2191 time_update (EV_A_ 1e100);
2192}
2193
2194void
2195ev_suspend (EV_P)
2196{
2197 ev_now_update (EV_A);
2198}
2199
2200void
2201ev_resume (EV_P)
2202{
2203 ev_tstamp mn_prev = mn_now;
2204
2205 ev_now_update (EV_A);
2206 timers_reschedule (EV_A_ mn_now - mn_prev);
2207#if EV_PERIODIC_ENABLE
2208 /* TODO: really do this? */
2209 periodics_reschedule (EV_A);
2210#endif
2211}
2212
1328/*****************************************************************************/ 2213/*****************************************************************************/
2214/* singly-linked list management, used when the expected list length is short */
1329 2215
1330inline void 2216inline_size void
1331wlist_add (WL *head, WL elem) 2217wlist_add (WL *head, WL elem)
1332{ 2218{
1333 elem->next = *head; 2219 elem->next = *head;
1334 *head = elem; 2220 *head = elem;
1335} 2221}
1336 2222
1337inline void 2223inline_size void
1338wlist_del (WL *head, WL elem) 2224wlist_del (WL *head, WL elem)
1339{ 2225{
1340 while (*head) 2226 while (*head)
1341 { 2227 {
1342 if (*head == elem) 2228 if (*head == elem)
1347 2233
1348 head = &(*head)->next; 2234 head = &(*head)->next;
1349 } 2235 }
1350} 2236}
1351 2237
2238/* internal, faster, version of ev_clear_pending */
1352inline void 2239inline_speed void
1353ev_clear_pending (EV_P_ W w) 2240clear_pending (EV_P_ W w)
1354{ 2241{
1355 if (w->pending) 2242 if (w->pending)
1356 { 2243 {
1357 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2244 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1358 w->pending = 0; 2245 w->pending = 0;
1359 } 2246 }
1360} 2247}
1361 2248
2249int
2250ev_clear_pending (EV_P_ void *w)
2251{
2252 W w_ = (W)w;
2253 int pending = w_->pending;
2254
2255 if (expect_true (pending))
2256 {
2257 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2258 p->w = (W)&pending_w;
2259 w_->pending = 0;
2260 return p->events;
2261 }
2262 else
2263 return 0;
2264}
2265
1362inline void 2266inline_size void
2267pri_adjust (EV_P_ W w)
2268{
2269 int pri = ev_priority (w);
2270 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2271 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2272 ev_set_priority (w, pri);
2273}
2274
2275inline_speed void
1363ev_start (EV_P_ W w, int active) 2276ev_start (EV_P_ W w, int active)
1364{ 2277{
1365 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2278 pri_adjust (EV_A_ w);
1366 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1367
1368 w->active = active; 2279 w->active = active;
1369 ev_ref (EV_A); 2280 ev_ref (EV_A);
1370} 2281}
1371 2282
1372inline void 2283inline_size void
1373ev_stop (EV_P_ W w) 2284ev_stop (EV_P_ W w)
1374{ 2285{
1375 ev_unref (EV_A); 2286 ev_unref (EV_A);
1376 w->active = 0; 2287 w->active = 0;
1377} 2288}
1378 2289
1379/*****************************************************************************/ 2290/*****************************************************************************/
1380 2291
1381void 2292void noinline
1382ev_io_start (EV_P_ struct ev_io *w) 2293ev_io_start (EV_P_ ev_io *w)
1383{ 2294{
1384 int fd = w->fd; 2295 int fd = w->fd;
1385 2296
1386 if (expect_false (ev_is_active (w))) 2297 if (expect_false (ev_is_active (w)))
1387 return; 2298 return;
1388 2299
1389 assert (("ev_io_start called with negative fd", fd >= 0)); 2300 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2301 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2302
2303 EV_FREQUENT_CHECK;
1390 2304
1391 ev_start (EV_A_ (W)w, 1); 2305 ev_start (EV_A_ (W)w, 1);
1392 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2306 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1393 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2307 wlist_add (&anfds[fd].head, (WL)w);
1394 2308
1395 fd_change (EV_A_ fd); 2309 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1396} 2310 w->events &= ~EV__IOFDSET;
1397 2311
1398void 2312 EV_FREQUENT_CHECK;
2313}
2314
2315void noinline
1399ev_io_stop (EV_P_ struct ev_io *w) 2316ev_io_stop (EV_P_ ev_io *w)
1400{ 2317{
1401 ev_clear_pending (EV_A_ (W)w); 2318 clear_pending (EV_A_ (W)w);
1402 if (expect_false (!ev_is_active (w))) 2319 if (expect_false (!ev_is_active (w)))
1403 return; 2320 return;
1404 2321
1405 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2322 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1406 2323
2324 EV_FREQUENT_CHECK;
2325
1407 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2326 wlist_del (&anfds[w->fd].head, (WL)w);
1408 ev_stop (EV_A_ (W)w); 2327 ev_stop (EV_A_ (W)w);
1409 2328
1410 fd_change (EV_A_ w->fd); 2329 fd_change (EV_A_ w->fd, 1);
1411}
1412 2330
1413void 2331 EV_FREQUENT_CHECK;
2332}
2333
2334void noinline
1414ev_timer_start (EV_P_ struct ev_timer *w) 2335ev_timer_start (EV_P_ ev_timer *w)
1415{ 2336{
1416 if (expect_false (ev_is_active (w))) 2337 if (expect_false (ev_is_active (w)))
1417 return; 2338 return;
1418 2339
1419 ((WT)w)->at += mn_now; 2340 ev_at (w) += mn_now;
1420 2341
1421 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2342 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1422 2343
2344 EV_FREQUENT_CHECK;
2345
2346 ++timercnt;
1423 ev_start (EV_A_ (W)w, ++timercnt); 2347 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1424 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2348 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1425 timers [timercnt - 1] = w; 2349 ANHE_w (timers [ev_active (w)]) = (WT)w;
1426 upheap ((WT *)timers, timercnt - 1); 2350 ANHE_at_cache (timers [ev_active (w)]);
2351 upheap (timers, ev_active (w));
1427 2352
2353 EV_FREQUENT_CHECK;
2354
1428 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2355 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1429} 2356}
1430 2357
1431void 2358void noinline
1432ev_timer_stop (EV_P_ struct ev_timer *w) 2359ev_timer_stop (EV_P_ ev_timer *w)
1433{ 2360{
1434 ev_clear_pending (EV_A_ (W)w); 2361 clear_pending (EV_A_ (W)w);
1435 if (expect_false (!ev_is_active (w))) 2362 if (expect_false (!ev_is_active (w)))
1436 return; 2363 return;
1437 2364
2365 EV_FREQUENT_CHECK;
2366
2367 {
2368 int active = ev_active (w);
2369
1438 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2370 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1439 2371
2372 --timercnt;
2373
1440 if (expect_true (((W)w)->active < timercnt--)) 2374 if (expect_true (active < timercnt + HEAP0))
1441 { 2375 {
1442 timers [((W)w)->active - 1] = timers [timercnt]; 2376 timers [active] = timers [timercnt + HEAP0];
1443 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2377 adjustheap (timers, timercnt, active);
1444 } 2378 }
2379 }
1445 2380
1446 ((WT)w)->at -= mn_now; 2381 EV_FREQUENT_CHECK;
2382
2383 ev_at (w) -= mn_now;
1447 2384
1448 ev_stop (EV_A_ (W)w); 2385 ev_stop (EV_A_ (W)w);
1449} 2386}
1450 2387
1451void 2388void noinline
1452ev_timer_again (EV_P_ struct ev_timer *w) 2389ev_timer_again (EV_P_ ev_timer *w)
1453{ 2390{
2391 EV_FREQUENT_CHECK;
2392
1454 if (ev_is_active (w)) 2393 if (ev_is_active (w))
1455 { 2394 {
1456 if (w->repeat) 2395 if (w->repeat)
1457 { 2396 {
1458 ((WT)w)->at = mn_now + w->repeat; 2397 ev_at (w) = mn_now + w->repeat;
2398 ANHE_at_cache (timers [ev_active (w)]);
1459 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2399 adjustheap (timers, timercnt, ev_active (w));
1460 } 2400 }
1461 else 2401 else
1462 ev_timer_stop (EV_A_ w); 2402 ev_timer_stop (EV_A_ w);
1463 } 2403 }
1464 else if (w->repeat) 2404 else if (w->repeat)
1465 { 2405 {
1466 w->at = w->repeat; 2406 ev_at (w) = w->repeat;
1467 ev_timer_start (EV_A_ w); 2407 ev_timer_start (EV_A_ w);
1468 } 2408 }
1469}
1470 2409
2410 EV_FREQUENT_CHECK;
2411}
2412
1471#if EV_PERIODICS 2413#if EV_PERIODIC_ENABLE
1472void 2414void noinline
1473ev_periodic_start (EV_P_ struct ev_periodic *w) 2415ev_periodic_start (EV_P_ ev_periodic *w)
1474{ 2416{
1475 if (expect_false (ev_is_active (w))) 2417 if (expect_false (ev_is_active (w)))
1476 return; 2418 return;
1477 2419
1478 if (w->reschedule_cb) 2420 if (w->reschedule_cb)
1479 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2421 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1480 else if (w->interval) 2422 else if (w->interval)
1481 { 2423 {
1482 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2424 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1483 /* this formula differs from the one in periodic_reify because we do not always round up */ 2425 /* this formula differs from the one in periodic_reify because we do not always round up */
1484 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2426 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1485 } 2427 }
2428 else
2429 ev_at (w) = w->offset;
1486 2430
2431 EV_FREQUENT_CHECK;
2432
2433 ++periodiccnt;
1487 ev_start (EV_A_ (W)w, ++periodiccnt); 2434 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1488 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2435 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1489 periodics [periodiccnt - 1] = w; 2436 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1490 upheap ((WT *)periodics, periodiccnt - 1); 2437 ANHE_at_cache (periodics [ev_active (w)]);
2438 upheap (periodics, ev_active (w));
1491 2439
2440 EV_FREQUENT_CHECK;
2441
1492 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2442 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1493} 2443}
1494 2444
1495void 2445void noinline
1496ev_periodic_stop (EV_P_ struct ev_periodic *w) 2446ev_periodic_stop (EV_P_ ev_periodic *w)
1497{ 2447{
1498 ev_clear_pending (EV_A_ (W)w); 2448 clear_pending (EV_A_ (W)w);
1499 if (expect_false (!ev_is_active (w))) 2449 if (expect_false (!ev_is_active (w)))
1500 return; 2450 return;
1501 2451
2452 EV_FREQUENT_CHECK;
2453
2454 {
2455 int active = ev_active (w);
2456
1502 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2457 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1503 2458
2459 --periodiccnt;
2460
1504 if (expect_true (((W)w)->active < periodiccnt--)) 2461 if (expect_true (active < periodiccnt + HEAP0))
1505 { 2462 {
1506 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2463 periodics [active] = periodics [periodiccnt + HEAP0];
1507 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2464 adjustheap (periodics, periodiccnt, active);
1508 } 2465 }
2466 }
2467
2468 EV_FREQUENT_CHECK;
1509 2469
1510 ev_stop (EV_A_ (W)w); 2470 ev_stop (EV_A_ (W)w);
1511} 2471}
1512 2472
1513void 2473void noinline
1514ev_periodic_again (EV_P_ struct ev_periodic *w) 2474ev_periodic_again (EV_P_ ev_periodic *w)
1515{ 2475{
1516 /* TODO: use adjustheap and recalculation */ 2476 /* TODO: use adjustheap and recalculation */
1517 ev_periodic_stop (EV_A_ w); 2477 ev_periodic_stop (EV_A_ w);
1518 ev_periodic_start (EV_A_ w); 2478 ev_periodic_start (EV_A_ w);
1519} 2479}
1520#endif 2480#endif
1521 2481
1522void 2482#ifndef SA_RESTART
1523ev_idle_start (EV_P_ struct ev_idle *w) 2483# define SA_RESTART 0
2484#endif
2485
2486void noinline
2487ev_signal_start (EV_P_ ev_signal *w)
1524{ 2488{
2489#if EV_MULTIPLICITY
2490 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2491#endif
1525 if (expect_false (ev_is_active (w))) 2492 if (expect_false (ev_is_active (w)))
1526 return; 2493 return;
1527 2494
1528 ev_start (EV_A_ (W)w, ++idlecnt);
1529 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1530 idles [idlecnt - 1] = w;
1531}
1532
1533void
1534ev_idle_stop (EV_P_ struct ev_idle *w)
1535{
1536 ev_clear_pending (EV_A_ (W)w);
1537 if (expect_false (!ev_is_active (w)))
1538 return;
1539
1540 idles [((W)w)->active - 1] = idles [--idlecnt];
1541 ev_stop (EV_A_ (W)w);
1542}
1543
1544void
1545ev_prepare_start (EV_P_ struct ev_prepare *w)
1546{
1547 if (expect_false (ev_is_active (w)))
1548 return;
1549
1550 ev_start (EV_A_ (W)w, ++preparecnt);
1551 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1552 prepares [preparecnt - 1] = w;
1553}
1554
1555void
1556ev_prepare_stop (EV_P_ struct ev_prepare *w)
1557{
1558 ev_clear_pending (EV_A_ (W)w);
1559 if (expect_false (!ev_is_active (w)))
1560 return;
1561
1562 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1563 ev_stop (EV_A_ (W)w);
1564}
1565
1566void
1567ev_check_start (EV_P_ struct ev_check *w)
1568{
1569 if (expect_false (ev_is_active (w)))
1570 return;
1571
1572 ev_start (EV_A_ (W)w, ++checkcnt);
1573 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1574 checks [checkcnt - 1] = w;
1575}
1576
1577void
1578ev_check_stop (EV_P_ struct ev_check *w)
1579{
1580 ev_clear_pending (EV_A_ (W)w);
1581 if (expect_false (!ev_is_active (w)))
1582 return;
1583
1584 checks [((W)w)->active - 1] = checks [--checkcnt];
1585 ev_stop (EV_A_ (W)w);
1586}
1587
1588#ifndef SA_RESTART
1589# define SA_RESTART 0
1590#endif
1591
1592void
1593ev_signal_start (EV_P_ struct ev_signal *w)
1594{
1595#if EV_MULTIPLICITY
1596 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1597#endif
1598 if (expect_false (ev_is_active (w)))
1599 return;
1600
1601 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2495 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2496
2497 evpipe_init (EV_A);
2498
2499 EV_FREQUENT_CHECK;
2500
2501 {
2502#ifndef _WIN32
2503 sigset_t full, prev;
2504 sigfillset (&full);
2505 sigprocmask (SIG_SETMASK, &full, &prev);
2506#endif
2507
2508 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2509
2510#ifndef _WIN32
2511 sigprocmask (SIG_SETMASK, &prev, 0);
2512#endif
2513 }
1602 2514
1603 ev_start (EV_A_ (W)w, 1); 2515 ev_start (EV_A_ (W)w, 1);
1604 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1605 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2516 wlist_add (&signals [w->signum - 1].head, (WL)w);
1606 2517
1607 if (!((WL)w)->next) 2518 if (!((WL)w)->next)
1608 { 2519 {
1609#if _WIN32 2520#if _WIN32
1610 signal (w->signum, sighandler); 2521 signal (w->signum, ev_sighandler);
1611#else 2522#else
1612 struct sigaction sa; 2523 struct sigaction sa;
1613 sa.sa_handler = sighandler; 2524 sa.sa_handler = ev_sighandler;
1614 sigfillset (&sa.sa_mask); 2525 sigfillset (&sa.sa_mask);
1615 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2526 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1616 sigaction (w->signum, &sa, 0); 2527 sigaction (w->signum, &sa, 0);
1617#endif 2528#endif
1618 } 2529 }
1619}
1620 2530
1621void 2531 EV_FREQUENT_CHECK;
2532}
2533
2534void noinline
1622ev_signal_stop (EV_P_ struct ev_signal *w) 2535ev_signal_stop (EV_P_ ev_signal *w)
1623{ 2536{
1624 ev_clear_pending (EV_A_ (W)w); 2537 clear_pending (EV_A_ (W)w);
1625 if (expect_false (!ev_is_active (w))) 2538 if (expect_false (!ev_is_active (w)))
1626 return; 2539 return;
1627 2540
2541 EV_FREQUENT_CHECK;
2542
1628 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2543 wlist_del (&signals [w->signum - 1].head, (WL)w);
1629 ev_stop (EV_A_ (W)w); 2544 ev_stop (EV_A_ (W)w);
1630 2545
1631 if (!signals [w->signum - 1].head) 2546 if (!signals [w->signum - 1].head)
1632 signal (w->signum, SIG_DFL); 2547 signal (w->signum, SIG_DFL);
1633}
1634 2548
2549 EV_FREQUENT_CHECK;
2550}
2551
1635void 2552void
1636ev_child_start (EV_P_ struct ev_child *w) 2553ev_child_start (EV_P_ ev_child *w)
1637{ 2554{
1638#if EV_MULTIPLICITY 2555#if EV_MULTIPLICITY
1639 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2556 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1640#endif 2557#endif
1641 if (expect_false (ev_is_active (w))) 2558 if (expect_false (ev_is_active (w)))
1642 return; 2559 return;
1643 2560
2561 EV_FREQUENT_CHECK;
2562
1644 ev_start (EV_A_ (W)w, 1); 2563 ev_start (EV_A_ (W)w, 1);
1645 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2564 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1646}
1647 2565
2566 EV_FREQUENT_CHECK;
2567}
2568
1648void 2569void
1649ev_child_stop (EV_P_ struct ev_child *w) 2570ev_child_stop (EV_P_ ev_child *w)
1650{ 2571{
1651 ev_clear_pending (EV_A_ (W)w); 2572 clear_pending (EV_A_ (W)w);
1652 if (expect_false (!ev_is_active (w))) 2573 if (expect_false (!ev_is_active (w)))
1653 return; 2574 return;
1654 2575
2576 EV_FREQUENT_CHECK;
2577
1655 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2578 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1656 ev_stop (EV_A_ (W)w); 2579 ev_stop (EV_A_ (W)w);
2580
2581 EV_FREQUENT_CHECK;
1657} 2582}
2583
2584#if EV_STAT_ENABLE
2585
2586# ifdef _WIN32
2587# undef lstat
2588# define lstat(a,b) _stati64 (a,b)
2589# endif
2590
2591#define DEF_STAT_INTERVAL 5.0074891
2592#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2593#define MIN_STAT_INTERVAL 0.1074891
2594
2595static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2596
2597#if EV_USE_INOTIFY
2598# define EV_INOTIFY_BUFSIZE 8192
2599
2600static void noinline
2601infy_add (EV_P_ ev_stat *w)
2602{
2603 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2604
2605 if (w->wd < 0)
2606 {
2607 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2608 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2609
2610 /* monitor some parent directory for speedup hints */
2611 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2612 /* but an efficiency issue only */
2613 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2614 {
2615 char path [4096];
2616 strcpy (path, w->path);
2617
2618 do
2619 {
2620 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2621 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2622
2623 char *pend = strrchr (path, '/');
2624
2625 if (!pend || pend == path)
2626 break;
2627
2628 *pend = 0;
2629 w->wd = inotify_add_watch (fs_fd, path, mask);
2630 }
2631 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2632 }
2633 }
2634
2635 if (w->wd >= 0)
2636 {
2637 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2638
2639 /* now local changes will be tracked by inotify, but remote changes won't */
2640 /* unless the filesystem it known to be local, we therefore still poll */
2641 /* also do poll on <2.6.25, but with normal frequency */
2642 struct statfs sfs;
2643
2644 if (fs_2625 && !statfs (w->path, &sfs))
2645 if (sfs.f_type == 0x1373 /* devfs */
2646 || sfs.f_type == 0xEF53 /* ext2/3 */
2647 || sfs.f_type == 0x3153464a /* jfs */
2648 || sfs.f_type == 0x52654973 /* reiser3 */
2649 || sfs.f_type == 0x01021994 /* tempfs */
2650 || sfs.f_type == 0x58465342 /* xfs */)
2651 return;
2652
2653 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2654 ev_timer_again (EV_A_ &w->timer);
2655 }
2656}
2657
2658static void noinline
2659infy_del (EV_P_ ev_stat *w)
2660{
2661 int slot;
2662 int wd = w->wd;
2663
2664 if (wd < 0)
2665 return;
2666
2667 w->wd = -2;
2668 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2669 wlist_del (&fs_hash [slot].head, (WL)w);
2670
2671 /* remove this watcher, if others are watching it, they will rearm */
2672 inotify_rm_watch (fs_fd, wd);
2673}
2674
2675static void noinline
2676infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2677{
2678 if (slot < 0)
2679 /* overflow, need to check for all hash slots */
2680 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2681 infy_wd (EV_A_ slot, wd, ev);
2682 else
2683 {
2684 WL w_;
2685
2686 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2687 {
2688 ev_stat *w = (ev_stat *)w_;
2689 w_ = w_->next; /* lets us remove this watcher and all before it */
2690
2691 if (w->wd == wd || wd == -1)
2692 {
2693 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2694 {
2695 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2696 w->wd = -1;
2697 infy_add (EV_A_ w); /* re-add, no matter what */
2698 }
2699
2700 stat_timer_cb (EV_A_ &w->timer, 0);
2701 }
2702 }
2703 }
2704}
2705
2706static void
2707infy_cb (EV_P_ ev_io *w, int revents)
2708{
2709 char buf [EV_INOTIFY_BUFSIZE];
2710 struct inotify_event *ev = (struct inotify_event *)buf;
2711 int ofs;
2712 int len = read (fs_fd, buf, sizeof (buf));
2713
2714 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2715 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2716}
2717
2718inline_size void
2719check_2625 (EV_P)
2720{
2721 /* kernels < 2.6.25 are borked
2722 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2723 */
2724 struct utsname buf;
2725 int major, minor, micro;
2726
2727 if (uname (&buf))
2728 return;
2729
2730 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2731 return;
2732
2733 if (major < 2
2734 || (major == 2 && minor < 6)
2735 || (major == 2 && minor == 6 && micro < 25))
2736 return;
2737
2738 fs_2625 = 1;
2739}
2740
2741inline_size void
2742infy_init (EV_P)
2743{
2744 if (fs_fd != -2)
2745 return;
2746
2747 fs_fd = -1;
2748
2749 check_2625 (EV_A);
2750
2751 fs_fd = inotify_init ();
2752
2753 if (fs_fd >= 0)
2754 {
2755 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2756 ev_set_priority (&fs_w, EV_MAXPRI);
2757 ev_io_start (EV_A_ &fs_w);
2758 }
2759}
2760
2761inline_size void
2762infy_fork (EV_P)
2763{
2764 int slot;
2765
2766 if (fs_fd < 0)
2767 return;
2768
2769 close (fs_fd);
2770 fs_fd = inotify_init ();
2771
2772 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2773 {
2774 WL w_ = fs_hash [slot].head;
2775 fs_hash [slot].head = 0;
2776
2777 while (w_)
2778 {
2779 ev_stat *w = (ev_stat *)w_;
2780 w_ = w_->next; /* lets us add this watcher */
2781
2782 w->wd = -1;
2783
2784 if (fs_fd >= 0)
2785 infy_add (EV_A_ w); /* re-add, no matter what */
2786 else
2787 ev_timer_again (EV_A_ &w->timer);
2788 }
2789 }
2790}
2791
2792#endif
2793
2794#ifdef _WIN32
2795# define EV_LSTAT(p,b) _stati64 (p, b)
2796#else
2797# define EV_LSTAT(p,b) lstat (p, b)
2798#endif
2799
2800void
2801ev_stat_stat (EV_P_ ev_stat *w)
2802{
2803 if (lstat (w->path, &w->attr) < 0)
2804 w->attr.st_nlink = 0;
2805 else if (!w->attr.st_nlink)
2806 w->attr.st_nlink = 1;
2807}
2808
2809static void noinline
2810stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2811{
2812 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2813
2814 /* we copy this here each the time so that */
2815 /* prev has the old value when the callback gets invoked */
2816 w->prev = w->attr;
2817 ev_stat_stat (EV_A_ w);
2818
2819 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2820 if (
2821 w->prev.st_dev != w->attr.st_dev
2822 || w->prev.st_ino != w->attr.st_ino
2823 || w->prev.st_mode != w->attr.st_mode
2824 || w->prev.st_nlink != w->attr.st_nlink
2825 || w->prev.st_uid != w->attr.st_uid
2826 || w->prev.st_gid != w->attr.st_gid
2827 || w->prev.st_rdev != w->attr.st_rdev
2828 || w->prev.st_size != w->attr.st_size
2829 || w->prev.st_atime != w->attr.st_atime
2830 || w->prev.st_mtime != w->attr.st_mtime
2831 || w->prev.st_ctime != w->attr.st_ctime
2832 ) {
2833 #if EV_USE_INOTIFY
2834 if (fs_fd >= 0)
2835 {
2836 infy_del (EV_A_ w);
2837 infy_add (EV_A_ w);
2838 ev_stat_stat (EV_A_ w); /* avoid race... */
2839 }
2840 #endif
2841
2842 ev_feed_event (EV_A_ w, EV_STAT);
2843 }
2844}
2845
2846void
2847ev_stat_start (EV_P_ ev_stat *w)
2848{
2849 if (expect_false (ev_is_active (w)))
2850 return;
2851
2852 ev_stat_stat (EV_A_ w);
2853
2854 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2855 w->interval = MIN_STAT_INTERVAL;
2856
2857 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2858 ev_set_priority (&w->timer, ev_priority (w));
2859
2860#if EV_USE_INOTIFY
2861 infy_init (EV_A);
2862
2863 if (fs_fd >= 0)
2864 infy_add (EV_A_ w);
2865 else
2866#endif
2867 ev_timer_again (EV_A_ &w->timer);
2868
2869 ev_start (EV_A_ (W)w, 1);
2870
2871 EV_FREQUENT_CHECK;
2872}
2873
2874void
2875ev_stat_stop (EV_P_ ev_stat *w)
2876{
2877 clear_pending (EV_A_ (W)w);
2878 if (expect_false (!ev_is_active (w)))
2879 return;
2880
2881 EV_FREQUENT_CHECK;
2882
2883#if EV_USE_INOTIFY
2884 infy_del (EV_A_ w);
2885#endif
2886 ev_timer_stop (EV_A_ &w->timer);
2887
2888 ev_stop (EV_A_ (W)w);
2889
2890 EV_FREQUENT_CHECK;
2891}
2892#endif
2893
2894#if EV_IDLE_ENABLE
2895void
2896ev_idle_start (EV_P_ ev_idle *w)
2897{
2898 if (expect_false (ev_is_active (w)))
2899 return;
2900
2901 pri_adjust (EV_A_ (W)w);
2902
2903 EV_FREQUENT_CHECK;
2904
2905 {
2906 int active = ++idlecnt [ABSPRI (w)];
2907
2908 ++idleall;
2909 ev_start (EV_A_ (W)w, active);
2910
2911 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2912 idles [ABSPRI (w)][active - 1] = w;
2913 }
2914
2915 EV_FREQUENT_CHECK;
2916}
2917
2918void
2919ev_idle_stop (EV_P_ ev_idle *w)
2920{
2921 clear_pending (EV_A_ (W)w);
2922 if (expect_false (!ev_is_active (w)))
2923 return;
2924
2925 EV_FREQUENT_CHECK;
2926
2927 {
2928 int active = ev_active (w);
2929
2930 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2931 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2932
2933 ev_stop (EV_A_ (W)w);
2934 --idleall;
2935 }
2936
2937 EV_FREQUENT_CHECK;
2938}
2939#endif
2940
2941void
2942ev_prepare_start (EV_P_ ev_prepare *w)
2943{
2944 if (expect_false (ev_is_active (w)))
2945 return;
2946
2947 EV_FREQUENT_CHECK;
2948
2949 ev_start (EV_A_ (W)w, ++preparecnt);
2950 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2951 prepares [preparecnt - 1] = w;
2952
2953 EV_FREQUENT_CHECK;
2954}
2955
2956void
2957ev_prepare_stop (EV_P_ ev_prepare *w)
2958{
2959 clear_pending (EV_A_ (W)w);
2960 if (expect_false (!ev_is_active (w)))
2961 return;
2962
2963 EV_FREQUENT_CHECK;
2964
2965 {
2966 int active = ev_active (w);
2967
2968 prepares [active - 1] = prepares [--preparecnt];
2969 ev_active (prepares [active - 1]) = active;
2970 }
2971
2972 ev_stop (EV_A_ (W)w);
2973
2974 EV_FREQUENT_CHECK;
2975}
2976
2977void
2978ev_check_start (EV_P_ ev_check *w)
2979{
2980 if (expect_false (ev_is_active (w)))
2981 return;
2982
2983 EV_FREQUENT_CHECK;
2984
2985 ev_start (EV_A_ (W)w, ++checkcnt);
2986 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2987 checks [checkcnt - 1] = w;
2988
2989 EV_FREQUENT_CHECK;
2990}
2991
2992void
2993ev_check_stop (EV_P_ ev_check *w)
2994{
2995 clear_pending (EV_A_ (W)w);
2996 if (expect_false (!ev_is_active (w)))
2997 return;
2998
2999 EV_FREQUENT_CHECK;
3000
3001 {
3002 int active = ev_active (w);
3003
3004 checks [active - 1] = checks [--checkcnt];
3005 ev_active (checks [active - 1]) = active;
3006 }
3007
3008 ev_stop (EV_A_ (W)w);
3009
3010 EV_FREQUENT_CHECK;
3011}
3012
3013#if EV_EMBED_ENABLE
3014void noinline
3015ev_embed_sweep (EV_P_ ev_embed *w)
3016{
3017 ev_loop (w->other, EVLOOP_NONBLOCK);
3018}
3019
3020static void
3021embed_io_cb (EV_P_ ev_io *io, int revents)
3022{
3023 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3024
3025 if (ev_cb (w))
3026 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3027 else
3028 ev_loop (w->other, EVLOOP_NONBLOCK);
3029}
3030
3031static void
3032embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3033{
3034 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3035
3036 {
3037 struct ev_loop *loop = w->other;
3038
3039 while (fdchangecnt)
3040 {
3041 fd_reify (EV_A);
3042 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3043 }
3044 }
3045}
3046
3047static void
3048embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3049{
3050 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3051
3052 ev_embed_stop (EV_A_ w);
3053
3054 {
3055 struct ev_loop *loop = w->other;
3056
3057 ev_loop_fork (EV_A);
3058 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3059 }
3060
3061 ev_embed_start (EV_A_ w);
3062}
3063
3064#if 0
3065static void
3066embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3067{
3068 ev_idle_stop (EV_A_ idle);
3069}
3070#endif
3071
3072void
3073ev_embed_start (EV_P_ ev_embed *w)
3074{
3075 if (expect_false (ev_is_active (w)))
3076 return;
3077
3078 {
3079 struct ev_loop *loop = w->other;
3080 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3081 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3082 }
3083
3084 EV_FREQUENT_CHECK;
3085
3086 ev_set_priority (&w->io, ev_priority (w));
3087 ev_io_start (EV_A_ &w->io);
3088
3089 ev_prepare_init (&w->prepare, embed_prepare_cb);
3090 ev_set_priority (&w->prepare, EV_MINPRI);
3091 ev_prepare_start (EV_A_ &w->prepare);
3092
3093 ev_fork_init (&w->fork, embed_fork_cb);
3094 ev_fork_start (EV_A_ &w->fork);
3095
3096 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3097
3098 ev_start (EV_A_ (W)w, 1);
3099
3100 EV_FREQUENT_CHECK;
3101}
3102
3103void
3104ev_embed_stop (EV_P_ ev_embed *w)
3105{
3106 clear_pending (EV_A_ (W)w);
3107 if (expect_false (!ev_is_active (w)))
3108 return;
3109
3110 EV_FREQUENT_CHECK;
3111
3112 ev_io_stop (EV_A_ &w->io);
3113 ev_prepare_stop (EV_A_ &w->prepare);
3114 ev_fork_stop (EV_A_ &w->fork);
3115
3116 EV_FREQUENT_CHECK;
3117}
3118#endif
3119
3120#if EV_FORK_ENABLE
3121void
3122ev_fork_start (EV_P_ ev_fork *w)
3123{
3124 if (expect_false (ev_is_active (w)))
3125 return;
3126
3127 EV_FREQUENT_CHECK;
3128
3129 ev_start (EV_A_ (W)w, ++forkcnt);
3130 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3131 forks [forkcnt - 1] = w;
3132
3133 EV_FREQUENT_CHECK;
3134}
3135
3136void
3137ev_fork_stop (EV_P_ ev_fork *w)
3138{
3139 clear_pending (EV_A_ (W)w);
3140 if (expect_false (!ev_is_active (w)))
3141 return;
3142
3143 EV_FREQUENT_CHECK;
3144
3145 {
3146 int active = ev_active (w);
3147
3148 forks [active - 1] = forks [--forkcnt];
3149 ev_active (forks [active - 1]) = active;
3150 }
3151
3152 ev_stop (EV_A_ (W)w);
3153
3154 EV_FREQUENT_CHECK;
3155}
3156#endif
3157
3158#if EV_ASYNC_ENABLE
3159void
3160ev_async_start (EV_P_ ev_async *w)
3161{
3162 if (expect_false (ev_is_active (w)))
3163 return;
3164
3165 evpipe_init (EV_A);
3166
3167 EV_FREQUENT_CHECK;
3168
3169 ev_start (EV_A_ (W)w, ++asynccnt);
3170 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3171 asyncs [asynccnt - 1] = w;
3172
3173 EV_FREQUENT_CHECK;
3174}
3175
3176void
3177ev_async_stop (EV_P_ ev_async *w)
3178{
3179 clear_pending (EV_A_ (W)w);
3180 if (expect_false (!ev_is_active (w)))
3181 return;
3182
3183 EV_FREQUENT_CHECK;
3184
3185 {
3186 int active = ev_active (w);
3187
3188 asyncs [active - 1] = asyncs [--asynccnt];
3189 ev_active (asyncs [active - 1]) = active;
3190 }
3191
3192 ev_stop (EV_A_ (W)w);
3193
3194 EV_FREQUENT_CHECK;
3195}
3196
3197void
3198ev_async_send (EV_P_ ev_async *w)
3199{
3200 w->sent = 1;
3201 evpipe_write (EV_A_ &gotasync);
3202}
3203#endif
1658 3204
1659/*****************************************************************************/ 3205/*****************************************************************************/
1660 3206
1661struct ev_once 3207struct ev_once
1662{ 3208{
1663 struct ev_io io; 3209 ev_io io;
1664 struct ev_timer to; 3210 ev_timer to;
1665 void (*cb)(int revents, void *arg); 3211 void (*cb)(int revents, void *arg);
1666 void *arg; 3212 void *arg;
1667}; 3213};
1668 3214
1669static void 3215static void
1670once_cb (EV_P_ struct ev_once *once, int revents) 3216once_cb (EV_P_ struct ev_once *once, int revents)
1671{ 3217{
1672 void (*cb)(int revents, void *arg) = once->cb; 3218 void (*cb)(int revents, void *arg) = once->cb;
1673 void *arg = once->arg; 3219 void *arg = once->arg;
1674 3220
1675 ev_io_stop (EV_A_ &once->io); 3221 ev_io_stop (EV_A_ &once->io);
1676 ev_timer_stop (EV_A_ &once->to); 3222 ev_timer_stop (EV_A_ &once->to);
1677 ev_free (once); 3223 ev_free (once);
1678 3224
1679 cb (revents, arg); 3225 cb (revents, arg);
1680} 3226}
1681 3227
1682static void 3228static void
1683once_cb_io (EV_P_ struct ev_io *w, int revents) 3229once_cb_io (EV_P_ ev_io *w, int revents)
1684{ 3230{
1685 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3231 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3232
3233 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1686} 3234}
1687 3235
1688static void 3236static void
1689once_cb_to (EV_P_ struct ev_timer *w, int revents) 3237once_cb_to (EV_P_ ev_timer *w, int revents)
1690{ 3238{
1691 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3239 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3240
3241 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1692} 3242}
1693 3243
1694void 3244void
1695ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3245ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1696{ 3246{
1718 ev_timer_set (&once->to, timeout, 0.); 3268 ev_timer_set (&once->to, timeout, 0.);
1719 ev_timer_start (EV_A_ &once->to); 3269 ev_timer_start (EV_A_ &once->to);
1720 } 3270 }
1721} 3271}
1722 3272
3273/*****************************************************************************/
3274
3275#if EV_WALK_ENABLE
3276void
3277ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3278{
3279 int i, j;
3280 ev_watcher_list *wl, *wn;
3281
3282 if (types & (EV_IO | EV_EMBED))
3283 for (i = 0; i < anfdmax; ++i)
3284 for (wl = anfds [i].head; wl; )
3285 {
3286 wn = wl->next;
3287
3288#if EV_EMBED_ENABLE
3289 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3290 {
3291 if (types & EV_EMBED)
3292 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3293 }
3294 else
3295#endif
3296#if EV_USE_INOTIFY
3297 if (ev_cb ((ev_io *)wl) == infy_cb)
3298 ;
3299 else
3300#endif
3301 if ((ev_io *)wl != &pipe_w)
3302 if (types & EV_IO)
3303 cb (EV_A_ EV_IO, wl);
3304
3305 wl = wn;
3306 }
3307
3308 if (types & (EV_TIMER | EV_STAT))
3309 for (i = timercnt + HEAP0; i-- > HEAP0; )
3310#if EV_STAT_ENABLE
3311 /*TODO: timer is not always active*/
3312 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3313 {
3314 if (types & EV_STAT)
3315 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3316 }
3317 else
3318#endif
3319 if (types & EV_TIMER)
3320 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3321
3322#if EV_PERIODIC_ENABLE
3323 if (types & EV_PERIODIC)
3324 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3325 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3326#endif
3327
3328#if EV_IDLE_ENABLE
3329 if (types & EV_IDLE)
3330 for (j = NUMPRI; i--; )
3331 for (i = idlecnt [j]; i--; )
3332 cb (EV_A_ EV_IDLE, idles [j][i]);
3333#endif
3334
3335#if EV_FORK_ENABLE
3336 if (types & EV_FORK)
3337 for (i = forkcnt; i--; )
3338 if (ev_cb (forks [i]) != embed_fork_cb)
3339 cb (EV_A_ EV_FORK, forks [i]);
3340#endif
3341
3342#if EV_ASYNC_ENABLE
3343 if (types & EV_ASYNC)
3344 for (i = asynccnt; i--; )
3345 cb (EV_A_ EV_ASYNC, asyncs [i]);
3346#endif
3347
3348 if (types & EV_PREPARE)
3349 for (i = preparecnt; i--; )
3350#if EV_EMBED_ENABLE
3351 if (ev_cb (prepares [i]) != embed_prepare_cb)
3352#endif
3353 cb (EV_A_ EV_PREPARE, prepares [i]);
3354
3355 if (types & EV_CHECK)
3356 for (i = checkcnt; i--; )
3357 cb (EV_A_ EV_CHECK, checks [i]);
3358
3359 if (types & EV_SIGNAL)
3360 for (i = 0; i < signalmax; ++i)
3361 for (wl = signals [i].head; wl; )
3362 {
3363 wn = wl->next;
3364 cb (EV_A_ EV_SIGNAL, wl);
3365 wl = wn;
3366 }
3367
3368 if (types & EV_CHILD)
3369 for (i = EV_PID_HASHSIZE; i--; )
3370 for (wl = childs [i]; wl; )
3371 {
3372 wn = wl->next;
3373 cb (EV_A_ EV_CHILD, wl);
3374 wl = wn;
3375 }
3376/* EV_STAT 0x00001000 /* stat data changed */
3377/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3378}
3379#endif
3380
3381#if EV_MULTIPLICITY
3382 #include "ev_wrap.h"
3383#endif
3384
1723#ifdef __cplusplus 3385#ifdef __cplusplus
1724} 3386}
1725#endif 3387#endif
1726 3388

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines