ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.214 by root, Tue Feb 19 19:21:20 2008 UTC vs.
Revision 1.296 by root, Thu Jul 9 09:11:20 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
49# endif 50# endif
50 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
51# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
54# endif 69# endif
55# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
57# endif 72# endif
58# else 73# else
59# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
61# endif 76# endif
118# else 133# else
119# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
120# endif 135# endif
121# endif 136# endif
122 137
138# ifndef EV_USE_EVENTFD
139# if HAVE_EVENTFD
140# define EV_USE_EVENTFD 1
141# else
142# define EV_USE_EVENTFD 0
143# endif
144# endif
145
123#endif 146#endif
124 147
125#include <math.h> 148#include <math.h>
126#include <stdlib.h> 149#include <stdlib.h>
127#include <fcntl.h> 150#include <fcntl.h>
145#ifndef _WIN32 168#ifndef _WIN32
146# include <sys/time.h> 169# include <sys/time.h>
147# include <sys/wait.h> 170# include <sys/wait.h>
148# include <unistd.h> 171# include <unistd.h>
149#else 172#else
173# include <io.h>
150# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
151# include <windows.h> 175# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
154# endif 178# endif
155#endif 179#endif
156 180
157/**/ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
158 190
159#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
160# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
161#endif 197#endif
162 198
163#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 201#endif
166 202
167#ifndef EV_USE_NANOSLEEP 203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
168# define EV_USE_NANOSLEEP 0 207# define EV_USE_NANOSLEEP 0
208# endif
169#endif 209#endif
170 210
171#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
173#endif 213#endif
179# define EV_USE_POLL 1 219# define EV_USE_POLL 1
180# endif 220# endif
181#endif 221#endif
182 222
183#ifndef EV_USE_EPOLL 223#ifndef EV_USE_EPOLL
224# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225# define EV_USE_EPOLL 1
226# else
184# define EV_USE_EPOLL 0 227# define EV_USE_EPOLL 0
228# endif
185#endif 229#endif
186 230
187#ifndef EV_USE_KQUEUE 231#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 232# define EV_USE_KQUEUE 0
189#endif 233#endif
191#ifndef EV_USE_PORT 235#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 236# define EV_USE_PORT 0
193#endif 237#endif
194 238
195#ifndef EV_USE_INOTIFY 239#ifndef EV_USE_INOTIFY
240# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
241# define EV_USE_INOTIFY 1
242# else
196# define EV_USE_INOTIFY 0 243# define EV_USE_INOTIFY 0
244# endif
197#endif 245#endif
198 246
199#ifndef EV_PID_HASHSIZE 247#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 248# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 249# define EV_PID_HASHSIZE 1
210# else 258# else
211# define EV_INOTIFY_HASHSIZE 16 259# define EV_INOTIFY_HASHSIZE 16
212# endif 260# endif
213#endif 261#endif
214 262
215/**/ 263#ifndef EV_USE_EVENTFD
264# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265# define EV_USE_EVENTFD 1
266# else
267# define EV_USE_EVENTFD 0
268# endif
269#endif
270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 304
217#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
220#endif 308#endif
234# include <sys/select.h> 322# include <sys/select.h>
235# endif 323# endif
236#endif 324#endif
237 325
238#if EV_USE_INOTIFY 326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
239# include <sys/inotify.h> 329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
240#endif 335#endif
241 336
242#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 338# include <winsock.h>
244#endif 339#endif
245 340
341#if EV_USE_EVENTFD
342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343# include <stdint.h>
344# ifdef __cplusplus
345extern "C" {
346# endif
347int eventfd (unsigned int initval, int flags);
348# ifdef __cplusplus
349}
350# endif
351#endif
352
246/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
247 360
248/* 361/*
249 * This is used to avoid floating point rounding problems. 362 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics 363 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding 364 * to ensure progress, time-wise, even when rounding
263# define expect(expr,value) __builtin_expect ((expr),(value)) 376# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 377# define noinline __attribute__ ((noinline))
265#else 378#else
266# define expect(expr,value) (expr) 379# define expect(expr,value) (expr)
267# define noinline 380# define noinline
268# if __STDC_VERSION__ < 199901L 381# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 382# define inline
270# endif 383# endif
271#endif 384#endif
272 385
273#define expect_false(expr) expect ((expr) != 0, 0) 386#define expect_false(expr) expect ((expr) != 0, 0)
278# define inline_speed static noinline 391# define inline_speed static noinline
279#else 392#else
280# define inline_speed static inline 393# define inline_speed static inline
281#endif 394#endif
282 395
283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
285 403
286#define EMPTY /* required for microsofts broken pseudo-c compiler */ 404#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */ 405#define EMPTY2(a,b) /* used to suppress some warnings */
288 406
289typedef ev_watcher *W; 407typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 408typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
292 410
293#if EV_USE_MONOTONIC 411#define ev_active(w) ((W)(w))->active
412#define ev_at(w) ((WT)(w))->at
413
414#if EV_USE_REALTIME
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
419
420#if EV_USE_MONOTONIC
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif 422#endif
298 423
299#ifdef _WIN32 424#ifdef _WIN32
300# include "ev_win32.c" 425# include "ev_win32.c"
309{ 434{
310 syserr_cb = cb; 435 syserr_cb = cb;
311} 436}
312 437
313static void noinline 438static void noinline
314syserr (const char *msg) 439ev_syserr (const char *msg)
315{ 440{
316 if (!msg) 441 if (!msg)
317 msg = "(libev) system error"; 442 msg = "(libev) system error";
318 443
319 if (syserr_cb) 444 if (syserr_cb)
323 perror (msg); 448 perror (msg);
324 abort (); 449 abort ();
325 } 450 }
326} 451}
327 452
453static void *
454ev_realloc_emul (void *ptr, long size)
455{
456 /* some systems, notably openbsd and darwin, fail to properly
457 * implement realloc (x, 0) (as required by both ansi c-98 and
458 * the single unix specification, so work around them here.
459 */
460
461 if (size)
462 return realloc (ptr, size);
463
464 free (ptr);
465 return 0;
466}
467
328static void *(*alloc)(void *ptr, long size); 468static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 469
330void 470void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 471ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 472{
333 alloc = cb; 473 alloc = cb;
334} 474}
335 475
336inline_speed void * 476inline_speed void *
337ev_realloc (void *ptr, long size) 477ev_realloc (void *ptr, long size)
338{ 478{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 479 ptr = alloc (ptr, size);
340 480
341 if (!ptr && size) 481 if (!ptr && size)
342 { 482 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 483 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 484 abort ();
350#define ev_malloc(size) ev_realloc (0, (size)) 490#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 491#define ev_free(ptr) ev_realloc ((ptr), 0)
352 492
353/*****************************************************************************/ 493/*****************************************************************************/
354 494
495/* file descriptor info structure */
355typedef struct 496typedef struct
356{ 497{
357 WL head; 498 WL head;
358 unsigned char events; 499 unsigned char events; /* the events watched for */
500 unsigned char reify; /* flag set when this ANFD needs reification */
501 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
359 unsigned char reify; 502 unsigned char unused;
503#if EV_USE_EPOLL
504 unsigned int egen; /* generation counter to counter epoll bugs */
505#endif
360#if EV_SELECT_IS_WINSOCKET 506#if EV_SELECT_IS_WINSOCKET
361 SOCKET handle; 507 SOCKET handle;
362#endif 508#endif
363} ANFD; 509} ANFD;
364 510
511/* stores the pending event set for a given watcher */
365typedef struct 512typedef struct
366{ 513{
367 W w; 514 W w;
368 int events; 515 int events; /* the pending event set for the given watcher */
369} ANPENDING; 516} ANPENDING;
370 517
371#if EV_USE_INOTIFY 518#if EV_USE_INOTIFY
519/* hash table entry per inotify-id */
372typedef struct 520typedef struct
373{ 521{
374 WL head; 522 WL head;
375} ANFS; 523} ANFS;
524#endif
525
526/* Heap Entry */
527#if EV_HEAP_CACHE_AT
528 /* a heap element */
529 typedef struct {
530 ev_tstamp at;
531 WT w;
532 } ANHE;
533
534 #define ANHE_w(he) (he).w /* access watcher, read-write */
535 #define ANHE_at(he) (he).at /* access cached at, read-only */
536 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
537#else
538 /* a heap element */
539 typedef WT ANHE;
540
541 #define ANHE_w(he) (he)
542 #define ANHE_at(he) (he)->at
543 #define ANHE_at_cache(he)
376#endif 544#endif
377 545
378#if EV_MULTIPLICITY 546#if EV_MULTIPLICITY
379 547
380 struct ev_loop 548 struct ev_loop
401 569
402#endif 570#endif
403 571
404/*****************************************************************************/ 572/*****************************************************************************/
405 573
574#ifndef EV_HAVE_EV_TIME
406ev_tstamp 575ev_tstamp
407ev_time (void) 576ev_time (void)
408{ 577{
409#if EV_USE_REALTIME 578#if EV_USE_REALTIME
579 if (expect_true (have_realtime))
580 {
410 struct timespec ts; 581 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 582 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 583 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 584 }
585#endif
586
414 struct timeval tv; 587 struct timeval tv;
415 gettimeofday (&tv, 0); 588 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 589 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 590}
591#endif
419 592
420ev_tstamp inline_size 593inline_size ev_tstamp
421get_clock (void) 594get_clock (void)
422{ 595{
423#if EV_USE_MONOTONIC 596#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 597 if (expect_true (have_monotonic))
425 { 598 {
451 ts.tv_sec = (time_t)delay; 624 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 625 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 626
454 nanosleep (&ts, 0); 627 nanosleep (&ts, 0);
455#elif defined(_WIN32) 628#elif defined(_WIN32)
456 Sleep (delay * 1e3); 629 Sleep ((unsigned long)(delay * 1e3));
457#else 630#else
458 struct timeval tv; 631 struct timeval tv;
459 632
460 tv.tv_sec = (time_t)delay; 633 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 634 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462 635
636 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
637 /* somehting not guaranteed by newer posix versions, but guaranteed */
638 /* by older ones */
463 select (0, 0, 0, 0, &tv); 639 select (0, 0, 0, 0, &tv);
464#endif 640#endif
465 } 641 }
466} 642}
467 643
468/*****************************************************************************/ 644/*****************************************************************************/
469 645
470int inline_size 646#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
647
648/* find a suitable new size for the given array, */
649/* hopefully by rounding to a ncie-to-malloc size */
650inline_size int
471array_nextsize (int elem, int cur, int cnt) 651array_nextsize (int elem, int cur, int cnt)
472{ 652{
473 int ncur = cur + 1; 653 int ncur = cur + 1;
474 654
475 do 655 do
476 ncur <<= 1; 656 ncur <<= 1;
477 while (cnt > ncur); 657 while (cnt > ncur);
478 658
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 659 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 660 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 661 {
482 ncur *= elem; 662 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 663 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 664 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 665 ncur /= elem;
486 } 666 }
487 667
488 return ncur; 668 return ncur;
492array_realloc (int elem, void *base, int *cur, int cnt) 672array_realloc (int elem, void *base, int *cur, int cnt)
493{ 673{
494 *cur = array_nextsize (elem, *cur, cnt); 674 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 675 return ev_realloc (base, elem * *cur);
496} 676}
677
678#define array_init_zero(base,count) \
679 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 680
498#define array_needsize(type,base,cur,cnt,init) \ 681#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 682 if (expect_false ((cnt) > (cur))) \
500 { \ 683 { \
501 int ocur_ = (cur); \ 684 int ocur_ = (cur); \
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 696 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 697 }
515#endif 698#endif
516 699
517#define array_free(stem, idx) \ 700#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 701 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 702
520/*****************************************************************************/ 703/*****************************************************************************/
704
705/* dummy callback for pending events */
706static void noinline
707pendingcb (EV_P_ ev_prepare *w, int revents)
708{
709}
521 710
522void noinline 711void noinline
523ev_feed_event (EV_P_ void *w, int revents) 712ev_feed_event (EV_P_ void *w, int revents)
524{ 713{
525 W w_ = (W)w; 714 W w_ = (W)w;
534 pendings [pri][w_->pending - 1].w = w_; 723 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 724 pendings [pri][w_->pending - 1].events = revents;
536 } 725 }
537} 726}
538 727
539void inline_speed 728inline_speed void
729feed_reverse (EV_P_ W w)
730{
731 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
732 rfeeds [rfeedcnt++] = w;
733}
734
735inline_size void
736feed_reverse_done (EV_P_ int revents)
737{
738 do
739 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
740 while (rfeedcnt);
741}
742
743inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 744queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 745{
542 int i; 746 int i;
543 747
544 for (i = 0; i < eventcnt; ++i) 748 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 749 ev_feed_event (EV_A_ events [i], type);
546} 750}
547 751
548/*****************************************************************************/ 752/*****************************************************************************/
549 753
550void inline_size 754inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 755fd_event (EV_P_ int fd, int revents)
565{ 756{
566 ANFD *anfd = anfds + fd; 757 ANFD *anfd = anfds + fd;
567 ev_io *w; 758 ev_io *w;
568 759
580{ 771{
581 if (fd >= 0 && fd < anfdmax) 772 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 773 fd_event (EV_A_ fd, revents);
583} 774}
584 775
585void inline_size 776/* make sure the external fd watch events are in-sync */
777/* with the kernel/libev internal state */
778inline_size void
586fd_reify (EV_P) 779fd_reify (EV_P)
587{ 780{
588 int i; 781 int i;
589 782
590 for (i = 0; i < fdchangecnt; ++i) 783 for (i = 0; i < fdchangecnt; ++i)
599 events |= (unsigned char)w->events; 792 events |= (unsigned char)w->events;
600 793
601#if EV_SELECT_IS_WINSOCKET 794#if EV_SELECT_IS_WINSOCKET
602 if (events) 795 if (events)
603 { 796 {
604 unsigned long argp; 797 unsigned long arg;
605 #ifdef EV_FD_TO_WIN32_HANDLE 798 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 799 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else 800 #else
608 anfd->handle = _get_osfhandle (fd); 801 anfd->handle = _get_osfhandle (fd);
609 #endif 802 #endif
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 803 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
611 } 804 }
612#endif 805#endif
613 806
614 { 807 {
615 unsigned char o_events = anfd->events; 808 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify; 809 unsigned char o_reify = anfd->reify;
617 810
618 anfd->reify = 0; 811 anfd->reify = 0;
619 anfd->events = events; 812 anfd->events = events;
620 813
621 if (o_events != events || o_reify & EV_IOFDSET) 814 if (o_events != events || o_reify & EV__IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events); 815 backend_modify (EV_A_ fd, o_events, events);
623 } 816 }
624 } 817 }
625 818
626 fdchangecnt = 0; 819 fdchangecnt = 0;
627} 820}
628 821
629void inline_size 822/* something about the given fd changed */
823inline_size void
630fd_change (EV_P_ int fd, int flags) 824fd_change (EV_P_ int fd, int flags)
631{ 825{
632 unsigned char reify = anfds [fd].reify; 826 unsigned char reify = anfds [fd].reify;
633 anfds [fd].reify |= flags; 827 anfds [fd].reify |= flags;
634 828
638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 832 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
639 fdchanges [fdchangecnt - 1] = fd; 833 fdchanges [fdchangecnt - 1] = fd;
640 } 834 }
641} 835}
642 836
643void inline_speed 837/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
838inline_speed void
644fd_kill (EV_P_ int fd) 839fd_kill (EV_P_ int fd)
645{ 840{
646 ev_io *w; 841 ev_io *w;
647 842
648 while ((w = (ev_io *)anfds [fd].head)) 843 while ((w = (ev_io *)anfds [fd].head))
650 ev_io_stop (EV_A_ w); 845 ev_io_stop (EV_A_ w);
651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 846 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
652 } 847 }
653} 848}
654 849
655int inline_size 850/* check whether the given fd is atcually valid, for error recovery */
851inline_size int
656fd_valid (int fd) 852fd_valid (int fd)
657{ 853{
658#ifdef _WIN32 854#ifdef _WIN32
659 return _get_osfhandle (fd) != -1; 855 return _get_osfhandle (fd) != -1;
660#else 856#else
668{ 864{
669 int fd; 865 int fd;
670 866
671 for (fd = 0; fd < anfdmax; ++fd) 867 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 868 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 869 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 870 fd_kill (EV_A_ fd);
675} 871}
676 872
677/* called on ENOMEM in select/poll to kill some fds and retry */ 873/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 874static void noinline
696 892
697 for (fd = 0; fd < anfdmax; ++fd) 893 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 894 if (anfds [fd].events)
699 { 895 {
700 anfds [fd].events = 0; 896 anfds [fd].events = 0;
897 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 898 fd_change (EV_A_ fd, EV__IOFDSET | 1);
702 } 899 }
703} 900}
704 901
705/*****************************************************************************/ 902/*****************************************************************************/
706 903
707void inline_speed 904/*
708upheap (WT *heap, int k) 905 * the heap functions want a real array index. array index 0 uis guaranteed to not
709{ 906 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
710 WT w = heap [k]; 907 * the branching factor of the d-tree.
908 */
711 909
712 while (k) 910/*
713 { 911 * at the moment we allow libev the luxury of two heaps,
714 int p = (k - 1) >> 1; 912 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
913 * which is more cache-efficient.
914 * the difference is about 5% with 50000+ watchers.
915 */
916#if EV_USE_4HEAP
715 917
716 if (heap [p]->at <= w->at) 918#define DHEAP 4
919#define HEAP0 (DHEAP - 1) /* index of first element in heap */
920#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
921#define UPHEAP_DONE(p,k) ((p) == (k))
922
923/* away from the root */
924inline_speed void
925downheap (ANHE *heap, int N, int k)
926{
927 ANHE he = heap [k];
928 ANHE *E = heap + N + HEAP0;
929
930 for (;;)
931 {
932 ev_tstamp minat;
933 ANHE *minpos;
934 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
935
936 /* find minimum child */
937 if (expect_true (pos + DHEAP - 1 < E))
938 {
939 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
940 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
941 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
942 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
943 }
944 else if (pos < E)
945 {
946 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
947 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
948 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
949 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
950 }
951 else
717 break; 952 break;
718 953
954 if (ANHE_at (he) <= minat)
955 break;
956
957 heap [k] = *minpos;
958 ev_active (ANHE_w (*minpos)) = k;
959
960 k = minpos - heap;
961 }
962
963 heap [k] = he;
964 ev_active (ANHE_w (he)) = k;
965}
966
967#else /* 4HEAP */
968
969#define HEAP0 1
970#define HPARENT(k) ((k) >> 1)
971#define UPHEAP_DONE(p,k) (!(p))
972
973/* away from the root */
974inline_speed void
975downheap (ANHE *heap, int N, int k)
976{
977 ANHE he = heap [k];
978
979 for (;;)
980 {
981 int c = k << 1;
982
983 if (c > N + HEAP0 - 1)
984 break;
985
986 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
987 ? 1 : 0;
988
989 if (ANHE_at (he) <= ANHE_at (heap [c]))
990 break;
991
992 heap [k] = heap [c];
993 ev_active (ANHE_w (heap [k])) = k;
994
995 k = c;
996 }
997
998 heap [k] = he;
999 ev_active (ANHE_w (he)) = k;
1000}
1001#endif
1002
1003/* towards the root */
1004inline_speed void
1005upheap (ANHE *heap, int k)
1006{
1007 ANHE he = heap [k];
1008
1009 for (;;)
1010 {
1011 int p = HPARENT (k);
1012
1013 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1014 break;
1015
719 heap [k] = heap [p]; 1016 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1; 1017 ev_active (ANHE_w (heap [k])) = k;
721 k = p; 1018 k = p;
722 } 1019 }
723 1020
724 heap [k] = w; 1021 heap [k] = he;
725 ((W)heap [k])->active = k + 1; 1022 ev_active (ANHE_w (he)) = k;
726} 1023}
727 1024
728void inline_speed 1025/* move an element suitably so it is in a correct place */
729downheap (WT *heap, int N, int k) 1026inline_size void
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754}
755
756void inline_size
757adjustheap (WT *heap, int N, int k) 1027adjustheap (ANHE *heap, int N, int k)
758{ 1028{
1029 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
759 upheap (heap, k); 1030 upheap (heap, k);
1031 else
760 downheap (heap, N, k); 1032 downheap (heap, N, k);
1033}
1034
1035/* rebuild the heap: this function is used only once and executed rarely */
1036inline_size void
1037reheap (ANHE *heap, int N)
1038{
1039 int i;
1040
1041 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1042 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1043 for (i = 0; i < N; ++i)
1044 upheap (heap, i + HEAP0);
761} 1045}
762 1046
763/*****************************************************************************/ 1047/*****************************************************************************/
764 1048
1049/* associate signal watchers to a signal signal */
765typedef struct 1050typedef struct
766{ 1051{
767 WL head; 1052 WL head;
768 EV_ATOMIC_T gotsig; 1053 EV_ATOMIC_T gotsig;
769} ANSIG; 1054} ANSIG;
771static ANSIG *signals; 1056static ANSIG *signals;
772static int signalmax; 1057static int signalmax;
773 1058
774static EV_ATOMIC_T gotsig; 1059static EV_ATOMIC_T gotsig;
775 1060
776void inline_size
777signals_init (ANSIG *base, int count)
778{
779 while (count--)
780 {
781 base->head = 0;
782 base->gotsig = 0;
783
784 ++base;
785 }
786}
787
788/*****************************************************************************/ 1061/*****************************************************************************/
789 1062
790void inline_speed 1063/* used to prepare libev internal fd's */
1064/* this is not fork-safe */
1065inline_speed void
791fd_intern (int fd) 1066fd_intern (int fd)
792{ 1067{
793#ifdef _WIN32 1068#ifdef _WIN32
794 int arg = 1; 1069 unsigned long arg = 1;
795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1070 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
796#else 1071#else
797 fcntl (fd, F_SETFD, FD_CLOEXEC); 1072 fcntl (fd, F_SETFD, FD_CLOEXEC);
798 fcntl (fd, F_SETFL, O_NONBLOCK); 1073 fcntl (fd, F_SETFL, O_NONBLOCK);
799#endif 1074#endif
800} 1075}
801 1076
802static void noinline 1077static void noinline
803evpipe_init (EV_P) 1078evpipe_init (EV_P)
804{ 1079{
805 if (!ev_is_active (&pipeev)) 1080 if (!ev_is_active (&pipe_w))
806 { 1081 {
1082#if EV_USE_EVENTFD
1083 if ((evfd = eventfd (0, 0)) >= 0)
1084 {
1085 evpipe [0] = -1;
1086 fd_intern (evfd);
1087 ev_io_set (&pipe_w, evfd, EV_READ);
1088 }
1089 else
1090#endif
1091 {
807 while (pipe (evpipe)) 1092 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 1093 ev_syserr ("(libev) error creating signal/async pipe");
809 1094
810 fd_intern (evpipe [0]); 1095 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 1096 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 1097 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1098 }
1099
814 ev_io_start (EV_A_ &pipeev); 1100 ev_io_start (EV_A_ &pipe_w);
815 ev_unref (EV_A); /* watcher should not keep loop alive */ 1101 ev_unref (EV_A); /* watcher should not keep loop alive */
816 } 1102 }
817} 1103}
818 1104
819void inline_size 1105inline_size void
820evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1106evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{ 1107{
822 if (!*flag) 1108 if (!*flag)
823 { 1109 {
824 int old_errno = errno; /* save errno becaue write might clobber it */ 1110 int old_errno = errno; /* save errno because write might clobber it */
825 1111
826 *flag = 1; 1112 *flag = 1;
1113
1114#if EV_USE_EVENTFD
1115 if (evfd >= 0)
1116 {
1117 uint64_t counter = 1;
1118 write (evfd, &counter, sizeof (uint64_t));
1119 }
1120 else
1121#endif
827 write (evpipe [1], &old_errno, 1); 1122 write (evpipe [1], &old_errno, 1);
828 1123
829 errno = old_errno; 1124 errno = old_errno;
830 } 1125 }
831} 1126}
832 1127
1128/* called whenever the libev signal pipe */
1129/* got some events (signal, async) */
833static void 1130static void
834pipecb (EV_P_ ev_io *iow, int revents) 1131pipecb (EV_P_ ev_io *iow, int revents)
835{ 1132{
1133#if EV_USE_EVENTFD
1134 if (evfd >= 0)
836 { 1135 {
837 int dummy; 1136 uint64_t counter;
1137 read (evfd, &counter, sizeof (uint64_t));
1138 }
1139 else
1140#endif
1141 {
1142 char dummy;
838 read (evpipe [0], &dummy, 1); 1143 read (evpipe [0], &dummy, 1);
839 } 1144 }
840 1145
841 if (gotsig && ev_is_default_loop (EV_A)) 1146 if (gotsig && ev_is_default_loop (EV_A))
842 { 1147 {
843 int signum; 1148 int signum;
844 gotsig = 0; 1149 gotsig = 0;
865} 1170}
866 1171
867/*****************************************************************************/ 1172/*****************************************************************************/
868 1173
869static void 1174static void
870sighandler (int signum) 1175ev_sighandler (int signum)
871{ 1176{
872#if EV_MULTIPLICITY 1177#if EV_MULTIPLICITY
873 struct ev_loop *loop = &default_loop_struct; 1178 struct ev_loop *loop = &default_loop_struct;
874#endif 1179#endif
875 1180
876#if _WIN32 1181#if _WIN32
877 signal (signum, sighandler); 1182 signal (signum, ev_sighandler);
878#endif 1183#endif
879 1184
880 signals [signum - 1].gotsig = 1; 1185 signals [signum - 1].gotsig = 1;
881 evpipe_write (EV_A_ &gotsig); 1186 evpipe_write (EV_A_ &gotsig);
882} 1187}
885ev_feed_signal_event (EV_P_ int signum) 1190ev_feed_signal_event (EV_P_ int signum)
886{ 1191{
887 WL w; 1192 WL w;
888 1193
889#if EV_MULTIPLICITY 1194#if EV_MULTIPLICITY
890 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1195 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
891#endif 1196#endif
892 1197
893 --signum; 1198 --signum;
894 1199
895 if (signum < 0 || signum >= signalmax) 1200 if (signum < 0 || signum >= signalmax)
911 1216
912#ifndef WIFCONTINUED 1217#ifndef WIFCONTINUED
913# define WIFCONTINUED(status) 0 1218# define WIFCONTINUED(status) 0
914#endif 1219#endif
915 1220
916void inline_speed 1221/* handle a single child status event */
1222inline_speed void
917child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1223child_reap (EV_P_ int chain, int pid, int status)
918{ 1224{
919 ev_child *w; 1225 ev_child *w;
920 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1226 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
921 1227
922 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1228 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
923 { 1229 {
924 if ((w->pid == pid || !w->pid) 1230 if ((w->pid == pid || !w->pid)
925 && (!traced || (w->flags & 1))) 1231 && (!traced || (w->flags & 1)))
926 { 1232 {
927 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1233 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
928 w->rpid = pid; 1234 w->rpid = pid;
929 w->rstatus = status; 1235 w->rstatus = status;
930 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1236 ev_feed_event (EV_A_ (W)w, EV_CHILD);
931 } 1237 }
932 } 1238 }
934 1240
935#ifndef WCONTINUED 1241#ifndef WCONTINUED
936# define WCONTINUED 0 1242# define WCONTINUED 0
937#endif 1243#endif
938 1244
1245/* called on sigchld etc., calls waitpid */
939static void 1246static void
940childcb (EV_P_ ev_signal *sw, int revents) 1247childcb (EV_P_ ev_signal *sw, int revents)
941{ 1248{
942 int pid, status; 1249 int pid, status;
943 1250
946 if (!WCONTINUED 1253 if (!WCONTINUED
947 || errno != EINVAL 1254 || errno != EINVAL
948 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1255 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
949 return; 1256 return;
950 1257
951 /* make sure we are called again until all childs have been reaped */ 1258 /* make sure we are called again until all children have been reaped */
952 /* we need to do it this way so that the callback gets called before we continue */ 1259 /* we need to do it this way so that the callback gets called before we continue */
953 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1260 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
954 1261
955 child_reap (EV_A_ sw, pid, pid, status); 1262 child_reap (EV_A_ pid, pid, status);
956 if (EV_PID_HASHSIZE > 1) 1263 if (EV_PID_HASHSIZE > 1)
957 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1264 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
958} 1265}
959 1266
960#endif 1267#endif
961 1268
962/*****************************************************************************/ 1269/*****************************************************************************/
1024 /* kqueue is borked on everything but netbsd apparently */ 1331 /* kqueue is borked on everything but netbsd apparently */
1025 /* it usually doesn't work correctly on anything but sockets and pipes */ 1332 /* it usually doesn't work correctly on anything but sockets and pipes */
1026 flags &= ~EVBACKEND_KQUEUE; 1333 flags &= ~EVBACKEND_KQUEUE;
1027#endif 1334#endif
1028#ifdef __APPLE__ 1335#ifdef __APPLE__
1029 // flags &= ~EVBACKEND_KQUEUE; for documentation 1336 /* only select works correctly on that "unix-certified" platform */
1030 flags &= ~EVBACKEND_POLL; 1337 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1338 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1031#endif 1339#endif
1032 1340
1033 return flags; 1341 return flags;
1034} 1342}
1035 1343
1055ev_loop_count (EV_P) 1363ev_loop_count (EV_P)
1056{ 1364{
1057 return loop_count; 1365 return loop_count;
1058} 1366}
1059 1367
1368unsigned int
1369ev_loop_depth (EV_P)
1370{
1371 return loop_depth;
1372}
1373
1060void 1374void
1061ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1375ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1062{ 1376{
1063 io_blocktime = interval; 1377 io_blocktime = interval;
1064} 1378}
1067ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1381ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1068{ 1382{
1069 timeout_blocktime = interval; 1383 timeout_blocktime = interval;
1070} 1384}
1071 1385
1386/* initialise a loop structure, must be zero-initialised */
1072static void noinline 1387static void noinline
1073loop_init (EV_P_ unsigned int flags) 1388loop_init (EV_P_ unsigned int flags)
1074{ 1389{
1075 if (!backend) 1390 if (!backend)
1076 { 1391 {
1392#if EV_USE_REALTIME
1393 if (!have_realtime)
1394 {
1395 struct timespec ts;
1396
1397 if (!clock_gettime (CLOCK_REALTIME, &ts))
1398 have_realtime = 1;
1399 }
1400#endif
1401
1077#if EV_USE_MONOTONIC 1402#if EV_USE_MONOTONIC
1403 if (!have_monotonic)
1078 { 1404 {
1079 struct timespec ts; 1405 struct timespec ts;
1406
1080 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1407 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1081 have_monotonic = 1; 1408 have_monotonic = 1;
1082 } 1409 }
1083#endif 1410#endif
1084 1411
1085 ev_rt_now = ev_time (); 1412 ev_rt_now = ev_time ();
1086 mn_now = get_clock (); 1413 mn_now = get_clock ();
1087 now_floor = mn_now; 1414 now_floor = mn_now;
1088 rtmn_diff = ev_rt_now - mn_now; 1415 rtmn_diff = ev_rt_now - mn_now;
1416 invoke_cb = ev_invoke_pending;
1089 1417
1090 io_blocktime = 0.; 1418 io_blocktime = 0.;
1091 timeout_blocktime = 0.; 1419 timeout_blocktime = 0.;
1092 backend = 0; 1420 backend = 0;
1093 backend_fd = -1; 1421 backend_fd = -1;
1105 if (!(flags & EVFLAG_NOENV) 1433 if (!(flags & EVFLAG_NOENV)
1106 && !enable_secure () 1434 && !enable_secure ()
1107 && getenv ("LIBEV_FLAGS")) 1435 && getenv ("LIBEV_FLAGS"))
1108 flags = atoi (getenv ("LIBEV_FLAGS")); 1436 flags = atoi (getenv ("LIBEV_FLAGS"));
1109 1437
1110 if (!(flags & 0x0000ffffUL)) 1438 if (!(flags & 0x0000ffffU))
1111 flags |= ev_recommended_backends (); 1439 flags |= ev_recommended_backends ();
1112 1440
1113#if EV_USE_PORT 1441#if EV_USE_PORT
1114 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1442 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1115#endif 1443#endif
1124#endif 1452#endif
1125#if EV_USE_SELECT 1453#if EV_USE_SELECT
1126 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1454 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1127#endif 1455#endif
1128 1456
1457 ev_prepare_init (&pending_w, pendingcb);
1458
1129 ev_init (&pipeev, pipecb); 1459 ev_init (&pipe_w, pipecb);
1130 ev_set_priority (&pipeev, EV_MAXPRI); 1460 ev_set_priority (&pipe_w, EV_MAXPRI);
1131 } 1461 }
1132} 1462}
1133 1463
1464/* free up a loop structure */
1134static void noinline 1465static void noinline
1135loop_destroy (EV_P) 1466loop_destroy (EV_P)
1136{ 1467{
1137 int i; 1468 int i;
1138 1469
1139 if (ev_is_active (&pipeev)) 1470 if (ev_is_active (&pipe_w))
1140 { 1471 {
1141 ev_ref (EV_A); /* signal watcher */ 1472 ev_ref (EV_A); /* signal watcher */
1142 ev_io_stop (EV_A_ &pipeev); 1473 ev_io_stop (EV_A_ &pipe_w);
1143 1474
1144 close (evpipe [0]); evpipe [0] = 0; 1475#if EV_USE_EVENTFD
1145 close (evpipe [1]); evpipe [1] = 0; 1476 if (evfd >= 0)
1477 close (evfd);
1478#endif
1479
1480 if (evpipe [0] >= 0)
1481 {
1482 close (evpipe [0]);
1483 close (evpipe [1]);
1484 }
1146 } 1485 }
1147 1486
1148#if EV_USE_INOTIFY 1487#if EV_USE_INOTIFY
1149 if (fs_fd >= 0) 1488 if (fs_fd >= 0)
1150 close (fs_fd); 1489 close (fs_fd);
1178 } 1517 }
1179 1518
1180 ev_free (anfds); anfdmax = 0; 1519 ev_free (anfds); anfdmax = 0;
1181 1520
1182 /* have to use the microsoft-never-gets-it-right macro */ 1521 /* have to use the microsoft-never-gets-it-right macro */
1522 array_free (rfeed, EMPTY);
1183 array_free (fdchange, EMPTY); 1523 array_free (fdchange, EMPTY);
1184 array_free (timer, EMPTY); 1524 array_free (timer, EMPTY);
1185#if EV_PERIODIC_ENABLE 1525#if EV_PERIODIC_ENABLE
1186 array_free (periodic, EMPTY); 1526 array_free (periodic, EMPTY);
1187#endif 1527#endif
1195#endif 1535#endif
1196 1536
1197 backend = 0; 1537 backend = 0;
1198} 1538}
1199 1539
1540#if EV_USE_INOTIFY
1200void inline_size infy_fork (EV_P); 1541inline_size void infy_fork (EV_P);
1542#endif
1201 1543
1202void inline_size 1544inline_size void
1203loop_fork (EV_P) 1545loop_fork (EV_P)
1204{ 1546{
1205#if EV_USE_PORT 1547#if EV_USE_PORT
1206 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1548 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1207#endif 1549#endif
1213#endif 1555#endif
1214#if EV_USE_INOTIFY 1556#if EV_USE_INOTIFY
1215 infy_fork (EV_A); 1557 infy_fork (EV_A);
1216#endif 1558#endif
1217 1559
1218 if (ev_is_active (&pipeev)) 1560 if (ev_is_active (&pipe_w))
1219 { 1561 {
1220 /* this "locks" the handlers against writing to the pipe */ 1562 /* this "locks" the handlers against writing to the pipe */
1221 /* while we modify the fd vars */ 1563 /* while we modify the fd vars */
1222 gotsig = 1; 1564 gotsig = 1;
1223#if EV_ASYNC_ENABLE 1565#if EV_ASYNC_ENABLE
1224 gotasync = 1; 1566 gotasync = 1;
1225#endif 1567#endif
1226 1568
1227 ev_ref (EV_A); 1569 ev_ref (EV_A);
1228 ev_io_stop (EV_A_ &pipeev); 1570 ev_io_stop (EV_A_ &pipe_w);
1571
1572#if EV_USE_EVENTFD
1573 if (evfd >= 0)
1574 close (evfd);
1575#endif
1576
1577 if (evpipe [0] >= 0)
1578 {
1229 close (evpipe [0]); 1579 close (evpipe [0]);
1230 close (evpipe [1]); 1580 close (evpipe [1]);
1581 }
1231 1582
1232 evpipe_init (EV_A); 1583 evpipe_init (EV_A);
1233 /* now iterate over everything, in case we missed something */ 1584 /* now iterate over everything, in case we missed something */
1234 pipecb (EV_A_ &pipeev, EV_READ); 1585 pipecb (EV_A_ &pipe_w, EV_READ);
1235 } 1586 }
1236 1587
1237 postfork = 0; 1588 postfork = 0;
1238} 1589}
1239 1590
1240#if EV_MULTIPLICITY 1591#if EV_MULTIPLICITY
1592
1241struct ev_loop * 1593struct ev_loop *
1242ev_loop_new (unsigned int flags) 1594ev_loop_new (unsigned int flags)
1243{ 1595{
1244 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1596 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1245 1597
1264ev_loop_fork (EV_P) 1616ev_loop_fork (EV_P)
1265{ 1617{
1266 postfork = 1; /* must be in line with ev_default_fork */ 1618 postfork = 1; /* must be in line with ev_default_fork */
1267} 1619}
1268 1620
1621#if EV_VERIFY
1622static void noinline
1623verify_watcher (EV_P_ W w)
1624{
1625 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1626
1627 if (w->pending)
1628 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1629}
1630
1631static void noinline
1632verify_heap (EV_P_ ANHE *heap, int N)
1633{
1634 int i;
1635
1636 for (i = HEAP0; i < N + HEAP0; ++i)
1637 {
1638 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1639 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1640 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1641
1642 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1643 }
1644}
1645
1646static void noinline
1647array_verify (EV_P_ W *ws, int cnt)
1648{
1649 while (cnt--)
1650 {
1651 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1652 verify_watcher (EV_A_ ws [cnt]);
1653 }
1654}
1655#endif
1656
1657void
1658ev_loop_verify (EV_P)
1659{
1660#if EV_VERIFY
1661 int i;
1662 WL w;
1663
1664 assert (activecnt >= -1);
1665
1666 assert (fdchangemax >= fdchangecnt);
1667 for (i = 0; i < fdchangecnt; ++i)
1668 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1669
1670 assert (anfdmax >= 0);
1671 for (i = 0; i < anfdmax; ++i)
1672 for (w = anfds [i].head; w; w = w->next)
1673 {
1674 verify_watcher (EV_A_ (W)w);
1675 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1676 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1677 }
1678
1679 assert (timermax >= timercnt);
1680 verify_heap (EV_A_ timers, timercnt);
1681
1682#if EV_PERIODIC_ENABLE
1683 assert (periodicmax >= periodiccnt);
1684 verify_heap (EV_A_ periodics, periodiccnt);
1685#endif
1686
1687 for (i = NUMPRI; i--; )
1688 {
1689 assert (pendingmax [i] >= pendingcnt [i]);
1690#if EV_IDLE_ENABLE
1691 assert (idleall >= 0);
1692 assert (idlemax [i] >= idlecnt [i]);
1693 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1694#endif
1695 }
1696
1697#if EV_FORK_ENABLE
1698 assert (forkmax >= forkcnt);
1699 array_verify (EV_A_ (W *)forks, forkcnt);
1700#endif
1701
1702#if EV_ASYNC_ENABLE
1703 assert (asyncmax >= asynccnt);
1704 array_verify (EV_A_ (W *)asyncs, asynccnt);
1705#endif
1706
1707 assert (preparemax >= preparecnt);
1708 array_verify (EV_A_ (W *)prepares, preparecnt);
1709
1710 assert (checkmax >= checkcnt);
1711 array_verify (EV_A_ (W *)checks, checkcnt);
1712
1713# if 0
1714 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1715 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1269#endif 1716# endif
1717#endif
1718}
1719
1720#endif /* multiplicity */
1270 1721
1271#if EV_MULTIPLICITY 1722#if EV_MULTIPLICITY
1272struct ev_loop * 1723struct ev_loop *
1273ev_default_loop_init (unsigned int flags) 1724ev_default_loop_init (unsigned int flags)
1274#else 1725#else
1307{ 1758{
1308#if EV_MULTIPLICITY 1759#if EV_MULTIPLICITY
1309 struct ev_loop *loop = ev_default_loop_ptr; 1760 struct ev_loop *loop = ev_default_loop_ptr;
1310#endif 1761#endif
1311 1762
1763 ev_default_loop_ptr = 0;
1764
1312#ifndef _WIN32 1765#ifndef _WIN32
1313 ev_ref (EV_A); /* child watcher */ 1766 ev_ref (EV_A); /* child watcher */
1314 ev_signal_stop (EV_A_ &childev); 1767 ev_signal_stop (EV_A_ &childev);
1315#endif 1768#endif
1316 1769
1322{ 1775{
1323#if EV_MULTIPLICITY 1776#if EV_MULTIPLICITY
1324 struct ev_loop *loop = ev_default_loop_ptr; 1777 struct ev_loop *loop = ev_default_loop_ptr;
1325#endif 1778#endif
1326 1779
1327 if (backend)
1328 postfork = 1; /* must be in line with ev_loop_fork */ 1780 postfork = 1; /* must be in line with ev_loop_fork */
1329} 1781}
1330 1782
1331/*****************************************************************************/ 1783/*****************************************************************************/
1332 1784
1333void 1785void
1334ev_invoke (EV_P_ void *w, int revents) 1786ev_invoke (EV_P_ void *w, int revents)
1335{ 1787{
1336 EV_CB_INVOKE ((W)w, revents); 1788 EV_CB_INVOKE ((W)w, revents);
1337} 1789}
1338 1790
1339void inline_speed 1791void
1340call_pending (EV_P) 1792ev_invoke_pending (EV_P)
1341{ 1793{
1342 int pri; 1794 int pri;
1343 1795
1344 for (pri = NUMPRI; pri--; ) 1796 for (pri = NUMPRI; pri--; )
1345 while (pendingcnt [pri]) 1797 while (pendingcnt [pri])
1346 { 1798 {
1347 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1799 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1348 1800
1349 if (expect_true (p->w))
1350 {
1351 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1801 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1802 /* ^ this is no longer true, as pending_w could be here */
1352 1803
1353 p->w->pending = 0; 1804 p->w->pending = 0;
1354 EV_CB_INVOKE (p->w, p->events); 1805 EV_CB_INVOKE (p->w, p->events);
1355 } 1806 EV_FREQUENT_CHECK;
1356 } 1807 }
1357} 1808}
1358 1809
1359void inline_size
1360timers_reify (EV_P)
1361{
1362 while (timercnt && ((WT)timers [0])->at <= mn_now)
1363 {
1364 ev_timer *w = (ev_timer *)timers [0];
1365
1366 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1367
1368 /* first reschedule or stop timer */
1369 if (w->repeat)
1370 {
1371 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1372
1373 ((WT)w)->at += w->repeat;
1374 if (((WT)w)->at < mn_now)
1375 ((WT)w)->at = mn_now;
1376
1377 downheap (timers, timercnt, 0);
1378 }
1379 else
1380 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1381
1382 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1383 }
1384}
1385
1386#if EV_PERIODIC_ENABLE
1387void inline_size
1388periodics_reify (EV_P)
1389{
1390 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1391 {
1392 ev_periodic *w = (ev_periodic *)periodics [0];
1393
1394 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1395
1396 /* first reschedule or stop timer */
1397 if (w->reschedule_cb)
1398 {
1399 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1400 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1401 downheap (periodics, periodiccnt, 0);
1402 }
1403 else if (w->interval)
1404 {
1405 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1406 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1407 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1408 downheap (periodics, periodiccnt, 0);
1409 }
1410 else
1411 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1412
1413 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1414 }
1415}
1416
1417static void noinline
1418periodics_reschedule (EV_P)
1419{
1420 int i;
1421
1422 /* adjust periodics after time jump */
1423 for (i = 0; i < periodiccnt; ++i)
1424 {
1425 ev_periodic *w = (ev_periodic *)periodics [i];
1426
1427 if (w->reschedule_cb)
1428 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1429 else if (w->interval)
1430 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1431 }
1432
1433 /* now rebuild the heap */
1434 for (i = periodiccnt >> 1; i--; )
1435 downheap (periodics, periodiccnt, i);
1436}
1437#endif
1438
1439#if EV_IDLE_ENABLE 1810#if EV_IDLE_ENABLE
1440void inline_size 1811/* make idle watchers pending. this handles the "call-idle */
1812/* only when higher priorities are idle" logic */
1813inline_size void
1441idle_reify (EV_P) 1814idle_reify (EV_P)
1442{ 1815{
1443 if (expect_false (idleall)) 1816 if (expect_false (idleall))
1444 { 1817 {
1445 int pri; 1818 int pri;
1457 } 1830 }
1458 } 1831 }
1459} 1832}
1460#endif 1833#endif
1461 1834
1462void inline_speed 1835/* make timers pending */
1836inline_size void
1837timers_reify (EV_P)
1838{
1839 EV_FREQUENT_CHECK;
1840
1841 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1842 {
1843 do
1844 {
1845 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1846
1847 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1848
1849 /* first reschedule or stop timer */
1850 if (w->repeat)
1851 {
1852 ev_at (w) += w->repeat;
1853 if (ev_at (w) < mn_now)
1854 ev_at (w) = mn_now;
1855
1856 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1857
1858 ANHE_at_cache (timers [HEAP0]);
1859 downheap (timers, timercnt, HEAP0);
1860 }
1861 else
1862 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1863
1864 EV_FREQUENT_CHECK;
1865 feed_reverse (EV_A_ (W)w);
1866 }
1867 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1868
1869 feed_reverse_done (EV_A_ EV_TIMEOUT);
1870 }
1871}
1872
1873#if EV_PERIODIC_ENABLE
1874/* make periodics pending */
1875inline_size void
1876periodics_reify (EV_P)
1877{
1878 EV_FREQUENT_CHECK;
1879
1880 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1881 {
1882 int feed_count = 0;
1883
1884 do
1885 {
1886 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1887
1888 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1889
1890 /* first reschedule or stop timer */
1891 if (w->reschedule_cb)
1892 {
1893 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1894
1895 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1896
1897 ANHE_at_cache (periodics [HEAP0]);
1898 downheap (periodics, periodiccnt, HEAP0);
1899 }
1900 else if (w->interval)
1901 {
1902 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1903 /* if next trigger time is not sufficiently in the future, put it there */
1904 /* this might happen because of floating point inexactness */
1905 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1906 {
1907 ev_at (w) += w->interval;
1908
1909 /* if interval is unreasonably low we might still have a time in the past */
1910 /* so correct this. this will make the periodic very inexact, but the user */
1911 /* has effectively asked to get triggered more often than possible */
1912 if (ev_at (w) < ev_rt_now)
1913 ev_at (w) = ev_rt_now;
1914 }
1915
1916 ANHE_at_cache (periodics [HEAP0]);
1917 downheap (periodics, periodiccnt, HEAP0);
1918 }
1919 else
1920 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1921
1922 EV_FREQUENT_CHECK;
1923 feed_reverse (EV_A_ (W)w);
1924 }
1925 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1926
1927 feed_reverse_done (EV_A_ EV_PERIODIC);
1928 }
1929}
1930
1931/* simply recalculate all periodics */
1932/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1933static void noinline
1934periodics_reschedule (EV_P)
1935{
1936 int i;
1937
1938 /* adjust periodics after time jump */
1939 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1940 {
1941 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1942
1943 if (w->reschedule_cb)
1944 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1945 else if (w->interval)
1946 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1947
1948 ANHE_at_cache (periodics [i]);
1949 }
1950
1951 reheap (periodics, periodiccnt);
1952}
1953#endif
1954
1955/* adjust all timers by a given offset */
1956static void noinline
1957timers_reschedule (EV_P_ ev_tstamp adjust)
1958{
1959 int i;
1960
1961 for (i = 0; i < timercnt; ++i)
1962 {
1963 ANHE *he = timers + i + HEAP0;
1964 ANHE_w (*he)->at += adjust;
1965 ANHE_at_cache (*he);
1966 }
1967}
1968
1969/* fetch new monotonic and realtime times from the kernel */
1970/* also detetc if there was a timejump, and act accordingly */
1971inline_speed void
1463time_update (EV_P_ ev_tstamp max_block) 1972time_update (EV_P_ ev_tstamp max_block)
1464{ 1973{
1465 int i;
1466
1467#if EV_USE_MONOTONIC 1974#if EV_USE_MONOTONIC
1468 if (expect_true (have_monotonic)) 1975 if (expect_true (have_monotonic))
1469 { 1976 {
1977 int i;
1470 ev_tstamp odiff = rtmn_diff; 1978 ev_tstamp odiff = rtmn_diff;
1471 1979
1472 mn_now = get_clock (); 1980 mn_now = get_clock ();
1473 1981
1474 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 1982 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1492 */ 2000 */
1493 for (i = 4; --i; ) 2001 for (i = 4; --i; )
1494 { 2002 {
1495 rtmn_diff = ev_rt_now - mn_now; 2003 rtmn_diff = ev_rt_now - mn_now;
1496 2004
1497 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2005 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1498 return; /* all is well */ 2006 return; /* all is well */
1499 2007
1500 ev_rt_now = ev_time (); 2008 ev_rt_now = ev_time ();
1501 mn_now = get_clock (); 2009 mn_now = get_clock ();
1502 now_floor = mn_now; 2010 now_floor = mn_now;
1503 } 2011 }
1504 2012
2013 /* no timer adjustment, as the monotonic clock doesn't jump */
2014 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1505# if EV_PERIODIC_ENABLE 2015# if EV_PERIODIC_ENABLE
1506 periodics_reschedule (EV_A); 2016 periodics_reschedule (EV_A);
1507# endif 2017# endif
1508 /* no timer adjustment, as the monotonic clock doesn't jump */
1509 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1510 } 2018 }
1511 else 2019 else
1512#endif 2020#endif
1513 { 2021 {
1514 ev_rt_now = ev_time (); 2022 ev_rt_now = ev_time ();
1515 2023
1516 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2024 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1517 { 2025 {
2026 /* adjust timers. this is easy, as the offset is the same for all of them */
2027 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1518#if EV_PERIODIC_ENABLE 2028#if EV_PERIODIC_ENABLE
1519 periodics_reschedule (EV_A); 2029 periodics_reschedule (EV_A);
1520#endif 2030#endif
1521 /* adjust timers. this is easy, as the offset is the same for all of them */
1522 for (i = 0; i < timercnt; ++i)
1523 ((WT)timers [i])->at += ev_rt_now - mn_now;
1524 } 2031 }
1525 2032
1526 mn_now = ev_rt_now; 2033 mn_now = ev_rt_now;
1527 } 2034 }
1528} 2035}
1529 2036
1530void 2037void
1531ev_ref (EV_P)
1532{
1533 ++activecnt;
1534}
1535
1536void
1537ev_unref (EV_P)
1538{
1539 --activecnt;
1540}
1541
1542static int loop_done;
1543
1544void
1545ev_loop (EV_P_ int flags) 2038ev_loop (EV_P_ int flags)
1546{ 2039{
1547 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2040 ++loop_depth;
1548 ? EVUNLOOP_ONE
1549 : EVUNLOOP_CANCEL;
1550 2041
2042 loop_done = EVUNLOOP_CANCEL;
2043
1551 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2044 invoke_cb (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1552 2045
1553 do 2046 do
1554 { 2047 {
2048#if EV_VERIFY >= 2
2049 ev_loop_verify (EV_A);
2050#endif
2051
1555#ifndef _WIN32 2052#ifndef _WIN32
1556 if (expect_false (curpid)) /* penalise the forking check even more */ 2053 if (expect_false (curpid)) /* penalise the forking check even more */
1557 if (expect_false (getpid () != curpid)) 2054 if (expect_false (getpid () != curpid))
1558 { 2055 {
1559 curpid = getpid (); 2056 curpid = getpid ();
1565 /* we might have forked, so queue fork handlers */ 2062 /* we might have forked, so queue fork handlers */
1566 if (expect_false (postfork)) 2063 if (expect_false (postfork))
1567 if (forkcnt) 2064 if (forkcnt)
1568 { 2065 {
1569 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2066 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1570 call_pending (EV_A); 2067 invoke_cb (EV_A);
1571 } 2068 }
1572#endif 2069#endif
1573 2070
1574 /* queue prepare watchers (and execute them) */ 2071 /* queue prepare watchers (and execute them) */
1575 if (expect_false (preparecnt)) 2072 if (expect_false (preparecnt))
1576 { 2073 {
1577 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2074 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1578 call_pending (EV_A); 2075 invoke_cb (EV_A);
1579 } 2076 }
1580
1581 if (expect_false (!activecnt))
1582 break;
1583 2077
1584 /* we might have forked, so reify kernel state if necessary */ 2078 /* we might have forked, so reify kernel state if necessary */
1585 if (expect_false (postfork)) 2079 if (expect_false (postfork))
1586 loop_fork (EV_A); 2080 loop_fork (EV_A);
1587 2081
1593 ev_tstamp waittime = 0.; 2087 ev_tstamp waittime = 0.;
1594 ev_tstamp sleeptime = 0.; 2088 ev_tstamp sleeptime = 0.;
1595 2089
1596 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2090 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1597 { 2091 {
2092 /* remember old timestamp for io_blocktime calculation */
2093 ev_tstamp prev_mn_now = mn_now;
2094
1598 /* update time to cancel out callback processing overhead */ 2095 /* update time to cancel out callback processing overhead */
1599 time_update (EV_A_ 1e100); 2096 time_update (EV_A_ 1e100);
1600 2097
1601 waittime = MAX_BLOCKTIME; 2098 waittime = MAX_BLOCKTIME;
1602 2099
1603 if (timercnt) 2100 if (timercnt)
1604 { 2101 {
1605 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2102 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1606 if (waittime > to) waittime = to; 2103 if (waittime > to) waittime = to;
1607 } 2104 }
1608 2105
1609#if EV_PERIODIC_ENABLE 2106#if EV_PERIODIC_ENABLE
1610 if (periodiccnt) 2107 if (periodiccnt)
1611 { 2108 {
1612 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2109 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1613 if (waittime > to) waittime = to; 2110 if (waittime > to) waittime = to;
1614 } 2111 }
1615#endif 2112#endif
1616 2113
2114 /* don't let timeouts decrease the waittime below timeout_blocktime */
1617 if (expect_false (waittime < timeout_blocktime)) 2115 if (expect_false (waittime < timeout_blocktime))
1618 waittime = timeout_blocktime; 2116 waittime = timeout_blocktime;
1619 2117
1620 sleeptime = waittime - backend_fudge; 2118 /* extra check because io_blocktime is commonly 0 */
1621
1622 if (expect_true (sleeptime > io_blocktime)) 2119 if (expect_false (io_blocktime))
1623 sleeptime = io_blocktime;
1624
1625 if (sleeptime)
1626 { 2120 {
2121 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2122
2123 if (sleeptime > waittime - backend_fudge)
2124 sleeptime = waittime - backend_fudge;
2125
2126 if (expect_true (sleeptime > 0.))
2127 {
1627 ev_sleep (sleeptime); 2128 ev_sleep (sleeptime);
1628 waittime -= sleeptime; 2129 waittime -= sleeptime;
2130 }
1629 } 2131 }
1630 } 2132 }
1631 2133
1632 ++loop_count; 2134 ++loop_count;
1633 backend_poll (EV_A_ waittime); 2135 backend_poll (EV_A_ waittime);
1649 2151
1650 /* queue check watchers, to be executed first */ 2152 /* queue check watchers, to be executed first */
1651 if (expect_false (checkcnt)) 2153 if (expect_false (checkcnt))
1652 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2154 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1653 2155
1654 call_pending (EV_A); 2156 invoke_cb (EV_A);
1655
1656 } 2157 }
1657 while (expect_true (activecnt && !loop_done)); 2158 while (expect_true (
2159 activecnt
2160 && !loop_done
2161 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2162 ));
1658 2163
1659 if (loop_done == EVUNLOOP_ONE) 2164 if (loop_done == EVUNLOOP_ONE)
1660 loop_done = EVUNLOOP_CANCEL; 2165 loop_done = EVUNLOOP_CANCEL;
2166
2167 --loop_depth;
1661} 2168}
1662 2169
1663void 2170void
1664ev_unloop (EV_P_ int how) 2171ev_unloop (EV_P_ int how)
1665{ 2172{
1666 loop_done = how; 2173 loop_done = how;
1667} 2174}
1668 2175
2176void
2177ev_ref (EV_P)
2178{
2179 ++activecnt;
2180}
2181
2182void
2183ev_unref (EV_P)
2184{
2185 --activecnt;
2186}
2187
2188void
2189ev_now_update (EV_P)
2190{
2191 time_update (EV_A_ 1e100);
2192}
2193
2194void
2195ev_suspend (EV_P)
2196{
2197 ev_now_update (EV_A);
2198}
2199
2200void
2201ev_resume (EV_P)
2202{
2203 ev_tstamp mn_prev = mn_now;
2204
2205 ev_now_update (EV_A);
2206 timers_reschedule (EV_A_ mn_now - mn_prev);
2207#if EV_PERIODIC_ENABLE
2208 /* TODO: really do this? */
2209 periodics_reschedule (EV_A);
2210#endif
2211}
2212
1669/*****************************************************************************/ 2213/*****************************************************************************/
2214/* singly-linked list management, used when the expected list length is short */
1670 2215
1671void inline_size 2216inline_size void
1672wlist_add (WL *head, WL elem) 2217wlist_add (WL *head, WL elem)
1673{ 2218{
1674 elem->next = *head; 2219 elem->next = *head;
1675 *head = elem; 2220 *head = elem;
1676} 2221}
1677 2222
1678void inline_size 2223inline_size void
1679wlist_del (WL *head, WL elem) 2224wlist_del (WL *head, WL elem)
1680{ 2225{
1681 while (*head) 2226 while (*head)
1682 { 2227 {
1683 if (*head == elem) 2228 if (*head == elem)
1688 2233
1689 head = &(*head)->next; 2234 head = &(*head)->next;
1690 } 2235 }
1691} 2236}
1692 2237
1693void inline_speed 2238/* internal, faster, version of ev_clear_pending */
2239inline_speed void
1694clear_pending (EV_P_ W w) 2240clear_pending (EV_P_ W w)
1695{ 2241{
1696 if (w->pending) 2242 if (w->pending)
1697 { 2243 {
1698 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2244 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1699 w->pending = 0; 2245 w->pending = 0;
1700 } 2246 }
1701} 2247}
1702 2248
1703int 2249int
1707 int pending = w_->pending; 2253 int pending = w_->pending;
1708 2254
1709 if (expect_true (pending)) 2255 if (expect_true (pending))
1710 { 2256 {
1711 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2257 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2258 p->w = (W)&pending_w;
1712 w_->pending = 0; 2259 w_->pending = 0;
1713 p->w = 0;
1714 return p->events; 2260 return p->events;
1715 } 2261 }
1716 else 2262 else
1717 return 0; 2263 return 0;
1718} 2264}
1719 2265
1720void inline_size 2266inline_size void
1721pri_adjust (EV_P_ W w) 2267pri_adjust (EV_P_ W w)
1722{ 2268{
1723 int pri = w->priority; 2269 int pri = ev_priority (w);
1724 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2270 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1725 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2271 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1726 w->priority = pri; 2272 ev_set_priority (w, pri);
1727} 2273}
1728 2274
1729void inline_speed 2275inline_speed void
1730ev_start (EV_P_ W w, int active) 2276ev_start (EV_P_ W w, int active)
1731{ 2277{
1732 pri_adjust (EV_A_ w); 2278 pri_adjust (EV_A_ w);
1733 w->active = active; 2279 w->active = active;
1734 ev_ref (EV_A); 2280 ev_ref (EV_A);
1735} 2281}
1736 2282
1737void inline_size 2283inline_size void
1738ev_stop (EV_P_ W w) 2284ev_stop (EV_P_ W w)
1739{ 2285{
1740 ev_unref (EV_A); 2286 ev_unref (EV_A);
1741 w->active = 0; 2287 w->active = 0;
1742} 2288}
1749 int fd = w->fd; 2295 int fd = w->fd;
1750 2296
1751 if (expect_false (ev_is_active (w))) 2297 if (expect_false (ev_is_active (w)))
1752 return; 2298 return;
1753 2299
1754 assert (("ev_io_start called with negative fd", fd >= 0)); 2300 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2301 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2302
2303 EV_FREQUENT_CHECK;
1755 2304
1756 ev_start (EV_A_ (W)w, 1); 2305 ev_start (EV_A_ (W)w, 1);
1757 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2306 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1758 wlist_add (&anfds[fd].head, (WL)w); 2307 wlist_add (&anfds[fd].head, (WL)w);
1759 2308
1760 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2309 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1761 w->events &= ~EV_IOFDSET; 2310 w->events &= ~EV__IOFDSET;
2311
2312 EV_FREQUENT_CHECK;
1762} 2313}
1763 2314
1764void noinline 2315void noinline
1765ev_io_stop (EV_P_ ev_io *w) 2316ev_io_stop (EV_P_ ev_io *w)
1766{ 2317{
1767 clear_pending (EV_A_ (W)w); 2318 clear_pending (EV_A_ (W)w);
1768 if (expect_false (!ev_is_active (w))) 2319 if (expect_false (!ev_is_active (w)))
1769 return; 2320 return;
1770 2321
1771 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2322 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2323
2324 EV_FREQUENT_CHECK;
1772 2325
1773 wlist_del (&anfds[w->fd].head, (WL)w); 2326 wlist_del (&anfds[w->fd].head, (WL)w);
1774 ev_stop (EV_A_ (W)w); 2327 ev_stop (EV_A_ (W)w);
1775 2328
1776 fd_change (EV_A_ w->fd, 1); 2329 fd_change (EV_A_ w->fd, 1);
2330
2331 EV_FREQUENT_CHECK;
1777} 2332}
1778 2333
1779void noinline 2334void noinline
1780ev_timer_start (EV_P_ ev_timer *w) 2335ev_timer_start (EV_P_ ev_timer *w)
1781{ 2336{
1782 if (expect_false (ev_is_active (w))) 2337 if (expect_false (ev_is_active (w)))
1783 return; 2338 return;
1784 2339
1785 ((WT)w)->at += mn_now; 2340 ev_at (w) += mn_now;
1786 2341
1787 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2342 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1788 2343
2344 EV_FREQUENT_CHECK;
2345
2346 ++timercnt;
1789 ev_start (EV_A_ (W)w, ++timercnt); 2347 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1790 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2348 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1791 timers [timercnt - 1] = (WT)w; 2349 ANHE_w (timers [ev_active (w)]) = (WT)w;
1792 upheap (timers, timercnt - 1); 2350 ANHE_at_cache (timers [ev_active (w)]);
2351 upheap (timers, ev_active (w));
1793 2352
2353 EV_FREQUENT_CHECK;
2354
1794 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2355 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1795} 2356}
1796 2357
1797void noinline 2358void noinline
1798ev_timer_stop (EV_P_ ev_timer *w) 2359ev_timer_stop (EV_P_ ev_timer *w)
1799{ 2360{
1800 clear_pending (EV_A_ (W)w); 2361 clear_pending (EV_A_ (W)w);
1801 if (expect_false (!ev_is_active (w))) 2362 if (expect_false (!ev_is_active (w)))
1802 return; 2363 return;
1803 2364
1804 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2365 EV_FREQUENT_CHECK;
1805 2366
1806 { 2367 {
1807 int active = ((W)w)->active; 2368 int active = ev_active (w);
1808 2369
2370 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2371
2372 --timercnt;
2373
1809 if (expect_true (--active < --timercnt)) 2374 if (expect_true (active < timercnt + HEAP0))
1810 { 2375 {
1811 timers [active] = timers [timercnt]; 2376 timers [active] = timers [timercnt + HEAP0];
1812 adjustheap (timers, timercnt, active); 2377 adjustheap (timers, timercnt, active);
1813 } 2378 }
1814 } 2379 }
1815 2380
1816 ((WT)w)->at -= mn_now; 2381 EV_FREQUENT_CHECK;
2382
2383 ev_at (w) -= mn_now;
1817 2384
1818 ev_stop (EV_A_ (W)w); 2385 ev_stop (EV_A_ (W)w);
1819} 2386}
1820 2387
1821void noinline 2388void noinline
1822ev_timer_again (EV_P_ ev_timer *w) 2389ev_timer_again (EV_P_ ev_timer *w)
1823{ 2390{
2391 EV_FREQUENT_CHECK;
2392
1824 if (ev_is_active (w)) 2393 if (ev_is_active (w))
1825 { 2394 {
1826 if (w->repeat) 2395 if (w->repeat)
1827 { 2396 {
1828 ((WT)w)->at = mn_now + w->repeat; 2397 ev_at (w) = mn_now + w->repeat;
2398 ANHE_at_cache (timers [ev_active (w)]);
1829 adjustheap (timers, timercnt, ((W)w)->active - 1); 2399 adjustheap (timers, timercnt, ev_active (w));
1830 } 2400 }
1831 else 2401 else
1832 ev_timer_stop (EV_A_ w); 2402 ev_timer_stop (EV_A_ w);
1833 } 2403 }
1834 else if (w->repeat) 2404 else if (w->repeat)
1835 { 2405 {
1836 w->at = w->repeat; 2406 ev_at (w) = w->repeat;
1837 ev_timer_start (EV_A_ w); 2407 ev_timer_start (EV_A_ w);
1838 } 2408 }
2409
2410 EV_FREQUENT_CHECK;
1839} 2411}
1840 2412
1841#if EV_PERIODIC_ENABLE 2413#if EV_PERIODIC_ENABLE
1842void noinline 2414void noinline
1843ev_periodic_start (EV_P_ ev_periodic *w) 2415ev_periodic_start (EV_P_ ev_periodic *w)
1844{ 2416{
1845 if (expect_false (ev_is_active (w))) 2417 if (expect_false (ev_is_active (w)))
1846 return; 2418 return;
1847 2419
1848 if (w->reschedule_cb) 2420 if (w->reschedule_cb)
1849 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2421 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1850 else if (w->interval) 2422 else if (w->interval)
1851 { 2423 {
1852 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2424 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1853 /* this formula differs from the one in periodic_reify because we do not always round up */ 2425 /* this formula differs from the one in periodic_reify because we do not always round up */
1854 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2426 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1855 } 2427 }
1856 else 2428 else
1857 ((WT)w)->at = w->offset; 2429 ev_at (w) = w->offset;
1858 2430
2431 EV_FREQUENT_CHECK;
2432
2433 ++periodiccnt;
1859 ev_start (EV_A_ (W)w, ++periodiccnt); 2434 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1860 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2435 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1861 periodics [periodiccnt - 1] = (WT)w; 2436 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1862 upheap (periodics, periodiccnt - 1); 2437 ANHE_at_cache (periodics [ev_active (w)]);
2438 upheap (periodics, ev_active (w));
1863 2439
2440 EV_FREQUENT_CHECK;
2441
1864 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2442 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1865} 2443}
1866 2444
1867void noinline 2445void noinline
1868ev_periodic_stop (EV_P_ ev_periodic *w) 2446ev_periodic_stop (EV_P_ ev_periodic *w)
1869{ 2447{
1870 clear_pending (EV_A_ (W)w); 2448 clear_pending (EV_A_ (W)w);
1871 if (expect_false (!ev_is_active (w))) 2449 if (expect_false (!ev_is_active (w)))
1872 return; 2450 return;
1873 2451
1874 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2452 EV_FREQUENT_CHECK;
1875 2453
1876 { 2454 {
1877 int active = ((W)w)->active; 2455 int active = ev_active (w);
1878 2456
2457 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2458
2459 --periodiccnt;
2460
1879 if (expect_true (--active < --periodiccnt)) 2461 if (expect_true (active < periodiccnt + HEAP0))
1880 { 2462 {
1881 periodics [active] = periodics [periodiccnt]; 2463 periodics [active] = periodics [periodiccnt + HEAP0];
1882 adjustheap (periodics, periodiccnt, active); 2464 adjustheap (periodics, periodiccnt, active);
1883 } 2465 }
1884 } 2466 }
1885 2467
2468 EV_FREQUENT_CHECK;
2469
1886 ev_stop (EV_A_ (W)w); 2470 ev_stop (EV_A_ (W)w);
1887} 2471}
1888 2472
1889void noinline 2473void noinline
1890ev_periodic_again (EV_P_ ev_periodic *w) 2474ev_periodic_again (EV_P_ ev_periodic *w)
1901 2485
1902void noinline 2486void noinline
1903ev_signal_start (EV_P_ ev_signal *w) 2487ev_signal_start (EV_P_ ev_signal *w)
1904{ 2488{
1905#if EV_MULTIPLICITY 2489#if EV_MULTIPLICITY
1906 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2490 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1907#endif 2491#endif
1908 if (expect_false (ev_is_active (w))) 2492 if (expect_false (ev_is_active (w)))
1909 return; 2493 return;
1910 2494
1911 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2495 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
1912 2496
1913 evpipe_init (EV_A); 2497 evpipe_init (EV_A);
2498
2499 EV_FREQUENT_CHECK;
1914 2500
1915 { 2501 {
1916#ifndef _WIN32 2502#ifndef _WIN32
1917 sigset_t full, prev; 2503 sigset_t full, prev;
1918 sigfillset (&full); 2504 sigfillset (&full);
1919 sigprocmask (SIG_SETMASK, &full, &prev); 2505 sigprocmask (SIG_SETMASK, &full, &prev);
1920#endif 2506#endif
1921 2507
1922 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2508 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
1923 2509
1924#ifndef _WIN32 2510#ifndef _WIN32
1925 sigprocmask (SIG_SETMASK, &prev, 0); 2511 sigprocmask (SIG_SETMASK, &prev, 0);
1926#endif 2512#endif
1927 } 2513 }
1930 wlist_add (&signals [w->signum - 1].head, (WL)w); 2516 wlist_add (&signals [w->signum - 1].head, (WL)w);
1931 2517
1932 if (!((WL)w)->next) 2518 if (!((WL)w)->next)
1933 { 2519 {
1934#if _WIN32 2520#if _WIN32
1935 signal (w->signum, sighandler); 2521 signal (w->signum, ev_sighandler);
1936#else 2522#else
1937 struct sigaction sa; 2523 struct sigaction sa;
1938 sa.sa_handler = sighandler; 2524 sa.sa_handler = ev_sighandler;
1939 sigfillset (&sa.sa_mask); 2525 sigfillset (&sa.sa_mask);
1940 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2526 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1941 sigaction (w->signum, &sa, 0); 2527 sigaction (w->signum, &sa, 0);
1942#endif 2528#endif
1943 } 2529 }
2530
2531 EV_FREQUENT_CHECK;
1944} 2532}
1945 2533
1946void noinline 2534void noinline
1947ev_signal_stop (EV_P_ ev_signal *w) 2535ev_signal_stop (EV_P_ ev_signal *w)
1948{ 2536{
1949 clear_pending (EV_A_ (W)w); 2537 clear_pending (EV_A_ (W)w);
1950 if (expect_false (!ev_is_active (w))) 2538 if (expect_false (!ev_is_active (w)))
1951 return; 2539 return;
1952 2540
2541 EV_FREQUENT_CHECK;
2542
1953 wlist_del (&signals [w->signum - 1].head, (WL)w); 2543 wlist_del (&signals [w->signum - 1].head, (WL)w);
1954 ev_stop (EV_A_ (W)w); 2544 ev_stop (EV_A_ (W)w);
1955 2545
1956 if (!signals [w->signum - 1].head) 2546 if (!signals [w->signum - 1].head)
1957 signal (w->signum, SIG_DFL); 2547 signal (w->signum, SIG_DFL);
2548
2549 EV_FREQUENT_CHECK;
1958} 2550}
1959 2551
1960void 2552void
1961ev_child_start (EV_P_ ev_child *w) 2553ev_child_start (EV_P_ ev_child *w)
1962{ 2554{
1963#if EV_MULTIPLICITY 2555#if EV_MULTIPLICITY
1964 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2556 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1965#endif 2557#endif
1966 if (expect_false (ev_is_active (w))) 2558 if (expect_false (ev_is_active (w)))
1967 return; 2559 return;
1968 2560
2561 EV_FREQUENT_CHECK;
2562
1969 ev_start (EV_A_ (W)w, 1); 2563 ev_start (EV_A_ (W)w, 1);
1970 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2564 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2565
2566 EV_FREQUENT_CHECK;
1971} 2567}
1972 2568
1973void 2569void
1974ev_child_stop (EV_P_ ev_child *w) 2570ev_child_stop (EV_P_ ev_child *w)
1975{ 2571{
1976 clear_pending (EV_A_ (W)w); 2572 clear_pending (EV_A_ (W)w);
1977 if (expect_false (!ev_is_active (w))) 2573 if (expect_false (!ev_is_active (w)))
1978 return; 2574 return;
1979 2575
2576 EV_FREQUENT_CHECK;
2577
1980 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2578 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1981 ev_stop (EV_A_ (W)w); 2579 ev_stop (EV_A_ (W)w);
2580
2581 EV_FREQUENT_CHECK;
1982} 2582}
1983 2583
1984#if EV_STAT_ENABLE 2584#if EV_STAT_ENABLE
1985 2585
1986# ifdef _WIN32 2586# ifdef _WIN32
1987# undef lstat 2587# undef lstat
1988# define lstat(a,b) _stati64 (a,b) 2588# define lstat(a,b) _stati64 (a,b)
1989# endif 2589# endif
1990 2590
1991#define DEF_STAT_INTERVAL 5.0074891 2591#define DEF_STAT_INTERVAL 5.0074891
2592#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1992#define MIN_STAT_INTERVAL 0.1074891 2593#define MIN_STAT_INTERVAL 0.1074891
1993 2594
1994static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2595static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1995 2596
1996#if EV_USE_INOTIFY 2597#if EV_USE_INOTIFY
1997# define EV_INOTIFY_BUFSIZE 8192 2598# define EV_INOTIFY_BUFSIZE 8192
2001{ 2602{
2002 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2603 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2003 2604
2004 if (w->wd < 0) 2605 if (w->wd < 0)
2005 { 2606 {
2607 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2006 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2608 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2007 2609
2008 /* monitor some parent directory for speedup hints */ 2610 /* monitor some parent directory for speedup hints */
2611 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2612 /* but an efficiency issue only */
2009 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2613 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2010 { 2614 {
2011 char path [4096]; 2615 char path [4096];
2012 strcpy (path, w->path); 2616 strcpy (path, w->path);
2013 2617
2016 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2620 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2017 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2621 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2018 2622
2019 char *pend = strrchr (path, '/'); 2623 char *pend = strrchr (path, '/');
2020 2624
2021 if (!pend) 2625 if (!pend || pend == path)
2022 break; /* whoops, no '/', complain to your admin */ 2626 break;
2023 2627
2024 *pend = 0; 2628 *pend = 0;
2025 w->wd = inotify_add_watch (fs_fd, path, mask); 2629 w->wd = inotify_add_watch (fs_fd, path, mask);
2026 } 2630 }
2027 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2631 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2028 } 2632 }
2029 } 2633 }
2030 else
2031 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2032 2634
2033 if (w->wd >= 0) 2635 if (w->wd >= 0)
2636 {
2034 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2637 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2638
2639 /* now local changes will be tracked by inotify, but remote changes won't */
2640 /* unless the filesystem it known to be local, we therefore still poll */
2641 /* also do poll on <2.6.25, but with normal frequency */
2642 struct statfs sfs;
2643
2644 if (fs_2625 && !statfs (w->path, &sfs))
2645 if (sfs.f_type == 0x1373 /* devfs */
2646 || sfs.f_type == 0xEF53 /* ext2/3 */
2647 || sfs.f_type == 0x3153464a /* jfs */
2648 || sfs.f_type == 0x52654973 /* reiser3 */
2649 || sfs.f_type == 0x01021994 /* tempfs */
2650 || sfs.f_type == 0x58465342 /* xfs */)
2651 return;
2652
2653 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2654 ev_timer_again (EV_A_ &w->timer);
2655 }
2035} 2656}
2036 2657
2037static void noinline 2658static void noinline
2038infy_del (EV_P_ ev_stat *w) 2659infy_del (EV_P_ ev_stat *w)
2039{ 2660{
2053 2674
2054static void noinline 2675static void noinline
2055infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2676infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2056{ 2677{
2057 if (slot < 0) 2678 if (slot < 0)
2058 /* overflow, need to check for all hahs slots */ 2679 /* overflow, need to check for all hash slots */
2059 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2680 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2060 infy_wd (EV_A_ slot, wd, ev); 2681 infy_wd (EV_A_ slot, wd, ev);
2061 else 2682 else
2062 { 2683 {
2063 WL w_; 2684 WL w_;
2069 2690
2070 if (w->wd == wd || wd == -1) 2691 if (w->wd == wd || wd == -1)
2071 { 2692 {
2072 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2693 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2073 { 2694 {
2695 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2074 w->wd = -1; 2696 w->wd = -1;
2075 infy_add (EV_A_ w); /* re-add, no matter what */ 2697 infy_add (EV_A_ w); /* re-add, no matter what */
2076 } 2698 }
2077 2699
2078 stat_timer_cb (EV_A_ &w->timer, 0); 2700 stat_timer_cb (EV_A_ &w->timer, 0);
2091 2713
2092 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2714 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2093 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2715 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2094} 2716}
2095 2717
2096void inline_size 2718inline_size void
2719check_2625 (EV_P)
2720{
2721 /* kernels < 2.6.25 are borked
2722 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2723 */
2724 struct utsname buf;
2725 int major, minor, micro;
2726
2727 if (uname (&buf))
2728 return;
2729
2730 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2731 return;
2732
2733 if (major < 2
2734 || (major == 2 && minor < 6)
2735 || (major == 2 && minor == 6 && micro < 25))
2736 return;
2737
2738 fs_2625 = 1;
2739}
2740
2741inline_size void
2097infy_init (EV_P) 2742infy_init (EV_P)
2098{ 2743{
2099 if (fs_fd != -2) 2744 if (fs_fd != -2)
2100 return; 2745 return;
2746
2747 fs_fd = -1;
2748
2749 check_2625 (EV_A);
2101 2750
2102 fs_fd = inotify_init (); 2751 fs_fd = inotify_init ();
2103 2752
2104 if (fs_fd >= 0) 2753 if (fs_fd >= 0)
2105 { 2754 {
2107 ev_set_priority (&fs_w, EV_MAXPRI); 2756 ev_set_priority (&fs_w, EV_MAXPRI);
2108 ev_io_start (EV_A_ &fs_w); 2757 ev_io_start (EV_A_ &fs_w);
2109 } 2758 }
2110} 2759}
2111 2760
2112void inline_size 2761inline_size void
2113infy_fork (EV_P) 2762infy_fork (EV_P)
2114{ 2763{
2115 int slot; 2764 int slot;
2116 2765
2117 if (fs_fd < 0) 2766 if (fs_fd < 0)
2133 w->wd = -1; 2782 w->wd = -1;
2134 2783
2135 if (fs_fd >= 0) 2784 if (fs_fd >= 0)
2136 infy_add (EV_A_ w); /* re-add, no matter what */ 2785 infy_add (EV_A_ w); /* re-add, no matter what */
2137 else 2786 else
2138 ev_timer_start (EV_A_ &w->timer); 2787 ev_timer_again (EV_A_ &w->timer);
2139 } 2788 }
2140
2141 } 2789 }
2142} 2790}
2143 2791
2792#endif
2793
2794#ifdef _WIN32
2795# define EV_LSTAT(p,b) _stati64 (p, b)
2796#else
2797# define EV_LSTAT(p,b) lstat (p, b)
2144#endif 2798#endif
2145 2799
2146void 2800void
2147ev_stat_stat (EV_P_ ev_stat *w) 2801ev_stat_stat (EV_P_ ev_stat *w)
2148{ 2802{
2175 || w->prev.st_atime != w->attr.st_atime 2829 || w->prev.st_atime != w->attr.st_atime
2176 || w->prev.st_mtime != w->attr.st_mtime 2830 || w->prev.st_mtime != w->attr.st_mtime
2177 || w->prev.st_ctime != w->attr.st_ctime 2831 || w->prev.st_ctime != w->attr.st_ctime
2178 ) { 2832 ) {
2179 #if EV_USE_INOTIFY 2833 #if EV_USE_INOTIFY
2834 if (fs_fd >= 0)
2835 {
2180 infy_del (EV_A_ w); 2836 infy_del (EV_A_ w);
2181 infy_add (EV_A_ w); 2837 infy_add (EV_A_ w);
2182 ev_stat_stat (EV_A_ w); /* avoid race... */ 2838 ev_stat_stat (EV_A_ w); /* avoid race... */
2839 }
2183 #endif 2840 #endif
2184 2841
2185 ev_feed_event (EV_A_ w, EV_STAT); 2842 ev_feed_event (EV_A_ w, EV_STAT);
2186 } 2843 }
2187} 2844}
2190ev_stat_start (EV_P_ ev_stat *w) 2847ev_stat_start (EV_P_ ev_stat *w)
2191{ 2848{
2192 if (expect_false (ev_is_active (w))) 2849 if (expect_false (ev_is_active (w)))
2193 return; 2850 return;
2194 2851
2195 /* since we use memcmp, we need to clear any padding data etc. */
2196 memset (&w->prev, 0, sizeof (ev_statdata));
2197 memset (&w->attr, 0, sizeof (ev_statdata));
2198
2199 ev_stat_stat (EV_A_ w); 2852 ev_stat_stat (EV_A_ w);
2200 2853
2854 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2201 if (w->interval < MIN_STAT_INTERVAL) 2855 w->interval = MIN_STAT_INTERVAL;
2202 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2203 2856
2204 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2857 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2205 ev_set_priority (&w->timer, ev_priority (w)); 2858 ev_set_priority (&w->timer, ev_priority (w));
2206 2859
2207#if EV_USE_INOTIFY 2860#if EV_USE_INOTIFY
2208 infy_init (EV_A); 2861 infy_init (EV_A);
2209 2862
2210 if (fs_fd >= 0) 2863 if (fs_fd >= 0)
2211 infy_add (EV_A_ w); 2864 infy_add (EV_A_ w);
2212 else 2865 else
2213#endif 2866#endif
2214 ev_timer_start (EV_A_ &w->timer); 2867 ev_timer_again (EV_A_ &w->timer);
2215 2868
2216 ev_start (EV_A_ (W)w, 1); 2869 ev_start (EV_A_ (W)w, 1);
2870
2871 EV_FREQUENT_CHECK;
2217} 2872}
2218 2873
2219void 2874void
2220ev_stat_stop (EV_P_ ev_stat *w) 2875ev_stat_stop (EV_P_ ev_stat *w)
2221{ 2876{
2222 clear_pending (EV_A_ (W)w); 2877 clear_pending (EV_A_ (W)w);
2223 if (expect_false (!ev_is_active (w))) 2878 if (expect_false (!ev_is_active (w)))
2224 return; 2879 return;
2225 2880
2881 EV_FREQUENT_CHECK;
2882
2226#if EV_USE_INOTIFY 2883#if EV_USE_INOTIFY
2227 infy_del (EV_A_ w); 2884 infy_del (EV_A_ w);
2228#endif 2885#endif
2229 ev_timer_stop (EV_A_ &w->timer); 2886 ev_timer_stop (EV_A_ &w->timer);
2230 2887
2231 ev_stop (EV_A_ (W)w); 2888 ev_stop (EV_A_ (W)w);
2889
2890 EV_FREQUENT_CHECK;
2232} 2891}
2233#endif 2892#endif
2234 2893
2235#if EV_IDLE_ENABLE 2894#if EV_IDLE_ENABLE
2236void 2895void
2238{ 2897{
2239 if (expect_false (ev_is_active (w))) 2898 if (expect_false (ev_is_active (w)))
2240 return; 2899 return;
2241 2900
2242 pri_adjust (EV_A_ (W)w); 2901 pri_adjust (EV_A_ (W)w);
2902
2903 EV_FREQUENT_CHECK;
2243 2904
2244 { 2905 {
2245 int active = ++idlecnt [ABSPRI (w)]; 2906 int active = ++idlecnt [ABSPRI (w)];
2246 2907
2247 ++idleall; 2908 ++idleall;
2248 ev_start (EV_A_ (W)w, active); 2909 ev_start (EV_A_ (W)w, active);
2249 2910
2250 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2911 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2251 idles [ABSPRI (w)][active - 1] = w; 2912 idles [ABSPRI (w)][active - 1] = w;
2252 } 2913 }
2914
2915 EV_FREQUENT_CHECK;
2253} 2916}
2254 2917
2255void 2918void
2256ev_idle_stop (EV_P_ ev_idle *w) 2919ev_idle_stop (EV_P_ ev_idle *w)
2257{ 2920{
2258 clear_pending (EV_A_ (W)w); 2921 clear_pending (EV_A_ (W)w);
2259 if (expect_false (!ev_is_active (w))) 2922 if (expect_false (!ev_is_active (w)))
2260 return; 2923 return;
2261 2924
2925 EV_FREQUENT_CHECK;
2926
2262 { 2927 {
2263 int active = ((W)w)->active; 2928 int active = ev_active (w);
2264 2929
2265 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2930 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2266 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2931 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2267 2932
2268 ev_stop (EV_A_ (W)w); 2933 ev_stop (EV_A_ (W)w);
2269 --idleall; 2934 --idleall;
2270 } 2935 }
2936
2937 EV_FREQUENT_CHECK;
2271} 2938}
2272#endif 2939#endif
2273 2940
2274void 2941void
2275ev_prepare_start (EV_P_ ev_prepare *w) 2942ev_prepare_start (EV_P_ ev_prepare *w)
2276{ 2943{
2277 if (expect_false (ev_is_active (w))) 2944 if (expect_false (ev_is_active (w)))
2278 return; 2945 return;
2946
2947 EV_FREQUENT_CHECK;
2279 2948
2280 ev_start (EV_A_ (W)w, ++preparecnt); 2949 ev_start (EV_A_ (W)w, ++preparecnt);
2281 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2950 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2282 prepares [preparecnt - 1] = w; 2951 prepares [preparecnt - 1] = w;
2952
2953 EV_FREQUENT_CHECK;
2283} 2954}
2284 2955
2285void 2956void
2286ev_prepare_stop (EV_P_ ev_prepare *w) 2957ev_prepare_stop (EV_P_ ev_prepare *w)
2287{ 2958{
2288 clear_pending (EV_A_ (W)w); 2959 clear_pending (EV_A_ (W)w);
2289 if (expect_false (!ev_is_active (w))) 2960 if (expect_false (!ev_is_active (w)))
2290 return; 2961 return;
2291 2962
2963 EV_FREQUENT_CHECK;
2964
2292 { 2965 {
2293 int active = ((W)w)->active; 2966 int active = ev_active (w);
2967
2294 prepares [active - 1] = prepares [--preparecnt]; 2968 prepares [active - 1] = prepares [--preparecnt];
2295 ((W)prepares [active - 1])->active = active; 2969 ev_active (prepares [active - 1]) = active;
2296 } 2970 }
2297 2971
2298 ev_stop (EV_A_ (W)w); 2972 ev_stop (EV_A_ (W)w);
2973
2974 EV_FREQUENT_CHECK;
2299} 2975}
2300 2976
2301void 2977void
2302ev_check_start (EV_P_ ev_check *w) 2978ev_check_start (EV_P_ ev_check *w)
2303{ 2979{
2304 if (expect_false (ev_is_active (w))) 2980 if (expect_false (ev_is_active (w)))
2305 return; 2981 return;
2982
2983 EV_FREQUENT_CHECK;
2306 2984
2307 ev_start (EV_A_ (W)w, ++checkcnt); 2985 ev_start (EV_A_ (W)w, ++checkcnt);
2308 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2986 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2309 checks [checkcnt - 1] = w; 2987 checks [checkcnt - 1] = w;
2988
2989 EV_FREQUENT_CHECK;
2310} 2990}
2311 2991
2312void 2992void
2313ev_check_stop (EV_P_ ev_check *w) 2993ev_check_stop (EV_P_ ev_check *w)
2314{ 2994{
2315 clear_pending (EV_A_ (W)w); 2995 clear_pending (EV_A_ (W)w);
2316 if (expect_false (!ev_is_active (w))) 2996 if (expect_false (!ev_is_active (w)))
2317 return; 2997 return;
2318 2998
2999 EV_FREQUENT_CHECK;
3000
2319 { 3001 {
2320 int active = ((W)w)->active; 3002 int active = ev_active (w);
3003
2321 checks [active - 1] = checks [--checkcnt]; 3004 checks [active - 1] = checks [--checkcnt];
2322 ((W)checks [active - 1])->active = active; 3005 ev_active (checks [active - 1]) = active;
2323 } 3006 }
2324 3007
2325 ev_stop (EV_A_ (W)w); 3008 ev_stop (EV_A_ (W)w);
3009
3010 EV_FREQUENT_CHECK;
2326} 3011}
2327 3012
2328#if EV_EMBED_ENABLE 3013#if EV_EMBED_ENABLE
2329void noinline 3014void noinline
2330ev_embed_sweep (EV_P_ ev_embed *w) 3015ev_embed_sweep (EV_P_ ev_embed *w)
2357 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3042 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2358 } 3043 }
2359 } 3044 }
2360} 3045}
2361 3046
3047static void
3048embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3049{
3050 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3051
3052 ev_embed_stop (EV_A_ w);
3053
3054 {
3055 struct ev_loop *loop = w->other;
3056
3057 ev_loop_fork (EV_A);
3058 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3059 }
3060
3061 ev_embed_start (EV_A_ w);
3062}
3063
2362#if 0 3064#if 0
2363static void 3065static void
2364embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3066embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2365{ 3067{
2366 ev_idle_stop (EV_A_ idle); 3068 ev_idle_stop (EV_A_ idle);
2373 if (expect_false (ev_is_active (w))) 3075 if (expect_false (ev_is_active (w)))
2374 return; 3076 return;
2375 3077
2376 { 3078 {
2377 struct ev_loop *loop = w->other; 3079 struct ev_loop *loop = w->other;
2378 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3080 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2379 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3081 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2380 } 3082 }
3083
3084 EV_FREQUENT_CHECK;
2381 3085
2382 ev_set_priority (&w->io, ev_priority (w)); 3086 ev_set_priority (&w->io, ev_priority (w));
2383 ev_io_start (EV_A_ &w->io); 3087 ev_io_start (EV_A_ &w->io);
2384 3088
2385 ev_prepare_init (&w->prepare, embed_prepare_cb); 3089 ev_prepare_init (&w->prepare, embed_prepare_cb);
2386 ev_set_priority (&w->prepare, EV_MINPRI); 3090 ev_set_priority (&w->prepare, EV_MINPRI);
2387 ev_prepare_start (EV_A_ &w->prepare); 3091 ev_prepare_start (EV_A_ &w->prepare);
2388 3092
3093 ev_fork_init (&w->fork, embed_fork_cb);
3094 ev_fork_start (EV_A_ &w->fork);
3095
2389 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3096 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2390 3097
2391 ev_start (EV_A_ (W)w, 1); 3098 ev_start (EV_A_ (W)w, 1);
3099
3100 EV_FREQUENT_CHECK;
2392} 3101}
2393 3102
2394void 3103void
2395ev_embed_stop (EV_P_ ev_embed *w) 3104ev_embed_stop (EV_P_ ev_embed *w)
2396{ 3105{
2397 clear_pending (EV_A_ (W)w); 3106 clear_pending (EV_A_ (W)w);
2398 if (expect_false (!ev_is_active (w))) 3107 if (expect_false (!ev_is_active (w)))
2399 return; 3108 return;
2400 3109
3110 EV_FREQUENT_CHECK;
3111
2401 ev_io_stop (EV_A_ &w->io); 3112 ev_io_stop (EV_A_ &w->io);
2402 ev_prepare_stop (EV_A_ &w->prepare); 3113 ev_prepare_stop (EV_A_ &w->prepare);
3114 ev_fork_stop (EV_A_ &w->fork);
2403 3115
2404 ev_stop (EV_A_ (W)w); 3116 EV_FREQUENT_CHECK;
2405} 3117}
2406#endif 3118#endif
2407 3119
2408#if EV_FORK_ENABLE 3120#if EV_FORK_ENABLE
2409void 3121void
2410ev_fork_start (EV_P_ ev_fork *w) 3122ev_fork_start (EV_P_ ev_fork *w)
2411{ 3123{
2412 if (expect_false (ev_is_active (w))) 3124 if (expect_false (ev_is_active (w)))
2413 return; 3125 return;
3126
3127 EV_FREQUENT_CHECK;
2414 3128
2415 ev_start (EV_A_ (W)w, ++forkcnt); 3129 ev_start (EV_A_ (W)w, ++forkcnt);
2416 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3130 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2417 forks [forkcnt - 1] = w; 3131 forks [forkcnt - 1] = w;
3132
3133 EV_FREQUENT_CHECK;
2418} 3134}
2419 3135
2420void 3136void
2421ev_fork_stop (EV_P_ ev_fork *w) 3137ev_fork_stop (EV_P_ ev_fork *w)
2422{ 3138{
2423 clear_pending (EV_A_ (W)w); 3139 clear_pending (EV_A_ (W)w);
2424 if (expect_false (!ev_is_active (w))) 3140 if (expect_false (!ev_is_active (w)))
2425 return; 3141 return;
2426 3142
3143 EV_FREQUENT_CHECK;
3144
2427 { 3145 {
2428 int active = ((W)w)->active; 3146 int active = ev_active (w);
3147
2429 forks [active - 1] = forks [--forkcnt]; 3148 forks [active - 1] = forks [--forkcnt];
2430 ((W)forks [active - 1])->active = active; 3149 ev_active (forks [active - 1]) = active;
2431 } 3150 }
2432 3151
2433 ev_stop (EV_A_ (W)w); 3152 ev_stop (EV_A_ (W)w);
3153
3154 EV_FREQUENT_CHECK;
2434} 3155}
2435#endif 3156#endif
2436 3157
2437#if EV_ASYNC_ENABLE 3158#if EV_ASYNC_ENABLE
2438void 3159void
2440{ 3161{
2441 if (expect_false (ev_is_active (w))) 3162 if (expect_false (ev_is_active (w)))
2442 return; 3163 return;
2443 3164
2444 evpipe_init (EV_A); 3165 evpipe_init (EV_A);
3166
3167 EV_FREQUENT_CHECK;
2445 3168
2446 ev_start (EV_A_ (W)w, ++asynccnt); 3169 ev_start (EV_A_ (W)w, ++asynccnt);
2447 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3170 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2448 asyncs [asynccnt - 1] = w; 3171 asyncs [asynccnt - 1] = w;
3172
3173 EV_FREQUENT_CHECK;
2449} 3174}
2450 3175
2451void 3176void
2452ev_async_stop (EV_P_ ev_async *w) 3177ev_async_stop (EV_P_ ev_async *w)
2453{ 3178{
2454 clear_pending (EV_A_ (W)w); 3179 clear_pending (EV_A_ (W)w);
2455 if (expect_false (!ev_is_active (w))) 3180 if (expect_false (!ev_is_active (w)))
2456 return; 3181 return;
2457 3182
3183 EV_FREQUENT_CHECK;
3184
2458 { 3185 {
2459 int active = ((W)w)->active; 3186 int active = ev_active (w);
3187
2460 asyncs [active - 1] = asyncs [--asynccnt]; 3188 asyncs [active - 1] = asyncs [--asynccnt];
2461 ((W)asyncs [active - 1])->active = active; 3189 ev_active (asyncs [active - 1]) = active;
2462 } 3190 }
2463 3191
2464 ev_stop (EV_A_ (W)w); 3192 ev_stop (EV_A_ (W)w);
3193
3194 EV_FREQUENT_CHECK;
2465} 3195}
2466 3196
2467void 3197void
2468ev_async_send (EV_P_ ev_async *w) 3198ev_async_send (EV_P_ ev_async *w)
2469{ 3199{
2486once_cb (EV_P_ struct ev_once *once, int revents) 3216once_cb (EV_P_ struct ev_once *once, int revents)
2487{ 3217{
2488 void (*cb)(int revents, void *arg) = once->cb; 3218 void (*cb)(int revents, void *arg) = once->cb;
2489 void *arg = once->arg; 3219 void *arg = once->arg;
2490 3220
2491 ev_io_stop (EV_A_ &once->io); 3221 ev_io_stop (EV_A_ &once->io);
2492 ev_timer_stop (EV_A_ &once->to); 3222 ev_timer_stop (EV_A_ &once->to);
2493 ev_free (once); 3223 ev_free (once);
2494 3224
2495 cb (revents, arg); 3225 cb (revents, arg);
2496} 3226}
2497 3227
2498static void 3228static void
2499once_cb_io (EV_P_ ev_io *w, int revents) 3229once_cb_io (EV_P_ ev_io *w, int revents)
2500{ 3230{
2501 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3231 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3232
3233 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2502} 3234}
2503 3235
2504static void 3236static void
2505once_cb_to (EV_P_ ev_timer *w, int revents) 3237once_cb_to (EV_P_ ev_timer *w, int revents)
2506{ 3238{
2507 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3239 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3240
3241 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2508} 3242}
2509 3243
2510void 3244void
2511ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3245ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2512{ 3246{
2534 ev_timer_set (&once->to, timeout, 0.); 3268 ev_timer_set (&once->to, timeout, 0.);
2535 ev_timer_start (EV_A_ &once->to); 3269 ev_timer_start (EV_A_ &once->to);
2536 } 3270 }
2537} 3271}
2538 3272
3273/*****************************************************************************/
3274
3275#if EV_WALK_ENABLE
3276void
3277ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3278{
3279 int i, j;
3280 ev_watcher_list *wl, *wn;
3281
3282 if (types & (EV_IO | EV_EMBED))
3283 for (i = 0; i < anfdmax; ++i)
3284 for (wl = anfds [i].head; wl; )
3285 {
3286 wn = wl->next;
3287
3288#if EV_EMBED_ENABLE
3289 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3290 {
3291 if (types & EV_EMBED)
3292 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3293 }
3294 else
3295#endif
3296#if EV_USE_INOTIFY
3297 if (ev_cb ((ev_io *)wl) == infy_cb)
3298 ;
3299 else
3300#endif
3301 if ((ev_io *)wl != &pipe_w)
3302 if (types & EV_IO)
3303 cb (EV_A_ EV_IO, wl);
3304
3305 wl = wn;
3306 }
3307
3308 if (types & (EV_TIMER | EV_STAT))
3309 for (i = timercnt + HEAP0; i-- > HEAP0; )
3310#if EV_STAT_ENABLE
3311 /*TODO: timer is not always active*/
3312 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3313 {
3314 if (types & EV_STAT)
3315 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3316 }
3317 else
3318#endif
3319 if (types & EV_TIMER)
3320 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3321
3322#if EV_PERIODIC_ENABLE
3323 if (types & EV_PERIODIC)
3324 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3325 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3326#endif
3327
3328#if EV_IDLE_ENABLE
3329 if (types & EV_IDLE)
3330 for (j = NUMPRI; i--; )
3331 for (i = idlecnt [j]; i--; )
3332 cb (EV_A_ EV_IDLE, idles [j][i]);
3333#endif
3334
3335#if EV_FORK_ENABLE
3336 if (types & EV_FORK)
3337 for (i = forkcnt; i--; )
3338 if (ev_cb (forks [i]) != embed_fork_cb)
3339 cb (EV_A_ EV_FORK, forks [i]);
3340#endif
3341
3342#if EV_ASYNC_ENABLE
3343 if (types & EV_ASYNC)
3344 for (i = asynccnt; i--; )
3345 cb (EV_A_ EV_ASYNC, asyncs [i]);
3346#endif
3347
3348 if (types & EV_PREPARE)
3349 for (i = preparecnt; i--; )
3350#if EV_EMBED_ENABLE
3351 if (ev_cb (prepares [i]) != embed_prepare_cb)
3352#endif
3353 cb (EV_A_ EV_PREPARE, prepares [i]);
3354
3355 if (types & EV_CHECK)
3356 for (i = checkcnt; i--; )
3357 cb (EV_A_ EV_CHECK, checks [i]);
3358
3359 if (types & EV_SIGNAL)
3360 for (i = 0; i < signalmax; ++i)
3361 for (wl = signals [i].head; wl; )
3362 {
3363 wn = wl->next;
3364 cb (EV_A_ EV_SIGNAL, wl);
3365 wl = wn;
3366 }
3367
3368 if (types & EV_CHILD)
3369 for (i = EV_PID_HASHSIZE; i--; )
3370 for (wl = childs [i]; wl; )
3371 {
3372 wn = wl->next;
3373 cb (EV_A_ EV_CHILD, wl);
3374 wl = wn;
3375 }
3376/* EV_STAT 0x00001000 /* stat data changed */
3377/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3378}
3379#endif
3380
2539#if EV_MULTIPLICITY 3381#if EV_MULTIPLICITY
2540 #include "ev_wrap.h" 3382 #include "ev_wrap.h"
2541#endif 3383#endif
2542 3384
2543#ifdef __cplusplus 3385#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines