ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.127 by root, Sun Nov 18 02:17:57 2007 UTC vs.
Revision 1.297 by root, Fri Jul 10 00:36:21 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
38 65
39# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
42# endif 69# endif
43# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
45# endif 72# endif
46# else 73# else
47# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
49# endif 76# endif
50# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
52# endif 87# endif
53# endif 88# endif
54 89
55# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
90# else 125# else
91# define EV_USE_PORT 0 126# define EV_USE_PORT 0
92# endif 127# endif
93# endif 128# endif
94 129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_EVENTFD
139# if HAVE_EVENTFD
140# define EV_USE_EVENTFD 1
141# else
142# define EV_USE_EVENTFD 0
143# endif
144# endif
145
95#endif 146#endif
96 147
97#include <math.h> 148#include <math.h>
98#include <stdlib.h> 149#include <stdlib.h>
99#include <fcntl.h> 150#include <fcntl.h>
106#include <sys/types.h> 157#include <sys/types.h>
107#include <time.h> 158#include <time.h>
108 159
109#include <signal.h> 160#include <signal.h>
110 161
162#ifdef EV_H
163# include EV_H
164#else
165# include "ev.h"
166#endif
167
111#ifndef _WIN32 168#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 169# include <sys/time.h>
114# include <sys/wait.h> 170# include <sys/wait.h>
171# include <unistd.h>
115#else 172#else
173# include <io.h>
116# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 175# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
120# endif 178# endif
121#endif 179#endif
122 180
123/**/ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
124 190
125#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
126# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
127#endif 197#endif
128 198
129#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
201#endif
202
203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
207# define EV_USE_NANOSLEEP 0
208# endif
131#endif 209#endif
132 210
133#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
135#endif 213#endif
141# define EV_USE_POLL 1 219# define EV_USE_POLL 1
142# endif 220# endif
143#endif 221#endif
144 222
145#ifndef EV_USE_EPOLL 223#ifndef EV_USE_EPOLL
224# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225# define EV_USE_EPOLL 1
226# else
146# define EV_USE_EPOLL 0 227# define EV_USE_EPOLL 0
228# endif
147#endif 229#endif
148 230
149#ifndef EV_USE_KQUEUE 231#ifndef EV_USE_KQUEUE
150# define EV_USE_KQUEUE 0 232# define EV_USE_KQUEUE 0
151#endif 233#endif
152 234
153#ifndef EV_USE_PORT 235#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 236# define EV_USE_PORT 0
155#endif 237#endif
156 238
157/**/ 239#ifndef EV_USE_INOTIFY
158 240# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
159/* darwin simply cannot be helped */ 241# define EV_USE_INOTIFY 1
160#ifdef __APPLE__ 242# else
161# undef EV_USE_POLL 243# define EV_USE_INOTIFY 0
162# undef EV_USE_KQUEUE
163#endif 244# endif
245#endif
246
247#ifndef EV_PID_HASHSIZE
248# if EV_MINIMAL
249# define EV_PID_HASHSIZE 1
250# else
251# define EV_PID_HASHSIZE 16
252# endif
253#endif
254
255#ifndef EV_INOTIFY_HASHSIZE
256# if EV_MINIMAL
257# define EV_INOTIFY_HASHSIZE 1
258# else
259# define EV_INOTIFY_HASHSIZE 16
260# endif
261#endif
262
263#ifndef EV_USE_EVENTFD
264# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265# define EV_USE_EVENTFD 1
266# else
267# define EV_USE_EVENTFD 0
268# endif
269#endif
270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
164 304
165#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
166# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
167# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
168#endif 308#endif
170#ifndef CLOCK_REALTIME 310#ifndef CLOCK_REALTIME
171# undef EV_USE_REALTIME 311# undef EV_USE_REALTIME
172# define EV_USE_REALTIME 0 312# define EV_USE_REALTIME 0
173#endif 313#endif
174 314
315#if !EV_STAT_ENABLE
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318#endif
319
320#if !EV_USE_NANOSLEEP
321# ifndef _WIN32
322# include <sys/select.h>
323# endif
324#endif
325
326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
335#endif
336
175#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
176# include <winsock.h> 338# include <winsock.h>
177#endif 339#endif
178 340
341#if EV_USE_EVENTFD
342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343# include <stdint.h>
344# ifdef __cplusplus
345extern "C" {
346# endif
347int eventfd (unsigned int initval, int flags);
348# ifdef __cplusplus
349}
350# endif
351#endif
352
179/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
360
361/*
362 * This is used to avoid floating point rounding problems.
363 * It is added to ev_rt_now when scheduling periodics
364 * to ensure progress, time-wise, even when rounding
365 * errors are against us.
366 * This value is good at least till the year 4000.
367 * Better solutions welcome.
368 */
369#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
180 370
181#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 371#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
182#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 372#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
183#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
184/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 373/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
185 374
186#ifdef EV_H
187# include EV_H
188#else
189# include "ev.h"
190#endif
191
192#if __GNUC__ >= 3 375#if __GNUC__ >= 4
193# define expect(expr,value) __builtin_expect ((expr),(value)) 376# define expect(expr,value) __builtin_expect ((expr),(value))
194# define inline static inline 377# define noinline __attribute__ ((noinline))
195#else 378#else
196# define expect(expr,value) (expr) 379# define expect(expr,value) (expr)
197# define inline static 380# define noinline
381# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
382# define inline
383# endif
198#endif 384#endif
199 385
200#define expect_false(expr) expect ((expr) != 0, 0) 386#define expect_false(expr) expect ((expr) != 0, 0)
201#define expect_true(expr) expect ((expr) != 0, 1) 387#define expect_true(expr) expect ((expr) != 0, 1)
388#define inline_size static inline
202 389
390#if EV_MINIMAL
391# define inline_speed static noinline
392#else
393# define inline_speed static inline
394#endif
395
203#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
204#define ABSPRI(w) ((w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
205 403
206#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 404#define EMPTY /* required for microsofts broken pseudo-c compiler */
207#define EMPTY2(a,b) /* used to suppress some warnings */ 405#define EMPTY2(a,b) /* used to suppress some warnings */
208 406
209typedef struct ev_watcher *W; 407typedef ev_watcher *W;
210typedef struct ev_watcher_list *WL; 408typedef ev_watcher_list *WL;
211typedef struct ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
212 410
411#define ev_active(w) ((W)(w))->active
412#define ev_at(w) ((WT)(w))->at
413
414#if EV_USE_REALTIME
415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
419
420#if EV_USE_MONOTONIC
213static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
422#endif
214 423
215#ifdef _WIN32 424#ifdef _WIN32
216# include "ev_win32.c" 425# include "ev_win32.c"
217#endif 426#endif
218 427
219/*****************************************************************************/ 428/*****************************************************************************/
220 429
221static void (*syserr_cb)(const char *msg); 430static void (*syserr_cb)(const char *msg);
222 431
432void
223void ev_set_syserr_cb (void (*cb)(const char *msg)) 433ev_set_syserr_cb (void (*cb)(const char *msg))
224{ 434{
225 syserr_cb = cb; 435 syserr_cb = cb;
226} 436}
227 437
228static void 438static void noinline
229syserr (const char *msg) 439ev_syserr (const char *msg)
230{ 440{
231 if (!msg) 441 if (!msg)
232 msg = "(libev) system error"; 442 msg = "(libev) system error";
233 443
234 if (syserr_cb) 444 if (syserr_cb)
238 perror (msg); 448 perror (msg);
239 abort (); 449 abort ();
240 } 450 }
241} 451}
242 452
453static void *
454ev_realloc_emul (void *ptr, long size)
455{
456 /* some systems, notably openbsd and darwin, fail to properly
457 * implement realloc (x, 0) (as required by both ansi c-98 and
458 * the single unix specification, so work around them here.
459 */
460
461 if (size)
462 return realloc (ptr, size);
463
464 free (ptr);
465 return 0;
466}
467
243static void *(*alloc)(void *ptr, long size); 468static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
244 469
470void
245void ev_set_allocator (void *(*cb)(void *ptr, long size)) 471ev_set_allocator (void *(*cb)(void *ptr, long size))
246{ 472{
247 alloc = cb; 473 alloc = cb;
248} 474}
249 475
250static void * 476inline_speed void *
251ev_realloc (void *ptr, long size) 477ev_realloc (void *ptr, long size)
252{ 478{
253 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 479 ptr = alloc (ptr, size);
254 480
255 if (!ptr && size) 481 if (!ptr && size)
256 { 482 {
257 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 483 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
258 abort (); 484 abort ();
264#define ev_malloc(size) ev_realloc (0, (size)) 490#define ev_malloc(size) ev_realloc (0, (size))
265#define ev_free(ptr) ev_realloc ((ptr), 0) 491#define ev_free(ptr) ev_realloc ((ptr), 0)
266 492
267/*****************************************************************************/ 493/*****************************************************************************/
268 494
495/* file descriptor info structure */
269typedef struct 496typedef struct
270{ 497{
271 WL head; 498 WL head;
272 unsigned char events; 499 unsigned char events; /* the events watched for */
500 unsigned char reify; /* flag set when this ANFD needs reification */
501 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
273 unsigned char reify; 502 unsigned char unused;
503#if EV_USE_EPOLL
504 unsigned int egen; /* generation counter to counter epoll bugs */
505#endif
274#if EV_SELECT_IS_WINSOCKET 506#if EV_SELECT_IS_WINSOCKET
275 SOCKET handle; 507 SOCKET handle;
276#endif 508#endif
277} ANFD; 509} ANFD;
278 510
511/* stores the pending event set for a given watcher */
279typedef struct 512typedef struct
280{ 513{
281 W w; 514 W w;
282 int events; 515 int events; /* the pending event set for the given watcher */
283} ANPENDING; 516} ANPENDING;
517
518#if EV_USE_INOTIFY
519/* hash table entry per inotify-id */
520typedef struct
521{
522 WL head;
523} ANFS;
524#endif
525
526/* Heap Entry */
527#if EV_HEAP_CACHE_AT
528 /* a heap element */
529 typedef struct {
530 ev_tstamp at;
531 WT w;
532 } ANHE;
533
534 #define ANHE_w(he) (he).w /* access watcher, read-write */
535 #define ANHE_at(he) (he).at /* access cached at, read-only */
536 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
537#else
538 /* a heap element */
539 typedef WT ANHE;
540
541 #define ANHE_w(he) (he)
542 #define ANHE_at(he) (he)->at
543 #define ANHE_at_cache(he)
544#endif
284 545
285#if EV_MULTIPLICITY 546#if EV_MULTIPLICITY
286 547
287 struct ev_loop 548 struct ev_loop
288 { 549 {
306 567
307 static int ev_default_loop_ptr; 568 static int ev_default_loop_ptr;
308 569
309#endif 570#endif
310 571
572#if EV_MINIMAL < 2
573# define EV_SUSPEND_CB if (expect_false (suspend_cb)) suspend_cb (EV_A)
574# define EV_RESUME_CB if (expect_false (resume_cb )) resume_cb (EV_A)
575# define EV_INVOKE_PENDING invoke_cb (EV_A)
576#else
577# define EV_SUSPEND_CB (void)0
578# define EV_RESUME_CB (void)0
579# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
580#endif
581
311/*****************************************************************************/ 582/*****************************************************************************/
312 583
584#ifndef EV_HAVE_EV_TIME
313ev_tstamp 585ev_tstamp
314ev_time (void) 586ev_time (void)
315{ 587{
316#if EV_USE_REALTIME 588#if EV_USE_REALTIME
589 if (expect_true (have_realtime))
590 {
317 struct timespec ts; 591 struct timespec ts;
318 clock_gettime (CLOCK_REALTIME, &ts); 592 clock_gettime (CLOCK_REALTIME, &ts);
319 return ts.tv_sec + ts.tv_nsec * 1e-9; 593 return ts.tv_sec + ts.tv_nsec * 1e-9;
320#else 594 }
595#endif
596
321 struct timeval tv; 597 struct timeval tv;
322 gettimeofday (&tv, 0); 598 gettimeofday (&tv, 0);
323 return tv.tv_sec + tv.tv_usec * 1e-6; 599 return tv.tv_sec + tv.tv_usec * 1e-6;
324#endif
325} 600}
601#endif
326 602
327inline ev_tstamp 603inline_size ev_tstamp
328get_clock (void) 604get_clock (void)
329{ 605{
330#if EV_USE_MONOTONIC 606#if EV_USE_MONOTONIC
331 if (expect_true (have_monotonic)) 607 if (expect_true (have_monotonic))
332 { 608 {
345{ 621{
346 return ev_rt_now; 622 return ev_rt_now;
347} 623}
348#endif 624#endif
349 625
350#define array_roundsize(type,n) (((n) | 4) & ~3) 626void
627ev_sleep (ev_tstamp delay)
628{
629 if (delay > 0.)
630 {
631#if EV_USE_NANOSLEEP
632 struct timespec ts;
633
634 ts.tv_sec = (time_t)delay;
635 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
636
637 nanosleep (&ts, 0);
638#elif defined(_WIN32)
639 Sleep ((unsigned long)(delay * 1e3));
640#else
641 struct timeval tv;
642
643 tv.tv_sec = (time_t)delay;
644 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
645
646 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
647 /* somehting not guaranteed by newer posix versions, but guaranteed */
648 /* by older ones */
649 select (0, 0, 0, 0, &tv);
650#endif
651 }
652}
653
654/*****************************************************************************/
655
656#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
657
658/* find a suitable new size for the given array, */
659/* hopefully by rounding to a ncie-to-malloc size */
660inline_size int
661array_nextsize (int elem, int cur, int cnt)
662{
663 int ncur = cur + 1;
664
665 do
666 ncur <<= 1;
667 while (cnt > ncur);
668
669 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
670 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
671 {
672 ncur *= elem;
673 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
674 ncur = ncur - sizeof (void *) * 4;
675 ncur /= elem;
676 }
677
678 return ncur;
679}
680
681static noinline void *
682array_realloc (int elem, void *base, int *cur, int cnt)
683{
684 *cur = array_nextsize (elem, *cur, cnt);
685 return ev_realloc (base, elem * *cur);
686}
687
688#define array_init_zero(base,count) \
689 memset ((void *)(base), 0, sizeof (*(base)) * (count))
351 690
352#define array_needsize(type,base,cur,cnt,init) \ 691#define array_needsize(type,base,cur,cnt,init) \
353 if (expect_false ((cnt) > cur)) \ 692 if (expect_false ((cnt) > (cur))) \
354 { \ 693 { \
355 int newcnt = cur; \ 694 int ocur_ = (cur); \
356 do \ 695 (base) = (type *)array_realloc \
357 { \ 696 (sizeof (type), (base), &(cur), (cnt)); \
358 newcnt = array_roundsize (type, newcnt << 1); \ 697 init ((base) + (ocur_), (cur) - ocur_); \
359 } \
360 while ((cnt) > newcnt); \
361 \
362 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
363 init (base + cur, newcnt - cur); \
364 cur = newcnt; \
365 } 698 }
366 699
700#if 0
367#define array_slim(type,stem) \ 701#define array_slim(type,stem) \
368 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 702 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
369 { \ 703 { \
370 stem ## max = array_roundsize (stem ## cnt >> 1); \ 704 stem ## max = array_roundsize (stem ## cnt >> 1); \
371 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 705 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
372 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 706 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
373 } 707 }
708#endif
374 709
375#define array_free(stem, idx) \ 710#define array_free(stem, idx) \
376 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 711 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
377 712
378/*****************************************************************************/ 713/*****************************************************************************/
379 714
380static void 715/* dummy callback for pending events */
381anfds_init (ANFD *base, int count) 716static void noinline
717pendingcb (EV_P_ ev_prepare *w, int revents)
382{ 718{
383 while (count--)
384 {
385 base->head = 0;
386 base->events = EV_NONE;
387 base->reify = 0;
388
389 ++base;
390 }
391} 719}
392 720
393void 721void noinline
394ev_feed_event (EV_P_ void *w, int revents) 722ev_feed_event (EV_P_ void *w, int revents)
395{ 723{
396 W w_ = (W)w; 724 W w_ = (W)w;
725 int pri = ABSPRI (w_);
397 726
398 if (expect_false (w_->pending)) 727 if (expect_false (w_->pending))
728 pendings [pri][w_->pending - 1].events |= revents;
729 else
399 { 730 {
731 w_->pending = ++pendingcnt [pri];
732 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
733 pendings [pri][w_->pending - 1].w = w_;
400 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 734 pendings [pri][w_->pending - 1].events = revents;
401 return;
402 } 735 }
403
404 w_->pending = ++pendingcnt [ABSPRI (w_)];
405 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
406 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
407 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
408} 736}
409 737
410static void 738inline_speed void
739feed_reverse (EV_P_ W w)
740{
741 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
742 rfeeds [rfeedcnt++] = w;
743}
744
745inline_size void
746feed_reverse_done (EV_P_ int revents)
747{
748 do
749 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
750 while (rfeedcnt);
751}
752
753inline_speed void
411queue_events (EV_P_ W *events, int eventcnt, int type) 754queue_events (EV_P_ W *events, int eventcnt, int type)
412{ 755{
413 int i; 756 int i;
414 757
415 for (i = 0; i < eventcnt; ++i) 758 for (i = 0; i < eventcnt; ++i)
416 ev_feed_event (EV_A_ events [i], type); 759 ev_feed_event (EV_A_ events [i], type);
417} 760}
418 761
762/*****************************************************************************/
763
419inline void 764inline_speed void
420fd_event (EV_P_ int fd, int revents) 765fd_event (EV_P_ int fd, int revents)
421{ 766{
422 ANFD *anfd = anfds + fd; 767 ANFD *anfd = anfds + fd;
423 struct ev_io *w; 768 ev_io *w;
424 769
425 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 770 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
426 { 771 {
427 int ev = w->events & revents; 772 int ev = w->events & revents;
428 773
429 if (ev) 774 if (ev)
430 ev_feed_event (EV_A_ (W)w, ev); 775 ev_feed_event (EV_A_ (W)w, ev);
432} 777}
433 778
434void 779void
435ev_feed_fd_event (EV_P_ int fd, int revents) 780ev_feed_fd_event (EV_P_ int fd, int revents)
436{ 781{
782 if (fd >= 0 && fd < anfdmax)
437 fd_event (EV_A_ fd, revents); 783 fd_event (EV_A_ fd, revents);
438} 784}
439 785
440/*****************************************************************************/ 786/* make sure the external fd watch events are in-sync */
441 787/* with the kernel/libev internal state */
442inline void 788inline_size void
443fd_reify (EV_P) 789fd_reify (EV_P)
444{ 790{
445 int i; 791 int i;
446 792
447 for (i = 0; i < fdchangecnt; ++i) 793 for (i = 0; i < fdchangecnt; ++i)
448 { 794 {
449 int fd = fdchanges [i]; 795 int fd = fdchanges [i];
450 ANFD *anfd = anfds + fd; 796 ANFD *anfd = anfds + fd;
451 struct ev_io *w; 797 ev_io *w;
452 798
453 int events = 0; 799 unsigned char events = 0;
454 800
455 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 801 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
456 events |= w->events; 802 events |= (unsigned char)w->events;
457 803
458#if EV_SELECT_IS_WINSOCKET 804#if EV_SELECT_IS_WINSOCKET
459 if (events) 805 if (events)
460 { 806 {
461 unsigned long argp; 807 unsigned long arg;
808 #ifdef EV_FD_TO_WIN32_HANDLE
809 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
810 #else
462 anfd->handle = _get_osfhandle (fd); 811 anfd->handle = _get_osfhandle (fd);
812 #endif
463 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 813 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
464 } 814 }
465#endif 815#endif
466 816
817 {
818 unsigned char o_events = anfd->events;
819 unsigned char o_reify = anfd->reify;
820
467 anfd->reify = 0; 821 anfd->reify = 0;
468
469 method_modify (EV_A_ fd, anfd->events, events);
470 anfd->events = events; 822 anfd->events = events;
823
824 if (o_events != events || o_reify & EV__IOFDSET)
825 backend_modify (EV_A_ fd, o_events, events);
826 }
471 } 827 }
472 828
473 fdchangecnt = 0; 829 fdchangecnt = 0;
474} 830}
475 831
476static void 832/* something about the given fd changed */
833inline_size void
477fd_change (EV_P_ int fd) 834fd_change (EV_P_ int fd, int flags)
478{ 835{
479 if (expect_false (anfds [fd].reify)) 836 unsigned char reify = anfds [fd].reify;
480 return;
481
482 anfds [fd].reify = 1; 837 anfds [fd].reify |= flags;
483 838
839 if (expect_true (!reify))
840 {
484 ++fdchangecnt; 841 ++fdchangecnt;
485 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 842 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
486 fdchanges [fdchangecnt - 1] = fd; 843 fdchanges [fdchangecnt - 1] = fd;
844 }
487} 845}
488 846
489static void 847/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
848inline_speed void
490fd_kill (EV_P_ int fd) 849fd_kill (EV_P_ int fd)
491{ 850{
492 struct ev_io *w; 851 ev_io *w;
493 852
494 while ((w = (struct ev_io *)anfds [fd].head)) 853 while ((w = (ev_io *)anfds [fd].head))
495 { 854 {
496 ev_io_stop (EV_A_ w); 855 ev_io_stop (EV_A_ w);
497 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 856 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
498 } 857 }
499} 858}
500 859
860/* check whether the given fd is atcually valid, for error recovery */
501inline int 861inline_size int
502fd_valid (int fd) 862fd_valid (int fd)
503{ 863{
504#ifdef _WIN32 864#ifdef _WIN32
505 return _get_osfhandle (fd) != -1; 865 return _get_osfhandle (fd) != -1;
506#else 866#else
507 return fcntl (fd, F_GETFD) != -1; 867 return fcntl (fd, F_GETFD) != -1;
508#endif 868#endif
509} 869}
510 870
511/* called on EBADF to verify fds */ 871/* called on EBADF to verify fds */
512static void 872static void noinline
513fd_ebadf (EV_P) 873fd_ebadf (EV_P)
514{ 874{
515 int fd; 875 int fd;
516 876
517 for (fd = 0; fd < anfdmax; ++fd) 877 for (fd = 0; fd < anfdmax; ++fd)
518 if (anfds [fd].events) 878 if (anfds [fd].events)
519 if (!fd_valid (fd) == -1 && errno == EBADF) 879 if (!fd_valid (fd) && errno == EBADF)
520 fd_kill (EV_A_ fd); 880 fd_kill (EV_A_ fd);
521} 881}
522 882
523/* called on ENOMEM in select/poll to kill some fds and retry */ 883/* called on ENOMEM in select/poll to kill some fds and retry */
524static void 884static void noinline
525fd_enomem (EV_P) 885fd_enomem (EV_P)
526{ 886{
527 int fd; 887 int fd;
528 888
529 for (fd = anfdmax; fd--; ) 889 for (fd = anfdmax; fd--; )
532 fd_kill (EV_A_ fd); 892 fd_kill (EV_A_ fd);
533 return; 893 return;
534 } 894 }
535} 895}
536 896
537/* usually called after fork if method needs to re-arm all fds from scratch */ 897/* usually called after fork if backend needs to re-arm all fds from scratch */
538static void 898static void noinline
539fd_rearm_all (EV_P) 899fd_rearm_all (EV_P)
540{ 900{
541 int fd; 901 int fd;
542 902
543 /* this should be highly optimised to not do anything but set a flag */
544 for (fd = 0; fd < anfdmax; ++fd) 903 for (fd = 0; fd < anfdmax; ++fd)
545 if (anfds [fd].events) 904 if (anfds [fd].events)
546 { 905 {
547 anfds [fd].events = 0; 906 anfds [fd].events = 0;
907 anfds [fd].emask = 0;
548 fd_change (EV_A_ fd); 908 fd_change (EV_A_ fd, EV__IOFDSET | 1);
549 } 909 }
550} 910}
551 911
552/*****************************************************************************/ 912/*****************************************************************************/
553 913
554static void 914/*
555upheap (WT *heap, int k) 915 * the heap functions want a real array index. array index 0 uis guaranteed to not
556{ 916 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
557 WT w = heap [k]; 917 * the branching factor of the d-tree.
918 */
558 919
559 while (k && heap [k >> 1]->at > w->at) 920/*
560 { 921 * at the moment we allow libev the luxury of two heaps,
561 heap [k] = heap [k >> 1]; 922 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
562 ((W)heap [k])->active = k + 1; 923 * which is more cache-efficient.
563 k >>= 1; 924 * the difference is about 5% with 50000+ watchers.
564 } 925 */
926#if EV_USE_4HEAP
565 927
566 heap [k] = w; 928#define DHEAP 4
567 ((W)heap [k])->active = k + 1; 929#define HEAP0 (DHEAP - 1) /* index of first element in heap */
930#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
931#define UPHEAP_DONE(p,k) ((p) == (k))
568 932
569} 933/* away from the root */
570 934inline_speed void
571static void
572downheap (WT *heap, int N, int k) 935downheap (ANHE *heap, int N, int k)
573{ 936{
574 WT w = heap [k]; 937 ANHE he = heap [k];
938 ANHE *E = heap + N + HEAP0;
575 939
576 while (k < (N >> 1)) 940 for (;;)
577 { 941 {
578 int j = k << 1; 942 ev_tstamp minat;
943 ANHE *minpos;
944 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
579 945
580 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 946 /* find minimum child */
947 if (expect_true (pos + DHEAP - 1 < E))
581 ++j; 948 {
582 949 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
583 if (w->at <= heap [j]->at) 950 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
951 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
952 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
953 }
954 else if (pos < E)
955 {
956 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
957 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
958 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
959 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
960 }
961 else
584 break; 962 break;
585 963
964 if (ANHE_at (he) <= minat)
965 break;
966
967 heap [k] = *minpos;
968 ev_active (ANHE_w (*minpos)) = k;
969
970 k = minpos - heap;
971 }
972
973 heap [k] = he;
974 ev_active (ANHE_w (he)) = k;
975}
976
977#else /* 4HEAP */
978
979#define HEAP0 1
980#define HPARENT(k) ((k) >> 1)
981#define UPHEAP_DONE(p,k) (!(p))
982
983/* away from the root */
984inline_speed void
985downheap (ANHE *heap, int N, int k)
986{
987 ANHE he = heap [k];
988
989 for (;;)
990 {
991 int c = k << 1;
992
993 if (c > N + HEAP0 - 1)
994 break;
995
996 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
997 ? 1 : 0;
998
999 if (ANHE_at (he) <= ANHE_at (heap [c]))
1000 break;
1001
586 heap [k] = heap [j]; 1002 heap [k] = heap [c];
587 ((W)heap [k])->active = k + 1; 1003 ev_active (ANHE_w (heap [k])) = k;
1004
588 k = j; 1005 k = c;
589 } 1006 }
590 1007
591 heap [k] = w; 1008 heap [k] = he;
592 ((W)heap [k])->active = k + 1; 1009 ev_active (ANHE_w (he)) = k;
593} 1010}
1011#endif
594 1012
1013/* towards the root */
1014inline_speed void
1015upheap (ANHE *heap, int k)
1016{
1017 ANHE he = heap [k];
1018
1019 for (;;)
1020 {
1021 int p = HPARENT (k);
1022
1023 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1024 break;
1025
1026 heap [k] = heap [p];
1027 ev_active (ANHE_w (heap [k])) = k;
1028 k = p;
1029 }
1030
1031 heap [k] = he;
1032 ev_active (ANHE_w (he)) = k;
1033}
1034
1035/* move an element suitably so it is in a correct place */
595inline void 1036inline_size void
596adjustheap (WT *heap, int N, int k) 1037adjustheap (ANHE *heap, int N, int k)
597{ 1038{
1039 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
598 upheap (heap, k); 1040 upheap (heap, k);
1041 else
599 downheap (heap, N, k); 1042 downheap (heap, N, k);
1043}
1044
1045/* rebuild the heap: this function is used only once and executed rarely */
1046inline_size void
1047reheap (ANHE *heap, int N)
1048{
1049 int i;
1050
1051 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1052 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1053 for (i = 0; i < N; ++i)
1054 upheap (heap, i + HEAP0);
600} 1055}
601 1056
602/*****************************************************************************/ 1057/*****************************************************************************/
603 1058
1059/* associate signal watchers to a signal signal */
604typedef struct 1060typedef struct
605{ 1061{
606 WL head; 1062 WL head;
607 sig_atomic_t volatile gotsig; 1063 EV_ATOMIC_T gotsig;
608} ANSIG; 1064} ANSIG;
609 1065
610static ANSIG *signals; 1066static ANSIG *signals;
611static int signalmax; 1067static int signalmax;
612 1068
613static int sigpipe [2]; 1069static EV_ATOMIC_T gotsig;
614static sig_atomic_t volatile gotsig;
615static struct ev_io sigev;
616 1070
617static void 1071/*****************************************************************************/
618signals_init (ANSIG *base, int count)
619{
620 while (count--)
621 {
622 base->head = 0;
623 base->gotsig = 0;
624 1072
625 ++base; 1073/* used to prepare libev internal fd's */
626 } 1074/* this is not fork-safe */
627} 1075inline_speed void
628
629static void
630sighandler (int signum)
631{
632#if _WIN32
633 signal (signum, sighandler);
634#endif
635
636 signals [signum - 1].gotsig = 1;
637
638 if (!gotsig)
639 {
640 int old_errno = errno;
641 gotsig = 1;
642 write (sigpipe [1], &signum, 1);
643 errno = old_errno;
644 }
645}
646
647void
648ev_feed_signal_event (EV_P_ int signum)
649{
650 WL w;
651
652#if EV_MULTIPLICITY
653 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
654#endif
655
656 --signum;
657
658 if (signum < 0 || signum >= signalmax)
659 return;
660
661 signals [signum].gotsig = 0;
662
663 for (w = signals [signum].head; w; w = w->next)
664 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
665}
666
667static void
668sigcb (EV_P_ struct ev_io *iow, int revents)
669{
670 int signum;
671
672 read (sigpipe [0], &revents, 1);
673 gotsig = 0;
674
675 for (signum = signalmax; signum--; )
676 if (signals [signum].gotsig)
677 ev_feed_signal_event (EV_A_ signum + 1);
678}
679
680static void
681fd_intern (int fd) 1076fd_intern (int fd)
682{ 1077{
683#ifdef _WIN32 1078#ifdef _WIN32
684 int arg = 1; 1079 unsigned long arg = 1;
685 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1080 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
686#else 1081#else
687 fcntl (fd, F_SETFD, FD_CLOEXEC); 1082 fcntl (fd, F_SETFD, FD_CLOEXEC);
688 fcntl (fd, F_SETFL, O_NONBLOCK); 1083 fcntl (fd, F_SETFL, O_NONBLOCK);
689#endif 1084#endif
690} 1085}
691 1086
1087static void noinline
1088evpipe_init (EV_P)
1089{
1090 if (!ev_is_active (&pipe_w))
1091 {
1092#if EV_USE_EVENTFD
1093 if ((evfd = eventfd (0, 0)) >= 0)
1094 {
1095 evpipe [0] = -1;
1096 fd_intern (evfd);
1097 ev_io_set (&pipe_w, evfd, EV_READ);
1098 }
1099 else
1100#endif
1101 {
1102 while (pipe (evpipe))
1103 ev_syserr ("(libev) error creating signal/async pipe");
1104
1105 fd_intern (evpipe [0]);
1106 fd_intern (evpipe [1]);
1107 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1108 }
1109
1110 ev_io_start (EV_A_ &pipe_w);
1111 ev_unref (EV_A); /* watcher should not keep loop alive */
1112 }
1113}
1114
1115inline_size void
1116evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1117{
1118 if (!*flag)
1119 {
1120 int old_errno = errno; /* save errno because write might clobber it */
1121
1122 *flag = 1;
1123
1124#if EV_USE_EVENTFD
1125 if (evfd >= 0)
1126 {
1127 uint64_t counter = 1;
1128 write (evfd, &counter, sizeof (uint64_t));
1129 }
1130 else
1131#endif
1132 write (evpipe [1], &old_errno, 1);
1133
1134 errno = old_errno;
1135 }
1136}
1137
1138/* called whenever the libev signal pipe */
1139/* got some events (signal, async) */
692static void 1140static void
693siginit (EV_P) 1141pipecb (EV_P_ ev_io *iow, int revents)
694{ 1142{
695 fd_intern (sigpipe [0]); 1143#if EV_USE_EVENTFD
696 fd_intern (sigpipe [1]); 1144 if (evfd >= 0)
1145 {
1146 uint64_t counter;
1147 read (evfd, &counter, sizeof (uint64_t));
1148 }
1149 else
1150#endif
1151 {
1152 char dummy;
1153 read (evpipe [0], &dummy, 1);
1154 }
697 1155
698 ev_io_set (&sigev, sigpipe [0], EV_READ); 1156 if (gotsig && ev_is_default_loop (EV_A))
699 ev_io_start (EV_A_ &sigev); 1157 {
700 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1158 int signum;
1159 gotsig = 0;
1160
1161 for (signum = signalmax; signum--; )
1162 if (signals [signum].gotsig)
1163 ev_feed_signal_event (EV_A_ signum + 1);
1164 }
1165
1166#if EV_ASYNC_ENABLE
1167 if (gotasync)
1168 {
1169 int i;
1170 gotasync = 0;
1171
1172 for (i = asynccnt; i--; )
1173 if (asyncs [i]->sent)
1174 {
1175 asyncs [i]->sent = 0;
1176 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1177 }
1178 }
1179#endif
701} 1180}
702 1181
703/*****************************************************************************/ 1182/*****************************************************************************/
704 1183
705static struct ev_child *childs [PID_HASHSIZE]; 1184static void
1185ev_sighandler (int signum)
1186{
1187#if EV_MULTIPLICITY
1188 struct ev_loop *loop = &default_loop_struct;
1189#endif
1190
1191#if _WIN32
1192 signal (signum, ev_sighandler);
1193#endif
1194
1195 signals [signum - 1].gotsig = 1;
1196 evpipe_write (EV_A_ &gotsig);
1197}
1198
1199void noinline
1200ev_feed_signal_event (EV_P_ int signum)
1201{
1202 WL w;
1203
1204#if EV_MULTIPLICITY
1205 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1206#endif
1207
1208 --signum;
1209
1210 if (signum < 0 || signum >= signalmax)
1211 return;
1212
1213 signals [signum].gotsig = 0;
1214
1215 for (w = signals [signum].head; w; w = w->next)
1216 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1217}
1218
1219/*****************************************************************************/
1220
1221static WL childs [EV_PID_HASHSIZE];
706 1222
707#ifndef _WIN32 1223#ifndef _WIN32
708 1224
709static struct ev_signal childev; 1225static ev_signal childev;
1226
1227#ifndef WIFCONTINUED
1228# define WIFCONTINUED(status) 0
1229#endif
1230
1231/* handle a single child status event */
1232inline_speed void
1233child_reap (EV_P_ int chain, int pid, int status)
1234{
1235 ev_child *w;
1236 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1237
1238 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1239 {
1240 if ((w->pid == pid || !w->pid)
1241 && (!traced || (w->flags & 1)))
1242 {
1243 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1244 w->rpid = pid;
1245 w->rstatus = status;
1246 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1247 }
1248 }
1249}
710 1250
711#ifndef WCONTINUED 1251#ifndef WCONTINUED
712# define WCONTINUED 0 1252# define WCONTINUED 0
713#endif 1253#endif
714 1254
1255/* called on sigchld etc., calls waitpid */
715static void 1256static void
716child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
717{
718 struct ev_child *w;
719
720 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
721 if (w->pid == pid || !w->pid)
722 {
723 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
724 w->rpid = pid;
725 w->rstatus = status;
726 ev_feed_event (EV_A_ (W)w, EV_CHILD);
727 }
728}
729
730static void
731childcb (EV_P_ struct ev_signal *sw, int revents) 1257childcb (EV_P_ ev_signal *sw, int revents)
732{ 1258{
733 int pid, status; 1259 int pid, status;
734 1260
1261 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
735 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1262 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
736 { 1263 if (!WCONTINUED
1264 || errno != EINVAL
1265 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1266 return;
1267
737 /* make sure we are called again until all childs have been reaped */ 1268 /* make sure we are called again until all children have been reaped */
1269 /* we need to do it this way so that the callback gets called before we continue */
738 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1270 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
739 1271
740 child_reap (EV_A_ sw, pid, pid, status); 1272 child_reap (EV_A_ pid, pid, status);
1273 if (EV_PID_HASHSIZE > 1)
741 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1274 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
742 }
743} 1275}
744 1276
745#endif 1277#endif
746 1278
747/*****************************************************************************/ 1279/*****************************************************************************/
773{ 1305{
774 return EV_VERSION_MINOR; 1306 return EV_VERSION_MINOR;
775} 1307}
776 1308
777/* return true if we are running with elevated privileges and should ignore env variables */ 1309/* return true if we are running with elevated privileges and should ignore env variables */
778static int 1310int inline_size
779enable_secure (void) 1311enable_secure (void)
780{ 1312{
781#ifdef _WIN32 1313#ifdef _WIN32
782 return 0; 1314 return 0;
783#else 1315#else
785 || getgid () != getegid (); 1317 || getgid () != getegid ();
786#endif 1318#endif
787} 1319}
788 1320
789unsigned int 1321unsigned int
790ev_method (EV_P) 1322ev_supported_backends (void)
791{ 1323{
792 return method; 1324 unsigned int flags = 0;
793}
794 1325
795static void 1326 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1327 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1328 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1329 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1330 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1331
1332 return flags;
1333}
1334
1335unsigned int
1336ev_recommended_backends (void)
1337{
1338 unsigned int flags = ev_supported_backends ();
1339
1340#ifndef __NetBSD__
1341 /* kqueue is borked on everything but netbsd apparently */
1342 /* it usually doesn't work correctly on anything but sockets and pipes */
1343 flags &= ~EVBACKEND_KQUEUE;
1344#endif
1345#ifdef __APPLE__
1346 /* only select works correctly on that "unix-certified" platform */
1347 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1348 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1349#endif
1350
1351 return flags;
1352}
1353
1354unsigned int
1355ev_embeddable_backends (void)
1356{
1357 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1358
1359 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1360 /* please fix it and tell me how to detect the fix */
1361 flags &= ~EVBACKEND_EPOLL;
1362
1363 return flags;
1364}
1365
1366unsigned int
1367ev_backend (EV_P)
1368{
1369 return backend;
1370}
1371
1372#if EV_MINIMAL < 2
1373unsigned int
1374ev_loop_count (EV_P)
1375{
1376 return loop_count;
1377}
1378
1379unsigned int
1380ev_loop_depth (EV_P)
1381{
1382 return loop_depth;
1383}
1384
1385void
1386ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1387{
1388 io_blocktime = interval;
1389}
1390
1391void
1392ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1393{
1394 timeout_blocktime = interval;
1395}
1396
1397void
1398ev_set_userdata (EV_P_ void *data)
1399{
1400 userdata = data;
1401}
1402
1403void *
1404ev_userdata (EV_P)
1405{
1406 return userdata;
1407}
1408
1409void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1410{
1411 invoke_cb = invoke_pending_cb;
1412}
1413
1414void ev_set_blocking_cb (EV_P_ void (*suspend_cb_)(EV_P), void (*resume_cb_)(EV_P))
1415{
1416 suspend_cb = suspend_cb_;
1417 resume_cb = resume_cb_;
1418}
1419#endif
1420
1421/* initialise a loop structure, must be zero-initialised */
1422static void noinline
796loop_init (EV_P_ unsigned int flags) 1423loop_init (EV_P_ unsigned int flags)
797{ 1424{
798 if (!method) 1425 if (!backend)
799 { 1426 {
1427#if EV_USE_REALTIME
1428 if (!have_realtime)
1429 {
1430 struct timespec ts;
1431
1432 if (!clock_gettime (CLOCK_REALTIME, &ts))
1433 have_realtime = 1;
1434 }
1435#endif
1436
800#if EV_USE_MONOTONIC 1437#if EV_USE_MONOTONIC
1438 if (!have_monotonic)
801 { 1439 {
802 struct timespec ts; 1440 struct timespec ts;
1441
803 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1442 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
804 have_monotonic = 1; 1443 have_monotonic = 1;
805 } 1444 }
806#endif 1445#endif
807 1446
808 ev_rt_now = ev_time (); 1447 ev_rt_now = ev_time ();
809 mn_now = get_clock (); 1448 mn_now = get_clock ();
810 now_floor = mn_now; 1449 now_floor = mn_now;
811 rtmn_diff = ev_rt_now - mn_now; 1450 rtmn_diff = ev_rt_now - mn_now;
1451#if EV_MINIMAL < 2
1452 invoke_cb = ev_invoke_pending;
1453#endif
812 1454
813 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1455 io_blocktime = 0.;
1456 timeout_blocktime = 0.;
1457 backend = 0;
1458 backend_fd = -1;
1459 gotasync = 0;
1460#if EV_USE_INOTIFY
1461 fs_fd = -2;
1462#endif
1463
1464 /* pid check not overridable via env */
1465#ifndef _WIN32
1466 if (flags & EVFLAG_FORKCHECK)
1467 curpid = getpid ();
1468#endif
1469
1470 if (!(flags & EVFLAG_NOENV)
1471 && !enable_secure ()
1472 && getenv ("LIBEV_FLAGS"))
814 flags = atoi (getenv ("LIBEV_FLAGS")); 1473 flags = atoi (getenv ("LIBEV_FLAGS"));
815 1474
816 if (!(flags & 0x0000ffff)) 1475 if (!(flags & 0x0000ffffU))
817 flags |= 0x0000ffff; 1476 flags |= ev_recommended_backends ();
818 1477
819 method = 0;
820#if EV_USE_PORT 1478#if EV_USE_PORT
821 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 1479 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
822#endif 1480#endif
823#if EV_USE_KQUEUE 1481#if EV_USE_KQUEUE
824 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1482 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
825#endif 1483#endif
826#if EV_USE_EPOLL 1484#if EV_USE_EPOLL
827 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1485 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
828#endif 1486#endif
829#if EV_USE_POLL 1487#if EV_USE_POLL
830 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1488 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
831#endif 1489#endif
832#if EV_USE_SELECT 1490#if EV_USE_SELECT
833 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1491 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
834#endif 1492#endif
835 1493
1494 ev_prepare_init (&pending_w, pendingcb);
1495
836 ev_init (&sigev, sigcb); 1496 ev_init (&pipe_w, pipecb);
837 ev_set_priority (&sigev, EV_MAXPRI); 1497 ev_set_priority (&pipe_w, EV_MAXPRI);
838 } 1498 }
839} 1499}
840 1500
841static void 1501/* free up a loop structure */
1502static void noinline
842loop_destroy (EV_P) 1503loop_destroy (EV_P)
843{ 1504{
844 int i; 1505 int i;
845 1506
1507 if (ev_is_active (&pipe_w))
1508 {
1509 ev_ref (EV_A); /* signal watcher */
1510 ev_io_stop (EV_A_ &pipe_w);
1511
1512#if EV_USE_EVENTFD
1513 if (evfd >= 0)
1514 close (evfd);
1515#endif
1516
1517 if (evpipe [0] >= 0)
1518 {
1519 close (evpipe [0]);
1520 close (evpipe [1]);
1521 }
1522 }
1523
1524#if EV_USE_INOTIFY
1525 if (fs_fd >= 0)
1526 close (fs_fd);
1527#endif
1528
1529 if (backend_fd >= 0)
1530 close (backend_fd);
1531
846#if EV_USE_PORT 1532#if EV_USE_PORT
847 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 1533 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
848#endif 1534#endif
849#if EV_USE_KQUEUE 1535#if EV_USE_KQUEUE
850 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1536 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
851#endif 1537#endif
852#if EV_USE_EPOLL 1538#if EV_USE_EPOLL
853 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1539 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
854#endif 1540#endif
855#if EV_USE_POLL 1541#if EV_USE_POLL
856 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1542 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
857#endif 1543#endif
858#if EV_USE_SELECT 1544#if EV_USE_SELECT
859 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1545 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
860#endif 1546#endif
861 1547
862 for (i = NUMPRI; i--; ) 1548 for (i = NUMPRI; i--; )
1549 {
863 array_free (pending, [i]); 1550 array_free (pending, [i]);
1551#if EV_IDLE_ENABLE
1552 array_free (idle, [i]);
1553#endif
1554 }
1555
1556 ev_free (anfds); anfdmax = 0;
864 1557
865 /* have to use the microsoft-never-gets-it-right macro */ 1558 /* have to use the microsoft-never-gets-it-right macro */
1559 array_free (rfeed, EMPTY);
866 array_free (fdchange, EMPTY0); 1560 array_free (fdchange, EMPTY);
867 array_free (timer, EMPTY0); 1561 array_free (timer, EMPTY);
868#if EV_PERIODICS 1562#if EV_PERIODIC_ENABLE
869 array_free (periodic, EMPTY0); 1563 array_free (periodic, EMPTY);
870#endif 1564#endif
1565#if EV_FORK_ENABLE
871 array_free (idle, EMPTY0); 1566 array_free (fork, EMPTY);
1567#endif
872 array_free (prepare, EMPTY0); 1568 array_free (prepare, EMPTY);
873 array_free (check, EMPTY0); 1569 array_free (check, EMPTY);
1570#if EV_ASYNC_ENABLE
1571 array_free (async, EMPTY);
1572#endif
874 1573
875 method = 0; 1574 backend = 0;
876} 1575}
877 1576
878static void 1577#if EV_USE_INOTIFY
1578inline_size void infy_fork (EV_P);
1579#endif
1580
1581inline_size void
879loop_fork (EV_P) 1582loop_fork (EV_P)
880{ 1583{
881#if EV_USE_PORT 1584#if EV_USE_PORT
882 if (method == EVMETHOD_PORT ) port_fork (EV_A); 1585 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
883#endif 1586#endif
884#if EV_USE_KQUEUE 1587#if EV_USE_KQUEUE
885 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1588 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
886#endif 1589#endif
887#if EV_USE_EPOLL 1590#if EV_USE_EPOLL
888 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1591 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
889#endif 1592#endif
1593#if EV_USE_INOTIFY
1594 infy_fork (EV_A);
1595#endif
890 1596
891 if (ev_is_active (&sigev)) 1597 if (ev_is_active (&pipe_w))
892 { 1598 {
893 /* default loop */ 1599 /* this "locks" the handlers against writing to the pipe */
1600 /* while we modify the fd vars */
1601 gotsig = 1;
1602#if EV_ASYNC_ENABLE
1603 gotasync = 1;
1604#endif
894 1605
895 ev_ref (EV_A); 1606 ev_ref (EV_A);
896 ev_io_stop (EV_A_ &sigev); 1607 ev_io_stop (EV_A_ &pipe_w);
1608
1609#if EV_USE_EVENTFD
1610 if (evfd >= 0)
1611 close (evfd);
1612#endif
1613
1614 if (evpipe [0] >= 0)
1615 {
897 close (sigpipe [0]); 1616 close (evpipe [0]);
898 close (sigpipe [1]); 1617 close (evpipe [1]);
1618 }
899 1619
900 while (pipe (sigpipe))
901 syserr ("(libev) error creating pipe");
902
903 siginit (EV_A); 1620 evpipe_init (EV_A);
1621 /* now iterate over everything, in case we missed something */
1622 pipecb (EV_A_ &pipe_w, EV_READ);
904 } 1623 }
905 1624
906 postfork = 0; 1625 postfork = 0;
907} 1626}
908 1627
909#if EV_MULTIPLICITY 1628#if EV_MULTIPLICITY
1629
910struct ev_loop * 1630struct ev_loop *
911ev_loop_new (unsigned int flags) 1631ev_loop_new (unsigned int flags)
912{ 1632{
913 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1633 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
914 1634
915 memset (loop, 0, sizeof (struct ev_loop)); 1635 memset (loop, 0, sizeof (struct ev_loop));
916 1636
917 loop_init (EV_A_ flags); 1637 loop_init (EV_A_ flags);
918 1638
919 if (ev_method (EV_A)) 1639 if (ev_backend (EV_A))
920 return loop; 1640 return loop;
921 1641
922 return 0; 1642 return 0;
923} 1643}
924 1644
930} 1650}
931 1651
932void 1652void
933ev_loop_fork (EV_P) 1653ev_loop_fork (EV_P)
934{ 1654{
935 postfork = 1; 1655 postfork = 1; /* must be in line with ev_default_fork */
936} 1656}
1657#endif /* multiplicity */
937 1658
1659#if EV_VERIFY
1660static void noinline
1661verify_watcher (EV_P_ W w)
1662{
1663 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1664
1665 if (w->pending)
1666 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1667}
1668
1669static void noinline
1670verify_heap (EV_P_ ANHE *heap, int N)
1671{
1672 int i;
1673
1674 for (i = HEAP0; i < N + HEAP0; ++i)
1675 {
1676 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1677 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1678 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1679
1680 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1681 }
1682}
1683
1684static void noinline
1685array_verify (EV_P_ W *ws, int cnt)
1686{
1687 while (cnt--)
1688 {
1689 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1690 verify_watcher (EV_A_ ws [cnt]);
1691 }
1692}
1693#endif
1694
1695#if EV_MINIMAL < 2
1696void
1697ev_loop_verify (EV_P)
1698{
1699#if EV_VERIFY
1700 int i;
1701 WL w;
1702
1703 assert (activecnt >= -1);
1704
1705 assert (fdchangemax >= fdchangecnt);
1706 for (i = 0; i < fdchangecnt; ++i)
1707 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1708
1709 assert (anfdmax >= 0);
1710 for (i = 0; i < anfdmax; ++i)
1711 for (w = anfds [i].head; w; w = w->next)
1712 {
1713 verify_watcher (EV_A_ (W)w);
1714 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1715 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1716 }
1717
1718 assert (timermax >= timercnt);
1719 verify_heap (EV_A_ timers, timercnt);
1720
1721#if EV_PERIODIC_ENABLE
1722 assert (periodicmax >= periodiccnt);
1723 verify_heap (EV_A_ periodics, periodiccnt);
1724#endif
1725
1726 for (i = NUMPRI; i--; )
1727 {
1728 assert (pendingmax [i] >= pendingcnt [i]);
1729#if EV_IDLE_ENABLE
1730 assert (idleall >= 0);
1731 assert (idlemax [i] >= idlecnt [i]);
1732 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1733#endif
1734 }
1735
1736#if EV_FORK_ENABLE
1737 assert (forkmax >= forkcnt);
1738 array_verify (EV_A_ (W *)forks, forkcnt);
1739#endif
1740
1741#if EV_ASYNC_ENABLE
1742 assert (asyncmax >= asynccnt);
1743 array_verify (EV_A_ (W *)asyncs, asynccnt);
1744#endif
1745
1746 assert (preparemax >= preparecnt);
1747 array_verify (EV_A_ (W *)prepares, preparecnt);
1748
1749 assert (checkmax >= checkcnt);
1750 array_verify (EV_A_ (W *)checks, checkcnt);
1751
1752# if 0
1753 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1754 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1755# endif
1756#endif
1757}
938#endif 1758#endif
939 1759
940#if EV_MULTIPLICITY 1760#if EV_MULTIPLICITY
941struct ev_loop * 1761struct ev_loop *
942ev_default_loop_init (unsigned int flags) 1762ev_default_loop_init (unsigned int flags)
943#else 1763#else
944int 1764int
945ev_default_loop (unsigned int flags) 1765ev_default_loop (unsigned int flags)
946#endif 1766#endif
947{ 1767{
948 if (sigpipe [0] == sigpipe [1])
949 if (pipe (sigpipe))
950 return 0;
951
952 if (!ev_default_loop_ptr) 1768 if (!ev_default_loop_ptr)
953 { 1769 {
954#if EV_MULTIPLICITY 1770#if EV_MULTIPLICITY
955 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1771 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
956#else 1772#else
957 ev_default_loop_ptr = 1; 1773 ev_default_loop_ptr = 1;
958#endif 1774#endif
959 1775
960 loop_init (EV_A_ flags); 1776 loop_init (EV_A_ flags);
961 1777
962 if (ev_method (EV_A)) 1778 if (ev_backend (EV_A))
963 { 1779 {
964 siginit (EV_A);
965
966#ifndef _WIN32 1780#ifndef _WIN32
967 ev_signal_init (&childev, childcb, SIGCHLD); 1781 ev_signal_init (&childev, childcb, SIGCHLD);
968 ev_set_priority (&childev, EV_MAXPRI); 1782 ev_set_priority (&childev, EV_MAXPRI);
969 ev_signal_start (EV_A_ &childev); 1783 ev_signal_start (EV_A_ &childev);
970 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1784 ev_unref (EV_A); /* child watcher should not keep loop alive */
982{ 1796{
983#if EV_MULTIPLICITY 1797#if EV_MULTIPLICITY
984 struct ev_loop *loop = ev_default_loop_ptr; 1798 struct ev_loop *loop = ev_default_loop_ptr;
985#endif 1799#endif
986 1800
1801 ev_default_loop_ptr = 0;
1802
987#ifndef _WIN32 1803#ifndef _WIN32
988 ev_ref (EV_A); /* child watcher */ 1804 ev_ref (EV_A); /* child watcher */
989 ev_signal_stop (EV_A_ &childev); 1805 ev_signal_stop (EV_A_ &childev);
990#endif 1806#endif
991 1807
992 ev_ref (EV_A); /* signal watcher */
993 ev_io_stop (EV_A_ &sigev);
994
995 close (sigpipe [0]); sigpipe [0] = 0;
996 close (sigpipe [1]); sigpipe [1] = 0;
997
998 loop_destroy (EV_A); 1808 loop_destroy (EV_A);
999} 1809}
1000 1810
1001void 1811void
1002ev_default_fork (void) 1812ev_default_fork (void)
1003{ 1813{
1004#if EV_MULTIPLICITY 1814#if EV_MULTIPLICITY
1005 struct ev_loop *loop = ev_default_loop_ptr; 1815 struct ev_loop *loop = ev_default_loop_ptr;
1006#endif 1816#endif
1007 1817
1008 if (method) 1818 postfork = 1; /* must be in line with ev_loop_fork */
1009 postfork = 1;
1010} 1819}
1011 1820
1012/*****************************************************************************/ 1821/*****************************************************************************/
1013 1822
1014static int 1823void
1824ev_invoke (EV_P_ void *w, int revents)
1825{
1826 EV_CB_INVOKE ((W)w, revents);
1827}
1828
1829void noinline
1015any_pending (EV_P) 1830ev_invoke_pending (EV_P)
1016{
1017 int pri;
1018
1019 for (pri = NUMPRI; pri--; )
1020 if (pendingcnt [pri])
1021 return 1;
1022
1023 return 0;
1024}
1025
1026inline void
1027call_pending (EV_P)
1028{ 1831{
1029 int pri; 1832 int pri;
1030 1833
1031 for (pri = NUMPRI; pri--; ) 1834 for (pri = NUMPRI; pri--; )
1032 while (pendingcnt [pri]) 1835 while (pendingcnt [pri])
1033 { 1836 {
1034 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1837 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1035 1838
1036 if (expect_true (p->w)) 1839 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1037 { 1840 /* ^ this is no longer true, as pending_w could be here */
1841
1038 p->w->pending = 0; 1842 p->w->pending = 0;
1039 EV_CB_INVOKE (p->w, p->events); 1843 EV_CB_INVOKE (p->w, p->events);
1040 } 1844 EV_FREQUENT_CHECK;
1041 } 1845 }
1042} 1846}
1043 1847
1848#if EV_IDLE_ENABLE
1849/* make idle watchers pending. this handles the "call-idle */
1850/* only when higher priorities are idle" logic */
1044inline void 1851inline_size void
1852idle_reify (EV_P)
1853{
1854 if (expect_false (idleall))
1855 {
1856 int pri;
1857
1858 for (pri = NUMPRI; pri--; )
1859 {
1860 if (pendingcnt [pri])
1861 break;
1862
1863 if (idlecnt [pri])
1864 {
1865 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1866 break;
1867 }
1868 }
1869 }
1870}
1871#endif
1872
1873/* make timers pending */
1874inline_size void
1045timers_reify (EV_P) 1875timers_reify (EV_P)
1046{ 1876{
1877 EV_FREQUENT_CHECK;
1878
1047 while (timercnt && ((WT)timers [0])->at <= mn_now) 1879 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1048 { 1880 {
1049 struct ev_timer *w = timers [0]; 1881 do
1050
1051 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1052
1053 /* first reschedule or stop timer */
1054 if (w->repeat)
1055 { 1882 {
1883 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1884
1885 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1886
1887 /* first reschedule or stop timer */
1888 if (w->repeat)
1889 {
1890 ev_at (w) += w->repeat;
1891 if (ev_at (w) < mn_now)
1892 ev_at (w) = mn_now;
1893
1056 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1894 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1057 1895
1058 ((WT)w)->at += w->repeat; 1896 ANHE_at_cache (timers [HEAP0]);
1059 if (((WT)w)->at < mn_now)
1060 ((WT)w)->at = mn_now;
1061
1062 downheap ((WT *)timers, timercnt, 0); 1897 downheap (timers, timercnt, HEAP0);
1898 }
1899 else
1900 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1901
1902 EV_FREQUENT_CHECK;
1903 feed_reverse (EV_A_ (W)w);
1063 } 1904 }
1064 else 1905 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1065 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1066 1906
1067 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1907 feed_reverse_done (EV_A_ EV_TIMEOUT);
1068 } 1908 }
1069} 1909}
1070 1910
1071#if EV_PERIODICS 1911#if EV_PERIODIC_ENABLE
1912/* make periodics pending */
1072inline void 1913inline_size void
1073periodics_reify (EV_P) 1914periodics_reify (EV_P)
1074{ 1915{
1916 EV_FREQUENT_CHECK;
1917
1075 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1918 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1076 { 1919 {
1077 struct ev_periodic *w = periodics [0]; 1920 int feed_count = 0;
1078 1921
1922 do
1923 {
1924 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1925
1079 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1926 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1080 1927
1081 /* first reschedule or stop timer */ 1928 /* first reschedule or stop timer */
1929 if (w->reschedule_cb)
1930 {
1931 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1932
1933 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1934
1935 ANHE_at_cache (periodics [HEAP0]);
1936 downheap (periodics, periodiccnt, HEAP0);
1937 }
1938 else if (w->interval)
1939 {
1940 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1941 /* if next trigger time is not sufficiently in the future, put it there */
1942 /* this might happen because of floating point inexactness */
1943 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1944 {
1945 ev_at (w) += w->interval;
1946
1947 /* if interval is unreasonably low we might still have a time in the past */
1948 /* so correct this. this will make the periodic very inexact, but the user */
1949 /* has effectively asked to get triggered more often than possible */
1950 if (ev_at (w) < ev_rt_now)
1951 ev_at (w) = ev_rt_now;
1952 }
1953
1954 ANHE_at_cache (periodics [HEAP0]);
1955 downheap (periodics, periodiccnt, HEAP0);
1956 }
1957 else
1958 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1959
1960 EV_FREQUENT_CHECK;
1961 feed_reverse (EV_A_ (W)w);
1962 }
1963 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1964
1965 feed_reverse_done (EV_A_ EV_PERIODIC);
1966 }
1967}
1968
1969/* simply recalculate all periodics */
1970/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1971static void noinline
1972periodics_reschedule (EV_P)
1973{
1974 int i;
1975
1976 /* adjust periodics after time jump */
1977 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1978 {
1979 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1980
1082 if (w->reschedule_cb) 1981 if (w->reschedule_cb)
1982 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1983 else if (w->interval)
1984 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1985
1986 ANHE_at_cache (periodics [i]);
1987 }
1988
1989 reheap (periodics, periodiccnt);
1990}
1991#endif
1992
1993/* adjust all timers by a given offset */
1994static void noinline
1995timers_reschedule (EV_P_ ev_tstamp adjust)
1996{
1997 int i;
1998
1999 for (i = 0; i < timercnt; ++i)
2000 {
2001 ANHE *he = timers + i + HEAP0;
2002 ANHE_w (*he)->at += adjust;
2003 ANHE_at_cache (*he);
2004 }
2005}
2006
2007/* fetch new monotonic and realtime times from the kernel */
2008/* also detetc if there was a timejump, and act accordingly */
2009inline_speed void
2010time_update (EV_P_ ev_tstamp max_block)
2011{
2012#if EV_USE_MONOTONIC
2013 if (expect_true (have_monotonic))
2014 {
2015 int i;
2016 ev_tstamp odiff = rtmn_diff;
2017
2018 mn_now = get_clock ();
2019
2020 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2021 /* interpolate in the meantime */
2022 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1083 { 2023 {
1084 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2024 ev_rt_now = rtmn_diff + mn_now;
1085 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2025 return;
1086 downheap ((WT *)periodics, periodiccnt, 0);
1087 } 2026 }
1088 else if (w->interval)
1089 {
1090 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1091 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1092 downheap ((WT *)periodics, periodiccnt, 0);
1093 }
1094 else
1095 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1096 2027
1097 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1098 }
1099}
1100
1101static void
1102periodics_reschedule (EV_P)
1103{
1104 int i;
1105
1106 /* adjust periodics after time jump */
1107 for (i = 0; i < periodiccnt; ++i)
1108 {
1109 struct ev_periodic *w = periodics [i];
1110
1111 if (w->reschedule_cb)
1112 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1113 else if (w->interval)
1114 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1115 }
1116
1117 /* now rebuild the heap */
1118 for (i = periodiccnt >> 1; i--; )
1119 downheap ((WT *)periodics, periodiccnt, i);
1120}
1121#endif
1122
1123inline int
1124time_update_monotonic (EV_P)
1125{
1126 mn_now = get_clock ();
1127
1128 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1129 {
1130 ev_rt_now = rtmn_diff + mn_now;
1131 return 0;
1132 }
1133 else
1134 {
1135 now_floor = mn_now; 2028 now_floor = mn_now;
1136 ev_rt_now = ev_time (); 2029 ev_rt_now = ev_time ();
1137 return 1;
1138 }
1139}
1140 2030
1141inline void 2031 /* loop a few times, before making important decisions.
1142time_update (EV_P) 2032 * on the choice of "4": one iteration isn't enough,
1143{ 2033 * in case we get preempted during the calls to
1144 int i; 2034 * ev_time and get_clock. a second call is almost guaranteed
1145 2035 * to succeed in that case, though. and looping a few more times
1146#if EV_USE_MONOTONIC 2036 * doesn't hurt either as we only do this on time-jumps or
1147 if (expect_true (have_monotonic)) 2037 * in the unlikely event of having been preempted here.
1148 { 2038 */
1149 if (time_update_monotonic (EV_A)) 2039 for (i = 4; --i; )
1150 { 2040 {
1151 ev_tstamp odiff = rtmn_diff;
1152
1153 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1154 {
1155 rtmn_diff = ev_rt_now - mn_now; 2041 rtmn_diff = ev_rt_now - mn_now;
1156 2042
1157 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2043 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1158 return; /* all is well */ 2044 return; /* all is well */
1159 2045
1160 ev_rt_now = ev_time (); 2046 ev_rt_now = ev_time ();
1161 mn_now = get_clock (); 2047 mn_now = get_clock ();
1162 now_floor = mn_now; 2048 now_floor = mn_now;
1163 } 2049 }
1164 2050
2051 /* no timer adjustment, as the monotonic clock doesn't jump */
2052 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1165# if EV_PERIODICS 2053# if EV_PERIODIC_ENABLE
2054 periodics_reschedule (EV_A);
2055# endif
2056 }
2057 else
2058#endif
2059 {
2060 ev_rt_now = ev_time ();
2061
2062 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2063 {
2064 /* adjust timers. this is easy, as the offset is the same for all of them */
2065 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2066#if EV_PERIODIC_ENABLE
1166 periodics_reschedule (EV_A); 2067 periodics_reschedule (EV_A);
1167# endif 2068#endif
1168 /* no timer adjustment, as the monotonic clock doesn't jump */
1169 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1170 } 2069 }
1171 }
1172 else
1173#endif
1174 {
1175 ev_rt_now = ev_time ();
1176
1177 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1178 {
1179#if EV_PERIODICS
1180 periodics_reschedule (EV_A);
1181#endif
1182
1183 /* adjust timers. this is easy, as the offset is the same for all */
1184 for (i = 0; i < timercnt; ++i)
1185 ((WT)timers [i])->at += ev_rt_now - mn_now;
1186 }
1187 2070
1188 mn_now = ev_rt_now; 2071 mn_now = ev_rt_now;
1189 } 2072 }
1190} 2073}
1191 2074
1192void 2075void
1193ev_ref (EV_P)
1194{
1195 ++activecnt;
1196}
1197
1198void
1199ev_unref (EV_P)
1200{
1201 --activecnt;
1202}
1203
1204static int loop_done;
1205
1206void
1207ev_loop (EV_P_ int flags) 2076ev_loop (EV_P_ int flags)
1208{ 2077{
1209 double block; 2078#if EV_MINIMAL < 2
1210 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2079 ++loop_depth;
2080#endif
1211 2081
1212 while (activecnt) 2082 loop_done = EVUNLOOP_CANCEL;
2083
2084 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2085
2086 do
1213 { 2087 {
2088#if EV_VERIFY >= 2
2089 ev_loop_verify (EV_A);
2090#endif
2091
2092#ifndef _WIN32
2093 if (expect_false (curpid)) /* penalise the forking check even more */
2094 if (expect_false (getpid () != curpid))
2095 {
2096 curpid = getpid ();
2097 postfork = 1;
2098 }
2099#endif
2100
2101#if EV_FORK_ENABLE
2102 /* we might have forked, so queue fork handlers */
2103 if (expect_false (postfork))
2104 if (forkcnt)
2105 {
2106 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2107 EV_INVOKE_PENDING;
2108 }
2109#endif
2110
1214 /* queue check watchers (and execute them) */ 2111 /* queue prepare watchers (and execute them) */
1215 if (expect_false (preparecnt)) 2112 if (expect_false (preparecnt))
1216 { 2113 {
1217 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2114 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1218 call_pending (EV_A); 2115 EV_INVOKE_PENDING;
1219 } 2116 }
1220 2117
1221 /* we might have forked, so reify kernel state if necessary */ 2118 /* we might have forked, so reify kernel state if necessary */
1222 if (expect_false (postfork)) 2119 if (expect_false (postfork))
1223 loop_fork (EV_A); 2120 loop_fork (EV_A);
1224 2121
1225 /* update fd-related kernel structures */ 2122 /* update fd-related kernel structures */
1226 fd_reify (EV_A); 2123 fd_reify (EV_A);
1227 2124
1228 /* calculate blocking time */ 2125 /* calculate blocking time */
2126 {
2127 ev_tstamp waittime = 0.;
2128 ev_tstamp sleeptime = 0.;
1229 2129
1230 /* we only need this for !monotonic clock or timers, but as we basically 2130 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1231 always have timers, we just calculate it always */
1232#if EV_USE_MONOTONIC
1233 if (expect_true (have_monotonic))
1234 time_update_monotonic (EV_A);
1235 else
1236#endif
1237 { 2131 {
1238 ev_rt_now = ev_time (); 2132 /* remember old timestamp for io_blocktime calculation */
1239 mn_now = ev_rt_now; 2133 ev_tstamp prev_mn_now = mn_now;
1240 }
1241 2134
1242 if (flags & EVLOOP_NONBLOCK || idlecnt) 2135 /* update time to cancel out callback processing overhead */
1243 block = 0.; 2136 time_update (EV_A_ 1e100);
1244 else 2137
1245 {
1246 block = MAX_BLOCKTIME; 2138 waittime = MAX_BLOCKTIME;
1247 2139
1248 if (timercnt) 2140 if (timercnt)
1249 { 2141 {
1250 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2142 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1251 if (block > to) block = to; 2143 if (waittime > to) waittime = to;
1252 } 2144 }
1253 2145
1254#if EV_PERIODICS 2146#if EV_PERIODIC_ENABLE
1255 if (periodiccnt) 2147 if (periodiccnt)
1256 { 2148 {
1257 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2149 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1258 if (block > to) block = to; 2150 if (waittime > to) waittime = to;
1259 } 2151 }
1260#endif 2152#endif
1261 2153
1262 if (expect_false (block < 0.)) block = 0.; 2154 /* don't let timeouts decrease the waittime below timeout_blocktime */
2155 if (expect_false (waittime < timeout_blocktime))
2156 waittime = timeout_blocktime;
2157
2158 /* extra check because io_blocktime is commonly 0 */
2159 if (expect_false (io_blocktime))
2160 {
2161 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2162
2163 if (sleeptime > waittime - backend_fudge)
2164 sleeptime = waittime - backend_fudge;
2165
2166 if (expect_true (sleeptime > 0.))
2167 {
2168 ev_sleep (sleeptime);
2169 waittime -= sleeptime;
2170 }
2171 }
1263 } 2172 }
1264 2173
1265 method_poll (EV_A_ block); 2174#if EV_MINIMAL < 2
2175 ++loop_count;
2176#endif
2177 backend_poll (EV_A_ waittime);
1266 2178
1267 /* update ev_rt_now, do magic */ 2179 /* update ev_rt_now, do magic */
1268 time_update (EV_A); 2180 time_update (EV_A_ waittime + sleeptime);
2181 }
1269 2182
1270 /* queue pending timers and reschedule them */ 2183 /* queue pending timers and reschedule them */
1271 timers_reify (EV_A); /* relative timers called last */ 2184 timers_reify (EV_A); /* relative timers called last */
1272#if EV_PERIODICS 2185#if EV_PERIODIC_ENABLE
1273 periodics_reify (EV_A); /* absolute timers called first */ 2186 periodics_reify (EV_A); /* absolute timers called first */
1274#endif 2187#endif
1275 2188
2189#if EV_IDLE_ENABLE
1276 /* queue idle watchers unless io or timers are pending */ 2190 /* queue idle watchers unless other events are pending */
1277 if (idlecnt && !any_pending (EV_A)) 2191 idle_reify (EV_A);
1278 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2192#endif
1279 2193
1280 /* queue check watchers, to be executed first */ 2194 /* queue check watchers, to be executed first */
1281 if (expect_false (checkcnt)) 2195 if (expect_false (checkcnt))
1282 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2196 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1283 2197
1284 call_pending (EV_A); 2198 EV_INVOKE_PENDING;
1285
1286 if (expect_false (loop_done))
1287 break;
1288 } 2199 }
2200 while (expect_true (
2201 activecnt
2202 && !loop_done
2203 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2204 ));
1289 2205
1290 if (loop_done != 2) 2206 if (loop_done == EVUNLOOP_ONE)
1291 loop_done = 0; 2207 loop_done = EVUNLOOP_CANCEL;
2208
2209#if EV_MINIMAL < 2
2210 --loop_depth;
2211#endif
1292} 2212}
1293 2213
1294void 2214void
1295ev_unloop (EV_P_ int how) 2215ev_unloop (EV_P_ int how)
1296{ 2216{
1297 loop_done = how; 2217 loop_done = how;
1298} 2218}
1299 2219
2220void
2221ev_ref (EV_P)
2222{
2223 ++activecnt;
2224}
2225
2226void
2227ev_unref (EV_P)
2228{
2229 --activecnt;
2230}
2231
2232void
2233ev_now_update (EV_P)
2234{
2235 time_update (EV_A_ 1e100);
2236}
2237
2238void
2239ev_suspend (EV_P)
2240{
2241 ev_now_update (EV_A);
2242}
2243
2244void
2245ev_resume (EV_P)
2246{
2247 ev_tstamp mn_prev = mn_now;
2248
2249 ev_now_update (EV_A);
2250 timers_reschedule (EV_A_ mn_now - mn_prev);
2251#if EV_PERIODIC_ENABLE
2252 /* TODO: really do this? */
2253 periodics_reschedule (EV_A);
2254#endif
2255}
2256
1300/*****************************************************************************/ 2257/*****************************************************************************/
2258/* singly-linked list management, used when the expected list length is short */
1301 2259
1302inline void 2260inline_size void
1303wlist_add (WL *head, WL elem) 2261wlist_add (WL *head, WL elem)
1304{ 2262{
1305 elem->next = *head; 2263 elem->next = *head;
1306 *head = elem; 2264 *head = elem;
1307} 2265}
1308 2266
1309inline void 2267inline_size void
1310wlist_del (WL *head, WL elem) 2268wlist_del (WL *head, WL elem)
1311{ 2269{
1312 while (*head) 2270 while (*head)
1313 { 2271 {
1314 if (*head == elem) 2272 if (*head == elem)
1319 2277
1320 head = &(*head)->next; 2278 head = &(*head)->next;
1321 } 2279 }
1322} 2280}
1323 2281
2282/* internal, faster, version of ev_clear_pending */
1324inline void 2283inline_speed void
1325ev_clear_pending (EV_P_ W w) 2284clear_pending (EV_P_ W w)
1326{ 2285{
1327 if (w->pending) 2286 if (w->pending)
1328 { 2287 {
1329 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1330 w->pending = 0; 2289 w->pending = 0;
1331 } 2290 }
1332} 2291}
1333 2292
2293int
2294ev_clear_pending (EV_P_ void *w)
2295{
2296 W w_ = (W)w;
2297 int pending = w_->pending;
2298
2299 if (expect_true (pending))
2300 {
2301 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2302 p->w = (W)&pending_w;
2303 w_->pending = 0;
2304 return p->events;
2305 }
2306 else
2307 return 0;
2308}
2309
1334inline void 2310inline_size void
2311pri_adjust (EV_P_ W w)
2312{
2313 int pri = ev_priority (w);
2314 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2315 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2316 ev_set_priority (w, pri);
2317}
2318
2319inline_speed void
1335ev_start (EV_P_ W w, int active) 2320ev_start (EV_P_ W w, int active)
1336{ 2321{
1337 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2322 pri_adjust (EV_A_ w);
1338 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1339
1340 w->active = active; 2323 w->active = active;
1341 ev_ref (EV_A); 2324 ev_ref (EV_A);
1342} 2325}
1343 2326
1344inline void 2327inline_size void
1345ev_stop (EV_P_ W w) 2328ev_stop (EV_P_ W w)
1346{ 2329{
1347 ev_unref (EV_A); 2330 ev_unref (EV_A);
1348 w->active = 0; 2331 w->active = 0;
1349} 2332}
1350 2333
1351/*****************************************************************************/ 2334/*****************************************************************************/
1352 2335
1353void 2336void noinline
1354ev_io_start (EV_P_ struct ev_io *w) 2337ev_io_start (EV_P_ ev_io *w)
1355{ 2338{
1356 int fd = w->fd; 2339 int fd = w->fd;
1357 2340
1358 if (expect_false (ev_is_active (w))) 2341 if (expect_false (ev_is_active (w)))
1359 return; 2342 return;
1360 2343
1361 assert (("ev_io_start called with negative fd", fd >= 0)); 2344 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2345 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2346
2347 EV_FREQUENT_CHECK;
1362 2348
1363 ev_start (EV_A_ (W)w, 1); 2349 ev_start (EV_A_ (W)w, 1);
1364 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2350 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1365 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2351 wlist_add (&anfds[fd].head, (WL)w);
1366 2352
1367 fd_change (EV_A_ fd); 2353 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1368} 2354 w->events &= ~EV__IOFDSET;
1369 2355
1370void 2356 EV_FREQUENT_CHECK;
2357}
2358
2359void noinline
1371ev_io_stop (EV_P_ struct ev_io *w) 2360ev_io_stop (EV_P_ ev_io *w)
1372{ 2361{
1373 ev_clear_pending (EV_A_ (W)w); 2362 clear_pending (EV_A_ (W)w);
1374 if (expect_false (!ev_is_active (w))) 2363 if (expect_false (!ev_is_active (w)))
1375 return; 2364 return;
1376 2365
1377 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2366 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1378 2367
2368 EV_FREQUENT_CHECK;
2369
1379 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2370 wlist_del (&anfds[w->fd].head, (WL)w);
1380 ev_stop (EV_A_ (W)w); 2371 ev_stop (EV_A_ (W)w);
1381 2372
1382 fd_change (EV_A_ w->fd); 2373 fd_change (EV_A_ w->fd, 1);
1383}
1384 2374
1385void 2375 EV_FREQUENT_CHECK;
2376}
2377
2378void noinline
1386ev_timer_start (EV_P_ struct ev_timer *w) 2379ev_timer_start (EV_P_ ev_timer *w)
1387{ 2380{
1388 if (expect_false (ev_is_active (w))) 2381 if (expect_false (ev_is_active (w)))
1389 return; 2382 return;
1390 2383
1391 ((WT)w)->at += mn_now; 2384 ev_at (w) += mn_now;
1392 2385
1393 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2386 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1394 2387
2388 EV_FREQUENT_CHECK;
2389
2390 ++timercnt;
1395 ev_start (EV_A_ (W)w, ++timercnt); 2391 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1396 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2392 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1397 timers [timercnt - 1] = w; 2393 ANHE_w (timers [ev_active (w)]) = (WT)w;
1398 upheap ((WT *)timers, timercnt - 1); 2394 ANHE_at_cache (timers [ev_active (w)]);
2395 upheap (timers, ev_active (w));
1399 2396
2397 EV_FREQUENT_CHECK;
2398
1400 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2399 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1401} 2400}
1402 2401
1403void 2402void noinline
1404ev_timer_stop (EV_P_ struct ev_timer *w) 2403ev_timer_stop (EV_P_ ev_timer *w)
1405{ 2404{
1406 ev_clear_pending (EV_A_ (W)w); 2405 clear_pending (EV_A_ (W)w);
1407 if (expect_false (!ev_is_active (w))) 2406 if (expect_false (!ev_is_active (w)))
1408 return; 2407 return;
1409 2408
2409 EV_FREQUENT_CHECK;
2410
2411 {
2412 int active = ev_active (w);
2413
1410 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2414 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1411 2415
2416 --timercnt;
2417
1412 if (expect_true (((W)w)->active < timercnt--)) 2418 if (expect_true (active < timercnt + HEAP0))
1413 { 2419 {
1414 timers [((W)w)->active - 1] = timers [timercnt]; 2420 timers [active] = timers [timercnt + HEAP0];
1415 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2421 adjustheap (timers, timercnt, active);
1416 } 2422 }
2423 }
1417 2424
1418 ((WT)w)->at -= mn_now; 2425 EV_FREQUENT_CHECK;
2426
2427 ev_at (w) -= mn_now;
1419 2428
1420 ev_stop (EV_A_ (W)w); 2429 ev_stop (EV_A_ (W)w);
1421} 2430}
1422 2431
1423void 2432void noinline
1424ev_timer_again (EV_P_ struct ev_timer *w) 2433ev_timer_again (EV_P_ ev_timer *w)
1425{ 2434{
2435 EV_FREQUENT_CHECK;
2436
1426 if (ev_is_active (w)) 2437 if (ev_is_active (w))
1427 { 2438 {
1428 if (w->repeat) 2439 if (w->repeat)
1429 { 2440 {
1430 ((WT)w)->at = mn_now + w->repeat; 2441 ev_at (w) = mn_now + w->repeat;
2442 ANHE_at_cache (timers [ev_active (w)]);
1431 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2443 adjustheap (timers, timercnt, ev_active (w));
1432 } 2444 }
1433 else 2445 else
1434 ev_timer_stop (EV_A_ w); 2446 ev_timer_stop (EV_A_ w);
1435 } 2447 }
1436 else if (w->repeat) 2448 else if (w->repeat)
1437 { 2449 {
1438 w->at = w->repeat; 2450 ev_at (w) = w->repeat;
1439 ev_timer_start (EV_A_ w); 2451 ev_timer_start (EV_A_ w);
1440 } 2452 }
1441}
1442 2453
2454 EV_FREQUENT_CHECK;
2455}
2456
1443#if EV_PERIODICS 2457#if EV_PERIODIC_ENABLE
1444void 2458void noinline
1445ev_periodic_start (EV_P_ struct ev_periodic *w) 2459ev_periodic_start (EV_P_ ev_periodic *w)
1446{ 2460{
1447 if (expect_false (ev_is_active (w))) 2461 if (expect_false (ev_is_active (w)))
1448 return; 2462 return;
1449 2463
1450 if (w->reschedule_cb) 2464 if (w->reschedule_cb)
1451 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2465 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1452 else if (w->interval) 2466 else if (w->interval)
1453 { 2467 {
1454 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2468 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1455 /* this formula differs from the one in periodic_reify because we do not always round up */ 2469 /* this formula differs from the one in periodic_reify because we do not always round up */
1456 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2470 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1457 } 2471 }
2472 else
2473 ev_at (w) = w->offset;
1458 2474
2475 EV_FREQUENT_CHECK;
2476
2477 ++periodiccnt;
1459 ev_start (EV_A_ (W)w, ++periodiccnt); 2478 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1460 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2479 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1461 periodics [periodiccnt - 1] = w; 2480 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1462 upheap ((WT *)periodics, periodiccnt - 1); 2481 ANHE_at_cache (periodics [ev_active (w)]);
2482 upheap (periodics, ev_active (w));
1463 2483
2484 EV_FREQUENT_CHECK;
2485
1464 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2486 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1465} 2487}
1466 2488
1467void 2489void noinline
1468ev_periodic_stop (EV_P_ struct ev_periodic *w) 2490ev_periodic_stop (EV_P_ ev_periodic *w)
1469{ 2491{
1470 ev_clear_pending (EV_A_ (W)w); 2492 clear_pending (EV_A_ (W)w);
1471 if (expect_false (!ev_is_active (w))) 2493 if (expect_false (!ev_is_active (w)))
1472 return; 2494 return;
1473 2495
2496 EV_FREQUENT_CHECK;
2497
2498 {
2499 int active = ev_active (w);
2500
1474 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2501 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1475 2502
2503 --periodiccnt;
2504
1476 if (expect_true (((W)w)->active < periodiccnt--)) 2505 if (expect_true (active < periodiccnt + HEAP0))
1477 { 2506 {
1478 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2507 periodics [active] = periodics [periodiccnt + HEAP0];
1479 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2508 adjustheap (periodics, periodiccnt, active);
1480 } 2509 }
2510 }
2511
2512 EV_FREQUENT_CHECK;
1481 2513
1482 ev_stop (EV_A_ (W)w); 2514 ev_stop (EV_A_ (W)w);
1483} 2515}
1484 2516
1485void 2517void noinline
1486ev_periodic_again (EV_P_ struct ev_periodic *w) 2518ev_periodic_again (EV_P_ ev_periodic *w)
1487{ 2519{
1488 /* TODO: use adjustheap and recalculation */ 2520 /* TODO: use adjustheap and recalculation */
1489 ev_periodic_stop (EV_A_ w); 2521 ev_periodic_stop (EV_A_ w);
1490 ev_periodic_start (EV_A_ w); 2522 ev_periodic_start (EV_A_ w);
1491} 2523}
1492#endif 2524#endif
1493 2525
1494void 2526#ifndef SA_RESTART
1495ev_idle_start (EV_P_ struct ev_idle *w) 2527# define SA_RESTART 0
2528#endif
2529
2530void noinline
2531ev_signal_start (EV_P_ ev_signal *w)
1496{ 2532{
2533#if EV_MULTIPLICITY
2534 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2535#endif
1497 if (expect_false (ev_is_active (w))) 2536 if (expect_false (ev_is_active (w)))
1498 return; 2537 return;
1499 2538
1500 ev_start (EV_A_ (W)w, ++idlecnt);
1501 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1502 idles [idlecnt - 1] = w;
1503}
1504
1505void
1506ev_idle_stop (EV_P_ struct ev_idle *w)
1507{
1508 ev_clear_pending (EV_A_ (W)w);
1509 if (expect_false (!ev_is_active (w)))
1510 return;
1511
1512 idles [((W)w)->active - 1] = idles [--idlecnt];
1513 ev_stop (EV_A_ (W)w);
1514}
1515
1516void
1517ev_prepare_start (EV_P_ struct ev_prepare *w)
1518{
1519 if (expect_false (ev_is_active (w)))
1520 return;
1521
1522 ev_start (EV_A_ (W)w, ++preparecnt);
1523 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1524 prepares [preparecnt - 1] = w;
1525}
1526
1527void
1528ev_prepare_stop (EV_P_ struct ev_prepare *w)
1529{
1530 ev_clear_pending (EV_A_ (W)w);
1531 if (expect_false (!ev_is_active (w)))
1532 return;
1533
1534 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1535 ev_stop (EV_A_ (W)w);
1536}
1537
1538void
1539ev_check_start (EV_P_ struct ev_check *w)
1540{
1541 if (expect_false (ev_is_active (w)))
1542 return;
1543
1544 ev_start (EV_A_ (W)w, ++checkcnt);
1545 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1546 checks [checkcnt - 1] = w;
1547}
1548
1549void
1550ev_check_stop (EV_P_ struct ev_check *w)
1551{
1552 ev_clear_pending (EV_A_ (W)w);
1553 if (expect_false (!ev_is_active (w)))
1554 return;
1555
1556 checks [((W)w)->active - 1] = checks [--checkcnt];
1557 ev_stop (EV_A_ (W)w);
1558}
1559
1560#ifndef SA_RESTART
1561# define SA_RESTART 0
1562#endif
1563
1564void
1565ev_signal_start (EV_P_ struct ev_signal *w)
1566{
1567#if EV_MULTIPLICITY
1568 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1569#endif
1570 if (expect_false (ev_is_active (w)))
1571 return;
1572
1573 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2539 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2540
2541 evpipe_init (EV_A);
2542
2543 EV_FREQUENT_CHECK;
2544
2545 {
2546#ifndef _WIN32
2547 sigset_t full, prev;
2548 sigfillset (&full);
2549 sigprocmask (SIG_SETMASK, &full, &prev);
2550#endif
2551
2552 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2553
2554#ifndef _WIN32
2555 sigprocmask (SIG_SETMASK, &prev, 0);
2556#endif
2557 }
1574 2558
1575 ev_start (EV_A_ (W)w, 1); 2559 ev_start (EV_A_ (W)w, 1);
1576 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1577 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2560 wlist_add (&signals [w->signum - 1].head, (WL)w);
1578 2561
1579 if (!((WL)w)->next) 2562 if (!((WL)w)->next)
1580 { 2563 {
1581#if _WIN32 2564#if _WIN32
1582 signal (w->signum, sighandler); 2565 signal (w->signum, ev_sighandler);
1583#else 2566#else
1584 struct sigaction sa; 2567 struct sigaction sa;
1585 sa.sa_handler = sighandler; 2568 sa.sa_handler = ev_sighandler;
1586 sigfillset (&sa.sa_mask); 2569 sigfillset (&sa.sa_mask);
1587 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2570 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1588 sigaction (w->signum, &sa, 0); 2571 sigaction (w->signum, &sa, 0);
1589#endif 2572#endif
1590 } 2573 }
1591}
1592 2574
1593void 2575 EV_FREQUENT_CHECK;
2576}
2577
2578void noinline
1594ev_signal_stop (EV_P_ struct ev_signal *w) 2579ev_signal_stop (EV_P_ ev_signal *w)
1595{ 2580{
1596 ev_clear_pending (EV_A_ (W)w); 2581 clear_pending (EV_A_ (W)w);
1597 if (expect_false (!ev_is_active (w))) 2582 if (expect_false (!ev_is_active (w)))
1598 return; 2583 return;
1599 2584
2585 EV_FREQUENT_CHECK;
2586
1600 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2587 wlist_del (&signals [w->signum - 1].head, (WL)w);
1601 ev_stop (EV_A_ (W)w); 2588 ev_stop (EV_A_ (W)w);
1602 2589
1603 if (!signals [w->signum - 1].head) 2590 if (!signals [w->signum - 1].head)
1604 signal (w->signum, SIG_DFL); 2591 signal (w->signum, SIG_DFL);
1605}
1606 2592
2593 EV_FREQUENT_CHECK;
2594}
2595
1607void 2596void
1608ev_child_start (EV_P_ struct ev_child *w) 2597ev_child_start (EV_P_ ev_child *w)
1609{ 2598{
1610#if EV_MULTIPLICITY 2599#if EV_MULTIPLICITY
1611 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2600 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1612#endif 2601#endif
1613 if (expect_false (ev_is_active (w))) 2602 if (expect_false (ev_is_active (w)))
1614 return; 2603 return;
1615 2604
2605 EV_FREQUENT_CHECK;
2606
1616 ev_start (EV_A_ (W)w, 1); 2607 ev_start (EV_A_ (W)w, 1);
1617 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2608 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1618}
1619 2609
2610 EV_FREQUENT_CHECK;
2611}
2612
1620void 2613void
1621ev_child_stop (EV_P_ struct ev_child *w) 2614ev_child_stop (EV_P_ ev_child *w)
1622{ 2615{
1623 ev_clear_pending (EV_A_ (W)w); 2616 clear_pending (EV_A_ (W)w);
1624 if (expect_false (!ev_is_active (w))) 2617 if (expect_false (!ev_is_active (w)))
1625 return; 2618 return;
1626 2619
2620 EV_FREQUENT_CHECK;
2621
1627 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2622 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1628 ev_stop (EV_A_ (W)w); 2623 ev_stop (EV_A_ (W)w);
2624
2625 EV_FREQUENT_CHECK;
1629} 2626}
2627
2628#if EV_STAT_ENABLE
2629
2630# ifdef _WIN32
2631# undef lstat
2632# define lstat(a,b) _stati64 (a,b)
2633# endif
2634
2635#define DEF_STAT_INTERVAL 5.0074891
2636#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2637#define MIN_STAT_INTERVAL 0.1074891
2638
2639static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2640
2641#if EV_USE_INOTIFY
2642# define EV_INOTIFY_BUFSIZE 8192
2643
2644static void noinline
2645infy_add (EV_P_ ev_stat *w)
2646{
2647 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2648
2649 if (w->wd < 0)
2650 {
2651 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2652 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2653
2654 /* monitor some parent directory for speedup hints */
2655 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2656 /* but an efficiency issue only */
2657 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2658 {
2659 char path [4096];
2660 strcpy (path, w->path);
2661
2662 do
2663 {
2664 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2665 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2666
2667 char *pend = strrchr (path, '/');
2668
2669 if (!pend || pend == path)
2670 break;
2671
2672 *pend = 0;
2673 w->wd = inotify_add_watch (fs_fd, path, mask);
2674 }
2675 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2676 }
2677 }
2678
2679 if (w->wd >= 0)
2680 {
2681 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2682
2683 /* now local changes will be tracked by inotify, but remote changes won't */
2684 /* unless the filesystem it known to be local, we therefore still poll */
2685 /* also do poll on <2.6.25, but with normal frequency */
2686 struct statfs sfs;
2687
2688 if (fs_2625 && !statfs (w->path, &sfs))
2689 if (sfs.f_type == 0x1373 /* devfs */
2690 || sfs.f_type == 0xEF53 /* ext2/3 */
2691 || sfs.f_type == 0x3153464a /* jfs */
2692 || sfs.f_type == 0x52654973 /* reiser3 */
2693 || sfs.f_type == 0x01021994 /* tempfs */
2694 || sfs.f_type == 0x58465342 /* xfs */)
2695 return;
2696
2697 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2698 ev_timer_again (EV_A_ &w->timer);
2699 }
2700}
2701
2702static void noinline
2703infy_del (EV_P_ ev_stat *w)
2704{
2705 int slot;
2706 int wd = w->wd;
2707
2708 if (wd < 0)
2709 return;
2710
2711 w->wd = -2;
2712 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2713 wlist_del (&fs_hash [slot].head, (WL)w);
2714
2715 /* remove this watcher, if others are watching it, they will rearm */
2716 inotify_rm_watch (fs_fd, wd);
2717}
2718
2719static void noinline
2720infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2721{
2722 if (slot < 0)
2723 /* overflow, need to check for all hash slots */
2724 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2725 infy_wd (EV_A_ slot, wd, ev);
2726 else
2727 {
2728 WL w_;
2729
2730 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2731 {
2732 ev_stat *w = (ev_stat *)w_;
2733 w_ = w_->next; /* lets us remove this watcher and all before it */
2734
2735 if (w->wd == wd || wd == -1)
2736 {
2737 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2738 {
2739 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2740 w->wd = -1;
2741 infy_add (EV_A_ w); /* re-add, no matter what */
2742 }
2743
2744 stat_timer_cb (EV_A_ &w->timer, 0);
2745 }
2746 }
2747 }
2748}
2749
2750static void
2751infy_cb (EV_P_ ev_io *w, int revents)
2752{
2753 char buf [EV_INOTIFY_BUFSIZE];
2754 struct inotify_event *ev = (struct inotify_event *)buf;
2755 int ofs;
2756 int len = read (fs_fd, buf, sizeof (buf));
2757
2758 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2759 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2760}
2761
2762inline_size void
2763check_2625 (EV_P)
2764{
2765 /* kernels < 2.6.25 are borked
2766 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2767 */
2768 struct utsname buf;
2769 int major, minor, micro;
2770
2771 if (uname (&buf))
2772 return;
2773
2774 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2775 return;
2776
2777 if (major < 2
2778 || (major == 2 && minor < 6)
2779 || (major == 2 && minor == 6 && micro < 25))
2780 return;
2781
2782 fs_2625 = 1;
2783}
2784
2785inline_size void
2786infy_init (EV_P)
2787{
2788 if (fs_fd != -2)
2789 return;
2790
2791 fs_fd = -1;
2792
2793 check_2625 (EV_A);
2794
2795 fs_fd = inotify_init ();
2796
2797 if (fs_fd >= 0)
2798 {
2799 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2800 ev_set_priority (&fs_w, EV_MAXPRI);
2801 ev_io_start (EV_A_ &fs_w);
2802 }
2803}
2804
2805inline_size void
2806infy_fork (EV_P)
2807{
2808 int slot;
2809
2810 if (fs_fd < 0)
2811 return;
2812
2813 close (fs_fd);
2814 fs_fd = inotify_init ();
2815
2816 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2817 {
2818 WL w_ = fs_hash [slot].head;
2819 fs_hash [slot].head = 0;
2820
2821 while (w_)
2822 {
2823 ev_stat *w = (ev_stat *)w_;
2824 w_ = w_->next; /* lets us add this watcher */
2825
2826 w->wd = -1;
2827
2828 if (fs_fd >= 0)
2829 infy_add (EV_A_ w); /* re-add, no matter what */
2830 else
2831 ev_timer_again (EV_A_ &w->timer);
2832 }
2833 }
2834}
2835
2836#endif
2837
2838#ifdef _WIN32
2839# define EV_LSTAT(p,b) _stati64 (p, b)
2840#else
2841# define EV_LSTAT(p,b) lstat (p, b)
2842#endif
2843
2844void
2845ev_stat_stat (EV_P_ ev_stat *w)
2846{
2847 if (lstat (w->path, &w->attr) < 0)
2848 w->attr.st_nlink = 0;
2849 else if (!w->attr.st_nlink)
2850 w->attr.st_nlink = 1;
2851}
2852
2853static void noinline
2854stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2855{
2856 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2857
2858 /* we copy this here each the time so that */
2859 /* prev has the old value when the callback gets invoked */
2860 w->prev = w->attr;
2861 ev_stat_stat (EV_A_ w);
2862
2863 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2864 if (
2865 w->prev.st_dev != w->attr.st_dev
2866 || w->prev.st_ino != w->attr.st_ino
2867 || w->prev.st_mode != w->attr.st_mode
2868 || w->prev.st_nlink != w->attr.st_nlink
2869 || w->prev.st_uid != w->attr.st_uid
2870 || w->prev.st_gid != w->attr.st_gid
2871 || w->prev.st_rdev != w->attr.st_rdev
2872 || w->prev.st_size != w->attr.st_size
2873 || w->prev.st_atime != w->attr.st_atime
2874 || w->prev.st_mtime != w->attr.st_mtime
2875 || w->prev.st_ctime != w->attr.st_ctime
2876 ) {
2877 #if EV_USE_INOTIFY
2878 if (fs_fd >= 0)
2879 {
2880 infy_del (EV_A_ w);
2881 infy_add (EV_A_ w);
2882 ev_stat_stat (EV_A_ w); /* avoid race... */
2883 }
2884 #endif
2885
2886 ev_feed_event (EV_A_ w, EV_STAT);
2887 }
2888}
2889
2890void
2891ev_stat_start (EV_P_ ev_stat *w)
2892{
2893 if (expect_false (ev_is_active (w)))
2894 return;
2895
2896 ev_stat_stat (EV_A_ w);
2897
2898 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2899 w->interval = MIN_STAT_INTERVAL;
2900
2901 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2902 ev_set_priority (&w->timer, ev_priority (w));
2903
2904#if EV_USE_INOTIFY
2905 infy_init (EV_A);
2906
2907 if (fs_fd >= 0)
2908 infy_add (EV_A_ w);
2909 else
2910#endif
2911 ev_timer_again (EV_A_ &w->timer);
2912
2913 ev_start (EV_A_ (W)w, 1);
2914
2915 EV_FREQUENT_CHECK;
2916}
2917
2918void
2919ev_stat_stop (EV_P_ ev_stat *w)
2920{
2921 clear_pending (EV_A_ (W)w);
2922 if (expect_false (!ev_is_active (w)))
2923 return;
2924
2925 EV_FREQUENT_CHECK;
2926
2927#if EV_USE_INOTIFY
2928 infy_del (EV_A_ w);
2929#endif
2930 ev_timer_stop (EV_A_ &w->timer);
2931
2932 ev_stop (EV_A_ (W)w);
2933
2934 EV_FREQUENT_CHECK;
2935}
2936#endif
2937
2938#if EV_IDLE_ENABLE
2939void
2940ev_idle_start (EV_P_ ev_idle *w)
2941{
2942 if (expect_false (ev_is_active (w)))
2943 return;
2944
2945 pri_adjust (EV_A_ (W)w);
2946
2947 EV_FREQUENT_CHECK;
2948
2949 {
2950 int active = ++idlecnt [ABSPRI (w)];
2951
2952 ++idleall;
2953 ev_start (EV_A_ (W)w, active);
2954
2955 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2956 idles [ABSPRI (w)][active - 1] = w;
2957 }
2958
2959 EV_FREQUENT_CHECK;
2960}
2961
2962void
2963ev_idle_stop (EV_P_ ev_idle *w)
2964{
2965 clear_pending (EV_A_ (W)w);
2966 if (expect_false (!ev_is_active (w)))
2967 return;
2968
2969 EV_FREQUENT_CHECK;
2970
2971 {
2972 int active = ev_active (w);
2973
2974 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2975 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2976
2977 ev_stop (EV_A_ (W)w);
2978 --idleall;
2979 }
2980
2981 EV_FREQUENT_CHECK;
2982}
2983#endif
2984
2985void
2986ev_prepare_start (EV_P_ ev_prepare *w)
2987{
2988 if (expect_false (ev_is_active (w)))
2989 return;
2990
2991 EV_FREQUENT_CHECK;
2992
2993 ev_start (EV_A_ (W)w, ++preparecnt);
2994 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2995 prepares [preparecnt - 1] = w;
2996
2997 EV_FREQUENT_CHECK;
2998}
2999
3000void
3001ev_prepare_stop (EV_P_ ev_prepare *w)
3002{
3003 clear_pending (EV_A_ (W)w);
3004 if (expect_false (!ev_is_active (w)))
3005 return;
3006
3007 EV_FREQUENT_CHECK;
3008
3009 {
3010 int active = ev_active (w);
3011
3012 prepares [active - 1] = prepares [--preparecnt];
3013 ev_active (prepares [active - 1]) = active;
3014 }
3015
3016 ev_stop (EV_A_ (W)w);
3017
3018 EV_FREQUENT_CHECK;
3019}
3020
3021void
3022ev_check_start (EV_P_ ev_check *w)
3023{
3024 if (expect_false (ev_is_active (w)))
3025 return;
3026
3027 EV_FREQUENT_CHECK;
3028
3029 ev_start (EV_A_ (W)w, ++checkcnt);
3030 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3031 checks [checkcnt - 1] = w;
3032
3033 EV_FREQUENT_CHECK;
3034}
3035
3036void
3037ev_check_stop (EV_P_ ev_check *w)
3038{
3039 clear_pending (EV_A_ (W)w);
3040 if (expect_false (!ev_is_active (w)))
3041 return;
3042
3043 EV_FREQUENT_CHECK;
3044
3045 {
3046 int active = ev_active (w);
3047
3048 checks [active - 1] = checks [--checkcnt];
3049 ev_active (checks [active - 1]) = active;
3050 }
3051
3052 ev_stop (EV_A_ (W)w);
3053
3054 EV_FREQUENT_CHECK;
3055}
3056
3057#if EV_EMBED_ENABLE
3058void noinline
3059ev_embed_sweep (EV_P_ ev_embed *w)
3060{
3061 ev_loop (w->other, EVLOOP_NONBLOCK);
3062}
3063
3064static void
3065embed_io_cb (EV_P_ ev_io *io, int revents)
3066{
3067 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3068
3069 if (ev_cb (w))
3070 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3071 else
3072 ev_loop (w->other, EVLOOP_NONBLOCK);
3073}
3074
3075static void
3076embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3077{
3078 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3079
3080 {
3081 struct ev_loop *loop = w->other;
3082
3083 while (fdchangecnt)
3084 {
3085 fd_reify (EV_A);
3086 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3087 }
3088 }
3089}
3090
3091static void
3092embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3093{
3094 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3095
3096 ev_embed_stop (EV_A_ w);
3097
3098 {
3099 struct ev_loop *loop = w->other;
3100
3101 ev_loop_fork (EV_A);
3102 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3103 }
3104
3105 ev_embed_start (EV_A_ w);
3106}
3107
3108#if 0
3109static void
3110embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3111{
3112 ev_idle_stop (EV_A_ idle);
3113}
3114#endif
3115
3116void
3117ev_embed_start (EV_P_ ev_embed *w)
3118{
3119 if (expect_false (ev_is_active (w)))
3120 return;
3121
3122 {
3123 struct ev_loop *loop = w->other;
3124 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3125 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3126 }
3127
3128 EV_FREQUENT_CHECK;
3129
3130 ev_set_priority (&w->io, ev_priority (w));
3131 ev_io_start (EV_A_ &w->io);
3132
3133 ev_prepare_init (&w->prepare, embed_prepare_cb);
3134 ev_set_priority (&w->prepare, EV_MINPRI);
3135 ev_prepare_start (EV_A_ &w->prepare);
3136
3137 ev_fork_init (&w->fork, embed_fork_cb);
3138 ev_fork_start (EV_A_ &w->fork);
3139
3140 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3141
3142 ev_start (EV_A_ (W)w, 1);
3143
3144 EV_FREQUENT_CHECK;
3145}
3146
3147void
3148ev_embed_stop (EV_P_ ev_embed *w)
3149{
3150 clear_pending (EV_A_ (W)w);
3151 if (expect_false (!ev_is_active (w)))
3152 return;
3153
3154 EV_FREQUENT_CHECK;
3155
3156 ev_io_stop (EV_A_ &w->io);
3157 ev_prepare_stop (EV_A_ &w->prepare);
3158 ev_fork_stop (EV_A_ &w->fork);
3159
3160 EV_FREQUENT_CHECK;
3161}
3162#endif
3163
3164#if EV_FORK_ENABLE
3165void
3166ev_fork_start (EV_P_ ev_fork *w)
3167{
3168 if (expect_false (ev_is_active (w)))
3169 return;
3170
3171 EV_FREQUENT_CHECK;
3172
3173 ev_start (EV_A_ (W)w, ++forkcnt);
3174 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3175 forks [forkcnt - 1] = w;
3176
3177 EV_FREQUENT_CHECK;
3178}
3179
3180void
3181ev_fork_stop (EV_P_ ev_fork *w)
3182{
3183 clear_pending (EV_A_ (W)w);
3184 if (expect_false (!ev_is_active (w)))
3185 return;
3186
3187 EV_FREQUENT_CHECK;
3188
3189 {
3190 int active = ev_active (w);
3191
3192 forks [active - 1] = forks [--forkcnt];
3193 ev_active (forks [active - 1]) = active;
3194 }
3195
3196 ev_stop (EV_A_ (W)w);
3197
3198 EV_FREQUENT_CHECK;
3199}
3200#endif
3201
3202#if EV_ASYNC_ENABLE
3203void
3204ev_async_start (EV_P_ ev_async *w)
3205{
3206 if (expect_false (ev_is_active (w)))
3207 return;
3208
3209 evpipe_init (EV_A);
3210
3211 EV_FREQUENT_CHECK;
3212
3213 ev_start (EV_A_ (W)w, ++asynccnt);
3214 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3215 asyncs [asynccnt - 1] = w;
3216
3217 EV_FREQUENT_CHECK;
3218}
3219
3220void
3221ev_async_stop (EV_P_ ev_async *w)
3222{
3223 clear_pending (EV_A_ (W)w);
3224 if (expect_false (!ev_is_active (w)))
3225 return;
3226
3227 EV_FREQUENT_CHECK;
3228
3229 {
3230 int active = ev_active (w);
3231
3232 asyncs [active - 1] = asyncs [--asynccnt];
3233 ev_active (asyncs [active - 1]) = active;
3234 }
3235
3236 ev_stop (EV_A_ (W)w);
3237
3238 EV_FREQUENT_CHECK;
3239}
3240
3241void
3242ev_async_send (EV_P_ ev_async *w)
3243{
3244 w->sent = 1;
3245 evpipe_write (EV_A_ &gotasync);
3246}
3247#endif
1630 3248
1631/*****************************************************************************/ 3249/*****************************************************************************/
1632 3250
1633struct ev_once 3251struct ev_once
1634{ 3252{
1635 struct ev_io io; 3253 ev_io io;
1636 struct ev_timer to; 3254 ev_timer to;
1637 void (*cb)(int revents, void *arg); 3255 void (*cb)(int revents, void *arg);
1638 void *arg; 3256 void *arg;
1639}; 3257};
1640 3258
1641static void 3259static void
1642once_cb (EV_P_ struct ev_once *once, int revents) 3260once_cb (EV_P_ struct ev_once *once, int revents)
1643{ 3261{
1644 void (*cb)(int revents, void *arg) = once->cb; 3262 void (*cb)(int revents, void *arg) = once->cb;
1645 void *arg = once->arg; 3263 void *arg = once->arg;
1646 3264
1647 ev_io_stop (EV_A_ &once->io); 3265 ev_io_stop (EV_A_ &once->io);
1648 ev_timer_stop (EV_A_ &once->to); 3266 ev_timer_stop (EV_A_ &once->to);
1649 ev_free (once); 3267 ev_free (once);
1650 3268
1651 cb (revents, arg); 3269 cb (revents, arg);
1652} 3270}
1653 3271
1654static void 3272static void
1655once_cb_io (EV_P_ struct ev_io *w, int revents) 3273once_cb_io (EV_P_ ev_io *w, int revents)
1656{ 3274{
1657 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3275 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3276
3277 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1658} 3278}
1659 3279
1660static void 3280static void
1661once_cb_to (EV_P_ struct ev_timer *w, int revents) 3281once_cb_to (EV_P_ ev_timer *w, int revents)
1662{ 3282{
1663 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3283 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3284
3285 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1664} 3286}
1665 3287
1666void 3288void
1667ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3289ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1668{ 3290{
1690 ev_timer_set (&once->to, timeout, 0.); 3312 ev_timer_set (&once->to, timeout, 0.);
1691 ev_timer_start (EV_A_ &once->to); 3313 ev_timer_start (EV_A_ &once->to);
1692 } 3314 }
1693} 3315}
1694 3316
3317/*****************************************************************************/
3318
3319#if EV_WALK_ENABLE
3320void
3321ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3322{
3323 int i, j;
3324 ev_watcher_list *wl, *wn;
3325
3326 if (types & (EV_IO | EV_EMBED))
3327 for (i = 0; i < anfdmax; ++i)
3328 for (wl = anfds [i].head; wl; )
3329 {
3330 wn = wl->next;
3331
3332#if EV_EMBED_ENABLE
3333 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3334 {
3335 if (types & EV_EMBED)
3336 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3337 }
3338 else
3339#endif
3340#if EV_USE_INOTIFY
3341 if (ev_cb ((ev_io *)wl) == infy_cb)
3342 ;
3343 else
3344#endif
3345 if ((ev_io *)wl != &pipe_w)
3346 if (types & EV_IO)
3347 cb (EV_A_ EV_IO, wl);
3348
3349 wl = wn;
3350 }
3351
3352 if (types & (EV_TIMER | EV_STAT))
3353 for (i = timercnt + HEAP0; i-- > HEAP0; )
3354#if EV_STAT_ENABLE
3355 /*TODO: timer is not always active*/
3356 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3357 {
3358 if (types & EV_STAT)
3359 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3360 }
3361 else
3362#endif
3363 if (types & EV_TIMER)
3364 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3365
3366#if EV_PERIODIC_ENABLE
3367 if (types & EV_PERIODIC)
3368 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3369 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3370#endif
3371
3372#if EV_IDLE_ENABLE
3373 if (types & EV_IDLE)
3374 for (j = NUMPRI; i--; )
3375 for (i = idlecnt [j]; i--; )
3376 cb (EV_A_ EV_IDLE, idles [j][i]);
3377#endif
3378
3379#if EV_FORK_ENABLE
3380 if (types & EV_FORK)
3381 for (i = forkcnt; i--; )
3382 if (ev_cb (forks [i]) != embed_fork_cb)
3383 cb (EV_A_ EV_FORK, forks [i]);
3384#endif
3385
3386#if EV_ASYNC_ENABLE
3387 if (types & EV_ASYNC)
3388 for (i = asynccnt; i--; )
3389 cb (EV_A_ EV_ASYNC, asyncs [i]);
3390#endif
3391
3392 if (types & EV_PREPARE)
3393 for (i = preparecnt; i--; )
3394#if EV_EMBED_ENABLE
3395 if (ev_cb (prepares [i]) != embed_prepare_cb)
3396#endif
3397 cb (EV_A_ EV_PREPARE, prepares [i]);
3398
3399 if (types & EV_CHECK)
3400 for (i = checkcnt; i--; )
3401 cb (EV_A_ EV_CHECK, checks [i]);
3402
3403 if (types & EV_SIGNAL)
3404 for (i = 0; i < signalmax; ++i)
3405 for (wl = signals [i].head; wl; )
3406 {
3407 wn = wl->next;
3408 cb (EV_A_ EV_SIGNAL, wl);
3409 wl = wn;
3410 }
3411
3412 if (types & EV_CHILD)
3413 for (i = EV_PID_HASHSIZE; i--; )
3414 for (wl = childs [i]; wl; )
3415 {
3416 wn = wl->next;
3417 cb (EV_A_ EV_CHILD, wl);
3418 wl = wn;
3419 }
3420/* EV_STAT 0x00001000 /* stat data changed */
3421/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3422}
3423#endif
3424
3425#if EV_MULTIPLICITY
3426 #include "ev_wrap.h"
3427#endif
3428
1695#ifdef __cplusplus 3429#ifdef __cplusplus
1696} 3430}
1697#endif 3431#endif
1698 3432

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines