ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.196 by root, Sat Dec 22 12:43:28 2007 UTC vs.
Revision 1.297 by root, Fri Jul 10 00:36:21 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
110# else 133# else
111# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
112# endif 135# endif
113# endif 136# endif
114 137
138# ifndef EV_USE_EVENTFD
139# if HAVE_EVENTFD
140# define EV_USE_EVENTFD 1
141# else
142# define EV_USE_EVENTFD 0
143# endif
144# endif
145
115#endif 146#endif
116 147
117#include <math.h> 148#include <math.h>
118#include <stdlib.h> 149#include <stdlib.h>
119#include <fcntl.h> 150#include <fcntl.h>
137#ifndef _WIN32 168#ifndef _WIN32
138# include <sys/time.h> 169# include <sys/time.h>
139# include <sys/wait.h> 170# include <sys/wait.h>
140# include <unistd.h> 171# include <unistd.h>
141#else 172#else
173# include <io.h>
142# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
143# include <windows.h> 175# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
146# endif 178# endif
147#endif 179#endif
148 180
149/**/ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
150 190
151#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
152# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
153#endif 197#endif
154 198
155#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
157#endif 201#endif
158 202
159#ifndef EV_USE_NANOSLEEP 203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
160# define EV_USE_NANOSLEEP 0 207# define EV_USE_NANOSLEEP 0
208# endif
161#endif 209#endif
162 210
163#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
164# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
165#endif 213#endif
171# define EV_USE_POLL 1 219# define EV_USE_POLL 1
172# endif 220# endif
173#endif 221#endif
174 222
175#ifndef EV_USE_EPOLL 223#ifndef EV_USE_EPOLL
224# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225# define EV_USE_EPOLL 1
226# else
176# define EV_USE_EPOLL 0 227# define EV_USE_EPOLL 0
228# endif
177#endif 229#endif
178 230
179#ifndef EV_USE_KQUEUE 231#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 232# define EV_USE_KQUEUE 0
181#endif 233#endif
183#ifndef EV_USE_PORT 235#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 236# define EV_USE_PORT 0
185#endif 237#endif
186 238
187#ifndef EV_USE_INOTIFY 239#ifndef EV_USE_INOTIFY
240# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
241# define EV_USE_INOTIFY 1
242# else
188# define EV_USE_INOTIFY 0 243# define EV_USE_INOTIFY 0
244# endif
189#endif 245#endif
190 246
191#ifndef EV_PID_HASHSIZE 247#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 248# if EV_MINIMAL
193# define EV_PID_HASHSIZE 1 249# define EV_PID_HASHSIZE 1
202# else 258# else
203# define EV_INOTIFY_HASHSIZE 16 259# define EV_INOTIFY_HASHSIZE 16
204# endif 260# endif
205#endif 261#endif
206 262
207/**/ 263#ifndef EV_USE_EVENTFD
264# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265# define EV_USE_EVENTFD 1
266# else
267# define EV_USE_EVENTFD 0
268# endif
269#endif
270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
208 304
209#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
212#endif 308#endif
226# include <sys/select.h> 322# include <sys/select.h>
227# endif 323# endif
228#endif 324#endif
229 325
230#if EV_USE_INOTIFY 326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
231# include <sys/inotify.h> 329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
232#endif 335#endif
233 336
234#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h> 338# include <winsock.h>
236#endif 339#endif
237 340
341#if EV_USE_EVENTFD
342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343# include <stdint.h>
344# ifdef __cplusplus
345extern "C" {
346# endif
347int eventfd (unsigned int initval, int flags);
348# ifdef __cplusplus
349}
350# endif
351#endif
352
238/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
239 360
240/* 361/*
241 * This is used to avoid floating point rounding problems. 362 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics 363 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding 364 * to ensure progress, time-wise, even when rounding
255# define expect(expr,value) __builtin_expect ((expr),(value)) 376# define expect(expr,value) __builtin_expect ((expr),(value))
256# define noinline __attribute__ ((noinline)) 377# define noinline __attribute__ ((noinline))
257#else 378#else
258# define expect(expr,value) (expr) 379# define expect(expr,value) (expr)
259# define noinline 380# define noinline
260# if __STDC_VERSION__ < 199901L 381# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
261# define inline 382# define inline
262# endif 383# endif
263#endif 384#endif
264 385
265#define expect_false(expr) expect ((expr) != 0, 0) 386#define expect_false(expr) expect ((expr) != 0, 0)
270# define inline_speed static noinline 391# define inline_speed static noinline
271#else 392#else
272# define inline_speed static inline 393# define inline_speed static inline
273#endif 394#endif
274 395
275#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
276#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
277 403
278#define EMPTY /* required for microsofts broken pseudo-c compiler */ 404#define EMPTY /* required for microsofts broken pseudo-c compiler */
279#define EMPTY2(a,b) /* used to suppress some warnings */ 405#define EMPTY2(a,b) /* used to suppress some warnings */
280 406
281typedef ev_watcher *W; 407typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 408typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
284 410
411#define ev_active(w) ((W)(w))->active
412#define ev_at(w) ((WT)(w))->at
413
414#if EV_USE_REALTIME
285/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
286/* giving it a reasonably high chance of working on typical architetcures */ 416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
419
420#if EV_USE_MONOTONIC
287static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
422#endif
288 423
289#ifdef _WIN32 424#ifdef _WIN32
290# include "ev_win32.c" 425# include "ev_win32.c"
291#endif 426#endif
292 427
299{ 434{
300 syserr_cb = cb; 435 syserr_cb = cb;
301} 436}
302 437
303static void noinline 438static void noinline
304syserr (const char *msg) 439ev_syserr (const char *msg)
305{ 440{
306 if (!msg) 441 if (!msg)
307 msg = "(libev) system error"; 442 msg = "(libev) system error";
308 443
309 if (syserr_cb) 444 if (syserr_cb)
313 perror (msg); 448 perror (msg);
314 abort (); 449 abort ();
315 } 450 }
316} 451}
317 452
453static void *
454ev_realloc_emul (void *ptr, long size)
455{
456 /* some systems, notably openbsd and darwin, fail to properly
457 * implement realloc (x, 0) (as required by both ansi c-98 and
458 * the single unix specification, so work around them here.
459 */
460
461 if (size)
462 return realloc (ptr, size);
463
464 free (ptr);
465 return 0;
466}
467
318static void *(*alloc)(void *ptr, long size); 468static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
319 469
320void 470void
321ev_set_allocator (void *(*cb)(void *ptr, long size)) 471ev_set_allocator (void *(*cb)(void *ptr, long size))
322{ 472{
323 alloc = cb; 473 alloc = cb;
324} 474}
325 475
326inline_speed void * 476inline_speed void *
327ev_realloc (void *ptr, long size) 477ev_realloc (void *ptr, long size)
328{ 478{
329 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 479 ptr = alloc (ptr, size);
330 480
331 if (!ptr && size) 481 if (!ptr && size)
332 { 482 {
333 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 483 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
334 abort (); 484 abort ();
340#define ev_malloc(size) ev_realloc (0, (size)) 490#define ev_malloc(size) ev_realloc (0, (size))
341#define ev_free(ptr) ev_realloc ((ptr), 0) 491#define ev_free(ptr) ev_realloc ((ptr), 0)
342 492
343/*****************************************************************************/ 493/*****************************************************************************/
344 494
495/* file descriptor info structure */
345typedef struct 496typedef struct
346{ 497{
347 WL head; 498 WL head;
348 unsigned char events; 499 unsigned char events; /* the events watched for */
500 unsigned char reify; /* flag set when this ANFD needs reification */
501 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
349 unsigned char reify; 502 unsigned char unused;
503#if EV_USE_EPOLL
504 unsigned int egen; /* generation counter to counter epoll bugs */
505#endif
350#if EV_SELECT_IS_WINSOCKET 506#if EV_SELECT_IS_WINSOCKET
351 SOCKET handle; 507 SOCKET handle;
352#endif 508#endif
353} ANFD; 509} ANFD;
354 510
511/* stores the pending event set for a given watcher */
355typedef struct 512typedef struct
356{ 513{
357 W w; 514 W w;
358 int events; 515 int events; /* the pending event set for the given watcher */
359} ANPENDING; 516} ANPENDING;
360 517
361#if EV_USE_INOTIFY 518#if EV_USE_INOTIFY
519/* hash table entry per inotify-id */
362typedef struct 520typedef struct
363{ 521{
364 WL head; 522 WL head;
365} ANFS; 523} ANFS;
524#endif
525
526/* Heap Entry */
527#if EV_HEAP_CACHE_AT
528 /* a heap element */
529 typedef struct {
530 ev_tstamp at;
531 WT w;
532 } ANHE;
533
534 #define ANHE_w(he) (he).w /* access watcher, read-write */
535 #define ANHE_at(he) (he).at /* access cached at, read-only */
536 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
537#else
538 /* a heap element */
539 typedef WT ANHE;
540
541 #define ANHE_w(he) (he)
542 #define ANHE_at(he) (he)->at
543 #define ANHE_at_cache(he)
366#endif 544#endif
367 545
368#if EV_MULTIPLICITY 546#if EV_MULTIPLICITY
369 547
370 struct ev_loop 548 struct ev_loop
389 567
390 static int ev_default_loop_ptr; 568 static int ev_default_loop_ptr;
391 569
392#endif 570#endif
393 571
572#if EV_MINIMAL < 2
573# define EV_SUSPEND_CB if (expect_false (suspend_cb)) suspend_cb (EV_A)
574# define EV_RESUME_CB if (expect_false (resume_cb )) resume_cb (EV_A)
575# define EV_INVOKE_PENDING invoke_cb (EV_A)
576#else
577# define EV_SUSPEND_CB (void)0
578# define EV_RESUME_CB (void)0
579# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
580#endif
581
394/*****************************************************************************/ 582/*****************************************************************************/
395 583
584#ifndef EV_HAVE_EV_TIME
396ev_tstamp 585ev_tstamp
397ev_time (void) 586ev_time (void)
398{ 587{
399#if EV_USE_REALTIME 588#if EV_USE_REALTIME
589 if (expect_true (have_realtime))
590 {
400 struct timespec ts; 591 struct timespec ts;
401 clock_gettime (CLOCK_REALTIME, &ts); 592 clock_gettime (CLOCK_REALTIME, &ts);
402 return ts.tv_sec + ts.tv_nsec * 1e-9; 593 return ts.tv_sec + ts.tv_nsec * 1e-9;
403#else 594 }
595#endif
596
404 struct timeval tv; 597 struct timeval tv;
405 gettimeofday (&tv, 0); 598 gettimeofday (&tv, 0);
406 return tv.tv_sec + tv.tv_usec * 1e-6; 599 return tv.tv_sec + tv.tv_usec * 1e-6;
407#endif
408} 600}
601#endif
409 602
410ev_tstamp inline_size 603inline_size ev_tstamp
411get_clock (void) 604get_clock (void)
412{ 605{
413#if EV_USE_MONOTONIC 606#if EV_USE_MONOTONIC
414 if (expect_true (have_monotonic)) 607 if (expect_true (have_monotonic))
415 { 608 {
441 ts.tv_sec = (time_t)delay; 634 ts.tv_sec = (time_t)delay;
442 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 635 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
443 636
444 nanosleep (&ts, 0); 637 nanosleep (&ts, 0);
445#elif defined(_WIN32) 638#elif defined(_WIN32)
446 Sleep (delay * 1e3); 639 Sleep ((unsigned long)(delay * 1e3));
447#else 640#else
448 struct timeval tv; 641 struct timeval tv;
449 642
450 tv.tv_sec = (time_t)delay; 643 tv.tv_sec = (time_t)delay;
451 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 644 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
452 645
646 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
647 /* somehting not guaranteed by newer posix versions, but guaranteed */
648 /* by older ones */
453 select (0, 0, 0, 0, &tv); 649 select (0, 0, 0, 0, &tv);
454#endif 650#endif
455 } 651 }
456} 652}
457 653
458/*****************************************************************************/ 654/*****************************************************************************/
459 655
460int inline_size 656#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
657
658/* find a suitable new size for the given array, */
659/* hopefully by rounding to a ncie-to-malloc size */
660inline_size int
461array_nextsize (int elem, int cur, int cnt) 661array_nextsize (int elem, int cur, int cnt)
462{ 662{
463 int ncur = cur + 1; 663 int ncur = cur + 1;
464 664
465 do 665 do
466 ncur <<= 1; 666 ncur <<= 1;
467 while (cnt > ncur); 667 while (cnt > ncur);
468 668
469 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 669 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
470 if (elem * ncur > 4096) 670 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
471 { 671 {
472 ncur *= elem; 672 ncur *= elem;
473 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 673 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
474 ncur = ncur - sizeof (void *) * 4; 674 ncur = ncur - sizeof (void *) * 4;
475 ncur /= elem; 675 ncur /= elem;
476 } 676 }
477 677
478 return ncur; 678 return ncur;
482array_realloc (int elem, void *base, int *cur, int cnt) 682array_realloc (int elem, void *base, int *cur, int cnt)
483{ 683{
484 *cur = array_nextsize (elem, *cur, cnt); 684 *cur = array_nextsize (elem, *cur, cnt);
485 return ev_realloc (base, elem * *cur); 685 return ev_realloc (base, elem * *cur);
486} 686}
687
688#define array_init_zero(base,count) \
689 memset ((void *)(base), 0, sizeof (*(base)) * (count))
487 690
488#define array_needsize(type,base,cur,cnt,init) \ 691#define array_needsize(type,base,cur,cnt,init) \
489 if (expect_false ((cnt) > (cur))) \ 692 if (expect_false ((cnt) > (cur))) \
490 { \ 693 { \
491 int ocur_ = (cur); \ 694 int ocur_ = (cur); \
503 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 706 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
504 } 707 }
505#endif 708#endif
506 709
507#define array_free(stem, idx) \ 710#define array_free(stem, idx) \
508 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 711 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
509 712
510/*****************************************************************************/ 713/*****************************************************************************/
714
715/* dummy callback for pending events */
716static void noinline
717pendingcb (EV_P_ ev_prepare *w, int revents)
718{
719}
511 720
512void noinline 721void noinline
513ev_feed_event (EV_P_ void *w, int revents) 722ev_feed_event (EV_P_ void *w, int revents)
514{ 723{
515 W w_ = (W)w; 724 W w_ = (W)w;
524 pendings [pri][w_->pending - 1].w = w_; 733 pendings [pri][w_->pending - 1].w = w_;
525 pendings [pri][w_->pending - 1].events = revents; 734 pendings [pri][w_->pending - 1].events = revents;
526 } 735 }
527} 736}
528 737
529void inline_speed 738inline_speed void
739feed_reverse (EV_P_ W w)
740{
741 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
742 rfeeds [rfeedcnt++] = w;
743}
744
745inline_size void
746feed_reverse_done (EV_P_ int revents)
747{
748 do
749 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
750 while (rfeedcnt);
751}
752
753inline_speed void
530queue_events (EV_P_ W *events, int eventcnt, int type) 754queue_events (EV_P_ W *events, int eventcnt, int type)
531{ 755{
532 int i; 756 int i;
533 757
534 for (i = 0; i < eventcnt; ++i) 758 for (i = 0; i < eventcnt; ++i)
535 ev_feed_event (EV_A_ events [i], type); 759 ev_feed_event (EV_A_ events [i], type);
536} 760}
537 761
538/*****************************************************************************/ 762/*****************************************************************************/
539 763
540void inline_size 764inline_speed void
541anfds_init (ANFD *base, int count)
542{
543 while (count--)
544 {
545 base->head = 0;
546 base->events = EV_NONE;
547 base->reify = 0;
548
549 ++base;
550 }
551}
552
553void inline_speed
554fd_event (EV_P_ int fd, int revents) 765fd_event (EV_P_ int fd, int revents)
555{ 766{
556 ANFD *anfd = anfds + fd; 767 ANFD *anfd = anfds + fd;
557 ev_io *w; 768 ev_io *w;
558 769
570{ 781{
571 if (fd >= 0 && fd < anfdmax) 782 if (fd >= 0 && fd < anfdmax)
572 fd_event (EV_A_ fd, revents); 783 fd_event (EV_A_ fd, revents);
573} 784}
574 785
575void inline_size 786/* make sure the external fd watch events are in-sync */
787/* with the kernel/libev internal state */
788inline_size void
576fd_reify (EV_P) 789fd_reify (EV_P)
577{ 790{
578 int i; 791 int i;
579 792
580 for (i = 0; i < fdchangecnt; ++i) 793 for (i = 0; i < fdchangecnt; ++i)
589 events |= (unsigned char)w->events; 802 events |= (unsigned char)w->events;
590 803
591#if EV_SELECT_IS_WINSOCKET 804#if EV_SELECT_IS_WINSOCKET
592 if (events) 805 if (events)
593 { 806 {
594 unsigned long argp; 807 unsigned long arg;
808 #ifdef EV_FD_TO_WIN32_HANDLE
809 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
810 #else
595 anfd->handle = _get_osfhandle (fd); 811 anfd->handle = _get_osfhandle (fd);
812 #endif
596 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 813 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
597 } 814 }
598#endif 815#endif
599 816
600 { 817 {
601 unsigned char o_events = anfd->events; 818 unsigned char o_events = anfd->events;
602 unsigned char o_reify = anfd->reify; 819 unsigned char o_reify = anfd->reify;
603 820
604 anfd->reify = 0; 821 anfd->reify = 0;
605 anfd->events = events; 822 anfd->events = events;
606 823
607 if (o_events != events || o_reify & EV_IOFDSET) 824 if (o_events != events || o_reify & EV__IOFDSET)
608 backend_modify (EV_A_ fd, o_events, events); 825 backend_modify (EV_A_ fd, o_events, events);
609 } 826 }
610 } 827 }
611 828
612 fdchangecnt = 0; 829 fdchangecnt = 0;
613} 830}
614 831
615void inline_size 832/* something about the given fd changed */
833inline_size void
616fd_change (EV_P_ int fd, int flags) 834fd_change (EV_P_ int fd, int flags)
617{ 835{
618 unsigned char reify = anfds [fd].reify; 836 unsigned char reify = anfds [fd].reify;
619 anfds [fd].reify |= flags; 837 anfds [fd].reify |= flags;
620 838
624 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 842 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
625 fdchanges [fdchangecnt - 1] = fd; 843 fdchanges [fdchangecnt - 1] = fd;
626 } 844 }
627} 845}
628 846
629void inline_speed 847/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
848inline_speed void
630fd_kill (EV_P_ int fd) 849fd_kill (EV_P_ int fd)
631{ 850{
632 ev_io *w; 851 ev_io *w;
633 852
634 while ((w = (ev_io *)anfds [fd].head)) 853 while ((w = (ev_io *)anfds [fd].head))
636 ev_io_stop (EV_A_ w); 855 ev_io_stop (EV_A_ w);
637 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 856 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
638 } 857 }
639} 858}
640 859
641int inline_size 860/* check whether the given fd is atcually valid, for error recovery */
861inline_size int
642fd_valid (int fd) 862fd_valid (int fd)
643{ 863{
644#ifdef _WIN32 864#ifdef _WIN32
645 return _get_osfhandle (fd) != -1; 865 return _get_osfhandle (fd) != -1;
646#else 866#else
654{ 874{
655 int fd; 875 int fd;
656 876
657 for (fd = 0; fd < anfdmax; ++fd) 877 for (fd = 0; fd < anfdmax; ++fd)
658 if (anfds [fd].events) 878 if (anfds [fd].events)
659 if (!fd_valid (fd) == -1 && errno == EBADF) 879 if (!fd_valid (fd) && errno == EBADF)
660 fd_kill (EV_A_ fd); 880 fd_kill (EV_A_ fd);
661} 881}
662 882
663/* called on ENOMEM in select/poll to kill some fds and retry */ 883/* called on ENOMEM in select/poll to kill some fds and retry */
664static void noinline 884static void noinline
682 902
683 for (fd = 0; fd < anfdmax; ++fd) 903 for (fd = 0; fd < anfdmax; ++fd)
684 if (anfds [fd].events) 904 if (anfds [fd].events)
685 { 905 {
686 anfds [fd].events = 0; 906 anfds [fd].events = 0;
907 anfds [fd].emask = 0;
687 fd_change (EV_A_ fd, EV_IOFDSET | 1); 908 fd_change (EV_A_ fd, EV__IOFDSET | 1);
688 } 909 }
689} 910}
690 911
691/*****************************************************************************/ 912/*****************************************************************************/
692 913
693void inline_speed 914/*
694upheap (WT *heap, int k) 915 * the heap functions want a real array index. array index 0 uis guaranteed to not
695{ 916 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
696 WT w = heap [k]; 917 * the branching factor of the d-tree.
918 */
697 919
698 while (k) 920/*
699 { 921 * at the moment we allow libev the luxury of two heaps,
700 int p = (k - 1) >> 1; 922 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
923 * which is more cache-efficient.
924 * the difference is about 5% with 50000+ watchers.
925 */
926#if EV_USE_4HEAP
701 927
702 if (heap [p]->at <= w->at) 928#define DHEAP 4
929#define HEAP0 (DHEAP - 1) /* index of first element in heap */
930#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
931#define UPHEAP_DONE(p,k) ((p) == (k))
932
933/* away from the root */
934inline_speed void
935downheap (ANHE *heap, int N, int k)
936{
937 ANHE he = heap [k];
938 ANHE *E = heap + N + HEAP0;
939
940 for (;;)
941 {
942 ev_tstamp minat;
943 ANHE *minpos;
944 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
945
946 /* find minimum child */
947 if (expect_true (pos + DHEAP - 1 < E))
948 {
949 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
950 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
951 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
952 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
953 }
954 else if (pos < E)
955 {
956 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
957 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
958 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
959 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
960 }
961 else
703 break; 962 break;
704 963
964 if (ANHE_at (he) <= minat)
965 break;
966
967 heap [k] = *minpos;
968 ev_active (ANHE_w (*minpos)) = k;
969
970 k = minpos - heap;
971 }
972
973 heap [k] = he;
974 ev_active (ANHE_w (he)) = k;
975}
976
977#else /* 4HEAP */
978
979#define HEAP0 1
980#define HPARENT(k) ((k) >> 1)
981#define UPHEAP_DONE(p,k) (!(p))
982
983/* away from the root */
984inline_speed void
985downheap (ANHE *heap, int N, int k)
986{
987 ANHE he = heap [k];
988
989 for (;;)
990 {
991 int c = k << 1;
992
993 if (c > N + HEAP0 - 1)
994 break;
995
996 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
997 ? 1 : 0;
998
999 if (ANHE_at (he) <= ANHE_at (heap [c]))
1000 break;
1001
1002 heap [k] = heap [c];
1003 ev_active (ANHE_w (heap [k])) = k;
1004
1005 k = c;
1006 }
1007
1008 heap [k] = he;
1009 ev_active (ANHE_w (he)) = k;
1010}
1011#endif
1012
1013/* towards the root */
1014inline_speed void
1015upheap (ANHE *heap, int k)
1016{
1017 ANHE he = heap [k];
1018
1019 for (;;)
1020 {
1021 int p = HPARENT (k);
1022
1023 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1024 break;
1025
705 heap [k] = heap [p]; 1026 heap [k] = heap [p];
706 ((W)heap [k])->active = k + 1; 1027 ev_active (ANHE_w (heap [k])) = k;
707 k = p; 1028 k = p;
708 } 1029 }
709 1030
710 heap [k] = w; 1031 heap [k] = he;
711 ((W)heap [k])->active = k + 1; 1032 ev_active (ANHE_w (he)) = k;
712} 1033}
713 1034
714void inline_speed 1035/* move an element suitably so it is in a correct place */
715downheap (WT *heap, int N, int k) 1036inline_size void
716{
717 WT w = heap [k];
718
719 for (;;)
720 {
721 int c = (k << 1) + 1;
722
723 if (c >= N)
724 break;
725
726 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
727 ? 1 : 0;
728
729 if (w->at <= heap [c]->at)
730 break;
731
732 heap [k] = heap [c];
733 ((W)heap [k])->active = k + 1;
734
735 k = c;
736 }
737
738 heap [k] = w;
739 ((W)heap [k])->active = k + 1;
740}
741
742void inline_size
743adjustheap (WT *heap, int N, int k) 1037adjustheap (ANHE *heap, int N, int k)
744{ 1038{
1039 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
745 upheap (heap, k); 1040 upheap (heap, k);
1041 else
746 downheap (heap, N, k); 1042 downheap (heap, N, k);
1043}
1044
1045/* rebuild the heap: this function is used only once and executed rarely */
1046inline_size void
1047reheap (ANHE *heap, int N)
1048{
1049 int i;
1050
1051 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1052 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1053 for (i = 0; i < N; ++i)
1054 upheap (heap, i + HEAP0);
747} 1055}
748 1056
749/*****************************************************************************/ 1057/*****************************************************************************/
750 1058
1059/* associate signal watchers to a signal signal */
751typedef struct 1060typedef struct
752{ 1061{
753 WL head; 1062 WL head;
754 sig_atomic_t volatile gotsig; 1063 EV_ATOMIC_T gotsig;
755} ANSIG; 1064} ANSIG;
756 1065
757static ANSIG *signals; 1066static ANSIG *signals;
758static int signalmax; 1067static int signalmax;
759 1068
760static int sigpipe [2]; 1069static EV_ATOMIC_T gotsig;
761static sig_atomic_t volatile gotsig;
762static ev_io sigev;
763 1070
764void inline_size 1071/*****************************************************************************/
765signals_init (ANSIG *base, int count)
766{
767 while (count--)
768 {
769 base->head = 0;
770 base->gotsig = 0;
771 1072
772 ++base; 1073/* used to prepare libev internal fd's */
773 } 1074/* this is not fork-safe */
774} 1075inline_speed void
775
776static void
777sighandler (int signum)
778{
779#if _WIN32
780 signal (signum, sighandler);
781#endif
782
783 signals [signum - 1].gotsig = 1;
784
785 if (!gotsig)
786 {
787 int old_errno = errno;
788 gotsig = 1;
789 write (sigpipe [1], &signum, 1);
790 errno = old_errno;
791 }
792}
793
794void noinline
795ev_feed_signal_event (EV_P_ int signum)
796{
797 WL w;
798
799#if EV_MULTIPLICITY
800 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
801#endif
802
803 --signum;
804
805 if (signum < 0 || signum >= signalmax)
806 return;
807
808 signals [signum].gotsig = 0;
809
810 for (w = signals [signum].head; w; w = w->next)
811 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
812}
813
814static void
815sigcb (EV_P_ ev_io *iow, int revents)
816{
817 int signum;
818
819 read (sigpipe [0], &revents, 1);
820 gotsig = 0;
821
822 for (signum = signalmax; signum--; )
823 if (signals [signum].gotsig)
824 ev_feed_signal_event (EV_A_ signum + 1);
825}
826
827void inline_speed
828fd_intern (int fd) 1076fd_intern (int fd)
829{ 1077{
830#ifdef _WIN32 1078#ifdef _WIN32
831 int arg = 1; 1079 unsigned long arg = 1;
832 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1080 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
833#else 1081#else
834 fcntl (fd, F_SETFD, FD_CLOEXEC); 1082 fcntl (fd, F_SETFD, FD_CLOEXEC);
835 fcntl (fd, F_SETFL, O_NONBLOCK); 1083 fcntl (fd, F_SETFL, O_NONBLOCK);
836#endif 1084#endif
837} 1085}
838 1086
839static void noinline 1087static void noinline
840siginit (EV_P) 1088evpipe_init (EV_P)
841{ 1089{
1090 if (!ev_is_active (&pipe_w))
1091 {
1092#if EV_USE_EVENTFD
1093 if ((evfd = eventfd (0, 0)) >= 0)
1094 {
1095 evpipe [0] = -1;
1096 fd_intern (evfd);
1097 ev_io_set (&pipe_w, evfd, EV_READ);
1098 }
1099 else
1100#endif
1101 {
1102 while (pipe (evpipe))
1103 ev_syserr ("(libev) error creating signal/async pipe");
1104
842 fd_intern (sigpipe [0]); 1105 fd_intern (evpipe [0]);
843 fd_intern (sigpipe [1]); 1106 fd_intern (evpipe [1]);
1107 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1108 }
844 1109
845 ev_io_set (&sigev, sigpipe [0], EV_READ);
846 ev_io_start (EV_A_ &sigev); 1110 ev_io_start (EV_A_ &pipe_w);
847 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1111 ev_unref (EV_A); /* watcher should not keep loop alive */
1112 }
1113}
1114
1115inline_size void
1116evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1117{
1118 if (!*flag)
1119 {
1120 int old_errno = errno; /* save errno because write might clobber it */
1121
1122 *flag = 1;
1123
1124#if EV_USE_EVENTFD
1125 if (evfd >= 0)
1126 {
1127 uint64_t counter = 1;
1128 write (evfd, &counter, sizeof (uint64_t));
1129 }
1130 else
1131#endif
1132 write (evpipe [1], &old_errno, 1);
1133
1134 errno = old_errno;
1135 }
1136}
1137
1138/* called whenever the libev signal pipe */
1139/* got some events (signal, async) */
1140static void
1141pipecb (EV_P_ ev_io *iow, int revents)
1142{
1143#if EV_USE_EVENTFD
1144 if (evfd >= 0)
1145 {
1146 uint64_t counter;
1147 read (evfd, &counter, sizeof (uint64_t));
1148 }
1149 else
1150#endif
1151 {
1152 char dummy;
1153 read (evpipe [0], &dummy, 1);
1154 }
1155
1156 if (gotsig && ev_is_default_loop (EV_A))
1157 {
1158 int signum;
1159 gotsig = 0;
1160
1161 for (signum = signalmax; signum--; )
1162 if (signals [signum].gotsig)
1163 ev_feed_signal_event (EV_A_ signum + 1);
1164 }
1165
1166#if EV_ASYNC_ENABLE
1167 if (gotasync)
1168 {
1169 int i;
1170 gotasync = 0;
1171
1172 for (i = asynccnt; i--; )
1173 if (asyncs [i]->sent)
1174 {
1175 asyncs [i]->sent = 0;
1176 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1177 }
1178 }
1179#endif
848} 1180}
849 1181
850/*****************************************************************************/ 1182/*****************************************************************************/
851 1183
1184static void
1185ev_sighandler (int signum)
1186{
1187#if EV_MULTIPLICITY
1188 struct ev_loop *loop = &default_loop_struct;
1189#endif
1190
1191#if _WIN32
1192 signal (signum, ev_sighandler);
1193#endif
1194
1195 signals [signum - 1].gotsig = 1;
1196 evpipe_write (EV_A_ &gotsig);
1197}
1198
1199void noinline
1200ev_feed_signal_event (EV_P_ int signum)
1201{
1202 WL w;
1203
1204#if EV_MULTIPLICITY
1205 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1206#endif
1207
1208 --signum;
1209
1210 if (signum < 0 || signum >= signalmax)
1211 return;
1212
1213 signals [signum].gotsig = 0;
1214
1215 for (w = signals [signum].head; w; w = w->next)
1216 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1217}
1218
1219/*****************************************************************************/
1220
852static WL childs [EV_PID_HASHSIZE]; 1221static WL childs [EV_PID_HASHSIZE];
853 1222
854#ifndef _WIN32 1223#ifndef _WIN32
855 1224
856static ev_signal childev; 1225static ev_signal childev;
857 1226
858void inline_speed 1227#ifndef WIFCONTINUED
1228# define WIFCONTINUED(status) 0
1229#endif
1230
1231/* handle a single child status event */
1232inline_speed void
859child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1233child_reap (EV_P_ int chain, int pid, int status)
860{ 1234{
861 ev_child *w; 1235 ev_child *w;
1236 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
862 1237
863 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1238 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1239 {
864 if (w->pid == pid || !w->pid) 1240 if ((w->pid == pid || !w->pid)
1241 && (!traced || (w->flags & 1)))
865 { 1242 {
866 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1243 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
867 w->rpid = pid; 1244 w->rpid = pid;
868 w->rstatus = status; 1245 w->rstatus = status;
869 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1246 ev_feed_event (EV_A_ (W)w, EV_CHILD);
870 } 1247 }
1248 }
871} 1249}
872 1250
873#ifndef WCONTINUED 1251#ifndef WCONTINUED
874# define WCONTINUED 0 1252# define WCONTINUED 0
875#endif 1253#endif
876 1254
1255/* called on sigchld etc., calls waitpid */
877static void 1256static void
878childcb (EV_P_ ev_signal *sw, int revents) 1257childcb (EV_P_ ev_signal *sw, int revents)
879{ 1258{
880 int pid, status; 1259 int pid, status;
881 1260
884 if (!WCONTINUED 1263 if (!WCONTINUED
885 || errno != EINVAL 1264 || errno != EINVAL
886 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1265 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
887 return; 1266 return;
888 1267
889 /* make sure we are called again until all childs have been reaped */ 1268 /* make sure we are called again until all children have been reaped */
890 /* we need to do it this way so that the callback gets called before we continue */ 1269 /* we need to do it this way so that the callback gets called before we continue */
891 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1270 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
892 1271
893 child_reap (EV_A_ sw, pid, pid, status); 1272 child_reap (EV_A_ pid, pid, status);
894 if (EV_PID_HASHSIZE > 1) 1273 if (EV_PID_HASHSIZE > 1)
895 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1274 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
896} 1275}
897 1276
898#endif 1277#endif
899 1278
900/*****************************************************************************/ 1279/*****************************************************************************/
962 /* kqueue is borked on everything but netbsd apparently */ 1341 /* kqueue is borked on everything but netbsd apparently */
963 /* it usually doesn't work correctly on anything but sockets and pipes */ 1342 /* it usually doesn't work correctly on anything but sockets and pipes */
964 flags &= ~EVBACKEND_KQUEUE; 1343 flags &= ~EVBACKEND_KQUEUE;
965#endif 1344#endif
966#ifdef __APPLE__ 1345#ifdef __APPLE__
967 // flags &= ~EVBACKEND_KQUEUE; for documentation 1346 /* only select works correctly on that "unix-certified" platform */
968 flags &= ~EVBACKEND_POLL; 1347 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1348 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
969#endif 1349#endif
970 1350
971 return flags; 1351 return flags;
972} 1352}
973 1353
978 1358
979 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1359 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
980 /* please fix it and tell me how to detect the fix */ 1360 /* please fix it and tell me how to detect the fix */
981 flags &= ~EVBACKEND_EPOLL; 1361 flags &= ~EVBACKEND_EPOLL;
982 1362
983#ifdef __APPLE__
984 /* is there anything thats not broken on darwin? */
985 flags &= ~EVBACKEND_KQUEUE;
986#endif
987
988 return flags; 1363 return flags;
989} 1364}
990 1365
991unsigned int 1366unsigned int
992ev_backend (EV_P) 1367ev_backend (EV_P)
993{ 1368{
994 return backend; 1369 return backend;
995} 1370}
996 1371
1372#if EV_MINIMAL < 2
997unsigned int 1373unsigned int
998ev_loop_count (EV_P) 1374ev_loop_count (EV_P)
999{ 1375{
1000 return loop_count; 1376 return loop_count;
1001} 1377}
1002 1378
1379unsigned int
1380ev_loop_depth (EV_P)
1381{
1382 return loop_depth;
1383}
1384
1003void 1385void
1004ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1386ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1005{ 1387{
1006 io_blocktime = interval; 1388 io_blocktime = interval;
1007} 1389}
1010ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1392ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1011{ 1393{
1012 timeout_blocktime = interval; 1394 timeout_blocktime = interval;
1013} 1395}
1014 1396
1397void
1398ev_set_userdata (EV_P_ void *data)
1399{
1400 userdata = data;
1401}
1402
1403void *
1404ev_userdata (EV_P)
1405{
1406 return userdata;
1407}
1408
1409void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1410{
1411 invoke_cb = invoke_pending_cb;
1412}
1413
1414void ev_set_blocking_cb (EV_P_ void (*suspend_cb_)(EV_P), void (*resume_cb_)(EV_P))
1415{
1416 suspend_cb = suspend_cb_;
1417 resume_cb = resume_cb_;
1418}
1419#endif
1420
1421/* initialise a loop structure, must be zero-initialised */
1015static void noinline 1422static void noinline
1016loop_init (EV_P_ unsigned int flags) 1423loop_init (EV_P_ unsigned int flags)
1017{ 1424{
1018 if (!backend) 1425 if (!backend)
1019 { 1426 {
1427#if EV_USE_REALTIME
1428 if (!have_realtime)
1429 {
1430 struct timespec ts;
1431
1432 if (!clock_gettime (CLOCK_REALTIME, &ts))
1433 have_realtime = 1;
1434 }
1435#endif
1436
1020#if EV_USE_MONOTONIC 1437#if EV_USE_MONOTONIC
1438 if (!have_monotonic)
1021 { 1439 {
1022 struct timespec ts; 1440 struct timespec ts;
1441
1023 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1442 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1024 have_monotonic = 1; 1443 have_monotonic = 1;
1025 } 1444 }
1026#endif 1445#endif
1027 1446
1028 ev_rt_now = ev_time (); 1447 ev_rt_now = ev_time ();
1029 mn_now = get_clock (); 1448 mn_now = get_clock ();
1030 now_floor = mn_now; 1449 now_floor = mn_now;
1031 rtmn_diff = ev_rt_now - mn_now; 1450 rtmn_diff = ev_rt_now - mn_now;
1451#if EV_MINIMAL < 2
1452 invoke_cb = ev_invoke_pending;
1453#endif
1032 1454
1033 io_blocktime = 0.; 1455 io_blocktime = 0.;
1034 timeout_blocktime = 0.; 1456 timeout_blocktime = 0.;
1457 backend = 0;
1458 backend_fd = -1;
1459 gotasync = 0;
1460#if EV_USE_INOTIFY
1461 fs_fd = -2;
1462#endif
1035 1463
1036 /* pid check not overridable via env */ 1464 /* pid check not overridable via env */
1037#ifndef _WIN32 1465#ifndef _WIN32
1038 if (flags & EVFLAG_FORKCHECK) 1466 if (flags & EVFLAG_FORKCHECK)
1039 curpid = getpid (); 1467 curpid = getpid ();
1042 if (!(flags & EVFLAG_NOENV) 1470 if (!(flags & EVFLAG_NOENV)
1043 && !enable_secure () 1471 && !enable_secure ()
1044 && getenv ("LIBEV_FLAGS")) 1472 && getenv ("LIBEV_FLAGS"))
1045 flags = atoi (getenv ("LIBEV_FLAGS")); 1473 flags = atoi (getenv ("LIBEV_FLAGS"));
1046 1474
1047 if (!(flags & 0x0000ffffUL)) 1475 if (!(flags & 0x0000ffffU))
1048 flags |= ev_recommended_backends (); 1476 flags |= ev_recommended_backends ();
1049
1050 backend = 0;
1051 backend_fd = -1;
1052#if EV_USE_INOTIFY
1053 fs_fd = -2;
1054#endif
1055 1477
1056#if EV_USE_PORT 1478#if EV_USE_PORT
1057 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1479 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1058#endif 1480#endif
1059#if EV_USE_KQUEUE 1481#if EV_USE_KQUEUE
1067#endif 1489#endif
1068#if EV_USE_SELECT 1490#if EV_USE_SELECT
1069 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1491 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1070#endif 1492#endif
1071 1493
1494 ev_prepare_init (&pending_w, pendingcb);
1495
1072 ev_init (&sigev, sigcb); 1496 ev_init (&pipe_w, pipecb);
1073 ev_set_priority (&sigev, EV_MAXPRI); 1497 ev_set_priority (&pipe_w, EV_MAXPRI);
1074 } 1498 }
1075} 1499}
1076 1500
1501/* free up a loop structure */
1077static void noinline 1502static void noinline
1078loop_destroy (EV_P) 1503loop_destroy (EV_P)
1079{ 1504{
1080 int i; 1505 int i;
1506
1507 if (ev_is_active (&pipe_w))
1508 {
1509 ev_ref (EV_A); /* signal watcher */
1510 ev_io_stop (EV_A_ &pipe_w);
1511
1512#if EV_USE_EVENTFD
1513 if (evfd >= 0)
1514 close (evfd);
1515#endif
1516
1517 if (evpipe [0] >= 0)
1518 {
1519 close (evpipe [0]);
1520 close (evpipe [1]);
1521 }
1522 }
1081 1523
1082#if EV_USE_INOTIFY 1524#if EV_USE_INOTIFY
1083 if (fs_fd >= 0) 1525 if (fs_fd >= 0)
1084 close (fs_fd); 1526 close (fs_fd);
1085#endif 1527#endif
1112 } 1554 }
1113 1555
1114 ev_free (anfds); anfdmax = 0; 1556 ev_free (anfds); anfdmax = 0;
1115 1557
1116 /* have to use the microsoft-never-gets-it-right macro */ 1558 /* have to use the microsoft-never-gets-it-right macro */
1559 array_free (rfeed, EMPTY);
1117 array_free (fdchange, EMPTY); 1560 array_free (fdchange, EMPTY);
1118 array_free (timer, EMPTY); 1561 array_free (timer, EMPTY);
1119#if EV_PERIODIC_ENABLE 1562#if EV_PERIODIC_ENABLE
1120 array_free (periodic, EMPTY); 1563 array_free (periodic, EMPTY);
1121#endif 1564#endif
1122#if EV_FORK_ENABLE 1565#if EV_FORK_ENABLE
1123 array_free (fork, EMPTY); 1566 array_free (fork, EMPTY);
1124#endif 1567#endif
1125 array_free (prepare, EMPTY); 1568 array_free (prepare, EMPTY);
1126 array_free (check, EMPTY); 1569 array_free (check, EMPTY);
1570#if EV_ASYNC_ENABLE
1571 array_free (async, EMPTY);
1572#endif
1127 1573
1128 backend = 0; 1574 backend = 0;
1129} 1575}
1130 1576
1577#if EV_USE_INOTIFY
1131void inline_size infy_fork (EV_P); 1578inline_size void infy_fork (EV_P);
1579#endif
1132 1580
1133void inline_size 1581inline_size void
1134loop_fork (EV_P) 1582loop_fork (EV_P)
1135{ 1583{
1136#if EV_USE_PORT 1584#if EV_USE_PORT
1137 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1585 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1138#endif 1586#endif
1144#endif 1592#endif
1145#if EV_USE_INOTIFY 1593#if EV_USE_INOTIFY
1146 infy_fork (EV_A); 1594 infy_fork (EV_A);
1147#endif 1595#endif
1148 1596
1149 if (ev_is_active (&sigev)) 1597 if (ev_is_active (&pipe_w))
1150 { 1598 {
1151 /* default loop */ 1599 /* this "locks" the handlers against writing to the pipe */
1600 /* while we modify the fd vars */
1601 gotsig = 1;
1602#if EV_ASYNC_ENABLE
1603 gotasync = 1;
1604#endif
1152 1605
1153 ev_ref (EV_A); 1606 ev_ref (EV_A);
1154 ev_io_stop (EV_A_ &sigev); 1607 ev_io_stop (EV_A_ &pipe_w);
1608
1609#if EV_USE_EVENTFD
1610 if (evfd >= 0)
1611 close (evfd);
1612#endif
1613
1614 if (evpipe [0] >= 0)
1615 {
1155 close (sigpipe [0]); 1616 close (evpipe [0]);
1156 close (sigpipe [1]); 1617 close (evpipe [1]);
1618 }
1157 1619
1158 while (pipe (sigpipe))
1159 syserr ("(libev) error creating pipe");
1160
1161 siginit (EV_A); 1620 evpipe_init (EV_A);
1621 /* now iterate over everything, in case we missed something */
1622 pipecb (EV_A_ &pipe_w, EV_READ);
1162 } 1623 }
1163 1624
1164 postfork = 0; 1625 postfork = 0;
1165} 1626}
1166 1627
1167#if EV_MULTIPLICITY 1628#if EV_MULTIPLICITY
1629
1168struct ev_loop * 1630struct ev_loop *
1169ev_loop_new (unsigned int flags) 1631ev_loop_new (unsigned int flags)
1170{ 1632{
1171 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1633 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1172 1634
1188} 1650}
1189 1651
1190void 1652void
1191ev_loop_fork (EV_P) 1653ev_loop_fork (EV_P)
1192{ 1654{
1193 postfork = 1; 1655 postfork = 1; /* must be in line with ev_default_fork */
1194} 1656}
1657#endif /* multiplicity */
1195 1658
1659#if EV_VERIFY
1660static void noinline
1661verify_watcher (EV_P_ W w)
1662{
1663 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1664
1665 if (w->pending)
1666 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1667}
1668
1669static void noinline
1670verify_heap (EV_P_ ANHE *heap, int N)
1671{
1672 int i;
1673
1674 for (i = HEAP0; i < N + HEAP0; ++i)
1675 {
1676 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1677 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1678 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1679
1680 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1681 }
1682}
1683
1684static void noinline
1685array_verify (EV_P_ W *ws, int cnt)
1686{
1687 while (cnt--)
1688 {
1689 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1690 verify_watcher (EV_A_ ws [cnt]);
1691 }
1692}
1693#endif
1694
1695#if EV_MINIMAL < 2
1696void
1697ev_loop_verify (EV_P)
1698{
1699#if EV_VERIFY
1700 int i;
1701 WL w;
1702
1703 assert (activecnt >= -1);
1704
1705 assert (fdchangemax >= fdchangecnt);
1706 for (i = 0; i < fdchangecnt; ++i)
1707 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1708
1709 assert (anfdmax >= 0);
1710 for (i = 0; i < anfdmax; ++i)
1711 for (w = anfds [i].head; w; w = w->next)
1712 {
1713 verify_watcher (EV_A_ (W)w);
1714 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1715 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1716 }
1717
1718 assert (timermax >= timercnt);
1719 verify_heap (EV_A_ timers, timercnt);
1720
1721#if EV_PERIODIC_ENABLE
1722 assert (periodicmax >= periodiccnt);
1723 verify_heap (EV_A_ periodics, periodiccnt);
1724#endif
1725
1726 for (i = NUMPRI; i--; )
1727 {
1728 assert (pendingmax [i] >= pendingcnt [i]);
1729#if EV_IDLE_ENABLE
1730 assert (idleall >= 0);
1731 assert (idlemax [i] >= idlecnt [i]);
1732 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1733#endif
1734 }
1735
1736#if EV_FORK_ENABLE
1737 assert (forkmax >= forkcnt);
1738 array_verify (EV_A_ (W *)forks, forkcnt);
1739#endif
1740
1741#if EV_ASYNC_ENABLE
1742 assert (asyncmax >= asynccnt);
1743 array_verify (EV_A_ (W *)asyncs, asynccnt);
1744#endif
1745
1746 assert (preparemax >= preparecnt);
1747 array_verify (EV_A_ (W *)prepares, preparecnt);
1748
1749 assert (checkmax >= checkcnt);
1750 array_verify (EV_A_ (W *)checks, checkcnt);
1751
1752# if 0
1753 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1754 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1755# endif
1756#endif
1757}
1196#endif 1758#endif
1197 1759
1198#if EV_MULTIPLICITY 1760#if EV_MULTIPLICITY
1199struct ev_loop * 1761struct ev_loop *
1200ev_default_loop_init (unsigned int flags) 1762ev_default_loop_init (unsigned int flags)
1201#else 1763#else
1202int 1764int
1203ev_default_loop (unsigned int flags) 1765ev_default_loop (unsigned int flags)
1204#endif 1766#endif
1205{ 1767{
1206 if (sigpipe [0] == sigpipe [1])
1207 if (pipe (sigpipe))
1208 return 0;
1209
1210 if (!ev_default_loop_ptr) 1768 if (!ev_default_loop_ptr)
1211 { 1769 {
1212#if EV_MULTIPLICITY 1770#if EV_MULTIPLICITY
1213 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1771 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1214#else 1772#else
1217 1775
1218 loop_init (EV_A_ flags); 1776 loop_init (EV_A_ flags);
1219 1777
1220 if (ev_backend (EV_A)) 1778 if (ev_backend (EV_A))
1221 { 1779 {
1222 siginit (EV_A);
1223
1224#ifndef _WIN32 1780#ifndef _WIN32
1225 ev_signal_init (&childev, childcb, SIGCHLD); 1781 ev_signal_init (&childev, childcb, SIGCHLD);
1226 ev_set_priority (&childev, EV_MAXPRI); 1782 ev_set_priority (&childev, EV_MAXPRI);
1227 ev_signal_start (EV_A_ &childev); 1783 ev_signal_start (EV_A_ &childev);
1228 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1784 ev_unref (EV_A); /* child watcher should not keep loop alive */
1240{ 1796{
1241#if EV_MULTIPLICITY 1797#if EV_MULTIPLICITY
1242 struct ev_loop *loop = ev_default_loop_ptr; 1798 struct ev_loop *loop = ev_default_loop_ptr;
1243#endif 1799#endif
1244 1800
1801 ev_default_loop_ptr = 0;
1802
1245#ifndef _WIN32 1803#ifndef _WIN32
1246 ev_ref (EV_A); /* child watcher */ 1804 ev_ref (EV_A); /* child watcher */
1247 ev_signal_stop (EV_A_ &childev); 1805 ev_signal_stop (EV_A_ &childev);
1248#endif 1806#endif
1249 1807
1250 ev_ref (EV_A); /* signal watcher */
1251 ev_io_stop (EV_A_ &sigev);
1252
1253 close (sigpipe [0]); sigpipe [0] = 0;
1254 close (sigpipe [1]); sigpipe [1] = 0;
1255
1256 loop_destroy (EV_A); 1808 loop_destroy (EV_A);
1257} 1809}
1258 1810
1259void 1811void
1260ev_default_fork (void) 1812ev_default_fork (void)
1261{ 1813{
1262#if EV_MULTIPLICITY 1814#if EV_MULTIPLICITY
1263 struct ev_loop *loop = ev_default_loop_ptr; 1815 struct ev_loop *loop = ev_default_loop_ptr;
1264#endif 1816#endif
1265 1817
1266 if (backend) 1818 postfork = 1; /* must be in line with ev_loop_fork */
1267 postfork = 1;
1268} 1819}
1269 1820
1270/*****************************************************************************/ 1821/*****************************************************************************/
1271 1822
1272void 1823void
1273ev_invoke (EV_P_ void *w, int revents) 1824ev_invoke (EV_P_ void *w, int revents)
1274{ 1825{
1275 EV_CB_INVOKE ((W)w, revents); 1826 EV_CB_INVOKE ((W)w, revents);
1276} 1827}
1277 1828
1278void inline_speed 1829void noinline
1279call_pending (EV_P) 1830ev_invoke_pending (EV_P)
1280{ 1831{
1281 int pri; 1832 int pri;
1282 1833
1283 for (pri = NUMPRI; pri--; ) 1834 for (pri = NUMPRI; pri--; )
1284 while (pendingcnt [pri]) 1835 while (pendingcnt [pri])
1285 { 1836 {
1286 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1837 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1287 1838
1288 if (expect_true (p->w))
1289 {
1290 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1839 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1840 /* ^ this is no longer true, as pending_w could be here */
1291 1841
1292 p->w->pending = 0; 1842 p->w->pending = 0;
1293 EV_CB_INVOKE (p->w, p->events); 1843 EV_CB_INVOKE (p->w, p->events);
1294 } 1844 EV_FREQUENT_CHECK;
1295 } 1845 }
1296} 1846}
1297 1847
1298void inline_size
1299timers_reify (EV_P)
1300{
1301 while (timercnt && ((WT)timers [0])->at <= mn_now)
1302 {
1303 ev_timer *w = (ev_timer *)timers [0];
1304
1305 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1306
1307 /* first reschedule or stop timer */
1308 if (w->repeat)
1309 {
1310 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1311
1312 ((WT)w)->at += w->repeat;
1313 if (((WT)w)->at < mn_now)
1314 ((WT)w)->at = mn_now;
1315
1316 downheap (timers, timercnt, 0);
1317 }
1318 else
1319 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1320
1321 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1322 }
1323}
1324
1325#if EV_PERIODIC_ENABLE
1326void inline_size
1327periodics_reify (EV_P)
1328{
1329 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1330 {
1331 ev_periodic *w = (ev_periodic *)periodics [0];
1332
1333 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1334
1335 /* first reschedule or stop timer */
1336 if (w->reschedule_cb)
1337 {
1338 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1339 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1340 downheap (periodics, periodiccnt, 0);
1341 }
1342 else if (w->interval)
1343 {
1344 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1345 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1346 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1347 downheap (periodics, periodiccnt, 0);
1348 }
1349 else
1350 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1351
1352 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1353 }
1354}
1355
1356static void noinline
1357periodics_reschedule (EV_P)
1358{
1359 int i;
1360
1361 /* adjust periodics after time jump */
1362 for (i = 0; i < periodiccnt; ++i)
1363 {
1364 ev_periodic *w = (ev_periodic *)periodics [i];
1365
1366 if (w->reschedule_cb)
1367 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1368 else if (w->interval)
1369 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1370 }
1371
1372 /* now rebuild the heap */
1373 for (i = periodiccnt >> 1; i--; )
1374 downheap (periodics, periodiccnt, i);
1375}
1376#endif
1377
1378#if EV_IDLE_ENABLE 1848#if EV_IDLE_ENABLE
1379void inline_size 1849/* make idle watchers pending. this handles the "call-idle */
1850/* only when higher priorities are idle" logic */
1851inline_size void
1380idle_reify (EV_P) 1852idle_reify (EV_P)
1381{ 1853{
1382 if (expect_false (idleall)) 1854 if (expect_false (idleall))
1383 { 1855 {
1384 int pri; 1856 int pri;
1396 } 1868 }
1397 } 1869 }
1398} 1870}
1399#endif 1871#endif
1400 1872
1401void inline_speed 1873/* make timers pending */
1874inline_size void
1875timers_reify (EV_P)
1876{
1877 EV_FREQUENT_CHECK;
1878
1879 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1880 {
1881 do
1882 {
1883 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1884
1885 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1886
1887 /* first reschedule or stop timer */
1888 if (w->repeat)
1889 {
1890 ev_at (w) += w->repeat;
1891 if (ev_at (w) < mn_now)
1892 ev_at (w) = mn_now;
1893
1894 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1895
1896 ANHE_at_cache (timers [HEAP0]);
1897 downheap (timers, timercnt, HEAP0);
1898 }
1899 else
1900 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1901
1902 EV_FREQUENT_CHECK;
1903 feed_reverse (EV_A_ (W)w);
1904 }
1905 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1906
1907 feed_reverse_done (EV_A_ EV_TIMEOUT);
1908 }
1909}
1910
1911#if EV_PERIODIC_ENABLE
1912/* make periodics pending */
1913inline_size void
1914periodics_reify (EV_P)
1915{
1916 EV_FREQUENT_CHECK;
1917
1918 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1919 {
1920 int feed_count = 0;
1921
1922 do
1923 {
1924 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1925
1926 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1927
1928 /* first reschedule or stop timer */
1929 if (w->reschedule_cb)
1930 {
1931 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1932
1933 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1934
1935 ANHE_at_cache (periodics [HEAP0]);
1936 downheap (periodics, periodiccnt, HEAP0);
1937 }
1938 else if (w->interval)
1939 {
1940 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1941 /* if next trigger time is not sufficiently in the future, put it there */
1942 /* this might happen because of floating point inexactness */
1943 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1944 {
1945 ev_at (w) += w->interval;
1946
1947 /* if interval is unreasonably low we might still have a time in the past */
1948 /* so correct this. this will make the periodic very inexact, but the user */
1949 /* has effectively asked to get triggered more often than possible */
1950 if (ev_at (w) < ev_rt_now)
1951 ev_at (w) = ev_rt_now;
1952 }
1953
1954 ANHE_at_cache (periodics [HEAP0]);
1955 downheap (periodics, periodiccnt, HEAP0);
1956 }
1957 else
1958 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1959
1960 EV_FREQUENT_CHECK;
1961 feed_reverse (EV_A_ (W)w);
1962 }
1963 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1964
1965 feed_reverse_done (EV_A_ EV_PERIODIC);
1966 }
1967}
1968
1969/* simply recalculate all periodics */
1970/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1971static void noinline
1972periodics_reschedule (EV_P)
1973{
1974 int i;
1975
1976 /* adjust periodics after time jump */
1977 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1978 {
1979 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1980
1981 if (w->reschedule_cb)
1982 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1983 else if (w->interval)
1984 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1985
1986 ANHE_at_cache (periodics [i]);
1987 }
1988
1989 reheap (periodics, periodiccnt);
1990}
1991#endif
1992
1993/* adjust all timers by a given offset */
1994static void noinline
1995timers_reschedule (EV_P_ ev_tstamp adjust)
1996{
1997 int i;
1998
1999 for (i = 0; i < timercnt; ++i)
2000 {
2001 ANHE *he = timers + i + HEAP0;
2002 ANHE_w (*he)->at += adjust;
2003 ANHE_at_cache (*he);
2004 }
2005}
2006
2007/* fetch new monotonic and realtime times from the kernel */
2008/* also detetc if there was a timejump, and act accordingly */
2009inline_speed void
1402time_update (EV_P_ ev_tstamp max_block) 2010time_update (EV_P_ ev_tstamp max_block)
1403{ 2011{
1404 int i;
1405
1406#if EV_USE_MONOTONIC 2012#if EV_USE_MONOTONIC
1407 if (expect_true (have_monotonic)) 2013 if (expect_true (have_monotonic))
1408 { 2014 {
2015 int i;
1409 ev_tstamp odiff = rtmn_diff; 2016 ev_tstamp odiff = rtmn_diff;
1410 2017
1411 mn_now = get_clock (); 2018 mn_now = get_clock ();
1412 2019
1413 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2020 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1431 */ 2038 */
1432 for (i = 4; --i; ) 2039 for (i = 4; --i; )
1433 { 2040 {
1434 rtmn_diff = ev_rt_now - mn_now; 2041 rtmn_diff = ev_rt_now - mn_now;
1435 2042
1436 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2043 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1437 return; /* all is well */ 2044 return; /* all is well */
1438 2045
1439 ev_rt_now = ev_time (); 2046 ev_rt_now = ev_time ();
1440 mn_now = get_clock (); 2047 mn_now = get_clock ();
1441 now_floor = mn_now; 2048 now_floor = mn_now;
1442 } 2049 }
1443 2050
2051 /* no timer adjustment, as the monotonic clock doesn't jump */
2052 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1444# if EV_PERIODIC_ENABLE 2053# if EV_PERIODIC_ENABLE
1445 periodics_reschedule (EV_A); 2054 periodics_reschedule (EV_A);
1446# endif 2055# endif
1447 /* no timer adjustment, as the monotonic clock doesn't jump */
1448 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1449 } 2056 }
1450 else 2057 else
1451#endif 2058#endif
1452 { 2059 {
1453 ev_rt_now = ev_time (); 2060 ev_rt_now = ev_time ();
1454 2061
1455 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2062 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1456 { 2063 {
2064 /* adjust timers. this is easy, as the offset is the same for all of them */
2065 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1457#if EV_PERIODIC_ENABLE 2066#if EV_PERIODIC_ENABLE
1458 periodics_reschedule (EV_A); 2067 periodics_reschedule (EV_A);
1459#endif 2068#endif
1460 /* adjust timers. this is easy, as the offset is the same for all of them */
1461 for (i = 0; i < timercnt; ++i)
1462 ((WT)timers [i])->at += ev_rt_now - mn_now;
1463 } 2069 }
1464 2070
1465 mn_now = ev_rt_now; 2071 mn_now = ev_rt_now;
1466 } 2072 }
1467} 2073}
1468 2074
1469void 2075void
1470ev_ref (EV_P)
1471{
1472 ++activecnt;
1473}
1474
1475void
1476ev_unref (EV_P)
1477{
1478 --activecnt;
1479}
1480
1481static int loop_done;
1482
1483void
1484ev_loop (EV_P_ int flags) 2076ev_loop (EV_P_ int flags)
1485{ 2077{
1486 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2078#if EV_MINIMAL < 2
1487 ? EVUNLOOP_ONE 2079 ++loop_depth;
1488 : EVUNLOOP_CANCEL; 2080#endif
1489 2081
2082 loop_done = EVUNLOOP_CANCEL;
2083
1490 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2084 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1491 2085
1492 do 2086 do
1493 { 2087 {
2088#if EV_VERIFY >= 2
2089 ev_loop_verify (EV_A);
2090#endif
2091
1494#ifndef _WIN32 2092#ifndef _WIN32
1495 if (expect_false (curpid)) /* penalise the forking check even more */ 2093 if (expect_false (curpid)) /* penalise the forking check even more */
1496 if (expect_false (getpid () != curpid)) 2094 if (expect_false (getpid () != curpid))
1497 { 2095 {
1498 curpid = getpid (); 2096 curpid = getpid ();
1504 /* we might have forked, so queue fork handlers */ 2102 /* we might have forked, so queue fork handlers */
1505 if (expect_false (postfork)) 2103 if (expect_false (postfork))
1506 if (forkcnt) 2104 if (forkcnt)
1507 { 2105 {
1508 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2106 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1509 call_pending (EV_A); 2107 EV_INVOKE_PENDING;
1510 } 2108 }
1511#endif 2109#endif
1512 2110
1513 /* queue prepare watchers (and execute them) */ 2111 /* queue prepare watchers (and execute them) */
1514 if (expect_false (preparecnt)) 2112 if (expect_false (preparecnt))
1515 { 2113 {
1516 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2114 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1517 call_pending (EV_A); 2115 EV_INVOKE_PENDING;
1518 } 2116 }
1519
1520 if (expect_false (!activecnt))
1521 break;
1522 2117
1523 /* we might have forked, so reify kernel state if necessary */ 2118 /* we might have forked, so reify kernel state if necessary */
1524 if (expect_false (postfork)) 2119 if (expect_false (postfork))
1525 loop_fork (EV_A); 2120 loop_fork (EV_A);
1526 2121
1532 ev_tstamp waittime = 0.; 2127 ev_tstamp waittime = 0.;
1533 ev_tstamp sleeptime = 0.; 2128 ev_tstamp sleeptime = 0.;
1534 2129
1535 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2130 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1536 { 2131 {
2132 /* remember old timestamp for io_blocktime calculation */
2133 ev_tstamp prev_mn_now = mn_now;
2134
1537 /* update time to cancel out callback processing overhead */ 2135 /* update time to cancel out callback processing overhead */
1538 time_update (EV_A_ 1e100); 2136 time_update (EV_A_ 1e100);
1539 2137
1540 waittime = MAX_BLOCKTIME; 2138 waittime = MAX_BLOCKTIME;
1541 2139
1542 if (timercnt) 2140 if (timercnt)
1543 { 2141 {
1544 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2142 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1545 if (waittime > to) waittime = to; 2143 if (waittime > to) waittime = to;
1546 } 2144 }
1547 2145
1548#if EV_PERIODIC_ENABLE 2146#if EV_PERIODIC_ENABLE
1549 if (periodiccnt) 2147 if (periodiccnt)
1550 { 2148 {
1551 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2149 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1552 if (waittime > to) waittime = to; 2150 if (waittime > to) waittime = to;
1553 } 2151 }
1554#endif 2152#endif
1555 2153
2154 /* don't let timeouts decrease the waittime below timeout_blocktime */
1556 if (expect_false (waittime < timeout_blocktime)) 2155 if (expect_false (waittime < timeout_blocktime))
1557 waittime = timeout_blocktime; 2156 waittime = timeout_blocktime;
1558 2157
1559 sleeptime = waittime - backend_fudge; 2158 /* extra check because io_blocktime is commonly 0 */
1560
1561 if (expect_true (sleeptime > io_blocktime)) 2159 if (expect_false (io_blocktime))
1562 sleeptime = io_blocktime;
1563
1564 if (sleeptime)
1565 { 2160 {
2161 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2162
2163 if (sleeptime > waittime - backend_fudge)
2164 sleeptime = waittime - backend_fudge;
2165
2166 if (expect_true (sleeptime > 0.))
2167 {
1566 ev_sleep (sleeptime); 2168 ev_sleep (sleeptime);
1567 waittime -= sleeptime; 2169 waittime -= sleeptime;
2170 }
1568 } 2171 }
1569 } 2172 }
1570 2173
2174#if EV_MINIMAL < 2
1571 ++loop_count; 2175 ++loop_count;
2176#endif
1572 backend_poll (EV_A_ waittime); 2177 backend_poll (EV_A_ waittime);
1573 2178
1574 /* update ev_rt_now, do magic */ 2179 /* update ev_rt_now, do magic */
1575 time_update (EV_A_ waittime + sleeptime); 2180 time_update (EV_A_ waittime + sleeptime);
1576 } 2181 }
1588 2193
1589 /* queue check watchers, to be executed first */ 2194 /* queue check watchers, to be executed first */
1590 if (expect_false (checkcnt)) 2195 if (expect_false (checkcnt))
1591 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2196 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1592 2197
1593 call_pending (EV_A); 2198 EV_INVOKE_PENDING;
1594
1595 } 2199 }
1596 while (expect_true (activecnt && !loop_done)); 2200 while (expect_true (
2201 activecnt
2202 && !loop_done
2203 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2204 ));
1597 2205
1598 if (loop_done == EVUNLOOP_ONE) 2206 if (loop_done == EVUNLOOP_ONE)
1599 loop_done = EVUNLOOP_CANCEL; 2207 loop_done = EVUNLOOP_CANCEL;
2208
2209#if EV_MINIMAL < 2
2210 --loop_depth;
2211#endif
1600} 2212}
1601 2213
1602void 2214void
1603ev_unloop (EV_P_ int how) 2215ev_unloop (EV_P_ int how)
1604{ 2216{
1605 loop_done = how; 2217 loop_done = how;
1606} 2218}
1607 2219
2220void
2221ev_ref (EV_P)
2222{
2223 ++activecnt;
2224}
2225
2226void
2227ev_unref (EV_P)
2228{
2229 --activecnt;
2230}
2231
2232void
2233ev_now_update (EV_P)
2234{
2235 time_update (EV_A_ 1e100);
2236}
2237
2238void
2239ev_suspend (EV_P)
2240{
2241 ev_now_update (EV_A);
2242}
2243
2244void
2245ev_resume (EV_P)
2246{
2247 ev_tstamp mn_prev = mn_now;
2248
2249 ev_now_update (EV_A);
2250 timers_reschedule (EV_A_ mn_now - mn_prev);
2251#if EV_PERIODIC_ENABLE
2252 /* TODO: really do this? */
2253 periodics_reschedule (EV_A);
2254#endif
2255}
2256
1608/*****************************************************************************/ 2257/*****************************************************************************/
2258/* singly-linked list management, used when the expected list length is short */
1609 2259
1610void inline_size 2260inline_size void
1611wlist_add (WL *head, WL elem) 2261wlist_add (WL *head, WL elem)
1612{ 2262{
1613 elem->next = *head; 2263 elem->next = *head;
1614 *head = elem; 2264 *head = elem;
1615} 2265}
1616 2266
1617void inline_size 2267inline_size void
1618wlist_del (WL *head, WL elem) 2268wlist_del (WL *head, WL elem)
1619{ 2269{
1620 while (*head) 2270 while (*head)
1621 { 2271 {
1622 if (*head == elem) 2272 if (*head == elem)
1627 2277
1628 head = &(*head)->next; 2278 head = &(*head)->next;
1629 } 2279 }
1630} 2280}
1631 2281
1632void inline_speed 2282/* internal, faster, version of ev_clear_pending */
2283inline_speed void
1633clear_pending (EV_P_ W w) 2284clear_pending (EV_P_ W w)
1634{ 2285{
1635 if (w->pending) 2286 if (w->pending)
1636 { 2287 {
1637 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1638 w->pending = 0; 2289 w->pending = 0;
1639 } 2290 }
1640} 2291}
1641 2292
1642int 2293int
1646 int pending = w_->pending; 2297 int pending = w_->pending;
1647 2298
1648 if (expect_true (pending)) 2299 if (expect_true (pending))
1649 { 2300 {
1650 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2301 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2302 p->w = (W)&pending_w;
1651 w_->pending = 0; 2303 w_->pending = 0;
1652 p->w = 0;
1653 return p->events; 2304 return p->events;
1654 } 2305 }
1655 else 2306 else
1656 return 0; 2307 return 0;
1657} 2308}
1658 2309
1659void inline_size 2310inline_size void
1660pri_adjust (EV_P_ W w) 2311pri_adjust (EV_P_ W w)
1661{ 2312{
1662 int pri = w->priority; 2313 int pri = ev_priority (w);
1663 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2314 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1664 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2315 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1665 w->priority = pri; 2316 ev_set_priority (w, pri);
1666} 2317}
1667 2318
1668void inline_speed 2319inline_speed void
1669ev_start (EV_P_ W w, int active) 2320ev_start (EV_P_ W w, int active)
1670{ 2321{
1671 pri_adjust (EV_A_ w); 2322 pri_adjust (EV_A_ w);
1672 w->active = active; 2323 w->active = active;
1673 ev_ref (EV_A); 2324 ev_ref (EV_A);
1674} 2325}
1675 2326
1676void inline_size 2327inline_size void
1677ev_stop (EV_P_ W w) 2328ev_stop (EV_P_ W w)
1678{ 2329{
1679 ev_unref (EV_A); 2330 ev_unref (EV_A);
1680 w->active = 0; 2331 w->active = 0;
1681} 2332}
1688 int fd = w->fd; 2339 int fd = w->fd;
1689 2340
1690 if (expect_false (ev_is_active (w))) 2341 if (expect_false (ev_is_active (w)))
1691 return; 2342 return;
1692 2343
1693 assert (("ev_io_start called with negative fd", fd >= 0)); 2344 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2345 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2346
2347 EV_FREQUENT_CHECK;
1694 2348
1695 ev_start (EV_A_ (W)w, 1); 2349 ev_start (EV_A_ (W)w, 1);
1696 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2350 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1697 wlist_add (&anfds[fd].head, (WL)w); 2351 wlist_add (&anfds[fd].head, (WL)w);
1698 2352
1699 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2353 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1700 w->events &= ~EV_IOFDSET; 2354 w->events &= ~EV__IOFDSET;
2355
2356 EV_FREQUENT_CHECK;
1701} 2357}
1702 2358
1703void noinline 2359void noinline
1704ev_io_stop (EV_P_ ev_io *w) 2360ev_io_stop (EV_P_ ev_io *w)
1705{ 2361{
1706 clear_pending (EV_A_ (W)w); 2362 clear_pending (EV_A_ (W)w);
1707 if (expect_false (!ev_is_active (w))) 2363 if (expect_false (!ev_is_active (w)))
1708 return; 2364 return;
1709 2365
1710 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2366 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2367
2368 EV_FREQUENT_CHECK;
1711 2369
1712 wlist_del (&anfds[w->fd].head, (WL)w); 2370 wlist_del (&anfds[w->fd].head, (WL)w);
1713 ev_stop (EV_A_ (W)w); 2371 ev_stop (EV_A_ (W)w);
1714 2372
1715 fd_change (EV_A_ w->fd, 1); 2373 fd_change (EV_A_ w->fd, 1);
2374
2375 EV_FREQUENT_CHECK;
1716} 2376}
1717 2377
1718void noinline 2378void noinline
1719ev_timer_start (EV_P_ ev_timer *w) 2379ev_timer_start (EV_P_ ev_timer *w)
1720{ 2380{
1721 if (expect_false (ev_is_active (w))) 2381 if (expect_false (ev_is_active (w)))
1722 return; 2382 return;
1723 2383
1724 ((WT)w)->at += mn_now; 2384 ev_at (w) += mn_now;
1725 2385
1726 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2386 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1727 2387
2388 EV_FREQUENT_CHECK;
2389
2390 ++timercnt;
1728 ev_start (EV_A_ (W)w, ++timercnt); 2391 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1729 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2392 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1730 timers [timercnt - 1] = (WT)w; 2393 ANHE_w (timers [ev_active (w)]) = (WT)w;
1731 upheap (timers, timercnt - 1); 2394 ANHE_at_cache (timers [ev_active (w)]);
2395 upheap (timers, ev_active (w));
1732 2396
2397 EV_FREQUENT_CHECK;
2398
1733 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2399 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1734} 2400}
1735 2401
1736void noinline 2402void noinline
1737ev_timer_stop (EV_P_ ev_timer *w) 2403ev_timer_stop (EV_P_ ev_timer *w)
1738{ 2404{
1739 clear_pending (EV_A_ (W)w); 2405 clear_pending (EV_A_ (W)w);
1740 if (expect_false (!ev_is_active (w))) 2406 if (expect_false (!ev_is_active (w)))
1741 return; 2407 return;
1742 2408
1743 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2409 EV_FREQUENT_CHECK;
1744 2410
1745 { 2411 {
1746 int active = ((W)w)->active; 2412 int active = ev_active (w);
1747 2413
2414 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2415
2416 --timercnt;
2417
1748 if (expect_true (--active < --timercnt)) 2418 if (expect_true (active < timercnt + HEAP0))
1749 { 2419 {
1750 timers [active] = timers [timercnt]; 2420 timers [active] = timers [timercnt + HEAP0];
1751 adjustheap (timers, timercnt, active); 2421 adjustheap (timers, timercnt, active);
1752 } 2422 }
1753 } 2423 }
1754 2424
1755 ((WT)w)->at -= mn_now; 2425 EV_FREQUENT_CHECK;
2426
2427 ev_at (w) -= mn_now;
1756 2428
1757 ev_stop (EV_A_ (W)w); 2429 ev_stop (EV_A_ (W)w);
1758} 2430}
1759 2431
1760void noinline 2432void noinline
1761ev_timer_again (EV_P_ ev_timer *w) 2433ev_timer_again (EV_P_ ev_timer *w)
1762{ 2434{
2435 EV_FREQUENT_CHECK;
2436
1763 if (ev_is_active (w)) 2437 if (ev_is_active (w))
1764 { 2438 {
1765 if (w->repeat) 2439 if (w->repeat)
1766 { 2440 {
1767 ((WT)w)->at = mn_now + w->repeat; 2441 ev_at (w) = mn_now + w->repeat;
2442 ANHE_at_cache (timers [ev_active (w)]);
1768 adjustheap (timers, timercnt, ((W)w)->active - 1); 2443 adjustheap (timers, timercnt, ev_active (w));
1769 } 2444 }
1770 else 2445 else
1771 ev_timer_stop (EV_A_ w); 2446 ev_timer_stop (EV_A_ w);
1772 } 2447 }
1773 else if (w->repeat) 2448 else if (w->repeat)
1774 { 2449 {
1775 w->at = w->repeat; 2450 ev_at (w) = w->repeat;
1776 ev_timer_start (EV_A_ w); 2451 ev_timer_start (EV_A_ w);
1777 } 2452 }
2453
2454 EV_FREQUENT_CHECK;
1778} 2455}
1779 2456
1780#if EV_PERIODIC_ENABLE 2457#if EV_PERIODIC_ENABLE
1781void noinline 2458void noinline
1782ev_periodic_start (EV_P_ ev_periodic *w) 2459ev_periodic_start (EV_P_ ev_periodic *w)
1783{ 2460{
1784 if (expect_false (ev_is_active (w))) 2461 if (expect_false (ev_is_active (w)))
1785 return; 2462 return;
1786 2463
1787 if (w->reschedule_cb) 2464 if (w->reschedule_cb)
1788 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2465 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1789 else if (w->interval) 2466 else if (w->interval)
1790 { 2467 {
1791 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2468 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1792 /* this formula differs from the one in periodic_reify because we do not always round up */ 2469 /* this formula differs from the one in periodic_reify because we do not always round up */
1793 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2470 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1794 } 2471 }
1795 else 2472 else
1796 ((WT)w)->at = w->offset; 2473 ev_at (w) = w->offset;
1797 2474
2475 EV_FREQUENT_CHECK;
2476
2477 ++periodiccnt;
1798 ev_start (EV_A_ (W)w, ++periodiccnt); 2478 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1799 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2479 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1800 periodics [periodiccnt - 1] = (WT)w; 2480 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1801 upheap (periodics, periodiccnt - 1); 2481 ANHE_at_cache (periodics [ev_active (w)]);
2482 upheap (periodics, ev_active (w));
1802 2483
2484 EV_FREQUENT_CHECK;
2485
1803 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2486 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1804} 2487}
1805 2488
1806void noinline 2489void noinline
1807ev_periodic_stop (EV_P_ ev_periodic *w) 2490ev_periodic_stop (EV_P_ ev_periodic *w)
1808{ 2491{
1809 clear_pending (EV_A_ (W)w); 2492 clear_pending (EV_A_ (W)w);
1810 if (expect_false (!ev_is_active (w))) 2493 if (expect_false (!ev_is_active (w)))
1811 return; 2494 return;
1812 2495
1813 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2496 EV_FREQUENT_CHECK;
1814 2497
1815 { 2498 {
1816 int active = ((W)w)->active; 2499 int active = ev_active (w);
1817 2500
2501 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2502
2503 --periodiccnt;
2504
1818 if (expect_true (--active < --periodiccnt)) 2505 if (expect_true (active < periodiccnt + HEAP0))
1819 { 2506 {
1820 periodics [active] = periodics [periodiccnt]; 2507 periodics [active] = periodics [periodiccnt + HEAP0];
1821 adjustheap (periodics, periodiccnt, active); 2508 adjustheap (periodics, periodiccnt, active);
1822 } 2509 }
1823 } 2510 }
1824 2511
2512 EV_FREQUENT_CHECK;
2513
1825 ev_stop (EV_A_ (W)w); 2514 ev_stop (EV_A_ (W)w);
1826} 2515}
1827 2516
1828void noinline 2517void noinline
1829ev_periodic_again (EV_P_ ev_periodic *w) 2518ev_periodic_again (EV_P_ ev_periodic *w)
1840 2529
1841void noinline 2530void noinline
1842ev_signal_start (EV_P_ ev_signal *w) 2531ev_signal_start (EV_P_ ev_signal *w)
1843{ 2532{
1844#if EV_MULTIPLICITY 2533#if EV_MULTIPLICITY
1845 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2534 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1846#endif 2535#endif
1847 if (expect_false (ev_is_active (w))) 2536 if (expect_false (ev_is_active (w)))
1848 return; 2537 return;
1849 2538
1850 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2539 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2540
2541 evpipe_init (EV_A);
2542
2543 EV_FREQUENT_CHECK;
1851 2544
1852 { 2545 {
1853#ifndef _WIN32 2546#ifndef _WIN32
1854 sigset_t full, prev; 2547 sigset_t full, prev;
1855 sigfillset (&full); 2548 sigfillset (&full);
1856 sigprocmask (SIG_SETMASK, &full, &prev); 2549 sigprocmask (SIG_SETMASK, &full, &prev);
1857#endif 2550#endif
1858 2551
1859 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2552 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
1860 2553
1861#ifndef _WIN32 2554#ifndef _WIN32
1862 sigprocmask (SIG_SETMASK, &prev, 0); 2555 sigprocmask (SIG_SETMASK, &prev, 0);
1863#endif 2556#endif
1864 } 2557 }
1867 wlist_add (&signals [w->signum - 1].head, (WL)w); 2560 wlist_add (&signals [w->signum - 1].head, (WL)w);
1868 2561
1869 if (!((WL)w)->next) 2562 if (!((WL)w)->next)
1870 { 2563 {
1871#if _WIN32 2564#if _WIN32
1872 signal (w->signum, sighandler); 2565 signal (w->signum, ev_sighandler);
1873#else 2566#else
1874 struct sigaction sa; 2567 struct sigaction sa;
1875 sa.sa_handler = sighandler; 2568 sa.sa_handler = ev_sighandler;
1876 sigfillset (&sa.sa_mask); 2569 sigfillset (&sa.sa_mask);
1877 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2570 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1878 sigaction (w->signum, &sa, 0); 2571 sigaction (w->signum, &sa, 0);
1879#endif 2572#endif
1880 } 2573 }
2574
2575 EV_FREQUENT_CHECK;
1881} 2576}
1882 2577
1883void noinline 2578void noinline
1884ev_signal_stop (EV_P_ ev_signal *w) 2579ev_signal_stop (EV_P_ ev_signal *w)
1885{ 2580{
1886 clear_pending (EV_A_ (W)w); 2581 clear_pending (EV_A_ (W)w);
1887 if (expect_false (!ev_is_active (w))) 2582 if (expect_false (!ev_is_active (w)))
1888 return; 2583 return;
1889 2584
2585 EV_FREQUENT_CHECK;
2586
1890 wlist_del (&signals [w->signum - 1].head, (WL)w); 2587 wlist_del (&signals [w->signum - 1].head, (WL)w);
1891 ev_stop (EV_A_ (W)w); 2588 ev_stop (EV_A_ (W)w);
1892 2589
1893 if (!signals [w->signum - 1].head) 2590 if (!signals [w->signum - 1].head)
1894 signal (w->signum, SIG_DFL); 2591 signal (w->signum, SIG_DFL);
2592
2593 EV_FREQUENT_CHECK;
1895} 2594}
1896 2595
1897void 2596void
1898ev_child_start (EV_P_ ev_child *w) 2597ev_child_start (EV_P_ ev_child *w)
1899{ 2598{
1900#if EV_MULTIPLICITY 2599#if EV_MULTIPLICITY
1901 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2600 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1902#endif 2601#endif
1903 if (expect_false (ev_is_active (w))) 2602 if (expect_false (ev_is_active (w)))
1904 return; 2603 return;
1905 2604
2605 EV_FREQUENT_CHECK;
2606
1906 ev_start (EV_A_ (W)w, 1); 2607 ev_start (EV_A_ (W)w, 1);
1907 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2608 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2609
2610 EV_FREQUENT_CHECK;
1908} 2611}
1909 2612
1910void 2613void
1911ev_child_stop (EV_P_ ev_child *w) 2614ev_child_stop (EV_P_ ev_child *w)
1912{ 2615{
1913 clear_pending (EV_A_ (W)w); 2616 clear_pending (EV_A_ (W)w);
1914 if (expect_false (!ev_is_active (w))) 2617 if (expect_false (!ev_is_active (w)))
1915 return; 2618 return;
1916 2619
2620 EV_FREQUENT_CHECK;
2621
1917 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2622 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1918 ev_stop (EV_A_ (W)w); 2623 ev_stop (EV_A_ (W)w);
2624
2625 EV_FREQUENT_CHECK;
1919} 2626}
1920 2627
1921#if EV_STAT_ENABLE 2628#if EV_STAT_ENABLE
1922 2629
1923# ifdef _WIN32 2630# ifdef _WIN32
1924# undef lstat 2631# undef lstat
1925# define lstat(a,b) _stati64 (a,b) 2632# define lstat(a,b) _stati64 (a,b)
1926# endif 2633# endif
1927 2634
1928#define DEF_STAT_INTERVAL 5.0074891 2635#define DEF_STAT_INTERVAL 5.0074891
2636#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1929#define MIN_STAT_INTERVAL 0.1074891 2637#define MIN_STAT_INTERVAL 0.1074891
1930 2638
1931static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2639static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1932 2640
1933#if EV_USE_INOTIFY 2641#if EV_USE_INOTIFY
1934# define EV_INOTIFY_BUFSIZE 8192 2642# define EV_INOTIFY_BUFSIZE 8192
1938{ 2646{
1939 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2647 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1940 2648
1941 if (w->wd < 0) 2649 if (w->wd < 0)
1942 { 2650 {
2651 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1943 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2652 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1944 2653
1945 /* monitor some parent directory for speedup hints */ 2654 /* monitor some parent directory for speedup hints */
2655 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2656 /* but an efficiency issue only */
1946 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2657 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1947 { 2658 {
1948 char path [4096]; 2659 char path [4096];
1949 strcpy (path, w->path); 2660 strcpy (path, w->path);
1950 2661
1953 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2664 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1954 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2665 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1955 2666
1956 char *pend = strrchr (path, '/'); 2667 char *pend = strrchr (path, '/');
1957 2668
1958 if (!pend) 2669 if (!pend || pend == path)
1959 break; /* whoops, no '/', complain to your admin */ 2670 break;
1960 2671
1961 *pend = 0; 2672 *pend = 0;
1962 w->wd = inotify_add_watch (fs_fd, path, mask); 2673 w->wd = inotify_add_watch (fs_fd, path, mask);
1963 } 2674 }
1964 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2675 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1965 } 2676 }
1966 } 2677 }
1967 else
1968 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1969 2678
1970 if (w->wd >= 0) 2679 if (w->wd >= 0)
2680 {
1971 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2681 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2682
2683 /* now local changes will be tracked by inotify, but remote changes won't */
2684 /* unless the filesystem it known to be local, we therefore still poll */
2685 /* also do poll on <2.6.25, but with normal frequency */
2686 struct statfs sfs;
2687
2688 if (fs_2625 && !statfs (w->path, &sfs))
2689 if (sfs.f_type == 0x1373 /* devfs */
2690 || sfs.f_type == 0xEF53 /* ext2/3 */
2691 || sfs.f_type == 0x3153464a /* jfs */
2692 || sfs.f_type == 0x52654973 /* reiser3 */
2693 || sfs.f_type == 0x01021994 /* tempfs */
2694 || sfs.f_type == 0x58465342 /* xfs */)
2695 return;
2696
2697 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2698 ev_timer_again (EV_A_ &w->timer);
2699 }
1972} 2700}
1973 2701
1974static void noinline 2702static void noinline
1975infy_del (EV_P_ ev_stat *w) 2703infy_del (EV_P_ ev_stat *w)
1976{ 2704{
1990 2718
1991static void noinline 2719static void noinline
1992infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2720infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1993{ 2721{
1994 if (slot < 0) 2722 if (slot < 0)
1995 /* overflow, need to check for all hahs slots */ 2723 /* overflow, need to check for all hash slots */
1996 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2724 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1997 infy_wd (EV_A_ slot, wd, ev); 2725 infy_wd (EV_A_ slot, wd, ev);
1998 else 2726 else
1999 { 2727 {
2000 WL w_; 2728 WL w_;
2006 2734
2007 if (w->wd == wd || wd == -1) 2735 if (w->wd == wd || wd == -1)
2008 { 2736 {
2009 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2737 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2010 { 2738 {
2739 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2011 w->wd = -1; 2740 w->wd = -1;
2012 infy_add (EV_A_ w); /* re-add, no matter what */ 2741 infy_add (EV_A_ w); /* re-add, no matter what */
2013 } 2742 }
2014 2743
2015 stat_timer_cb (EV_A_ &w->timer, 0); 2744 stat_timer_cb (EV_A_ &w->timer, 0);
2028 2757
2029 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2758 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2030 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2759 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2031} 2760}
2032 2761
2033void inline_size 2762inline_size void
2763check_2625 (EV_P)
2764{
2765 /* kernels < 2.6.25 are borked
2766 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2767 */
2768 struct utsname buf;
2769 int major, minor, micro;
2770
2771 if (uname (&buf))
2772 return;
2773
2774 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2775 return;
2776
2777 if (major < 2
2778 || (major == 2 && minor < 6)
2779 || (major == 2 && minor == 6 && micro < 25))
2780 return;
2781
2782 fs_2625 = 1;
2783}
2784
2785inline_size void
2034infy_init (EV_P) 2786infy_init (EV_P)
2035{ 2787{
2036 if (fs_fd != -2) 2788 if (fs_fd != -2)
2037 return; 2789 return;
2790
2791 fs_fd = -1;
2792
2793 check_2625 (EV_A);
2038 2794
2039 fs_fd = inotify_init (); 2795 fs_fd = inotify_init ();
2040 2796
2041 if (fs_fd >= 0) 2797 if (fs_fd >= 0)
2042 { 2798 {
2044 ev_set_priority (&fs_w, EV_MAXPRI); 2800 ev_set_priority (&fs_w, EV_MAXPRI);
2045 ev_io_start (EV_A_ &fs_w); 2801 ev_io_start (EV_A_ &fs_w);
2046 } 2802 }
2047} 2803}
2048 2804
2049void inline_size 2805inline_size void
2050infy_fork (EV_P) 2806infy_fork (EV_P)
2051{ 2807{
2052 int slot; 2808 int slot;
2053 2809
2054 if (fs_fd < 0) 2810 if (fs_fd < 0)
2070 w->wd = -1; 2826 w->wd = -1;
2071 2827
2072 if (fs_fd >= 0) 2828 if (fs_fd >= 0)
2073 infy_add (EV_A_ w); /* re-add, no matter what */ 2829 infy_add (EV_A_ w); /* re-add, no matter what */
2074 else 2830 else
2075 ev_timer_start (EV_A_ &w->timer); 2831 ev_timer_again (EV_A_ &w->timer);
2076 } 2832 }
2077
2078 } 2833 }
2079} 2834}
2080 2835
2836#endif
2837
2838#ifdef _WIN32
2839# define EV_LSTAT(p,b) _stati64 (p, b)
2840#else
2841# define EV_LSTAT(p,b) lstat (p, b)
2081#endif 2842#endif
2082 2843
2083void 2844void
2084ev_stat_stat (EV_P_ ev_stat *w) 2845ev_stat_stat (EV_P_ ev_stat *w)
2085{ 2846{
2112 || w->prev.st_atime != w->attr.st_atime 2873 || w->prev.st_atime != w->attr.st_atime
2113 || w->prev.st_mtime != w->attr.st_mtime 2874 || w->prev.st_mtime != w->attr.st_mtime
2114 || w->prev.st_ctime != w->attr.st_ctime 2875 || w->prev.st_ctime != w->attr.st_ctime
2115 ) { 2876 ) {
2116 #if EV_USE_INOTIFY 2877 #if EV_USE_INOTIFY
2878 if (fs_fd >= 0)
2879 {
2117 infy_del (EV_A_ w); 2880 infy_del (EV_A_ w);
2118 infy_add (EV_A_ w); 2881 infy_add (EV_A_ w);
2119 ev_stat_stat (EV_A_ w); /* avoid race... */ 2882 ev_stat_stat (EV_A_ w); /* avoid race... */
2883 }
2120 #endif 2884 #endif
2121 2885
2122 ev_feed_event (EV_A_ w, EV_STAT); 2886 ev_feed_event (EV_A_ w, EV_STAT);
2123 } 2887 }
2124} 2888}
2127ev_stat_start (EV_P_ ev_stat *w) 2891ev_stat_start (EV_P_ ev_stat *w)
2128{ 2892{
2129 if (expect_false (ev_is_active (w))) 2893 if (expect_false (ev_is_active (w)))
2130 return; 2894 return;
2131 2895
2132 /* since we use memcmp, we need to clear any padding data etc. */
2133 memset (&w->prev, 0, sizeof (ev_statdata));
2134 memset (&w->attr, 0, sizeof (ev_statdata));
2135
2136 ev_stat_stat (EV_A_ w); 2896 ev_stat_stat (EV_A_ w);
2137 2897
2898 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2138 if (w->interval < MIN_STAT_INTERVAL) 2899 w->interval = MIN_STAT_INTERVAL;
2139 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2140 2900
2141 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2901 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2142 ev_set_priority (&w->timer, ev_priority (w)); 2902 ev_set_priority (&w->timer, ev_priority (w));
2143 2903
2144#if EV_USE_INOTIFY 2904#if EV_USE_INOTIFY
2145 infy_init (EV_A); 2905 infy_init (EV_A);
2146 2906
2147 if (fs_fd >= 0) 2907 if (fs_fd >= 0)
2148 infy_add (EV_A_ w); 2908 infy_add (EV_A_ w);
2149 else 2909 else
2150#endif 2910#endif
2151 ev_timer_start (EV_A_ &w->timer); 2911 ev_timer_again (EV_A_ &w->timer);
2152 2912
2153 ev_start (EV_A_ (W)w, 1); 2913 ev_start (EV_A_ (W)w, 1);
2914
2915 EV_FREQUENT_CHECK;
2154} 2916}
2155 2917
2156void 2918void
2157ev_stat_stop (EV_P_ ev_stat *w) 2919ev_stat_stop (EV_P_ ev_stat *w)
2158{ 2920{
2159 clear_pending (EV_A_ (W)w); 2921 clear_pending (EV_A_ (W)w);
2160 if (expect_false (!ev_is_active (w))) 2922 if (expect_false (!ev_is_active (w)))
2161 return; 2923 return;
2162 2924
2925 EV_FREQUENT_CHECK;
2926
2163#if EV_USE_INOTIFY 2927#if EV_USE_INOTIFY
2164 infy_del (EV_A_ w); 2928 infy_del (EV_A_ w);
2165#endif 2929#endif
2166 ev_timer_stop (EV_A_ &w->timer); 2930 ev_timer_stop (EV_A_ &w->timer);
2167 2931
2168 ev_stop (EV_A_ (W)w); 2932 ev_stop (EV_A_ (W)w);
2933
2934 EV_FREQUENT_CHECK;
2169} 2935}
2170#endif 2936#endif
2171 2937
2172#if EV_IDLE_ENABLE 2938#if EV_IDLE_ENABLE
2173void 2939void
2175{ 2941{
2176 if (expect_false (ev_is_active (w))) 2942 if (expect_false (ev_is_active (w)))
2177 return; 2943 return;
2178 2944
2179 pri_adjust (EV_A_ (W)w); 2945 pri_adjust (EV_A_ (W)w);
2946
2947 EV_FREQUENT_CHECK;
2180 2948
2181 { 2949 {
2182 int active = ++idlecnt [ABSPRI (w)]; 2950 int active = ++idlecnt [ABSPRI (w)];
2183 2951
2184 ++idleall; 2952 ++idleall;
2185 ev_start (EV_A_ (W)w, active); 2953 ev_start (EV_A_ (W)w, active);
2186 2954
2187 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2955 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2188 idles [ABSPRI (w)][active - 1] = w; 2956 idles [ABSPRI (w)][active - 1] = w;
2189 } 2957 }
2958
2959 EV_FREQUENT_CHECK;
2190} 2960}
2191 2961
2192void 2962void
2193ev_idle_stop (EV_P_ ev_idle *w) 2963ev_idle_stop (EV_P_ ev_idle *w)
2194{ 2964{
2195 clear_pending (EV_A_ (W)w); 2965 clear_pending (EV_A_ (W)w);
2196 if (expect_false (!ev_is_active (w))) 2966 if (expect_false (!ev_is_active (w)))
2197 return; 2967 return;
2198 2968
2969 EV_FREQUENT_CHECK;
2970
2199 { 2971 {
2200 int active = ((W)w)->active; 2972 int active = ev_active (w);
2201 2973
2202 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2974 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2203 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2975 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2204 2976
2205 ev_stop (EV_A_ (W)w); 2977 ev_stop (EV_A_ (W)w);
2206 --idleall; 2978 --idleall;
2207 } 2979 }
2980
2981 EV_FREQUENT_CHECK;
2208} 2982}
2209#endif 2983#endif
2210 2984
2211void 2985void
2212ev_prepare_start (EV_P_ ev_prepare *w) 2986ev_prepare_start (EV_P_ ev_prepare *w)
2213{ 2987{
2214 if (expect_false (ev_is_active (w))) 2988 if (expect_false (ev_is_active (w)))
2215 return; 2989 return;
2990
2991 EV_FREQUENT_CHECK;
2216 2992
2217 ev_start (EV_A_ (W)w, ++preparecnt); 2993 ev_start (EV_A_ (W)w, ++preparecnt);
2218 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2994 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2219 prepares [preparecnt - 1] = w; 2995 prepares [preparecnt - 1] = w;
2996
2997 EV_FREQUENT_CHECK;
2220} 2998}
2221 2999
2222void 3000void
2223ev_prepare_stop (EV_P_ ev_prepare *w) 3001ev_prepare_stop (EV_P_ ev_prepare *w)
2224{ 3002{
2225 clear_pending (EV_A_ (W)w); 3003 clear_pending (EV_A_ (W)w);
2226 if (expect_false (!ev_is_active (w))) 3004 if (expect_false (!ev_is_active (w)))
2227 return; 3005 return;
2228 3006
3007 EV_FREQUENT_CHECK;
3008
2229 { 3009 {
2230 int active = ((W)w)->active; 3010 int active = ev_active (w);
3011
2231 prepares [active - 1] = prepares [--preparecnt]; 3012 prepares [active - 1] = prepares [--preparecnt];
2232 ((W)prepares [active - 1])->active = active; 3013 ev_active (prepares [active - 1]) = active;
2233 } 3014 }
2234 3015
2235 ev_stop (EV_A_ (W)w); 3016 ev_stop (EV_A_ (W)w);
3017
3018 EV_FREQUENT_CHECK;
2236} 3019}
2237 3020
2238void 3021void
2239ev_check_start (EV_P_ ev_check *w) 3022ev_check_start (EV_P_ ev_check *w)
2240{ 3023{
2241 if (expect_false (ev_is_active (w))) 3024 if (expect_false (ev_is_active (w)))
2242 return; 3025 return;
3026
3027 EV_FREQUENT_CHECK;
2243 3028
2244 ev_start (EV_A_ (W)w, ++checkcnt); 3029 ev_start (EV_A_ (W)w, ++checkcnt);
2245 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3030 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2246 checks [checkcnt - 1] = w; 3031 checks [checkcnt - 1] = w;
3032
3033 EV_FREQUENT_CHECK;
2247} 3034}
2248 3035
2249void 3036void
2250ev_check_stop (EV_P_ ev_check *w) 3037ev_check_stop (EV_P_ ev_check *w)
2251{ 3038{
2252 clear_pending (EV_A_ (W)w); 3039 clear_pending (EV_A_ (W)w);
2253 if (expect_false (!ev_is_active (w))) 3040 if (expect_false (!ev_is_active (w)))
2254 return; 3041 return;
2255 3042
3043 EV_FREQUENT_CHECK;
3044
2256 { 3045 {
2257 int active = ((W)w)->active; 3046 int active = ev_active (w);
3047
2258 checks [active - 1] = checks [--checkcnt]; 3048 checks [active - 1] = checks [--checkcnt];
2259 ((W)checks [active - 1])->active = active; 3049 ev_active (checks [active - 1]) = active;
2260 } 3050 }
2261 3051
2262 ev_stop (EV_A_ (W)w); 3052 ev_stop (EV_A_ (W)w);
3053
3054 EV_FREQUENT_CHECK;
2263} 3055}
2264 3056
2265#if EV_EMBED_ENABLE 3057#if EV_EMBED_ENABLE
2266void noinline 3058void noinline
2267ev_embed_sweep (EV_P_ ev_embed *w) 3059ev_embed_sweep (EV_P_ ev_embed *w)
2294 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3086 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2295 } 3087 }
2296 } 3088 }
2297} 3089}
2298 3090
3091static void
3092embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3093{
3094 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3095
3096 ev_embed_stop (EV_A_ w);
3097
3098 {
3099 struct ev_loop *loop = w->other;
3100
3101 ev_loop_fork (EV_A);
3102 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3103 }
3104
3105 ev_embed_start (EV_A_ w);
3106}
3107
2299#if 0 3108#if 0
2300static void 3109static void
2301embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3110embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2302{ 3111{
2303 ev_idle_stop (EV_A_ idle); 3112 ev_idle_stop (EV_A_ idle);
2310 if (expect_false (ev_is_active (w))) 3119 if (expect_false (ev_is_active (w)))
2311 return; 3120 return;
2312 3121
2313 { 3122 {
2314 struct ev_loop *loop = w->other; 3123 struct ev_loop *loop = w->other;
2315 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3124 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2316 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3125 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2317 } 3126 }
3127
3128 EV_FREQUENT_CHECK;
2318 3129
2319 ev_set_priority (&w->io, ev_priority (w)); 3130 ev_set_priority (&w->io, ev_priority (w));
2320 ev_io_start (EV_A_ &w->io); 3131 ev_io_start (EV_A_ &w->io);
2321 3132
2322 ev_prepare_init (&w->prepare, embed_prepare_cb); 3133 ev_prepare_init (&w->prepare, embed_prepare_cb);
2323 ev_set_priority (&w->prepare, EV_MINPRI); 3134 ev_set_priority (&w->prepare, EV_MINPRI);
2324 ev_prepare_start (EV_A_ &w->prepare); 3135 ev_prepare_start (EV_A_ &w->prepare);
2325 3136
3137 ev_fork_init (&w->fork, embed_fork_cb);
3138 ev_fork_start (EV_A_ &w->fork);
3139
2326 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3140 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2327 3141
2328 ev_start (EV_A_ (W)w, 1); 3142 ev_start (EV_A_ (W)w, 1);
3143
3144 EV_FREQUENT_CHECK;
2329} 3145}
2330 3146
2331void 3147void
2332ev_embed_stop (EV_P_ ev_embed *w) 3148ev_embed_stop (EV_P_ ev_embed *w)
2333{ 3149{
2334 clear_pending (EV_A_ (W)w); 3150 clear_pending (EV_A_ (W)w);
2335 if (expect_false (!ev_is_active (w))) 3151 if (expect_false (!ev_is_active (w)))
2336 return; 3152 return;
2337 3153
3154 EV_FREQUENT_CHECK;
3155
2338 ev_io_stop (EV_A_ &w->io); 3156 ev_io_stop (EV_A_ &w->io);
2339 ev_prepare_stop (EV_A_ &w->prepare); 3157 ev_prepare_stop (EV_A_ &w->prepare);
3158 ev_fork_stop (EV_A_ &w->fork);
2340 3159
2341 ev_stop (EV_A_ (W)w); 3160 EV_FREQUENT_CHECK;
2342} 3161}
2343#endif 3162#endif
2344 3163
2345#if EV_FORK_ENABLE 3164#if EV_FORK_ENABLE
2346void 3165void
2347ev_fork_start (EV_P_ ev_fork *w) 3166ev_fork_start (EV_P_ ev_fork *w)
2348{ 3167{
2349 if (expect_false (ev_is_active (w))) 3168 if (expect_false (ev_is_active (w)))
2350 return; 3169 return;
3170
3171 EV_FREQUENT_CHECK;
2351 3172
2352 ev_start (EV_A_ (W)w, ++forkcnt); 3173 ev_start (EV_A_ (W)w, ++forkcnt);
2353 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3174 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2354 forks [forkcnt - 1] = w; 3175 forks [forkcnt - 1] = w;
3176
3177 EV_FREQUENT_CHECK;
2355} 3178}
2356 3179
2357void 3180void
2358ev_fork_stop (EV_P_ ev_fork *w) 3181ev_fork_stop (EV_P_ ev_fork *w)
2359{ 3182{
2360 clear_pending (EV_A_ (W)w); 3183 clear_pending (EV_A_ (W)w);
2361 if (expect_false (!ev_is_active (w))) 3184 if (expect_false (!ev_is_active (w)))
2362 return; 3185 return;
2363 3186
3187 EV_FREQUENT_CHECK;
3188
2364 { 3189 {
2365 int active = ((W)w)->active; 3190 int active = ev_active (w);
3191
2366 forks [active - 1] = forks [--forkcnt]; 3192 forks [active - 1] = forks [--forkcnt];
2367 ((W)forks [active - 1])->active = active; 3193 ev_active (forks [active - 1]) = active;
2368 } 3194 }
2369 3195
2370 ev_stop (EV_A_ (W)w); 3196 ev_stop (EV_A_ (W)w);
3197
3198 EV_FREQUENT_CHECK;
3199}
3200#endif
3201
3202#if EV_ASYNC_ENABLE
3203void
3204ev_async_start (EV_P_ ev_async *w)
3205{
3206 if (expect_false (ev_is_active (w)))
3207 return;
3208
3209 evpipe_init (EV_A);
3210
3211 EV_FREQUENT_CHECK;
3212
3213 ev_start (EV_A_ (W)w, ++asynccnt);
3214 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3215 asyncs [asynccnt - 1] = w;
3216
3217 EV_FREQUENT_CHECK;
3218}
3219
3220void
3221ev_async_stop (EV_P_ ev_async *w)
3222{
3223 clear_pending (EV_A_ (W)w);
3224 if (expect_false (!ev_is_active (w)))
3225 return;
3226
3227 EV_FREQUENT_CHECK;
3228
3229 {
3230 int active = ev_active (w);
3231
3232 asyncs [active - 1] = asyncs [--asynccnt];
3233 ev_active (asyncs [active - 1]) = active;
3234 }
3235
3236 ev_stop (EV_A_ (W)w);
3237
3238 EV_FREQUENT_CHECK;
3239}
3240
3241void
3242ev_async_send (EV_P_ ev_async *w)
3243{
3244 w->sent = 1;
3245 evpipe_write (EV_A_ &gotasync);
2371} 3246}
2372#endif 3247#endif
2373 3248
2374/*****************************************************************************/ 3249/*****************************************************************************/
2375 3250
2385once_cb (EV_P_ struct ev_once *once, int revents) 3260once_cb (EV_P_ struct ev_once *once, int revents)
2386{ 3261{
2387 void (*cb)(int revents, void *arg) = once->cb; 3262 void (*cb)(int revents, void *arg) = once->cb;
2388 void *arg = once->arg; 3263 void *arg = once->arg;
2389 3264
2390 ev_io_stop (EV_A_ &once->io); 3265 ev_io_stop (EV_A_ &once->io);
2391 ev_timer_stop (EV_A_ &once->to); 3266 ev_timer_stop (EV_A_ &once->to);
2392 ev_free (once); 3267 ev_free (once);
2393 3268
2394 cb (revents, arg); 3269 cb (revents, arg);
2395} 3270}
2396 3271
2397static void 3272static void
2398once_cb_io (EV_P_ ev_io *w, int revents) 3273once_cb_io (EV_P_ ev_io *w, int revents)
2399{ 3274{
2400 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3275 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3276
3277 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2401} 3278}
2402 3279
2403static void 3280static void
2404once_cb_to (EV_P_ ev_timer *w, int revents) 3281once_cb_to (EV_P_ ev_timer *w, int revents)
2405{ 3282{
2406 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3283 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3284
3285 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2407} 3286}
2408 3287
2409void 3288void
2410ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3289ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2411{ 3290{
2433 ev_timer_set (&once->to, timeout, 0.); 3312 ev_timer_set (&once->to, timeout, 0.);
2434 ev_timer_start (EV_A_ &once->to); 3313 ev_timer_start (EV_A_ &once->to);
2435 } 3314 }
2436} 3315}
2437 3316
3317/*****************************************************************************/
3318
3319#if EV_WALK_ENABLE
3320void
3321ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3322{
3323 int i, j;
3324 ev_watcher_list *wl, *wn;
3325
3326 if (types & (EV_IO | EV_EMBED))
3327 for (i = 0; i < anfdmax; ++i)
3328 for (wl = anfds [i].head; wl; )
3329 {
3330 wn = wl->next;
3331
3332#if EV_EMBED_ENABLE
3333 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3334 {
3335 if (types & EV_EMBED)
3336 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3337 }
3338 else
3339#endif
3340#if EV_USE_INOTIFY
3341 if (ev_cb ((ev_io *)wl) == infy_cb)
3342 ;
3343 else
3344#endif
3345 if ((ev_io *)wl != &pipe_w)
3346 if (types & EV_IO)
3347 cb (EV_A_ EV_IO, wl);
3348
3349 wl = wn;
3350 }
3351
3352 if (types & (EV_TIMER | EV_STAT))
3353 for (i = timercnt + HEAP0; i-- > HEAP0; )
3354#if EV_STAT_ENABLE
3355 /*TODO: timer is not always active*/
3356 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3357 {
3358 if (types & EV_STAT)
3359 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3360 }
3361 else
3362#endif
3363 if (types & EV_TIMER)
3364 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3365
3366#if EV_PERIODIC_ENABLE
3367 if (types & EV_PERIODIC)
3368 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3369 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3370#endif
3371
3372#if EV_IDLE_ENABLE
3373 if (types & EV_IDLE)
3374 for (j = NUMPRI; i--; )
3375 for (i = idlecnt [j]; i--; )
3376 cb (EV_A_ EV_IDLE, idles [j][i]);
3377#endif
3378
3379#if EV_FORK_ENABLE
3380 if (types & EV_FORK)
3381 for (i = forkcnt; i--; )
3382 if (ev_cb (forks [i]) != embed_fork_cb)
3383 cb (EV_A_ EV_FORK, forks [i]);
3384#endif
3385
3386#if EV_ASYNC_ENABLE
3387 if (types & EV_ASYNC)
3388 for (i = asynccnt; i--; )
3389 cb (EV_A_ EV_ASYNC, asyncs [i]);
3390#endif
3391
3392 if (types & EV_PREPARE)
3393 for (i = preparecnt; i--; )
3394#if EV_EMBED_ENABLE
3395 if (ev_cb (prepares [i]) != embed_prepare_cb)
3396#endif
3397 cb (EV_A_ EV_PREPARE, prepares [i]);
3398
3399 if (types & EV_CHECK)
3400 for (i = checkcnt; i--; )
3401 cb (EV_A_ EV_CHECK, checks [i]);
3402
3403 if (types & EV_SIGNAL)
3404 for (i = 0; i < signalmax; ++i)
3405 for (wl = signals [i].head; wl; )
3406 {
3407 wn = wl->next;
3408 cb (EV_A_ EV_SIGNAL, wl);
3409 wl = wn;
3410 }
3411
3412 if (types & EV_CHILD)
3413 for (i = EV_PID_HASHSIZE; i--; )
3414 for (wl = childs [i]; wl; )
3415 {
3416 wn = wl->next;
3417 cb (EV_A_ EV_CHILD, wl);
3418 wl = wn;
3419 }
3420/* EV_STAT 0x00001000 /* stat data changed */
3421/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3422}
3423#endif
3424
2438#if EV_MULTIPLICITY 3425#if EV_MULTIPLICITY
2439 #include "ev_wrap.h" 3426 #include "ev_wrap.h"
2440#endif 3427#endif
2441 3428
2442#ifdef __cplusplus 3429#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines