ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.198 by root, Sun Dec 23 04:45:51 2007 UTC vs.
Revision 1.297 by root, Fri Jul 10 00:36:21 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
110# else 133# else
111# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
112# endif 135# endif
113# endif 136# endif
114 137
138# ifndef EV_USE_EVENTFD
139# if HAVE_EVENTFD
140# define EV_USE_EVENTFD 1
141# else
142# define EV_USE_EVENTFD 0
143# endif
144# endif
145
115#endif 146#endif
116 147
117#include <math.h> 148#include <math.h>
118#include <stdlib.h> 149#include <stdlib.h>
119#include <fcntl.h> 150#include <fcntl.h>
137#ifndef _WIN32 168#ifndef _WIN32
138# include <sys/time.h> 169# include <sys/time.h>
139# include <sys/wait.h> 170# include <sys/wait.h>
140# include <unistd.h> 171# include <unistd.h>
141#else 172#else
173# include <io.h>
142# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
143# include <windows.h> 175# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
146# endif 178# endif
147#endif 179#endif
148 180
149/**/ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
150 190
151#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
152# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
153#endif 197#endif
154 198
155#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
157#endif 201#endif
158 202
159#ifndef EV_USE_NANOSLEEP 203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
160# define EV_USE_NANOSLEEP 0 207# define EV_USE_NANOSLEEP 0
208# endif
161#endif 209#endif
162 210
163#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
164# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
165#endif 213#endif
171# define EV_USE_POLL 1 219# define EV_USE_POLL 1
172# endif 220# endif
173#endif 221#endif
174 222
175#ifndef EV_USE_EPOLL 223#ifndef EV_USE_EPOLL
224# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225# define EV_USE_EPOLL 1
226# else
176# define EV_USE_EPOLL 0 227# define EV_USE_EPOLL 0
228# endif
177#endif 229#endif
178 230
179#ifndef EV_USE_KQUEUE 231#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 232# define EV_USE_KQUEUE 0
181#endif 233#endif
183#ifndef EV_USE_PORT 235#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 236# define EV_USE_PORT 0
185#endif 237#endif
186 238
187#ifndef EV_USE_INOTIFY 239#ifndef EV_USE_INOTIFY
240# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
241# define EV_USE_INOTIFY 1
242# else
188# define EV_USE_INOTIFY 0 243# define EV_USE_INOTIFY 0
244# endif
189#endif 245#endif
190 246
191#ifndef EV_PID_HASHSIZE 247#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 248# if EV_MINIMAL
193# define EV_PID_HASHSIZE 1 249# define EV_PID_HASHSIZE 1
202# else 258# else
203# define EV_INOTIFY_HASHSIZE 16 259# define EV_INOTIFY_HASHSIZE 16
204# endif 260# endif
205#endif 261#endif
206 262
207/**/ 263#ifndef EV_USE_EVENTFD
264# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265# define EV_USE_EVENTFD 1
266# else
267# define EV_USE_EVENTFD 0
268# endif
269#endif
270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
208 304
209#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
212#endif 308#endif
226# include <sys/select.h> 322# include <sys/select.h>
227# endif 323# endif
228#endif 324#endif
229 325
230#if EV_USE_INOTIFY 326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
231# include <sys/inotify.h> 329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
232#endif 335#endif
233 336
234#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h> 338# include <winsock.h>
236#endif 339#endif
237 340
341#if EV_USE_EVENTFD
342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343# include <stdint.h>
344# ifdef __cplusplus
345extern "C" {
346# endif
347int eventfd (unsigned int initval, int flags);
348# ifdef __cplusplus
349}
350# endif
351#endif
352
238/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
239 360
240/* 361/*
241 * This is used to avoid floating point rounding problems. 362 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics 363 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding 364 * to ensure progress, time-wise, even when rounding
255# define expect(expr,value) __builtin_expect ((expr),(value)) 376# define expect(expr,value) __builtin_expect ((expr),(value))
256# define noinline __attribute__ ((noinline)) 377# define noinline __attribute__ ((noinline))
257#else 378#else
258# define expect(expr,value) (expr) 379# define expect(expr,value) (expr)
259# define noinline 380# define noinline
260# if __STDC_VERSION__ < 199901L 381# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
261# define inline 382# define inline
262# endif 383# endif
263#endif 384#endif
264 385
265#define expect_false(expr) expect ((expr) != 0, 0) 386#define expect_false(expr) expect ((expr) != 0, 0)
270# define inline_speed static noinline 391# define inline_speed static noinline
271#else 392#else
272# define inline_speed static inline 393# define inline_speed static inline
273#endif 394#endif
274 395
275#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
276#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
277 403
278#define EMPTY /* required for microsofts broken pseudo-c compiler */ 404#define EMPTY /* required for microsofts broken pseudo-c compiler */
279#define EMPTY2(a,b) /* used to suppress some warnings */ 405#define EMPTY2(a,b) /* used to suppress some warnings */
280 406
281typedef ev_watcher *W; 407typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 408typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
284 410
285#if EV_USE_MONOTONIC 411#define ev_active(w) ((W)(w))->active
412#define ev_at(w) ((WT)(w))->at
413
414#if EV_USE_REALTIME
286/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
287/* giving it a reasonably high chance of working on typical architetcures */ 416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
419
420#if EV_USE_MONOTONIC
288static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
289#endif 422#endif
290 423
291#ifdef _WIN32 424#ifdef _WIN32
292# include "ev_win32.c" 425# include "ev_win32.c"
293#endif 426#endif
301{ 434{
302 syserr_cb = cb; 435 syserr_cb = cb;
303} 436}
304 437
305static void noinline 438static void noinline
306syserr (const char *msg) 439ev_syserr (const char *msg)
307{ 440{
308 if (!msg) 441 if (!msg)
309 msg = "(libev) system error"; 442 msg = "(libev) system error";
310 443
311 if (syserr_cb) 444 if (syserr_cb)
315 perror (msg); 448 perror (msg);
316 abort (); 449 abort ();
317 } 450 }
318} 451}
319 452
453static void *
454ev_realloc_emul (void *ptr, long size)
455{
456 /* some systems, notably openbsd and darwin, fail to properly
457 * implement realloc (x, 0) (as required by both ansi c-98 and
458 * the single unix specification, so work around them here.
459 */
460
461 if (size)
462 return realloc (ptr, size);
463
464 free (ptr);
465 return 0;
466}
467
320static void *(*alloc)(void *ptr, long size); 468static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
321 469
322void 470void
323ev_set_allocator (void *(*cb)(void *ptr, long size)) 471ev_set_allocator (void *(*cb)(void *ptr, long size))
324{ 472{
325 alloc = cb; 473 alloc = cb;
326} 474}
327 475
328inline_speed void * 476inline_speed void *
329ev_realloc (void *ptr, long size) 477ev_realloc (void *ptr, long size)
330{ 478{
331 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 479 ptr = alloc (ptr, size);
332 480
333 if (!ptr && size) 481 if (!ptr && size)
334 { 482 {
335 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 483 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
336 abort (); 484 abort ();
342#define ev_malloc(size) ev_realloc (0, (size)) 490#define ev_malloc(size) ev_realloc (0, (size))
343#define ev_free(ptr) ev_realloc ((ptr), 0) 491#define ev_free(ptr) ev_realloc ((ptr), 0)
344 492
345/*****************************************************************************/ 493/*****************************************************************************/
346 494
495/* file descriptor info structure */
347typedef struct 496typedef struct
348{ 497{
349 WL head; 498 WL head;
350 unsigned char events; 499 unsigned char events; /* the events watched for */
500 unsigned char reify; /* flag set when this ANFD needs reification */
501 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
351 unsigned char reify; 502 unsigned char unused;
503#if EV_USE_EPOLL
504 unsigned int egen; /* generation counter to counter epoll bugs */
505#endif
352#if EV_SELECT_IS_WINSOCKET 506#if EV_SELECT_IS_WINSOCKET
353 SOCKET handle; 507 SOCKET handle;
354#endif 508#endif
355} ANFD; 509} ANFD;
356 510
511/* stores the pending event set for a given watcher */
357typedef struct 512typedef struct
358{ 513{
359 W w; 514 W w;
360 int events; 515 int events; /* the pending event set for the given watcher */
361} ANPENDING; 516} ANPENDING;
362 517
363#if EV_USE_INOTIFY 518#if EV_USE_INOTIFY
519/* hash table entry per inotify-id */
364typedef struct 520typedef struct
365{ 521{
366 WL head; 522 WL head;
367} ANFS; 523} ANFS;
524#endif
525
526/* Heap Entry */
527#if EV_HEAP_CACHE_AT
528 /* a heap element */
529 typedef struct {
530 ev_tstamp at;
531 WT w;
532 } ANHE;
533
534 #define ANHE_w(he) (he).w /* access watcher, read-write */
535 #define ANHE_at(he) (he).at /* access cached at, read-only */
536 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
537#else
538 /* a heap element */
539 typedef WT ANHE;
540
541 #define ANHE_w(he) (he)
542 #define ANHE_at(he) (he)->at
543 #define ANHE_at_cache(he)
368#endif 544#endif
369 545
370#if EV_MULTIPLICITY 546#if EV_MULTIPLICITY
371 547
372 struct ev_loop 548 struct ev_loop
391 567
392 static int ev_default_loop_ptr; 568 static int ev_default_loop_ptr;
393 569
394#endif 570#endif
395 571
572#if EV_MINIMAL < 2
573# define EV_SUSPEND_CB if (expect_false (suspend_cb)) suspend_cb (EV_A)
574# define EV_RESUME_CB if (expect_false (resume_cb )) resume_cb (EV_A)
575# define EV_INVOKE_PENDING invoke_cb (EV_A)
576#else
577# define EV_SUSPEND_CB (void)0
578# define EV_RESUME_CB (void)0
579# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
580#endif
581
396/*****************************************************************************/ 582/*****************************************************************************/
397 583
584#ifndef EV_HAVE_EV_TIME
398ev_tstamp 585ev_tstamp
399ev_time (void) 586ev_time (void)
400{ 587{
401#if EV_USE_REALTIME 588#if EV_USE_REALTIME
589 if (expect_true (have_realtime))
590 {
402 struct timespec ts; 591 struct timespec ts;
403 clock_gettime (CLOCK_REALTIME, &ts); 592 clock_gettime (CLOCK_REALTIME, &ts);
404 return ts.tv_sec + ts.tv_nsec * 1e-9; 593 return ts.tv_sec + ts.tv_nsec * 1e-9;
405#else 594 }
595#endif
596
406 struct timeval tv; 597 struct timeval tv;
407 gettimeofday (&tv, 0); 598 gettimeofday (&tv, 0);
408 return tv.tv_sec + tv.tv_usec * 1e-6; 599 return tv.tv_sec + tv.tv_usec * 1e-6;
409#endif
410} 600}
601#endif
411 602
412ev_tstamp inline_size 603inline_size ev_tstamp
413get_clock (void) 604get_clock (void)
414{ 605{
415#if EV_USE_MONOTONIC 606#if EV_USE_MONOTONIC
416 if (expect_true (have_monotonic)) 607 if (expect_true (have_monotonic))
417 { 608 {
443 ts.tv_sec = (time_t)delay; 634 ts.tv_sec = (time_t)delay;
444 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 635 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
445 636
446 nanosleep (&ts, 0); 637 nanosleep (&ts, 0);
447#elif defined(_WIN32) 638#elif defined(_WIN32)
448 Sleep (delay * 1e3); 639 Sleep ((unsigned long)(delay * 1e3));
449#else 640#else
450 struct timeval tv; 641 struct timeval tv;
451 642
452 tv.tv_sec = (time_t)delay; 643 tv.tv_sec = (time_t)delay;
453 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 644 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
454 645
646 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
647 /* somehting not guaranteed by newer posix versions, but guaranteed */
648 /* by older ones */
455 select (0, 0, 0, 0, &tv); 649 select (0, 0, 0, 0, &tv);
456#endif 650#endif
457 } 651 }
458} 652}
459 653
460/*****************************************************************************/ 654/*****************************************************************************/
461 655
462int inline_size 656#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
657
658/* find a suitable new size for the given array, */
659/* hopefully by rounding to a ncie-to-malloc size */
660inline_size int
463array_nextsize (int elem, int cur, int cnt) 661array_nextsize (int elem, int cur, int cnt)
464{ 662{
465 int ncur = cur + 1; 663 int ncur = cur + 1;
466 664
467 do 665 do
468 ncur <<= 1; 666 ncur <<= 1;
469 while (cnt > ncur); 667 while (cnt > ncur);
470 668
471 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 669 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
472 if (elem * ncur > 4096) 670 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
473 { 671 {
474 ncur *= elem; 672 ncur *= elem;
475 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 673 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
476 ncur = ncur - sizeof (void *) * 4; 674 ncur = ncur - sizeof (void *) * 4;
477 ncur /= elem; 675 ncur /= elem;
478 } 676 }
479 677
480 return ncur; 678 return ncur;
484array_realloc (int elem, void *base, int *cur, int cnt) 682array_realloc (int elem, void *base, int *cur, int cnt)
485{ 683{
486 *cur = array_nextsize (elem, *cur, cnt); 684 *cur = array_nextsize (elem, *cur, cnt);
487 return ev_realloc (base, elem * *cur); 685 return ev_realloc (base, elem * *cur);
488} 686}
687
688#define array_init_zero(base,count) \
689 memset ((void *)(base), 0, sizeof (*(base)) * (count))
489 690
490#define array_needsize(type,base,cur,cnt,init) \ 691#define array_needsize(type,base,cur,cnt,init) \
491 if (expect_false ((cnt) > (cur))) \ 692 if (expect_false ((cnt) > (cur))) \
492 { \ 693 { \
493 int ocur_ = (cur); \ 694 int ocur_ = (cur); \
505 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 706 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
506 } 707 }
507#endif 708#endif
508 709
509#define array_free(stem, idx) \ 710#define array_free(stem, idx) \
510 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 711 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
511 712
512/*****************************************************************************/ 713/*****************************************************************************/
714
715/* dummy callback for pending events */
716static void noinline
717pendingcb (EV_P_ ev_prepare *w, int revents)
718{
719}
513 720
514void noinline 721void noinline
515ev_feed_event (EV_P_ void *w, int revents) 722ev_feed_event (EV_P_ void *w, int revents)
516{ 723{
517 W w_ = (W)w; 724 W w_ = (W)w;
526 pendings [pri][w_->pending - 1].w = w_; 733 pendings [pri][w_->pending - 1].w = w_;
527 pendings [pri][w_->pending - 1].events = revents; 734 pendings [pri][w_->pending - 1].events = revents;
528 } 735 }
529} 736}
530 737
531void inline_speed 738inline_speed void
739feed_reverse (EV_P_ W w)
740{
741 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
742 rfeeds [rfeedcnt++] = w;
743}
744
745inline_size void
746feed_reverse_done (EV_P_ int revents)
747{
748 do
749 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
750 while (rfeedcnt);
751}
752
753inline_speed void
532queue_events (EV_P_ W *events, int eventcnt, int type) 754queue_events (EV_P_ W *events, int eventcnt, int type)
533{ 755{
534 int i; 756 int i;
535 757
536 for (i = 0; i < eventcnt; ++i) 758 for (i = 0; i < eventcnt; ++i)
537 ev_feed_event (EV_A_ events [i], type); 759 ev_feed_event (EV_A_ events [i], type);
538} 760}
539 761
540/*****************************************************************************/ 762/*****************************************************************************/
541 763
542void inline_size 764inline_speed void
543anfds_init (ANFD *base, int count)
544{
545 while (count--)
546 {
547 base->head = 0;
548 base->events = EV_NONE;
549 base->reify = 0;
550
551 ++base;
552 }
553}
554
555void inline_speed
556fd_event (EV_P_ int fd, int revents) 765fd_event (EV_P_ int fd, int revents)
557{ 766{
558 ANFD *anfd = anfds + fd; 767 ANFD *anfd = anfds + fd;
559 ev_io *w; 768 ev_io *w;
560 769
572{ 781{
573 if (fd >= 0 && fd < anfdmax) 782 if (fd >= 0 && fd < anfdmax)
574 fd_event (EV_A_ fd, revents); 783 fd_event (EV_A_ fd, revents);
575} 784}
576 785
577void inline_size 786/* make sure the external fd watch events are in-sync */
787/* with the kernel/libev internal state */
788inline_size void
578fd_reify (EV_P) 789fd_reify (EV_P)
579{ 790{
580 int i; 791 int i;
581 792
582 for (i = 0; i < fdchangecnt; ++i) 793 for (i = 0; i < fdchangecnt; ++i)
591 events |= (unsigned char)w->events; 802 events |= (unsigned char)w->events;
592 803
593#if EV_SELECT_IS_WINSOCKET 804#if EV_SELECT_IS_WINSOCKET
594 if (events) 805 if (events)
595 { 806 {
596 unsigned long argp; 807 unsigned long arg;
808 #ifdef EV_FD_TO_WIN32_HANDLE
809 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
810 #else
597 anfd->handle = _get_osfhandle (fd); 811 anfd->handle = _get_osfhandle (fd);
812 #endif
598 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 813 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
599 } 814 }
600#endif 815#endif
601 816
602 { 817 {
603 unsigned char o_events = anfd->events; 818 unsigned char o_events = anfd->events;
604 unsigned char o_reify = anfd->reify; 819 unsigned char o_reify = anfd->reify;
605 820
606 anfd->reify = 0; 821 anfd->reify = 0;
607 anfd->events = events; 822 anfd->events = events;
608 823
609 if (o_events != events || o_reify & EV_IOFDSET) 824 if (o_events != events || o_reify & EV__IOFDSET)
610 backend_modify (EV_A_ fd, o_events, events); 825 backend_modify (EV_A_ fd, o_events, events);
611 } 826 }
612 } 827 }
613 828
614 fdchangecnt = 0; 829 fdchangecnt = 0;
615} 830}
616 831
617void inline_size 832/* something about the given fd changed */
833inline_size void
618fd_change (EV_P_ int fd, int flags) 834fd_change (EV_P_ int fd, int flags)
619{ 835{
620 unsigned char reify = anfds [fd].reify; 836 unsigned char reify = anfds [fd].reify;
621 anfds [fd].reify |= flags; 837 anfds [fd].reify |= flags;
622 838
626 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 842 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
627 fdchanges [fdchangecnt - 1] = fd; 843 fdchanges [fdchangecnt - 1] = fd;
628 } 844 }
629} 845}
630 846
631void inline_speed 847/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
848inline_speed void
632fd_kill (EV_P_ int fd) 849fd_kill (EV_P_ int fd)
633{ 850{
634 ev_io *w; 851 ev_io *w;
635 852
636 while ((w = (ev_io *)anfds [fd].head)) 853 while ((w = (ev_io *)anfds [fd].head))
638 ev_io_stop (EV_A_ w); 855 ev_io_stop (EV_A_ w);
639 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 856 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
640 } 857 }
641} 858}
642 859
643int inline_size 860/* check whether the given fd is atcually valid, for error recovery */
861inline_size int
644fd_valid (int fd) 862fd_valid (int fd)
645{ 863{
646#ifdef _WIN32 864#ifdef _WIN32
647 return _get_osfhandle (fd) != -1; 865 return _get_osfhandle (fd) != -1;
648#else 866#else
656{ 874{
657 int fd; 875 int fd;
658 876
659 for (fd = 0; fd < anfdmax; ++fd) 877 for (fd = 0; fd < anfdmax; ++fd)
660 if (anfds [fd].events) 878 if (anfds [fd].events)
661 if (!fd_valid (fd) == -1 && errno == EBADF) 879 if (!fd_valid (fd) && errno == EBADF)
662 fd_kill (EV_A_ fd); 880 fd_kill (EV_A_ fd);
663} 881}
664 882
665/* called on ENOMEM in select/poll to kill some fds and retry */ 883/* called on ENOMEM in select/poll to kill some fds and retry */
666static void noinline 884static void noinline
684 902
685 for (fd = 0; fd < anfdmax; ++fd) 903 for (fd = 0; fd < anfdmax; ++fd)
686 if (anfds [fd].events) 904 if (anfds [fd].events)
687 { 905 {
688 anfds [fd].events = 0; 906 anfds [fd].events = 0;
907 anfds [fd].emask = 0;
689 fd_change (EV_A_ fd, EV_IOFDSET | 1); 908 fd_change (EV_A_ fd, EV__IOFDSET | 1);
690 } 909 }
691} 910}
692 911
693/*****************************************************************************/ 912/*****************************************************************************/
694 913
695void inline_speed 914/*
696upheap (WT *heap, int k) 915 * the heap functions want a real array index. array index 0 uis guaranteed to not
697{ 916 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
698 WT w = heap [k]; 917 * the branching factor of the d-tree.
918 */
699 919
700 while (k) 920/*
701 { 921 * at the moment we allow libev the luxury of two heaps,
702 int p = (k - 1) >> 1; 922 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
923 * which is more cache-efficient.
924 * the difference is about 5% with 50000+ watchers.
925 */
926#if EV_USE_4HEAP
703 927
704 if (heap [p]->at <= w->at) 928#define DHEAP 4
929#define HEAP0 (DHEAP - 1) /* index of first element in heap */
930#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
931#define UPHEAP_DONE(p,k) ((p) == (k))
932
933/* away from the root */
934inline_speed void
935downheap (ANHE *heap, int N, int k)
936{
937 ANHE he = heap [k];
938 ANHE *E = heap + N + HEAP0;
939
940 for (;;)
941 {
942 ev_tstamp minat;
943 ANHE *minpos;
944 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
945
946 /* find minimum child */
947 if (expect_true (pos + DHEAP - 1 < E))
948 {
949 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
950 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
951 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
952 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
953 }
954 else if (pos < E)
955 {
956 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
957 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
958 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
959 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
960 }
961 else
705 break; 962 break;
706 963
964 if (ANHE_at (he) <= minat)
965 break;
966
967 heap [k] = *minpos;
968 ev_active (ANHE_w (*minpos)) = k;
969
970 k = minpos - heap;
971 }
972
973 heap [k] = he;
974 ev_active (ANHE_w (he)) = k;
975}
976
977#else /* 4HEAP */
978
979#define HEAP0 1
980#define HPARENT(k) ((k) >> 1)
981#define UPHEAP_DONE(p,k) (!(p))
982
983/* away from the root */
984inline_speed void
985downheap (ANHE *heap, int N, int k)
986{
987 ANHE he = heap [k];
988
989 for (;;)
990 {
991 int c = k << 1;
992
993 if (c > N + HEAP0 - 1)
994 break;
995
996 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
997 ? 1 : 0;
998
999 if (ANHE_at (he) <= ANHE_at (heap [c]))
1000 break;
1001
1002 heap [k] = heap [c];
1003 ev_active (ANHE_w (heap [k])) = k;
1004
1005 k = c;
1006 }
1007
1008 heap [k] = he;
1009 ev_active (ANHE_w (he)) = k;
1010}
1011#endif
1012
1013/* towards the root */
1014inline_speed void
1015upheap (ANHE *heap, int k)
1016{
1017 ANHE he = heap [k];
1018
1019 for (;;)
1020 {
1021 int p = HPARENT (k);
1022
1023 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1024 break;
1025
707 heap [k] = heap [p]; 1026 heap [k] = heap [p];
708 ((W)heap [k])->active = k + 1; 1027 ev_active (ANHE_w (heap [k])) = k;
709 k = p; 1028 k = p;
710 } 1029 }
711 1030
712 heap [k] = w; 1031 heap [k] = he;
713 ((W)heap [k])->active = k + 1; 1032 ev_active (ANHE_w (he)) = k;
714} 1033}
715 1034
716void inline_speed 1035/* move an element suitably so it is in a correct place */
717downheap (WT *heap, int N, int k) 1036inline_size void
718{
719 WT w = heap [k];
720
721 for (;;)
722 {
723 int c = (k << 1) + 1;
724
725 if (c >= N)
726 break;
727
728 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
729 ? 1 : 0;
730
731 if (w->at <= heap [c]->at)
732 break;
733
734 heap [k] = heap [c];
735 ((W)heap [k])->active = k + 1;
736
737 k = c;
738 }
739
740 heap [k] = w;
741 ((W)heap [k])->active = k + 1;
742}
743
744void inline_size
745adjustheap (WT *heap, int N, int k) 1037adjustheap (ANHE *heap, int N, int k)
746{ 1038{
1039 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
747 upheap (heap, k); 1040 upheap (heap, k);
1041 else
748 downheap (heap, N, k); 1042 downheap (heap, N, k);
1043}
1044
1045/* rebuild the heap: this function is used only once and executed rarely */
1046inline_size void
1047reheap (ANHE *heap, int N)
1048{
1049 int i;
1050
1051 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1052 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1053 for (i = 0; i < N; ++i)
1054 upheap (heap, i + HEAP0);
749} 1055}
750 1056
751/*****************************************************************************/ 1057/*****************************************************************************/
752 1058
1059/* associate signal watchers to a signal signal */
753typedef struct 1060typedef struct
754{ 1061{
755 WL head; 1062 WL head;
756 sig_atomic_t volatile gotsig; 1063 EV_ATOMIC_T gotsig;
757} ANSIG; 1064} ANSIG;
758 1065
759static ANSIG *signals; 1066static ANSIG *signals;
760static int signalmax; 1067static int signalmax;
761 1068
762static int sigpipe [2]; 1069static EV_ATOMIC_T gotsig;
763static sig_atomic_t volatile gotsig;
764static ev_io sigev;
765 1070
766void inline_size 1071/*****************************************************************************/
767signals_init (ANSIG *base, int count)
768{
769 while (count--)
770 {
771 base->head = 0;
772 base->gotsig = 0;
773 1072
774 ++base; 1073/* used to prepare libev internal fd's */
775 } 1074/* this is not fork-safe */
776} 1075inline_speed void
777
778static void
779sighandler (int signum)
780{
781#if _WIN32
782 signal (signum, sighandler);
783#endif
784
785 signals [signum - 1].gotsig = 1;
786
787 if (!gotsig)
788 {
789 int old_errno = errno;
790 gotsig = 1;
791 write (sigpipe [1], &signum, 1);
792 errno = old_errno;
793 }
794}
795
796void noinline
797ev_feed_signal_event (EV_P_ int signum)
798{
799 WL w;
800
801#if EV_MULTIPLICITY
802 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
803#endif
804
805 --signum;
806
807 if (signum < 0 || signum >= signalmax)
808 return;
809
810 signals [signum].gotsig = 0;
811
812 for (w = signals [signum].head; w; w = w->next)
813 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
814}
815
816static void
817sigcb (EV_P_ ev_io *iow, int revents)
818{
819 int signum;
820
821 read (sigpipe [0], &revents, 1);
822 gotsig = 0;
823
824 for (signum = signalmax; signum--; )
825 if (signals [signum].gotsig)
826 ev_feed_signal_event (EV_A_ signum + 1);
827}
828
829void inline_speed
830fd_intern (int fd) 1076fd_intern (int fd)
831{ 1077{
832#ifdef _WIN32 1078#ifdef _WIN32
833 int arg = 1; 1079 unsigned long arg = 1;
834 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1080 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
835#else 1081#else
836 fcntl (fd, F_SETFD, FD_CLOEXEC); 1082 fcntl (fd, F_SETFD, FD_CLOEXEC);
837 fcntl (fd, F_SETFL, O_NONBLOCK); 1083 fcntl (fd, F_SETFL, O_NONBLOCK);
838#endif 1084#endif
839} 1085}
840 1086
841static void noinline 1087static void noinline
842siginit (EV_P) 1088evpipe_init (EV_P)
843{ 1089{
1090 if (!ev_is_active (&pipe_w))
1091 {
1092#if EV_USE_EVENTFD
1093 if ((evfd = eventfd (0, 0)) >= 0)
1094 {
1095 evpipe [0] = -1;
1096 fd_intern (evfd);
1097 ev_io_set (&pipe_w, evfd, EV_READ);
1098 }
1099 else
1100#endif
1101 {
1102 while (pipe (evpipe))
1103 ev_syserr ("(libev) error creating signal/async pipe");
1104
844 fd_intern (sigpipe [0]); 1105 fd_intern (evpipe [0]);
845 fd_intern (sigpipe [1]); 1106 fd_intern (evpipe [1]);
1107 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1108 }
846 1109
847 ev_io_set (&sigev, sigpipe [0], EV_READ);
848 ev_io_start (EV_A_ &sigev); 1110 ev_io_start (EV_A_ &pipe_w);
849 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1111 ev_unref (EV_A); /* watcher should not keep loop alive */
1112 }
1113}
1114
1115inline_size void
1116evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1117{
1118 if (!*flag)
1119 {
1120 int old_errno = errno; /* save errno because write might clobber it */
1121
1122 *flag = 1;
1123
1124#if EV_USE_EVENTFD
1125 if (evfd >= 0)
1126 {
1127 uint64_t counter = 1;
1128 write (evfd, &counter, sizeof (uint64_t));
1129 }
1130 else
1131#endif
1132 write (evpipe [1], &old_errno, 1);
1133
1134 errno = old_errno;
1135 }
1136}
1137
1138/* called whenever the libev signal pipe */
1139/* got some events (signal, async) */
1140static void
1141pipecb (EV_P_ ev_io *iow, int revents)
1142{
1143#if EV_USE_EVENTFD
1144 if (evfd >= 0)
1145 {
1146 uint64_t counter;
1147 read (evfd, &counter, sizeof (uint64_t));
1148 }
1149 else
1150#endif
1151 {
1152 char dummy;
1153 read (evpipe [0], &dummy, 1);
1154 }
1155
1156 if (gotsig && ev_is_default_loop (EV_A))
1157 {
1158 int signum;
1159 gotsig = 0;
1160
1161 for (signum = signalmax; signum--; )
1162 if (signals [signum].gotsig)
1163 ev_feed_signal_event (EV_A_ signum + 1);
1164 }
1165
1166#if EV_ASYNC_ENABLE
1167 if (gotasync)
1168 {
1169 int i;
1170 gotasync = 0;
1171
1172 for (i = asynccnt; i--; )
1173 if (asyncs [i]->sent)
1174 {
1175 asyncs [i]->sent = 0;
1176 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1177 }
1178 }
1179#endif
850} 1180}
851 1181
852/*****************************************************************************/ 1182/*****************************************************************************/
853 1183
1184static void
1185ev_sighandler (int signum)
1186{
1187#if EV_MULTIPLICITY
1188 struct ev_loop *loop = &default_loop_struct;
1189#endif
1190
1191#if _WIN32
1192 signal (signum, ev_sighandler);
1193#endif
1194
1195 signals [signum - 1].gotsig = 1;
1196 evpipe_write (EV_A_ &gotsig);
1197}
1198
1199void noinline
1200ev_feed_signal_event (EV_P_ int signum)
1201{
1202 WL w;
1203
1204#if EV_MULTIPLICITY
1205 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1206#endif
1207
1208 --signum;
1209
1210 if (signum < 0 || signum >= signalmax)
1211 return;
1212
1213 signals [signum].gotsig = 0;
1214
1215 for (w = signals [signum].head; w; w = w->next)
1216 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1217}
1218
1219/*****************************************************************************/
1220
854static WL childs [EV_PID_HASHSIZE]; 1221static WL childs [EV_PID_HASHSIZE];
855 1222
856#ifndef _WIN32 1223#ifndef _WIN32
857 1224
858static ev_signal childev; 1225static ev_signal childev;
859 1226
860void inline_speed 1227#ifndef WIFCONTINUED
1228# define WIFCONTINUED(status) 0
1229#endif
1230
1231/* handle a single child status event */
1232inline_speed void
861child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1233child_reap (EV_P_ int chain, int pid, int status)
862{ 1234{
863 ev_child *w; 1235 ev_child *w;
1236 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
864 1237
865 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1238 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1239 {
866 if (w->pid == pid || !w->pid) 1240 if ((w->pid == pid || !w->pid)
1241 && (!traced || (w->flags & 1)))
867 { 1242 {
868 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1243 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
869 w->rpid = pid; 1244 w->rpid = pid;
870 w->rstatus = status; 1245 w->rstatus = status;
871 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1246 ev_feed_event (EV_A_ (W)w, EV_CHILD);
872 } 1247 }
1248 }
873} 1249}
874 1250
875#ifndef WCONTINUED 1251#ifndef WCONTINUED
876# define WCONTINUED 0 1252# define WCONTINUED 0
877#endif 1253#endif
878 1254
1255/* called on sigchld etc., calls waitpid */
879static void 1256static void
880childcb (EV_P_ ev_signal *sw, int revents) 1257childcb (EV_P_ ev_signal *sw, int revents)
881{ 1258{
882 int pid, status; 1259 int pid, status;
883 1260
886 if (!WCONTINUED 1263 if (!WCONTINUED
887 || errno != EINVAL 1264 || errno != EINVAL
888 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1265 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
889 return; 1266 return;
890 1267
891 /* make sure we are called again until all childs have been reaped */ 1268 /* make sure we are called again until all children have been reaped */
892 /* we need to do it this way so that the callback gets called before we continue */ 1269 /* we need to do it this way so that the callback gets called before we continue */
893 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1270 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
894 1271
895 child_reap (EV_A_ sw, pid, pid, status); 1272 child_reap (EV_A_ pid, pid, status);
896 if (EV_PID_HASHSIZE > 1) 1273 if (EV_PID_HASHSIZE > 1)
897 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1274 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
898} 1275}
899 1276
900#endif 1277#endif
901 1278
902/*****************************************************************************/ 1279/*****************************************************************************/
964 /* kqueue is borked on everything but netbsd apparently */ 1341 /* kqueue is borked on everything but netbsd apparently */
965 /* it usually doesn't work correctly on anything but sockets and pipes */ 1342 /* it usually doesn't work correctly on anything but sockets and pipes */
966 flags &= ~EVBACKEND_KQUEUE; 1343 flags &= ~EVBACKEND_KQUEUE;
967#endif 1344#endif
968#ifdef __APPLE__ 1345#ifdef __APPLE__
969 // flags &= ~EVBACKEND_KQUEUE; for documentation 1346 /* only select works correctly on that "unix-certified" platform */
970 flags &= ~EVBACKEND_POLL; 1347 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1348 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
971#endif 1349#endif
972 1350
973 return flags; 1351 return flags;
974} 1352}
975 1353
989ev_backend (EV_P) 1367ev_backend (EV_P)
990{ 1368{
991 return backend; 1369 return backend;
992} 1370}
993 1371
1372#if EV_MINIMAL < 2
994unsigned int 1373unsigned int
995ev_loop_count (EV_P) 1374ev_loop_count (EV_P)
996{ 1375{
997 return loop_count; 1376 return loop_count;
998} 1377}
999 1378
1379unsigned int
1380ev_loop_depth (EV_P)
1381{
1382 return loop_depth;
1383}
1384
1000void 1385void
1001ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1386ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1002{ 1387{
1003 io_blocktime = interval; 1388 io_blocktime = interval;
1004} 1389}
1007ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1392ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1008{ 1393{
1009 timeout_blocktime = interval; 1394 timeout_blocktime = interval;
1010} 1395}
1011 1396
1397void
1398ev_set_userdata (EV_P_ void *data)
1399{
1400 userdata = data;
1401}
1402
1403void *
1404ev_userdata (EV_P)
1405{
1406 return userdata;
1407}
1408
1409void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1410{
1411 invoke_cb = invoke_pending_cb;
1412}
1413
1414void ev_set_blocking_cb (EV_P_ void (*suspend_cb_)(EV_P), void (*resume_cb_)(EV_P))
1415{
1416 suspend_cb = suspend_cb_;
1417 resume_cb = resume_cb_;
1418}
1419#endif
1420
1421/* initialise a loop structure, must be zero-initialised */
1012static void noinline 1422static void noinline
1013loop_init (EV_P_ unsigned int flags) 1423loop_init (EV_P_ unsigned int flags)
1014{ 1424{
1015 if (!backend) 1425 if (!backend)
1016 { 1426 {
1427#if EV_USE_REALTIME
1428 if (!have_realtime)
1429 {
1430 struct timespec ts;
1431
1432 if (!clock_gettime (CLOCK_REALTIME, &ts))
1433 have_realtime = 1;
1434 }
1435#endif
1436
1017#if EV_USE_MONOTONIC 1437#if EV_USE_MONOTONIC
1438 if (!have_monotonic)
1018 { 1439 {
1019 struct timespec ts; 1440 struct timespec ts;
1441
1020 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1442 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1021 have_monotonic = 1; 1443 have_monotonic = 1;
1022 } 1444 }
1023#endif 1445#endif
1024 1446
1025 ev_rt_now = ev_time (); 1447 ev_rt_now = ev_time ();
1026 mn_now = get_clock (); 1448 mn_now = get_clock ();
1027 now_floor = mn_now; 1449 now_floor = mn_now;
1028 rtmn_diff = ev_rt_now - mn_now; 1450 rtmn_diff = ev_rt_now - mn_now;
1451#if EV_MINIMAL < 2
1452 invoke_cb = ev_invoke_pending;
1453#endif
1029 1454
1030 io_blocktime = 0.; 1455 io_blocktime = 0.;
1031 timeout_blocktime = 0.; 1456 timeout_blocktime = 0.;
1457 backend = 0;
1458 backend_fd = -1;
1459 gotasync = 0;
1460#if EV_USE_INOTIFY
1461 fs_fd = -2;
1462#endif
1032 1463
1033 /* pid check not overridable via env */ 1464 /* pid check not overridable via env */
1034#ifndef _WIN32 1465#ifndef _WIN32
1035 if (flags & EVFLAG_FORKCHECK) 1466 if (flags & EVFLAG_FORKCHECK)
1036 curpid = getpid (); 1467 curpid = getpid ();
1039 if (!(flags & EVFLAG_NOENV) 1470 if (!(flags & EVFLAG_NOENV)
1040 && !enable_secure () 1471 && !enable_secure ()
1041 && getenv ("LIBEV_FLAGS")) 1472 && getenv ("LIBEV_FLAGS"))
1042 flags = atoi (getenv ("LIBEV_FLAGS")); 1473 flags = atoi (getenv ("LIBEV_FLAGS"));
1043 1474
1044 if (!(flags & 0x0000ffffUL)) 1475 if (!(flags & 0x0000ffffU))
1045 flags |= ev_recommended_backends (); 1476 flags |= ev_recommended_backends ();
1046
1047 backend = 0;
1048 backend_fd = -1;
1049#if EV_USE_INOTIFY
1050 fs_fd = -2;
1051#endif
1052 1477
1053#if EV_USE_PORT 1478#if EV_USE_PORT
1054 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1479 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1055#endif 1480#endif
1056#if EV_USE_KQUEUE 1481#if EV_USE_KQUEUE
1064#endif 1489#endif
1065#if EV_USE_SELECT 1490#if EV_USE_SELECT
1066 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1491 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1067#endif 1492#endif
1068 1493
1494 ev_prepare_init (&pending_w, pendingcb);
1495
1069 ev_init (&sigev, sigcb); 1496 ev_init (&pipe_w, pipecb);
1070 ev_set_priority (&sigev, EV_MAXPRI); 1497 ev_set_priority (&pipe_w, EV_MAXPRI);
1071 } 1498 }
1072} 1499}
1073 1500
1501/* free up a loop structure */
1074static void noinline 1502static void noinline
1075loop_destroy (EV_P) 1503loop_destroy (EV_P)
1076{ 1504{
1077 int i; 1505 int i;
1506
1507 if (ev_is_active (&pipe_w))
1508 {
1509 ev_ref (EV_A); /* signal watcher */
1510 ev_io_stop (EV_A_ &pipe_w);
1511
1512#if EV_USE_EVENTFD
1513 if (evfd >= 0)
1514 close (evfd);
1515#endif
1516
1517 if (evpipe [0] >= 0)
1518 {
1519 close (evpipe [0]);
1520 close (evpipe [1]);
1521 }
1522 }
1078 1523
1079#if EV_USE_INOTIFY 1524#if EV_USE_INOTIFY
1080 if (fs_fd >= 0) 1525 if (fs_fd >= 0)
1081 close (fs_fd); 1526 close (fs_fd);
1082#endif 1527#endif
1109 } 1554 }
1110 1555
1111 ev_free (anfds); anfdmax = 0; 1556 ev_free (anfds); anfdmax = 0;
1112 1557
1113 /* have to use the microsoft-never-gets-it-right macro */ 1558 /* have to use the microsoft-never-gets-it-right macro */
1559 array_free (rfeed, EMPTY);
1114 array_free (fdchange, EMPTY); 1560 array_free (fdchange, EMPTY);
1115 array_free (timer, EMPTY); 1561 array_free (timer, EMPTY);
1116#if EV_PERIODIC_ENABLE 1562#if EV_PERIODIC_ENABLE
1117 array_free (periodic, EMPTY); 1563 array_free (periodic, EMPTY);
1118#endif 1564#endif
1119#if EV_FORK_ENABLE 1565#if EV_FORK_ENABLE
1120 array_free (fork, EMPTY); 1566 array_free (fork, EMPTY);
1121#endif 1567#endif
1122 array_free (prepare, EMPTY); 1568 array_free (prepare, EMPTY);
1123 array_free (check, EMPTY); 1569 array_free (check, EMPTY);
1570#if EV_ASYNC_ENABLE
1571 array_free (async, EMPTY);
1572#endif
1124 1573
1125 backend = 0; 1574 backend = 0;
1126} 1575}
1127 1576
1577#if EV_USE_INOTIFY
1128void inline_size infy_fork (EV_P); 1578inline_size void infy_fork (EV_P);
1579#endif
1129 1580
1130void inline_size 1581inline_size void
1131loop_fork (EV_P) 1582loop_fork (EV_P)
1132{ 1583{
1133#if EV_USE_PORT 1584#if EV_USE_PORT
1134 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1585 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1135#endif 1586#endif
1141#endif 1592#endif
1142#if EV_USE_INOTIFY 1593#if EV_USE_INOTIFY
1143 infy_fork (EV_A); 1594 infy_fork (EV_A);
1144#endif 1595#endif
1145 1596
1146 if (ev_is_active (&sigev)) 1597 if (ev_is_active (&pipe_w))
1147 { 1598 {
1148 /* default loop */ 1599 /* this "locks" the handlers against writing to the pipe */
1600 /* while we modify the fd vars */
1601 gotsig = 1;
1602#if EV_ASYNC_ENABLE
1603 gotasync = 1;
1604#endif
1149 1605
1150 ev_ref (EV_A); 1606 ev_ref (EV_A);
1151 ev_io_stop (EV_A_ &sigev); 1607 ev_io_stop (EV_A_ &pipe_w);
1608
1609#if EV_USE_EVENTFD
1610 if (evfd >= 0)
1611 close (evfd);
1612#endif
1613
1614 if (evpipe [0] >= 0)
1615 {
1152 close (sigpipe [0]); 1616 close (evpipe [0]);
1153 close (sigpipe [1]); 1617 close (evpipe [1]);
1618 }
1154 1619
1155 while (pipe (sigpipe))
1156 syserr ("(libev) error creating pipe");
1157
1158 siginit (EV_A); 1620 evpipe_init (EV_A);
1621 /* now iterate over everything, in case we missed something */
1622 pipecb (EV_A_ &pipe_w, EV_READ);
1159 } 1623 }
1160 1624
1161 postfork = 0; 1625 postfork = 0;
1162} 1626}
1163 1627
1164#if EV_MULTIPLICITY 1628#if EV_MULTIPLICITY
1629
1165struct ev_loop * 1630struct ev_loop *
1166ev_loop_new (unsigned int flags) 1631ev_loop_new (unsigned int flags)
1167{ 1632{
1168 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1633 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1169 1634
1185} 1650}
1186 1651
1187void 1652void
1188ev_loop_fork (EV_P) 1653ev_loop_fork (EV_P)
1189{ 1654{
1190 postfork = 1; 1655 postfork = 1; /* must be in line with ev_default_fork */
1191} 1656}
1657#endif /* multiplicity */
1192 1658
1659#if EV_VERIFY
1660static void noinline
1661verify_watcher (EV_P_ W w)
1662{
1663 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1664
1665 if (w->pending)
1666 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1667}
1668
1669static void noinline
1670verify_heap (EV_P_ ANHE *heap, int N)
1671{
1672 int i;
1673
1674 for (i = HEAP0; i < N + HEAP0; ++i)
1675 {
1676 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1677 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1678 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1679
1680 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1681 }
1682}
1683
1684static void noinline
1685array_verify (EV_P_ W *ws, int cnt)
1686{
1687 while (cnt--)
1688 {
1689 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1690 verify_watcher (EV_A_ ws [cnt]);
1691 }
1692}
1693#endif
1694
1695#if EV_MINIMAL < 2
1696void
1697ev_loop_verify (EV_P)
1698{
1699#if EV_VERIFY
1700 int i;
1701 WL w;
1702
1703 assert (activecnt >= -1);
1704
1705 assert (fdchangemax >= fdchangecnt);
1706 for (i = 0; i < fdchangecnt; ++i)
1707 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1708
1709 assert (anfdmax >= 0);
1710 for (i = 0; i < anfdmax; ++i)
1711 for (w = anfds [i].head; w; w = w->next)
1712 {
1713 verify_watcher (EV_A_ (W)w);
1714 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1715 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1716 }
1717
1718 assert (timermax >= timercnt);
1719 verify_heap (EV_A_ timers, timercnt);
1720
1721#if EV_PERIODIC_ENABLE
1722 assert (periodicmax >= periodiccnt);
1723 verify_heap (EV_A_ periodics, periodiccnt);
1724#endif
1725
1726 for (i = NUMPRI; i--; )
1727 {
1728 assert (pendingmax [i] >= pendingcnt [i]);
1729#if EV_IDLE_ENABLE
1730 assert (idleall >= 0);
1731 assert (idlemax [i] >= idlecnt [i]);
1732 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1733#endif
1734 }
1735
1736#if EV_FORK_ENABLE
1737 assert (forkmax >= forkcnt);
1738 array_verify (EV_A_ (W *)forks, forkcnt);
1739#endif
1740
1741#if EV_ASYNC_ENABLE
1742 assert (asyncmax >= asynccnt);
1743 array_verify (EV_A_ (W *)asyncs, asynccnt);
1744#endif
1745
1746 assert (preparemax >= preparecnt);
1747 array_verify (EV_A_ (W *)prepares, preparecnt);
1748
1749 assert (checkmax >= checkcnt);
1750 array_verify (EV_A_ (W *)checks, checkcnt);
1751
1752# if 0
1753 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1754 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1755# endif
1756#endif
1757}
1193#endif 1758#endif
1194 1759
1195#if EV_MULTIPLICITY 1760#if EV_MULTIPLICITY
1196struct ev_loop * 1761struct ev_loop *
1197ev_default_loop_init (unsigned int flags) 1762ev_default_loop_init (unsigned int flags)
1198#else 1763#else
1199int 1764int
1200ev_default_loop (unsigned int flags) 1765ev_default_loop (unsigned int flags)
1201#endif 1766#endif
1202{ 1767{
1203 if (sigpipe [0] == sigpipe [1])
1204 if (pipe (sigpipe))
1205 return 0;
1206
1207 if (!ev_default_loop_ptr) 1768 if (!ev_default_loop_ptr)
1208 { 1769 {
1209#if EV_MULTIPLICITY 1770#if EV_MULTIPLICITY
1210 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1771 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1211#else 1772#else
1214 1775
1215 loop_init (EV_A_ flags); 1776 loop_init (EV_A_ flags);
1216 1777
1217 if (ev_backend (EV_A)) 1778 if (ev_backend (EV_A))
1218 { 1779 {
1219 siginit (EV_A);
1220
1221#ifndef _WIN32 1780#ifndef _WIN32
1222 ev_signal_init (&childev, childcb, SIGCHLD); 1781 ev_signal_init (&childev, childcb, SIGCHLD);
1223 ev_set_priority (&childev, EV_MAXPRI); 1782 ev_set_priority (&childev, EV_MAXPRI);
1224 ev_signal_start (EV_A_ &childev); 1783 ev_signal_start (EV_A_ &childev);
1225 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1784 ev_unref (EV_A); /* child watcher should not keep loop alive */
1237{ 1796{
1238#if EV_MULTIPLICITY 1797#if EV_MULTIPLICITY
1239 struct ev_loop *loop = ev_default_loop_ptr; 1798 struct ev_loop *loop = ev_default_loop_ptr;
1240#endif 1799#endif
1241 1800
1801 ev_default_loop_ptr = 0;
1802
1242#ifndef _WIN32 1803#ifndef _WIN32
1243 ev_ref (EV_A); /* child watcher */ 1804 ev_ref (EV_A); /* child watcher */
1244 ev_signal_stop (EV_A_ &childev); 1805 ev_signal_stop (EV_A_ &childev);
1245#endif 1806#endif
1246 1807
1247 ev_ref (EV_A); /* signal watcher */
1248 ev_io_stop (EV_A_ &sigev);
1249
1250 close (sigpipe [0]); sigpipe [0] = 0;
1251 close (sigpipe [1]); sigpipe [1] = 0;
1252
1253 loop_destroy (EV_A); 1808 loop_destroy (EV_A);
1254} 1809}
1255 1810
1256void 1811void
1257ev_default_fork (void) 1812ev_default_fork (void)
1258{ 1813{
1259#if EV_MULTIPLICITY 1814#if EV_MULTIPLICITY
1260 struct ev_loop *loop = ev_default_loop_ptr; 1815 struct ev_loop *loop = ev_default_loop_ptr;
1261#endif 1816#endif
1262 1817
1263 if (backend) 1818 postfork = 1; /* must be in line with ev_loop_fork */
1264 postfork = 1;
1265} 1819}
1266 1820
1267/*****************************************************************************/ 1821/*****************************************************************************/
1268 1822
1269void 1823void
1270ev_invoke (EV_P_ void *w, int revents) 1824ev_invoke (EV_P_ void *w, int revents)
1271{ 1825{
1272 EV_CB_INVOKE ((W)w, revents); 1826 EV_CB_INVOKE ((W)w, revents);
1273} 1827}
1274 1828
1275void inline_speed 1829void noinline
1276call_pending (EV_P) 1830ev_invoke_pending (EV_P)
1277{ 1831{
1278 int pri; 1832 int pri;
1279 1833
1280 for (pri = NUMPRI; pri--; ) 1834 for (pri = NUMPRI; pri--; )
1281 while (pendingcnt [pri]) 1835 while (pendingcnt [pri])
1282 { 1836 {
1283 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1837 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1284 1838
1285 if (expect_true (p->w))
1286 {
1287 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1839 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1840 /* ^ this is no longer true, as pending_w could be here */
1288 1841
1289 p->w->pending = 0; 1842 p->w->pending = 0;
1290 EV_CB_INVOKE (p->w, p->events); 1843 EV_CB_INVOKE (p->w, p->events);
1291 } 1844 EV_FREQUENT_CHECK;
1292 } 1845 }
1293} 1846}
1294 1847
1295void inline_size
1296timers_reify (EV_P)
1297{
1298 while (timercnt && ((WT)timers [0])->at <= mn_now)
1299 {
1300 ev_timer *w = (ev_timer *)timers [0];
1301
1302 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1303
1304 /* first reschedule or stop timer */
1305 if (w->repeat)
1306 {
1307 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1308
1309 ((WT)w)->at += w->repeat;
1310 if (((WT)w)->at < mn_now)
1311 ((WT)w)->at = mn_now;
1312
1313 downheap (timers, timercnt, 0);
1314 }
1315 else
1316 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1317
1318 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1319 }
1320}
1321
1322#if EV_PERIODIC_ENABLE
1323void inline_size
1324periodics_reify (EV_P)
1325{
1326 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1327 {
1328 ev_periodic *w = (ev_periodic *)periodics [0];
1329
1330 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1331
1332 /* first reschedule or stop timer */
1333 if (w->reschedule_cb)
1334 {
1335 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1336 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1337 downheap (periodics, periodiccnt, 0);
1338 }
1339 else if (w->interval)
1340 {
1341 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1342 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1343 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1344 downheap (periodics, periodiccnt, 0);
1345 }
1346 else
1347 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1348
1349 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1350 }
1351}
1352
1353static void noinline
1354periodics_reschedule (EV_P)
1355{
1356 int i;
1357
1358 /* adjust periodics after time jump */
1359 for (i = 0; i < periodiccnt; ++i)
1360 {
1361 ev_periodic *w = (ev_periodic *)periodics [i];
1362
1363 if (w->reschedule_cb)
1364 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1365 else if (w->interval)
1366 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1367 }
1368
1369 /* now rebuild the heap */
1370 for (i = periodiccnt >> 1; i--; )
1371 downheap (periodics, periodiccnt, i);
1372}
1373#endif
1374
1375#if EV_IDLE_ENABLE 1848#if EV_IDLE_ENABLE
1376void inline_size 1849/* make idle watchers pending. this handles the "call-idle */
1850/* only when higher priorities are idle" logic */
1851inline_size void
1377idle_reify (EV_P) 1852idle_reify (EV_P)
1378{ 1853{
1379 if (expect_false (idleall)) 1854 if (expect_false (idleall))
1380 { 1855 {
1381 int pri; 1856 int pri;
1393 } 1868 }
1394 } 1869 }
1395} 1870}
1396#endif 1871#endif
1397 1872
1398void inline_speed 1873/* make timers pending */
1874inline_size void
1875timers_reify (EV_P)
1876{
1877 EV_FREQUENT_CHECK;
1878
1879 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1880 {
1881 do
1882 {
1883 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1884
1885 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1886
1887 /* first reschedule or stop timer */
1888 if (w->repeat)
1889 {
1890 ev_at (w) += w->repeat;
1891 if (ev_at (w) < mn_now)
1892 ev_at (w) = mn_now;
1893
1894 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1895
1896 ANHE_at_cache (timers [HEAP0]);
1897 downheap (timers, timercnt, HEAP0);
1898 }
1899 else
1900 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1901
1902 EV_FREQUENT_CHECK;
1903 feed_reverse (EV_A_ (W)w);
1904 }
1905 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1906
1907 feed_reverse_done (EV_A_ EV_TIMEOUT);
1908 }
1909}
1910
1911#if EV_PERIODIC_ENABLE
1912/* make periodics pending */
1913inline_size void
1914periodics_reify (EV_P)
1915{
1916 EV_FREQUENT_CHECK;
1917
1918 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1919 {
1920 int feed_count = 0;
1921
1922 do
1923 {
1924 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1925
1926 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1927
1928 /* first reschedule or stop timer */
1929 if (w->reschedule_cb)
1930 {
1931 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1932
1933 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1934
1935 ANHE_at_cache (periodics [HEAP0]);
1936 downheap (periodics, periodiccnt, HEAP0);
1937 }
1938 else if (w->interval)
1939 {
1940 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1941 /* if next trigger time is not sufficiently in the future, put it there */
1942 /* this might happen because of floating point inexactness */
1943 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1944 {
1945 ev_at (w) += w->interval;
1946
1947 /* if interval is unreasonably low we might still have a time in the past */
1948 /* so correct this. this will make the periodic very inexact, but the user */
1949 /* has effectively asked to get triggered more often than possible */
1950 if (ev_at (w) < ev_rt_now)
1951 ev_at (w) = ev_rt_now;
1952 }
1953
1954 ANHE_at_cache (periodics [HEAP0]);
1955 downheap (periodics, periodiccnt, HEAP0);
1956 }
1957 else
1958 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1959
1960 EV_FREQUENT_CHECK;
1961 feed_reverse (EV_A_ (W)w);
1962 }
1963 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1964
1965 feed_reverse_done (EV_A_ EV_PERIODIC);
1966 }
1967}
1968
1969/* simply recalculate all periodics */
1970/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1971static void noinline
1972periodics_reschedule (EV_P)
1973{
1974 int i;
1975
1976 /* adjust periodics after time jump */
1977 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1978 {
1979 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1980
1981 if (w->reschedule_cb)
1982 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1983 else if (w->interval)
1984 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1985
1986 ANHE_at_cache (periodics [i]);
1987 }
1988
1989 reheap (periodics, periodiccnt);
1990}
1991#endif
1992
1993/* adjust all timers by a given offset */
1994static void noinline
1995timers_reschedule (EV_P_ ev_tstamp adjust)
1996{
1997 int i;
1998
1999 for (i = 0; i < timercnt; ++i)
2000 {
2001 ANHE *he = timers + i + HEAP0;
2002 ANHE_w (*he)->at += adjust;
2003 ANHE_at_cache (*he);
2004 }
2005}
2006
2007/* fetch new monotonic and realtime times from the kernel */
2008/* also detetc if there was a timejump, and act accordingly */
2009inline_speed void
1399time_update (EV_P_ ev_tstamp max_block) 2010time_update (EV_P_ ev_tstamp max_block)
1400{ 2011{
1401 int i;
1402
1403#if EV_USE_MONOTONIC 2012#if EV_USE_MONOTONIC
1404 if (expect_true (have_monotonic)) 2013 if (expect_true (have_monotonic))
1405 { 2014 {
2015 int i;
1406 ev_tstamp odiff = rtmn_diff; 2016 ev_tstamp odiff = rtmn_diff;
1407 2017
1408 mn_now = get_clock (); 2018 mn_now = get_clock ();
1409 2019
1410 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2020 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1428 */ 2038 */
1429 for (i = 4; --i; ) 2039 for (i = 4; --i; )
1430 { 2040 {
1431 rtmn_diff = ev_rt_now - mn_now; 2041 rtmn_diff = ev_rt_now - mn_now;
1432 2042
1433 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2043 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1434 return; /* all is well */ 2044 return; /* all is well */
1435 2045
1436 ev_rt_now = ev_time (); 2046 ev_rt_now = ev_time ();
1437 mn_now = get_clock (); 2047 mn_now = get_clock ();
1438 now_floor = mn_now; 2048 now_floor = mn_now;
1439 } 2049 }
1440 2050
2051 /* no timer adjustment, as the monotonic clock doesn't jump */
2052 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1441# if EV_PERIODIC_ENABLE 2053# if EV_PERIODIC_ENABLE
1442 periodics_reschedule (EV_A); 2054 periodics_reschedule (EV_A);
1443# endif 2055# endif
1444 /* no timer adjustment, as the monotonic clock doesn't jump */
1445 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1446 } 2056 }
1447 else 2057 else
1448#endif 2058#endif
1449 { 2059 {
1450 ev_rt_now = ev_time (); 2060 ev_rt_now = ev_time ();
1451 2061
1452 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2062 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1453 { 2063 {
2064 /* adjust timers. this is easy, as the offset is the same for all of them */
2065 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1454#if EV_PERIODIC_ENABLE 2066#if EV_PERIODIC_ENABLE
1455 periodics_reschedule (EV_A); 2067 periodics_reschedule (EV_A);
1456#endif 2068#endif
1457 /* adjust timers. this is easy, as the offset is the same for all of them */
1458 for (i = 0; i < timercnt; ++i)
1459 ((WT)timers [i])->at += ev_rt_now - mn_now;
1460 } 2069 }
1461 2070
1462 mn_now = ev_rt_now; 2071 mn_now = ev_rt_now;
1463 } 2072 }
1464} 2073}
1465 2074
1466void 2075void
1467ev_ref (EV_P)
1468{
1469 ++activecnt;
1470}
1471
1472void
1473ev_unref (EV_P)
1474{
1475 --activecnt;
1476}
1477
1478static int loop_done;
1479
1480void
1481ev_loop (EV_P_ int flags) 2076ev_loop (EV_P_ int flags)
1482{ 2077{
1483 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2078#if EV_MINIMAL < 2
1484 ? EVUNLOOP_ONE 2079 ++loop_depth;
1485 : EVUNLOOP_CANCEL; 2080#endif
1486 2081
2082 loop_done = EVUNLOOP_CANCEL;
2083
1487 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2084 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1488 2085
1489 do 2086 do
1490 { 2087 {
2088#if EV_VERIFY >= 2
2089 ev_loop_verify (EV_A);
2090#endif
2091
1491#ifndef _WIN32 2092#ifndef _WIN32
1492 if (expect_false (curpid)) /* penalise the forking check even more */ 2093 if (expect_false (curpid)) /* penalise the forking check even more */
1493 if (expect_false (getpid () != curpid)) 2094 if (expect_false (getpid () != curpid))
1494 { 2095 {
1495 curpid = getpid (); 2096 curpid = getpid ();
1501 /* we might have forked, so queue fork handlers */ 2102 /* we might have forked, so queue fork handlers */
1502 if (expect_false (postfork)) 2103 if (expect_false (postfork))
1503 if (forkcnt) 2104 if (forkcnt)
1504 { 2105 {
1505 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2106 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1506 call_pending (EV_A); 2107 EV_INVOKE_PENDING;
1507 } 2108 }
1508#endif 2109#endif
1509 2110
1510 /* queue prepare watchers (and execute them) */ 2111 /* queue prepare watchers (and execute them) */
1511 if (expect_false (preparecnt)) 2112 if (expect_false (preparecnt))
1512 { 2113 {
1513 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2114 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1514 call_pending (EV_A); 2115 EV_INVOKE_PENDING;
1515 } 2116 }
1516
1517 if (expect_false (!activecnt))
1518 break;
1519 2117
1520 /* we might have forked, so reify kernel state if necessary */ 2118 /* we might have forked, so reify kernel state if necessary */
1521 if (expect_false (postfork)) 2119 if (expect_false (postfork))
1522 loop_fork (EV_A); 2120 loop_fork (EV_A);
1523 2121
1529 ev_tstamp waittime = 0.; 2127 ev_tstamp waittime = 0.;
1530 ev_tstamp sleeptime = 0.; 2128 ev_tstamp sleeptime = 0.;
1531 2129
1532 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2130 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1533 { 2131 {
2132 /* remember old timestamp for io_blocktime calculation */
2133 ev_tstamp prev_mn_now = mn_now;
2134
1534 /* update time to cancel out callback processing overhead */ 2135 /* update time to cancel out callback processing overhead */
1535 time_update (EV_A_ 1e100); 2136 time_update (EV_A_ 1e100);
1536 2137
1537 waittime = MAX_BLOCKTIME; 2138 waittime = MAX_BLOCKTIME;
1538 2139
1539 if (timercnt) 2140 if (timercnt)
1540 { 2141 {
1541 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2142 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1542 if (waittime > to) waittime = to; 2143 if (waittime > to) waittime = to;
1543 } 2144 }
1544 2145
1545#if EV_PERIODIC_ENABLE 2146#if EV_PERIODIC_ENABLE
1546 if (periodiccnt) 2147 if (periodiccnt)
1547 { 2148 {
1548 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2149 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1549 if (waittime > to) waittime = to; 2150 if (waittime > to) waittime = to;
1550 } 2151 }
1551#endif 2152#endif
1552 2153
2154 /* don't let timeouts decrease the waittime below timeout_blocktime */
1553 if (expect_false (waittime < timeout_blocktime)) 2155 if (expect_false (waittime < timeout_blocktime))
1554 waittime = timeout_blocktime; 2156 waittime = timeout_blocktime;
1555 2157
1556 sleeptime = waittime - backend_fudge; 2158 /* extra check because io_blocktime is commonly 0 */
1557
1558 if (expect_true (sleeptime > io_blocktime)) 2159 if (expect_false (io_blocktime))
1559 sleeptime = io_blocktime;
1560
1561 if (sleeptime)
1562 { 2160 {
2161 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2162
2163 if (sleeptime > waittime - backend_fudge)
2164 sleeptime = waittime - backend_fudge;
2165
2166 if (expect_true (sleeptime > 0.))
2167 {
1563 ev_sleep (sleeptime); 2168 ev_sleep (sleeptime);
1564 waittime -= sleeptime; 2169 waittime -= sleeptime;
2170 }
1565 } 2171 }
1566 } 2172 }
1567 2173
2174#if EV_MINIMAL < 2
1568 ++loop_count; 2175 ++loop_count;
2176#endif
1569 backend_poll (EV_A_ waittime); 2177 backend_poll (EV_A_ waittime);
1570 2178
1571 /* update ev_rt_now, do magic */ 2179 /* update ev_rt_now, do magic */
1572 time_update (EV_A_ waittime + sleeptime); 2180 time_update (EV_A_ waittime + sleeptime);
1573 } 2181 }
1585 2193
1586 /* queue check watchers, to be executed first */ 2194 /* queue check watchers, to be executed first */
1587 if (expect_false (checkcnt)) 2195 if (expect_false (checkcnt))
1588 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2196 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1589 2197
1590 call_pending (EV_A); 2198 EV_INVOKE_PENDING;
1591
1592 } 2199 }
1593 while (expect_true (activecnt && !loop_done)); 2200 while (expect_true (
2201 activecnt
2202 && !loop_done
2203 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2204 ));
1594 2205
1595 if (loop_done == EVUNLOOP_ONE) 2206 if (loop_done == EVUNLOOP_ONE)
1596 loop_done = EVUNLOOP_CANCEL; 2207 loop_done = EVUNLOOP_CANCEL;
2208
2209#if EV_MINIMAL < 2
2210 --loop_depth;
2211#endif
1597} 2212}
1598 2213
1599void 2214void
1600ev_unloop (EV_P_ int how) 2215ev_unloop (EV_P_ int how)
1601{ 2216{
1602 loop_done = how; 2217 loop_done = how;
1603} 2218}
1604 2219
2220void
2221ev_ref (EV_P)
2222{
2223 ++activecnt;
2224}
2225
2226void
2227ev_unref (EV_P)
2228{
2229 --activecnt;
2230}
2231
2232void
2233ev_now_update (EV_P)
2234{
2235 time_update (EV_A_ 1e100);
2236}
2237
2238void
2239ev_suspend (EV_P)
2240{
2241 ev_now_update (EV_A);
2242}
2243
2244void
2245ev_resume (EV_P)
2246{
2247 ev_tstamp mn_prev = mn_now;
2248
2249 ev_now_update (EV_A);
2250 timers_reschedule (EV_A_ mn_now - mn_prev);
2251#if EV_PERIODIC_ENABLE
2252 /* TODO: really do this? */
2253 periodics_reschedule (EV_A);
2254#endif
2255}
2256
1605/*****************************************************************************/ 2257/*****************************************************************************/
2258/* singly-linked list management, used when the expected list length is short */
1606 2259
1607void inline_size 2260inline_size void
1608wlist_add (WL *head, WL elem) 2261wlist_add (WL *head, WL elem)
1609{ 2262{
1610 elem->next = *head; 2263 elem->next = *head;
1611 *head = elem; 2264 *head = elem;
1612} 2265}
1613 2266
1614void inline_size 2267inline_size void
1615wlist_del (WL *head, WL elem) 2268wlist_del (WL *head, WL elem)
1616{ 2269{
1617 while (*head) 2270 while (*head)
1618 { 2271 {
1619 if (*head == elem) 2272 if (*head == elem)
1624 2277
1625 head = &(*head)->next; 2278 head = &(*head)->next;
1626 } 2279 }
1627} 2280}
1628 2281
1629void inline_speed 2282/* internal, faster, version of ev_clear_pending */
2283inline_speed void
1630clear_pending (EV_P_ W w) 2284clear_pending (EV_P_ W w)
1631{ 2285{
1632 if (w->pending) 2286 if (w->pending)
1633 { 2287 {
1634 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1635 w->pending = 0; 2289 w->pending = 0;
1636 } 2290 }
1637} 2291}
1638 2292
1639int 2293int
1643 int pending = w_->pending; 2297 int pending = w_->pending;
1644 2298
1645 if (expect_true (pending)) 2299 if (expect_true (pending))
1646 { 2300 {
1647 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2301 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2302 p->w = (W)&pending_w;
1648 w_->pending = 0; 2303 w_->pending = 0;
1649 p->w = 0;
1650 return p->events; 2304 return p->events;
1651 } 2305 }
1652 else 2306 else
1653 return 0; 2307 return 0;
1654} 2308}
1655 2309
1656void inline_size 2310inline_size void
1657pri_adjust (EV_P_ W w) 2311pri_adjust (EV_P_ W w)
1658{ 2312{
1659 int pri = w->priority; 2313 int pri = ev_priority (w);
1660 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2314 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1661 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2315 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1662 w->priority = pri; 2316 ev_set_priority (w, pri);
1663} 2317}
1664 2318
1665void inline_speed 2319inline_speed void
1666ev_start (EV_P_ W w, int active) 2320ev_start (EV_P_ W w, int active)
1667{ 2321{
1668 pri_adjust (EV_A_ w); 2322 pri_adjust (EV_A_ w);
1669 w->active = active; 2323 w->active = active;
1670 ev_ref (EV_A); 2324 ev_ref (EV_A);
1671} 2325}
1672 2326
1673void inline_size 2327inline_size void
1674ev_stop (EV_P_ W w) 2328ev_stop (EV_P_ W w)
1675{ 2329{
1676 ev_unref (EV_A); 2330 ev_unref (EV_A);
1677 w->active = 0; 2331 w->active = 0;
1678} 2332}
1685 int fd = w->fd; 2339 int fd = w->fd;
1686 2340
1687 if (expect_false (ev_is_active (w))) 2341 if (expect_false (ev_is_active (w)))
1688 return; 2342 return;
1689 2343
1690 assert (("ev_io_start called with negative fd", fd >= 0)); 2344 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2345 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2346
2347 EV_FREQUENT_CHECK;
1691 2348
1692 ev_start (EV_A_ (W)w, 1); 2349 ev_start (EV_A_ (W)w, 1);
1693 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2350 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1694 wlist_add (&anfds[fd].head, (WL)w); 2351 wlist_add (&anfds[fd].head, (WL)w);
1695 2352
1696 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2353 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1697 w->events &= ~EV_IOFDSET; 2354 w->events &= ~EV__IOFDSET;
2355
2356 EV_FREQUENT_CHECK;
1698} 2357}
1699 2358
1700void noinline 2359void noinline
1701ev_io_stop (EV_P_ ev_io *w) 2360ev_io_stop (EV_P_ ev_io *w)
1702{ 2361{
1703 clear_pending (EV_A_ (W)w); 2362 clear_pending (EV_A_ (W)w);
1704 if (expect_false (!ev_is_active (w))) 2363 if (expect_false (!ev_is_active (w)))
1705 return; 2364 return;
1706 2365
1707 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2366 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2367
2368 EV_FREQUENT_CHECK;
1708 2369
1709 wlist_del (&anfds[w->fd].head, (WL)w); 2370 wlist_del (&anfds[w->fd].head, (WL)w);
1710 ev_stop (EV_A_ (W)w); 2371 ev_stop (EV_A_ (W)w);
1711 2372
1712 fd_change (EV_A_ w->fd, 1); 2373 fd_change (EV_A_ w->fd, 1);
2374
2375 EV_FREQUENT_CHECK;
1713} 2376}
1714 2377
1715void noinline 2378void noinline
1716ev_timer_start (EV_P_ ev_timer *w) 2379ev_timer_start (EV_P_ ev_timer *w)
1717{ 2380{
1718 if (expect_false (ev_is_active (w))) 2381 if (expect_false (ev_is_active (w)))
1719 return; 2382 return;
1720 2383
1721 ((WT)w)->at += mn_now; 2384 ev_at (w) += mn_now;
1722 2385
1723 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2386 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1724 2387
2388 EV_FREQUENT_CHECK;
2389
2390 ++timercnt;
1725 ev_start (EV_A_ (W)w, ++timercnt); 2391 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1726 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2392 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1727 timers [timercnt - 1] = (WT)w; 2393 ANHE_w (timers [ev_active (w)]) = (WT)w;
1728 upheap (timers, timercnt - 1); 2394 ANHE_at_cache (timers [ev_active (w)]);
2395 upheap (timers, ev_active (w));
1729 2396
2397 EV_FREQUENT_CHECK;
2398
1730 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2399 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1731} 2400}
1732 2401
1733void noinline 2402void noinline
1734ev_timer_stop (EV_P_ ev_timer *w) 2403ev_timer_stop (EV_P_ ev_timer *w)
1735{ 2404{
1736 clear_pending (EV_A_ (W)w); 2405 clear_pending (EV_A_ (W)w);
1737 if (expect_false (!ev_is_active (w))) 2406 if (expect_false (!ev_is_active (w)))
1738 return; 2407 return;
1739 2408
1740 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2409 EV_FREQUENT_CHECK;
1741 2410
1742 { 2411 {
1743 int active = ((W)w)->active; 2412 int active = ev_active (w);
1744 2413
2414 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2415
2416 --timercnt;
2417
1745 if (expect_true (--active < --timercnt)) 2418 if (expect_true (active < timercnt + HEAP0))
1746 { 2419 {
1747 timers [active] = timers [timercnt]; 2420 timers [active] = timers [timercnt + HEAP0];
1748 adjustheap (timers, timercnt, active); 2421 adjustheap (timers, timercnt, active);
1749 } 2422 }
1750 } 2423 }
1751 2424
1752 ((WT)w)->at -= mn_now; 2425 EV_FREQUENT_CHECK;
2426
2427 ev_at (w) -= mn_now;
1753 2428
1754 ev_stop (EV_A_ (W)w); 2429 ev_stop (EV_A_ (W)w);
1755} 2430}
1756 2431
1757void noinline 2432void noinline
1758ev_timer_again (EV_P_ ev_timer *w) 2433ev_timer_again (EV_P_ ev_timer *w)
1759{ 2434{
2435 EV_FREQUENT_CHECK;
2436
1760 if (ev_is_active (w)) 2437 if (ev_is_active (w))
1761 { 2438 {
1762 if (w->repeat) 2439 if (w->repeat)
1763 { 2440 {
1764 ((WT)w)->at = mn_now + w->repeat; 2441 ev_at (w) = mn_now + w->repeat;
2442 ANHE_at_cache (timers [ev_active (w)]);
1765 adjustheap (timers, timercnt, ((W)w)->active - 1); 2443 adjustheap (timers, timercnt, ev_active (w));
1766 } 2444 }
1767 else 2445 else
1768 ev_timer_stop (EV_A_ w); 2446 ev_timer_stop (EV_A_ w);
1769 } 2447 }
1770 else if (w->repeat) 2448 else if (w->repeat)
1771 { 2449 {
1772 w->at = w->repeat; 2450 ev_at (w) = w->repeat;
1773 ev_timer_start (EV_A_ w); 2451 ev_timer_start (EV_A_ w);
1774 } 2452 }
2453
2454 EV_FREQUENT_CHECK;
1775} 2455}
1776 2456
1777#if EV_PERIODIC_ENABLE 2457#if EV_PERIODIC_ENABLE
1778void noinline 2458void noinline
1779ev_periodic_start (EV_P_ ev_periodic *w) 2459ev_periodic_start (EV_P_ ev_periodic *w)
1780{ 2460{
1781 if (expect_false (ev_is_active (w))) 2461 if (expect_false (ev_is_active (w)))
1782 return; 2462 return;
1783 2463
1784 if (w->reschedule_cb) 2464 if (w->reschedule_cb)
1785 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2465 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1786 else if (w->interval) 2466 else if (w->interval)
1787 { 2467 {
1788 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2468 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1789 /* this formula differs from the one in periodic_reify because we do not always round up */ 2469 /* this formula differs from the one in periodic_reify because we do not always round up */
1790 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2470 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1791 } 2471 }
1792 else 2472 else
1793 ((WT)w)->at = w->offset; 2473 ev_at (w) = w->offset;
1794 2474
2475 EV_FREQUENT_CHECK;
2476
2477 ++periodiccnt;
1795 ev_start (EV_A_ (W)w, ++periodiccnt); 2478 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1796 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2479 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1797 periodics [periodiccnt - 1] = (WT)w; 2480 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1798 upheap (periodics, periodiccnt - 1); 2481 ANHE_at_cache (periodics [ev_active (w)]);
2482 upheap (periodics, ev_active (w));
1799 2483
2484 EV_FREQUENT_CHECK;
2485
1800 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2486 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1801} 2487}
1802 2488
1803void noinline 2489void noinline
1804ev_periodic_stop (EV_P_ ev_periodic *w) 2490ev_periodic_stop (EV_P_ ev_periodic *w)
1805{ 2491{
1806 clear_pending (EV_A_ (W)w); 2492 clear_pending (EV_A_ (W)w);
1807 if (expect_false (!ev_is_active (w))) 2493 if (expect_false (!ev_is_active (w)))
1808 return; 2494 return;
1809 2495
1810 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2496 EV_FREQUENT_CHECK;
1811 2497
1812 { 2498 {
1813 int active = ((W)w)->active; 2499 int active = ev_active (w);
1814 2500
2501 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2502
2503 --periodiccnt;
2504
1815 if (expect_true (--active < --periodiccnt)) 2505 if (expect_true (active < periodiccnt + HEAP0))
1816 { 2506 {
1817 periodics [active] = periodics [periodiccnt]; 2507 periodics [active] = periodics [periodiccnt + HEAP0];
1818 adjustheap (periodics, periodiccnt, active); 2508 adjustheap (periodics, periodiccnt, active);
1819 } 2509 }
1820 } 2510 }
1821 2511
2512 EV_FREQUENT_CHECK;
2513
1822 ev_stop (EV_A_ (W)w); 2514 ev_stop (EV_A_ (W)w);
1823} 2515}
1824 2516
1825void noinline 2517void noinline
1826ev_periodic_again (EV_P_ ev_periodic *w) 2518ev_periodic_again (EV_P_ ev_periodic *w)
1837 2529
1838void noinline 2530void noinline
1839ev_signal_start (EV_P_ ev_signal *w) 2531ev_signal_start (EV_P_ ev_signal *w)
1840{ 2532{
1841#if EV_MULTIPLICITY 2533#if EV_MULTIPLICITY
1842 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2534 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1843#endif 2535#endif
1844 if (expect_false (ev_is_active (w))) 2536 if (expect_false (ev_is_active (w)))
1845 return; 2537 return;
1846 2538
1847 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2539 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2540
2541 evpipe_init (EV_A);
2542
2543 EV_FREQUENT_CHECK;
1848 2544
1849 { 2545 {
1850#ifndef _WIN32 2546#ifndef _WIN32
1851 sigset_t full, prev; 2547 sigset_t full, prev;
1852 sigfillset (&full); 2548 sigfillset (&full);
1853 sigprocmask (SIG_SETMASK, &full, &prev); 2549 sigprocmask (SIG_SETMASK, &full, &prev);
1854#endif 2550#endif
1855 2551
1856 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2552 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
1857 2553
1858#ifndef _WIN32 2554#ifndef _WIN32
1859 sigprocmask (SIG_SETMASK, &prev, 0); 2555 sigprocmask (SIG_SETMASK, &prev, 0);
1860#endif 2556#endif
1861 } 2557 }
1864 wlist_add (&signals [w->signum - 1].head, (WL)w); 2560 wlist_add (&signals [w->signum - 1].head, (WL)w);
1865 2561
1866 if (!((WL)w)->next) 2562 if (!((WL)w)->next)
1867 { 2563 {
1868#if _WIN32 2564#if _WIN32
1869 signal (w->signum, sighandler); 2565 signal (w->signum, ev_sighandler);
1870#else 2566#else
1871 struct sigaction sa; 2567 struct sigaction sa;
1872 sa.sa_handler = sighandler; 2568 sa.sa_handler = ev_sighandler;
1873 sigfillset (&sa.sa_mask); 2569 sigfillset (&sa.sa_mask);
1874 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2570 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1875 sigaction (w->signum, &sa, 0); 2571 sigaction (w->signum, &sa, 0);
1876#endif 2572#endif
1877 } 2573 }
2574
2575 EV_FREQUENT_CHECK;
1878} 2576}
1879 2577
1880void noinline 2578void noinline
1881ev_signal_stop (EV_P_ ev_signal *w) 2579ev_signal_stop (EV_P_ ev_signal *w)
1882{ 2580{
1883 clear_pending (EV_A_ (W)w); 2581 clear_pending (EV_A_ (W)w);
1884 if (expect_false (!ev_is_active (w))) 2582 if (expect_false (!ev_is_active (w)))
1885 return; 2583 return;
1886 2584
2585 EV_FREQUENT_CHECK;
2586
1887 wlist_del (&signals [w->signum - 1].head, (WL)w); 2587 wlist_del (&signals [w->signum - 1].head, (WL)w);
1888 ev_stop (EV_A_ (W)w); 2588 ev_stop (EV_A_ (W)w);
1889 2589
1890 if (!signals [w->signum - 1].head) 2590 if (!signals [w->signum - 1].head)
1891 signal (w->signum, SIG_DFL); 2591 signal (w->signum, SIG_DFL);
2592
2593 EV_FREQUENT_CHECK;
1892} 2594}
1893 2595
1894void 2596void
1895ev_child_start (EV_P_ ev_child *w) 2597ev_child_start (EV_P_ ev_child *w)
1896{ 2598{
1897#if EV_MULTIPLICITY 2599#if EV_MULTIPLICITY
1898 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2600 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1899#endif 2601#endif
1900 if (expect_false (ev_is_active (w))) 2602 if (expect_false (ev_is_active (w)))
1901 return; 2603 return;
1902 2604
2605 EV_FREQUENT_CHECK;
2606
1903 ev_start (EV_A_ (W)w, 1); 2607 ev_start (EV_A_ (W)w, 1);
1904 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2608 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2609
2610 EV_FREQUENT_CHECK;
1905} 2611}
1906 2612
1907void 2613void
1908ev_child_stop (EV_P_ ev_child *w) 2614ev_child_stop (EV_P_ ev_child *w)
1909{ 2615{
1910 clear_pending (EV_A_ (W)w); 2616 clear_pending (EV_A_ (W)w);
1911 if (expect_false (!ev_is_active (w))) 2617 if (expect_false (!ev_is_active (w)))
1912 return; 2618 return;
1913 2619
2620 EV_FREQUENT_CHECK;
2621
1914 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2622 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1915 ev_stop (EV_A_ (W)w); 2623 ev_stop (EV_A_ (W)w);
2624
2625 EV_FREQUENT_CHECK;
1916} 2626}
1917 2627
1918#if EV_STAT_ENABLE 2628#if EV_STAT_ENABLE
1919 2629
1920# ifdef _WIN32 2630# ifdef _WIN32
1921# undef lstat 2631# undef lstat
1922# define lstat(a,b) _stati64 (a,b) 2632# define lstat(a,b) _stati64 (a,b)
1923# endif 2633# endif
1924 2634
1925#define DEF_STAT_INTERVAL 5.0074891 2635#define DEF_STAT_INTERVAL 5.0074891
2636#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1926#define MIN_STAT_INTERVAL 0.1074891 2637#define MIN_STAT_INTERVAL 0.1074891
1927 2638
1928static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2639static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1929 2640
1930#if EV_USE_INOTIFY 2641#if EV_USE_INOTIFY
1931# define EV_INOTIFY_BUFSIZE 8192 2642# define EV_INOTIFY_BUFSIZE 8192
1935{ 2646{
1936 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2647 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1937 2648
1938 if (w->wd < 0) 2649 if (w->wd < 0)
1939 { 2650 {
2651 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1940 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2652 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1941 2653
1942 /* monitor some parent directory for speedup hints */ 2654 /* monitor some parent directory for speedup hints */
2655 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2656 /* but an efficiency issue only */
1943 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2657 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1944 { 2658 {
1945 char path [4096]; 2659 char path [4096];
1946 strcpy (path, w->path); 2660 strcpy (path, w->path);
1947 2661
1950 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2664 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1951 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2665 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1952 2666
1953 char *pend = strrchr (path, '/'); 2667 char *pend = strrchr (path, '/');
1954 2668
1955 if (!pend) 2669 if (!pend || pend == path)
1956 break; /* whoops, no '/', complain to your admin */ 2670 break;
1957 2671
1958 *pend = 0; 2672 *pend = 0;
1959 w->wd = inotify_add_watch (fs_fd, path, mask); 2673 w->wd = inotify_add_watch (fs_fd, path, mask);
1960 } 2674 }
1961 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2675 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1962 } 2676 }
1963 } 2677 }
1964 else
1965 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1966 2678
1967 if (w->wd >= 0) 2679 if (w->wd >= 0)
2680 {
1968 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2681 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2682
2683 /* now local changes will be tracked by inotify, but remote changes won't */
2684 /* unless the filesystem it known to be local, we therefore still poll */
2685 /* also do poll on <2.6.25, but with normal frequency */
2686 struct statfs sfs;
2687
2688 if (fs_2625 && !statfs (w->path, &sfs))
2689 if (sfs.f_type == 0x1373 /* devfs */
2690 || sfs.f_type == 0xEF53 /* ext2/3 */
2691 || sfs.f_type == 0x3153464a /* jfs */
2692 || sfs.f_type == 0x52654973 /* reiser3 */
2693 || sfs.f_type == 0x01021994 /* tempfs */
2694 || sfs.f_type == 0x58465342 /* xfs */)
2695 return;
2696
2697 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2698 ev_timer_again (EV_A_ &w->timer);
2699 }
1969} 2700}
1970 2701
1971static void noinline 2702static void noinline
1972infy_del (EV_P_ ev_stat *w) 2703infy_del (EV_P_ ev_stat *w)
1973{ 2704{
1987 2718
1988static void noinline 2719static void noinline
1989infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2720infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1990{ 2721{
1991 if (slot < 0) 2722 if (slot < 0)
1992 /* overflow, need to check for all hahs slots */ 2723 /* overflow, need to check for all hash slots */
1993 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2724 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1994 infy_wd (EV_A_ slot, wd, ev); 2725 infy_wd (EV_A_ slot, wd, ev);
1995 else 2726 else
1996 { 2727 {
1997 WL w_; 2728 WL w_;
2003 2734
2004 if (w->wd == wd || wd == -1) 2735 if (w->wd == wd || wd == -1)
2005 { 2736 {
2006 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2737 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2007 { 2738 {
2739 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2008 w->wd = -1; 2740 w->wd = -1;
2009 infy_add (EV_A_ w); /* re-add, no matter what */ 2741 infy_add (EV_A_ w); /* re-add, no matter what */
2010 } 2742 }
2011 2743
2012 stat_timer_cb (EV_A_ &w->timer, 0); 2744 stat_timer_cb (EV_A_ &w->timer, 0);
2025 2757
2026 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2758 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2027 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2759 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2028} 2760}
2029 2761
2030void inline_size 2762inline_size void
2763check_2625 (EV_P)
2764{
2765 /* kernels < 2.6.25 are borked
2766 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2767 */
2768 struct utsname buf;
2769 int major, minor, micro;
2770
2771 if (uname (&buf))
2772 return;
2773
2774 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2775 return;
2776
2777 if (major < 2
2778 || (major == 2 && minor < 6)
2779 || (major == 2 && minor == 6 && micro < 25))
2780 return;
2781
2782 fs_2625 = 1;
2783}
2784
2785inline_size void
2031infy_init (EV_P) 2786infy_init (EV_P)
2032{ 2787{
2033 if (fs_fd != -2) 2788 if (fs_fd != -2)
2034 return; 2789 return;
2790
2791 fs_fd = -1;
2792
2793 check_2625 (EV_A);
2035 2794
2036 fs_fd = inotify_init (); 2795 fs_fd = inotify_init ();
2037 2796
2038 if (fs_fd >= 0) 2797 if (fs_fd >= 0)
2039 { 2798 {
2041 ev_set_priority (&fs_w, EV_MAXPRI); 2800 ev_set_priority (&fs_w, EV_MAXPRI);
2042 ev_io_start (EV_A_ &fs_w); 2801 ev_io_start (EV_A_ &fs_w);
2043 } 2802 }
2044} 2803}
2045 2804
2046void inline_size 2805inline_size void
2047infy_fork (EV_P) 2806infy_fork (EV_P)
2048{ 2807{
2049 int slot; 2808 int slot;
2050 2809
2051 if (fs_fd < 0) 2810 if (fs_fd < 0)
2067 w->wd = -1; 2826 w->wd = -1;
2068 2827
2069 if (fs_fd >= 0) 2828 if (fs_fd >= 0)
2070 infy_add (EV_A_ w); /* re-add, no matter what */ 2829 infy_add (EV_A_ w); /* re-add, no matter what */
2071 else 2830 else
2072 ev_timer_start (EV_A_ &w->timer); 2831 ev_timer_again (EV_A_ &w->timer);
2073 } 2832 }
2074
2075 } 2833 }
2076} 2834}
2077 2835
2836#endif
2837
2838#ifdef _WIN32
2839# define EV_LSTAT(p,b) _stati64 (p, b)
2840#else
2841# define EV_LSTAT(p,b) lstat (p, b)
2078#endif 2842#endif
2079 2843
2080void 2844void
2081ev_stat_stat (EV_P_ ev_stat *w) 2845ev_stat_stat (EV_P_ ev_stat *w)
2082{ 2846{
2109 || w->prev.st_atime != w->attr.st_atime 2873 || w->prev.st_atime != w->attr.st_atime
2110 || w->prev.st_mtime != w->attr.st_mtime 2874 || w->prev.st_mtime != w->attr.st_mtime
2111 || w->prev.st_ctime != w->attr.st_ctime 2875 || w->prev.st_ctime != w->attr.st_ctime
2112 ) { 2876 ) {
2113 #if EV_USE_INOTIFY 2877 #if EV_USE_INOTIFY
2878 if (fs_fd >= 0)
2879 {
2114 infy_del (EV_A_ w); 2880 infy_del (EV_A_ w);
2115 infy_add (EV_A_ w); 2881 infy_add (EV_A_ w);
2116 ev_stat_stat (EV_A_ w); /* avoid race... */ 2882 ev_stat_stat (EV_A_ w); /* avoid race... */
2883 }
2117 #endif 2884 #endif
2118 2885
2119 ev_feed_event (EV_A_ w, EV_STAT); 2886 ev_feed_event (EV_A_ w, EV_STAT);
2120 } 2887 }
2121} 2888}
2124ev_stat_start (EV_P_ ev_stat *w) 2891ev_stat_start (EV_P_ ev_stat *w)
2125{ 2892{
2126 if (expect_false (ev_is_active (w))) 2893 if (expect_false (ev_is_active (w)))
2127 return; 2894 return;
2128 2895
2129 /* since we use memcmp, we need to clear any padding data etc. */
2130 memset (&w->prev, 0, sizeof (ev_statdata));
2131 memset (&w->attr, 0, sizeof (ev_statdata));
2132
2133 ev_stat_stat (EV_A_ w); 2896 ev_stat_stat (EV_A_ w);
2134 2897
2898 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2135 if (w->interval < MIN_STAT_INTERVAL) 2899 w->interval = MIN_STAT_INTERVAL;
2136 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2137 2900
2138 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2901 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2139 ev_set_priority (&w->timer, ev_priority (w)); 2902 ev_set_priority (&w->timer, ev_priority (w));
2140 2903
2141#if EV_USE_INOTIFY 2904#if EV_USE_INOTIFY
2142 infy_init (EV_A); 2905 infy_init (EV_A);
2143 2906
2144 if (fs_fd >= 0) 2907 if (fs_fd >= 0)
2145 infy_add (EV_A_ w); 2908 infy_add (EV_A_ w);
2146 else 2909 else
2147#endif 2910#endif
2148 ev_timer_start (EV_A_ &w->timer); 2911 ev_timer_again (EV_A_ &w->timer);
2149 2912
2150 ev_start (EV_A_ (W)w, 1); 2913 ev_start (EV_A_ (W)w, 1);
2914
2915 EV_FREQUENT_CHECK;
2151} 2916}
2152 2917
2153void 2918void
2154ev_stat_stop (EV_P_ ev_stat *w) 2919ev_stat_stop (EV_P_ ev_stat *w)
2155{ 2920{
2156 clear_pending (EV_A_ (W)w); 2921 clear_pending (EV_A_ (W)w);
2157 if (expect_false (!ev_is_active (w))) 2922 if (expect_false (!ev_is_active (w)))
2158 return; 2923 return;
2159 2924
2925 EV_FREQUENT_CHECK;
2926
2160#if EV_USE_INOTIFY 2927#if EV_USE_INOTIFY
2161 infy_del (EV_A_ w); 2928 infy_del (EV_A_ w);
2162#endif 2929#endif
2163 ev_timer_stop (EV_A_ &w->timer); 2930 ev_timer_stop (EV_A_ &w->timer);
2164 2931
2165 ev_stop (EV_A_ (W)w); 2932 ev_stop (EV_A_ (W)w);
2933
2934 EV_FREQUENT_CHECK;
2166} 2935}
2167#endif 2936#endif
2168 2937
2169#if EV_IDLE_ENABLE 2938#if EV_IDLE_ENABLE
2170void 2939void
2172{ 2941{
2173 if (expect_false (ev_is_active (w))) 2942 if (expect_false (ev_is_active (w)))
2174 return; 2943 return;
2175 2944
2176 pri_adjust (EV_A_ (W)w); 2945 pri_adjust (EV_A_ (W)w);
2946
2947 EV_FREQUENT_CHECK;
2177 2948
2178 { 2949 {
2179 int active = ++idlecnt [ABSPRI (w)]; 2950 int active = ++idlecnt [ABSPRI (w)];
2180 2951
2181 ++idleall; 2952 ++idleall;
2182 ev_start (EV_A_ (W)w, active); 2953 ev_start (EV_A_ (W)w, active);
2183 2954
2184 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2955 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2185 idles [ABSPRI (w)][active - 1] = w; 2956 idles [ABSPRI (w)][active - 1] = w;
2186 } 2957 }
2958
2959 EV_FREQUENT_CHECK;
2187} 2960}
2188 2961
2189void 2962void
2190ev_idle_stop (EV_P_ ev_idle *w) 2963ev_idle_stop (EV_P_ ev_idle *w)
2191{ 2964{
2192 clear_pending (EV_A_ (W)w); 2965 clear_pending (EV_A_ (W)w);
2193 if (expect_false (!ev_is_active (w))) 2966 if (expect_false (!ev_is_active (w)))
2194 return; 2967 return;
2195 2968
2969 EV_FREQUENT_CHECK;
2970
2196 { 2971 {
2197 int active = ((W)w)->active; 2972 int active = ev_active (w);
2198 2973
2199 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2974 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2200 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2975 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2201 2976
2202 ev_stop (EV_A_ (W)w); 2977 ev_stop (EV_A_ (W)w);
2203 --idleall; 2978 --idleall;
2204 } 2979 }
2980
2981 EV_FREQUENT_CHECK;
2205} 2982}
2206#endif 2983#endif
2207 2984
2208void 2985void
2209ev_prepare_start (EV_P_ ev_prepare *w) 2986ev_prepare_start (EV_P_ ev_prepare *w)
2210{ 2987{
2211 if (expect_false (ev_is_active (w))) 2988 if (expect_false (ev_is_active (w)))
2212 return; 2989 return;
2990
2991 EV_FREQUENT_CHECK;
2213 2992
2214 ev_start (EV_A_ (W)w, ++preparecnt); 2993 ev_start (EV_A_ (W)w, ++preparecnt);
2215 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2994 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2216 prepares [preparecnt - 1] = w; 2995 prepares [preparecnt - 1] = w;
2996
2997 EV_FREQUENT_CHECK;
2217} 2998}
2218 2999
2219void 3000void
2220ev_prepare_stop (EV_P_ ev_prepare *w) 3001ev_prepare_stop (EV_P_ ev_prepare *w)
2221{ 3002{
2222 clear_pending (EV_A_ (W)w); 3003 clear_pending (EV_A_ (W)w);
2223 if (expect_false (!ev_is_active (w))) 3004 if (expect_false (!ev_is_active (w)))
2224 return; 3005 return;
2225 3006
3007 EV_FREQUENT_CHECK;
3008
2226 { 3009 {
2227 int active = ((W)w)->active; 3010 int active = ev_active (w);
3011
2228 prepares [active - 1] = prepares [--preparecnt]; 3012 prepares [active - 1] = prepares [--preparecnt];
2229 ((W)prepares [active - 1])->active = active; 3013 ev_active (prepares [active - 1]) = active;
2230 } 3014 }
2231 3015
2232 ev_stop (EV_A_ (W)w); 3016 ev_stop (EV_A_ (W)w);
3017
3018 EV_FREQUENT_CHECK;
2233} 3019}
2234 3020
2235void 3021void
2236ev_check_start (EV_P_ ev_check *w) 3022ev_check_start (EV_P_ ev_check *w)
2237{ 3023{
2238 if (expect_false (ev_is_active (w))) 3024 if (expect_false (ev_is_active (w)))
2239 return; 3025 return;
3026
3027 EV_FREQUENT_CHECK;
2240 3028
2241 ev_start (EV_A_ (W)w, ++checkcnt); 3029 ev_start (EV_A_ (W)w, ++checkcnt);
2242 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3030 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2243 checks [checkcnt - 1] = w; 3031 checks [checkcnt - 1] = w;
3032
3033 EV_FREQUENT_CHECK;
2244} 3034}
2245 3035
2246void 3036void
2247ev_check_stop (EV_P_ ev_check *w) 3037ev_check_stop (EV_P_ ev_check *w)
2248{ 3038{
2249 clear_pending (EV_A_ (W)w); 3039 clear_pending (EV_A_ (W)w);
2250 if (expect_false (!ev_is_active (w))) 3040 if (expect_false (!ev_is_active (w)))
2251 return; 3041 return;
2252 3042
3043 EV_FREQUENT_CHECK;
3044
2253 { 3045 {
2254 int active = ((W)w)->active; 3046 int active = ev_active (w);
3047
2255 checks [active - 1] = checks [--checkcnt]; 3048 checks [active - 1] = checks [--checkcnt];
2256 ((W)checks [active - 1])->active = active; 3049 ev_active (checks [active - 1]) = active;
2257 } 3050 }
2258 3051
2259 ev_stop (EV_A_ (W)w); 3052 ev_stop (EV_A_ (W)w);
3053
3054 EV_FREQUENT_CHECK;
2260} 3055}
2261 3056
2262#if EV_EMBED_ENABLE 3057#if EV_EMBED_ENABLE
2263void noinline 3058void noinline
2264ev_embed_sweep (EV_P_ ev_embed *w) 3059ev_embed_sweep (EV_P_ ev_embed *w)
2291 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3086 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2292 } 3087 }
2293 } 3088 }
2294} 3089}
2295 3090
3091static void
3092embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3093{
3094 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3095
3096 ev_embed_stop (EV_A_ w);
3097
3098 {
3099 struct ev_loop *loop = w->other;
3100
3101 ev_loop_fork (EV_A);
3102 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3103 }
3104
3105 ev_embed_start (EV_A_ w);
3106}
3107
2296#if 0 3108#if 0
2297static void 3109static void
2298embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3110embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2299{ 3111{
2300 ev_idle_stop (EV_A_ idle); 3112 ev_idle_stop (EV_A_ idle);
2307 if (expect_false (ev_is_active (w))) 3119 if (expect_false (ev_is_active (w)))
2308 return; 3120 return;
2309 3121
2310 { 3122 {
2311 struct ev_loop *loop = w->other; 3123 struct ev_loop *loop = w->other;
2312 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3124 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2313 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3125 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2314 } 3126 }
3127
3128 EV_FREQUENT_CHECK;
2315 3129
2316 ev_set_priority (&w->io, ev_priority (w)); 3130 ev_set_priority (&w->io, ev_priority (w));
2317 ev_io_start (EV_A_ &w->io); 3131 ev_io_start (EV_A_ &w->io);
2318 3132
2319 ev_prepare_init (&w->prepare, embed_prepare_cb); 3133 ev_prepare_init (&w->prepare, embed_prepare_cb);
2320 ev_set_priority (&w->prepare, EV_MINPRI); 3134 ev_set_priority (&w->prepare, EV_MINPRI);
2321 ev_prepare_start (EV_A_ &w->prepare); 3135 ev_prepare_start (EV_A_ &w->prepare);
2322 3136
3137 ev_fork_init (&w->fork, embed_fork_cb);
3138 ev_fork_start (EV_A_ &w->fork);
3139
2323 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3140 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2324 3141
2325 ev_start (EV_A_ (W)w, 1); 3142 ev_start (EV_A_ (W)w, 1);
3143
3144 EV_FREQUENT_CHECK;
2326} 3145}
2327 3146
2328void 3147void
2329ev_embed_stop (EV_P_ ev_embed *w) 3148ev_embed_stop (EV_P_ ev_embed *w)
2330{ 3149{
2331 clear_pending (EV_A_ (W)w); 3150 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w))) 3151 if (expect_false (!ev_is_active (w)))
2333 return; 3152 return;
2334 3153
3154 EV_FREQUENT_CHECK;
3155
2335 ev_io_stop (EV_A_ &w->io); 3156 ev_io_stop (EV_A_ &w->io);
2336 ev_prepare_stop (EV_A_ &w->prepare); 3157 ev_prepare_stop (EV_A_ &w->prepare);
3158 ev_fork_stop (EV_A_ &w->fork);
2337 3159
2338 ev_stop (EV_A_ (W)w); 3160 EV_FREQUENT_CHECK;
2339} 3161}
2340#endif 3162#endif
2341 3163
2342#if EV_FORK_ENABLE 3164#if EV_FORK_ENABLE
2343void 3165void
2344ev_fork_start (EV_P_ ev_fork *w) 3166ev_fork_start (EV_P_ ev_fork *w)
2345{ 3167{
2346 if (expect_false (ev_is_active (w))) 3168 if (expect_false (ev_is_active (w)))
2347 return; 3169 return;
3170
3171 EV_FREQUENT_CHECK;
2348 3172
2349 ev_start (EV_A_ (W)w, ++forkcnt); 3173 ev_start (EV_A_ (W)w, ++forkcnt);
2350 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3174 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2351 forks [forkcnt - 1] = w; 3175 forks [forkcnt - 1] = w;
3176
3177 EV_FREQUENT_CHECK;
2352} 3178}
2353 3179
2354void 3180void
2355ev_fork_stop (EV_P_ ev_fork *w) 3181ev_fork_stop (EV_P_ ev_fork *w)
2356{ 3182{
2357 clear_pending (EV_A_ (W)w); 3183 clear_pending (EV_A_ (W)w);
2358 if (expect_false (!ev_is_active (w))) 3184 if (expect_false (!ev_is_active (w)))
2359 return; 3185 return;
2360 3186
3187 EV_FREQUENT_CHECK;
3188
2361 { 3189 {
2362 int active = ((W)w)->active; 3190 int active = ev_active (w);
3191
2363 forks [active - 1] = forks [--forkcnt]; 3192 forks [active - 1] = forks [--forkcnt];
2364 ((W)forks [active - 1])->active = active; 3193 ev_active (forks [active - 1]) = active;
2365 } 3194 }
2366 3195
2367 ev_stop (EV_A_ (W)w); 3196 ev_stop (EV_A_ (W)w);
3197
3198 EV_FREQUENT_CHECK;
3199}
3200#endif
3201
3202#if EV_ASYNC_ENABLE
3203void
3204ev_async_start (EV_P_ ev_async *w)
3205{
3206 if (expect_false (ev_is_active (w)))
3207 return;
3208
3209 evpipe_init (EV_A);
3210
3211 EV_FREQUENT_CHECK;
3212
3213 ev_start (EV_A_ (W)w, ++asynccnt);
3214 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3215 asyncs [asynccnt - 1] = w;
3216
3217 EV_FREQUENT_CHECK;
3218}
3219
3220void
3221ev_async_stop (EV_P_ ev_async *w)
3222{
3223 clear_pending (EV_A_ (W)w);
3224 if (expect_false (!ev_is_active (w)))
3225 return;
3226
3227 EV_FREQUENT_CHECK;
3228
3229 {
3230 int active = ev_active (w);
3231
3232 asyncs [active - 1] = asyncs [--asynccnt];
3233 ev_active (asyncs [active - 1]) = active;
3234 }
3235
3236 ev_stop (EV_A_ (W)w);
3237
3238 EV_FREQUENT_CHECK;
3239}
3240
3241void
3242ev_async_send (EV_P_ ev_async *w)
3243{
3244 w->sent = 1;
3245 evpipe_write (EV_A_ &gotasync);
2368} 3246}
2369#endif 3247#endif
2370 3248
2371/*****************************************************************************/ 3249/*****************************************************************************/
2372 3250
2382once_cb (EV_P_ struct ev_once *once, int revents) 3260once_cb (EV_P_ struct ev_once *once, int revents)
2383{ 3261{
2384 void (*cb)(int revents, void *arg) = once->cb; 3262 void (*cb)(int revents, void *arg) = once->cb;
2385 void *arg = once->arg; 3263 void *arg = once->arg;
2386 3264
2387 ev_io_stop (EV_A_ &once->io); 3265 ev_io_stop (EV_A_ &once->io);
2388 ev_timer_stop (EV_A_ &once->to); 3266 ev_timer_stop (EV_A_ &once->to);
2389 ev_free (once); 3267 ev_free (once);
2390 3268
2391 cb (revents, arg); 3269 cb (revents, arg);
2392} 3270}
2393 3271
2394static void 3272static void
2395once_cb_io (EV_P_ ev_io *w, int revents) 3273once_cb_io (EV_P_ ev_io *w, int revents)
2396{ 3274{
2397 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3275 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3276
3277 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2398} 3278}
2399 3279
2400static void 3280static void
2401once_cb_to (EV_P_ ev_timer *w, int revents) 3281once_cb_to (EV_P_ ev_timer *w, int revents)
2402{ 3282{
2403 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3283 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3284
3285 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2404} 3286}
2405 3287
2406void 3288void
2407ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3289ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2408{ 3290{
2430 ev_timer_set (&once->to, timeout, 0.); 3312 ev_timer_set (&once->to, timeout, 0.);
2431 ev_timer_start (EV_A_ &once->to); 3313 ev_timer_start (EV_A_ &once->to);
2432 } 3314 }
2433} 3315}
2434 3316
3317/*****************************************************************************/
3318
3319#if EV_WALK_ENABLE
3320void
3321ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3322{
3323 int i, j;
3324 ev_watcher_list *wl, *wn;
3325
3326 if (types & (EV_IO | EV_EMBED))
3327 for (i = 0; i < anfdmax; ++i)
3328 for (wl = anfds [i].head; wl; )
3329 {
3330 wn = wl->next;
3331
3332#if EV_EMBED_ENABLE
3333 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3334 {
3335 if (types & EV_EMBED)
3336 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3337 }
3338 else
3339#endif
3340#if EV_USE_INOTIFY
3341 if (ev_cb ((ev_io *)wl) == infy_cb)
3342 ;
3343 else
3344#endif
3345 if ((ev_io *)wl != &pipe_w)
3346 if (types & EV_IO)
3347 cb (EV_A_ EV_IO, wl);
3348
3349 wl = wn;
3350 }
3351
3352 if (types & (EV_TIMER | EV_STAT))
3353 for (i = timercnt + HEAP0; i-- > HEAP0; )
3354#if EV_STAT_ENABLE
3355 /*TODO: timer is not always active*/
3356 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3357 {
3358 if (types & EV_STAT)
3359 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3360 }
3361 else
3362#endif
3363 if (types & EV_TIMER)
3364 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3365
3366#if EV_PERIODIC_ENABLE
3367 if (types & EV_PERIODIC)
3368 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3369 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3370#endif
3371
3372#if EV_IDLE_ENABLE
3373 if (types & EV_IDLE)
3374 for (j = NUMPRI; i--; )
3375 for (i = idlecnt [j]; i--; )
3376 cb (EV_A_ EV_IDLE, idles [j][i]);
3377#endif
3378
3379#if EV_FORK_ENABLE
3380 if (types & EV_FORK)
3381 for (i = forkcnt; i--; )
3382 if (ev_cb (forks [i]) != embed_fork_cb)
3383 cb (EV_A_ EV_FORK, forks [i]);
3384#endif
3385
3386#if EV_ASYNC_ENABLE
3387 if (types & EV_ASYNC)
3388 for (i = asynccnt; i--; )
3389 cb (EV_A_ EV_ASYNC, asyncs [i]);
3390#endif
3391
3392 if (types & EV_PREPARE)
3393 for (i = preparecnt; i--; )
3394#if EV_EMBED_ENABLE
3395 if (ev_cb (prepares [i]) != embed_prepare_cb)
3396#endif
3397 cb (EV_A_ EV_PREPARE, prepares [i]);
3398
3399 if (types & EV_CHECK)
3400 for (i = checkcnt; i--; )
3401 cb (EV_A_ EV_CHECK, checks [i]);
3402
3403 if (types & EV_SIGNAL)
3404 for (i = 0; i < signalmax; ++i)
3405 for (wl = signals [i].head; wl; )
3406 {
3407 wn = wl->next;
3408 cb (EV_A_ EV_SIGNAL, wl);
3409 wl = wn;
3410 }
3411
3412 if (types & EV_CHILD)
3413 for (i = EV_PID_HASHSIZE; i--; )
3414 for (wl = childs [i]; wl; )
3415 {
3416 wn = wl->next;
3417 cb (EV_A_ EV_CHILD, wl);
3418 wl = wn;
3419 }
3420/* EV_STAT 0x00001000 /* stat data changed */
3421/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3422}
3423#endif
3424
2435#if EV_MULTIPLICITY 3425#if EV_MULTIPLICITY
2436 #include "ev_wrap.h" 3426 #include "ev_wrap.h"
2437#endif 3427#endif
2438 3428
2439#ifdef __cplusplus 3429#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines