ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.213 by root, Tue Feb 19 19:13:50 2008 UTC vs.
Revision 1.297 by root, Fri Jul 10 00:36:21 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
49# endif 50# endif
50 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
51# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
54# endif 69# endif
55# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
57# endif 72# endif
58# else 73# else
59# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
61# endif 76# endif
118# else 133# else
119# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
120# endif 135# endif
121# endif 136# endif
122 137
138# ifndef EV_USE_EVENTFD
139# if HAVE_EVENTFD
140# define EV_USE_EVENTFD 1
141# else
142# define EV_USE_EVENTFD 0
143# endif
144# endif
145
123#endif 146#endif
124 147
125#include <math.h> 148#include <math.h>
126#include <stdlib.h> 149#include <stdlib.h>
127#include <fcntl.h> 150#include <fcntl.h>
145#ifndef _WIN32 168#ifndef _WIN32
146# include <sys/time.h> 169# include <sys/time.h>
147# include <sys/wait.h> 170# include <sys/wait.h>
148# include <unistd.h> 171# include <unistd.h>
149#else 172#else
173# include <io.h>
150# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
151# include <windows.h> 175# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
154# endif 178# endif
155#endif 179#endif
156 180
157/**/ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
158 190
159#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
160# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
161#endif 197#endif
162 198
163#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 201#endif
166 202
167#ifndef EV_USE_NANOSLEEP 203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
168# define EV_USE_NANOSLEEP 0 207# define EV_USE_NANOSLEEP 0
208# endif
169#endif 209#endif
170 210
171#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
173#endif 213#endif
179# define EV_USE_POLL 1 219# define EV_USE_POLL 1
180# endif 220# endif
181#endif 221#endif
182 222
183#ifndef EV_USE_EPOLL 223#ifndef EV_USE_EPOLL
224# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225# define EV_USE_EPOLL 1
226# else
184# define EV_USE_EPOLL 0 227# define EV_USE_EPOLL 0
228# endif
185#endif 229#endif
186 230
187#ifndef EV_USE_KQUEUE 231#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 232# define EV_USE_KQUEUE 0
189#endif 233#endif
191#ifndef EV_USE_PORT 235#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 236# define EV_USE_PORT 0
193#endif 237#endif
194 238
195#ifndef EV_USE_INOTIFY 239#ifndef EV_USE_INOTIFY
240# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
241# define EV_USE_INOTIFY 1
242# else
196# define EV_USE_INOTIFY 0 243# define EV_USE_INOTIFY 0
244# endif
197#endif 245#endif
198 246
199#ifndef EV_PID_HASHSIZE 247#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 248# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 249# define EV_PID_HASHSIZE 1
210# else 258# else
211# define EV_INOTIFY_HASHSIZE 16 259# define EV_INOTIFY_HASHSIZE 16
212# endif 260# endif
213#endif 261#endif
214 262
215/**/ 263#ifndef EV_USE_EVENTFD
264# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265# define EV_USE_EVENTFD 1
266# else
267# define EV_USE_EVENTFD 0
268# endif
269#endif
270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 304
217#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
220#endif 308#endif
234# include <sys/select.h> 322# include <sys/select.h>
235# endif 323# endif
236#endif 324#endif
237 325
238#if EV_USE_INOTIFY 326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
239# include <sys/inotify.h> 329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
240#endif 335#endif
241 336
242#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 338# include <winsock.h>
244#endif 339#endif
245 340
341#if EV_USE_EVENTFD
342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343# include <stdint.h>
344# ifdef __cplusplus
345extern "C" {
346# endif
347int eventfd (unsigned int initval, int flags);
348# ifdef __cplusplus
349}
350# endif
351#endif
352
246/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
247 360
248/* 361/*
249 * This is used to avoid floating point rounding problems. 362 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics 363 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding 364 * to ensure progress, time-wise, even when rounding
263# define expect(expr,value) __builtin_expect ((expr),(value)) 376# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 377# define noinline __attribute__ ((noinline))
265#else 378#else
266# define expect(expr,value) (expr) 379# define expect(expr,value) (expr)
267# define noinline 380# define noinline
268# if __STDC_VERSION__ < 199901L 381# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 382# define inline
270# endif 383# endif
271#endif 384#endif
272 385
273#define expect_false(expr) expect ((expr) != 0, 0) 386#define expect_false(expr) expect ((expr) != 0, 0)
278# define inline_speed static noinline 391# define inline_speed static noinline
279#else 392#else
280# define inline_speed static inline 393# define inline_speed static inline
281#endif 394#endif
282 395
283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
285 403
286#define EMPTY /* required for microsofts broken pseudo-c compiler */ 404#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */ 405#define EMPTY2(a,b) /* used to suppress some warnings */
288 406
289typedef ev_watcher *W; 407typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 408typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
292 410
293#if EV_USE_MONOTONIC 411#define ev_active(w) ((W)(w))->active
412#define ev_at(w) ((WT)(w))->at
413
414#if EV_USE_REALTIME
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
419
420#if EV_USE_MONOTONIC
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif 422#endif
298 423
299#ifdef _WIN32 424#ifdef _WIN32
300# include "ev_win32.c" 425# include "ev_win32.c"
309{ 434{
310 syserr_cb = cb; 435 syserr_cb = cb;
311} 436}
312 437
313static void noinline 438static void noinline
314syserr (const char *msg) 439ev_syserr (const char *msg)
315{ 440{
316 if (!msg) 441 if (!msg)
317 msg = "(libev) system error"; 442 msg = "(libev) system error";
318 443
319 if (syserr_cb) 444 if (syserr_cb)
323 perror (msg); 448 perror (msg);
324 abort (); 449 abort ();
325 } 450 }
326} 451}
327 452
453static void *
454ev_realloc_emul (void *ptr, long size)
455{
456 /* some systems, notably openbsd and darwin, fail to properly
457 * implement realloc (x, 0) (as required by both ansi c-98 and
458 * the single unix specification, so work around them here.
459 */
460
461 if (size)
462 return realloc (ptr, size);
463
464 free (ptr);
465 return 0;
466}
467
328static void *(*alloc)(void *ptr, long size); 468static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 469
330void 470void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 471ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 472{
333 alloc = cb; 473 alloc = cb;
334} 474}
335 475
336inline_speed void * 476inline_speed void *
337ev_realloc (void *ptr, long size) 477ev_realloc (void *ptr, long size)
338{ 478{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 479 ptr = alloc (ptr, size);
340 480
341 if (!ptr && size) 481 if (!ptr && size)
342 { 482 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 483 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 484 abort ();
350#define ev_malloc(size) ev_realloc (0, (size)) 490#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 491#define ev_free(ptr) ev_realloc ((ptr), 0)
352 492
353/*****************************************************************************/ 493/*****************************************************************************/
354 494
495/* file descriptor info structure */
355typedef struct 496typedef struct
356{ 497{
357 WL head; 498 WL head;
358 unsigned char events; 499 unsigned char events; /* the events watched for */
500 unsigned char reify; /* flag set when this ANFD needs reification */
501 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
359 unsigned char reify; 502 unsigned char unused;
503#if EV_USE_EPOLL
504 unsigned int egen; /* generation counter to counter epoll bugs */
505#endif
360#if EV_SELECT_IS_WINSOCKET 506#if EV_SELECT_IS_WINSOCKET
361 SOCKET handle; 507 SOCKET handle;
362#endif 508#endif
363} ANFD; 509} ANFD;
364 510
511/* stores the pending event set for a given watcher */
365typedef struct 512typedef struct
366{ 513{
367 W w; 514 W w;
368 int events; 515 int events; /* the pending event set for the given watcher */
369} ANPENDING; 516} ANPENDING;
370 517
371#if EV_USE_INOTIFY 518#if EV_USE_INOTIFY
519/* hash table entry per inotify-id */
372typedef struct 520typedef struct
373{ 521{
374 WL head; 522 WL head;
375} ANFS; 523} ANFS;
524#endif
525
526/* Heap Entry */
527#if EV_HEAP_CACHE_AT
528 /* a heap element */
529 typedef struct {
530 ev_tstamp at;
531 WT w;
532 } ANHE;
533
534 #define ANHE_w(he) (he).w /* access watcher, read-write */
535 #define ANHE_at(he) (he).at /* access cached at, read-only */
536 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
537#else
538 /* a heap element */
539 typedef WT ANHE;
540
541 #define ANHE_w(he) (he)
542 #define ANHE_at(he) (he)->at
543 #define ANHE_at_cache(he)
376#endif 544#endif
377 545
378#if EV_MULTIPLICITY 546#if EV_MULTIPLICITY
379 547
380 struct ev_loop 548 struct ev_loop
399 567
400 static int ev_default_loop_ptr; 568 static int ev_default_loop_ptr;
401 569
402#endif 570#endif
403 571
572#if EV_MINIMAL < 2
573# define EV_SUSPEND_CB if (expect_false (suspend_cb)) suspend_cb (EV_A)
574# define EV_RESUME_CB if (expect_false (resume_cb )) resume_cb (EV_A)
575# define EV_INVOKE_PENDING invoke_cb (EV_A)
576#else
577# define EV_SUSPEND_CB (void)0
578# define EV_RESUME_CB (void)0
579# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
580#endif
581
404/*****************************************************************************/ 582/*****************************************************************************/
405 583
584#ifndef EV_HAVE_EV_TIME
406ev_tstamp 585ev_tstamp
407ev_time (void) 586ev_time (void)
408{ 587{
409#if EV_USE_REALTIME 588#if EV_USE_REALTIME
589 if (expect_true (have_realtime))
590 {
410 struct timespec ts; 591 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 592 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 593 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 594 }
595#endif
596
414 struct timeval tv; 597 struct timeval tv;
415 gettimeofday (&tv, 0); 598 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 599 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 600}
601#endif
419 602
420ev_tstamp inline_size 603inline_size ev_tstamp
421get_clock (void) 604get_clock (void)
422{ 605{
423#if EV_USE_MONOTONIC 606#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 607 if (expect_true (have_monotonic))
425 { 608 {
451 ts.tv_sec = (time_t)delay; 634 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 635 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 636
454 nanosleep (&ts, 0); 637 nanosleep (&ts, 0);
455#elif defined(_WIN32) 638#elif defined(_WIN32)
456 Sleep (delay * 1e3); 639 Sleep ((unsigned long)(delay * 1e3));
457#else 640#else
458 struct timeval tv; 641 struct timeval tv;
459 642
460 tv.tv_sec = (time_t)delay; 643 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 644 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462 645
646 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
647 /* somehting not guaranteed by newer posix versions, but guaranteed */
648 /* by older ones */
463 select (0, 0, 0, 0, &tv); 649 select (0, 0, 0, 0, &tv);
464#endif 650#endif
465 } 651 }
466} 652}
467 653
468/*****************************************************************************/ 654/*****************************************************************************/
469 655
470int inline_size 656#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
657
658/* find a suitable new size for the given array, */
659/* hopefully by rounding to a ncie-to-malloc size */
660inline_size int
471array_nextsize (int elem, int cur, int cnt) 661array_nextsize (int elem, int cur, int cnt)
472{ 662{
473 int ncur = cur + 1; 663 int ncur = cur + 1;
474 664
475 do 665 do
476 ncur <<= 1; 666 ncur <<= 1;
477 while (cnt > ncur); 667 while (cnt > ncur);
478 668
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 669 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 670 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 671 {
482 ncur *= elem; 672 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 673 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 674 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 675 ncur /= elem;
486 } 676 }
487 677
488 return ncur; 678 return ncur;
492array_realloc (int elem, void *base, int *cur, int cnt) 682array_realloc (int elem, void *base, int *cur, int cnt)
493{ 683{
494 *cur = array_nextsize (elem, *cur, cnt); 684 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 685 return ev_realloc (base, elem * *cur);
496} 686}
687
688#define array_init_zero(base,count) \
689 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 690
498#define array_needsize(type,base,cur,cnt,init) \ 691#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 692 if (expect_false ((cnt) > (cur))) \
500 { \ 693 { \
501 int ocur_ = (cur); \ 694 int ocur_ = (cur); \
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 706 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 707 }
515#endif 708#endif
516 709
517#define array_free(stem, idx) \ 710#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 711 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 712
520/*****************************************************************************/ 713/*****************************************************************************/
714
715/* dummy callback for pending events */
716static void noinline
717pendingcb (EV_P_ ev_prepare *w, int revents)
718{
719}
521 720
522void noinline 721void noinline
523ev_feed_event (EV_P_ void *w, int revents) 722ev_feed_event (EV_P_ void *w, int revents)
524{ 723{
525 W w_ = (W)w; 724 W w_ = (W)w;
534 pendings [pri][w_->pending - 1].w = w_; 733 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 734 pendings [pri][w_->pending - 1].events = revents;
536 } 735 }
537} 736}
538 737
539void inline_speed 738inline_speed void
739feed_reverse (EV_P_ W w)
740{
741 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
742 rfeeds [rfeedcnt++] = w;
743}
744
745inline_size void
746feed_reverse_done (EV_P_ int revents)
747{
748 do
749 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
750 while (rfeedcnt);
751}
752
753inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 754queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 755{
542 int i; 756 int i;
543 757
544 for (i = 0; i < eventcnt; ++i) 758 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 759 ev_feed_event (EV_A_ events [i], type);
546} 760}
547 761
548/*****************************************************************************/ 762/*****************************************************************************/
549 763
550void inline_size 764inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 765fd_event (EV_P_ int fd, int revents)
565{ 766{
566 ANFD *anfd = anfds + fd; 767 ANFD *anfd = anfds + fd;
567 ev_io *w; 768 ev_io *w;
568 769
580{ 781{
581 if (fd >= 0 && fd < anfdmax) 782 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 783 fd_event (EV_A_ fd, revents);
583} 784}
584 785
585void inline_size 786/* make sure the external fd watch events are in-sync */
787/* with the kernel/libev internal state */
788inline_size void
586fd_reify (EV_P) 789fd_reify (EV_P)
587{ 790{
588 int i; 791 int i;
589 792
590 for (i = 0; i < fdchangecnt; ++i) 793 for (i = 0; i < fdchangecnt; ++i)
599 events |= (unsigned char)w->events; 802 events |= (unsigned char)w->events;
600 803
601#if EV_SELECT_IS_WINSOCKET 804#if EV_SELECT_IS_WINSOCKET
602 if (events) 805 if (events)
603 { 806 {
604 unsigned long argp; 807 unsigned long arg;
605 #ifdef EV_FD_TO_WIN32_HANDLE 808 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 809 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else 810 #else
608 anfd->handle = _get_osfhandle (fd); 811 anfd->handle = _get_osfhandle (fd);
609 #endif 812 #endif
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 813 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
611 } 814 }
612#endif 815#endif
613 816
614 { 817 {
615 unsigned char o_events = anfd->events; 818 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify; 819 unsigned char o_reify = anfd->reify;
617 820
618 anfd->reify = 0; 821 anfd->reify = 0;
619 anfd->events = events; 822 anfd->events = events;
620 823
621 if (o_events != events || o_reify & EV_IOFDSET) 824 if (o_events != events || o_reify & EV__IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events); 825 backend_modify (EV_A_ fd, o_events, events);
623 } 826 }
624 } 827 }
625 828
626 fdchangecnt = 0; 829 fdchangecnt = 0;
627} 830}
628 831
629void inline_size 832/* something about the given fd changed */
833inline_size void
630fd_change (EV_P_ int fd, int flags) 834fd_change (EV_P_ int fd, int flags)
631{ 835{
632 unsigned char reify = anfds [fd].reify; 836 unsigned char reify = anfds [fd].reify;
633 anfds [fd].reify |= flags; 837 anfds [fd].reify |= flags;
634 838
638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 842 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
639 fdchanges [fdchangecnt - 1] = fd; 843 fdchanges [fdchangecnt - 1] = fd;
640 } 844 }
641} 845}
642 846
643void inline_speed 847/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
848inline_speed void
644fd_kill (EV_P_ int fd) 849fd_kill (EV_P_ int fd)
645{ 850{
646 ev_io *w; 851 ev_io *w;
647 852
648 while ((w = (ev_io *)anfds [fd].head)) 853 while ((w = (ev_io *)anfds [fd].head))
650 ev_io_stop (EV_A_ w); 855 ev_io_stop (EV_A_ w);
651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 856 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
652 } 857 }
653} 858}
654 859
655int inline_size 860/* check whether the given fd is atcually valid, for error recovery */
861inline_size int
656fd_valid (int fd) 862fd_valid (int fd)
657{ 863{
658#ifdef _WIN32 864#ifdef _WIN32
659 return _get_osfhandle (fd) != -1; 865 return _get_osfhandle (fd) != -1;
660#else 866#else
668{ 874{
669 int fd; 875 int fd;
670 876
671 for (fd = 0; fd < anfdmax; ++fd) 877 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 878 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 879 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 880 fd_kill (EV_A_ fd);
675} 881}
676 882
677/* called on ENOMEM in select/poll to kill some fds and retry */ 883/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 884static void noinline
696 902
697 for (fd = 0; fd < anfdmax; ++fd) 903 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 904 if (anfds [fd].events)
699 { 905 {
700 anfds [fd].events = 0; 906 anfds [fd].events = 0;
907 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 908 fd_change (EV_A_ fd, EV__IOFDSET | 1);
702 } 909 }
703} 910}
704 911
705/*****************************************************************************/ 912/*****************************************************************************/
706 913
707void inline_speed 914/*
708upheap (WT *heap, int k) 915 * the heap functions want a real array index. array index 0 uis guaranteed to not
709{ 916 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
710 WT w = heap [k]; 917 * the branching factor of the d-tree.
918 */
711 919
712 while (k) 920/*
713 { 921 * at the moment we allow libev the luxury of two heaps,
714 int p = (k - 1) >> 1; 922 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
923 * which is more cache-efficient.
924 * the difference is about 5% with 50000+ watchers.
925 */
926#if EV_USE_4HEAP
715 927
716 if (heap [p]->at <= w->at) 928#define DHEAP 4
929#define HEAP0 (DHEAP - 1) /* index of first element in heap */
930#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
931#define UPHEAP_DONE(p,k) ((p) == (k))
932
933/* away from the root */
934inline_speed void
935downheap (ANHE *heap, int N, int k)
936{
937 ANHE he = heap [k];
938 ANHE *E = heap + N + HEAP0;
939
940 for (;;)
941 {
942 ev_tstamp minat;
943 ANHE *minpos;
944 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
945
946 /* find minimum child */
947 if (expect_true (pos + DHEAP - 1 < E))
948 {
949 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
950 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
951 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
952 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
953 }
954 else if (pos < E)
955 {
956 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
957 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
958 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
959 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
960 }
961 else
717 break; 962 break;
718 963
964 if (ANHE_at (he) <= minat)
965 break;
966
967 heap [k] = *minpos;
968 ev_active (ANHE_w (*minpos)) = k;
969
970 k = minpos - heap;
971 }
972
973 heap [k] = he;
974 ev_active (ANHE_w (he)) = k;
975}
976
977#else /* 4HEAP */
978
979#define HEAP0 1
980#define HPARENT(k) ((k) >> 1)
981#define UPHEAP_DONE(p,k) (!(p))
982
983/* away from the root */
984inline_speed void
985downheap (ANHE *heap, int N, int k)
986{
987 ANHE he = heap [k];
988
989 for (;;)
990 {
991 int c = k << 1;
992
993 if (c > N + HEAP0 - 1)
994 break;
995
996 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
997 ? 1 : 0;
998
999 if (ANHE_at (he) <= ANHE_at (heap [c]))
1000 break;
1001
1002 heap [k] = heap [c];
1003 ev_active (ANHE_w (heap [k])) = k;
1004
1005 k = c;
1006 }
1007
1008 heap [k] = he;
1009 ev_active (ANHE_w (he)) = k;
1010}
1011#endif
1012
1013/* towards the root */
1014inline_speed void
1015upheap (ANHE *heap, int k)
1016{
1017 ANHE he = heap [k];
1018
1019 for (;;)
1020 {
1021 int p = HPARENT (k);
1022
1023 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1024 break;
1025
719 heap [k] = heap [p]; 1026 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1; 1027 ev_active (ANHE_w (heap [k])) = k;
721 k = p; 1028 k = p;
722 } 1029 }
723 1030
724 heap [k] = w; 1031 heap [k] = he;
725 ((W)heap [k])->active = k + 1; 1032 ev_active (ANHE_w (he)) = k;
726} 1033}
727 1034
728void inline_speed 1035/* move an element suitably so it is in a correct place */
729downheap (WT *heap, int N, int k) 1036inline_size void
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754}
755
756void inline_size
757adjustheap (WT *heap, int N, int k) 1037adjustheap (ANHE *heap, int N, int k)
758{ 1038{
1039 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
759 upheap (heap, k); 1040 upheap (heap, k);
1041 else
760 downheap (heap, N, k); 1042 downheap (heap, N, k);
1043}
1044
1045/* rebuild the heap: this function is used only once and executed rarely */
1046inline_size void
1047reheap (ANHE *heap, int N)
1048{
1049 int i;
1050
1051 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1052 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1053 for (i = 0; i < N; ++i)
1054 upheap (heap, i + HEAP0);
761} 1055}
762 1056
763/*****************************************************************************/ 1057/*****************************************************************************/
764 1058
1059/* associate signal watchers to a signal signal */
765typedef struct 1060typedef struct
766{ 1061{
767 WL head; 1062 WL head;
768 EV_ATOMIC_T gotsig; 1063 EV_ATOMIC_T gotsig;
769} ANSIG; 1064} ANSIG;
771static ANSIG *signals; 1066static ANSIG *signals;
772static int signalmax; 1067static int signalmax;
773 1068
774static EV_ATOMIC_T gotsig; 1069static EV_ATOMIC_T gotsig;
775 1070
776void inline_size
777signals_init (ANSIG *base, int count)
778{
779 while (count--)
780 {
781 base->head = 0;
782 base->gotsig = 0;
783
784 ++base;
785 }
786}
787
788/*****************************************************************************/ 1071/*****************************************************************************/
789 1072
790void inline_speed 1073/* used to prepare libev internal fd's */
1074/* this is not fork-safe */
1075inline_speed void
791fd_intern (int fd) 1076fd_intern (int fd)
792{ 1077{
793#ifdef _WIN32 1078#ifdef _WIN32
794 int arg = 1; 1079 unsigned long arg = 1;
795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1080 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
796#else 1081#else
797 fcntl (fd, F_SETFD, FD_CLOEXEC); 1082 fcntl (fd, F_SETFD, FD_CLOEXEC);
798 fcntl (fd, F_SETFL, O_NONBLOCK); 1083 fcntl (fd, F_SETFL, O_NONBLOCK);
799#endif 1084#endif
800} 1085}
801 1086
802static void noinline 1087static void noinline
803evpipe_init (EV_P) 1088evpipe_init (EV_P)
804{ 1089{
805 if (!ev_is_active (&pipeev)) 1090 if (!ev_is_active (&pipe_w))
806 { 1091 {
1092#if EV_USE_EVENTFD
1093 if ((evfd = eventfd (0, 0)) >= 0)
1094 {
1095 evpipe [0] = -1;
1096 fd_intern (evfd);
1097 ev_io_set (&pipe_w, evfd, EV_READ);
1098 }
1099 else
1100#endif
1101 {
807 while (pipe (evpipe)) 1102 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 1103 ev_syserr ("(libev) error creating signal/async pipe");
809 1104
810 fd_intern (evpipe [0]); 1105 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 1106 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 1107 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1108 }
1109
814 ev_io_start (EV_A_ &pipeev); 1110 ev_io_start (EV_A_ &pipe_w);
815 ev_unref (EV_A); /* watcher should not keep loop alive */ 1111 ev_unref (EV_A); /* watcher should not keep loop alive */
816 } 1112 }
817} 1113}
818 1114
819void inline_size 1115inline_size void
820evpipe_write (EV_P_ int sig, int async) 1116evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{ 1117{
822 int sent = gotasync || gotsig; 1118 if (!*flag)
823
824 if (sig) gotsig = 1;
825 if (async) gotasync = 1;
826
827 if (!sent)
828 { 1119 {
829 int old_errno = errno; /* save errno becaue write might clobber it */ 1120 int old_errno = errno; /* save errno because write might clobber it */
1121
1122 *flag = 1;
1123
1124#if EV_USE_EVENTFD
1125 if (evfd >= 0)
1126 {
1127 uint64_t counter = 1;
1128 write (evfd, &counter, sizeof (uint64_t));
1129 }
1130 else
1131#endif
830 write (evpipe [1], &old_errno, 1); 1132 write (evpipe [1], &old_errno, 1);
1133
831 errno = old_errno; 1134 errno = old_errno;
832 } 1135 }
833} 1136}
834 1137
1138/* called whenever the libev signal pipe */
1139/* got some events (signal, async) */
835static void 1140static void
836pipecb (EV_P_ ev_io *iow, int revents) 1141pipecb (EV_P_ ev_io *iow, int revents)
837{ 1142{
1143#if EV_USE_EVENTFD
1144 if (evfd >= 0)
838 { 1145 {
839 int dummy; 1146 uint64_t counter;
1147 read (evfd, &counter, sizeof (uint64_t));
1148 }
1149 else
1150#endif
1151 {
1152 char dummy;
840 read (evpipe [0], &dummy, 1); 1153 read (evpipe [0], &dummy, 1);
841 } 1154 }
842 1155
843 if (gotsig && ev_is_default_loop (EV_A)) 1156 if (gotsig && ev_is_default_loop (EV_A))
844 { 1157 {
845 int signum; 1158 int signum;
846 gotsig = 0; 1159 gotsig = 0;
867} 1180}
868 1181
869/*****************************************************************************/ 1182/*****************************************************************************/
870 1183
871static void 1184static void
872sighandler (int signum) 1185ev_sighandler (int signum)
873{ 1186{
874#if EV_MULTIPLICITY 1187#if EV_MULTIPLICITY
875 struct ev_loop *loop = &default_loop_struct; 1188 struct ev_loop *loop = &default_loop_struct;
876#endif 1189#endif
877 1190
878#if _WIN32 1191#if _WIN32
879 signal (signum, sighandler); 1192 signal (signum, ev_sighandler);
880#endif 1193#endif
881 1194
882 signals [signum - 1].gotsig = 1; 1195 signals [signum - 1].gotsig = 1;
883 evpipe_write (EV_A_ 1, 0); 1196 evpipe_write (EV_A_ &gotsig);
884} 1197}
885 1198
886void noinline 1199void noinline
887ev_feed_signal_event (EV_P_ int signum) 1200ev_feed_signal_event (EV_P_ int signum)
888{ 1201{
889 WL w; 1202 WL w;
890 1203
891#if EV_MULTIPLICITY 1204#if EV_MULTIPLICITY
892 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1205 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
893#endif 1206#endif
894 1207
895 --signum; 1208 --signum;
896 1209
897 if (signum < 0 || signum >= signalmax) 1210 if (signum < 0 || signum >= signalmax)
913 1226
914#ifndef WIFCONTINUED 1227#ifndef WIFCONTINUED
915# define WIFCONTINUED(status) 0 1228# define WIFCONTINUED(status) 0
916#endif 1229#endif
917 1230
918void inline_speed 1231/* handle a single child status event */
1232inline_speed void
919child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1233child_reap (EV_P_ int chain, int pid, int status)
920{ 1234{
921 ev_child *w; 1235 ev_child *w;
922 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1236 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
923 1237
924 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1238 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
925 { 1239 {
926 if ((w->pid == pid || !w->pid) 1240 if ((w->pid == pid || !w->pid)
927 && (!traced || (w->flags & 1))) 1241 && (!traced || (w->flags & 1)))
928 { 1242 {
929 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1243 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
930 w->rpid = pid; 1244 w->rpid = pid;
931 w->rstatus = status; 1245 w->rstatus = status;
932 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1246 ev_feed_event (EV_A_ (W)w, EV_CHILD);
933 } 1247 }
934 } 1248 }
936 1250
937#ifndef WCONTINUED 1251#ifndef WCONTINUED
938# define WCONTINUED 0 1252# define WCONTINUED 0
939#endif 1253#endif
940 1254
1255/* called on sigchld etc., calls waitpid */
941static void 1256static void
942childcb (EV_P_ ev_signal *sw, int revents) 1257childcb (EV_P_ ev_signal *sw, int revents)
943{ 1258{
944 int pid, status; 1259 int pid, status;
945 1260
948 if (!WCONTINUED 1263 if (!WCONTINUED
949 || errno != EINVAL 1264 || errno != EINVAL
950 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1265 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
951 return; 1266 return;
952 1267
953 /* make sure we are called again until all childs have been reaped */ 1268 /* make sure we are called again until all children have been reaped */
954 /* we need to do it this way so that the callback gets called before we continue */ 1269 /* we need to do it this way so that the callback gets called before we continue */
955 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1270 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
956 1271
957 child_reap (EV_A_ sw, pid, pid, status); 1272 child_reap (EV_A_ pid, pid, status);
958 if (EV_PID_HASHSIZE > 1) 1273 if (EV_PID_HASHSIZE > 1)
959 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1274 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
960} 1275}
961 1276
962#endif 1277#endif
963 1278
964/*****************************************************************************/ 1279/*****************************************************************************/
1026 /* kqueue is borked on everything but netbsd apparently */ 1341 /* kqueue is borked on everything but netbsd apparently */
1027 /* it usually doesn't work correctly on anything but sockets and pipes */ 1342 /* it usually doesn't work correctly on anything but sockets and pipes */
1028 flags &= ~EVBACKEND_KQUEUE; 1343 flags &= ~EVBACKEND_KQUEUE;
1029#endif 1344#endif
1030#ifdef __APPLE__ 1345#ifdef __APPLE__
1031 // flags &= ~EVBACKEND_KQUEUE; for documentation 1346 /* only select works correctly on that "unix-certified" platform */
1032 flags &= ~EVBACKEND_POLL; 1347 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1348 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1033#endif 1349#endif
1034 1350
1035 return flags; 1351 return flags;
1036} 1352}
1037 1353
1051ev_backend (EV_P) 1367ev_backend (EV_P)
1052{ 1368{
1053 return backend; 1369 return backend;
1054} 1370}
1055 1371
1372#if EV_MINIMAL < 2
1056unsigned int 1373unsigned int
1057ev_loop_count (EV_P) 1374ev_loop_count (EV_P)
1058{ 1375{
1059 return loop_count; 1376 return loop_count;
1060} 1377}
1061 1378
1379unsigned int
1380ev_loop_depth (EV_P)
1381{
1382 return loop_depth;
1383}
1384
1062void 1385void
1063ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1386ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1064{ 1387{
1065 io_blocktime = interval; 1388 io_blocktime = interval;
1066} 1389}
1069ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1392ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1070{ 1393{
1071 timeout_blocktime = interval; 1394 timeout_blocktime = interval;
1072} 1395}
1073 1396
1397void
1398ev_set_userdata (EV_P_ void *data)
1399{
1400 userdata = data;
1401}
1402
1403void *
1404ev_userdata (EV_P)
1405{
1406 return userdata;
1407}
1408
1409void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1410{
1411 invoke_cb = invoke_pending_cb;
1412}
1413
1414void ev_set_blocking_cb (EV_P_ void (*suspend_cb_)(EV_P), void (*resume_cb_)(EV_P))
1415{
1416 suspend_cb = suspend_cb_;
1417 resume_cb = resume_cb_;
1418}
1419#endif
1420
1421/* initialise a loop structure, must be zero-initialised */
1074static void noinline 1422static void noinline
1075loop_init (EV_P_ unsigned int flags) 1423loop_init (EV_P_ unsigned int flags)
1076{ 1424{
1077 if (!backend) 1425 if (!backend)
1078 { 1426 {
1427#if EV_USE_REALTIME
1428 if (!have_realtime)
1429 {
1430 struct timespec ts;
1431
1432 if (!clock_gettime (CLOCK_REALTIME, &ts))
1433 have_realtime = 1;
1434 }
1435#endif
1436
1079#if EV_USE_MONOTONIC 1437#if EV_USE_MONOTONIC
1438 if (!have_monotonic)
1080 { 1439 {
1081 struct timespec ts; 1440 struct timespec ts;
1441
1082 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1442 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1083 have_monotonic = 1; 1443 have_monotonic = 1;
1084 } 1444 }
1085#endif 1445#endif
1086 1446
1087 ev_rt_now = ev_time (); 1447 ev_rt_now = ev_time ();
1088 mn_now = get_clock (); 1448 mn_now = get_clock ();
1089 now_floor = mn_now; 1449 now_floor = mn_now;
1090 rtmn_diff = ev_rt_now - mn_now; 1450 rtmn_diff = ev_rt_now - mn_now;
1451#if EV_MINIMAL < 2
1452 invoke_cb = ev_invoke_pending;
1453#endif
1091 1454
1092 io_blocktime = 0.; 1455 io_blocktime = 0.;
1093 timeout_blocktime = 0.; 1456 timeout_blocktime = 0.;
1094 backend = 0; 1457 backend = 0;
1095 backend_fd = -1; 1458 backend_fd = -1;
1107 if (!(flags & EVFLAG_NOENV) 1470 if (!(flags & EVFLAG_NOENV)
1108 && !enable_secure () 1471 && !enable_secure ()
1109 && getenv ("LIBEV_FLAGS")) 1472 && getenv ("LIBEV_FLAGS"))
1110 flags = atoi (getenv ("LIBEV_FLAGS")); 1473 flags = atoi (getenv ("LIBEV_FLAGS"));
1111 1474
1112 if (!(flags & 0x0000ffffUL)) 1475 if (!(flags & 0x0000ffffU))
1113 flags |= ev_recommended_backends (); 1476 flags |= ev_recommended_backends ();
1114 1477
1115#if EV_USE_PORT 1478#if EV_USE_PORT
1116 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1479 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1117#endif 1480#endif
1126#endif 1489#endif
1127#if EV_USE_SELECT 1490#if EV_USE_SELECT
1128 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1491 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1129#endif 1492#endif
1130 1493
1494 ev_prepare_init (&pending_w, pendingcb);
1495
1131 ev_init (&pipeev, pipecb); 1496 ev_init (&pipe_w, pipecb);
1132 ev_set_priority (&pipeev, EV_MAXPRI); 1497 ev_set_priority (&pipe_w, EV_MAXPRI);
1133 } 1498 }
1134} 1499}
1135 1500
1501/* free up a loop structure */
1136static void noinline 1502static void noinline
1137loop_destroy (EV_P) 1503loop_destroy (EV_P)
1138{ 1504{
1139 int i; 1505 int i;
1140 1506
1141 if (ev_is_active (&pipeev)) 1507 if (ev_is_active (&pipe_w))
1142 { 1508 {
1143 ev_ref (EV_A); /* signal watcher */ 1509 ev_ref (EV_A); /* signal watcher */
1144 ev_io_stop (EV_A_ &pipeev); 1510 ev_io_stop (EV_A_ &pipe_w);
1145 1511
1146 close (evpipe [0]); evpipe [0] = 0; 1512#if EV_USE_EVENTFD
1147 close (evpipe [1]); evpipe [1] = 0; 1513 if (evfd >= 0)
1514 close (evfd);
1515#endif
1516
1517 if (evpipe [0] >= 0)
1518 {
1519 close (evpipe [0]);
1520 close (evpipe [1]);
1521 }
1148 } 1522 }
1149 1523
1150#if EV_USE_INOTIFY 1524#if EV_USE_INOTIFY
1151 if (fs_fd >= 0) 1525 if (fs_fd >= 0)
1152 close (fs_fd); 1526 close (fs_fd);
1180 } 1554 }
1181 1555
1182 ev_free (anfds); anfdmax = 0; 1556 ev_free (anfds); anfdmax = 0;
1183 1557
1184 /* have to use the microsoft-never-gets-it-right macro */ 1558 /* have to use the microsoft-never-gets-it-right macro */
1559 array_free (rfeed, EMPTY);
1185 array_free (fdchange, EMPTY); 1560 array_free (fdchange, EMPTY);
1186 array_free (timer, EMPTY); 1561 array_free (timer, EMPTY);
1187#if EV_PERIODIC_ENABLE 1562#if EV_PERIODIC_ENABLE
1188 array_free (periodic, EMPTY); 1563 array_free (periodic, EMPTY);
1189#endif 1564#endif
1197#endif 1572#endif
1198 1573
1199 backend = 0; 1574 backend = 0;
1200} 1575}
1201 1576
1577#if EV_USE_INOTIFY
1202void inline_size infy_fork (EV_P); 1578inline_size void infy_fork (EV_P);
1579#endif
1203 1580
1204void inline_size 1581inline_size void
1205loop_fork (EV_P) 1582loop_fork (EV_P)
1206{ 1583{
1207#if EV_USE_PORT 1584#if EV_USE_PORT
1208 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1585 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1209#endif 1586#endif
1215#endif 1592#endif
1216#if EV_USE_INOTIFY 1593#if EV_USE_INOTIFY
1217 infy_fork (EV_A); 1594 infy_fork (EV_A);
1218#endif 1595#endif
1219 1596
1220 if (ev_is_active (&pipeev)) 1597 if (ev_is_active (&pipe_w))
1221 { 1598 {
1222 /* this "locks" the handlers against writing to the pipe */ 1599 /* this "locks" the handlers against writing to the pipe */
1223 /* while we modify the fd vars */ 1600 /* while we modify the fd vars */
1224 gotsig = 1; 1601 gotsig = 1;
1225#if EV_ASYNC_ENABLE 1602#if EV_ASYNC_ENABLE
1226 gotasync = 1; 1603 gotasync = 1;
1227#endif 1604#endif
1228 1605
1229 ev_ref (EV_A); 1606 ev_ref (EV_A);
1230 ev_io_stop (EV_A_ &pipeev); 1607 ev_io_stop (EV_A_ &pipe_w);
1608
1609#if EV_USE_EVENTFD
1610 if (evfd >= 0)
1611 close (evfd);
1612#endif
1613
1614 if (evpipe [0] >= 0)
1615 {
1231 close (evpipe [0]); 1616 close (evpipe [0]);
1232 close (evpipe [1]); 1617 close (evpipe [1]);
1618 }
1233 1619
1234 evpipe_init (EV_A); 1620 evpipe_init (EV_A);
1235 /* now iterate over everything, in case we missed something */ 1621 /* now iterate over everything, in case we missed something */
1236 pipecb (EV_A_ &pipeev, EV_READ); 1622 pipecb (EV_A_ &pipe_w, EV_READ);
1237 } 1623 }
1238 1624
1239 postfork = 0; 1625 postfork = 0;
1240} 1626}
1241 1627
1242#if EV_MULTIPLICITY 1628#if EV_MULTIPLICITY
1629
1243struct ev_loop * 1630struct ev_loop *
1244ev_loop_new (unsigned int flags) 1631ev_loop_new (unsigned int flags)
1245{ 1632{
1246 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1633 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1247 1634
1265void 1652void
1266ev_loop_fork (EV_P) 1653ev_loop_fork (EV_P)
1267{ 1654{
1268 postfork = 1; /* must be in line with ev_default_fork */ 1655 postfork = 1; /* must be in line with ev_default_fork */
1269} 1656}
1657#endif /* multiplicity */
1270 1658
1659#if EV_VERIFY
1660static void noinline
1661verify_watcher (EV_P_ W w)
1662{
1663 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1664
1665 if (w->pending)
1666 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1667}
1668
1669static void noinline
1670verify_heap (EV_P_ ANHE *heap, int N)
1671{
1672 int i;
1673
1674 for (i = HEAP0; i < N + HEAP0; ++i)
1675 {
1676 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1677 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1678 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1679
1680 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1681 }
1682}
1683
1684static void noinline
1685array_verify (EV_P_ W *ws, int cnt)
1686{
1687 while (cnt--)
1688 {
1689 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1690 verify_watcher (EV_A_ ws [cnt]);
1691 }
1692}
1693#endif
1694
1695#if EV_MINIMAL < 2
1696void
1697ev_loop_verify (EV_P)
1698{
1699#if EV_VERIFY
1700 int i;
1701 WL w;
1702
1703 assert (activecnt >= -1);
1704
1705 assert (fdchangemax >= fdchangecnt);
1706 for (i = 0; i < fdchangecnt; ++i)
1707 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1708
1709 assert (anfdmax >= 0);
1710 for (i = 0; i < anfdmax; ++i)
1711 for (w = anfds [i].head; w; w = w->next)
1712 {
1713 verify_watcher (EV_A_ (W)w);
1714 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1715 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1716 }
1717
1718 assert (timermax >= timercnt);
1719 verify_heap (EV_A_ timers, timercnt);
1720
1721#if EV_PERIODIC_ENABLE
1722 assert (periodicmax >= periodiccnt);
1723 verify_heap (EV_A_ periodics, periodiccnt);
1724#endif
1725
1726 for (i = NUMPRI; i--; )
1727 {
1728 assert (pendingmax [i] >= pendingcnt [i]);
1729#if EV_IDLE_ENABLE
1730 assert (idleall >= 0);
1731 assert (idlemax [i] >= idlecnt [i]);
1732 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1733#endif
1734 }
1735
1736#if EV_FORK_ENABLE
1737 assert (forkmax >= forkcnt);
1738 array_verify (EV_A_ (W *)forks, forkcnt);
1739#endif
1740
1741#if EV_ASYNC_ENABLE
1742 assert (asyncmax >= asynccnt);
1743 array_verify (EV_A_ (W *)asyncs, asynccnt);
1744#endif
1745
1746 assert (preparemax >= preparecnt);
1747 array_verify (EV_A_ (W *)prepares, preparecnt);
1748
1749 assert (checkmax >= checkcnt);
1750 array_verify (EV_A_ (W *)checks, checkcnt);
1751
1752# if 0
1753 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1754 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1755# endif
1756#endif
1757}
1271#endif 1758#endif
1272 1759
1273#if EV_MULTIPLICITY 1760#if EV_MULTIPLICITY
1274struct ev_loop * 1761struct ev_loop *
1275ev_default_loop_init (unsigned int flags) 1762ev_default_loop_init (unsigned int flags)
1309{ 1796{
1310#if EV_MULTIPLICITY 1797#if EV_MULTIPLICITY
1311 struct ev_loop *loop = ev_default_loop_ptr; 1798 struct ev_loop *loop = ev_default_loop_ptr;
1312#endif 1799#endif
1313 1800
1801 ev_default_loop_ptr = 0;
1802
1314#ifndef _WIN32 1803#ifndef _WIN32
1315 ev_ref (EV_A); /* child watcher */ 1804 ev_ref (EV_A); /* child watcher */
1316 ev_signal_stop (EV_A_ &childev); 1805 ev_signal_stop (EV_A_ &childev);
1317#endif 1806#endif
1318 1807
1324{ 1813{
1325#if EV_MULTIPLICITY 1814#if EV_MULTIPLICITY
1326 struct ev_loop *loop = ev_default_loop_ptr; 1815 struct ev_loop *loop = ev_default_loop_ptr;
1327#endif 1816#endif
1328 1817
1329 if (backend)
1330 postfork = 1; /* must be in line with ev_loop_fork */ 1818 postfork = 1; /* must be in line with ev_loop_fork */
1331} 1819}
1332 1820
1333/*****************************************************************************/ 1821/*****************************************************************************/
1334 1822
1335void 1823void
1336ev_invoke (EV_P_ void *w, int revents) 1824ev_invoke (EV_P_ void *w, int revents)
1337{ 1825{
1338 EV_CB_INVOKE ((W)w, revents); 1826 EV_CB_INVOKE ((W)w, revents);
1339} 1827}
1340 1828
1341void inline_speed 1829void noinline
1342call_pending (EV_P) 1830ev_invoke_pending (EV_P)
1343{ 1831{
1344 int pri; 1832 int pri;
1345 1833
1346 for (pri = NUMPRI; pri--; ) 1834 for (pri = NUMPRI; pri--; )
1347 while (pendingcnt [pri]) 1835 while (pendingcnt [pri])
1348 { 1836 {
1349 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1837 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1350 1838
1351 if (expect_true (p->w))
1352 {
1353 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1839 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1840 /* ^ this is no longer true, as pending_w could be here */
1354 1841
1355 p->w->pending = 0; 1842 p->w->pending = 0;
1356 EV_CB_INVOKE (p->w, p->events); 1843 EV_CB_INVOKE (p->w, p->events);
1357 } 1844 EV_FREQUENT_CHECK;
1358 } 1845 }
1359} 1846}
1360 1847
1361void inline_size
1362timers_reify (EV_P)
1363{
1364 while (timercnt && ((WT)timers [0])->at <= mn_now)
1365 {
1366 ev_timer *w = (ev_timer *)timers [0];
1367
1368 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1369
1370 /* first reschedule or stop timer */
1371 if (w->repeat)
1372 {
1373 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1374
1375 ((WT)w)->at += w->repeat;
1376 if (((WT)w)->at < mn_now)
1377 ((WT)w)->at = mn_now;
1378
1379 downheap (timers, timercnt, 0);
1380 }
1381 else
1382 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1383
1384 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1385 }
1386}
1387
1388#if EV_PERIODIC_ENABLE
1389void inline_size
1390periodics_reify (EV_P)
1391{
1392 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1393 {
1394 ev_periodic *w = (ev_periodic *)periodics [0];
1395
1396 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1397
1398 /* first reschedule or stop timer */
1399 if (w->reschedule_cb)
1400 {
1401 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1402 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1403 downheap (periodics, periodiccnt, 0);
1404 }
1405 else if (w->interval)
1406 {
1407 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1408 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1409 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1410 downheap (periodics, periodiccnt, 0);
1411 }
1412 else
1413 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1414
1415 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1416 }
1417}
1418
1419static void noinline
1420periodics_reschedule (EV_P)
1421{
1422 int i;
1423
1424 /* adjust periodics after time jump */
1425 for (i = 0; i < periodiccnt; ++i)
1426 {
1427 ev_periodic *w = (ev_periodic *)periodics [i];
1428
1429 if (w->reschedule_cb)
1430 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1431 else if (w->interval)
1432 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1433 }
1434
1435 /* now rebuild the heap */
1436 for (i = periodiccnt >> 1; i--; )
1437 downheap (periodics, periodiccnt, i);
1438}
1439#endif
1440
1441#if EV_IDLE_ENABLE 1848#if EV_IDLE_ENABLE
1442void inline_size 1849/* make idle watchers pending. this handles the "call-idle */
1850/* only when higher priorities are idle" logic */
1851inline_size void
1443idle_reify (EV_P) 1852idle_reify (EV_P)
1444{ 1853{
1445 if (expect_false (idleall)) 1854 if (expect_false (idleall))
1446 { 1855 {
1447 int pri; 1856 int pri;
1459 } 1868 }
1460 } 1869 }
1461} 1870}
1462#endif 1871#endif
1463 1872
1464void inline_speed 1873/* make timers pending */
1874inline_size void
1875timers_reify (EV_P)
1876{
1877 EV_FREQUENT_CHECK;
1878
1879 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1880 {
1881 do
1882 {
1883 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1884
1885 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1886
1887 /* first reschedule or stop timer */
1888 if (w->repeat)
1889 {
1890 ev_at (w) += w->repeat;
1891 if (ev_at (w) < mn_now)
1892 ev_at (w) = mn_now;
1893
1894 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1895
1896 ANHE_at_cache (timers [HEAP0]);
1897 downheap (timers, timercnt, HEAP0);
1898 }
1899 else
1900 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1901
1902 EV_FREQUENT_CHECK;
1903 feed_reverse (EV_A_ (W)w);
1904 }
1905 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1906
1907 feed_reverse_done (EV_A_ EV_TIMEOUT);
1908 }
1909}
1910
1911#if EV_PERIODIC_ENABLE
1912/* make periodics pending */
1913inline_size void
1914periodics_reify (EV_P)
1915{
1916 EV_FREQUENT_CHECK;
1917
1918 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1919 {
1920 int feed_count = 0;
1921
1922 do
1923 {
1924 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1925
1926 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1927
1928 /* first reschedule or stop timer */
1929 if (w->reschedule_cb)
1930 {
1931 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1932
1933 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1934
1935 ANHE_at_cache (periodics [HEAP0]);
1936 downheap (periodics, periodiccnt, HEAP0);
1937 }
1938 else if (w->interval)
1939 {
1940 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1941 /* if next trigger time is not sufficiently in the future, put it there */
1942 /* this might happen because of floating point inexactness */
1943 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1944 {
1945 ev_at (w) += w->interval;
1946
1947 /* if interval is unreasonably low we might still have a time in the past */
1948 /* so correct this. this will make the periodic very inexact, but the user */
1949 /* has effectively asked to get triggered more often than possible */
1950 if (ev_at (w) < ev_rt_now)
1951 ev_at (w) = ev_rt_now;
1952 }
1953
1954 ANHE_at_cache (periodics [HEAP0]);
1955 downheap (periodics, periodiccnt, HEAP0);
1956 }
1957 else
1958 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1959
1960 EV_FREQUENT_CHECK;
1961 feed_reverse (EV_A_ (W)w);
1962 }
1963 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1964
1965 feed_reverse_done (EV_A_ EV_PERIODIC);
1966 }
1967}
1968
1969/* simply recalculate all periodics */
1970/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1971static void noinline
1972periodics_reschedule (EV_P)
1973{
1974 int i;
1975
1976 /* adjust periodics after time jump */
1977 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1978 {
1979 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1980
1981 if (w->reschedule_cb)
1982 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1983 else if (w->interval)
1984 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1985
1986 ANHE_at_cache (periodics [i]);
1987 }
1988
1989 reheap (periodics, periodiccnt);
1990}
1991#endif
1992
1993/* adjust all timers by a given offset */
1994static void noinline
1995timers_reschedule (EV_P_ ev_tstamp adjust)
1996{
1997 int i;
1998
1999 for (i = 0; i < timercnt; ++i)
2000 {
2001 ANHE *he = timers + i + HEAP0;
2002 ANHE_w (*he)->at += adjust;
2003 ANHE_at_cache (*he);
2004 }
2005}
2006
2007/* fetch new monotonic and realtime times from the kernel */
2008/* also detetc if there was a timejump, and act accordingly */
2009inline_speed void
1465time_update (EV_P_ ev_tstamp max_block) 2010time_update (EV_P_ ev_tstamp max_block)
1466{ 2011{
1467 int i;
1468
1469#if EV_USE_MONOTONIC 2012#if EV_USE_MONOTONIC
1470 if (expect_true (have_monotonic)) 2013 if (expect_true (have_monotonic))
1471 { 2014 {
2015 int i;
1472 ev_tstamp odiff = rtmn_diff; 2016 ev_tstamp odiff = rtmn_diff;
1473 2017
1474 mn_now = get_clock (); 2018 mn_now = get_clock ();
1475 2019
1476 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2020 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1494 */ 2038 */
1495 for (i = 4; --i; ) 2039 for (i = 4; --i; )
1496 { 2040 {
1497 rtmn_diff = ev_rt_now - mn_now; 2041 rtmn_diff = ev_rt_now - mn_now;
1498 2042
1499 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2043 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1500 return; /* all is well */ 2044 return; /* all is well */
1501 2045
1502 ev_rt_now = ev_time (); 2046 ev_rt_now = ev_time ();
1503 mn_now = get_clock (); 2047 mn_now = get_clock ();
1504 now_floor = mn_now; 2048 now_floor = mn_now;
1505 } 2049 }
1506 2050
2051 /* no timer adjustment, as the monotonic clock doesn't jump */
2052 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1507# if EV_PERIODIC_ENABLE 2053# if EV_PERIODIC_ENABLE
1508 periodics_reschedule (EV_A); 2054 periodics_reschedule (EV_A);
1509# endif 2055# endif
1510 /* no timer adjustment, as the monotonic clock doesn't jump */
1511 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1512 } 2056 }
1513 else 2057 else
1514#endif 2058#endif
1515 { 2059 {
1516 ev_rt_now = ev_time (); 2060 ev_rt_now = ev_time ();
1517 2061
1518 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2062 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1519 { 2063 {
2064 /* adjust timers. this is easy, as the offset is the same for all of them */
2065 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1520#if EV_PERIODIC_ENABLE 2066#if EV_PERIODIC_ENABLE
1521 periodics_reschedule (EV_A); 2067 periodics_reschedule (EV_A);
1522#endif 2068#endif
1523 /* adjust timers. this is easy, as the offset is the same for all of them */
1524 for (i = 0; i < timercnt; ++i)
1525 ((WT)timers [i])->at += ev_rt_now - mn_now;
1526 } 2069 }
1527 2070
1528 mn_now = ev_rt_now; 2071 mn_now = ev_rt_now;
1529 } 2072 }
1530} 2073}
1531 2074
1532void 2075void
1533ev_ref (EV_P)
1534{
1535 ++activecnt;
1536}
1537
1538void
1539ev_unref (EV_P)
1540{
1541 --activecnt;
1542}
1543
1544static int loop_done;
1545
1546void
1547ev_loop (EV_P_ int flags) 2076ev_loop (EV_P_ int flags)
1548{ 2077{
1549 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2078#if EV_MINIMAL < 2
1550 ? EVUNLOOP_ONE 2079 ++loop_depth;
1551 : EVUNLOOP_CANCEL; 2080#endif
1552 2081
2082 loop_done = EVUNLOOP_CANCEL;
2083
1553 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2084 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1554 2085
1555 do 2086 do
1556 { 2087 {
2088#if EV_VERIFY >= 2
2089 ev_loop_verify (EV_A);
2090#endif
2091
1557#ifndef _WIN32 2092#ifndef _WIN32
1558 if (expect_false (curpid)) /* penalise the forking check even more */ 2093 if (expect_false (curpid)) /* penalise the forking check even more */
1559 if (expect_false (getpid () != curpid)) 2094 if (expect_false (getpid () != curpid))
1560 { 2095 {
1561 curpid = getpid (); 2096 curpid = getpid ();
1567 /* we might have forked, so queue fork handlers */ 2102 /* we might have forked, so queue fork handlers */
1568 if (expect_false (postfork)) 2103 if (expect_false (postfork))
1569 if (forkcnt) 2104 if (forkcnt)
1570 { 2105 {
1571 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2106 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1572 call_pending (EV_A); 2107 EV_INVOKE_PENDING;
1573 } 2108 }
1574#endif 2109#endif
1575 2110
1576 /* queue prepare watchers (and execute them) */ 2111 /* queue prepare watchers (and execute them) */
1577 if (expect_false (preparecnt)) 2112 if (expect_false (preparecnt))
1578 { 2113 {
1579 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2114 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1580 call_pending (EV_A); 2115 EV_INVOKE_PENDING;
1581 } 2116 }
1582
1583 if (expect_false (!activecnt))
1584 break;
1585 2117
1586 /* we might have forked, so reify kernel state if necessary */ 2118 /* we might have forked, so reify kernel state if necessary */
1587 if (expect_false (postfork)) 2119 if (expect_false (postfork))
1588 loop_fork (EV_A); 2120 loop_fork (EV_A);
1589 2121
1595 ev_tstamp waittime = 0.; 2127 ev_tstamp waittime = 0.;
1596 ev_tstamp sleeptime = 0.; 2128 ev_tstamp sleeptime = 0.;
1597 2129
1598 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2130 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1599 { 2131 {
2132 /* remember old timestamp for io_blocktime calculation */
2133 ev_tstamp prev_mn_now = mn_now;
2134
1600 /* update time to cancel out callback processing overhead */ 2135 /* update time to cancel out callback processing overhead */
1601 time_update (EV_A_ 1e100); 2136 time_update (EV_A_ 1e100);
1602 2137
1603 waittime = MAX_BLOCKTIME; 2138 waittime = MAX_BLOCKTIME;
1604 2139
1605 if (timercnt) 2140 if (timercnt)
1606 { 2141 {
1607 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2142 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1608 if (waittime > to) waittime = to; 2143 if (waittime > to) waittime = to;
1609 } 2144 }
1610 2145
1611#if EV_PERIODIC_ENABLE 2146#if EV_PERIODIC_ENABLE
1612 if (periodiccnt) 2147 if (periodiccnt)
1613 { 2148 {
1614 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2149 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1615 if (waittime > to) waittime = to; 2150 if (waittime > to) waittime = to;
1616 } 2151 }
1617#endif 2152#endif
1618 2153
2154 /* don't let timeouts decrease the waittime below timeout_blocktime */
1619 if (expect_false (waittime < timeout_blocktime)) 2155 if (expect_false (waittime < timeout_blocktime))
1620 waittime = timeout_blocktime; 2156 waittime = timeout_blocktime;
1621 2157
1622 sleeptime = waittime - backend_fudge; 2158 /* extra check because io_blocktime is commonly 0 */
1623
1624 if (expect_true (sleeptime > io_blocktime)) 2159 if (expect_false (io_blocktime))
1625 sleeptime = io_blocktime;
1626
1627 if (sleeptime)
1628 { 2160 {
2161 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2162
2163 if (sleeptime > waittime - backend_fudge)
2164 sleeptime = waittime - backend_fudge;
2165
2166 if (expect_true (sleeptime > 0.))
2167 {
1629 ev_sleep (sleeptime); 2168 ev_sleep (sleeptime);
1630 waittime -= sleeptime; 2169 waittime -= sleeptime;
2170 }
1631 } 2171 }
1632 } 2172 }
1633 2173
2174#if EV_MINIMAL < 2
1634 ++loop_count; 2175 ++loop_count;
2176#endif
1635 backend_poll (EV_A_ waittime); 2177 backend_poll (EV_A_ waittime);
1636 2178
1637 /* update ev_rt_now, do magic */ 2179 /* update ev_rt_now, do magic */
1638 time_update (EV_A_ waittime + sleeptime); 2180 time_update (EV_A_ waittime + sleeptime);
1639 } 2181 }
1651 2193
1652 /* queue check watchers, to be executed first */ 2194 /* queue check watchers, to be executed first */
1653 if (expect_false (checkcnt)) 2195 if (expect_false (checkcnt))
1654 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2196 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1655 2197
1656 call_pending (EV_A); 2198 EV_INVOKE_PENDING;
1657
1658 } 2199 }
1659 while (expect_true (activecnt && !loop_done)); 2200 while (expect_true (
2201 activecnt
2202 && !loop_done
2203 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2204 ));
1660 2205
1661 if (loop_done == EVUNLOOP_ONE) 2206 if (loop_done == EVUNLOOP_ONE)
1662 loop_done = EVUNLOOP_CANCEL; 2207 loop_done = EVUNLOOP_CANCEL;
2208
2209#if EV_MINIMAL < 2
2210 --loop_depth;
2211#endif
1663} 2212}
1664 2213
1665void 2214void
1666ev_unloop (EV_P_ int how) 2215ev_unloop (EV_P_ int how)
1667{ 2216{
1668 loop_done = how; 2217 loop_done = how;
1669} 2218}
1670 2219
2220void
2221ev_ref (EV_P)
2222{
2223 ++activecnt;
2224}
2225
2226void
2227ev_unref (EV_P)
2228{
2229 --activecnt;
2230}
2231
2232void
2233ev_now_update (EV_P)
2234{
2235 time_update (EV_A_ 1e100);
2236}
2237
2238void
2239ev_suspend (EV_P)
2240{
2241 ev_now_update (EV_A);
2242}
2243
2244void
2245ev_resume (EV_P)
2246{
2247 ev_tstamp mn_prev = mn_now;
2248
2249 ev_now_update (EV_A);
2250 timers_reschedule (EV_A_ mn_now - mn_prev);
2251#if EV_PERIODIC_ENABLE
2252 /* TODO: really do this? */
2253 periodics_reschedule (EV_A);
2254#endif
2255}
2256
1671/*****************************************************************************/ 2257/*****************************************************************************/
2258/* singly-linked list management, used when the expected list length is short */
1672 2259
1673void inline_size 2260inline_size void
1674wlist_add (WL *head, WL elem) 2261wlist_add (WL *head, WL elem)
1675{ 2262{
1676 elem->next = *head; 2263 elem->next = *head;
1677 *head = elem; 2264 *head = elem;
1678} 2265}
1679 2266
1680void inline_size 2267inline_size void
1681wlist_del (WL *head, WL elem) 2268wlist_del (WL *head, WL elem)
1682{ 2269{
1683 while (*head) 2270 while (*head)
1684 { 2271 {
1685 if (*head == elem) 2272 if (*head == elem)
1690 2277
1691 head = &(*head)->next; 2278 head = &(*head)->next;
1692 } 2279 }
1693} 2280}
1694 2281
1695void inline_speed 2282/* internal, faster, version of ev_clear_pending */
2283inline_speed void
1696clear_pending (EV_P_ W w) 2284clear_pending (EV_P_ W w)
1697{ 2285{
1698 if (w->pending) 2286 if (w->pending)
1699 { 2287 {
1700 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1701 w->pending = 0; 2289 w->pending = 0;
1702 } 2290 }
1703} 2291}
1704 2292
1705int 2293int
1709 int pending = w_->pending; 2297 int pending = w_->pending;
1710 2298
1711 if (expect_true (pending)) 2299 if (expect_true (pending))
1712 { 2300 {
1713 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2301 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2302 p->w = (W)&pending_w;
1714 w_->pending = 0; 2303 w_->pending = 0;
1715 p->w = 0;
1716 return p->events; 2304 return p->events;
1717 } 2305 }
1718 else 2306 else
1719 return 0; 2307 return 0;
1720} 2308}
1721 2309
1722void inline_size 2310inline_size void
1723pri_adjust (EV_P_ W w) 2311pri_adjust (EV_P_ W w)
1724{ 2312{
1725 int pri = w->priority; 2313 int pri = ev_priority (w);
1726 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2314 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1727 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2315 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1728 w->priority = pri; 2316 ev_set_priority (w, pri);
1729} 2317}
1730 2318
1731void inline_speed 2319inline_speed void
1732ev_start (EV_P_ W w, int active) 2320ev_start (EV_P_ W w, int active)
1733{ 2321{
1734 pri_adjust (EV_A_ w); 2322 pri_adjust (EV_A_ w);
1735 w->active = active; 2323 w->active = active;
1736 ev_ref (EV_A); 2324 ev_ref (EV_A);
1737} 2325}
1738 2326
1739void inline_size 2327inline_size void
1740ev_stop (EV_P_ W w) 2328ev_stop (EV_P_ W w)
1741{ 2329{
1742 ev_unref (EV_A); 2330 ev_unref (EV_A);
1743 w->active = 0; 2331 w->active = 0;
1744} 2332}
1751 int fd = w->fd; 2339 int fd = w->fd;
1752 2340
1753 if (expect_false (ev_is_active (w))) 2341 if (expect_false (ev_is_active (w)))
1754 return; 2342 return;
1755 2343
1756 assert (("ev_io_start called with negative fd", fd >= 0)); 2344 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2345 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2346
2347 EV_FREQUENT_CHECK;
1757 2348
1758 ev_start (EV_A_ (W)w, 1); 2349 ev_start (EV_A_ (W)w, 1);
1759 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2350 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1760 wlist_add (&anfds[fd].head, (WL)w); 2351 wlist_add (&anfds[fd].head, (WL)w);
1761 2352
1762 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2353 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1763 w->events &= ~EV_IOFDSET; 2354 w->events &= ~EV__IOFDSET;
2355
2356 EV_FREQUENT_CHECK;
1764} 2357}
1765 2358
1766void noinline 2359void noinline
1767ev_io_stop (EV_P_ ev_io *w) 2360ev_io_stop (EV_P_ ev_io *w)
1768{ 2361{
1769 clear_pending (EV_A_ (W)w); 2362 clear_pending (EV_A_ (W)w);
1770 if (expect_false (!ev_is_active (w))) 2363 if (expect_false (!ev_is_active (w)))
1771 return; 2364 return;
1772 2365
1773 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2366 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2367
2368 EV_FREQUENT_CHECK;
1774 2369
1775 wlist_del (&anfds[w->fd].head, (WL)w); 2370 wlist_del (&anfds[w->fd].head, (WL)w);
1776 ev_stop (EV_A_ (W)w); 2371 ev_stop (EV_A_ (W)w);
1777 2372
1778 fd_change (EV_A_ w->fd, 1); 2373 fd_change (EV_A_ w->fd, 1);
2374
2375 EV_FREQUENT_CHECK;
1779} 2376}
1780 2377
1781void noinline 2378void noinline
1782ev_timer_start (EV_P_ ev_timer *w) 2379ev_timer_start (EV_P_ ev_timer *w)
1783{ 2380{
1784 if (expect_false (ev_is_active (w))) 2381 if (expect_false (ev_is_active (w)))
1785 return; 2382 return;
1786 2383
1787 ((WT)w)->at += mn_now; 2384 ev_at (w) += mn_now;
1788 2385
1789 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2386 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1790 2387
2388 EV_FREQUENT_CHECK;
2389
2390 ++timercnt;
1791 ev_start (EV_A_ (W)w, ++timercnt); 2391 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1792 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2392 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1793 timers [timercnt - 1] = (WT)w; 2393 ANHE_w (timers [ev_active (w)]) = (WT)w;
1794 upheap (timers, timercnt - 1); 2394 ANHE_at_cache (timers [ev_active (w)]);
2395 upheap (timers, ev_active (w));
1795 2396
2397 EV_FREQUENT_CHECK;
2398
1796 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2399 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1797} 2400}
1798 2401
1799void noinline 2402void noinline
1800ev_timer_stop (EV_P_ ev_timer *w) 2403ev_timer_stop (EV_P_ ev_timer *w)
1801{ 2404{
1802 clear_pending (EV_A_ (W)w); 2405 clear_pending (EV_A_ (W)w);
1803 if (expect_false (!ev_is_active (w))) 2406 if (expect_false (!ev_is_active (w)))
1804 return; 2407 return;
1805 2408
1806 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2409 EV_FREQUENT_CHECK;
1807 2410
1808 { 2411 {
1809 int active = ((W)w)->active; 2412 int active = ev_active (w);
1810 2413
2414 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2415
2416 --timercnt;
2417
1811 if (expect_true (--active < --timercnt)) 2418 if (expect_true (active < timercnt + HEAP0))
1812 { 2419 {
1813 timers [active] = timers [timercnt]; 2420 timers [active] = timers [timercnt + HEAP0];
1814 adjustheap (timers, timercnt, active); 2421 adjustheap (timers, timercnt, active);
1815 } 2422 }
1816 } 2423 }
1817 2424
1818 ((WT)w)->at -= mn_now; 2425 EV_FREQUENT_CHECK;
2426
2427 ev_at (w) -= mn_now;
1819 2428
1820 ev_stop (EV_A_ (W)w); 2429 ev_stop (EV_A_ (W)w);
1821} 2430}
1822 2431
1823void noinline 2432void noinline
1824ev_timer_again (EV_P_ ev_timer *w) 2433ev_timer_again (EV_P_ ev_timer *w)
1825{ 2434{
2435 EV_FREQUENT_CHECK;
2436
1826 if (ev_is_active (w)) 2437 if (ev_is_active (w))
1827 { 2438 {
1828 if (w->repeat) 2439 if (w->repeat)
1829 { 2440 {
1830 ((WT)w)->at = mn_now + w->repeat; 2441 ev_at (w) = mn_now + w->repeat;
2442 ANHE_at_cache (timers [ev_active (w)]);
1831 adjustheap (timers, timercnt, ((W)w)->active - 1); 2443 adjustheap (timers, timercnt, ev_active (w));
1832 } 2444 }
1833 else 2445 else
1834 ev_timer_stop (EV_A_ w); 2446 ev_timer_stop (EV_A_ w);
1835 } 2447 }
1836 else if (w->repeat) 2448 else if (w->repeat)
1837 { 2449 {
1838 w->at = w->repeat; 2450 ev_at (w) = w->repeat;
1839 ev_timer_start (EV_A_ w); 2451 ev_timer_start (EV_A_ w);
1840 } 2452 }
2453
2454 EV_FREQUENT_CHECK;
1841} 2455}
1842 2456
1843#if EV_PERIODIC_ENABLE 2457#if EV_PERIODIC_ENABLE
1844void noinline 2458void noinline
1845ev_periodic_start (EV_P_ ev_periodic *w) 2459ev_periodic_start (EV_P_ ev_periodic *w)
1846{ 2460{
1847 if (expect_false (ev_is_active (w))) 2461 if (expect_false (ev_is_active (w)))
1848 return; 2462 return;
1849 2463
1850 if (w->reschedule_cb) 2464 if (w->reschedule_cb)
1851 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2465 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1852 else if (w->interval) 2466 else if (w->interval)
1853 { 2467 {
1854 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2468 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1855 /* this formula differs from the one in periodic_reify because we do not always round up */ 2469 /* this formula differs from the one in periodic_reify because we do not always round up */
1856 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2470 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1857 } 2471 }
1858 else 2472 else
1859 ((WT)w)->at = w->offset; 2473 ev_at (w) = w->offset;
1860 2474
2475 EV_FREQUENT_CHECK;
2476
2477 ++periodiccnt;
1861 ev_start (EV_A_ (W)w, ++periodiccnt); 2478 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1862 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2479 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1863 periodics [periodiccnt - 1] = (WT)w; 2480 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1864 upheap (periodics, periodiccnt - 1); 2481 ANHE_at_cache (periodics [ev_active (w)]);
2482 upheap (periodics, ev_active (w));
1865 2483
2484 EV_FREQUENT_CHECK;
2485
1866 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2486 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1867} 2487}
1868 2488
1869void noinline 2489void noinline
1870ev_periodic_stop (EV_P_ ev_periodic *w) 2490ev_periodic_stop (EV_P_ ev_periodic *w)
1871{ 2491{
1872 clear_pending (EV_A_ (W)w); 2492 clear_pending (EV_A_ (W)w);
1873 if (expect_false (!ev_is_active (w))) 2493 if (expect_false (!ev_is_active (w)))
1874 return; 2494 return;
1875 2495
1876 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2496 EV_FREQUENT_CHECK;
1877 2497
1878 { 2498 {
1879 int active = ((W)w)->active; 2499 int active = ev_active (w);
1880 2500
2501 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2502
2503 --periodiccnt;
2504
1881 if (expect_true (--active < --periodiccnt)) 2505 if (expect_true (active < periodiccnt + HEAP0))
1882 { 2506 {
1883 periodics [active] = periodics [periodiccnt]; 2507 periodics [active] = periodics [periodiccnt + HEAP0];
1884 adjustheap (periodics, periodiccnt, active); 2508 adjustheap (periodics, periodiccnt, active);
1885 } 2509 }
1886 } 2510 }
1887 2511
2512 EV_FREQUENT_CHECK;
2513
1888 ev_stop (EV_A_ (W)w); 2514 ev_stop (EV_A_ (W)w);
1889} 2515}
1890 2516
1891void noinline 2517void noinline
1892ev_periodic_again (EV_P_ ev_periodic *w) 2518ev_periodic_again (EV_P_ ev_periodic *w)
1903 2529
1904void noinline 2530void noinline
1905ev_signal_start (EV_P_ ev_signal *w) 2531ev_signal_start (EV_P_ ev_signal *w)
1906{ 2532{
1907#if EV_MULTIPLICITY 2533#if EV_MULTIPLICITY
1908 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2534 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1909#endif 2535#endif
1910 if (expect_false (ev_is_active (w))) 2536 if (expect_false (ev_is_active (w)))
1911 return; 2537 return;
1912 2538
1913 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2539 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
1914 2540
1915 evpipe_init (EV_A); 2541 evpipe_init (EV_A);
2542
2543 EV_FREQUENT_CHECK;
1916 2544
1917 { 2545 {
1918#ifndef _WIN32 2546#ifndef _WIN32
1919 sigset_t full, prev; 2547 sigset_t full, prev;
1920 sigfillset (&full); 2548 sigfillset (&full);
1921 sigprocmask (SIG_SETMASK, &full, &prev); 2549 sigprocmask (SIG_SETMASK, &full, &prev);
1922#endif 2550#endif
1923 2551
1924 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2552 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
1925 2553
1926#ifndef _WIN32 2554#ifndef _WIN32
1927 sigprocmask (SIG_SETMASK, &prev, 0); 2555 sigprocmask (SIG_SETMASK, &prev, 0);
1928#endif 2556#endif
1929 } 2557 }
1932 wlist_add (&signals [w->signum - 1].head, (WL)w); 2560 wlist_add (&signals [w->signum - 1].head, (WL)w);
1933 2561
1934 if (!((WL)w)->next) 2562 if (!((WL)w)->next)
1935 { 2563 {
1936#if _WIN32 2564#if _WIN32
1937 signal (w->signum, sighandler); 2565 signal (w->signum, ev_sighandler);
1938#else 2566#else
1939 struct sigaction sa; 2567 struct sigaction sa;
1940 sa.sa_handler = sighandler; 2568 sa.sa_handler = ev_sighandler;
1941 sigfillset (&sa.sa_mask); 2569 sigfillset (&sa.sa_mask);
1942 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2570 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1943 sigaction (w->signum, &sa, 0); 2571 sigaction (w->signum, &sa, 0);
1944#endif 2572#endif
1945 } 2573 }
2574
2575 EV_FREQUENT_CHECK;
1946} 2576}
1947 2577
1948void noinline 2578void noinline
1949ev_signal_stop (EV_P_ ev_signal *w) 2579ev_signal_stop (EV_P_ ev_signal *w)
1950{ 2580{
1951 clear_pending (EV_A_ (W)w); 2581 clear_pending (EV_A_ (W)w);
1952 if (expect_false (!ev_is_active (w))) 2582 if (expect_false (!ev_is_active (w)))
1953 return; 2583 return;
1954 2584
2585 EV_FREQUENT_CHECK;
2586
1955 wlist_del (&signals [w->signum - 1].head, (WL)w); 2587 wlist_del (&signals [w->signum - 1].head, (WL)w);
1956 ev_stop (EV_A_ (W)w); 2588 ev_stop (EV_A_ (W)w);
1957 2589
1958 if (!signals [w->signum - 1].head) 2590 if (!signals [w->signum - 1].head)
1959 signal (w->signum, SIG_DFL); 2591 signal (w->signum, SIG_DFL);
2592
2593 EV_FREQUENT_CHECK;
1960} 2594}
1961 2595
1962void 2596void
1963ev_child_start (EV_P_ ev_child *w) 2597ev_child_start (EV_P_ ev_child *w)
1964{ 2598{
1965#if EV_MULTIPLICITY 2599#if EV_MULTIPLICITY
1966 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2600 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1967#endif 2601#endif
1968 if (expect_false (ev_is_active (w))) 2602 if (expect_false (ev_is_active (w)))
1969 return; 2603 return;
1970 2604
2605 EV_FREQUENT_CHECK;
2606
1971 ev_start (EV_A_ (W)w, 1); 2607 ev_start (EV_A_ (W)w, 1);
1972 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2608 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2609
2610 EV_FREQUENT_CHECK;
1973} 2611}
1974 2612
1975void 2613void
1976ev_child_stop (EV_P_ ev_child *w) 2614ev_child_stop (EV_P_ ev_child *w)
1977{ 2615{
1978 clear_pending (EV_A_ (W)w); 2616 clear_pending (EV_A_ (W)w);
1979 if (expect_false (!ev_is_active (w))) 2617 if (expect_false (!ev_is_active (w)))
1980 return; 2618 return;
1981 2619
2620 EV_FREQUENT_CHECK;
2621
1982 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2622 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1983 ev_stop (EV_A_ (W)w); 2623 ev_stop (EV_A_ (W)w);
2624
2625 EV_FREQUENT_CHECK;
1984} 2626}
1985 2627
1986#if EV_STAT_ENABLE 2628#if EV_STAT_ENABLE
1987 2629
1988# ifdef _WIN32 2630# ifdef _WIN32
1989# undef lstat 2631# undef lstat
1990# define lstat(a,b) _stati64 (a,b) 2632# define lstat(a,b) _stati64 (a,b)
1991# endif 2633# endif
1992 2634
1993#define DEF_STAT_INTERVAL 5.0074891 2635#define DEF_STAT_INTERVAL 5.0074891
2636#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1994#define MIN_STAT_INTERVAL 0.1074891 2637#define MIN_STAT_INTERVAL 0.1074891
1995 2638
1996static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2639static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1997 2640
1998#if EV_USE_INOTIFY 2641#if EV_USE_INOTIFY
1999# define EV_INOTIFY_BUFSIZE 8192 2642# define EV_INOTIFY_BUFSIZE 8192
2003{ 2646{
2004 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2647 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2005 2648
2006 if (w->wd < 0) 2649 if (w->wd < 0)
2007 { 2650 {
2651 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2008 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2652 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2009 2653
2010 /* monitor some parent directory for speedup hints */ 2654 /* monitor some parent directory for speedup hints */
2655 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2656 /* but an efficiency issue only */
2011 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2657 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2012 { 2658 {
2013 char path [4096]; 2659 char path [4096];
2014 strcpy (path, w->path); 2660 strcpy (path, w->path);
2015 2661
2018 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2664 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2019 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2665 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2020 2666
2021 char *pend = strrchr (path, '/'); 2667 char *pend = strrchr (path, '/');
2022 2668
2023 if (!pend) 2669 if (!pend || pend == path)
2024 break; /* whoops, no '/', complain to your admin */ 2670 break;
2025 2671
2026 *pend = 0; 2672 *pend = 0;
2027 w->wd = inotify_add_watch (fs_fd, path, mask); 2673 w->wd = inotify_add_watch (fs_fd, path, mask);
2028 } 2674 }
2029 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2675 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2030 } 2676 }
2031 } 2677 }
2032 else
2033 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2034 2678
2035 if (w->wd >= 0) 2679 if (w->wd >= 0)
2680 {
2036 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2681 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2682
2683 /* now local changes will be tracked by inotify, but remote changes won't */
2684 /* unless the filesystem it known to be local, we therefore still poll */
2685 /* also do poll on <2.6.25, but with normal frequency */
2686 struct statfs sfs;
2687
2688 if (fs_2625 && !statfs (w->path, &sfs))
2689 if (sfs.f_type == 0x1373 /* devfs */
2690 || sfs.f_type == 0xEF53 /* ext2/3 */
2691 || sfs.f_type == 0x3153464a /* jfs */
2692 || sfs.f_type == 0x52654973 /* reiser3 */
2693 || sfs.f_type == 0x01021994 /* tempfs */
2694 || sfs.f_type == 0x58465342 /* xfs */)
2695 return;
2696
2697 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2698 ev_timer_again (EV_A_ &w->timer);
2699 }
2037} 2700}
2038 2701
2039static void noinline 2702static void noinline
2040infy_del (EV_P_ ev_stat *w) 2703infy_del (EV_P_ ev_stat *w)
2041{ 2704{
2055 2718
2056static void noinline 2719static void noinline
2057infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2720infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2058{ 2721{
2059 if (slot < 0) 2722 if (slot < 0)
2060 /* overflow, need to check for all hahs slots */ 2723 /* overflow, need to check for all hash slots */
2061 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2724 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2062 infy_wd (EV_A_ slot, wd, ev); 2725 infy_wd (EV_A_ slot, wd, ev);
2063 else 2726 else
2064 { 2727 {
2065 WL w_; 2728 WL w_;
2071 2734
2072 if (w->wd == wd || wd == -1) 2735 if (w->wd == wd || wd == -1)
2073 { 2736 {
2074 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2737 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2075 { 2738 {
2739 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2076 w->wd = -1; 2740 w->wd = -1;
2077 infy_add (EV_A_ w); /* re-add, no matter what */ 2741 infy_add (EV_A_ w); /* re-add, no matter what */
2078 } 2742 }
2079 2743
2080 stat_timer_cb (EV_A_ &w->timer, 0); 2744 stat_timer_cb (EV_A_ &w->timer, 0);
2093 2757
2094 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2758 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2095 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2759 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2096} 2760}
2097 2761
2098void inline_size 2762inline_size void
2763check_2625 (EV_P)
2764{
2765 /* kernels < 2.6.25 are borked
2766 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2767 */
2768 struct utsname buf;
2769 int major, minor, micro;
2770
2771 if (uname (&buf))
2772 return;
2773
2774 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2775 return;
2776
2777 if (major < 2
2778 || (major == 2 && minor < 6)
2779 || (major == 2 && minor == 6 && micro < 25))
2780 return;
2781
2782 fs_2625 = 1;
2783}
2784
2785inline_size void
2099infy_init (EV_P) 2786infy_init (EV_P)
2100{ 2787{
2101 if (fs_fd != -2) 2788 if (fs_fd != -2)
2102 return; 2789 return;
2790
2791 fs_fd = -1;
2792
2793 check_2625 (EV_A);
2103 2794
2104 fs_fd = inotify_init (); 2795 fs_fd = inotify_init ();
2105 2796
2106 if (fs_fd >= 0) 2797 if (fs_fd >= 0)
2107 { 2798 {
2109 ev_set_priority (&fs_w, EV_MAXPRI); 2800 ev_set_priority (&fs_w, EV_MAXPRI);
2110 ev_io_start (EV_A_ &fs_w); 2801 ev_io_start (EV_A_ &fs_w);
2111 } 2802 }
2112} 2803}
2113 2804
2114void inline_size 2805inline_size void
2115infy_fork (EV_P) 2806infy_fork (EV_P)
2116{ 2807{
2117 int slot; 2808 int slot;
2118 2809
2119 if (fs_fd < 0) 2810 if (fs_fd < 0)
2135 w->wd = -1; 2826 w->wd = -1;
2136 2827
2137 if (fs_fd >= 0) 2828 if (fs_fd >= 0)
2138 infy_add (EV_A_ w); /* re-add, no matter what */ 2829 infy_add (EV_A_ w); /* re-add, no matter what */
2139 else 2830 else
2140 ev_timer_start (EV_A_ &w->timer); 2831 ev_timer_again (EV_A_ &w->timer);
2141 } 2832 }
2142
2143 } 2833 }
2144} 2834}
2145 2835
2836#endif
2837
2838#ifdef _WIN32
2839# define EV_LSTAT(p,b) _stati64 (p, b)
2840#else
2841# define EV_LSTAT(p,b) lstat (p, b)
2146#endif 2842#endif
2147 2843
2148void 2844void
2149ev_stat_stat (EV_P_ ev_stat *w) 2845ev_stat_stat (EV_P_ ev_stat *w)
2150{ 2846{
2177 || w->prev.st_atime != w->attr.st_atime 2873 || w->prev.st_atime != w->attr.st_atime
2178 || w->prev.st_mtime != w->attr.st_mtime 2874 || w->prev.st_mtime != w->attr.st_mtime
2179 || w->prev.st_ctime != w->attr.st_ctime 2875 || w->prev.st_ctime != w->attr.st_ctime
2180 ) { 2876 ) {
2181 #if EV_USE_INOTIFY 2877 #if EV_USE_INOTIFY
2878 if (fs_fd >= 0)
2879 {
2182 infy_del (EV_A_ w); 2880 infy_del (EV_A_ w);
2183 infy_add (EV_A_ w); 2881 infy_add (EV_A_ w);
2184 ev_stat_stat (EV_A_ w); /* avoid race... */ 2882 ev_stat_stat (EV_A_ w); /* avoid race... */
2883 }
2185 #endif 2884 #endif
2186 2885
2187 ev_feed_event (EV_A_ w, EV_STAT); 2886 ev_feed_event (EV_A_ w, EV_STAT);
2188 } 2887 }
2189} 2888}
2192ev_stat_start (EV_P_ ev_stat *w) 2891ev_stat_start (EV_P_ ev_stat *w)
2193{ 2892{
2194 if (expect_false (ev_is_active (w))) 2893 if (expect_false (ev_is_active (w)))
2195 return; 2894 return;
2196 2895
2197 /* since we use memcmp, we need to clear any padding data etc. */
2198 memset (&w->prev, 0, sizeof (ev_statdata));
2199 memset (&w->attr, 0, sizeof (ev_statdata));
2200
2201 ev_stat_stat (EV_A_ w); 2896 ev_stat_stat (EV_A_ w);
2202 2897
2898 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2203 if (w->interval < MIN_STAT_INTERVAL) 2899 w->interval = MIN_STAT_INTERVAL;
2204 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2205 2900
2206 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2901 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2207 ev_set_priority (&w->timer, ev_priority (w)); 2902 ev_set_priority (&w->timer, ev_priority (w));
2208 2903
2209#if EV_USE_INOTIFY 2904#if EV_USE_INOTIFY
2210 infy_init (EV_A); 2905 infy_init (EV_A);
2211 2906
2212 if (fs_fd >= 0) 2907 if (fs_fd >= 0)
2213 infy_add (EV_A_ w); 2908 infy_add (EV_A_ w);
2214 else 2909 else
2215#endif 2910#endif
2216 ev_timer_start (EV_A_ &w->timer); 2911 ev_timer_again (EV_A_ &w->timer);
2217 2912
2218 ev_start (EV_A_ (W)w, 1); 2913 ev_start (EV_A_ (W)w, 1);
2914
2915 EV_FREQUENT_CHECK;
2219} 2916}
2220 2917
2221void 2918void
2222ev_stat_stop (EV_P_ ev_stat *w) 2919ev_stat_stop (EV_P_ ev_stat *w)
2223{ 2920{
2224 clear_pending (EV_A_ (W)w); 2921 clear_pending (EV_A_ (W)w);
2225 if (expect_false (!ev_is_active (w))) 2922 if (expect_false (!ev_is_active (w)))
2226 return; 2923 return;
2227 2924
2925 EV_FREQUENT_CHECK;
2926
2228#if EV_USE_INOTIFY 2927#if EV_USE_INOTIFY
2229 infy_del (EV_A_ w); 2928 infy_del (EV_A_ w);
2230#endif 2929#endif
2231 ev_timer_stop (EV_A_ &w->timer); 2930 ev_timer_stop (EV_A_ &w->timer);
2232 2931
2233 ev_stop (EV_A_ (W)w); 2932 ev_stop (EV_A_ (W)w);
2933
2934 EV_FREQUENT_CHECK;
2234} 2935}
2235#endif 2936#endif
2236 2937
2237#if EV_IDLE_ENABLE 2938#if EV_IDLE_ENABLE
2238void 2939void
2240{ 2941{
2241 if (expect_false (ev_is_active (w))) 2942 if (expect_false (ev_is_active (w)))
2242 return; 2943 return;
2243 2944
2244 pri_adjust (EV_A_ (W)w); 2945 pri_adjust (EV_A_ (W)w);
2946
2947 EV_FREQUENT_CHECK;
2245 2948
2246 { 2949 {
2247 int active = ++idlecnt [ABSPRI (w)]; 2950 int active = ++idlecnt [ABSPRI (w)];
2248 2951
2249 ++idleall; 2952 ++idleall;
2250 ev_start (EV_A_ (W)w, active); 2953 ev_start (EV_A_ (W)w, active);
2251 2954
2252 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2955 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2253 idles [ABSPRI (w)][active - 1] = w; 2956 idles [ABSPRI (w)][active - 1] = w;
2254 } 2957 }
2958
2959 EV_FREQUENT_CHECK;
2255} 2960}
2256 2961
2257void 2962void
2258ev_idle_stop (EV_P_ ev_idle *w) 2963ev_idle_stop (EV_P_ ev_idle *w)
2259{ 2964{
2260 clear_pending (EV_A_ (W)w); 2965 clear_pending (EV_A_ (W)w);
2261 if (expect_false (!ev_is_active (w))) 2966 if (expect_false (!ev_is_active (w)))
2262 return; 2967 return;
2263 2968
2969 EV_FREQUENT_CHECK;
2970
2264 { 2971 {
2265 int active = ((W)w)->active; 2972 int active = ev_active (w);
2266 2973
2267 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2974 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2268 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2975 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2269 2976
2270 ev_stop (EV_A_ (W)w); 2977 ev_stop (EV_A_ (W)w);
2271 --idleall; 2978 --idleall;
2272 } 2979 }
2980
2981 EV_FREQUENT_CHECK;
2273} 2982}
2274#endif 2983#endif
2275 2984
2276void 2985void
2277ev_prepare_start (EV_P_ ev_prepare *w) 2986ev_prepare_start (EV_P_ ev_prepare *w)
2278{ 2987{
2279 if (expect_false (ev_is_active (w))) 2988 if (expect_false (ev_is_active (w)))
2280 return; 2989 return;
2990
2991 EV_FREQUENT_CHECK;
2281 2992
2282 ev_start (EV_A_ (W)w, ++preparecnt); 2993 ev_start (EV_A_ (W)w, ++preparecnt);
2283 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2994 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2284 prepares [preparecnt - 1] = w; 2995 prepares [preparecnt - 1] = w;
2996
2997 EV_FREQUENT_CHECK;
2285} 2998}
2286 2999
2287void 3000void
2288ev_prepare_stop (EV_P_ ev_prepare *w) 3001ev_prepare_stop (EV_P_ ev_prepare *w)
2289{ 3002{
2290 clear_pending (EV_A_ (W)w); 3003 clear_pending (EV_A_ (W)w);
2291 if (expect_false (!ev_is_active (w))) 3004 if (expect_false (!ev_is_active (w)))
2292 return; 3005 return;
2293 3006
3007 EV_FREQUENT_CHECK;
3008
2294 { 3009 {
2295 int active = ((W)w)->active; 3010 int active = ev_active (w);
3011
2296 prepares [active - 1] = prepares [--preparecnt]; 3012 prepares [active - 1] = prepares [--preparecnt];
2297 ((W)prepares [active - 1])->active = active; 3013 ev_active (prepares [active - 1]) = active;
2298 } 3014 }
2299 3015
2300 ev_stop (EV_A_ (W)w); 3016 ev_stop (EV_A_ (W)w);
3017
3018 EV_FREQUENT_CHECK;
2301} 3019}
2302 3020
2303void 3021void
2304ev_check_start (EV_P_ ev_check *w) 3022ev_check_start (EV_P_ ev_check *w)
2305{ 3023{
2306 if (expect_false (ev_is_active (w))) 3024 if (expect_false (ev_is_active (w)))
2307 return; 3025 return;
3026
3027 EV_FREQUENT_CHECK;
2308 3028
2309 ev_start (EV_A_ (W)w, ++checkcnt); 3029 ev_start (EV_A_ (W)w, ++checkcnt);
2310 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3030 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2311 checks [checkcnt - 1] = w; 3031 checks [checkcnt - 1] = w;
3032
3033 EV_FREQUENT_CHECK;
2312} 3034}
2313 3035
2314void 3036void
2315ev_check_stop (EV_P_ ev_check *w) 3037ev_check_stop (EV_P_ ev_check *w)
2316{ 3038{
2317 clear_pending (EV_A_ (W)w); 3039 clear_pending (EV_A_ (W)w);
2318 if (expect_false (!ev_is_active (w))) 3040 if (expect_false (!ev_is_active (w)))
2319 return; 3041 return;
2320 3042
3043 EV_FREQUENT_CHECK;
3044
2321 { 3045 {
2322 int active = ((W)w)->active; 3046 int active = ev_active (w);
3047
2323 checks [active - 1] = checks [--checkcnt]; 3048 checks [active - 1] = checks [--checkcnt];
2324 ((W)checks [active - 1])->active = active; 3049 ev_active (checks [active - 1]) = active;
2325 } 3050 }
2326 3051
2327 ev_stop (EV_A_ (W)w); 3052 ev_stop (EV_A_ (W)w);
3053
3054 EV_FREQUENT_CHECK;
2328} 3055}
2329 3056
2330#if EV_EMBED_ENABLE 3057#if EV_EMBED_ENABLE
2331void noinline 3058void noinline
2332ev_embed_sweep (EV_P_ ev_embed *w) 3059ev_embed_sweep (EV_P_ ev_embed *w)
2359 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3086 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2360 } 3087 }
2361 } 3088 }
2362} 3089}
2363 3090
3091static void
3092embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3093{
3094 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3095
3096 ev_embed_stop (EV_A_ w);
3097
3098 {
3099 struct ev_loop *loop = w->other;
3100
3101 ev_loop_fork (EV_A);
3102 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3103 }
3104
3105 ev_embed_start (EV_A_ w);
3106}
3107
2364#if 0 3108#if 0
2365static void 3109static void
2366embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3110embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2367{ 3111{
2368 ev_idle_stop (EV_A_ idle); 3112 ev_idle_stop (EV_A_ idle);
2375 if (expect_false (ev_is_active (w))) 3119 if (expect_false (ev_is_active (w)))
2376 return; 3120 return;
2377 3121
2378 { 3122 {
2379 struct ev_loop *loop = w->other; 3123 struct ev_loop *loop = w->other;
2380 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3124 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2381 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3125 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2382 } 3126 }
3127
3128 EV_FREQUENT_CHECK;
2383 3129
2384 ev_set_priority (&w->io, ev_priority (w)); 3130 ev_set_priority (&w->io, ev_priority (w));
2385 ev_io_start (EV_A_ &w->io); 3131 ev_io_start (EV_A_ &w->io);
2386 3132
2387 ev_prepare_init (&w->prepare, embed_prepare_cb); 3133 ev_prepare_init (&w->prepare, embed_prepare_cb);
2388 ev_set_priority (&w->prepare, EV_MINPRI); 3134 ev_set_priority (&w->prepare, EV_MINPRI);
2389 ev_prepare_start (EV_A_ &w->prepare); 3135 ev_prepare_start (EV_A_ &w->prepare);
2390 3136
3137 ev_fork_init (&w->fork, embed_fork_cb);
3138 ev_fork_start (EV_A_ &w->fork);
3139
2391 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3140 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2392 3141
2393 ev_start (EV_A_ (W)w, 1); 3142 ev_start (EV_A_ (W)w, 1);
3143
3144 EV_FREQUENT_CHECK;
2394} 3145}
2395 3146
2396void 3147void
2397ev_embed_stop (EV_P_ ev_embed *w) 3148ev_embed_stop (EV_P_ ev_embed *w)
2398{ 3149{
2399 clear_pending (EV_A_ (W)w); 3150 clear_pending (EV_A_ (W)w);
2400 if (expect_false (!ev_is_active (w))) 3151 if (expect_false (!ev_is_active (w)))
2401 return; 3152 return;
2402 3153
3154 EV_FREQUENT_CHECK;
3155
2403 ev_io_stop (EV_A_ &w->io); 3156 ev_io_stop (EV_A_ &w->io);
2404 ev_prepare_stop (EV_A_ &w->prepare); 3157 ev_prepare_stop (EV_A_ &w->prepare);
3158 ev_fork_stop (EV_A_ &w->fork);
2405 3159
2406 ev_stop (EV_A_ (W)w); 3160 EV_FREQUENT_CHECK;
2407} 3161}
2408#endif 3162#endif
2409 3163
2410#if EV_FORK_ENABLE 3164#if EV_FORK_ENABLE
2411void 3165void
2412ev_fork_start (EV_P_ ev_fork *w) 3166ev_fork_start (EV_P_ ev_fork *w)
2413{ 3167{
2414 if (expect_false (ev_is_active (w))) 3168 if (expect_false (ev_is_active (w)))
2415 return; 3169 return;
3170
3171 EV_FREQUENT_CHECK;
2416 3172
2417 ev_start (EV_A_ (W)w, ++forkcnt); 3173 ev_start (EV_A_ (W)w, ++forkcnt);
2418 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3174 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2419 forks [forkcnt - 1] = w; 3175 forks [forkcnt - 1] = w;
3176
3177 EV_FREQUENT_CHECK;
2420} 3178}
2421 3179
2422void 3180void
2423ev_fork_stop (EV_P_ ev_fork *w) 3181ev_fork_stop (EV_P_ ev_fork *w)
2424{ 3182{
2425 clear_pending (EV_A_ (W)w); 3183 clear_pending (EV_A_ (W)w);
2426 if (expect_false (!ev_is_active (w))) 3184 if (expect_false (!ev_is_active (w)))
2427 return; 3185 return;
2428 3186
3187 EV_FREQUENT_CHECK;
3188
2429 { 3189 {
2430 int active = ((W)w)->active; 3190 int active = ev_active (w);
3191
2431 forks [active - 1] = forks [--forkcnt]; 3192 forks [active - 1] = forks [--forkcnt];
2432 ((W)forks [active - 1])->active = active; 3193 ev_active (forks [active - 1]) = active;
2433 } 3194 }
2434 3195
2435 ev_stop (EV_A_ (W)w); 3196 ev_stop (EV_A_ (W)w);
3197
3198 EV_FREQUENT_CHECK;
2436} 3199}
2437#endif 3200#endif
2438 3201
2439#if EV_ASYNC_ENABLE 3202#if EV_ASYNC_ENABLE
2440void 3203void
2442{ 3205{
2443 if (expect_false (ev_is_active (w))) 3206 if (expect_false (ev_is_active (w)))
2444 return; 3207 return;
2445 3208
2446 evpipe_init (EV_A); 3209 evpipe_init (EV_A);
3210
3211 EV_FREQUENT_CHECK;
2447 3212
2448 ev_start (EV_A_ (W)w, ++asynccnt); 3213 ev_start (EV_A_ (W)w, ++asynccnt);
2449 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3214 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2450 asyncs [asynccnt - 1] = w; 3215 asyncs [asynccnt - 1] = w;
3216
3217 EV_FREQUENT_CHECK;
2451} 3218}
2452 3219
2453void 3220void
2454ev_async_stop (EV_P_ ev_async *w) 3221ev_async_stop (EV_P_ ev_async *w)
2455{ 3222{
2456 clear_pending (EV_A_ (W)w); 3223 clear_pending (EV_A_ (W)w);
2457 if (expect_false (!ev_is_active (w))) 3224 if (expect_false (!ev_is_active (w)))
2458 return; 3225 return;
2459 3226
3227 EV_FREQUENT_CHECK;
3228
2460 { 3229 {
2461 int active = ((W)w)->active; 3230 int active = ev_active (w);
3231
2462 asyncs [active - 1] = asyncs [--asynccnt]; 3232 asyncs [active - 1] = asyncs [--asynccnt];
2463 ((W)asyncs [active - 1])->active = active; 3233 ev_active (asyncs [active - 1]) = active;
2464 } 3234 }
2465 3235
2466 ev_stop (EV_A_ (W)w); 3236 ev_stop (EV_A_ (W)w);
3237
3238 EV_FREQUENT_CHECK;
2467} 3239}
2468 3240
2469void 3241void
2470ev_async_send (EV_P_ ev_async *w) 3242ev_async_send (EV_P_ ev_async *w)
2471{ 3243{
2472 w->sent = 1; 3244 w->sent = 1;
2473 evpipe_write (EV_A_ 0, 1); 3245 evpipe_write (EV_A_ &gotasync);
2474} 3246}
2475#endif 3247#endif
2476 3248
2477/*****************************************************************************/ 3249/*****************************************************************************/
2478 3250
2488once_cb (EV_P_ struct ev_once *once, int revents) 3260once_cb (EV_P_ struct ev_once *once, int revents)
2489{ 3261{
2490 void (*cb)(int revents, void *arg) = once->cb; 3262 void (*cb)(int revents, void *arg) = once->cb;
2491 void *arg = once->arg; 3263 void *arg = once->arg;
2492 3264
2493 ev_io_stop (EV_A_ &once->io); 3265 ev_io_stop (EV_A_ &once->io);
2494 ev_timer_stop (EV_A_ &once->to); 3266 ev_timer_stop (EV_A_ &once->to);
2495 ev_free (once); 3267 ev_free (once);
2496 3268
2497 cb (revents, arg); 3269 cb (revents, arg);
2498} 3270}
2499 3271
2500static void 3272static void
2501once_cb_io (EV_P_ ev_io *w, int revents) 3273once_cb_io (EV_P_ ev_io *w, int revents)
2502{ 3274{
2503 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3275 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3276
3277 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2504} 3278}
2505 3279
2506static void 3280static void
2507once_cb_to (EV_P_ ev_timer *w, int revents) 3281once_cb_to (EV_P_ ev_timer *w, int revents)
2508{ 3282{
2509 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3283 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3284
3285 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2510} 3286}
2511 3287
2512void 3288void
2513ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3289ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2514{ 3290{
2536 ev_timer_set (&once->to, timeout, 0.); 3312 ev_timer_set (&once->to, timeout, 0.);
2537 ev_timer_start (EV_A_ &once->to); 3313 ev_timer_start (EV_A_ &once->to);
2538 } 3314 }
2539} 3315}
2540 3316
3317/*****************************************************************************/
3318
3319#if EV_WALK_ENABLE
3320void
3321ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3322{
3323 int i, j;
3324 ev_watcher_list *wl, *wn;
3325
3326 if (types & (EV_IO | EV_EMBED))
3327 for (i = 0; i < anfdmax; ++i)
3328 for (wl = anfds [i].head; wl; )
3329 {
3330 wn = wl->next;
3331
3332#if EV_EMBED_ENABLE
3333 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3334 {
3335 if (types & EV_EMBED)
3336 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3337 }
3338 else
3339#endif
3340#if EV_USE_INOTIFY
3341 if (ev_cb ((ev_io *)wl) == infy_cb)
3342 ;
3343 else
3344#endif
3345 if ((ev_io *)wl != &pipe_w)
3346 if (types & EV_IO)
3347 cb (EV_A_ EV_IO, wl);
3348
3349 wl = wn;
3350 }
3351
3352 if (types & (EV_TIMER | EV_STAT))
3353 for (i = timercnt + HEAP0; i-- > HEAP0; )
3354#if EV_STAT_ENABLE
3355 /*TODO: timer is not always active*/
3356 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3357 {
3358 if (types & EV_STAT)
3359 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3360 }
3361 else
3362#endif
3363 if (types & EV_TIMER)
3364 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3365
3366#if EV_PERIODIC_ENABLE
3367 if (types & EV_PERIODIC)
3368 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3369 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3370#endif
3371
3372#if EV_IDLE_ENABLE
3373 if (types & EV_IDLE)
3374 for (j = NUMPRI; i--; )
3375 for (i = idlecnt [j]; i--; )
3376 cb (EV_A_ EV_IDLE, idles [j][i]);
3377#endif
3378
3379#if EV_FORK_ENABLE
3380 if (types & EV_FORK)
3381 for (i = forkcnt; i--; )
3382 if (ev_cb (forks [i]) != embed_fork_cb)
3383 cb (EV_A_ EV_FORK, forks [i]);
3384#endif
3385
3386#if EV_ASYNC_ENABLE
3387 if (types & EV_ASYNC)
3388 for (i = asynccnt; i--; )
3389 cb (EV_A_ EV_ASYNC, asyncs [i]);
3390#endif
3391
3392 if (types & EV_PREPARE)
3393 for (i = preparecnt; i--; )
3394#if EV_EMBED_ENABLE
3395 if (ev_cb (prepares [i]) != embed_prepare_cb)
3396#endif
3397 cb (EV_A_ EV_PREPARE, prepares [i]);
3398
3399 if (types & EV_CHECK)
3400 for (i = checkcnt; i--; )
3401 cb (EV_A_ EV_CHECK, checks [i]);
3402
3403 if (types & EV_SIGNAL)
3404 for (i = 0; i < signalmax; ++i)
3405 for (wl = signals [i].head; wl; )
3406 {
3407 wn = wl->next;
3408 cb (EV_A_ EV_SIGNAL, wl);
3409 wl = wn;
3410 }
3411
3412 if (types & EV_CHILD)
3413 for (i = EV_PID_HASHSIZE; i--; )
3414 for (wl = childs [i]; wl; )
3415 {
3416 wn = wl->next;
3417 cb (EV_A_ EV_CHILD, wl);
3418 wl = wn;
3419 }
3420/* EV_STAT 0x00001000 /* stat data changed */
3421/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3422}
3423#endif
3424
2541#if EV_MULTIPLICITY 3425#if EV_MULTIPLICITY
2542 #include "ev_wrap.h" 3426 #include "ev_wrap.h"
2543#endif 3427#endif
2544 3428
2545#ifdef __cplusplus 3429#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines