ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.237 by root, Wed May 7 15:16:56 2008 UTC vs.
Revision 1.297 by root, Fri Jul 10 00:36:21 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
126# define EV_USE_EVENTFD 1 140# define EV_USE_EVENTFD 1
127# else 141# else
128# define EV_USE_EVENTFD 0 142# define EV_USE_EVENTFD 0
129# endif 143# endif
130# endif 144# endif
131 145
132#endif 146#endif
133 147
134#include <math.h> 148#include <math.h>
135#include <stdlib.h> 149#include <stdlib.h>
136#include <fcntl.h> 150#include <fcntl.h>
154#ifndef _WIN32 168#ifndef _WIN32
155# include <sys/time.h> 169# include <sys/time.h>
156# include <sys/wait.h> 170# include <sys/wait.h>
157# include <unistd.h> 171# include <unistd.h>
158#else 172#else
173# include <io.h>
159# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 175# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
163# endif 178# endif
164#endif 179#endif
165 180
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
167 182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
190
168#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
169# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
170#endif 197#endif
171 198
172#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 201#endif
175 202
176#ifndef EV_USE_NANOSLEEP 203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
177# define EV_USE_NANOSLEEP 0 207# define EV_USE_NANOSLEEP 0
208# endif
178#endif 209#endif
179 210
180#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
182#endif 213#endif
235# else 266# else
236# define EV_USE_EVENTFD 0 267# define EV_USE_EVENTFD 0
237# endif 268# endif
238#endif 269#endif
239 270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 304
242#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
259# include <sys/select.h> 322# include <sys/select.h>
260# endif 323# endif
261#endif 324#endif
262 325
263#if EV_USE_INOTIFY 326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
264# include <sys/inotify.h> 329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
265#endif 335#endif
266 336
267#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 338# include <winsock.h>
269#endif 339#endif
279} 349}
280# endif 350# endif
281#endif 351#endif
282 352
283/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
284 360
285/* 361/*
286 * This is used to avoid floating point rounding problems. 362 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 363 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 364 * to ensure progress, time-wise, even when rounding
315# define inline_speed static noinline 391# define inline_speed static noinline
316#else 392#else
317# define inline_speed static inline 393# define inline_speed static inline
318#endif 394#endif
319 395
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
322 403
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 404#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 405#define EMPTY2(a,b) /* used to suppress some warnings */
325 406
326typedef ev_watcher *W; 407typedef ev_watcher *W;
328typedef ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
329 410
330#define ev_active(w) ((W)(w))->active 411#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 412#define ev_at(w) ((WT)(w))->at
332 413
333#if EV_USE_MONOTONIC 414#if EV_USE_REALTIME
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */ 416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
419
420#if EV_USE_MONOTONIC
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif 422#endif
338 423
339#ifdef _WIN32 424#ifdef _WIN32
340# include "ev_win32.c" 425# include "ev_win32.c"
349{ 434{
350 syserr_cb = cb; 435 syserr_cb = cb;
351} 436}
352 437
353static void noinline 438static void noinline
354syserr (const char *msg) 439ev_syserr (const char *msg)
355{ 440{
356 if (!msg) 441 if (!msg)
357 msg = "(libev) system error"; 442 msg = "(libev) system error";
358 443
359 if (syserr_cb) 444 if (syserr_cb)
405#define ev_malloc(size) ev_realloc (0, (size)) 490#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 491#define ev_free(ptr) ev_realloc ((ptr), 0)
407 492
408/*****************************************************************************/ 493/*****************************************************************************/
409 494
495/* file descriptor info structure */
410typedef struct 496typedef struct
411{ 497{
412 WL head; 498 WL head;
413 unsigned char events; 499 unsigned char events; /* the events watched for */
500 unsigned char reify; /* flag set when this ANFD needs reification */
501 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
414 unsigned char reify; 502 unsigned char unused;
503#if EV_USE_EPOLL
504 unsigned int egen; /* generation counter to counter epoll bugs */
505#endif
415#if EV_SELECT_IS_WINSOCKET 506#if EV_SELECT_IS_WINSOCKET
416 SOCKET handle; 507 SOCKET handle;
417#endif 508#endif
418} ANFD; 509} ANFD;
419 510
511/* stores the pending event set for a given watcher */
420typedef struct 512typedef struct
421{ 513{
422 W w; 514 W w;
423 int events; 515 int events; /* the pending event set for the given watcher */
424} ANPENDING; 516} ANPENDING;
425 517
426#if EV_USE_INOTIFY 518#if EV_USE_INOTIFY
519/* hash table entry per inotify-id */
427typedef struct 520typedef struct
428{ 521{
429 WL head; 522 WL head;
430} ANFS; 523} ANFS;
524#endif
525
526/* Heap Entry */
527#if EV_HEAP_CACHE_AT
528 /* a heap element */
529 typedef struct {
530 ev_tstamp at;
531 WT w;
532 } ANHE;
533
534 #define ANHE_w(he) (he).w /* access watcher, read-write */
535 #define ANHE_at(he) (he).at /* access cached at, read-only */
536 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
537#else
538 /* a heap element */
539 typedef WT ANHE;
540
541 #define ANHE_w(he) (he)
542 #define ANHE_at(he) (he)->at
543 #define ANHE_at_cache(he)
431#endif 544#endif
432 545
433#if EV_MULTIPLICITY 546#if EV_MULTIPLICITY
434 547
435 struct ev_loop 548 struct ev_loop
454 567
455 static int ev_default_loop_ptr; 568 static int ev_default_loop_ptr;
456 569
457#endif 570#endif
458 571
572#if EV_MINIMAL < 2
573# define EV_SUSPEND_CB if (expect_false (suspend_cb)) suspend_cb (EV_A)
574# define EV_RESUME_CB if (expect_false (resume_cb )) resume_cb (EV_A)
575# define EV_INVOKE_PENDING invoke_cb (EV_A)
576#else
577# define EV_SUSPEND_CB (void)0
578# define EV_RESUME_CB (void)0
579# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
580#endif
581
459/*****************************************************************************/ 582/*****************************************************************************/
460 583
584#ifndef EV_HAVE_EV_TIME
461ev_tstamp 585ev_tstamp
462ev_time (void) 586ev_time (void)
463{ 587{
464#if EV_USE_REALTIME 588#if EV_USE_REALTIME
589 if (expect_true (have_realtime))
590 {
465 struct timespec ts; 591 struct timespec ts;
466 clock_gettime (CLOCK_REALTIME, &ts); 592 clock_gettime (CLOCK_REALTIME, &ts);
467 return ts.tv_sec + ts.tv_nsec * 1e-9; 593 return ts.tv_sec + ts.tv_nsec * 1e-9;
468#else 594 }
595#endif
596
469 struct timeval tv; 597 struct timeval tv;
470 gettimeofday (&tv, 0); 598 gettimeofday (&tv, 0);
471 return tv.tv_sec + tv.tv_usec * 1e-6; 599 return tv.tv_sec + tv.tv_usec * 1e-6;
472#endif
473} 600}
601#endif
474 602
475ev_tstamp inline_size 603inline_size ev_tstamp
476get_clock (void) 604get_clock (void)
477{ 605{
478#if EV_USE_MONOTONIC 606#if EV_USE_MONOTONIC
479 if (expect_true (have_monotonic)) 607 if (expect_true (have_monotonic))
480 { 608 {
513 struct timeval tv; 641 struct timeval tv;
514 642
515 tv.tv_sec = (time_t)delay; 643 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 644 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517 645
646 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
647 /* somehting not guaranteed by newer posix versions, but guaranteed */
648 /* by older ones */
518 select (0, 0, 0, 0, &tv); 649 select (0, 0, 0, 0, &tv);
519#endif 650#endif
520 } 651 }
521} 652}
522 653
523/*****************************************************************************/ 654/*****************************************************************************/
524 655
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 656#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
526 657
527int inline_size 658/* find a suitable new size for the given array, */
659/* hopefully by rounding to a ncie-to-malloc size */
660inline_size int
528array_nextsize (int elem, int cur, int cnt) 661array_nextsize (int elem, int cur, int cnt)
529{ 662{
530 int ncur = cur + 1; 663 int ncur = cur + 1;
531 664
532 do 665 do
549array_realloc (int elem, void *base, int *cur, int cnt) 682array_realloc (int elem, void *base, int *cur, int cnt)
550{ 683{
551 *cur = array_nextsize (elem, *cur, cnt); 684 *cur = array_nextsize (elem, *cur, cnt);
552 return ev_realloc (base, elem * *cur); 685 return ev_realloc (base, elem * *cur);
553} 686}
687
688#define array_init_zero(base,count) \
689 memset ((void *)(base), 0, sizeof (*(base)) * (count))
554 690
555#define array_needsize(type,base,cur,cnt,init) \ 691#define array_needsize(type,base,cur,cnt,init) \
556 if (expect_false ((cnt) > (cur))) \ 692 if (expect_false ((cnt) > (cur))) \
557 { \ 693 { \
558 int ocur_ = (cur); \ 694 int ocur_ = (cur); \
570 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 706 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
571 } 707 }
572#endif 708#endif
573 709
574#define array_free(stem, idx) \ 710#define array_free(stem, idx) \
575 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 711 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
576 712
577/*****************************************************************************/ 713/*****************************************************************************/
714
715/* dummy callback for pending events */
716static void noinline
717pendingcb (EV_P_ ev_prepare *w, int revents)
718{
719}
578 720
579void noinline 721void noinline
580ev_feed_event (EV_P_ void *w, int revents) 722ev_feed_event (EV_P_ void *w, int revents)
581{ 723{
582 W w_ = (W)w; 724 W w_ = (W)w;
591 pendings [pri][w_->pending - 1].w = w_; 733 pendings [pri][w_->pending - 1].w = w_;
592 pendings [pri][w_->pending - 1].events = revents; 734 pendings [pri][w_->pending - 1].events = revents;
593 } 735 }
594} 736}
595 737
596void inline_speed 738inline_speed void
739feed_reverse (EV_P_ W w)
740{
741 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
742 rfeeds [rfeedcnt++] = w;
743}
744
745inline_size void
746feed_reverse_done (EV_P_ int revents)
747{
748 do
749 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
750 while (rfeedcnt);
751}
752
753inline_speed void
597queue_events (EV_P_ W *events, int eventcnt, int type) 754queue_events (EV_P_ W *events, int eventcnt, int type)
598{ 755{
599 int i; 756 int i;
600 757
601 for (i = 0; i < eventcnt; ++i) 758 for (i = 0; i < eventcnt; ++i)
602 ev_feed_event (EV_A_ events [i], type); 759 ev_feed_event (EV_A_ events [i], type);
603} 760}
604 761
605/*****************************************************************************/ 762/*****************************************************************************/
606 763
607void inline_size 764inline_speed void
608anfds_init (ANFD *base, int count)
609{
610 while (count--)
611 {
612 base->head = 0;
613 base->events = EV_NONE;
614 base->reify = 0;
615
616 ++base;
617 }
618}
619
620void inline_speed
621fd_event (EV_P_ int fd, int revents) 765fd_event (EV_P_ int fd, int revents)
622{ 766{
623 ANFD *anfd = anfds + fd; 767 ANFD *anfd = anfds + fd;
624 ev_io *w; 768 ev_io *w;
625 769
637{ 781{
638 if (fd >= 0 && fd < anfdmax) 782 if (fd >= 0 && fd < anfdmax)
639 fd_event (EV_A_ fd, revents); 783 fd_event (EV_A_ fd, revents);
640} 784}
641 785
642void inline_size 786/* make sure the external fd watch events are in-sync */
787/* with the kernel/libev internal state */
788inline_size void
643fd_reify (EV_P) 789fd_reify (EV_P)
644{ 790{
645 int i; 791 int i;
646 792
647 for (i = 0; i < fdchangecnt; ++i) 793 for (i = 0; i < fdchangecnt; ++i)
656 events |= (unsigned char)w->events; 802 events |= (unsigned char)w->events;
657 803
658#if EV_SELECT_IS_WINSOCKET 804#if EV_SELECT_IS_WINSOCKET
659 if (events) 805 if (events)
660 { 806 {
661 unsigned long argp; 807 unsigned long arg;
662 #ifdef EV_FD_TO_WIN32_HANDLE 808 #ifdef EV_FD_TO_WIN32_HANDLE
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 809 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
664 #else 810 #else
665 anfd->handle = _get_osfhandle (fd); 811 anfd->handle = _get_osfhandle (fd);
666 #endif 812 #endif
667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 813 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
668 } 814 }
669#endif 815#endif
670 816
671 { 817 {
672 unsigned char o_events = anfd->events; 818 unsigned char o_events = anfd->events;
673 unsigned char o_reify = anfd->reify; 819 unsigned char o_reify = anfd->reify;
674 820
675 anfd->reify = 0; 821 anfd->reify = 0;
676 anfd->events = events; 822 anfd->events = events;
677 823
678 if (o_events != events || o_reify & EV_IOFDSET) 824 if (o_events != events || o_reify & EV__IOFDSET)
679 backend_modify (EV_A_ fd, o_events, events); 825 backend_modify (EV_A_ fd, o_events, events);
680 } 826 }
681 } 827 }
682 828
683 fdchangecnt = 0; 829 fdchangecnt = 0;
684} 830}
685 831
686void inline_size 832/* something about the given fd changed */
833inline_size void
687fd_change (EV_P_ int fd, int flags) 834fd_change (EV_P_ int fd, int flags)
688{ 835{
689 unsigned char reify = anfds [fd].reify; 836 unsigned char reify = anfds [fd].reify;
690 anfds [fd].reify |= flags; 837 anfds [fd].reify |= flags;
691 838
695 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 842 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
696 fdchanges [fdchangecnt - 1] = fd; 843 fdchanges [fdchangecnt - 1] = fd;
697 } 844 }
698} 845}
699 846
700void inline_speed 847/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
848inline_speed void
701fd_kill (EV_P_ int fd) 849fd_kill (EV_P_ int fd)
702{ 850{
703 ev_io *w; 851 ev_io *w;
704 852
705 while ((w = (ev_io *)anfds [fd].head)) 853 while ((w = (ev_io *)anfds [fd].head))
707 ev_io_stop (EV_A_ w); 855 ev_io_stop (EV_A_ w);
708 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 856 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
709 } 857 }
710} 858}
711 859
712int inline_size 860/* check whether the given fd is atcually valid, for error recovery */
861inline_size int
713fd_valid (int fd) 862fd_valid (int fd)
714{ 863{
715#ifdef _WIN32 864#ifdef _WIN32
716 return _get_osfhandle (fd) != -1; 865 return _get_osfhandle (fd) != -1;
717#else 866#else
725{ 874{
726 int fd; 875 int fd;
727 876
728 for (fd = 0; fd < anfdmax; ++fd) 877 for (fd = 0; fd < anfdmax; ++fd)
729 if (anfds [fd].events) 878 if (anfds [fd].events)
730 if (!fd_valid (fd) == -1 && errno == EBADF) 879 if (!fd_valid (fd) && errno == EBADF)
731 fd_kill (EV_A_ fd); 880 fd_kill (EV_A_ fd);
732} 881}
733 882
734/* called on ENOMEM in select/poll to kill some fds and retry */ 883/* called on ENOMEM in select/poll to kill some fds and retry */
735static void noinline 884static void noinline
753 902
754 for (fd = 0; fd < anfdmax; ++fd) 903 for (fd = 0; fd < anfdmax; ++fd)
755 if (anfds [fd].events) 904 if (anfds [fd].events)
756 { 905 {
757 anfds [fd].events = 0; 906 anfds [fd].events = 0;
907 anfds [fd].emask = 0;
758 fd_change (EV_A_ fd, EV_IOFDSET | 1); 908 fd_change (EV_A_ fd, EV__IOFDSET | 1);
759 } 909 }
760} 910}
761 911
762/*****************************************************************************/ 912/*****************************************************************************/
913
914/*
915 * the heap functions want a real array index. array index 0 uis guaranteed to not
916 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
917 * the branching factor of the d-tree.
918 */
763 919
764/* 920/*
765 * at the moment we allow libev the luxury of two heaps, 921 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 922 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient. 923 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers. 924 * the difference is about 5% with 50000+ watchers.
769 */ 925 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP 926#if EV_USE_4HEAP
772 927
773#define DHEAP 4 928#define DHEAP 4
774#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 929#define HEAP0 (DHEAP - 1) /* index of first element in heap */
930#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
931#define UPHEAP_DONE(p,k) ((p) == (k))
775 932
776/* towards the root */ 933/* away from the root */
777void inline_speed 934inline_speed void
778upheap (WT *heap, int k) 935downheap (ANHE *heap, int N, int k)
779{ 936{
780 WT w = heap [k]; 937 ANHE he = heap [k];
938 ANHE *E = heap + N + HEAP0;
781 939
782 for (;;) 940 for (;;)
783 { 941 {
784 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
785
786 if (p >= HEAP0 || heap [p]->at <= w->at)
787 break;
788
789 heap [k] = heap [p];
790 ev_active (heap [k]) = k;
791 k = p;
792 }
793
794 heap [k] = w;
795 ev_active (heap [k]) = k;
796}
797
798/* away from the root */
799void inline_speed
800downheap (WT *heap, int N, int k)
801{
802 WT w = heap [k];
803 WT *E = heap + N + HEAP0;
804
805 for (;;)
806 {
807 ev_tstamp minat; 942 ev_tstamp minat;
808 WT *minpos; 943 ANHE *minpos;
809 WT *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 944 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
810 945
811 // find minimum child 946 /* find minimum child */
812 if (expect_true (pos + DHEAP - 1 < E)) 947 if (expect_true (pos + DHEAP - 1 < E))
813 { 948 {
814 /* fast path */
815 (minpos = pos + 0), (minat = (*minpos)->at); 949 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
816 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at); 950 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
817 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at); 951 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
818 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at); 952 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
953 }
954 else if (pos < E)
955 {
956 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
957 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
958 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
959 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
819 } 960 }
820 else 961 else
821 {
822 /* slow path */
823 if (pos >= E)
824 break;
825 (minpos = pos + 0), (minat = (*minpos)->at);
826 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
827 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
828 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
829 }
830
831 if (w->at <= minat)
832 break; 962 break;
833 963
834 ev_active (*minpos) = k; 964 if (ANHE_at (he) <= minat)
965 break;
966
835 heap [k] = *minpos; 967 heap [k] = *minpos;
968 ev_active (ANHE_w (*minpos)) = k;
836 969
837 k = minpos - heap; 970 k = minpos - heap;
838 } 971 }
839 972
840 heap [k] = w; 973 heap [k] = he;
841 ev_active (heap [k]) = k; 974 ev_active (ANHE_w (he)) = k;
842} 975}
843 976
844#else // 4HEAP 977#else /* 4HEAP */
845 978
846#define HEAP0 1 979#define HEAP0 1
980#define HPARENT(k) ((k) >> 1)
981#define UPHEAP_DONE(p,k) (!(p))
847 982
848/* towards the root */ 983/* away from the root */
849void inline_speed 984inline_speed void
850upheap (WT *heap, int k) 985downheap (ANHE *heap, int N, int k)
851{ 986{
852 WT w = heap [k]; 987 ANHE he = heap [k];
853 988
854 for (;;) 989 for (;;)
855 { 990 {
856 int p = k >> 1; 991 int c = k << 1;
857 992
858 /* maybe we could use a dummy element at heap [0]? */ 993 if (c > N + HEAP0 - 1)
859 if (!p || heap [p]->at <= w->at)
860 break; 994 break;
861 995
862 heap [k] = heap [p]; 996 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
863 ev_active (heap [k]) = k; 997 ? 1 : 0;
864 k = p;
865 }
866 998
867 heap [k] = w; 999 if (ANHE_at (he) <= ANHE_at (heap [c]))
868 ev_active (heap [k]) = k;
869}
870
871/* away from the root */
872void inline_speed
873downheap (WT *heap, int N, int k)
874{
875 WT w = heap [k];
876
877 for (;;)
878 {
879 int c = k << 1;
880
881 if (c > N)
882 break; 1000 break;
883 1001
884 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
885 ? 1 : 0;
886
887 if (w->at <= heap [c]->at)
888 break;
889
890 heap [k] = heap [c]; 1002 heap [k] = heap [c];
891 ((W)heap [k])->active = k; 1003 ev_active (ANHE_w (heap [k])) = k;
892 1004
893 k = c; 1005 k = c;
894 } 1006 }
895 1007
896 heap [k] = w; 1008 heap [k] = he;
1009 ev_active (ANHE_w (he)) = k;
1010}
1011#endif
1012
1013/* towards the root */
1014inline_speed void
1015upheap (ANHE *heap, int k)
1016{
1017 ANHE he = heap [k];
1018
1019 for (;;)
1020 {
1021 int p = HPARENT (k);
1022
1023 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1024 break;
1025
1026 heap [k] = heap [p];
897 ev_active (heap [k]) = k; 1027 ev_active (ANHE_w (heap [k])) = k;
898} 1028 k = p;
899#endif 1029 }
900 1030
901void inline_size 1031 heap [k] = he;
1032 ev_active (ANHE_w (he)) = k;
1033}
1034
1035/* move an element suitably so it is in a correct place */
1036inline_size void
902adjustheap (WT *heap, int N, int k) 1037adjustheap (ANHE *heap, int N, int k)
903{ 1038{
1039 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
904 upheap (heap, k); 1040 upheap (heap, k);
1041 else
905 downheap (heap, N, k); 1042 downheap (heap, N, k);
1043}
1044
1045/* rebuild the heap: this function is used only once and executed rarely */
1046inline_size void
1047reheap (ANHE *heap, int N)
1048{
1049 int i;
1050
1051 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1052 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1053 for (i = 0; i < N; ++i)
1054 upheap (heap, i + HEAP0);
906} 1055}
907 1056
908/*****************************************************************************/ 1057/*****************************************************************************/
909 1058
1059/* associate signal watchers to a signal signal */
910typedef struct 1060typedef struct
911{ 1061{
912 WL head; 1062 WL head;
913 EV_ATOMIC_T gotsig; 1063 EV_ATOMIC_T gotsig;
914} ANSIG; 1064} ANSIG;
916static ANSIG *signals; 1066static ANSIG *signals;
917static int signalmax; 1067static int signalmax;
918 1068
919static EV_ATOMIC_T gotsig; 1069static EV_ATOMIC_T gotsig;
920 1070
921void inline_size
922signals_init (ANSIG *base, int count)
923{
924 while (count--)
925 {
926 base->head = 0;
927 base->gotsig = 0;
928
929 ++base;
930 }
931}
932
933/*****************************************************************************/ 1071/*****************************************************************************/
934 1072
935void inline_speed 1073/* used to prepare libev internal fd's */
1074/* this is not fork-safe */
1075inline_speed void
936fd_intern (int fd) 1076fd_intern (int fd)
937{ 1077{
938#ifdef _WIN32 1078#ifdef _WIN32
939 int arg = 1; 1079 unsigned long arg = 1;
940 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1080 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
941#else 1081#else
942 fcntl (fd, F_SETFD, FD_CLOEXEC); 1082 fcntl (fd, F_SETFD, FD_CLOEXEC);
943 fcntl (fd, F_SETFL, O_NONBLOCK); 1083 fcntl (fd, F_SETFL, O_NONBLOCK);
944#endif 1084#endif
945} 1085}
946 1086
947static void noinline 1087static void noinline
948evpipe_init (EV_P) 1088evpipe_init (EV_P)
949{ 1089{
950 if (!ev_is_active (&pipeev)) 1090 if (!ev_is_active (&pipe_w))
951 { 1091 {
952#if EV_USE_EVENTFD 1092#if EV_USE_EVENTFD
953 if ((evfd = eventfd (0, 0)) >= 0) 1093 if ((evfd = eventfd (0, 0)) >= 0)
954 { 1094 {
955 evpipe [0] = -1; 1095 evpipe [0] = -1;
956 fd_intern (evfd); 1096 fd_intern (evfd);
957 ev_io_set (&pipeev, evfd, EV_READ); 1097 ev_io_set (&pipe_w, evfd, EV_READ);
958 } 1098 }
959 else 1099 else
960#endif 1100#endif
961 { 1101 {
962 while (pipe (evpipe)) 1102 while (pipe (evpipe))
963 syserr ("(libev) error creating signal/async pipe"); 1103 ev_syserr ("(libev) error creating signal/async pipe");
964 1104
965 fd_intern (evpipe [0]); 1105 fd_intern (evpipe [0]);
966 fd_intern (evpipe [1]); 1106 fd_intern (evpipe [1]);
967 ev_io_set (&pipeev, evpipe [0], EV_READ); 1107 ev_io_set (&pipe_w, evpipe [0], EV_READ);
968 } 1108 }
969 1109
970 ev_io_start (EV_A_ &pipeev); 1110 ev_io_start (EV_A_ &pipe_w);
971 ev_unref (EV_A); /* watcher should not keep loop alive */ 1111 ev_unref (EV_A); /* watcher should not keep loop alive */
972 } 1112 }
973} 1113}
974 1114
975void inline_size 1115inline_size void
976evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1116evpipe_write (EV_P_ EV_ATOMIC_T *flag)
977{ 1117{
978 if (!*flag) 1118 if (!*flag)
979 { 1119 {
980 int old_errno = errno; /* save errno because write might clobber it */ 1120 int old_errno = errno; /* save errno because write might clobber it */
993 1133
994 errno = old_errno; 1134 errno = old_errno;
995 } 1135 }
996} 1136}
997 1137
1138/* called whenever the libev signal pipe */
1139/* got some events (signal, async) */
998static void 1140static void
999pipecb (EV_P_ ev_io *iow, int revents) 1141pipecb (EV_P_ ev_io *iow, int revents)
1000{ 1142{
1001#if EV_USE_EVENTFD 1143#if EV_USE_EVENTFD
1002 if (evfd >= 0) 1144 if (evfd >= 0)
1058ev_feed_signal_event (EV_P_ int signum) 1200ev_feed_signal_event (EV_P_ int signum)
1059{ 1201{
1060 WL w; 1202 WL w;
1061 1203
1062#if EV_MULTIPLICITY 1204#if EV_MULTIPLICITY
1063 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1205 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1064#endif 1206#endif
1065 1207
1066 --signum; 1208 --signum;
1067 1209
1068 if (signum < 0 || signum >= signalmax) 1210 if (signum < 0 || signum >= signalmax)
1084 1226
1085#ifndef WIFCONTINUED 1227#ifndef WIFCONTINUED
1086# define WIFCONTINUED(status) 0 1228# define WIFCONTINUED(status) 0
1087#endif 1229#endif
1088 1230
1089void inline_speed 1231/* handle a single child status event */
1232inline_speed void
1090child_reap (EV_P_ int chain, int pid, int status) 1233child_reap (EV_P_ int chain, int pid, int status)
1091{ 1234{
1092 ev_child *w; 1235 ev_child *w;
1093 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1236 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1094 1237
1107 1250
1108#ifndef WCONTINUED 1251#ifndef WCONTINUED
1109# define WCONTINUED 0 1252# define WCONTINUED 0
1110#endif 1253#endif
1111 1254
1255/* called on sigchld etc., calls waitpid */
1112static void 1256static void
1113childcb (EV_P_ ev_signal *sw, int revents) 1257childcb (EV_P_ ev_signal *sw, int revents)
1114{ 1258{
1115 int pid, status; 1259 int pid, status;
1116 1260
1197 /* kqueue is borked on everything but netbsd apparently */ 1341 /* kqueue is borked on everything but netbsd apparently */
1198 /* it usually doesn't work correctly on anything but sockets and pipes */ 1342 /* it usually doesn't work correctly on anything but sockets and pipes */
1199 flags &= ~EVBACKEND_KQUEUE; 1343 flags &= ~EVBACKEND_KQUEUE;
1200#endif 1344#endif
1201#ifdef __APPLE__ 1345#ifdef __APPLE__
1202 // flags &= ~EVBACKEND_KQUEUE; for documentation 1346 /* only select works correctly on that "unix-certified" platform */
1203 flags &= ~EVBACKEND_POLL; 1347 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1348 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1204#endif 1349#endif
1205 1350
1206 return flags; 1351 return flags;
1207} 1352}
1208 1353
1222ev_backend (EV_P) 1367ev_backend (EV_P)
1223{ 1368{
1224 return backend; 1369 return backend;
1225} 1370}
1226 1371
1372#if EV_MINIMAL < 2
1227unsigned int 1373unsigned int
1228ev_loop_count (EV_P) 1374ev_loop_count (EV_P)
1229{ 1375{
1230 return loop_count; 1376 return loop_count;
1231} 1377}
1232 1378
1379unsigned int
1380ev_loop_depth (EV_P)
1381{
1382 return loop_depth;
1383}
1384
1233void 1385void
1234ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1386ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1235{ 1387{
1236 io_blocktime = interval; 1388 io_blocktime = interval;
1237} 1389}
1240ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1392ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1241{ 1393{
1242 timeout_blocktime = interval; 1394 timeout_blocktime = interval;
1243} 1395}
1244 1396
1397void
1398ev_set_userdata (EV_P_ void *data)
1399{
1400 userdata = data;
1401}
1402
1403void *
1404ev_userdata (EV_P)
1405{
1406 return userdata;
1407}
1408
1409void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1410{
1411 invoke_cb = invoke_pending_cb;
1412}
1413
1414void ev_set_blocking_cb (EV_P_ void (*suspend_cb_)(EV_P), void (*resume_cb_)(EV_P))
1415{
1416 suspend_cb = suspend_cb_;
1417 resume_cb = resume_cb_;
1418}
1419#endif
1420
1421/* initialise a loop structure, must be zero-initialised */
1245static void noinline 1422static void noinline
1246loop_init (EV_P_ unsigned int flags) 1423loop_init (EV_P_ unsigned int flags)
1247{ 1424{
1248 if (!backend) 1425 if (!backend)
1249 { 1426 {
1427#if EV_USE_REALTIME
1428 if (!have_realtime)
1429 {
1430 struct timespec ts;
1431
1432 if (!clock_gettime (CLOCK_REALTIME, &ts))
1433 have_realtime = 1;
1434 }
1435#endif
1436
1250#if EV_USE_MONOTONIC 1437#if EV_USE_MONOTONIC
1438 if (!have_monotonic)
1251 { 1439 {
1252 struct timespec ts; 1440 struct timespec ts;
1441
1253 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1442 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1254 have_monotonic = 1; 1443 have_monotonic = 1;
1255 } 1444 }
1256#endif 1445#endif
1257 1446
1258 ev_rt_now = ev_time (); 1447 ev_rt_now = ev_time ();
1259 mn_now = get_clock (); 1448 mn_now = get_clock ();
1260 now_floor = mn_now; 1449 now_floor = mn_now;
1261 rtmn_diff = ev_rt_now - mn_now; 1450 rtmn_diff = ev_rt_now - mn_now;
1451#if EV_MINIMAL < 2
1452 invoke_cb = ev_invoke_pending;
1453#endif
1262 1454
1263 io_blocktime = 0.; 1455 io_blocktime = 0.;
1264 timeout_blocktime = 0.; 1456 timeout_blocktime = 0.;
1265 backend = 0; 1457 backend = 0;
1266 backend_fd = -1; 1458 backend_fd = -1;
1297#endif 1489#endif
1298#if EV_USE_SELECT 1490#if EV_USE_SELECT
1299 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1491 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1300#endif 1492#endif
1301 1493
1494 ev_prepare_init (&pending_w, pendingcb);
1495
1302 ev_init (&pipeev, pipecb); 1496 ev_init (&pipe_w, pipecb);
1303 ev_set_priority (&pipeev, EV_MAXPRI); 1497 ev_set_priority (&pipe_w, EV_MAXPRI);
1304 } 1498 }
1305} 1499}
1306 1500
1501/* free up a loop structure */
1307static void noinline 1502static void noinline
1308loop_destroy (EV_P) 1503loop_destroy (EV_P)
1309{ 1504{
1310 int i; 1505 int i;
1311 1506
1312 if (ev_is_active (&pipeev)) 1507 if (ev_is_active (&pipe_w))
1313 { 1508 {
1314 ev_ref (EV_A); /* signal watcher */ 1509 ev_ref (EV_A); /* signal watcher */
1315 ev_io_stop (EV_A_ &pipeev); 1510 ev_io_stop (EV_A_ &pipe_w);
1316 1511
1317#if EV_USE_EVENTFD 1512#if EV_USE_EVENTFD
1318 if (evfd >= 0) 1513 if (evfd >= 0)
1319 close (evfd); 1514 close (evfd);
1320#endif 1515#endif
1359 } 1554 }
1360 1555
1361 ev_free (anfds); anfdmax = 0; 1556 ev_free (anfds); anfdmax = 0;
1362 1557
1363 /* have to use the microsoft-never-gets-it-right macro */ 1558 /* have to use the microsoft-never-gets-it-right macro */
1559 array_free (rfeed, EMPTY);
1364 array_free (fdchange, EMPTY); 1560 array_free (fdchange, EMPTY);
1365 array_free (timer, EMPTY); 1561 array_free (timer, EMPTY);
1366#if EV_PERIODIC_ENABLE 1562#if EV_PERIODIC_ENABLE
1367 array_free (periodic, EMPTY); 1563 array_free (periodic, EMPTY);
1368#endif 1564#endif
1377 1573
1378 backend = 0; 1574 backend = 0;
1379} 1575}
1380 1576
1381#if EV_USE_INOTIFY 1577#if EV_USE_INOTIFY
1382void inline_size infy_fork (EV_P); 1578inline_size void infy_fork (EV_P);
1383#endif 1579#endif
1384 1580
1385void inline_size 1581inline_size void
1386loop_fork (EV_P) 1582loop_fork (EV_P)
1387{ 1583{
1388#if EV_USE_PORT 1584#if EV_USE_PORT
1389 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1585 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1390#endif 1586#endif
1396#endif 1592#endif
1397#if EV_USE_INOTIFY 1593#if EV_USE_INOTIFY
1398 infy_fork (EV_A); 1594 infy_fork (EV_A);
1399#endif 1595#endif
1400 1596
1401 if (ev_is_active (&pipeev)) 1597 if (ev_is_active (&pipe_w))
1402 { 1598 {
1403 /* this "locks" the handlers against writing to the pipe */ 1599 /* this "locks" the handlers against writing to the pipe */
1404 /* while we modify the fd vars */ 1600 /* while we modify the fd vars */
1405 gotsig = 1; 1601 gotsig = 1;
1406#if EV_ASYNC_ENABLE 1602#if EV_ASYNC_ENABLE
1407 gotasync = 1; 1603 gotasync = 1;
1408#endif 1604#endif
1409 1605
1410 ev_ref (EV_A); 1606 ev_ref (EV_A);
1411 ev_io_stop (EV_A_ &pipeev); 1607 ev_io_stop (EV_A_ &pipe_w);
1412 1608
1413#if EV_USE_EVENTFD 1609#if EV_USE_EVENTFD
1414 if (evfd >= 0) 1610 if (evfd >= 0)
1415 close (evfd); 1611 close (evfd);
1416#endif 1612#endif
1421 close (evpipe [1]); 1617 close (evpipe [1]);
1422 } 1618 }
1423 1619
1424 evpipe_init (EV_A); 1620 evpipe_init (EV_A);
1425 /* now iterate over everything, in case we missed something */ 1621 /* now iterate over everything, in case we missed something */
1426 pipecb (EV_A_ &pipeev, EV_READ); 1622 pipecb (EV_A_ &pipe_w, EV_READ);
1427 } 1623 }
1428 1624
1429 postfork = 0; 1625 postfork = 0;
1430} 1626}
1431 1627
1432#if EV_MULTIPLICITY 1628#if EV_MULTIPLICITY
1629
1433struct ev_loop * 1630struct ev_loop *
1434ev_loop_new (unsigned int flags) 1631ev_loop_new (unsigned int flags)
1435{ 1632{
1436 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1633 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1437 1634
1454 1651
1455void 1652void
1456ev_loop_fork (EV_P) 1653ev_loop_fork (EV_P)
1457{ 1654{
1458 postfork = 1; /* must be in line with ev_default_fork */ 1655 postfork = 1; /* must be in line with ev_default_fork */
1656}
1657#endif /* multiplicity */
1658
1659#if EV_VERIFY
1660static void noinline
1661verify_watcher (EV_P_ W w)
1662{
1663 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1664
1665 if (w->pending)
1666 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1667}
1668
1669static void noinline
1670verify_heap (EV_P_ ANHE *heap, int N)
1671{
1672 int i;
1673
1674 for (i = HEAP0; i < N + HEAP0; ++i)
1675 {
1676 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1677 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1678 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1679
1680 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1681 }
1682}
1683
1684static void noinline
1685array_verify (EV_P_ W *ws, int cnt)
1686{
1687 while (cnt--)
1688 {
1689 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1690 verify_watcher (EV_A_ ws [cnt]);
1691 }
1692}
1693#endif
1694
1695#if EV_MINIMAL < 2
1696void
1697ev_loop_verify (EV_P)
1698{
1699#if EV_VERIFY
1700 int i;
1701 WL w;
1702
1703 assert (activecnt >= -1);
1704
1705 assert (fdchangemax >= fdchangecnt);
1706 for (i = 0; i < fdchangecnt; ++i)
1707 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1708
1709 assert (anfdmax >= 0);
1710 for (i = 0; i < anfdmax; ++i)
1711 for (w = anfds [i].head; w; w = w->next)
1712 {
1713 verify_watcher (EV_A_ (W)w);
1714 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1715 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1716 }
1717
1718 assert (timermax >= timercnt);
1719 verify_heap (EV_A_ timers, timercnt);
1720
1721#if EV_PERIODIC_ENABLE
1722 assert (periodicmax >= periodiccnt);
1723 verify_heap (EV_A_ periodics, periodiccnt);
1724#endif
1725
1726 for (i = NUMPRI; i--; )
1727 {
1728 assert (pendingmax [i] >= pendingcnt [i]);
1729#if EV_IDLE_ENABLE
1730 assert (idleall >= 0);
1731 assert (idlemax [i] >= idlecnt [i]);
1732 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1733#endif
1734 }
1735
1736#if EV_FORK_ENABLE
1737 assert (forkmax >= forkcnt);
1738 array_verify (EV_A_ (W *)forks, forkcnt);
1739#endif
1740
1741#if EV_ASYNC_ENABLE
1742 assert (asyncmax >= asynccnt);
1743 array_verify (EV_A_ (W *)asyncs, asynccnt);
1744#endif
1745
1746 assert (preparemax >= preparecnt);
1747 array_verify (EV_A_ (W *)prepares, preparecnt);
1748
1749 assert (checkmax >= checkcnt);
1750 array_verify (EV_A_ (W *)checks, checkcnt);
1751
1752# if 0
1753 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1754 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1755# endif
1756#endif
1459} 1757}
1460#endif 1758#endif
1461 1759
1462#if EV_MULTIPLICITY 1760#if EV_MULTIPLICITY
1463struct ev_loop * 1761struct ev_loop *
1498{ 1796{
1499#if EV_MULTIPLICITY 1797#if EV_MULTIPLICITY
1500 struct ev_loop *loop = ev_default_loop_ptr; 1798 struct ev_loop *loop = ev_default_loop_ptr;
1501#endif 1799#endif
1502 1800
1801 ev_default_loop_ptr = 0;
1802
1503#ifndef _WIN32 1803#ifndef _WIN32
1504 ev_ref (EV_A); /* child watcher */ 1804 ev_ref (EV_A); /* child watcher */
1505 ev_signal_stop (EV_A_ &childev); 1805 ev_signal_stop (EV_A_ &childev);
1506#endif 1806#endif
1507 1807
1513{ 1813{
1514#if EV_MULTIPLICITY 1814#if EV_MULTIPLICITY
1515 struct ev_loop *loop = ev_default_loop_ptr; 1815 struct ev_loop *loop = ev_default_loop_ptr;
1516#endif 1816#endif
1517 1817
1518 if (backend)
1519 postfork = 1; /* must be in line with ev_loop_fork */ 1818 postfork = 1; /* must be in line with ev_loop_fork */
1520} 1819}
1521 1820
1522/*****************************************************************************/ 1821/*****************************************************************************/
1523 1822
1524void 1823void
1525ev_invoke (EV_P_ void *w, int revents) 1824ev_invoke (EV_P_ void *w, int revents)
1526{ 1825{
1527 EV_CB_INVOKE ((W)w, revents); 1826 EV_CB_INVOKE ((W)w, revents);
1528} 1827}
1529 1828
1530void inline_speed 1829void noinline
1531call_pending (EV_P) 1830ev_invoke_pending (EV_P)
1532{ 1831{
1533 int pri; 1832 int pri;
1534 1833
1535 for (pri = NUMPRI; pri--; ) 1834 for (pri = NUMPRI; pri--; )
1536 while (pendingcnt [pri]) 1835 while (pendingcnt [pri])
1537 { 1836 {
1538 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1837 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1539 1838
1540 if (expect_true (p->w))
1541 {
1542 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1839 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1840 /* ^ this is no longer true, as pending_w could be here */
1543 1841
1544 p->w->pending = 0; 1842 p->w->pending = 0;
1545 EV_CB_INVOKE (p->w, p->events); 1843 EV_CB_INVOKE (p->w, p->events);
1546 } 1844 EV_FREQUENT_CHECK;
1547 } 1845 }
1548} 1846}
1549 1847
1550#if EV_IDLE_ENABLE 1848#if EV_IDLE_ENABLE
1551void inline_size 1849/* make idle watchers pending. this handles the "call-idle */
1850/* only when higher priorities are idle" logic */
1851inline_size void
1552idle_reify (EV_P) 1852idle_reify (EV_P)
1553{ 1853{
1554 if (expect_false (idleall)) 1854 if (expect_false (idleall))
1555 { 1855 {
1556 int pri; 1856 int pri;
1568 } 1868 }
1569 } 1869 }
1570} 1870}
1571#endif 1871#endif
1572 1872
1573void inline_size 1873/* make timers pending */
1874inline_size void
1574timers_reify (EV_P) 1875timers_reify (EV_P)
1575{ 1876{
1877 EV_FREQUENT_CHECK;
1878
1576 while (timercnt && ev_at (timers [HEAP0]) <= mn_now) 1879 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1577 { 1880 {
1578 ev_timer *w = (ev_timer *)timers [HEAP0]; 1881 do
1579
1580 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1581
1582 /* first reschedule or stop timer */
1583 if (w->repeat)
1584 { 1882 {
1883 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1884
1885 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1886
1887 /* first reschedule or stop timer */
1888 if (w->repeat)
1889 {
1890 ev_at (w) += w->repeat;
1891 if (ev_at (w) < mn_now)
1892 ev_at (w) = mn_now;
1893
1585 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1894 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1586 1895
1587 ev_at (w) += w->repeat; 1896 ANHE_at_cache (timers [HEAP0]);
1588 if (ev_at (w) < mn_now)
1589 ev_at (w) = mn_now;
1590
1591 downheap (timers, timercnt, HEAP0); 1897 downheap (timers, timercnt, HEAP0);
1898 }
1899 else
1900 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1901
1902 EV_FREQUENT_CHECK;
1903 feed_reverse (EV_A_ (W)w);
1592 } 1904 }
1593 else 1905 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1594 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1595 1906
1596 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1907 feed_reverse_done (EV_A_ EV_TIMEOUT);
1597 } 1908 }
1598} 1909}
1599 1910
1600#if EV_PERIODIC_ENABLE 1911#if EV_PERIODIC_ENABLE
1601void inline_size 1912/* make periodics pending */
1913inline_size void
1602periodics_reify (EV_P) 1914periodics_reify (EV_P)
1603{ 1915{
1916 EV_FREQUENT_CHECK;
1917
1604 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now) 1918 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1605 { 1919 {
1606 ev_periodic *w = (ev_periodic *)periodics [HEAP0]; 1920 int feed_count = 0;
1607 1921
1608 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1922 do
1609
1610 /* first reschedule or stop timer */
1611 if (w->reschedule_cb)
1612 { 1923 {
1924 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1925
1926 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1927
1928 /* first reschedule or stop timer */
1929 if (w->reschedule_cb)
1930 {
1613 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1931 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1932
1614 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 1933 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1934
1935 ANHE_at_cache (periodics [HEAP0]);
1615 downheap (periodics, periodiccnt, 1); 1936 downheap (periodics, periodiccnt, HEAP0);
1937 }
1938 else if (w->interval)
1939 {
1940 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1941 /* if next trigger time is not sufficiently in the future, put it there */
1942 /* this might happen because of floating point inexactness */
1943 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1944 {
1945 ev_at (w) += w->interval;
1946
1947 /* if interval is unreasonably low we might still have a time in the past */
1948 /* so correct this. this will make the periodic very inexact, but the user */
1949 /* has effectively asked to get triggered more often than possible */
1950 if (ev_at (w) < ev_rt_now)
1951 ev_at (w) = ev_rt_now;
1952 }
1953
1954 ANHE_at_cache (periodics [HEAP0]);
1955 downheap (periodics, periodiccnt, HEAP0);
1956 }
1957 else
1958 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1959
1960 EV_FREQUENT_CHECK;
1961 feed_reverse (EV_A_ (W)w);
1616 } 1962 }
1617 else if (w->interval) 1963 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1618 {
1619 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1620 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1621 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1622 downheap (periodics, periodiccnt, HEAP0);
1623 }
1624 else
1625 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1626 1964
1627 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1965 feed_reverse_done (EV_A_ EV_PERIODIC);
1628 } 1966 }
1629} 1967}
1630 1968
1969/* simply recalculate all periodics */
1970/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1631static void noinline 1971static void noinline
1632periodics_reschedule (EV_P) 1972periodics_reschedule (EV_P)
1633{ 1973{
1634 int i; 1974 int i;
1635 1975
1636 /* adjust periodics after time jump */ 1976 /* adjust periodics after time jump */
1637 for (i = 1; i <= periodiccnt; ++i) 1977 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1638 { 1978 {
1639 ev_periodic *w = (ev_periodic *)periodics [i]; 1979 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1640 1980
1641 if (w->reschedule_cb) 1981 if (w->reschedule_cb)
1642 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1982 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1643 else if (w->interval) 1983 else if (w->interval)
1644 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1984 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1985
1986 ANHE_at_cache (periodics [i]);
1987 }
1988
1989 reheap (periodics, periodiccnt);
1990}
1991#endif
1992
1993/* adjust all timers by a given offset */
1994static void noinline
1995timers_reschedule (EV_P_ ev_tstamp adjust)
1996{
1997 int i;
1998
1999 for (i = 0; i < timercnt; ++i)
1645 } 2000 {
1646 2001 ANHE *he = timers + i + HEAP0;
1647 /* now rebuild the heap */ 2002 ANHE_w (*he)->at += adjust;
1648 for (i = periodiccnt >> 1; --i; ) 2003 ANHE_at_cache (*he);
1649 downheap (periodics, periodiccnt, i + HEAP0); 2004 }
1650} 2005}
1651#endif
1652 2006
1653void inline_speed 2007/* fetch new monotonic and realtime times from the kernel */
2008/* also detetc if there was a timejump, and act accordingly */
2009inline_speed void
1654time_update (EV_P_ ev_tstamp max_block) 2010time_update (EV_P_ ev_tstamp max_block)
1655{ 2011{
1656 int i;
1657
1658#if EV_USE_MONOTONIC 2012#if EV_USE_MONOTONIC
1659 if (expect_true (have_monotonic)) 2013 if (expect_true (have_monotonic))
1660 { 2014 {
2015 int i;
1661 ev_tstamp odiff = rtmn_diff; 2016 ev_tstamp odiff = rtmn_diff;
1662 2017
1663 mn_now = get_clock (); 2018 mn_now = get_clock ();
1664 2019
1665 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2020 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1691 ev_rt_now = ev_time (); 2046 ev_rt_now = ev_time ();
1692 mn_now = get_clock (); 2047 mn_now = get_clock ();
1693 now_floor = mn_now; 2048 now_floor = mn_now;
1694 } 2049 }
1695 2050
2051 /* no timer adjustment, as the monotonic clock doesn't jump */
2052 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1696# if EV_PERIODIC_ENABLE 2053# if EV_PERIODIC_ENABLE
1697 periodics_reschedule (EV_A); 2054 periodics_reschedule (EV_A);
1698# endif 2055# endif
1699 /* no timer adjustment, as the monotonic clock doesn't jump */
1700 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1701 } 2056 }
1702 else 2057 else
1703#endif 2058#endif
1704 { 2059 {
1705 ev_rt_now = ev_time (); 2060 ev_rt_now = ev_time ();
1706 2061
1707 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2062 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1708 { 2063 {
2064 /* adjust timers. this is easy, as the offset is the same for all of them */
2065 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1709#if EV_PERIODIC_ENABLE 2066#if EV_PERIODIC_ENABLE
1710 periodics_reschedule (EV_A); 2067 periodics_reschedule (EV_A);
1711#endif 2068#endif
1712 /* adjust timers. this is easy, as the offset is the same for all of them */
1713 for (i = 1; i <= timercnt; ++i)
1714 ev_at (timers [i]) += ev_rt_now - mn_now;
1715 } 2069 }
1716 2070
1717 mn_now = ev_rt_now; 2071 mn_now = ev_rt_now;
1718 } 2072 }
1719} 2073}
1720 2074
1721void 2075void
1722ev_ref (EV_P)
1723{
1724 ++activecnt;
1725}
1726
1727void
1728ev_unref (EV_P)
1729{
1730 --activecnt;
1731}
1732
1733static int loop_done;
1734
1735void
1736ev_loop (EV_P_ int flags) 2076ev_loop (EV_P_ int flags)
1737{ 2077{
2078#if EV_MINIMAL < 2
2079 ++loop_depth;
2080#endif
2081
1738 loop_done = EVUNLOOP_CANCEL; 2082 loop_done = EVUNLOOP_CANCEL;
1739 2083
1740 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2084 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1741 2085
1742 do 2086 do
1743 { 2087 {
2088#if EV_VERIFY >= 2
2089 ev_loop_verify (EV_A);
2090#endif
2091
1744#ifndef _WIN32 2092#ifndef _WIN32
1745 if (expect_false (curpid)) /* penalise the forking check even more */ 2093 if (expect_false (curpid)) /* penalise the forking check even more */
1746 if (expect_false (getpid () != curpid)) 2094 if (expect_false (getpid () != curpid))
1747 { 2095 {
1748 curpid = getpid (); 2096 curpid = getpid ();
1754 /* we might have forked, so queue fork handlers */ 2102 /* we might have forked, so queue fork handlers */
1755 if (expect_false (postfork)) 2103 if (expect_false (postfork))
1756 if (forkcnt) 2104 if (forkcnt)
1757 { 2105 {
1758 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2106 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1759 call_pending (EV_A); 2107 EV_INVOKE_PENDING;
1760 } 2108 }
1761#endif 2109#endif
1762 2110
1763 /* queue prepare watchers (and execute them) */ 2111 /* queue prepare watchers (and execute them) */
1764 if (expect_false (preparecnt)) 2112 if (expect_false (preparecnt))
1765 { 2113 {
1766 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2114 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1767 call_pending (EV_A); 2115 EV_INVOKE_PENDING;
1768 } 2116 }
1769
1770 if (expect_false (!activecnt))
1771 break;
1772 2117
1773 /* we might have forked, so reify kernel state if necessary */ 2118 /* we might have forked, so reify kernel state if necessary */
1774 if (expect_false (postfork)) 2119 if (expect_false (postfork))
1775 loop_fork (EV_A); 2120 loop_fork (EV_A);
1776 2121
1782 ev_tstamp waittime = 0.; 2127 ev_tstamp waittime = 0.;
1783 ev_tstamp sleeptime = 0.; 2128 ev_tstamp sleeptime = 0.;
1784 2129
1785 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2130 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1786 { 2131 {
2132 /* remember old timestamp for io_blocktime calculation */
2133 ev_tstamp prev_mn_now = mn_now;
2134
1787 /* update time to cancel out callback processing overhead */ 2135 /* update time to cancel out callback processing overhead */
1788 time_update (EV_A_ 1e100); 2136 time_update (EV_A_ 1e100);
1789 2137
1790 waittime = MAX_BLOCKTIME; 2138 waittime = MAX_BLOCKTIME;
1791 2139
1792 if (timercnt) 2140 if (timercnt)
1793 { 2141 {
1794 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge; 2142 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1795 if (waittime > to) waittime = to; 2143 if (waittime > to) waittime = to;
1796 } 2144 }
1797 2145
1798#if EV_PERIODIC_ENABLE 2146#if EV_PERIODIC_ENABLE
1799 if (periodiccnt) 2147 if (periodiccnt)
1800 { 2148 {
1801 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2149 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1802 if (waittime > to) waittime = to; 2150 if (waittime > to) waittime = to;
1803 } 2151 }
1804#endif 2152#endif
1805 2153
2154 /* don't let timeouts decrease the waittime below timeout_blocktime */
1806 if (expect_false (waittime < timeout_blocktime)) 2155 if (expect_false (waittime < timeout_blocktime))
1807 waittime = timeout_blocktime; 2156 waittime = timeout_blocktime;
1808 2157
1809 sleeptime = waittime - backend_fudge; 2158 /* extra check because io_blocktime is commonly 0 */
1810
1811 if (expect_true (sleeptime > io_blocktime)) 2159 if (expect_false (io_blocktime))
1812 sleeptime = io_blocktime;
1813
1814 if (sleeptime)
1815 { 2160 {
2161 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2162
2163 if (sleeptime > waittime - backend_fudge)
2164 sleeptime = waittime - backend_fudge;
2165
2166 if (expect_true (sleeptime > 0.))
2167 {
1816 ev_sleep (sleeptime); 2168 ev_sleep (sleeptime);
1817 waittime -= sleeptime; 2169 waittime -= sleeptime;
2170 }
1818 } 2171 }
1819 } 2172 }
1820 2173
2174#if EV_MINIMAL < 2
1821 ++loop_count; 2175 ++loop_count;
2176#endif
1822 backend_poll (EV_A_ waittime); 2177 backend_poll (EV_A_ waittime);
1823 2178
1824 /* update ev_rt_now, do magic */ 2179 /* update ev_rt_now, do magic */
1825 time_update (EV_A_ waittime + sleeptime); 2180 time_update (EV_A_ waittime + sleeptime);
1826 } 2181 }
1838 2193
1839 /* queue check watchers, to be executed first */ 2194 /* queue check watchers, to be executed first */
1840 if (expect_false (checkcnt)) 2195 if (expect_false (checkcnt))
1841 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2196 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1842 2197
1843 call_pending (EV_A); 2198 EV_INVOKE_PENDING;
1844 } 2199 }
1845 while (expect_true ( 2200 while (expect_true (
1846 activecnt 2201 activecnt
1847 && !loop_done 2202 && !loop_done
1848 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2203 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1849 )); 2204 ));
1850 2205
1851 if (loop_done == EVUNLOOP_ONE) 2206 if (loop_done == EVUNLOOP_ONE)
1852 loop_done = EVUNLOOP_CANCEL; 2207 loop_done = EVUNLOOP_CANCEL;
2208
2209#if EV_MINIMAL < 2
2210 --loop_depth;
2211#endif
1853} 2212}
1854 2213
1855void 2214void
1856ev_unloop (EV_P_ int how) 2215ev_unloop (EV_P_ int how)
1857{ 2216{
1858 loop_done = how; 2217 loop_done = how;
1859} 2218}
1860 2219
2220void
2221ev_ref (EV_P)
2222{
2223 ++activecnt;
2224}
2225
2226void
2227ev_unref (EV_P)
2228{
2229 --activecnt;
2230}
2231
2232void
2233ev_now_update (EV_P)
2234{
2235 time_update (EV_A_ 1e100);
2236}
2237
2238void
2239ev_suspend (EV_P)
2240{
2241 ev_now_update (EV_A);
2242}
2243
2244void
2245ev_resume (EV_P)
2246{
2247 ev_tstamp mn_prev = mn_now;
2248
2249 ev_now_update (EV_A);
2250 timers_reschedule (EV_A_ mn_now - mn_prev);
2251#if EV_PERIODIC_ENABLE
2252 /* TODO: really do this? */
2253 periodics_reschedule (EV_A);
2254#endif
2255}
2256
1861/*****************************************************************************/ 2257/*****************************************************************************/
2258/* singly-linked list management, used when the expected list length is short */
1862 2259
1863void inline_size 2260inline_size void
1864wlist_add (WL *head, WL elem) 2261wlist_add (WL *head, WL elem)
1865{ 2262{
1866 elem->next = *head; 2263 elem->next = *head;
1867 *head = elem; 2264 *head = elem;
1868} 2265}
1869 2266
1870void inline_size 2267inline_size void
1871wlist_del (WL *head, WL elem) 2268wlist_del (WL *head, WL elem)
1872{ 2269{
1873 while (*head) 2270 while (*head)
1874 { 2271 {
1875 if (*head == elem) 2272 if (*head == elem)
1880 2277
1881 head = &(*head)->next; 2278 head = &(*head)->next;
1882 } 2279 }
1883} 2280}
1884 2281
1885void inline_speed 2282/* internal, faster, version of ev_clear_pending */
2283inline_speed void
1886clear_pending (EV_P_ W w) 2284clear_pending (EV_P_ W w)
1887{ 2285{
1888 if (w->pending) 2286 if (w->pending)
1889 { 2287 {
1890 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1891 w->pending = 0; 2289 w->pending = 0;
1892 } 2290 }
1893} 2291}
1894 2292
1895int 2293int
1899 int pending = w_->pending; 2297 int pending = w_->pending;
1900 2298
1901 if (expect_true (pending)) 2299 if (expect_true (pending))
1902 { 2300 {
1903 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2301 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2302 p->w = (W)&pending_w;
1904 w_->pending = 0; 2303 w_->pending = 0;
1905 p->w = 0;
1906 return p->events; 2304 return p->events;
1907 } 2305 }
1908 else 2306 else
1909 return 0; 2307 return 0;
1910} 2308}
1911 2309
1912void inline_size 2310inline_size void
1913pri_adjust (EV_P_ W w) 2311pri_adjust (EV_P_ W w)
1914{ 2312{
1915 int pri = w->priority; 2313 int pri = ev_priority (w);
1916 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2314 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1917 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2315 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1918 w->priority = pri; 2316 ev_set_priority (w, pri);
1919} 2317}
1920 2318
1921void inline_speed 2319inline_speed void
1922ev_start (EV_P_ W w, int active) 2320ev_start (EV_P_ W w, int active)
1923{ 2321{
1924 pri_adjust (EV_A_ w); 2322 pri_adjust (EV_A_ w);
1925 w->active = active; 2323 w->active = active;
1926 ev_ref (EV_A); 2324 ev_ref (EV_A);
1927} 2325}
1928 2326
1929void inline_size 2327inline_size void
1930ev_stop (EV_P_ W w) 2328ev_stop (EV_P_ W w)
1931{ 2329{
1932 ev_unref (EV_A); 2330 ev_unref (EV_A);
1933 w->active = 0; 2331 w->active = 0;
1934} 2332}
1941 int fd = w->fd; 2339 int fd = w->fd;
1942 2340
1943 if (expect_false (ev_is_active (w))) 2341 if (expect_false (ev_is_active (w)))
1944 return; 2342 return;
1945 2343
1946 assert (("ev_io_start called with negative fd", fd >= 0)); 2344 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2345 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2346
2347 EV_FREQUENT_CHECK;
1947 2348
1948 ev_start (EV_A_ (W)w, 1); 2349 ev_start (EV_A_ (W)w, 1);
1949 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2350 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1950 wlist_add (&anfds[fd].head, (WL)w); 2351 wlist_add (&anfds[fd].head, (WL)w);
1951 2352
1952 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2353 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1953 w->events &= ~EV_IOFDSET; 2354 w->events &= ~EV__IOFDSET;
2355
2356 EV_FREQUENT_CHECK;
1954} 2357}
1955 2358
1956void noinline 2359void noinline
1957ev_io_stop (EV_P_ ev_io *w) 2360ev_io_stop (EV_P_ ev_io *w)
1958{ 2361{
1959 clear_pending (EV_A_ (W)w); 2362 clear_pending (EV_A_ (W)w);
1960 if (expect_false (!ev_is_active (w))) 2363 if (expect_false (!ev_is_active (w)))
1961 return; 2364 return;
1962 2365
1963 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2366 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2367
2368 EV_FREQUENT_CHECK;
1964 2369
1965 wlist_del (&anfds[w->fd].head, (WL)w); 2370 wlist_del (&anfds[w->fd].head, (WL)w);
1966 ev_stop (EV_A_ (W)w); 2371 ev_stop (EV_A_ (W)w);
1967 2372
1968 fd_change (EV_A_ w->fd, 1); 2373 fd_change (EV_A_ w->fd, 1);
2374
2375 EV_FREQUENT_CHECK;
1969} 2376}
1970 2377
1971void noinline 2378void noinline
1972ev_timer_start (EV_P_ ev_timer *w) 2379ev_timer_start (EV_P_ ev_timer *w)
1973{ 2380{
1974 if (expect_false (ev_is_active (w))) 2381 if (expect_false (ev_is_active (w)))
1975 return; 2382 return;
1976 2383
1977 ev_at (w) += mn_now; 2384 ev_at (w) += mn_now;
1978 2385
1979 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2386 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1980 2387
2388 EV_FREQUENT_CHECK;
2389
2390 ++timercnt;
1981 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2391 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1982 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2); 2392 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1983 timers [ev_active (w)] = (WT)w; 2393 ANHE_w (timers [ev_active (w)]) = (WT)w;
2394 ANHE_at_cache (timers [ev_active (w)]);
1984 upheap (timers, ev_active (w)); 2395 upheap (timers, ev_active (w));
1985 2396
2397 EV_FREQUENT_CHECK;
2398
1986 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2399 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1987} 2400}
1988 2401
1989void noinline 2402void noinline
1990ev_timer_stop (EV_P_ ev_timer *w) 2403ev_timer_stop (EV_P_ ev_timer *w)
1991{ 2404{
1992 clear_pending (EV_A_ (W)w); 2405 clear_pending (EV_A_ (W)w);
1993 if (expect_false (!ev_is_active (w))) 2406 if (expect_false (!ev_is_active (w)))
1994 return; 2407 return;
1995 2408
2409 EV_FREQUENT_CHECK;
2410
1996 { 2411 {
1997 int active = ev_active (w); 2412 int active = ev_active (w);
1998 2413
1999 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2414 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2000 2415
2416 --timercnt;
2417
2001 if (expect_true (active < timercnt + HEAP0 - 1)) 2418 if (expect_true (active < timercnt + HEAP0))
2002 { 2419 {
2003 timers [active] = timers [timercnt + HEAP0 - 1]; 2420 timers [active] = timers [timercnt + HEAP0];
2004 adjustheap (timers, timercnt, active); 2421 adjustheap (timers, timercnt, active);
2005 } 2422 }
2006
2007 --timercnt;
2008 } 2423 }
2424
2425 EV_FREQUENT_CHECK;
2009 2426
2010 ev_at (w) -= mn_now; 2427 ev_at (w) -= mn_now;
2011 2428
2012 ev_stop (EV_A_ (W)w); 2429 ev_stop (EV_A_ (W)w);
2013} 2430}
2014 2431
2015void noinline 2432void noinline
2016ev_timer_again (EV_P_ ev_timer *w) 2433ev_timer_again (EV_P_ ev_timer *w)
2017{ 2434{
2435 EV_FREQUENT_CHECK;
2436
2018 if (ev_is_active (w)) 2437 if (ev_is_active (w))
2019 { 2438 {
2020 if (w->repeat) 2439 if (w->repeat)
2021 { 2440 {
2022 ev_at (w) = mn_now + w->repeat; 2441 ev_at (w) = mn_now + w->repeat;
2442 ANHE_at_cache (timers [ev_active (w)]);
2023 adjustheap (timers, timercnt, ev_active (w)); 2443 adjustheap (timers, timercnt, ev_active (w));
2024 } 2444 }
2025 else 2445 else
2026 ev_timer_stop (EV_A_ w); 2446 ev_timer_stop (EV_A_ w);
2027 } 2447 }
2028 else if (w->repeat) 2448 else if (w->repeat)
2029 { 2449 {
2030 ev_at (w) = w->repeat; 2450 ev_at (w) = w->repeat;
2031 ev_timer_start (EV_A_ w); 2451 ev_timer_start (EV_A_ w);
2032 } 2452 }
2453
2454 EV_FREQUENT_CHECK;
2033} 2455}
2034 2456
2035#if EV_PERIODIC_ENABLE 2457#if EV_PERIODIC_ENABLE
2036void noinline 2458void noinline
2037ev_periodic_start (EV_P_ ev_periodic *w) 2459ev_periodic_start (EV_P_ ev_periodic *w)
2041 2463
2042 if (w->reschedule_cb) 2464 if (w->reschedule_cb)
2043 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2465 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2044 else if (w->interval) 2466 else if (w->interval)
2045 { 2467 {
2046 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2468 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2047 /* this formula differs from the one in periodic_reify because we do not always round up */ 2469 /* this formula differs from the one in periodic_reify because we do not always round up */
2048 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2470 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2049 } 2471 }
2050 else 2472 else
2051 ev_at (w) = w->offset; 2473 ev_at (w) = w->offset;
2052 2474
2475 EV_FREQUENT_CHECK;
2476
2477 ++periodiccnt;
2053 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2478 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2054 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2); 2479 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2055 periodics [ev_active (w)] = (WT)w; 2480 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2481 ANHE_at_cache (periodics [ev_active (w)]);
2056 upheap (periodics, ev_active (w)); 2482 upheap (periodics, ev_active (w));
2057 2483
2484 EV_FREQUENT_CHECK;
2485
2058 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2486 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2059} 2487}
2060 2488
2061void noinline 2489void noinline
2062ev_periodic_stop (EV_P_ ev_periodic *w) 2490ev_periodic_stop (EV_P_ ev_periodic *w)
2063{ 2491{
2064 clear_pending (EV_A_ (W)w); 2492 clear_pending (EV_A_ (W)w);
2065 if (expect_false (!ev_is_active (w))) 2493 if (expect_false (!ev_is_active (w)))
2066 return; 2494 return;
2067 2495
2496 EV_FREQUENT_CHECK;
2497
2068 { 2498 {
2069 int active = ev_active (w); 2499 int active = ev_active (w);
2070 2500
2071 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2501 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2072 2502
2503 --periodiccnt;
2504
2073 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2505 if (expect_true (active < periodiccnt + HEAP0))
2074 { 2506 {
2075 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2507 periodics [active] = periodics [periodiccnt + HEAP0];
2076 adjustheap (periodics, periodiccnt, active); 2508 adjustheap (periodics, periodiccnt, active);
2077 } 2509 }
2078
2079 --periodiccnt;
2080 } 2510 }
2511
2512 EV_FREQUENT_CHECK;
2081 2513
2082 ev_stop (EV_A_ (W)w); 2514 ev_stop (EV_A_ (W)w);
2083} 2515}
2084 2516
2085void noinline 2517void noinline
2097 2529
2098void noinline 2530void noinline
2099ev_signal_start (EV_P_ ev_signal *w) 2531ev_signal_start (EV_P_ ev_signal *w)
2100{ 2532{
2101#if EV_MULTIPLICITY 2533#if EV_MULTIPLICITY
2102 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2534 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2103#endif 2535#endif
2104 if (expect_false (ev_is_active (w))) 2536 if (expect_false (ev_is_active (w)))
2105 return; 2537 return;
2106 2538
2107 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2539 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2108 2540
2109 evpipe_init (EV_A); 2541 evpipe_init (EV_A);
2542
2543 EV_FREQUENT_CHECK;
2110 2544
2111 { 2545 {
2112#ifndef _WIN32 2546#ifndef _WIN32
2113 sigset_t full, prev; 2547 sigset_t full, prev;
2114 sigfillset (&full); 2548 sigfillset (&full);
2115 sigprocmask (SIG_SETMASK, &full, &prev); 2549 sigprocmask (SIG_SETMASK, &full, &prev);
2116#endif 2550#endif
2117 2551
2118 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2552 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2119 2553
2120#ifndef _WIN32 2554#ifndef _WIN32
2121 sigprocmask (SIG_SETMASK, &prev, 0); 2555 sigprocmask (SIG_SETMASK, &prev, 0);
2122#endif 2556#endif
2123 } 2557 }
2135 sigfillset (&sa.sa_mask); 2569 sigfillset (&sa.sa_mask);
2136 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2570 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2137 sigaction (w->signum, &sa, 0); 2571 sigaction (w->signum, &sa, 0);
2138#endif 2572#endif
2139 } 2573 }
2574
2575 EV_FREQUENT_CHECK;
2140} 2576}
2141 2577
2142void noinline 2578void noinline
2143ev_signal_stop (EV_P_ ev_signal *w) 2579ev_signal_stop (EV_P_ ev_signal *w)
2144{ 2580{
2145 clear_pending (EV_A_ (W)w); 2581 clear_pending (EV_A_ (W)w);
2146 if (expect_false (!ev_is_active (w))) 2582 if (expect_false (!ev_is_active (w)))
2147 return; 2583 return;
2148 2584
2585 EV_FREQUENT_CHECK;
2586
2149 wlist_del (&signals [w->signum - 1].head, (WL)w); 2587 wlist_del (&signals [w->signum - 1].head, (WL)w);
2150 ev_stop (EV_A_ (W)w); 2588 ev_stop (EV_A_ (W)w);
2151 2589
2152 if (!signals [w->signum - 1].head) 2590 if (!signals [w->signum - 1].head)
2153 signal (w->signum, SIG_DFL); 2591 signal (w->signum, SIG_DFL);
2592
2593 EV_FREQUENT_CHECK;
2154} 2594}
2155 2595
2156void 2596void
2157ev_child_start (EV_P_ ev_child *w) 2597ev_child_start (EV_P_ ev_child *w)
2158{ 2598{
2159#if EV_MULTIPLICITY 2599#if EV_MULTIPLICITY
2160 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2600 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2161#endif 2601#endif
2162 if (expect_false (ev_is_active (w))) 2602 if (expect_false (ev_is_active (w)))
2163 return; 2603 return;
2164 2604
2605 EV_FREQUENT_CHECK;
2606
2165 ev_start (EV_A_ (W)w, 1); 2607 ev_start (EV_A_ (W)w, 1);
2166 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2608 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2609
2610 EV_FREQUENT_CHECK;
2167} 2611}
2168 2612
2169void 2613void
2170ev_child_stop (EV_P_ ev_child *w) 2614ev_child_stop (EV_P_ ev_child *w)
2171{ 2615{
2172 clear_pending (EV_A_ (W)w); 2616 clear_pending (EV_A_ (W)w);
2173 if (expect_false (!ev_is_active (w))) 2617 if (expect_false (!ev_is_active (w)))
2174 return; 2618 return;
2175 2619
2620 EV_FREQUENT_CHECK;
2621
2176 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2622 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2177 ev_stop (EV_A_ (W)w); 2623 ev_stop (EV_A_ (W)w);
2624
2625 EV_FREQUENT_CHECK;
2178} 2626}
2179 2627
2180#if EV_STAT_ENABLE 2628#if EV_STAT_ENABLE
2181 2629
2182# ifdef _WIN32 2630# ifdef _WIN32
2183# undef lstat 2631# undef lstat
2184# define lstat(a,b) _stati64 (a,b) 2632# define lstat(a,b) _stati64 (a,b)
2185# endif 2633# endif
2186 2634
2187#define DEF_STAT_INTERVAL 5.0074891 2635#define DEF_STAT_INTERVAL 5.0074891
2636#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2188#define MIN_STAT_INTERVAL 0.1074891 2637#define MIN_STAT_INTERVAL 0.1074891
2189 2638
2190static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2639static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2191 2640
2192#if EV_USE_INOTIFY 2641#if EV_USE_INOTIFY
2193# define EV_INOTIFY_BUFSIZE 8192 2642# define EV_INOTIFY_BUFSIZE 8192
2197{ 2646{
2198 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2647 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2199 2648
2200 if (w->wd < 0) 2649 if (w->wd < 0)
2201 { 2650 {
2651 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2202 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2652 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2203 2653
2204 /* monitor some parent directory for speedup hints */ 2654 /* monitor some parent directory for speedup hints */
2205 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2655 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2206 /* but an efficiency issue only */ 2656 /* but an efficiency issue only */
2207 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2657 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2208 { 2658 {
2209 char path [4096]; 2659 char path [4096];
2210 strcpy (path, w->path); 2660 strcpy (path, w->path);
2214 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2664 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2215 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2665 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2216 2666
2217 char *pend = strrchr (path, '/'); 2667 char *pend = strrchr (path, '/');
2218 2668
2219 if (!pend) 2669 if (!pend || pend == path)
2220 break; /* whoops, no '/', complain to your admin */ 2670 break;
2221 2671
2222 *pend = 0; 2672 *pend = 0;
2223 w->wd = inotify_add_watch (fs_fd, path, mask); 2673 w->wd = inotify_add_watch (fs_fd, path, mask);
2224 } 2674 }
2225 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2675 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2226 } 2676 }
2227 } 2677 }
2228 else
2229 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2230 2678
2231 if (w->wd >= 0) 2679 if (w->wd >= 0)
2680 {
2232 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2681 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2682
2683 /* now local changes will be tracked by inotify, but remote changes won't */
2684 /* unless the filesystem it known to be local, we therefore still poll */
2685 /* also do poll on <2.6.25, but with normal frequency */
2686 struct statfs sfs;
2687
2688 if (fs_2625 && !statfs (w->path, &sfs))
2689 if (sfs.f_type == 0x1373 /* devfs */
2690 || sfs.f_type == 0xEF53 /* ext2/3 */
2691 || sfs.f_type == 0x3153464a /* jfs */
2692 || sfs.f_type == 0x52654973 /* reiser3 */
2693 || sfs.f_type == 0x01021994 /* tempfs */
2694 || sfs.f_type == 0x58465342 /* xfs */)
2695 return;
2696
2697 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2698 ev_timer_again (EV_A_ &w->timer);
2699 }
2233} 2700}
2234 2701
2235static void noinline 2702static void noinline
2236infy_del (EV_P_ ev_stat *w) 2703infy_del (EV_P_ ev_stat *w)
2237{ 2704{
2251 2718
2252static void noinline 2719static void noinline
2253infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2720infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2254{ 2721{
2255 if (slot < 0) 2722 if (slot < 0)
2256 /* overflow, need to check for all hahs slots */ 2723 /* overflow, need to check for all hash slots */
2257 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2724 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2258 infy_wd (EV_A_ slot, wd, ev); 2725 infy_wd (EV_A_ slot, wd, ev);
2259 else 2726 else
2260 { 2727 {
2261 WL w_; 2728 WL w_;
2267 2734
2268 if (w->wd == wd || wd == -1) 2735 if (w->wd == wd || wd == -1)
2269 { 2736 {
2270 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2737 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2271 { 2738 {
2739 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2272 w->wd = -1; 2740 w->wd = -1;
2273 infy_add (EV_A_ w); /* re-add, no matter what */ 2741 infy_add (EV_A_ w); /* re-add, no matter what */
2274 } 2742 }
2275 2743
2276 stat_timer_cb (EV_A_ &w->timer, 0); 2744 stat_timer_cb (EV_A_ &w->timer, 0);
2289 2757
2290 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2758 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2291 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2759 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2292} 2760}
2293 2761
2294void inline_size 2762inline_size void
2763check_2625 (EV_P)
2764{
2765 /* kernels < 2.6.25 are borked
2766 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2767 */
2768 struct utsname buf;
2769 int major, minor, micro;
2770
2771 if (uname (&buf))
2772 return;
2773
2774 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2775 return;
2776
2777 if (major < 2
2778 || (major == 2 && minor < 6)
2779 || (major == 2 && minor == 6 && micro < 25))
2780 return;
2781
2782 fs_2625 = 1;
2783}
2784
2785inline_size void
2295infy_init (EV_P) 2786infy_init (EV_P)
2296{ 2787{
2297 if (fs_fd != -2) 2788 if (fs_fd != -2)
2298 return; 2789 return;
2790
2791 fs_fd = -1;
2792
2793 check_2625 (EV_A);
2299 2794
2300 fs_fd = inotify_init (); 2795 fs_fd = inotify_init ();
2301 2796
2302 if (fs_fd >= 0) 2797 if (fs_fd >= 0)
2303 { 2798 {
2305 ev_set_priority (&fs_w, EV_MAXPRI); 2800 ev_set_priority (&fs_w, EV_MAXPRI);
2306 ev_io_start (EV_A_ &fs_w); 2801 ev_io_start (EV_A_ &fs_w);
2307 } 2802 }
2308} 2803}
2309 2804
2310void inline_size 2805inline_size void
2311infy_fork (EV_P) 2806infy_fork (EV_P)
2312{ 2807{
2313 int slot; 2808 int slot;
2314 2809
2315 if (fs_fd < 0) 2810 if (fs_fd < 0)
2331 w->wd = -1; 2826 w->wd = -1;
2332 2827
2333 if (fs_fd >= 0) 2828 if (fs_fd >= 0)
2334 infy_add (EV_A_ w); /* re-add, no matter what */ 2829 infy_add (EV_A_ w); /* re-add, no matter what */
2335 else 2830 else
2336 ev_timer_start (EV_A_ &w->timer); 2831 ev_timer_again (EV_A_ &w->timer);
2337 } 2832 }
2338
2339 } 2833 }
2340} 2834}
2341 2835
2836#endif
2837
2838#ifdef _WIN32
2839# define EV_LSTAT(p,b) _stati64 (p, b)
2840#else
2841# define EV_LSTAT(p,b) lstat (p, b)
2342#endif 2842#endif
2343 2843
2344void 2844void
2345ev_stat_stat (EV_P_ ev_stat *w) 2845ev_stat_stat (EV_P_ ev_stat *w)
2346{ 2846{
2373 || w->prev.st_atime != w->attr.st_atime 2873 || w->prev.st_atime != w->attr.st_atime
2374 || w->prev.st_mtime != w->attr.st_mtime 2874 || w->prev.st_mtime != w->attr.st_mtime
2375 || w->prev.st_ctime != w->attr.st_ctime 2875 || w->prev.st_ctime != w->attr.st_ctime
2376 ) { 2876 ) {
2377 #if EV_USE_INOTIFY 2877 #if EV_USE_INOTIFY
2878 if (fs_fd >= 0)
2879 {
2378 infy_del (EV_A_ w); 2880 infy_del (EV_A_ w);
2379 infy_add (EV_A_ w); 2881 infy_add (EV_A_ w);
2380 ev_stat_stat (EV_A_ w); /* avoid race... */ 2882 ev_stat_stat (EV_A_ w); /* avoid race... */
2883 }
2381 #endif 2884 #endif
2382 2885
2383 ev_feed_event (EV_A_ w, EV_STAT); 2886 ev_feed_event (EV_A_ w, EV_STAT);
2384 } 2887 }
2385} 2888}
2388ev_stat_start (EV_P_ ev_stat *w) 2891ev_stat_start (EV_P_ ev_stat *w)
2389{ 2892{
2390 if (expect_false (ev_is_active (w))) 2893 if (expect_false (ev_is_active (w)))
2391 return; 2894 return;
2392 2895
2393 /* since we use memcmp, we need to clear any padding data etc. */
2394 memset (&w->prev, 0, sizeof (ev_statdata));
2395 memset (&w->attr, 0, sizeof (ev_statdata));
2396
2397 ev_stat_stat (EV_A_ w); 2896 ev_stat_stat (EV_A_ w);
2398 2897
2898 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2399 if (w->interval < MIN_STAT_INTERVAL) 2899 w->interval = MIN_STAT_INTERVAL;
2400 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2401 2900
2402 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2901 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2403 ev_set_priority (&w->timer, ev_priority (w)); 2902 ev_set_priority (&w->timer, ev_priority (w));
2404 2903
2405#if EV_USE_INOTIFY 2904#if EV_USE_INOTIFY
2406 infy_init (EV_A); 2905 infy_init (EV_A);
2407 2906
2408 if (fs_fd >= 0) 2907 if (fs_fd >= 0)
2409 infy_add (EV_A_ w); 2908 infy_add (EV_A_ w);
2410 else 2909 else
2411#endif 2910#endif
2412 ev_timer_start (EV_A_ &w->timer); 2911 ev_timer_again (EV_A_ &w->timer);
2413 2912
2414 ev_start (EV_A_ (W)w, 1); 2913 ev_start (EV_A_ (W)w, 1);
2914
2915 EV_FREQUENT_CHECK;
2415} 2916}
2416 2917
2417void 2918void
2418ev_stat_stop (EV_P_ ev_stat *w) 2919ev_stat_stop (EV_P_ ev_stat *w)
2419{ 2920{
2420 clear_pending (EV_A_ (W)w); 2921 clear_pending (EV_A_ (W)w);
2421 if (expect_false (!ev_is_active (w))) 2922 if (expect_false (!ev_is_active (w)))
2422 return; 2923 return;
2423 2924
2925 EV_FREQUENT_CHECK;
2926
2424#if EV_USE_INOTIFY 2927#if EV_USE_INOTIFY
2425 infy_del (EV_A_ w); 2928 infy_del (EV_A_ w);
2426#endif 2929#endif
2427 ev_timer_stop (EV_A_ &w->timer); 2930 ev_timer_stop (EV_A_ &w->timer);
2428 2931
2429 ev_stop (EV_A_ (W)w); 2932 ev_stop (EV_A_ (W)w);
2933
2934 EV_FREQUENT_CHECK;
2430} 2935}
2431#endif 2936#endif
2432 2937
2433#if EV_IDLE_ENABLE 2938#if EV_IDLE_ENABLE
2434void 2939void
2436{ 2941{
2437 if (expect_false (ev_is_active (w))) 2942 if (expect_false (ev_is_active (w)))
2438 return; 2943 return;
2439 2944
2440 pri_adjust (EV_A_ (W)w); 2945 pri_adjust (EV_A_ (W)w);
2946
2947 EV_FREQUENT_CHECK;
2441 2948
2442 { 2949 {
2443 int active = ++idlecnt [ABSPRI (w)]; 2950 int active = ++idlecnt [ABSPRI (w)];
2444 2951
2445 ++idleall; 2952 ++idleall;
2446 ev_start (EV_A_ (W)w, active); 2953 ev_start (EV_A_ (W)w, active);
2447 2954
2448 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2955 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2449 idles [ABSPRI (w)][active - 1] = w; 2956 idles [ABSPRI (w)][active - 1] = w;
2450 } 2957 }
2958
2959 EV_FREQUENT_CHECK;
2451} 2960}
2452 2961
2453void 2962void
2454ev_idle_stop (EV_P_ ev_idle *w) 2963ev_idle_stop (EV_P_ ev_idle *w)
2455{ 2964{
2456 clear_pending (EV_A_ (W)w); 2965 clear_pending (EV_A_ (W)w);
2457 if (expect_false (!ev_is_active (w))) 2966 if (expect_false (!ev_is_active (w)))
2458 return; 2967 return;
2459 2968
2969 EV_FREQUENT_CHECK;
2970
2460 { 2971 {
2461 int active = ev_active (w); 2972 int active = ev_active (w);
2462 2973
2463 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2974 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2464 ev_active (idles [ABSPRI (w)][active - 1]) = active; 2975 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2465 2976
2466 ev_stop (EV_A_ (W)w); 2977 ev_stop (EV_A_ (W)w);
2467 --idleall; 2978 --idleall;
2468 } 2979 }
2980
2981 EV_FREQUENT_CHECK;
2469} 2982}
2470#endif 2983#endif
2471 2984
2472void 2985void
2473ev_prepare_start (EV_P_ ev_prepare *w) 2986ev_prepare_start (EV_P_ ev_prepare *w)
2474{ 2987{
2475 if (expect_false (ev_is_active (w))) 2988 if (expect_false (ev_is_active (w)))
2476 return; 2989 return;
2990
2991 EV_FREQUENT_CHECK;
2477 2992
2478 ev_start (EV_A_ (W)w, ++preparecnt); 2993 ev_start (EV_A_ (W)w, ++preparecnt);
2479 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2994 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2480 prepares [preparecnt - 1] = w; 2995 prepares [preparecnt - 1] = w;
2996
2997 EV_FREQUENT_CHECK;
2481} 2998}
2482 2999
2483void 3000void
2484ev_prepare_stop (EV_P_ ev_prepare *w) 3001ev_prepare_stop (EV_P_ ev_prepare *w)
2485{ 3002{
2486 clear_pending (EV_A_ (W)w); 3003 clear_pending (EV_A_ (W)w);
2487 if (expect_false (!ev_is_active (w))) 3004 if (expect_false (!ev_is_active (w)))
2488 return; 3005 return;
2489 3006
3007 EV_FREQUENT_CHECK;
3008
2490 { 3009 {
2491 int active = ev_active (w); 3010 int active = ev_active (w);
2492 3011
2493 prepares [active - 1] = prepares [--preparecnt]; 3012 prepares [active - 1] = prepares [--preparecnt];
2494 ev_active (prepares [active - 1]) = active; 3013 ev_active (prepares [active - 1]) = active;
2495 } 3014 }
2496 3015
2497 ev_stop (EV_A_ (W)w); 3016 ev_stop (EV_A_ (W)w);
3017
3018 EV_FREQUENT_CHECK;
2498} 3019}
2499 3020
2500void 3021void
2501ev_check_start (EV_P_ ev_check *w) 3022ev_check_start (EV_P_ ev_check *w)
2502{ 3023{
2503 if (expect_false (ev_is_active (w))) 3024 if (expect_false (ev_is_active (w)))
2504 return; 3025 return;
3026
3027 EV_FREQUENT_CHECK;
2505 3028
2506 ev_start (EV_A_ (W)w, ++checkcnt); 3029 ev_start (EV_A_ (W)w, ++checkcnt);
2507 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3030 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2508 checks [checkcnt - 1] = w; 3031 checks [checkcnt - 1] = w;
3032
3033 EV_FREQUENT_CHECK;
2509} 3034}
2510 3035
2511void 3036void
2512ev_check_stop (EV_P_ ev_check *w) 3037ev_check_stop (EV_P_ ev_check *w)
2513{ 3038{
2514 clear_pending (EV_A_ (W)w); 3039 clear_pending (EV_A_ (W)w);
2515 if (expect_false (!ev_is_active (w))) 3040 if (expect_false (!ev_is_active (w)))
2516 return; 3041 return;
2517 3042
3043 EV_FREQUENT_CHECK;
3044
2518 { 3045 {
2519 int active = ev_active (w); 3046 int active = ev_active (w);
2520 3047
2521 checks [active - 1] = checks [--checkcnt]; 3048 checks [active - 1] = checks [--checkcnt];
2522 ev_active (checks [active - 1]) = active; 3049 ev_active (checks [active - 1]) = active;
2523 } 3050 }
2524 3051
2525 ev_stop (EV_A_ (W)w); 3052 ev_stop (EV_A_ (W)w);
3053
3054 EV_FREQUENT_CHECK;
2526} 3055}
2527 3056
2528#if EV_EMBED_ENABLE 3057#if EV_EMBED_ENABLE
2529void noinline 3058void noinline
2530ev_embed_sweep (EV_P_ ev_embed *w) 3059ev_embed_sweep (EV_P_ ev_embed *w)
2557 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3086 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2558 } 3087 }
2559 } 3088 }
2560} 3089}
2561 3090
3091static void
3092embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3093{
3094 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3095
3096 ev_embed_stop (EV_A_ w);
3097
3098 {
3099 struct ev_loop *loop = w->other;
3100
3101 ev_loop_fork (EV_A);
3102 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3103 }
3104
3105 ev_embed_start (EV_A_ w);
3106}
3107
2562#if 0 3108#if 0
2563static void 3109static void
2564embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3110embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2565{ 3111{
2566 ev_idle_stop (EV_A_ idle); 3112 ev_idle_stop (EV_A_ idle);
2573 if (expect_false (ev_is_active (w))) 3119 if (expect_false (ev_is_active (w)))
2574 return; 3120 return;
2575 3121
2576 { 3122 {
2577 struct ev_loop *loop = w->other; 3123 struct ev_loop *loop = w->other;
2578 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3124 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2579 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3125 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2580 } 3126 }
3127
3128 EV_FREQUENT_CHECK;
2581 3129
2582 ev_set_priority (&w->io, ev_priority (w)); 3130 ev_set_priority (&w->io, ev_priority (w));
2583 ev_io_start (EV_A_ &w->io); 3131 ev_io_start (EV_A_ &w->io);
2584 3132
2585 ev_prepare_init (&w->prepare, embed_prepare_cb); 3133 ev_prepare_init (&w->prepare, embed_prepare_cb);
2586 ev_set_priority (&w->prepare, EV_MINPRI); 3134 ev_set_priority (&w->prepare, EV_MINPRI);
2587 ev_prepare_start (EV_A_ &w->prepare); 3135 ev_prepare_start (EV_A_ &w->prepare);
2588 3136
3137 ev_fork_init (&w->fork, embed_fork_cb);
3138 ev_fork_start (EV_A_ &w->fork);
3139
2589 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3140 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2590 3141
2591 ev_start (EV_A_ (W)w, 1); 3142 ev_start (EV_A_ (W)w, 1);
3143
3144 EV_FREQUENT_CHECK;
2592} 3145}
2593 3146
2594void 3147void
2595ev_embed_stop (EV_P_ ev_embed *w) 3148ev_embed_stop (EV_P_ ev_embed *w)
2596{ 3149{
2597 clear_pending (EV_A_ (W)w); 3150 clear_pending (EV_A_ (W)w);
2598 if (expect_false (!ev_is_active (w))) 3151 if (expect_false (!ev_is_active (w)))
2599 return; 3152 return;
2600 3153
3154 EV_FREQUENT_CHECK;
3155
2601 ev_io_stop (EV_A_ &w->io); 3156 ev_io_stop (EV_A_ &w->io);
2602 ev_prepare_stop (EV_A_ &w->prepare); 3157 ev_prepare_stop (EV_A_ &w->prepare);
3158 ev_fork_stop (EV_A_ &w->fork);
2603 3159
2604 ev_stop (EV_A_ (W)w); 3160 EV_FREQUENT_CHECK;
2605} 3161}
2606#endif 3162#endif
2607 3163
2608#if EV_FORK_ENABLE 3164#if EV_FORK_ENABLE
2609void 3165void
2610ev_fork_start (EV_P_ ev_fork *w) 3166ev_fork_start (EV_P_ ev_fork *w)
2611{ 3167{
2612 if (expect_false (ev_is_active (w))) 3168 if (expect_false (ev_is_active (w)))
2613 return; 3169 return;
3170
3171 EV_FREQUENT_CHECK;
2614 3172
2615 ev_start (EV_A_ (W)w, ++forkcnt); 3173 ev_start (EV_A_ (W)w, ++forkcnt);
2616 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3174 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2617 forks [forkcnt - 1] = w; 3175 forks [forkcnt - 1] = w;
3176
3177 EV_FREQUENT_CHECK;
2618} 3178}
2619 3179
2620void 3180void
2621ev_fork_stop (EV_P_ ev_fork *w) 3181ev_fork_stop (EV_P_ ev_fork *w)
2622{ 3182{
2623 clear_pending (EV_A_ (W)w); 3183 clear_pending (EV_A_ (W)w);
2624 if (expect_false (!ev_is_active (w))) 3184 if (expect_false (!ev_is_active (w)))
2625 return; 3185 return;
2626 3186
3187 EV_FREQUENT_CHECK;
3188
2627 { 3189 {
2628 int active = ev_active (w); 3190 int active = ev_active (w);
2629 3191
2630 forks [active - 1] = forks [--forkcnt]; 3192 forks [active - 1] = forks [--forkcnt];
2631 ev_active (forks [active - 1]) = active; 3193 ev_active (forks [active - 1]) = active;
2632 } 3194 }
2633 3195
2634 ev_stop (EV_A_ (W)w); 3196 ev_stop (EV_A_ (W)w);
3197
3198 EV_FREQUENT_CHECK;
2635} 3199}
2636#endif 3200#endif
2637 3201
2638#if EV_ASYNC_ENABLE 3202#if EV_ASYNC_ENABLE
2639void 3203void
2641{ 3205{
2642 if (expect_false (ev_is_active (w))) 3206 if (expect_false (ev_is_active (w)))
2643 return; 3207 return;
2644 3208
2645 evpipe_init (EV_A); 3209 evpipe_init (EV_A);
3210
3211 EV_FREQUENT_CHECK;
2646 3212
2647 ev_start (EV_A_ (W)w, ++asynccnt); 3213 ev_start (EV_A_ (W)w, ++asynccnt);
2648 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3214 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2649 asyncs [asynccnt - 1] = w; 3215 asyncs [asynccnt - 1] = w;
3216
3217 EV_FREQUENT_CHECK;
2650} 3218}
2651 3219
2652void 3220void
2653ev_async_stop (EV_P_ ev_async *w) 3221ev_async_stop (EV_P_ ev_async *w)
2654{ 3222{
2655 clear_pending (EV_A_ (W)w); 3223 clear_pending (EV_A_ (W)w);
2656 if (expect_false (!ev_is_active (w))) 3224 if (expect_false (!ev_is_active (w)))
2657 return; 3225 return;
2658 3226
3227 EV_FREQUENT_CHECK;
3228
2659 { 3229 {
2660 int active = ev_active (w); 3230 int active = ev_active (w);
2661 3231
2662 asyncs [active - 1] = asyncs [--asynccnt]; 3232 asyncs [active - 1] = asyncs [--asynccnt];
2663 ev_active (asyncs [active - 1]) = active; 3233 ev_active (asyncs [active - 1]) = active;
2664 } 3234 }
2665 3235
2666 ev_stop (EV_A_ (W)w); 3236 ev_stop (EV_A_ (W)w);
3237
3238 EV_FREQUENT_CHECK;
2667} 3239}
2668 3240
2669void 3241void
2670ev_async_send (EV_P_ ev_async *w) 3242ev_async_send (EV_P_ ev_async *w)
2671{ 3243{
2688once_cb (EV_P_ struct ev_once *once, int revents) 3260once_cb (EV_P_ struct ev_once *once, int revents)
2689{ 3261{
2690 void (*cb)(int revents, void *arg) = once->cb; 3262 void (*cb)(int revents, void *arg) = once->cb;
2691 void *arg = once->arg; 3263 void *arg = once->arg;
2692 3264
2693 ev_io_stop (EV_A_ &once->io); 3265 ev_io_stop (EV_A_ &once->io);
2694 ev_timer_stop (EV_A_ &once->to); 3266 ev_timer_stop (EV_A_ &once->to);
2695 ev_free (once); 3267 ev_free (once);
2696 3268
2697 cb (revents, arg); 3269 cb (revents, arg);
2698} 3270}
2699 3271
2700static void 3272static void
2701once_cb_io (EV_P_ ev_io *w, int revents) 3273once_cb_io (EV_P_ ev_io *w, int revents)
2702{ 3274{
2703 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3275 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3276
3277 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2704} 3278}
2705 3279
2706static void 3280static void
2707once_cb_to (EV_P_ ev_timer *w, int revents) 3281once_cb_to (EV_P_ ev_timer *w, int revents)
2708{ 3282{
2709 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3283 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3284
3285 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2710} 3286}
2711 3287
2712void 3288void
2713ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3289ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2714{ 3290{
2736 ev_timer_set (&once->to, timeout, 0.); 3312 ev_timer_set (&once->to, timeout, 0.);
2737 ev_timer_start (EV_A_ &once->to); 3313 ev_timer_start (EV_A_ &once->to);
2738 } 3314 }
2739} 3315}
2740 3316
3317/*****************************************************************************/
3318
3319#if EV_WALK_ENABLE
3320void
3321ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3322{
3323 int i, j;
3324 ev_watcher_list *wl, *wn;
3325
3326 if (types & (EV_IO | EV_EMBED))
3327 for (i = 0; i < anfdmax; ++i)
3328 for (wl = anfds [i].head; wl; )
3329 {
3330 wn = wl->next;
3331
3332#if EV_EMBED_ENABLE
3333 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3334 {
3335 if (types & EV_EMBED)
3336 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3337 }
3338 else
3339#endif
3340#if EV_USE_INOTIFY
3341 if (ev_cb ((ev_io *)wl) == infy_cb)
3342 ;
3343 else
3344#endif
3345 if ((ev_io *)wl != &pipe_w)
3346 if (types & EV_IO)
3347 cb (EV_A_ EV_IO, wl);
3348
3349 wl = wn;
3350 }
3351
3352 if (types & (EV_TIMER | EV_STAT))
3353 for (i = timercnt + HEAP0; i-- > HEAP0; )
3354#if EV_STAT_ENABLE
3355 /*TODO: timer is not always active*/
3356 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3357 {
3358 if (types & EV_STAT)
3359 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3360 }
3361 else
3362#endif
3363 if (types & EV_TIMER)
3364 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3365
3366#if EV_PERIODIC_ENABLE
3367 if (types & EV_PERIODIC)
3368 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3369 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3370#endif
3371
3372#if EV_IDLE_ENABLE
3373 if (types & EV_IDLE)
3374 for (j = NUMPRI; i--; )
3375 for (i = idlecnt [j]; i--; )
3376 cb (EV_A_ EV_IDLE, idles [j][i]);
3377#endif
3378
3379#if EV_FORK_ENABLE
3380 if (types & EV_FORK)
3381 for (i = forkcnt; i--; )
3382 if (ev_cb (forks [i]) != embed_fork_cb)
3383 cb (EV_A_ EV_FORK, forks [i]);
3384#endif
3385
3386#if EV_ASYNC_ENABLE
3387 if (types & EV_ASYNC)
3388 for (i = asynccnt; i--; )
3389 cb (EV_A_ EV_ASYNC, asyncs [i]);
3390#endif
3391
3392 if (types & EV_PREPARE)
3393 for (i = preparecnt; i--; )
3394#if EV_EMBED_ENABLE
3395 if (ev_cb (prepares [i]) != embed_prepare_cb)
3396#endif
3397 cb (EV_A_ EV_PREPARE, prepares [i]);
3398
3399 if (types & EV_CHECK)
3400 for (i = checkcnt; i--; )
3401 cb (EV_A_ EV_CHECK, checks [i]);
3402
3403 if (types & EV_SIGNAL)
3404 for (i = 0; i < signalmax; ++i)
3405 for (wl = signals [i].head; wl; )
3406 {
3407 wn = wl->next;
3408 cb (EV_A_ EV_SIGNAL, wl);
3409 wl = wn;
3410 }
3411
3412 if (types & EV_CHILD)
3413 for (i = EV_PID_HASHSIZE; i--; )
3414 for (wl = childs [i]; wl; )
3415 {
3416 wn = wl->next;
3417 cb (EV_A_ EV_CHILD, wl);
3418 wl = wn;
3419 }
3420/* EV_STAT 0x00001000 /* stat data changed */
3421/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3422}
3423#endif
3424
2741#if EV_MULTIPLICITY 3425#if EV_MULTIPLICITY
2742 #include "ev_wrap.h" 3426 #include "ev_wrap.h"
2743#endif 3427#endif
2744 3428
2745#ifdef __cplusplus 3429#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines