ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.247 by root, Wed May 21 21:22:10 2008 UTC vs.
Revision 1.297 by root, Fri Jul 10 00:36:21 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
126# define EV_USE_EVENTFD 1 140# define EV_USE_EVENTFD 1
127# else 141# else
128# define EV_USE_EVENTFD 0 142# define EV_USE_EVENTFD 0
129# endif 143# endif
130# endif 144# endif
131 145
132#endif 146#endif
133 147
134#include <math.h> 148#include <math.h>
135#include <stdlib.h> 149#include <stdlib.h>
136#include <fcntl.h> 150#include <fcntl.h>
154#ifndef _WIN32 168#ifndef _WIN32
155# include <sys/time.h> 169# include <sys/time.h>
156# include <sys/wait.h> 170# include <sys/wait.h>
157# include <unistd.h> 171# include <unistd.h>
158#else 172#else
173# include <io.h>
159# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 175# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
163# endif 178# endif
164#endif 179#endif
165 180
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
167 182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
190
168#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
169# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
170#endif 197#endif
171 198
172#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 201#endif
175 202
176#ifndef EV_USE_NANOSLEEP 203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
177# define EV_USE_NANOSLEEP 0 207# define EV_USE_NANOSLEEP 0
208# endif
178#endif 209#endif
179 210
180#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
182#endif 213#endif
235# else 266# else
236# define EV_USE_EVENTFD 0 267# define EV_USE_EVENTFD 0
237# endif 268# endif
238#endif 269#endif
239 270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
240#ifndef EV_USE_4HEAP 281#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL 282# define EV_USE_4HEAP !EV_MINIMAL
242#endif 283#endif
243 284
244#ifndef EV_HEAP_CACHE_AT 285#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL 286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
246#endif 301#endif
247 302
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
249 304
250#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
267# include <sys/select.h> 322# include <sys/select.h>
268# endif 323# endif
269#endif 324#endif
270 325
271#if EV_USE_INOTIFY 326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
272# include <sys/inotify.h> 329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
273#endif 335#endif
274 336
275#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
276# include <winsock.h> 338# include <winsock.h>
277#endif 339#endif
287} 349}
288# endif 350# endif
289#endif 351#endif
290 352
291/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
292 360
293/* 361/*
294 * This is used to avoid floating point rounding problems. 362 * This is used to avoid floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics 363 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding 364 * to ensure progress, time-wise, even when rounding
323# define inline_speed static noinline 391# define inline_speed static noinline
324#else 392#else
325# define inline_speed static inline 393# define inline_speed static inline
326#endif 394#endif
327 395
328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
330 403
331#define EMPTY /* required for microsofts broken pseudo-c compiler */ 404#define EMPTY /* required for microsofts broken pseudo-c compiler */
332#define EMPTY2(a,b) /* used to suppress some warnings */ 405#define EMPTY2(a,b) /* used to suppress some warnings */
333 406
334typedef ev_watcher *W; 407typedef ev_watcher *W;
336typedef ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
337 410
338#define ev_active(w) ((W)(w))->active 411#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at 412#define ev_at(w) ((WT)(w))->at
340 413
341#if EV_USE_MONOTONIC 414#if EV_USE_REALTIME
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */ 416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
419
420#if EV_USE_MONOTONIC
344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
345#endif 422#endif
346 423
347#ifdef _WIN32 424#ifdef _WIN32
348# include "ev_win32.c" 425# include "ev_win32.c"
357{ 434{
358 syserr_cb = cb; 435 syserr_cb = cb;
359} 436}
360 437
361static void noinline 438static void noinline
362syserr (const char *msg) 439ev_syserr (const char *msg)
363{ 440{
364 if (!msg) 441 if (!msg)
365 msg = "(libev) system error"; 442 msg = "(libev) system error";
366 443
367 if (syserr_cb) 444 if (syserr_cb)
413#define ev_malloc(size) ev_realloc (0, (size)) 490#define ev_malloc(size) ev_realloc (0, (size))
414#define ev_free(ptr) ev_realloc ((ptr), 0) 491#define ev_free(ptr) ev_realloc ((ptr), 0)
415 492
416/*****************************************************************************/ 493/*****************************************************************************/
417 494
495/* file descriptor info structure */
418typedef struct 496typedef struct
419{ 497{
420 WL head; 498 WL head;
421 unsigned char events; 499 unsigned char events; /* the events watched for */
500 unsigned char reify; /* flag set when this ANFD needs reification */
501 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
422 unsigned char reify; 502 unsigned char unused;
503#if EV_USE_EPOLL
504 unsigned int egen; /* generation counter to counter epoll bugs */
505#endif
423#if EV_SELECT_IS_WINSOCKET 506#if EV_SELECT_IS_WINSOCKET
424 SOCKET handle; 507 SOCKET handle;
425#endif 508#endif
426} ANFD; 509} ANFD;
427 510
511/* stores the pending event set for a given watcher */
428typedef struct 512typedef struct
429{ 513{
430 W w; 514 W w;
431 int events; 515 int events; /* the pending event set for the given watcher */
432} ANPENDING; 516} ANPENDING;
433 517
434#if EV_USE_INOTIFY 518#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */ 519/* hash table entry per inotify-id */
436typedef struct 520typedef struct
439} ANFS; 523} ANFS;
440#endif 524#endif
441 525
442/* Heap Entry */ 526/* Heap Entry */
443#if EV_HEAP_CACHE_AT 527#if EV_HEAP_CACHE_AT
528 /* a heap element */
444 typedef struct { 529 typedef struct {
445 ev_tstamp at; 530 ev_tstamp at;
446 WT w; 531 WT w;
447 } ANHE; 532 } ANHE;
448 533
449 #define ANHE_w(he) (he).w /* access watcher, read-write */ 534 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */ 535 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 536 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
452#else 537#else
538 /* a heap element */
453 typedef WT ANHE; 539 typedef WT ANHE;
454 540
455 #define ANHE_w(he) (he) 541 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at 542 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he) 543 #define ANHE_at_cache(he)
458#endif 544#endif
459 545
460#if EV_MULTIPLICITY 546#if EV_MULTIPLICITY
461 547
462 struct ev_loop 548 struct ev_loop
481 567
482 static int ev_default_loop_ptr; 568 static int ev_default_loop_ptr;
483 569
484#endif 570#endif
485 571
572#if EV_MINIMAL < 2
573# define EV_SUSPEND_CB if (expect_false (suspend_cb)) suspend_cb (EV_A)
574# define EV_RESUME_CB if (expect_false (resume_cb )) resume_cb (EV_A)
575# define EV_INVOKE_PENDING invoke_cb (EV_A)
576#else
577# define EV_SUSPEND_CB (void)0
578# define EV_RESUME_CB (void)0
579# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
580#endif
581
486/*****************************************************************************/ 582/*****************************************************************************/
487 583
584#ifndef EV_HAVE_EV_TIME
488ev_tstamp 585ev_tstamp
489ev_time (void) 586ev_time (void)
490{ 587{
491#if EV_USE_REALTIME 588#if EV_USE_REALTIME
589 if (expect_true (have_realtime))
590 {
492 struct timespec ts; 591 struct timespec ts;
493 clock_gettime (CLOCK_REALTIME, &ts); 592 clock_gettime (CLOCK_REALTIME, &ts);
494 return ts.tv_sec + ts.tv_nsec * 1e-9; 593 return ts.tv_sec + ts.tv_nsec * 1e-9;
495#else 594 }
595#endif
596
496 struct timeval tv; 597 struct timeval tv;
497 gettimeofday (&tv, 0); 598 gettimeofday (&tv, 0);
498 return tv.tv_sec + tv.tv_usec * 1e-6; 599 return tv.tv_sec + tv.tv_usec * 1e-6;
499#endif
500} 600}
601#endif
501 602
502ev_tstamp inline_size 603inline_size ev_tstamp
503get_clock (void) 604get_clock (void)
504{ 605{
505#if EV_USE_MONOTONIC 606#if EV_USE_MONOTONIC
506 if (expect_true (have_monotonic)) 607 if (expect_true (have_monotonic))
507 { 608 {
540 struct timeval tv; 641 struct timeval tv;
541 642
542 tv.tv_sec = (time_t)delay; 643 tv.tv_sec = (time_t)delay;
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 644 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
544 645
646 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
647 /* somehting not guaranteed by newer posix versions, but guaranteed */
648 /* by older ones */
545 select (0, 0, 0, 0, &tv); 649 select (0, 0, 0, 0, &tv);
546#endif 650#endif
547 } 651 }
548} 652}
549 653
550/*****************************************************************************/ 654/*****************************************************************************/
551 655
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 656#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553 657
554int inline_size 658/* find a suitable new size for the given array, */
659/* hopefully by rounding to a ncie-to-malloc size */
660inline_size int
555array_nextsize (int elem, int cur, int cnt) 661array_nextsize (int elem, int cur, int cnt)
556{ 662{
557 int ncur = cur + 1; 663 int ncur = cur + 1;
558 664
559 do 665 do
576array_realloc (int elem, void *base, int *cur, int cnt) 682array_realloc (int elem, void *base, int *cur, int cnt)
577{ 683{
578 *cur = array_nextsize (elem, *cur, cnt); 684 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur); 685 return ev_realloc (base, elem * *cur);
580} 686}
687
688#define array_init_zero(base,count) \
689 memset ((void *)(base), 0, sizeof (*(base)) * (count))
581 690
582#define array_needsize(type,base,cur,cnt,init) \ 691#define array_needsize(type,base,cur,cnt,init) \
583 if (expect_false ((cnt) > (cur))) \ 692 if (expect_false ((cnt) > (cur))) \
584 { \ 693 { \
585 int ocur_ = (cur); \ 694 int ocur_ = (cur); \
597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 706 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
598 } 707 }
599#endif 708#endif
600 709
601#define array_free(stem, idx) \ 710#define array_free(stem, idx) \
602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 711 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
603 712
604/*****************************************************************************/ 713/*****************************************************************************/
714
715/* dummy callback for pending events */
716static void noinline
717pendingcb (EV_P_ ev_prepare *w, int revents)
718{
719}
605 720
606void noinline 721void noinline
607ev_feed_event (EV_P_ void *w, int revents) 722ev_feed_event (EV_P_ void *w, int revents)
608{ 723{
609 W w_ = (W)w; 724 W w_ = (W)w;
618 pendings [pri][w_->pending - 1].w = w_; 733 pendings [pri][w_->pending - 1].w = w_;
619 pendings [pri][w_->pending - 1].events = revents; 734 pendings [pri][w_->pending - 1].events = revents;
620 } 735 }
621} 736}
622 737
623void inline_speed 738inline_speed void
739feed_reverse (EV_P_ W w)
740{
741 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
742 rfeeds [rfeedcnt++] = w;
743}
744
745inline_size void
746feed_reverse_done (EV_P_ int revents)
747{
748 do
749 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
750 while (rfeedcnt);
751}
752
753inline_speed void
624queue_events (EV_P_ W *events, int eventcnt, int type) 754queue_events (EV_P_ W *events, int eventcnt, int type)
625{ 755{
626 int i; 756 int i;
627 757
628 for (i = 0; i < eventcnt; ++i) 758 for (i = 0; i < eventcnt; ++i)
629 ev_feed_event (EV_A_ events [i], type); 759 ev_feed_event (EV_A_ events [i], type);
630} 760}
631 761
632/*****************************************************************************/ 762/*****************************************************************************/
633 763
634void inline_size 764inline_speed void
635anfds_init (ANFD *base, int count)
636{
637 while (count--)
638 {
639 base->head = 0;
640 base->events = EV_NONE;
641 base->reify = 0;
642
643 ++base;
644 }
645}
646
647void inline_speed
648fd_event (EV_P_ int fd, int revents) 765fd_event (EV_P_ int fd, int revents)
649{ 766{
650 ANFD *anfd = anfds + fd; 767 ANFD *anfd = anfds + fd;
651 ev_io *w; 768 ev_io *w;
652 769
664{ 781{
665 if (fd >= 0 && fd < anfdmax) 782 if (fd >= 0 && fd < anfdmax)
666 fd_event (EV_A_ fd, revents); 783 fd_event (EV_A_ fd, revents);
667} 784}
668 785
669void inline_size 786/* make sure the external fd watch events are in-sync */
787/* with the kernel/libev internal state */
788inline_size void
670fd_reify (EV_P) 789fd_reify (EV_P)
671{ 790{
672 int i; 791 int i;
673 792
674 for (i = 0; i < fdchangecnt; ++i) 793 for (i = 0; i < fdchangecnt; ++i)
683 events |= (unsigned char)w->events; 802 events |= (unsigned char)w->events;
684 803
685#if EV_SELECT_IS_WINSOCKET 804#if EV_SELECT_IS_WINSOCKET
686 if (events) 805 if (events)
687 { 806 {
688 unsigned long argp; 807 unsigned long arg;
689 #ifdef EV_FD_TO_WIN32_HANDLE 808 #ifdef EV_FD_TO_WIN32_HANDLE
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 809 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
691 #else 810 #else
692 anfd->handle = _get_osfhandle (fd); 811 anfd->handle = _get_osfhandle (fd);
693 #endif 812 #endif
694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 813 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
695 } 814 }
696#endif 815#endif
697 816
698 { 817 {
699 unsigned char o_events = anfd->events; 818 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify; 819 unsigned char o_reify = anfd->reify;
701 820
702 anfd->reify = 0; 821 anfd->reify = 0;
703 anfd->events = events; 822 anfd->events = events;
704 823
705 if (o_events != events || o_reify & EV_IOFDSET) 824 if (o_events != events || o_reify & EV__IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events); 825 backend_modify (EV_A_ fd, o_events, events);
707 } 826 }
708 } 827 }
709 828
710 fdchangecnt = 0; 829 fdchangecnt = 0;
711} 830}
712 831
713void inline_size 832/* something about the given fd changed */
833inline_size void
714fd_change (EV_P_ int fd, int flags) 834fd_change (EV_P_ int fd, int flags)
715{ 835{
716 unsigned char reify = anfds [fd].reify; 836 unsigned char reify = anfds [fd].reify;
717 anfds [fd].reify |= flags; 837 anfds [fd].reify |= flags;
718 838
722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 842 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
723 fdchanges [fdchangecnt - 1] = fd; 843 fdchanges [fdchangecnt - 1] = fd;
724 } 844 }
725} 845}
726 846
727void inline_speed 847/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
848inline_speed void
728fd_kill (EV_P_ int fd) 849fd_kill (EV_P_ int fd)
729{ 850{
730 ev_io *w; 851 ev_io *w;
731 852
732 while ((w = (ev_io *)anfds [fd].head)) 853 while ((w = (ev_io *)anfds [fd].head))
734 ev_io_stop (EV_A_ w); 855 ev_io_stop (EV_A_ w);
735 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 856 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
736 } 857 }
737} 858}
738 859
739int inline_size 860/* check whether the given fd is atcually valid, for error recovery */
861inline_size int
740fd_valid (int fd) 862fd_valid (int fd)
741{ 863{
742#ifdef _WIN32 864#ifdef _WIN32
743 return _get_osfhandle (fd) != -1; 865 return _get_osfhandle (fd) != -1;
744#else 866#else
752{ 874{
753 int fd; 875 int fd;
754 876
755 for (fd = 0; fd < anfdmax; ++fd) 877 for (fd = 0; fd < anfdmax; ++fd)
756 if (anfds [fd].events) 878 if (anfds [fd].events)
757 if (!fd_valid (fd) == -1 && errno == EBADF) 879 if (!fd_valid (fd) && errno == EBADF)
758 fd_kill (EV_A_ fd); 880 fd_kill (EV_A_ fd);
759} 881}
760 882
761/* called on ENOMEM in select/poll to kill some fds and retry */ 883/* called on ENOMEM in select/poll to kill some fds and retry */
762static void noinline 884static void noinline
780 902
781 for (fd = 0; fd < anfdmax; ++fd) 903 for (fd = 0; fd < anfdmax; ++fd)
782 if (anfds [fd].events) 904 if (anfds [fd].events)
783 { 905 {
784 anfds [fd].events = 0; 906 anfds [fd].events = 0;
907 anfds [fd].emask = 0;
785 fd_change (EV_A_ fd, EV_IOFDSET | 1); 908 fd_change (EV_A_ fd, EV__IOFDSET | 1);
786 } 909 }
787} 910}
788 911
789/*****************************************************************************/ 912/*****************************************************************************/
790 913
803#if EV_USE_4HEAP 926#if EV_USE_4HEAP
804 927
805#define DHEAP 4 928#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 929#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 930#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808 931#define UPHEAP_DONE(p,k) ((p) == (k))
809/* towards the root */
810void inline_speed
811upheap (ANHE *heap, int k)
812{
813 ANHE he = heap [k];
814
815 for (;;)
816 {
817 int p = HPARENT (k);
818
819 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
820 break;
821
822 heap [k] = heap [p];
823 ev_active (ANHE_w (heap [k])) = k;
824 k = p;
825 }
826
827 heap [k] = he;
828 ev_active (ANHE_w (he)) = k;
829}
830 932
831/* away from the root */ 933/* away from the root */
832void inline_speed 934inline_speed void
833downheap (ANHE *heap, int N, int k) 935downheap (ANHE *heap, int N, int k)
834{ 936{
835 ANHE he = heap [k]; 937 ANHE he = heap [k];
836 ANHE *E = heap + N + HEAP0; 938 ANHE *E = heap + N + HEAP0;
837 939
838 for (;;) 940 for (;;)
839 { 941 {
840 ev_tstamp minat; 942 ev_tstamp minat;
841 ANHE *minpos; 943 ANHE *minpos;
842 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 944 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
843 945
844 // find minimum child 946 /* find minimum child */
845 if (expect_true (pos + DHEAP - 1 < E)) 947 if (expect_true (pos + DHEAP - 1 < E))
846 { 948 {
847 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 949 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 950 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
849 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 951 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
870 972
871 heap [k] = he; 973 heap [k] = he;
872 ev_active (ANHE_w (he)) = k; 974 ev_active (ANHE_w (he)) = k;
873} 975}
874 976
875#else // 4HEAP 977#else /* 4HEAP */
876 978
877#define HEAP0 1 979#define HEAP0 1
878#define HPARENT(k) ((k) >> 1) 980#define HPARENT(k) ((k) >> 1)
981#define UPHEAP_DONE(p,k) (!(p))
879 982
880/* towards the root */ 983/* away from the root */
881void inline_speed 984inline_speed void
882upheap (ANHE *heap, int k) 985downheap (ANHE *heap, int N, int k)
883{ 986{
884 ANHE he = heap [k]; 987 ANHE he = heap [k];
885 988
886 for (;;) 989 for (;;)
887 { 990 {
888 int p = HPARENT (k); 991 int c = k << 1;
889 992
890 /* maybe we could use a dummy element at heap [0]? */ 993 if (c > N + HEAP0 - 1)
891 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
892 break; 994 break;
893 995
894 heap [k] = heap [p];
895 ev_active (ANHE_w (heap [k])) = k;
896 k = p;
897 }
898
899 heap [k] = he;
900 ev_active (ANHE_w (heap [k])) = k;
901}
902
903/* away from the root */
904void inline_speed
905downheap (ANHE *heap, int N, int k)
906{
907 ANHE he = heap [k];
908
909 for (;;)
910 {
911 int c = k << 1;
912
913 if (c > N)
914 break;
915
916 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 996 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
917 ? 1 : 0; 997 ? 1 : 0;
918 998
919 if (ANHE_at (he) <= ANHE_at (heap [c])) 999 if (ANHE_at (he) <= ANHE_at (heap [c]))
920 break; 1000 break;
921 1001
928 heap [k] = he; 1008 heap [k] = he;
929 ev_active (ANHE_w (he)) = k; 1009 ev_active (ANHE_w (he)) = k;
930} 1010}
931#endif 1011#endif
932 1012
933void inline_size 1013/* towards the root */
1014inline_speed void
1015upheap (ANHE *heap, int k)
1016{
1017 ANHE he = heap [k];
1018
1019 for (;;)
1020 {
1021 int p = HPARENT (k);
1022
1023 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1024 break;
1025
1026 heap [k] = heap [p];
1027 ev_active (ANHE_w (heap [k])) = k;
1028 k = p;
1029 }
1030
1031 heap [k] = he;
1032 ev_active (ANHE_w (he)) = k;
1033}
1034
1035/* move an element suitably so it is in a correct place */
1036inline_size void
934adjustheap (ANHE *heap, int N, int k) 1037adjustheap (ANHE *heap, int N, int k)
935{ 1038{
936 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1039 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
937 upheap (heap, k); 1040 upheap (heap, k);
938 else 1041 else
939 downheap (heap, N, k); 1042 downheap (heap, N, k);
940} 1043}
941 1044
1045/* rebuild the heap: this function is used only once and executed rarely */
1046inline_size void
1047reheap (ANHE *heap, int N)
1048{
1049 int i;
1050
1051 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1052 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1053 for (i = 0; i < N; ++i)
1054 upheap (heap, i + HEAP0);
1055}
1056
942/*****************************************************************************/ 1057/*****************************************************************************/
943 1058
1059/* associate signal watchers to a signal signal */
944typedef struct 1060typedef struct
945{ 1061{
946 WL head; 1062 WL head;
947 EV_ATOMIC_T gotsig; 1063 EV_ATOMIC_T gotsig;
948} ANSIG; 1064} ANSIG;
950static ANSIG *signals; 1066static ANSIG *signals;
951static int signalmax; 1067static int signalmax;
952 1068
953static EV_ATOMIC_T gotsig; 1069static EV_ATOMIC_T gotsig;
954 1070
955void inline_size
956signals_init (ANSIG *base, int count)
957{
958 while (count--)
959 {
960 base->head = 0;
961 base->gotsig = 0;
962
963 ++base;
964 }
965}
966
967/*****************************************************************************/ 1071/*****************************************************************************/
968 1072
969void inline_speed 1073/* used to prepare libev internal fd's */
1074/* this is not fork-safe */
1075inline_speed void
970fd_intern (int fd) 1076fd_intern (int fd)
971{ 1077{
972#ifdef _WIN32 1078#ifdef _WIN32
973 int arg = 1; 1079 unsigned long arg = 1;
974 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1080 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
975#else 1081#else
976 fcntl (fd, F_SETFD, FD_CLOEXEC); 1082 fcntl (fd, F_SETFD, FD_CLOEXEC);
977 fcntl (fd, F_SETFL, O_NONBLOCK); 1083 fcntl (fd, F_SETFL, O_NONBLOCK);
978#endif 1084#endif
979} 1085}
980 1086
981static void noinline 1087static void noinline
982evpipe_init (EV_P) 1088evpipe_init (EV_P)
983{ 1089{
984 if (!ev_is_active (&pipeev)) 1090 if (!ev_is_active (&pipe_w))
985 { 1091 {
986#if EV_USE_EVENTFD 1092#if EV_USE_EVENTFD
987 if ((evfd = eventfd (0, 0)) >= 0) 1093 if ((evfd = eventfd (0, 0)) >= 0)
988 { 1094 {
989 evpipe [0] = -1; 1095 evpipe [0] = -1;
990 fd_intern (evfd); 1096 fd_intern (evfd);
991 ev_io_set (&pipeev, evfd, EV_READ); 1097 ev_io_set (&pipe_w, evfd, EV_READ);
992 } 1098 }
993 else 1099 else
994#endif 1100#endif
995 { 1101 {
996 while (pipe (evpipe)) 1102 while (pipe (evpipe))
997 syserr ("(libev) error creating signal/async pipe"); 1103 ev_syserr ("(libev) error creating signal/async pipe");
998 1104
999 fd_intern (evpipe [0]); 1105 fd_intern (evpipe [0]);
1000 fd_intern (evpipe [1]); 1106 fd_intern (evpipe [1]);
1001 ev_io_set (&pipeev, evpipe [0], EV_READ); 1107 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1002 } 1108 }
1003 1109
1004 ev_io_start (EV_A_ &pipeev); 1110 ev_io_start (EV_A_ &pipe_w);
1005 ev_unref (EV_A); /* watcher should not keep loop alive */ 1111 ev_unref (EV_A); /* watcher should not keep loop alive */
1006 } 1112 }
1007} 1113}
1008 1114
1009void inline_size 1115inline_size void
1010evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1116evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1011{ 1117{
1012 if (!*flag) 1118 if (!*flag)
1013 { 1119 {
1014 int old_errno = errno; /* save errno because write might clobber it */ 1120 int old_errno = errno; /* save errno because write might clobber it */
1027 1133
1028 errno = old_errno; 1134 errno = old_errno;
1029 } 1135 }
1030} 1136}
1031 1137
1138/* called whenever the libev signal pipe */
1139/* got some events (signal, async) */
1032static void 1140static void
1033pipecb (EV_P_ ev_io *iow, int revents) 1141pipecb (EV_P_ ev_io *iow, int revents)
1034{ 1142{
1035#if EV_USE_EVENTFD 1143#if EV_USE_EVENTFD
1036 if (evfd >= 0) 1144 if (evfd >= 0)
1092ev_feed_signal_event (EV_P_ int signum) 1200ev_feed_signal_event (EV_P_ int signum)
1093{ 1201{
1094 WL w; 1202 WL w;
1095 1203
1096#if EV_MULTIPLICITY 1204#if EV_MULTIPLICITY
1097 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1205 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1098#endif 1206#endif
1099 1207
1100 --signum; 1208 --signum;
1101 1209
1102 if (signum < 0 || signum >= signalmax) 1210 if (signum < 0 || signum >= signalmax)
1118 1226
1119#ifndef WIFCONTINUED 1227#ifndef WIFCONTINUED
1120# define WIFCONTINUED(status) 0 1228# define WIFCONTINUED(status) 0
1121#endif 1229#endif
1122 1230
1123void inline_speed 1231/* handle a single child status event */
1232inline_speed void
1124child_reap (EV_P_ int chain, int pid, int status) 1233child_reap (EV_P_ int chain, int pid, int status)
1125{ 1234{
1126 ev_child *w; 1235 ev_child *w;
1127 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1236 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1128 1237
1141 1250
1142#ifndef WCONTINUED 1251#ifndef WCONTINUED
1143# define WCONTINUED 0 1252# define WCONTINUED 0
1144#endif 1253#endif
1145 1254
1255/* called on sigchld etc., calls waitpid */
1146static void 1256static void
1147childcb (EV_P_ ev_signal *sw, int revents) 1257childcb (EV_P_ ev_signal *sw, int revents)
1148{ 1258{
1149 int pid, status; 1259 int pid, status;
1150 1260
1231 /* kqueue is borked on everything but netbsd apparently */ 1341 /* kqueue is borked on everything but netbsd apparently */
1232 /* it usually doesn't work correctly on anything but sockets and pipes */ 1342 /* it usually doesn't work correctly on anything but sockets and pipes */
1233 flags &= ~EVBACKEND_KQUEUE; 1343 flags &= ~EVBACKEND_KQUEUE;
1234#endif 1344#endif
1235#ifdef __APPLE__ 1345#ifdef __APPLE__
1236 // flags &= ~EVBACKEND_KQUEUE; for documentation 1346 /* only select works correctly on that "unix-certified" platform */
1237 flags &= ~EVBACKEND_POLL; 1347 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1348 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1238#endif 1349#endif
1239 1350
1240 return flags; 1351 return flags;
1241} 1352}
1242 1353
1256ev_backend (EV_P) 1367ev_backend (EV_P)
1257{ 1368{
1258 return backend; 1369 return backend;
1259} 1370}
1260 1371
1372#if EV_MINIMAL < 2
1261unsigned int 1373unsigned int
1262ev_loop_count (EV_P) 1374ev_loop_count (EV_P)
1263{ 1375{
1264 return loop_count; 1376 return loop_count;
1265} 1377}
1266 1378
1379unsigned int
1380ev_loop_depth (EV_P)
1381{
1382 return loop_depth;
1383}
1384
1267void 1385void
1268ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1386ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1269{ 1387{
1270 io_blocktime = interval; 1388 io_blocktime = interval;
1271} 1389}
1274ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1392ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1275{ 1393{
1276 timeout_blocktime = interval; 1394 timeout_blocktime = interval;
1277} 1395}
1278 1396
1397void
1398ev_set_userdata (EV_P_ void *data)
1399{
1400 userdata = data;
1401}
1402
1403void *
1404ev_userdata (EV_P)
1405{
1406 return userdata;
1407}
1408
1409void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1410{
1411 invoke_cb = invoke_pending_cb;
1412}
1413
1414void ev_set_blocking_cb (EV_P_ void (*suspend_cb_)(EV_P), void (*resume_cb_)(EV_P))
1415{
1416 suspend_cb = suspend_cb_;
1417 resume_cb = resume_cb_;
1418}
1419#endif
1420
1421/* initialise a loop structure, must be zero-initialised */
1279static void noinline 1422static void noinline
1280loop_init (EV_P_ unsigned int flags) 1423loop_init (EV_P_ unsigned int flags)
1281{ 1424{
1282 if (!backend) 1425 if (!backend)
1283 { 1426 {
1427#if EV_USE_REALTIME
1428 if (!have_realtime)
1429 {
1430 struct timespec ts;
1431
1432 if (!clock_gettime (CLOCK_REALTIME, &ts))
1433 have_realtime = 1;
1434 }
1435#endif
1436
1284#if EV_USE_MONOTONIC 1437#if EV_USE_MONOTONIC
1438 if (!have_monotonic)
1285 { 1439 {
1286 struct timespec ts; 1440 struct timespec ts;
1441
1287 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1442 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1288 have_monotonic = 1; 1443 have_monotonic = 1;
1289 } 1444 }
1290#endif 1445#endif
1291 1446
1292 ev_rt_now = ev_time (); 1447 ev_rt_now = ev_time ();
1293 mn_now = get_clock (); 1448 mn_now = get_clock ();
1294 now_floor = mn_now; 1449 now_floor = mn_now;
1295 rtmn_diff = ev_rt_now - mn_now; 1450 rtmn_diff = ev_rt_now - mn_now;
1451#if EV_MINIMAL < 2
1452 invoke_cb = ev_invoke_pending;
1453#endif
1296 1454
1297 io_blocktime = 0.; 1455 io_blocktime = 0.;
1298 timeout_blocktime = 0.; 1456 timeout_blocktime = 0.;
1299 backend = 0; 1457 backend = 0;
1300 backend_fd = -1; 1458 backend_fd = -1;
1331#endif 1489#endif
1332#if EV_USE_SELECT 1490#if EV_USE_SELECT
1333 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1491 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1334#endif 1492#endif
1335 1493
1494 ev_prepare_init (&pending_w, pendingcb);
1495
1336 ev_init (&pipeev, pipecb); 1496 ev_init (&pipe_w, pipecb);
1337 ev_set_priority (&pipeev, EV_MAXPRI); 1497 ev_set_priority (&pipe_w, EV_MAXPRI);
1338 } 1498 }
1339} 1499}
1340 1500
1501/* free up a loop structure */
1341static void noinline 1502static void noinline
1342loop_destroy (EV_P) 1503loop_destroy (EV_P)
1343{ 1504{
1344 int i; 1505 int i;
1345 1506
1346 if (ev_is_active (&pipeev)) 1507 if (ev_is_active (&pipe_w))
1347 { 1508 {
1348 ev_ref (EV_A); /* signal watcher */ 1509 ev_ref (EV_A); /* signal watcher */
1349 ev_io_stop (EV_A_ &pipeev); 1510 ev_io_stop (EV_A_ &pipe_w);
1350 1511
1351#if EV_USE_EVENTFD 1512#if EV_USE_EVENTFD
1352 if (evfd >= 0) 1513 if (evfd >= 0)
1353 close (evfd); 1514 close (evfd);
1354#endif 1515#endif
1393 } 1554 }
1394 1555
1395 ev_free (anfds); anfdmax = 0; 1556 ev_free (anfds); anfdmax = 0;
1396 1557
1397 /* have to use the microsoft-never-gets-it-right macro */ 1558 /* have to use the microsoft-never-gets-it-right macro */
1559 array_free (rfeed, EMPTY);
1398 array_free (fdchange, EMPTY); 1560 array_free (fdchange, EMPTY);
1399 array_free (timer, EMPTY); 1561 array_free (timer, EMPTY);
1400#if EV_PERIODIC_ENABLE 1562#if EV_PERIODIC_ENABLE
1401 array_free (periodic, EMPTY); 1563 array_free (periodic, EMPTY);
1402#endif 1564#endif
1411 1573
1412 backend = 0; 1574 backend = 0;
1413} 1575}
1414 1576
1415#if EV_USE_INOTIFY 1577#if EV_USE_INOTIFY
1416void inline_size infy_fork (EV_P); 1578inline_size void infy_fork (EV_P);
1417#endif 1579#endif
1418 1580
1419void inline_size 1581inline_size void
1420loop_fork (EV_P) 1582loop_fork (EV_P)
1421{ 1583{
1422#if EV_USE_PORT 1584#if EV_USE_PORT
1423 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1585 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1424#endif 1586#endif
1430#endif 1592#endif
1431#if EV_USE_INOTIFY 1593#if EV_USE_INOTIFY
1432 infy_fork (EV_A); 1594 infy_fork (EV_A);
1433#endif 1595#endif
1434 1596
1435 if (ev_is_active (&pipeev)) 1597 if (ev_is_active (&pipe_w))
1436 { 1598 {
1437 /* this "locks" the handlers against writing to the pipe */ 1599 /* this "locks" the handlers against writing to the pipe */
1438 /* while we modify the fd vars */ 1600 /* while we modify the fd vars */
1439 gotsig = 1; 1601 gotsig = 1;
1440#if EV_ASYNC_ENABLE 1602#if EV_ASYNC_ENABLE
1441 gotasync = 1; 1603 gotasync = 1;
1442#endif 1604#endif
1443 1605
1444 ev_ref (EV_A); 1606 ev_ref (EV_A);
1445 ev_io_stop (EV_A_ &pipeev); 1607 ev_io_stop (EV_A_ &pipe_w);
1446 1608
1447#if EV_USE_EVENTFD 1609#if EV_USE_EVENTFD
1448 if (evfd >= 0) 1610 if (evfd >= 0)
1449 close (evfd); 1611 close (evfd);
1450#endif 1612#endif
1455 close (evpipe [1]); 1617 close (evpipe [1]);
1456 } 1618 }
1457 1619
1458 evpipe_init (EV_A); 1620 evpipe_init (EV_A);
1459 /* now iterate over everything, in case we missed something */ 1621 /* now iterate over everything, in case we missed something */
1460 pipecb (EV_A_ &pipeev, EV_READ); 1622 pipecb (EV_A_ &pipe_w, EV_READ);
1461 } 1623 }
1462 1624
1463 postfork = 0; 1625 postfork = 0;
1464} 1626}
1465 1627
1466#if EV_MULTIPLICITY 1628#if EV_MULTIPLICITY
1629
1467struct ev_loop * 1630struct ev_loop *
1468ev_loop_new (unsigned int flags) 1631ev_loop_new (unsigned int flags)
1469{ 1632{
1470 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1633 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1471 1634
1488 1651
1489void 1652void
1490ev_loop_fork (EV_P) 1653ev_loop_fork (EV_P)
1491{ 1654{
1492 postfork = 1; /* must be in line with ev_default_fork */ 1655 postfork = 1; /* must be in line with ev_default_fork */
1656}
1657#endif /* multiplicity */
1658
1659#if EV_VERIFY
1660static void noinline
1661verify_watcher (EV_P_ W w)
1662{
1663 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1664
1665 if (w->pending)
1666 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1667}
1668
1669static void noinline
1670verify_heap (EV_P_ ANHE *heap, int N)
1671{
1672 int i;
1673
1674 for (i = HEAP0; i < N + HEAP0; ++i)
1675 {
1676 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1677 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1678 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1679
1680 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1681 }
1682}
1683
1684static void noinline
1685array_verify (EV_P_ W *ws, int cnt)
1686{
1687 while (cnt--)
1688 {
1689 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1690 verify_watcher (EV_A_ ws [cnt]);
1691 }
1692}
1693#endif
1694
1695#if EV_MINIMAL < 2
1696void
1697ev_loop_verify (EV_P)
1698{
1699#if EV_VERIFY
1700 int i;
1701 WL w;
1702
1703 assert (activecnt >= -1);
1704
1705 assert (fdchangemax >= fdchangecnt);
1706 for (i = 0; i < fdchangecnt; ++i)
1707 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1708
1709 assert (anfdmax >= 0);
1710 for (i = 0; i < anfdmax; ++i)
1711 for (w = anfds [i].head; w; w = w->next)
1712 {
1713 verify_watcher (EV_A_ (W)w);
1714 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1715 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1716 }
1717
1718 assert (timermax >= timercnt);
1719 verify_heap (EV_A_ timers, timercnt);
1720
1721#if EV_PERIODIC_ENABLE
1722 assert (periodicmax >= periodiccnt);
1723 verify_heap (EV_A_ periodics, periodiccnt);
1724#endif
1725
1726 for (i = NUMPRI; i--; )
1727 {
1728 assert (pendingmax [i] >= pendingcnt [i]);
1729#if EV_IDLE_ENABLE
1730 assert (idleall >= 0);
1731 assert (idlemax [i] >= idlecnt [i]);
1732 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1733#endif
1734 }
1735
1736#if EV_FORK_ENABLE
1737 assert (forkmax >= forkcnt);
1738 array_verify (EV_A_ (W *)forks, forkcnt);
1739#endif
1740
1741#if EV_ASYNC_ENABLE
1742 assert (asyncmax >= asynccnt);
1743 array_verify (EV_A_ (W *)asyncs, asynccnt);
1744#endif
1745
1746 assert (preparemax >= preparecnt);
1747 array_verify (EV_A_ (W *)prepares, preparecnt);
1748
1749 assert (checkmax >= checkcnt);
1750 array_verify (EV_A_ (W *)checks, checkcnt);
1751
1752# if 0
1753 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1754 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1755# endif
1756#endif
1493} 1757}
1494#endif 1758#endif
1495 1759
1496#if EV_MULTIPLICITY 1760#if EV_MULTIPLICITY
1497struct ev_loop * 1761struct ev_loop *
1532{ 1796{
1533#if EV_MULTIPLICITY 1797#if EV_MULTIPLICITY
1534 struct ev_loop *loop = ev_default_loop_ptr; 1798 struct ev_loop *loop = ev_default_loop_ptr;
1535#endif 1799#endif
1536 1800
1801 ev_default_loop_ptr = 0;
1802
1537#ifndef _WIN32 1803#ifndef _WIN32
1538 ev_ref (EV_A); /* child watcher */ 1804 ev_ref (EV_A); /* child watcher */
1539 ev_signal_stop (EV_A_ &childev); 1805 ev_signal_stop (EV_A_ &childev);
1540#endif 1806#endif
1541 1807
1547{ 1813{
1548#if EV_MULTIPLICITY 1814#if EV_MULTIPLICITY
1549 struct ev_loop *loop = ev_default_loop_ptr; 1815 struct ev_loop *loop = ev_default_loop_ptr;
1550#endif 1816#endif
1551 1817
1552 if (backend)
1553 postfork = 1; /* must be in line with ev_loop_fork */ 1818 postfork = 1; /* must be in line with ev_loop_fork */
1554} 1819}
1555 1820
1556/*****************************************************************************/ 1821/*****************************************************************************/
1557 1822
1558void 1823void
1559ev_invoke (EV_P_ void *w, int revents) 1824ev_invoke (EV_P_ void *w, int revents)
1560{ 1825{
1561 EV_CB_INVOKE ((W)w, revents); 1826 EV_CB_INVOKE ((W)w, revents);
1562} 1827}
1563 1828
1564void inline_speed 1829void noinline
1565call_pending (EV_P) 1830ev_invoke_pending (EV_P)
1566{ 1831{
1567 int pri; 1832 int pri;
1568 1833
1569 for (pri = NUMPRI; pri--; ) 1834 for (pri = NUMPRI; pri--; )
1570 while (pendingcnt [pri]) 1835 while (pendingcnt [pri])
1571 { 1836 {
1572 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1837 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1573 1838
1574 if (expect_true (p->w))
1575 {
1576 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1839 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1840 /* ^ this is no longer true, as pending_w could be here */
1577 1841
1578 p->w->pending = 0; 1842 p->w->pending = 0;
1579 EV_CB_INVOKE (p->w, p->events); 1843 EV_CB_INVOKE (p->w, p->events);
1580 } 1844 EV_FREQUENT_CHECK;
1581 } 1845 }
1582} 1846}
1583 1847
1584#if EV_IDLE_ENABLE 1848#if EV_IDLE_ENABLE
1585void inline_size 1849/* make idle watchers pending. this handles the "call-idle */
1850/* only when higher priorities are idle" logic */
1851inline_size void
1586idle_reify (EV_P) 1852idle_reify (EV_P)
1587{ 1853{
1588 if (expect_false (idleall)) 1854 if (expect_false (idleall))
1589 { 1855 {
1590 int pri; 1856 int pri;
1602 } 1868 }
1603 } 1869 }
1604} 1870}
1605#endif 1871#endif
1606 1872
1607void inline_size 1873/* make timers pending */
1874inline_size void
1608timers_reify (EV_P) 1875timers_reify (EV_P)
1609{ 1876{
1877 EV_FREQUENT_CHECK;
1878
1610 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 1879 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1611 { 1880 {
1612 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 1881 do
1613
1614 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1615
1616 /* first reschedule or stop timer */
1617 if (w->repeat)
1618 { 1882 {
1883 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1884
1885 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1886
1887 /* first reschedule or stop timer */
1888 if (w->repeat)
1889 {
1619 ev_at (w) += w->repeat; 1890 ev_at (w) += w->repeat;
1620 if (ev_at (w) < mn_now) 1891 if (ev_at (w) < mn_now)
1621 ev_at (w) = mn_now; 1892 ev_at (w) = mn_now;
1622 1893
1623 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1894 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1624 1895
1625 ANHE_at_set (timers [HEAP0]); 1896 ANHE_at_cache (timers [HEAP0]);
1626 downheap (timers, timercnt, HEAP0); 1897 downheap (timers, timercnt, HEAP0);
1898 }
1899 else
1900 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1901
1902 EV_FREQUENT_CHECK;
1903 feed_reverse (EV_A_ (W)w);
1627 } 1904 }
1628 else 1905 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1629 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1630 1906
1631 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1907 feed_reverse_done (EV_A_ EV_TIMEOUT);
1632 } 1908 }
1633} 1909}
1634 1910
1635#if EV_PERIODIC_ENABLE 1911#if EV_PERIODIC_ENABLE
1636void inline_size 1912/* make periodics pending */
1913inline_size void
1637periodics_reify (EV_P) 1914periodics_reify (EV_P)
1638{ 1915{
1916 EV_FREQUENT_CHECK;
1917
1639 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 1918 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1640 { 1919 {
1641 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 1920 int feed_count = 0;
1642 1921
1643 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1922 do
1644
1645 /* first reschedule or stop timer */
1646 if (w->reschedule_cb)
1647 { 1923 {
1924 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1925
1926 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1927
1928 /* first reschedule or stop timer */
1929 if (w->reschedule_cb)
1930 {
1648 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1931 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1649 1932
1650 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 1933 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1651 1934
1652 ANHE_at_set (periodics [HEAP0]); 1935 ANHE_at_cache (periodics [HEAP0]);
1653 downheap (periodics, periodiccnt, HEAP0); 1936 downheap (periodics, periodiccnt, HEAP0);
1937 }
1938 else if (w->interval)
1939 {
1940 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1941 /* if next trigger time is not sufficiently in the future, put it there */
1942 /* this might happen because of floating point inexactness */
1943 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1944 {
1945 ev_at (w) += w->interval;
1946
1947 /* if interval is unreasonably low we might still have a time in the past */
1948 /* so correct this. this will make the periodic very inexact, but the user */
1949 /* has effectively asked to get triggered more often than possible */
1950 if (ev_at (w) < ev_rt_now)
1951 ev_at (w) = ev_rt_now;
1952 }
1953
1954 ANHE_at_cache (periodics [HEAP0]);
1955 downheap (periodics, periodiccnt, HEAP0);
1956 }
1957 else
1958 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1959
1960 EV_FREQUENT_CHECK;
1961 feed_reverse (EV_A_ (W)w);
1654 } 1962 }
1655 else if (w->interval) 1963 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1656 {
1657 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1658 /* if next trigger time is not sufficiently in the future, put it there */
1659 /* this might happen because of floating point inexactness */
1660 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1661 {
1662 ev_at (w) += w->interval;
1663 1964
1664 /* if interval is unreasonably low we might still have a time in the past */
1665 /* so correct this. this will make the periodic very inexact, but the user */
1666 /* has effectively asked to get triggered more often than possible */
1667 if (ev_at (w) < ev_rt_now)
1668 ev_at (w) = ev_rt_now;
1669 }
1670
1671 ANHE_at_set (periodics [HEAP0]);
1672 downheap (periodics, periodiccnt, HEAP0);
1673 }
1674 else
1675 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1676
1677 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1965 feed_reverse_done (EV_A_ EV_PERIODIC);
1678 } 1966 }
1679} 1967}
1680 1968
1969/* simply recalculate all periodics */
1970/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1681static void noinline 1971static void noinline
1682periodics_reschedule (EV_P) 1972periodics_reschedule (EV_P)
1683{ 1973{
1684 int i; 1974 int i;
1685 1975
1691 if (w->reschedule_cb) 1981 if (w->reschedule_cb)
1692 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1982 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1693 else if (w->interval) 1983 else if (w->interval)
1694 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1984 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1695 1985
1696 ANHE_at_set (periodics [i]); 1986 ANHE_at_cache (periodics [i]);
1697 } 1987 }
1698 1988
1699 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */ 1989 reheap (periodics, periodiccnt);
1700 /* also, this is easy and corretc for both 2-heaps and 4-heaps */ 1990}
1991#endif
1992
1993/* adjust all timers by a given offset */
1994static void noinline
1995timers_reschedule (EV_P_ ev_tstamp adjust)
1996{
1997 int i;
1998
1701 for (i = 0; i < periodiccnt; ++i) 1999 for (i = 0; i < timercnt; ++i)
1702 upheap (periodics, i + HEAP0); 2000 {
2001 ANHE *he = timers + i + HEAP0;
2002 ANHE_w (*he)->at += adjust;
2003 ANHE_at_cache (*he);
2004 }
1703} 2005}
1704#endif
1705 2006
1706void inline_speed 2007/* fetch new monotonic and realtime times from the kernel */
2008/* also detetc if there was a timejump, and act accordingly */
2009inline_speed void
1707time_update (EV_P_ ev_tstamp max_block) 2010time_update (EV_P_ ev_tstamp max_block)
1708{ 2011{
1709 int i;
1710
1711#if EV_USE_MONOTONIC 2012#if EV_USE_MONOTONIC
1712 if (expect_true (have_monotonic)) 2013 if (expect_true (have_monotonic))
1713 { 2014 {
2015 int i;
1714 ev_tstamp odiff = rtmn_diff; 2016 ev_tstamp odiff = rtmn_diff;
1715 2017
1716 mn_now = get_clock (); 2018 mn_now = get_clock ();
1717 2019
1718 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2020 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1744 ev_rt_now = ev_time (); 2046 ev_rt_now = ev_time ();
1745 mn_now = get_clock (); 2047 mn_now = get_clock ();
1746 now_floor = mn_now; 2048 now_floor = mn_now;
1747 } 2049 }
1748 2050
2051 /* no timer adjustment, as the monotonic clock doesn't jump */
2052 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1749# if EV_PERIODIC_ENABLE 2053# if EV_PERIODIC_ENABLE
1750 periodics_reschedule (EV_A); 2054 periodics_reschedule (EV_A);
1751# endif 2055# endif
1752 /* no timer adjustment, as the monotonic clock doesn't jump */
1753 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1754 } 2056 }
1755 else 2057 else
1756#endif 2058#endif
1757 { 2059 {
1758 ev_rt_now = ev_time (); 2060 ev_rt_now = ev_time ();
1759 2061
1760 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2062 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1761 { 2063 {
2064 /* adjust timers. this is easy, as the offset is the same for all of them */
2065 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1762#if EV_PERIODIC_ENABLE 2066#if EV_PERIODIC_ENABLE
1763 periodics_reschedule (EV_A); 2067 periodics_reschedule (EV_A);
1764#endif 2068#endif
1765 /* adjust timers. this is easy, as the offset is the same for all of them */
1766 for (i = 0; i < timercnt; ++i)
1767 {
1768 ANHE *he = timers + i + HEAP0;
1769 ANHE_w (*he)->at += ev_rt_now - mn_now;
1770 ANHE_at_set (*he);
1771 }
1772 } 2069 }
1773 2070
1774 mn_now = ev_rt_now; 2071 mn_now = ev_rt_now;
1775 } 2072 }
1776} 2073}
1777 2074
1778void 2075void
1779ev_ref (EV_P)
1780{
1781 ++activecnt;
1782}
1783
1784void
1785ev_unref (EV_P)
1786{
1787 --activecnt;
1788}
1789
1790static int loop_done;
1791
1792void
1793ev_loop (EV_P_ int flags) 2076ev_loop (EV_P_ int flags)
1794{ 2077{
2078#if EV_MINIMAL < 2
2079 ++loop_depth;
2080#endif
2081
1795 loop_done = EVUNLOOP_CANCEL; 2082 loop_done = EVUNLOOP_CANCEL;
1796 2083
1797 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2084 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1798 2085
1799 do 2086 do
1800 { 2087 {
2088#if EV_VERIFY >= 2
2089 ev_loop_verify (EV_A);
2090#endif
2091
1801#ifndef _WIN32 2092#ifndef _WIN32
1802 if (expect_false (curpid)) /* penalise the forking check even more */ 2093 if (expect_false (curpid)) /* penalise the forking check even more */
1803 if (expect_false (getpid () != curpid)) 2094 if (expect_false (getpid () != curpid))
1804 { 2095 {
1805 curpid = getpid (); 2096 curpid = getpid ();
1811 /* we might have forked, so queue fork handlers */ 2102 /* we might have forked, so queue fork handlers */
1812 if (expect_false (postfork)) 2103 if (expect_false (postfork))
1813 if (forkcnt) 2104 if (forkcnt)
1814 { 2105 {
1815 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2106 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1816 call_pending (EV_A); 2107 EV_INVOKE_PENDING;
1817 } 2108 }
1818#endif 2109#endif
1819 2110
1820 /* queue prepare watchers (and execute them) */ 2111 /* queue prepare watchers (and execute them) */
1821 if (expect_false (preparecnt)) 2112 if (expect_false (preparecnt))
1822 { 2113 {
1823 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2114 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1824 call_pending (EV_A); 2115 EV_INVOKE_PENDING;
1825 } 2116 }
1826
1827 if (expect_false (!activecnt))
1828 break;
1829 2117
1830 /* we might have forked, so reify kernel state if necessary */ 2118 /* we might have forked, so reify kernel state if necessary */
1831 if (expect_false (postfork)) 2119 if (expect_false (postfork))
1832 loop_fork (EV_A); 2120 loop_fork (EV_A);
1833 2121
1839 ev_tstamp waittime = 0.; 2127 ev_tstamp waittime = 0.;
1840 ev_tstamp sleeptime = 0.; 2128 ev_tstamp sleeptime = 0.;
1841 2129
1842 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2130 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1843 { 2131 {
2132 /* remember old timestamp for io_blocktime calculation */
2133 ev_tstamp prev_mn_now = mn_now;
2134
1844 /* update time to cancel out callback processing overhead */ 2135 /* update time to cancel out callback processing overhead */
1845 time_update (EV_A_ 1e100); 2136 time_update (EV_A_ 1e100);
1846 2137
1847 waittime = MAX_BLOCKTIME; 2138 waittime = MAX_BLOCKTIME;
1848 2139
1858 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2149 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1859 if (waittime > to) waittime = to; 2150 if (waittime > to) waittime = to;
1860 } 2151 }
1861#endif 2152#endif
1862 2153
2154 /* don't let timeouts decrease the waittime below timeout_blocktime */
1863 if (expect_false (waittime < timeout_blocktime)) 2155 if (expect_false (waittime < timeout_blocktime))
1864 waittime = timeout_blocktime; 2156 waittime = timeout_blocktime;
1865 2157
1866 sleeptime = waittime - backend_fudge; 2158 /* extra check because io_blocktime is commonly 0 */
1867
1868 if (expect_true (sleeptime > io_blocktime)) 2159 if (expect_false (io_blocktime))
1869 sleeptime = io_blocktime;
1870
1871 if (sleeptime)
1872 { 2160 {
2161 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2162
2163 if (sleeptime > waittime - backend_fudge)
2164 sleeptime = waittime - backend_fudge;
2165
2166 if (expect_true (sleeptime > 0.))
2167 {
1873 ev_sleep (sleeptime); 2168 ev_sleep (sleeptime);
1874 waittime -= sleeptime; 2169 waittime -= sleeptime;
2170 }
1875 } 2171 }
1876 } 2172 }
1877 2173
2174#if EV_MINIMAL < 2
1878 ++loop_count; 2175 ++loop_count;
2176#endif
1879 backend_poll (EV_A_ waittime); 2177 backend_poll (EV_A_ waittime);
1880 2178
1881 /* update ev_rt_now, do magic */ 2179 /* update ev_rt_now, do magic */
1882 time_update (EV_A_ waittime + sleeptime); 2180 time_update (EV_A_ waittime + sleeptime);
1883 } 2181 }
1895 2193
1896 /* queue check watchers, to be executed first */ 2194 /* queue check watchers, to be executed first */
1897 if (expect_false (checkcnt)) 2195 if (expect_false (checkcnt))
1898 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2196 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1899 2197
1900 call_pending (EV_A); 2198 EV_INVOKE_PENDING;
1901 } 2199 }
1902 while (expect_true ( 2200 while (expect_true (
1903 activecnt 2201 activecnt
1904 && !loop_done 2202 && !loop_done
1905 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2203 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1906 )); 2204 ));
1907 2205
1908 if (loop_done == EVUNLOOP_ONE) 2206 if (loop_done == EVUNLOOP_ONE)
1909 loop_done = EVUNLOOP_CANCEL; 2207 loop_done = EVUNLOOP_CANCEL;
2208
2209#if EV_MINIMAL < 2
2210 --loop_depth;
2211#endif
1910} 2212}
1911 2213
1912void 2214void
1913ev_unloop (EV_P_ int how) 2215ev_unloop (EV_P_ int how)
1914{ 2216{
1915 loop_done = how; 2217 loop_done = how;
1916} 2218}
1917 2219
2220void
2221ev_ref (EV_P)
2222{
2223 ++activecnt;
2224}
2225
2226void
2227ev_unref (EV_P)
2228{
2229 --activecnt;
2230}
2231
2232void
2233ev_now_update (EV_P)
2234{
2235 time_update (EV_A_ 1e100);
2236}
2237
2238void
2239ev_suspend (EV_P)
2240{
2241 ev_now_update (EV_A);
2242}
2243
2244void
2245ev_resume (EV_P)
2246{
2247 ev_tstamp mn_prev = mn_now;
2248
2249 ev_now_update (EV_A);
2250 timers_reschedule (EV_A_ mn_now - mn_prev);
2251#if EV_PERIODIC_ENABLE
2252 /* TODO: really do this? */
2253 periodics_reschedule (EV_A);
2254#endif
2255}
2256
1918/*****************************************************************************/ 2257/*****************************************************************************/
2258/* singly-linked list management, used when the expected list length is short */
1919 2259
1920void inline_size 2260inline_size void
1921wlist_add (WL *head, WL elem) 2261wlist_add (WL *head, WL elem)
1922{ 2262{
1923 elem->next = *head; 2263 elem->next = *head;
1924 *head = elem; 2264 *head = elem;
1925} 2265}
1926 2266
1927void inline_size 2267inline_size void
1928wlist_del (WL *head, WL elem) 2268wlist_del (WL *head, WL elem)
1929{ 2269{
1930 while (*head) 2270 while (*head)
1931 { 2271 {
1932 if (*head == elem) 2272 if (*head == elem)
1937 2277
1938 head = &(*head)->next; 2278 head = &(*head)->next;
1939 } 2279 }
1940} 2280}
1941 2281
1942void inline_speed 2282/* internal, faster, version of ev_clear_pending */
2283inline_speed void
1943clear_pending (EV_P_ W w) 2284clear_pending (EV_P_ W w)
1944{ 2285{
1945 if (w->pending) 2286 if (w->pending)
1946 { 2287 {
1947 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1948 w->pending = 0; 2289 w->pending = 0;
1949 } 2290 }
1950} 2291}
1951 2292
1952int 2293int
1956 int pending = w_->pending; 2297 int pending = w_->pending;
1957 2298
1958 if (expect_true (pending)) 2299 if (expect_true (pending))
1959 { 2300 {
1960 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2301 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2302 p->w = (W)&pending_w;
1961 w_->pending = 0; 2303 w_->pending = 0;
1962 p->w = 0;
1963 return p->events; 2304 return p->events;
1964 } 2305 }
1965 else 2306 else
1966 return 0; 2307 return 0;
1967} 2308}
1968 2309
1969void inline_size 2310inline_size void
1970pri_adjust (EV_P_ W w) 2311pri_adjust (EV_P_ W w)
1971{ 2312{
1972 int pri = w->priority; 2313 int pri = ev_priority (w);
1973 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2314 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1974 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2315 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1975 w->priority = pri; 2316 ev_set_priority (w, pri);
1976} 2317}
1977 2318
1978void inline_speed 2319inline_speed void
1979ev_start (EV_P_ W w, int active) 2320ev_start (EV_P_ W w, int active)
1980{ 2321{
1981 pri_adjust (EV_A_ w); 2322 pri_adjust (EV_A_ w);
1982 w->active = active; 2323 w->active = active;
1983 ev_ref (EV_A); 2324 ev_ref (EV_A);
1984} 2325}
1985 2326
1986void inline_size 2327inline_size void
1987ev_stop (EV_P_ W w) 2328ev_stop (EV_P_ W w)
1988{ 2329{
1989 ev_unref (EV_A); 2330 ev_unref (EV_A);
1990 w->active = 0; 2331 w->active = 0;
1991} 2332}
1998 int fd = w->fd; 2339 int fd = w->fd;
1999 2340
2000 if (expect_false (ev_is_active (w))) 2341 if (expect_false (ev_is_active (w)))
2001 return; 2342 return;
2002 2343
2003 assert (("ev_io_start called with negative fd", fd >= 0)); 2344 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2345 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2346
2347 EV_FREQUENT_CHECK;
2004 2348
2005 ev_start (EV_A_ (W)w, 1); 2349 ev_start (EV_A_ (W)w, 1);
2006 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2350 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2007 wlist_add (&anfds[fd].head, (WL)w); 2351 wlist_add (&anfds[fd].head, (WL)w);
2008 2352
2009 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2353 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
2010 w->events &= ~EV_IOFDSET; 2354 w->events &= ~EV__IOFDSET;
2355
2356 EV_FREQUENT_CHECK;
2011} 2357}
2012 2358
2013void noinline 2359void noinline
2014ev_io_stop (EV_P_ ev_io *w) 2360ev_io_stop (EV_P_ ev_io *w)
2015{ 2361{
2016 clear_pending (EV_A_ (W)w); 2362 clear_pending (EV_A_ (W)w);
2017 if (expect_false (!ev_is_active (w))) 2363 if (expect_false (!ev_is_active (w)))
2018 return; 2364 return;
2019 2365
2020 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2366 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2367
2368 EV_FREQUENT_CHECK;
2021 2369
2022 wlist_del (&anfds[w->fd].head, (WL)w); 2370 wlist_del (&anfds[w->fd].head, (WL)w);
2023 ev_stop (EV_A_ (W)w); 2371 ev_stop (EV_A_ (W)w);
2024 2372
2025 fd_change (EV_A_ w->fd, 1); 2373 fd_change (EV_A_ w->fd, 1);
2374
2375 EV_FREQUENT_CHECK;
2026} 2376}
2027 2377
2028void noinline 2378void noinline
2029ev_timer_start (EV_P_ ev_timer *w) 2379ev_timer_start (EV_P_ ev_timer *w)
2030{ 2380{
2031 if (expect_false (ev_is_active (w))) 2381 if (expect_false (ev_is_active (w)))
2032 return; 2382 return;
2033 2383
2034 ev_at (w) += mn_now; 2384 ev_at (w) += mn_now;
2035 2385
2036 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2386 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2037 2387
2388 EV_FREQUENT_CHECK;
2389
2390 ++timercnt;
2038 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2391 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2039 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 2392 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2040 ANHE_w (timers [ev_active (w)]) = (WT)w; 2393 ANHE_w (timers [ev_active (w)]) = (WT)w;
2041 ANHE_at_set (timers [ev_active (w)]); 2394 ANHE_at_cache (timers [ev_active (w)]);
2042 upheap (timers, ev_active (w)); 2395 upheap (timers, ev_active (w));
2043 2396
2397 EV_FREQUENT_CHECK;
2398
2044 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2399 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2045} 2400}
2046 2401
2047void noinline 2402void noinline
2048ev_timer_stop (EV_P_ ev_timer *w) 2403ev_timer_stop (EV_P_ ev_timer *w)
2049{ 2404{
2050 clear_pending (EV_A_ (W)w); 2405 clear_pending (EV_A_ (W)w);
2051 if (expect_false (!ev_is_active (w))) 2406 if (expect_false (!ev_is_active (w)))
2052 return; 2407 return;
2053 2408
2409 EV_FREQUENT_CHECK;
2410
2054 { 2411 {
2055 int active = ev_active (w); 2412 int active = ev_active (w);
2056 2413
2057 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2414 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2058 2415
2416 --timercnt;
2417
2059 if (expect_true (active < timercnt + HEAP0 - 1)) 2418 if (expect_true (active < timercnt + HEAP0))
2060 { 2419 {
2061 timers [active] = timers [timercnt + HEAP0 - 1]; 2420 timers [active] = timers [timercnt + HEAP0];
2062 adjustheap (timers, timercnt, active); 2421 adjustheap (timers, timercnt, active);
2063 } 2422 }
2064
2065 --timercnt;
2066 } 2423 }
2424
2425 EV_FREQUENT_CHECK;
2067 2426
2068 ev_at (w) -= mn_now; 2427 ev_at (w) -= mn_now;
2069 2428
2070 ev_stop (EV_A_ (W)w); 2429 ev_stop (EV_A_ (W)w);
2071} 2430}
2072 2431
2073void noinline 2432void noinline
2074ev_timer_again (EV_P_ ev_timer *w) 2433ev_timer_again (EV_P_ ev_timer *w)
2075{ 2434{
2435 EV_FREQUENT_CHECK;
2436
2076 if (ev_is_active (w)) 2437 if (ev_is_active (w))
2077 { 2438 {
2078 if (w->repeat) 2439 if (w->repeat)
2079 { 2440 {
2080 ev_at (w) = mn_now + w->repeat; 2441 ev_at (w) = mn_now + w->repeat;
2081 ANHE_at_set (timers [ev_active (w)]); 2442 ANHE_at_cache (timers [ev_active (w)]);
2082 adjustheap (timers, timercnt, ev_active (w)); 2443 adjustheap (timers, timercnt, ev_active (w));
2083 } 2444 }
2084 else 2445 else
2085 ev_timer_stop (EV_A_ w); 2446 ev_timer_stop (EV_A_ w);
2086 } 2447 }
2087 else if (w->repeat) 2448 else if (w->repeat)
2088 { 2449 {
2089 ev_at (w) = w->repeat; 2450 ev_at (w) = w->repeat;
2090 ev_timer_start (EV_A_ w); 2451 ev_timer_start (EV_A_ w);
2091 } 2452 }
2453
2454 EV_FREQUENT_CHECK;
2092} 2455}
2093 2456
2094#if EV_PERIODIC_ENABLE 2457#if EV_PERIODIC_ENABLE
2095void noinline 2458void noinline
2096ev_periodic_start (EV_P_ ev_periodic *w) 2459ev_periodic_start (EV_P_ ev_periodic *w)
2100 2463
2101 if (w->reschedule_cb) 2464 if (w->reschedule_cb)
2102 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2465 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2103 else if (w->interval) 2466 else if (w->interval)
2104 { 2467 {
2105 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2468 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2106 /* this formula differs from the one in periodic_reify because we do not always round up */ 2469 /* this formula differs from the one in periodic_reify because we do not always round up */
2107 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2470 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2108 } 2471 }
2109 else 2472 else
2110 ev_at (w) = w->offset; 2473 ev_at (w) = w->offset;
2111 2474
2475 EV_FREQUENT_CHECK;
2476
2477 ++periodiccnt;
2112 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2478 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2113 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 2479 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2114 ANHE_w (periodics [ev_active (w)]) = (WT)w; 2480 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2115 ANHE_at_set (periodics [ev_active (w)]); 2481 ANHE_at_cache (periodics [ev_active (w)]);
2116 upheap (periodics, ev_active (w)); 2482 upheap (periodics, ev_active (w));
2117 2483
2484 EV_FREQUENT_CHECK;
2485
2118 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2486 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2119} 2487}
2120 2488
2121void noinline 2489void noinline
2122ev_periodic_stop (EV_P_ ev_periodic *w) 2490ev_periodic_stop (EV_P_ ev_periodic *w)
2123{ 2491{
2124 clear_pending (EV_A_ (W)w); 2492 clear_pending (EV_A_ (W)w);
2125 if (expect_false (!ev_is_active (w))) 2493 if (expect_false (!ev_is_active (w)))
2126 return; 2494 return;
2127 2495
2496 EV_FREQUENT_CHECK;
2497
2128 { 2498 {
2129 int active = ev_active (w); 2499 int active = ev_active (w);
2130 2500
2131 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2501 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2132 2502
2503 --periodiccnt;
2504
2133 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2505 if (expect_true (active < periodiccnt + HEAP0))
2134 { 2506 {
2135 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2507 periodics [active] = periodics [periodiccnt + HEAP0];
2136 adjustheap (periodics, periodiccnt, active); 2508 adjustheap (periodics, periodiccnt, active);
2137 } 2509 }
2138
2139 --periodiccnt;
2140 } 2510 }
2511
2512 EV_FREQUENT_CHECK;
2141 2513
2142 ev_stop (EV_A_ (W)w); 2514 ev_stop (EV_A_ (W)w);
2143} 2515}
2144 2516
2145void noinline 2517void noinline
2157 2529
2158void noinline 2530void noinline
2159ev_signal_start (EV_P_ ev_signal *w) 2531ev_signal_start (EV_P_ ev_signal *w)
2160{ 2532{
2161#if EV_MULTIPLICITY 2533#if EV_MULTIPLICITY
2162 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2534 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2163#endif 2535#endif
2164 if (expect_false (ev_is_active (w))) 2536 if (expect_false (ev_is_active (w)))
2165 return; 2537 return;
2166 2538
2167 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2539 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2168 2540
2169 evpipe_init (EV_A); 2541 evpipe_init (EV_A);
2542
2543 EV_FREQUENT_CHECK;
2170 2544
2171 { 2545 {
2172#ifndef _WIN32 2546#ifndef _WIN32
2173 sigset_t full, prev; 2547 sigset_t full, prev;
2174 sigfillset (&full); 2548 sigfillset (&full);
2175 sigprocmask (SIG_SETMASK, &full, &prev); 2549 sigprocmask (SIG_SETMASK, &full, &prev);
2176#endif 2550#endif
2177 2551
2178 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2552 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2179 2553
2180#ifndef _WIN32 2554#ifndef _WIN32
2181 sigprocmask (SIG_SETMASK, &prev, 0); 2555 sigprocmask (SIG_SETMASK, &prev, 0);
2182#endif 2556#endif
2183 } 2557 }
2195 sigfillset (&sa.sa_mask); 2569 sigfillset (&sa.sa_mask);
2196 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2570 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2197 sigaction (w->signum, &sa, 0); 2571 sigaction (w->signum, &sa, 0);
2198#endif 2572#endif
2199 } 2573 }
2574
2575 EV_FREQUENT_CHECK;
2200} 2576}
2201 2577
2202void noinline 2578void noinline
2203ev_signal_stop (EV_P_ ev_signal *w) 2579ev_signal_stop (EV_P_ ev_signal *w)
2204{ 2580{
2205 clear_pending (EV_A_ (W)w); 2581 clear_pending (EV_A_ (W)w);
2206 if (expect_false (!ev_is_active (w))) 2582 if (expect_false (!ev_is_active (w)))
2207 return; 2583 return;
2208 2584
2585 EV_FREQUENT_CHECK;
2586
2209 wlist_del (&signals [w->signum - 1].head, (WL)w); 2587 wlist_del (&signals [w->signum - 1].head, (WL)w);
2210 ev_stop (EV_A_ (W)w); 2588 ev_stop (EV_A_ (W)w);
2211 2589
2212 if (!signals [w->signum - 1].head) 2590 if (!signals [w->signum - 1].head)
2213 signal (w->signum, SIG_DFL); 2591 signal (w->signum, SIG_DFL);
2592
2593 EV_FREQUENT_CHECK;
2214} 2594}
2215 2595
2216void 2596void
2217ev_child_start (EV_P_ ev_child *w) 2597ev_child_start (EV_P_ ev_child *w)
2218{ 2598{
2219#if EV_MULTIPLICITY 2599#if EV_MULTIPLICITY
2220 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2600 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2221#endif 2601#endif
2222 if (expect_false (ev_is_active (w))) 2602 if (expect_false (ev_is_active (w)))
2223 return; 2603 return;
2224 2604
2605 EV_FREQUENT_CHECK;
2606
2225 ev_start (EV_A_ (W)w, 1); 2607 ev_start (EV_A_ (W)w, 1);
2226 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2608 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2609
2610 EV_FREQUENT_CHECK;
2227} 2611}
2228 2612
2229void 2613void
2230ev_child_stop (EV_P_ ev_child *w) 2614ev_child_stop (EV_P_ ev_child *w)
2231{ 2615{
2232 clear_pending (EV_A_ (W)w); 2616 clear_pending (EV_A_ (W)w);
2233 if (expect_false (!ev_is_active (w))) 2617 if (expect_false (!ev_is_active (w)))
2234 return; 2618 return;
2235 2619
2620 EV_FREQUENT_CHECK;
2621
2236 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2622 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2237 ev_stop (EV_A_ (W)w); 2623 ev_stop (EV_A_ (W)w);
2624
2625 EV_FREQUENT_CHECK;
2238} 2626}
2239 2627
2240#if EV_STAT_ENABLE 2628#if EV_STAT_ENABLE
2241 2629
2242# ifdef _WIN32 2630# ifdef _WIN32
2243# undef lstat 2631# undef lstat
2244# define lstat(a,b) _stati64 (a,b) 2632# define lstat(a,b) _stati64 (a,b)
2245# endif 2633# endif
2246 2634
2247#define DEF_STAT_INTERVAL 5.0074891 2635#define DEF_STAT_INTERVAL 5.0074891
2636#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2248#define MIN_STAT_INTERVAL 0.1074891 2637#define MIN_STAT_INTERVAL 0.1074891
2249 2638
2250static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2639static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2251 2640
2252#if EV_USE_INOTIFY 2641#if EV_USE_INOTIFY
2253# define EV_INOTIFY_BUFSIZE 8192 2642# define EV_INOTIFY_BUFSIZE 8192
2257{ 2646{
2258 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2647 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2259 2648
2260 if (w->wd < 0) 2649 if (w->wd < 0)
2261 { 2650 {
2651 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2262 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2652 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2263 2653
2264 /* monitor some parent directory for speedup hints */ 2654 /* monitor some parent directory for speedup hints */
2265 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2655 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2266 /* but an efficiency issue only */ 2656 /* but an efficiency issue only */
2267 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2657 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2268 { 2658 {
2269 char path [4096]; 2659 char path [4096];
2270 strcpy (path, w->path); 2660 strcpy (path, w->path);
2274 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2664 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2275 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2665 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2276 2666
2277 char *pend = strrchr (path, '/'); 2667 char *pend = strrchr (path, '/');
2278 2668
2279 if (!pend) 2669 if (!pend || pend == path)
2280 break; /* whoops, no '/', complain to your admin */ 2670 break;
2281 2671
2282 *pend = 0; 2672 *pend = 0;
2283 w->wd = inotify_add_watch (fs_fd, path, mask); 2673 w->wd = inotify_add_watch (fs_fd, path, mask);
2284 } 2674 }
2285 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2675 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2286 } 2676 }
2287 } 2677 }
2288 else
2289 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2290 2678
2291 if (w->wd >= 0) 2679 if (w->wd >= 0)
2680 {
2292 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2681 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2682
2683 /* now local changes will be tracked by inotify, but remote changes won't */
2684 /* unless the filesystem it known to be local, we therefore still poll */
2685 /* also do poll on <2.6.25, but with normal frequency */
2686 struct statfs sfs;
2687
2688 if (fs_2625 && !statfs (w->path, &sfs))
2689 if (sfs.f_type == 0x1373 /* devfs */
2690 || sfs.f_type == 0xEF53 /* ext2/3 */
2691 || sfs.f_type == 0x3153464a /* jfs */
2692 || sfs.f_type == 0x52654973 /* reiser3 */
2693 || sfs.f_type == 0x01021994 /* tempfs */
2694 || sfs.f_type == 0x58465342 /* xfs */)
2695 return;
2696
2697 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2698 ev_timer_again (EV_A_ &w->timer);
2699 }
2293} 2700}
2294 2701
2295static void noinline 2702static void noinline
2296infy_del (EV_P_ ev_stat *w) 2703infy_del (EV_P_ ev_stat *w)
2297{ 2704{
2311 2718
2312static void noinline 2719static void noinline
2313infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2720infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2314{ 2721{
2315 if (slot < 0) 2722 if (slot < 0)
2316 /* overflow, need to check for all hahs slots */ 2723 /* overflow, need to check for all hash slots */
2317 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2724 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2318 infy_wd (EV_A_ slot, wd, ev); 2725 infy_wd (EV_A_ slot, wd, ev);
2319 else 2726 else
2320 { 2727 {
2321 WL w_; 2728 WL w_;
2327 2734
2328 if (w->wd == wd || wd == -1) 2735 if (w->wd == wd || wd == -1)
2329 { 2736 {
2330 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2737 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2331 { 2738 {
2739 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2332 w->wd = -1; 2740 w->wd = -1;
2333 infy_add (EV_A_ w); /* re-add, no matter what */ 2741 infy_add (EV_A_ w); /* re-add, no matter what */
2334 } 2742 }
2335 2743
2336 stat_timer_cb (EV_A_ &w->timer, 0); 2744 stat_timer_cb (EV_A_ &w->timer, 0);
2349 2757
2350 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2758 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2351 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2759 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2352} 2760}
2353 2761
2354void inline_size 2762inline_size void
2763check_2625 (EV_P)
2764{
2765 /* kernels < 2.6.25 are borked
2766 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2767 */
2768 struct utsname buf;
2769 int major, minor, micro;
2770
2771 if (uname (&buf))
2772 return;
2773
2774 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2775 return;
2776
2777 if (major < 2
2778 || (major == 2 && minor < 6)
2779 || (major == 2 && minor == 6 && micro < 25))
2780 return;
2781
2782 fs_2625 = 1;
2783}
2784
2785inline_size void
2355infy_init (EV_P) 2786infy_init (EV_P)
2356{ 2787{
2357 if (fs_fd != -2) 2788 if (fs_fd != -2)
2358 return; 2789 return;
2790
2791 fs_fd = -1;
2792
2793 check_2625 (EV_A);
2359 2794
2360 fs_fd = inotify_init (); 2795 fs_fd = inotify_init ();
2361 2796
2362 if (fs_fd >= 0) 2797 if (fs_fd >= 0)
2363 { 2798 {
2365 ev_set_priority (&fs_w, EV_MAXPRI); 2800 ev_set_priority (&fs_w, EV_MAXPRI);
2366 ev_io_start (EV_A_ &fs_w); 2801 ev_io_start (EV_A_ &fs_w);
2367 } 2802 }
2368} 2803}
2369 2804
2370void inline_size 2805inline_size void
2371infy_fork (EV_P) 2806infy_fork (EV_P)
2372{ 2807{
2373 int slot; 2808 int slot;
2374 2809
2375 if (fs_fd < 0) 2810 if (fs_fd < 0)
2391 w->wd = -1; 2826 w->wd = -1;
2392 2827
2393 if (fs_fd >= 0) 2828 if (fs_fd >= 0)
2394 infy_add (EV_A_ w); /* re-add, no matter what */ 2829 infy_add (EV_A_ w); /* re-add, no matter what */
2395 else 2830 else
2396 ev_timer_start (EV_A_ &w->timer); 2831 ev_timer_again (EV_A_ &w->timer);
2397 } 2832 }
2398
2399 } 2833 }
2400} 2834}
2401 2835
2836#endif
2837
2838#ifdef _WIN32
2839# define EV_LSTAT(p,b) _stati64 (p, b)
2840#else
2841# define EV_LSTAT(p,b) lstat (p, b)
2402#endif 2842#endif
2403 2843
2404void 2844void
2405ev_stat_stat (EV_P_ ev_stat *w) 2845ev_stat_stat (EV_P_ ev_stat *w)
2406{ 2846{
2433 || w->prev.st_atime != w->attr.st_atime 2873 || w->prev.st_atime != w->attr.st_atime
2434 || w->prev.st_mtime != w->attr.st_mtime 2874 || w->prev.st_mtime != w->attr.st_mtime
2435 || w->prev.st_ctime != w->attr.st_ctime 2875 || w->prev.st_ctime != w->attr.st_ctime
2436 ) { 2876 ) {
2437 #if EV_USE_INOTIFY 2877 #if EV_USE_INOTIFY
2878 if (fs_fd >= 0)
2879 {
2438 infy_del (EV_A_ w); 2880 infy_del (EV_A_ w);
2439 infy_add (EV_A_ w); 2881 infy_add (EV_A_ w);
2440 ev_stat_stat (EV_A_ w); /* avoid race... */ 2882 ev_stat_stat (EV_A_ w); /* avoid race... */
2883 }
2441 #endif 2884 #endif
2442 2885
2443 ev_feed_event (EV_A_ w, EV_STAT); 2886 ev_feed_event (EV_A_ w, EV_STAT);
2444 } 2887 }
2445} 2888}
2448ev_stat_start (EV_P_ ev_stat *w) 2891ev_stat_start (EV_P_ ev_stat *w)
2449{ 2892{
2450 if (expect_false (ev_is_active (w))) 2893 if (expect_false (ev_is_active (w)))
2451 return; 2894 return;
2452 2895
2453 /* since we use memcmp, we need to clear any padding data etc. */
2454 memset (&w->prev, 0, sizeof (ev_statdata));
2455 memset (&w->attr, 0, sizeof (ev_statdata));
2456
2457 ev_stat_stat (EV_A_ w); 2896 ev_stat_stat (EV_A_ w);
2458 2897
2898 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2459 if (w->interval < MIN_STAT_INTERVAL) 2899 w->interval = MIN_STAT_INTERVAL;
2460 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2461 2900
2462 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2901 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2463 ev_set_priority (&w->timer, ev_priority (w)); 2902 ev_set_priority (&w->timer, ev_priority (w));
2464 2903
2465#if EV_USE_INOTIFY 2904#if EV_USE_INOTIFY
2466 infy_init (EV_A); 2905 infy_init (EV_A);
2467 2906
2468 if (fs_fd >= 0) 2907 if (fs_fd >= 0)
2469 infy_add (EV_A_ w); 2908 infy_add (EV_A_ w);
2470 else 2909 else
2471#endif 2910#endif
2472 ev_timer_start (EV_A_ &w->timer); 2911 ev_timer_again (EV_A_ &w->timer);
2473 2912
2474 ev_start (EV_A_ (W)w, 1); 2913 ev_start (EV_A_ (W)w, 1);
2914
2915 EV_FREQUENT_CHECK;
2475} 2916}
2476 2917
2477void 2918void
2478ev_stat_stop (EV_P_ ev_stat *w) 2919ev_stat_stop (EV_P_ ev_stat *w)
2479{ 2920{
2480 clear_pending (EV_A_ (W)w); 2921 clear_pending (EV_A_ (W)w);
2481 if (expect_false (!ev_is_active (w))) 2922 if (expect_false (!ev_is_active (w)))
2482 return; 2923 return;
2483 2924
2925 EV_FREQUENT_CHECK;
2926
2484#if EV_USE_INOTIFY 2927#if EV_USE_INOTIFY
2485 infy_del (EV_A_ w); 2928 infy_del (EV_A_ w);
2486#endif 2929#endif
2487 ev_timer_stop (EV_A_ &w->timer); 2930 ev_timer_stop (EV_A_ &w->timer);
2488 2931
2489 ev_stop (EV_A_ (W)w); 2932 ev_stop (EV_A_ (W)w);
2933
2934 EV_FREQUENT_CHECK;
2490} 2935}
2491#endif 2936#endif
2492 2937
2493#if EV_IDLE_ENABLE 2938#if EV_IDLE_ENABLE
2494void 2939void
2496{ 2941{
2497 if (expect_false (ev_is_active (w))) 2942 if (expect_false (ev_is_active (w)))
2498 return; 2943 return;
2499 2944
2500 pri_adjust (EV_A_ (W)w); 2945 pri_adjust (EV_A_ (W)w);
2946
2947 EV_FREQUENT_CHECK;
2501 2948
2502 { 2949 {
2503 int active = ++idlecnt [ABSPRI (w)]; 2950 int active = ++idlecnt [ABSPRI (w)];
2504 2951
2505 ++idleall; 2952 ++idleall;
2506 ev_start (EV_A_ (W)w, active); 2953 ev_start (EV_A_ (W)w, active);
2507 2954
2508 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2955 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2509 idles [ABSPRI (w)][active - 1] = w; 2956 idles [ABSPRI (w)][active - 1] = w;
2510 } 2957 }
2958
2959 EV_FREQUENT_CHECK;
2511} 2960}
2512 2961
2513void 2962void
2514ev_idle_stop (EV_P_ ev_idle *w) 2963ev_idle_stop (EV_P_ ev_idle *w)
2515{ 2964{
2516 clear_pending (EV_A_ (W)w); 2965 clear_pending (EV_A_ (W)w);
2517 if (expect_false (!ev_is_active (w))) 2966 if (expect_false (!ev_is_active (w)))
2518 return; 2967 return;
2519 2968
2969 EV_FREQUENT_CHECK;
2970
2520 { 2971 {
2521 int active = ev_active (w); 2972 int active = ev_active (w);
2522 2973
2523 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2974 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2524 ev_active (idles [ABSPRI (w)][active - 1]) = active; 2975 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2525 2976
2526 ev_stop (EV_A_ (W)w); 2977 ev_stop (EV_A_ (W)w);
2527 --idleall; 2978 --idleall;
2528 } 2979 }
2980
2981 EV_FREQUENT_CHECK;
2529} 2982}
2530#endif 2983#endif
2531 2984
2532void 2985void
2533ev_prepare_start (EV_P_ ev_prepare *w) 2986ev_prepare_start (EV_P_ ev_prepare *w)
2534{ 2987{
2535 if (expect_false (ev_is_active (w))) 2988 if (expect_false (ev_is_active (w)))
2536 return; 2989 return;
2990
2991 EV_FREQUENT_CHECK;
2537 2992
2538 ev_start (EV_A_ (W)w, ++preparecnt); 2993 ev_start (EV_A_ (W)w, ++preparecnt);
2539 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2994 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2540 prepares [preparecnt - 1] = w; 2995 prepares [preparecnt - 1] = w;
2996
2997 EV_FREQUENT_CHECK;
2541} 2998}
2542 2999
2543void 3000void
2544ev_prepare_stop (EV_P_ ev_prepare *w) 3001ev_prepare_stop (EV_P_ ev_prepare *w)
2545{ 3002{
2546 clear_pending (EV_A_ (W)w); 3003 clear_pending (EV_A_ (W)w);
2547 if (expect_false (!ev_is_active (w))) 3004 if (expect_false (!ev_is_active (w)))
2548 return; 3005 return;
2549 3006
3007 EV_FREQUENT_CHECK;
3008
2550 { 3009 {
2551 int active = ev_active (w); 3010 int active = ev_active (w);
2552 3011
2553 prepares [active - 1] = prepares [--preparecnt]; 3012 prepares [active - 1] = prepares [--preparecnt];
2554 ev_active (prepares [active - 1]) = active; 3013 ev_active (prepares [active - 1]) = active;
2555 } 3014 }
2556 3015
2557 ev_stop (EV_A_ (W)w); 3016 ev_stop (EV_A_ (W)w);
3017
3018 EV_FREQUENT_CHECK;
2558} 3019}
2559 3020
2560void 3021void
2561ev_check_start (EV_P_ ev_check *w) 3022ev_check_start (EV_P_ ev_check *w)
2562{ 3023{
2563 if (expect_false (ev_is_active (w))) 3024 if (expect_false (ev_is_active (w)))
2564 return; 3025 return;
3026
3027 EV_FREQUENT_CHECK;
2565 3028
2566 ev_start (EV_A_ (W)w, ++checkcnt); 3029 ev_start (EV_A_ (W)w, ++checkcnt);
2567 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3030 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2568 checks [checkcnt - 1] = w; 3031 checks [checkcnt - 1] = w;
3032
3033 EV_FREQUENT_CHECK;
2569} 3034}
2570 3035
2571void 3036void
2572ev_check_stop (EV_P_ ev_check *w) 3037ev_check_stop (EV_P_ ev_check *w)
2573{ 3038{
2574 clear_pending (EV_A_ (W)w); 3039 clear_pending (EV_A_ (W)w);
2575 if (expect_false (!ev_is_active (w))) 3040 if (expect_false (!ev_is_active (w)))
2576 return; 3041 return;
2577 3042
3043 EV_FREQUENT_CHECK;
3044
2578 { 3045 {
2579 int active = ev_active (w); 3046 int active = ev_active (w);
2580 3047
2581 checks [active - 1] = checks [--checkcnt]; 3048 checks [active - 1] = checks [--checkcnt];
2582 ev_active (checks [active - 1]) = active; 3049 ev_active (checks [active - 1]) = active;
2583 } 3050 }
2584 3051
2585 ev_stop (EV_A_ (W)w); 3052 ev_stop (EV_A_ (W)w);
3053
3054 EV_FREQUENT_CHECK;
2586} 3055}
2587 3056
2588#if EV_EMBED_ENABLE 3057#if EV_EMBED_ENABLE
2589void noinline 3058void noinline
2590ev_embed_sweep (EV_P_ ev_embed *w) 3059ev_embed_sweep (EV_P_ ev_embed *w)
2617 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3086 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2618 } 3087 }
2619 } 3088 }
2620} 3089}
2621 3090
3091static void
3092embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3093{
3094 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3095
3096 ev_embed_stop (EV_A_ w);
3097
3098 {
3099 struct ev_loop *loop = w->other;
3100
3101 ev_loop_fork (EV_A);
3102 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3103 }
3104
3105 ev_embed_start (EV_A_ w);
3106}
3107
2622#if 0 3108#if 0
2623static void 3109static void
2624embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3110embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2625{ 3111{
2626 ev_idle_stop (EV_A_ idle); 3112 ev_idle_stop (EV_A_ idle);
2633 if (expect_false (ev_is_active (w))) 3119 if (expect_false (ev_is_active (w)))
2634 return; 3120 return;
2635 3121
2636 { 3122 {
2637 struct ev_loop *loop = w->other; 3123 struct ev_loop *loop = w->other;
2638 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3124 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2639 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3125 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2640 } 3126 }
3127
3128 EV_FREQUENT_CHECK;
2641 3129
2642 ev_set_priority (&w->io, ev_priority (w)); 3130 ev_set_priority (&w->io, ev_priority (w));
2643 ev_io_start (EV_A_ &w->io); 3131 ev_io_start (EV_A_ &w->io);
2644 3132
2645 ev_prepare_init (&w->prepare, embed_prepare_cb); 3133 ev_prepare_init (&w->prepare, embed_prepare_cb);
2646 ev_set_priority (&w->prepare, EV_MINPRI); 3134 ev_set_priority (&w->prepare, EV_MINPRI);
2647 ev_prepare_start (EV_A_ &w->prepare); 3135 ev_prepare_start (EV_A_ &w->prepare);
2648 3136
3137 ev_fork_init (&w->fork, embed_fork_cb);
3138 ev_fork_start (EV_A_ &w->fork);
3139
2649 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3140 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2650 3141
2651 ev_start (EV_A_ (W)w, 1); 3142 ev_start (EV_A_ (W)w, 1);
3143
3144 EV_FREQUENT_CHECK;
2652} 3145}
2653 3146
2654void 3147void
2655ev_embed_stop (EV_P_ ev_embed *w) 3148ev_embed_stop (EV_P_ ev_embed *w)
2656{ 3149{
2657 clear_pending (EV_A_ (W)w); 3150 clear_pending (EV_A_ (W)w);
2658 if (expect_false (!ev_is_active (w))) 3151 if (expect_false (!ev_is_active (w)))
2659 return; 3152 return;
2660 3153
3154 EV_FREQUENT_CHECK;
3155
2661 ev_io_stop (EV_A_ &w->io); 3156 ev_io_stop (EV_A_ &w->io);
2662 ev_prepare_stop (EV_A_ &w->prepare); 3157 ev_prepare_stop (EV_A_ &w->prepare);
3158 ev_fork_stop (EV_A_ &w->fork);
2663 3159
2664 ev_stop (EV_A_ (W)w); 3160 EV_FREQUENT_CHECK;
2665} 3161}
2666#endif 3162#endif
2667 3163
2668#if EV_FORK_ENABLE 3164#if EV_FORK_ENABLE
2669void 3165void
2670ev_fork_start (EV_P_ ev_fork *w) 3166ev_fork_start (EV_P_ ev_fork *w)
2671{ 3167{
2672 if (expect_false (ev_is_active (w))) 3168 if (expect_false (ev_is_active (w)))
2673 return; 3169 return;
3170
3171 EV_FREQUENT_CHECK;
2674 3172
2675 ev_start (EV_A_ (W)w, ++forkcnt); 3173 ev_start (EV_A_ (W)w, ++forkcnt);
2676 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3174 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2677 forks [forkcnt - 1] = w; 3175 forks [forkcnt - 1] = w;
3176
3177 EV_FREQUENT_CHECK;
2678} 3178}
2679 3179
2680void 3180void
2681ev_fork_stop (EV_P_ ev_fork *w) 3181ev_fork_stop (EV_P_ ev_fork *w)
2682{ 3182{
2683 clear_pending (EV_A_ (W)w); 3183 clear_pending (EV_A_ (W)w);
2684 if (expect_false (!ev_is_active (w))) 3184 if (expect_false (!ev_is_active (w)))
2685 return; 3185 return;
2686 3186
3187 EV_FREQUENT_CHECK;
3188
2687 { 3189 {
2688 int active = ev_active (w); 3190 int active = ev_active (w);
2689 3191
2690 forks [active - 1] = forks [--forkcnt]; 3192 forks [active - 1] = forks [--forkcnt];
2691 ev_active (forks [active - 1]) = active; 3193 ev_active (forks [active - 1]) = active;
2692 } 3194 }
2693 3195
2694 ev_stop (EV_A_ (W)w); 3196 ev_stop (EV_A_ (W)w);
3197
3198 EV_FREQUENT_CHECK;
2695} 3199}
2696#endif 3200#endif
2697 3201
2698#if EV_ASYNC_ENABLE 3202#if EV_ASYNC_ENABLE
2699void 3203void
2701{ 3205{
2702 if (expect_false (ev_is_active (w))) 3206 if (expect_false (ev_is_active (w)))
2703 return; 3207 return;
2704 3208
2705 evpipe_init (EV_A); 3209 evpipe_init (EV_A);
3210
3211 EV_FREQUENT_CHECK;
2706 3212
2707 ev_start (EV_A_ (W)w, ++asynccnt); 3213 ev_start (EV_A_ (W)w, ++asynccnt);
2708 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3214 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2709 asyncs [asynccnt - 1] = w; 3215 asyncs [asynccnt - 1] = w;
3216
3217 EV_FREQUENT_CHECK;
2710} 3218}
2711 3219
2712void 3220void
2713ev_async_stop (EV_P_ ev_async *w) 3221ev_async_stop (EV_P_ ev_async *w)
2714{ 3222{
2715 clear_pending (EV_A_ (W)w); 3223 clear_pending (EV_A_ (W)w);
2716 if (expect_false (!ev_is_active (w))) 3224 if (expect_false (!ev_is_active (w)))
2717 return; 3225 return;
2718 3226
3227 EV_FREQUENT_CHECK;
3228
2719 { 3229 {
2720 int active = ev_active (w); 3230 int active = ev_active (w);
2721 3231
2722 asyncs [active - 1] = asyncs [--asynccnt]; 3232 asyncs [active - 1] = asyncs [--asynccnt];
2723 ev_active (asyncs [active - 1]) = active; 3233 ev_active (asyncs [active - 1]) = active;
2724 } 3234 }
2725 3235
2726 ev_stop (EV_A_ (W)w); 3236 ev_stop (EV_A_ (W)w);
3237
3238 EV_FREQUENT_CHECK;
2727} 3239}
2728 3240
2729void 3241void
2730ev_async_send (EV_P_ ev_async *w) 3242ev_async_send (EV_P_ ev_async *w)
2731{ 3243{
2748once_cb (EV_P_ struct ev_once *once, int revents) 3260once_cb (EV_P_ struct ev_once *once, int revents)
2749{ 3261{
2750 void (*cb)(int revents, void *arg) = once->cb; 3262 void (*cb)(int revents, void *arg) = once->cb;
2751 void *arg = once->arg; 3263 void *arg = once->arg;
2752 3264
2753 ev_io_stop (EV_A_ &once->io); 3265 ev_io_stop (EV_A_ &once->io);
2754 ev_timer_stop (EV_A_ &once->to); 3266 ev_timer_stop (EV_A_ &once->to);
2755 ev_free (once); 3267 ev_free (once);
2756 3268
2757 cb (revents, arg); 3269 cb (revents, arg);
2758} 3270}
2759 3271
2760static void 3272static void
2761once_cb_io (EV_P_ ev_io *w, int revents) 3273once_cb_io (EV_P_ ev_io *w, int revents)
2762{ 3274{
2763 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3275 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3276
3277 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2764} 3278}
2765 3279
2766static void 3280static void
2767once_cb_to (EV_P_ ev_timer *w, int revents) 3281once_cb_to (EV_P_ ev_timer *w, int revents)
2768{ 3282{
2769 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3283 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3284
3285 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2770} 3286}
2771 3287
2772void 3288void
2773ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3289ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2774{ 3290{
2796 ev_timer_set (&once->to, timeout, 0.); 3312 ev_timer_set (&once->to, timeout, 0.);
2797 ev_timer_start (EV_A_ &once->to); 3313 ev_timer_start (EV_A_ &once->to);
2798 } 3314 }
2799} 3315}
2800 3316
3317/*****************************************************************************/
3318
3319#if EV_WALK_ENABLE
3320void
3321ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3322{
3323 int i, j;
3324 ev_watcher_list *wl, *wn;
3325
3326 if (types & (EV_IO | EV_EMBED))
3327 for (i = 0; i < anfdmax; ++i)
3328 for (wl = anfds [i].head; wl; )
3329 {
3330 wn = wl->next;
3331
3332#if EV_EMBED_ENABLE
3333 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3334 {
3335 if (types & EV_EMBED)
3336 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3337 }
3338 else
3339#endif
3340#if EV_USE_INOTIFY
3341 if (ev_cb ((ev_io *)wl) == infy_cb)
3342 ;
3343 else
3344#endif
3345 if ((ev_io *)wl != &pipe_w)
3346 if (types & EV_IO)
3347 cb (EV_A_ EV_IO, wl);
3348
3349 wl = wn;
3350 }
3351
3352 if (types & (EV_TIMER | EV_STAT))
3353 for (i = timercnt + HEAP0; i-- > HEAP0; )
3354#if EV_STAT_ENABLE
3355 /*TODO: timer is not always active*/
3356 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3357 {
3358 if (types & EV_STAT)
3359 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3360 }
3361 else
3362#endif
3363 if (types & EV_TIMER)
3364 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3365
3366#if EV_PERIODIC_ENABLE
3367 if (types & EV_PERIODIC)
3368 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3369 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3370#endif
3371
3372#if EV_IDLE_ENABLE
3373 if (types & EV_IDLE)
3374 for (j = NUMPRI; i--; )
3375 for (i = idlecnt [j]; i--; )
3376 cb (EV_A_ EV_IDLE, idles [j][i]);
3377#endif
3378
3379#if EV_FORK_ENABLE
3380 if (types & EV_FORK)
3381 for (i = forkcnt; i--; )
3382 if (ev_cb (forks [i]) != embed_fork_cb)
3383 cb (EV_A_ EV_FORK, forks [i]);
3384#endif
3385
3386#if EV_ASYNC_ENABLE
3387 if (types & EV_ASYNC)
3388 for (i = asynccnt; i--; )
3389 cb (EV_A_ EV_ASYNC, asyncs [i]);
3390#endif
3391
3392 if (types & EV_PREPARE)
3393 for (i = preparecnt; i--; )
3394#if EV_EMBED_ENABLE
3395 if (ev_cb (prepares [i]) != embed_prepare_cb)
3396#endif
3397 cb (EV_A_ EV_PREPARE, prepares [i]);
3398
3399 if (types & EV_CHECK)
3400 for (i = checkcnt; i--; )
3401 cb (EV_A_ EV_CHECK, checks [i]);
3402
3403 if (types & EV_SIGNAL)
3404 for (i = 0; i < signalmax; ++i)
3405 for (wl = signals [i].head; wl; )
3406 {
3407 wn = wl->next;
3408 cb (EV_A_ EV_SIGNAL, wl);
3409 wl = wn;
3410 }
3411
3412 if (types & EV_CHILD)
3413 for (i = EV_PID_HASHSIZE; i--; )
3414 for (wl = childs [i]; wl; )
3415 {
3416 wn = wl->next;
3417 cb (EV_A_ EV_CHILD, wl);
3418 wl = wn;
3419 }
3420/* EV_STAT 0x00001000 /* stat data changed */
3421/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3422}
3423#endif
3424
2801#if EV_MULTIPLICITY 3425#if EV_MULTIPLICITY
2802 #include "ev_wrap.h" 3426 #include "ev_wrap.h"
2803#endif 3427#endif
2804 3428
2805#ifdef __cplusplus 3429#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines