ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.253 by root, Sat May 31 03:13:27 2008 UTC vs.
Revision 1.297 by root, Fri Jul 10 00:36:21 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
154#ifndef _WIN32 168#ifndef _WIN32
155# include <sys/time.h> 169# include <sys/time.h>
156# include <sys/wait.h> 170# include <sys/wait.h>
157# include <unistd.h> 171# include <unistd.h>
158#else 172#else
173# include <io.h>
159# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 175# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
163# endif 178# endif
164#endif 179#endif
165 180
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
167 190
168#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
169# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
170# define EV_USE_MONOTONIC 1 193# define EV_USE_MONOTONIC 1
171# else 194# else
172# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
173# endif 196# endif
174#endif 197#endif
175 198
176#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
177# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
178#endif 201#endif
179 202
180#ifndef EV_USE_NANOSLEEP 203#ifndef EV_USE_NANOSLEEP
181# if _POSIX_C_SOURCE >= 199309L 204# if _POSIX_C_SOURCE >= 199309L
182# define EV_USE_NANOSLEEP 1 205# define EV_USE_NANOSLEEP 1
261 284
262#ifndef EV_HEAP_CACHE_AT 285#ifndef EV_HEAP_CACHE_AT
263# define EV_HEAP_CACHE_AT !EV_MINIMAL 286# define EV_HEAP_CACHE_AT !EV_MINIMAL
264#endif 287#endif
265 288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
266/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
267 304
268#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
269# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
270# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
285# include <sys/select.h> 322# include <sys/select.h>
286# endif 323# endif
287#endif 324#endif
288 325
289#if EV_USE_INOTIFY 326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
290# include <sys/inotify.h> 329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
291#endif 335#endif
292 336
293#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
294# include <winsock.h> 338# include <winsock.h>
295#endif 339#endif
347# define inline_speed static noinline 391# define inline_speed static noinline
348#else 392#else
349# define inline_speed static inline 393# define inline_speed static inline
350#endif 394#endif
351 395
352#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
353#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
354 403
355#define EMPTY /* required for microsofts broken pseudo-c compiler */ 404#define EMPTY /* required for microsofts broken pseudo-c compiler */
356#define EMPTY2(a,b) /* used to suppress some warnings */ 405#define EMPTY2(a,b) /* used to suppress some warnings */
357 406
358typedef ev_watcher *W; 407typedef ev_watcher *W;
360typedef ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
361 410
362#define ev_active(w) ((W)(w))->active 411#define ev_active(w) ((W)(w))->active
363#define ev_at(w) ((WT)(w))->at 412#define ev_at(w) ((WT)(w))->at
364 413
365#if EV_USE_MONOTONIC 414#if EV_USE_REALTIME
366/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
367/* giving it a reasonably high chance of working on typical architetcures */ 416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
419
420#if EV_USE_MONOTONIC
368static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
369#endif 422#endif
370 423
371#ifdef _WIN32 424#ifdef _WIN32
372# include "ev_win32.c" 425# include "ev_win32.c"
381{ 434{
382 syserr_cb = cb; 435 syserr_cb = cb;
383} 436}
384 437
385static void noinline 438static void noinline
386syserr (const char *msg) 439ev_syserr (const char *msg)
387{ 440{
388 if (!msg) 441 if (!msg)
389 msg = "(libev) system error"; 442 msg = "(libev) system error";
390 443
391 if (syserr_cb) 444 if (syserr_cb)
437#define ev_malloc(size) ev_realloc (0, (size)) 490#define ev_malloc(size) ev_realloc (0, (size))
438#define ev_free(ptr) ev_realloc ((ptr), 0) 491#define ev_free(ptr) ev_realloc ((ptr), 0)
439 492
440/*****************************************************************************/ 493/*****************************************************************************/
441 494
495/* file descriptor info structure */
442typedef struct 496typedef struct
443{ 497{
444 WL head; 498 WL head;
445 unsigned char events; 499 unsigned char events; /* the events watched for */
500 unsigned char reify; /* flag set when this ANFD needs reification */
501 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
446 unsigned char reify; 502 unsigned char unused;
503#if EV_USE_EPOLL
504 unsigned int egen; /* generation counter to counter epoll bugs */
505#endif
447#if EV_SELECT_IS_WINSOCKET 506#if EV_SELECT_IS_WINSOCKET
448 SOCKET handle; 507 SOCKET handle;
449#endif 508#endif
450} ANFD; 509} ANFD;
451 510
511/* stores the pending event set for a given watcher */
452typedef struct 512typedef struct
453{ 513{
454 W w; 514 W w;
455 int events; 515 int events; /* the pending event set for the given watcher */
456} ANPENDING; 516} ANPENDING;
457 517
458#if EV_USE_INOTIFY 518#if EV_USE_INOTIFY
459/* hash table entry per inotify-id */ 519/* hash table entry per inotify-id */
460typedef struct 520typedef struct
463} ANFS; 523} ANFS;
464#endif 524#endif
465 525
466/* Heap Entry */ 526/* Heap Entry */
467#if EV_HEAP_CACHE_AT 527#if EV_HEAP_CACHE_AT
528 /* a heap element */
468 typedef struct { 529 typedef struct {
469 ev_tstamp at; 530 ev_tstamp at;
470 WT w; 531 WT w;
471 } ANHE; 532 } ANHE;
472 533
473 #define ANHE_w(he) (he).w /* access watcher, read-write */ 534 #define ANHE_w(he) (he).w /* access watcher, read-write */
474 #define ANHE_at(he) (he).at /* access cached at, read-only */ 535 #define ANHE_at(he) (he).at /* access cached at, read-only */
475 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 536 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
476#else 537#else
538 /* a heap element */
477 typedef WT ANHE; 539 typedef WT ANHE;
478 540
479 #define ANHE_w(he) (he) 541 #define ANHE_w(he) (he)
480 #define ANHE_at(he) (he)->at 542 #define ANHE_at(he) (he)->at
481 #define ANHE_at_cache(he) 543 #define ANHE_at_cache(he)
505 567
506 static int ev_default_loop_ptr; 568 static int ev_default_loop_ptr;
507 569
508#endif 570#endif
509 571
572#if EV_MINIMAL < 2
573# define EV_SUSPEND_CB if (expect_false (suspend_cb)) suspend_cb (EV_A)
574# define EV_RESUME_CB if (expect_false (resume_cb )) resume_cb (EV_A)
575# define EV_INVOKE_PENDING invoke_cb (EV_A)
576#else
577# define EV_SUSPEND_CB (void)0
578# define EV_RESUME_CB (void)0
579# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
580#endif
581
510/*****************************************************************************/ 582/*****************************************************************************/
511 583
584#ifndef EV_HAVE_EV_TIME
512ev_tstamp 585ev_tstamp
513ev_time (void) 586ev_time (void)
514{ 587{
515#if EV_USE_REALTIME 588#if EV_USE_REALTIME
589 if (expect_true (have_realtime))
590 {
516 struct timespec ts; 591 struct timespec ts;
517 clock_gettime (CLOCK_REALTIME, &ts); 592 clock_gettime (CLOCK_REALTIME, &ts);
518 return ts.tv_sec + ts.tv_nsec * 1e-9; 593 return ts.tv_sec + ts.tv_nsec * 1e-9;
519#else 594 }
595#endif
596
520 struct timeval tv; 597 struct timeval tv;
521 gettimeofday (&tv, 0); 598 gettimeofday (&tv, 0);
522 return tv.tv_sec + tv.tv_usec * 1e-6; 599 return tv.tv_sec + tv.tv_usec * 1e-6;
523#endif
524} 600}
601#endif
525 602
526ev_tstamp inline_size 603inline_size ev_tstamp
527get_clock (void) 604get_clock (void)
528{ 605{
529#if EV_USE_MONOTONIC 606#if EV_USE_MONOTONIC
530 if (expect_true (have_monotonic)) 607 if (expect_true (have_monotonic))
531 { 608 {
564 struct timeval tv; 641 struct timeval tv;
565 642
566 tv.tv_sec = (time_t)delay; 643 tv.tv_sec = (time_t)delay;
567 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 644 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
568 645
646 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
647 /* somehting not guaranteed by newer posix versions, but guaranteed */
648 /* by older ones */
569 select (0, 0, 0, 0, &tv); 649 select (0, 0, 0, 0, &tv);
570#endif 650#endif
571 } 651 }
572} 652}
573 653
574/*****************************************************************************/ 654/*****************************************************************************/
575 655
576#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 656#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
577 657
578int inline_size 658/* find a suitable new size for the given array, */
659/* hopefully by rounding to a ncie-to-malloc size */
660inline_size int
579array_nextsize (int elem, int cur, int cnt) 661array_nextsize (int elem, int cur, int cnt)
580{ 662{
581 int ncur = cur + 1; 663 int ncur = cur + 1;
582 664
583 do 665 do
600array_realloc (int elem, void *base, int *cur, int cnt) 682array_realloc (int elem, void *base, int *cur, int cnt)
601{ 683{
602 *cur = array_nextsize (elem, *cur, cnt); 684 *cur = array_nextsize (elem, *cur, cnt);
603 return ev_realloc (base, elem * *cur); 685 return ev_realloc (base, elem * *cur);
604} 686}
687
688#define array_init_zero(base,count) \
689 memset ((void *)(base), 0, sizeof (*(base)) * (count))
605 690
606#define array_needsize(type,base,cur,cnt,init) \ 691#define array_needsize(type,base,cur,cnt,init) \
607 if (expect_false ((cnt) > (cur))) \ 692 if (expect_false ((cnt) > (cur))) \
608 { \ 693 { \
609 int ocur_ = (cur); \ 694 int ocur_ = (cur); \
621 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 706 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
622 } 707 }
623#endif 708#endif
624 709
625#define array_free(stem, idx) \ 710#define array_free(stem, idx) \
626 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 711 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
627 712
628/*****************************************************************************/ 713/*****************************************************************************/
714
715/* dummy callback for pending events */
716static void noinline
717pendingcb (EV_P_ ev_prepare *w, int revents)
718{
719}
629 720
630void noinline 721void noinline
631ev_feed_event (EV_P_ void *w, int revents) 722ev_feed_event (EV_P_ void *w, int revents)
632{ 723{
633 W w_ = (W)w; 724 W w_ = (W)w;
642 pendings [pri][w_->pending - 1].w = w_; 733 pendings [pri][w_->pending - 1].w = w_;
643 pendings [pri][w_->pending - 1].events = revents; 734 pendings [pri][w_->pending - 1].events = revents;
644 } 735 }
645} 736}
646 737
647void inline_speed 738inline_speed void
739feed_reverse (EV_P_ W w)
740{
741 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
742 rfeeds [rfeedcnt++] = w;
743}
744
745inline_size void
746feed_reverse_done (EV_P_ int revents)
747{
748 do
749 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
750 while (rfeedcnt);
751}
752
753inline_speed void
648queue_events (EV_P_ W *events, int eventcnt, int type) 754queue_events (EV_P_ W *events, int eventcnt, int type)
649{ 755{
650 int i; 756 int i;
651 757
652 for (i = 0; i < eventcnt; ++i) 758 for (i = 0; i < eventcnt; ++i)
653 ev_feed_event (EV_A_ events [i], type); 759 ev_feed_event (EV_A_ events [i], type);
654} 760}
655 761
656/*****************************************************************************/ 762/*****************************************************************************/
657 763
658void inline_size 764inline_speed void
659anfds_init (ANFD *base, int count)
660{
661 while (count--)
662 {
663 base->head = 0;
664 base->events = EV_NONE;
665 base->reify = 0;
666
667 ++base;
668 }
669}
670
671void inline_speed
672fd_event (EV_P_ int fd, int revents) 765fd_event (EV_P_ int fd, int revents)
673{ 766{
674 ANFD *anfd = anfds + fd; 767 ANFD *anfd = anfds + fd;
675 ev_io *w; 768 ev_io *w;
676 769
688{ 781{
689 if (fd >= 0 && fd < anfdmax) 782 if (fd >= 0 && fd < anfdmax)
690 fd_event (EV_A_ fd, revents); 783 fd_event (EV_A_ fd, revents);
691} 784}
692 785
693void inline_size 786/* make sure the external fd watch events are in-sync */
787/* with the kernel/libev internal state */
788inline_size void
694fd_reify (EV_P) 789fd_reify (EV_P)
695{ 790{
696 int i; 791 int i;
697 792
698 for (i = 0; i < fdchangecnt; ++i) 793 for (i = 0; i < fdchangecnt; ++i)
707 events |= (unsigned char)w->events; 802 events |= (unsigned char)w->events;
708 803
709#if EV_SELECT_IS_WINSOCKET 804#if EV_SELECT_IS_WINSOCKET
710 if (events) 805 if (events)
711 { 806 {
712 unsigned long argp; 807 unsigned long arg;
713 #ifdef EV_FD_TO_WIN32_HANDLE 808 #ifdef EV_FD_TO_WIN32_HANDLE
714 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 809 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
715 #else 810 #else
716 anfd->handle = _get_osfhandle (fd); 811 anfd->handle = _get_osfhandle (fd);
717 #endif 812 #endif
718 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 813 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
719 } 814 }
720#endif 815#endif
721 816
722 { 817 {
723 unsigned char o_events = anfd->events; 818 unsigned char o_events = anfd->events;
724 unsigned char o_reify = anfd->reify; 819 unsigned char o_reify = anfd->reify;
725 820
726 anfd->reify = 0; 821 anfd->reify = 0;
727 anfd->events = events; 822 anfd->events = events;
728 823
729 if (o_events != events || o_reify & EV_IOFDSET) 824 if (o_events != events || o_reify & EV__IOFDSET)
730 backend_modify (EV_A_ fd, o_events, events); 825 backend_modify (EV_A_ fd, o_events, events);
731 } 826 }
732 } 827 }
733 828
734 fdchangecnt = 0; 829 fdchangecnt = 0;
735} 830}
736 831
737void inline_size 832/* something about the given fd changed */
833inline_size void
738fd_change (EV_P_ int fd, int flags) 834fd_change (EV_P_ int fd, int flags)
739{ 835{
740 unsigned char reify = anfds [fd].reify; 836 unsigned char reify = anfds [fd].reify;
741 anfds [fd].reify |= flags; 837 anfds [fd].reify |= flags;
742 838
746 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 842 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
747 fdchanges [fdchangecnt - 1] = fd; 843 fdchanges [fdchangecnt - 1] = fd;
748 } 844 }
749} 845}
750 846
751void inline_speed 847/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
848inline_speed void
752fd_kill (EV_P_ int fd) 849fd_kill (EV_P_ int fd)
753{ 850{
754 ev_io *w; 851 ev_io *w;
755 852
756 while ((w = (ev_io *)anfds [fd].head)) 853 while ((w = (ev_io *)anfds [fd].head))
758 ev_io_stop (EV_A_ w); 855 ev_io_stop (EV_A_ w);
759 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 856 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
760 } 857 }
761} 858}
762 859
763int inline_size 860/* check whether the given fd is atcually valid, for error recovery */
861inline_size int
764fd_valid (int fd) 862fd_valid (int fd)
765{ 863{
766#ifdef _WIN32 864#ifdef _WIN32
767 return _get_osfhandle (fd) != -1; 865 return _get_osfhandle (fd) != -1;
768#else 866#else
776{ 874{
777 int fd; 875 int fd;
778 876
779 for (fd = 0; fd < anfdmax; ++fd) 877 for (fd = 0; fd < anfdmax; ++fd)
780 if (anfds [fd].events) 878 if (anfds [fd].events)
781 if (!fd_valid (fd) == -1 && errno == EBADF) 879 if (!fd_valid (fd) && errno == EBADF)
782 fd_kill (EV_A_ fd); 880 fd_kill (EV_A_ fd);
783} 881}
784 882
785/* called on ENOMEM in select/poll to kill some fds and retry */ 883/* called on ENOMEM in select/poll to kill some fds and retry */
786static void noinline 884static void noinline
804 902
805 for (fd = 0; fd < anfdmax; ++fd) 903 for (fd = 0; fd < anfdmax; ++fd)
806 if (anfds [fd].events) 904 if (anfds [fd].events)
807 { 905 {
808 anfds [fd].events = 0; 906 anfds [fd].events = 0;
907 anfds [fd].emask = 0;
809 fd_change (EV_A_ fd, EV_IOFDSET | 1); 908 fd_change (EV_A_ fd, EV__IOFDSET | 1);
810 } 909 }
811} 910}
812 911
813/*****************************************************************************/ 912/*****************************************************************************/
814 913
830#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 929#define HEAP0 (DHEAP - 1) /* index of first element in heap */
831#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 930#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
832#define UPHEAP_DONE(p,k) ((p) == (k)) 931#define UPHEAP_DONE(p,k) ((p) == (k))
833 932
834/* away from the root */ 933/* away from the root */
835void inline_speed 934inline_speed void
836downheap (ANHE *heap, int N, int k) 935downheap (ANHE *heap, int N, int k)
837{ 936{
838 ANHE he = heap [k]; 937 ANHE he = heap [k];
839 ANHE *E = heap + N + HEAP0; 938 ANHE *E = heap + N + HEAP0;
840 939
880#define HEAP0 1 979#define HEAP0 1
881#define HPARENT(k) ((k) >> 1) 980#define HPARENT(k) ((k) >> 1)
882#define UPHEAP_DONE(p,k) (!(p)) 981#define UPHEAP_DONE(p,k) (!(p))
883 982
884/* away from the root */ 983/* away from the root */
885void inline_speed 984inline_speed void
886downheap (ANHE *heap, int N, int k) 985downheap (ANHE *heap, int N, int k)
887{ 986{
888 ANHE he = heap [k]; 987 ANHE he = heap [k];
889 988
890 for (;;) 989 for (;;)
910 ev_active (ANHE_w (he)) = k; 1009 ev_active (ANHE_w (he)) = k;
911} 1010}
912#endif 1011#endif
913 1012
914/* towards the root */ 1013/* towards the root */
915void inline_speed 1014inline_speed void
916upheap (ANHE *heap, int k) 1015upheap (ANHE *heap, int k)
917{ 1016{
918 ANHE he = heap [k]; 1017 ANHE he = heap [k];
919 1018
920 for (;;) 1019 for (;;)
931 1030
932 heap [k] = he; 1031 heap [k] = he;
933 ev_active (ANHE_w (he)) = k; 1032 ev_active (ANHE_w (he)) = k;
934} 1033}
935 1034
936void inline_size 1035/* move an element suitably so it is in a correct place */
1036inline_size void
937adjustheap (ANHE *heap, int N, int k) 1037adjustheap (ANHE *heap, int N, int k)
938{ 1038{
939 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1039 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
940 upheap (heap, k); 1040 upheap (heap, k);
941 else 1041 else
942 downheap (heap, N, k); 1042 downheap (heap, N, k);
943} 1043}
944 1044
945/* rebuild the heap: this function is used only once and executed rarely */ 1045/* rebuild the heap: this function is used only once and executed rarely */
946void inline_size 1046inline_size void
947reheap (ANHE *heap, int N) 1047reheap (ANHE *heap, int N)
948{ 1048{
949 int i; 1049 int i;
950 1050
951 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1051 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
954 upheap (heap, i + HEAP0); 1054 upheap (heap, i + HEAP0);
955} 1055}
956 1056
957/*****************************************************************************/ 1057/*****************************************************************************/
958 1058
1059/* associate signal watchers to a signal signal */
959typedef struct 1060typedef struct
960{ 1061{
961 WL head; 1062 WL head;
962 EV_ATOMIC_T gotsig; 1063 EV_ATOMIC_T gotsig;
963} ANSIG; 1064} ANSIG;
965static ANSIG *signals; 1066static ANSIG *signals;
966static int signalmax; 1067static int signalmax;
967 1068
968static EV_ATOMIC_T gotsig; 1069static EV_ATOMIC_T gotsig;
969 1070
970void inline_size
971signals_init (ANSIG *base, int count)
972{
973 while (count--)
974 {
975 base->head = 0;
976 base->gotsig = 0;
977
978 ++base;
979 }
980}
981
982/*****************************************************************************/ 1071/*****************************************************************************/
983 1072
984void inline_speed 1073/* used to prepare libev internal fd's */
1074/* this is not fork-safe */
1075inline_speed void
985fd_intern (int fd) 1076fd_intern (int fd)
986{ 1077{
987#ifdef _WIN32 1078#ifdef _WIN32
988 int arg = 1; 1079 unsigned long arg = 1;
989 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1080 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
990#else 1081#else
991 fcntl (fd, F_SETFD, FD_CLOEXEC); 1082 fcntl (fd, F_SETFD, FD_CLOEXEC);
992 fcntl (fd, F_SETFL, O_NONBLOCK); 1083 fcntl (fd, F_SETFL, O_NONBLOCK);
993#endif 1084#endif
994} 1085}
995 1086
996static void noinline 1087static void noinline
997evpipe_init (EV_P) 1088evpipe_init (EV_P)
998{ 1089{
999 if (!ev_is_active (&pipeev)) 1090 if (!ev_is_active (&pipe_w))
1000 { 1091 {
1001#if EV_USE_EVENTFD 1092#if EV_USE_EVENTFD
1002 if ((evfd = eventfd (0, 0)) >= 0) 1093 if ((evfd = eventfd (0, 0)) >= 0)
1003 { 1094 {
1004 evpipe [0] = -1; 1095 evpipe [0] = -1;
1005 fd_intern (evfd); 1096 fd_intern (evfd);
1006 ev_io_set (&pipeev, evfd, EV_READ); 1097 ev_io_set (&pipe_w, evfd, EV_READ);
1007 } 1098 }
1008 else 1099 else
1009#endif 1100#endif
1010 { 1101 {
1011 while (pipe (evpipe)) 1102 while (pipe (evpipe))
1012 syserr ("(libev) error creating signal/async pipe"); 1103 ev_syserr ("(libev) error creating signal/async pipe");
1013 1104
1014 fd_intern (evpipe [0]); 1105 fd_intern (evpipe [0]);
1015 fd_intern (evpipe [1]); 1106 fd_intern (evpipe [1]);
1016 ev_io_set (&pipeev, evpipe [0], EV_READ); 1107 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1017 } 1108 }
1018 1109
1019 ev_io_start (EV_A_ &pipeev); 1110 ev_io_start (EV_A_ &pipe_w);
1020 ev_unref (EV_A); /* watcher should not keep loop alive */ 1111 ev_unref (EV_A); /* watcher should not keep loop alive */
1021 } 1112 }
1022} 1113}
1023 1114
1024void inline_size 1115inline_size void
1025evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1116evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1026{ 1117{
1027 if (!*flag) 1118 if (!*flag)
1028 { 1119 {
1029 int old_errno = errno; /* save errno because write might clobber it */ 1120 int old_errno = errno; /* save errno because write might clobber it */
1042 1133
1043 errno = old_errno; 1134 errno = old_errno;
1044 } 1135 }
1045} 1136}
1046 1137
1138/* called whenever the libev signal pipe */
1139/* got some events (signal, async) */
1047static void 1140static void
1048pipecb (EV_P_ ev_io *iow, int revents) 1141pipecb (EV_P_ ev_io *iow, int revents)
1049{ 1142{
1050#if EV_USE_EVENTFD 1143#if EV_USE_EVENTFD
1051 if (evfd >= 0) 1144 if (evfd >= 0)
1107ev_feed_signal_event (EV_P_ int signum) 1200ev_feed_signal_event (EV_P_ int signum)
1108{ 1201{
1109 WL w; 1202 WL w;
1110 1203
1111#if EV_MULTIPLICITY 1204#if EV_MULTIPLICITY
1112 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1205 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1113#endif 1206#endif
1114 1207
1115 --signum; 1208 --signum;
1116 1209
1117 if (signum < 0 || signum >= signalmax) 1210 if (signum < 0 || signum >= signalmax)
1133 1226
1134#ifndef WIFCONTINUED 1227#ifndef WIFCONTINUED
1135# define WIFCONTINUED(status) 0 1228# define WIFCONTINUED(status) 0
1136#endif 1229#endif
1137 1230
1138void inline_speed 1231/* handle a single child status event */
1232inline_speed void
1139child_reap (EV_P_ int chain, int pid, int status) 1233child_reap (EV_P_ int chain, int pid, int status)
1140{ 1234{
1141 ev_child *w; 1235 ev_child *w;
1142 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1236 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1143 1237
1156 1250
1157#ifndef WCONTINUED 1251#ifndef WCONTINUED
1158# define WCONTINUED 0 1252# define WCONTINUED 0
1159#endif 1253#endif
1160 1254
1255/* called on sigchld etc., calls waitpid */
1161static void 1256static void
1162childcb (EV_P_ ev_signal *sw, int revents) 1257childcb (EV_P_ ev_signal *sw, int revents)
1163{ 1258{
1164 int pid, status; 1259 int pid, status;
1165 1260
1246 /* kqueue is borked on everything but netbsd apparently */ 1341 /* kqueue is borked on everything but netbsd apparently */
1247 /* it usually doesn't work correctly on anything but sockets and pipes */ 1342 /* it usually doesn't work correctly on anything but sockets and pipes */
1248 flags &= ~EVBACKEND_KQUEUE; 1343 flags &= ~EVBACKEND_KQUEUE;
1249#endif 1344#endif
1250#ifdef __APPLE__ 1345#ifdef __APPLE__
1251 // flags &= ~EVBACKEND_KQUEUE; for documentation 1346 /* only select works correctly on that "unix-certified" platform */
1252 flags &= ~EVBACKEND_POLL; 1347 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1348 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1253#endif 1349#endif
1254 1350
1255 return flags; 1351 return flags;
1256} 1352}
1257 1353
1271ev_backend (EV_P) 1367ev_backend (EV_P)
1272{ 1368{
1273 return backend; 1369 return backend;
1274} 1370}
1275 1371
1372#if EV_MINIMAL < 2
1276unsigned int 1373unsigned int
1277ev_loop_count (EV_P) 1374ev_loop_count (EV_P)
1278{ 1375{
1279 return loop_count; 1376 return loop_count;
1280} 1377}
1281 1378
1379unsigned int
1380ev_loop_depth (EV_P)
1381{
1382 return loop_depth;
1383}
1384
1282void 1385void
1283ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1386ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1284{ 1387{
1285 io_blocktime = interval; 1388 io_blocktime = interval;
1286} 1389}
1289ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1392ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1290{ 1393{
1291 timeout_blocktime = interval; 1394 timeout_blocktime = interval;
1292} 1395}
1293 1396
1397void
1398ev_set_userdata (EV_P_ void *data)
1399{
1400 userdata = data;
1401}
1402
1403void *
1404ev_userdata (EV_P)
1405{
1406 return userdata;
1407}
1408
1409void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1410{
1411 invoke_cb = invoke_pending_cb;
1412}
1413
1414void ev_set_blocking_cb (EV_P_ void (*suspend_cb_)(EV_P), void (*resume_cb_)(EV_P))
1415{
1416 suspend_cb = suspend_cb_;
1417 resume_cb = resume_cb_;
1418}
1419#endif
1420
1421/* initialise a loop structure, must be zero-initialised */
1294static void noinline 1422static void noinline
1295loop_init (EV_P_ unsigned int flags) 1423loop_init (EV_P_ unsigned int flags)
1296{ 1424{
1297 if (!backend) 1425 if (!backend)
1298 { 1426 {
1427#if EV_USE_REALTIME
1428 if (!have_realtime)
1429 {
1430 struct timespec ts;
1431
1432 if (!clock_gettime (CLOCK_REALTIME, &ts))
1433 have_realtime = 1;
1434 }
1435#endif
1436
1299#if EV_USE_MONOTONIC 1437#if EV_USE_MONOTONIC
1438 if (!have_monotonic)
1300 { 1439 {
1301 struct timespec ts; 1440 struct timespec ts;
1441
1302 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1442 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1303 have_monotonic = 1; 1443 have_monotonic = 1;
1304 } 1444 }
1305#endif 1445#endif
1306 1446
1307 ev_rt_now = ev_time (); 1447 ev_rt_now = ev_time ();
1308 mn_now = get_clock (); 1448 mn_now = get_clock ();
1309 now_floor = mn_now; 1449 now_floor = mn_now;
1310 rtmn_diff = ev_rt_now - mn_now; 1450 rtmn_diff = ev_rt_now - mn_now;
1451#if EV_MINIMAL < 2
1452 invoke_cb = ev_invoke_pending;
1453#endif
1311 1454
1312 io_blocktime = 0.; 1455 io_blocktime = 0.;
1313 timeout_blocktime = 0.; 1456 timeout_blocktime = 0.;
1314 backend = 0; 1457 backend = 0;
1315 backend_fd = -1; 1458 backend_fd = -1;
1346#endif 1489#endif
1347#if EV_USE_SELECT 1490#if EV_USE_SELECT
1348 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1491 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1349#endif 1492#endif
1350 1493
1494 ev_prepare_init (&pending_w, pendingcb);
1495
1351 ev_init (&pipeev, pipecb); 1496 ev_init (&pipe_w, pipecb);
1352 ev_set_priority (&pipeev, EV_MAXPRI); 1497 ev_set_priority (&pipe_w, EV_MAXPRI);
1353 } 1498 }
1354} 1499}
1355 1500
1501/* free up a loop structure */
1356static void noinline 1502static void noinline
1357loop_destroy (EV_P) 1503loop_destroy (EV_P)
1358{ 1504{
1359 int i; 1505 int i;
1360 1506
1361 if (ev_is_active (&pipeev)) 1507 if (ev_is_active (&pipe_w))
1362 { 1508 {
1363 ev_ref (EV_A); /* signal watcher */ 1509 ev_ref (EV_A); /* signal watcher */
1364 ev_io_stop (EV_A_ &pipeev); 1510 ev_io_stop (EV_A_ &pipe_w);
1365 1511
1366#if EV_USE_EVENTFD 1512#if EV_USE_EVENTFD
1367 if (evfd >= 0) 1513 if (evfd >= 0)
1368 close (evfd); 1514 close (evfd);
1369#endif 1515#endif
1408 } 1554 }
1409 1555
1410 ev_free (anfds); anfdmax = 0; 1556 ev_free (anfds); anfdmax = 0;
1411 1557
1412 /* have to use the microsoft-never-gets-it-right macro */ 1558 /* have to use the microsoft-never-gets-it-right macro */
1559 array_free (rfeed, EMPTY);
1413 array_free (fdchange, EMPTY); 1560 array_free (fdchange, EMPTY);
1414 array_free (timer, EMPTY); 1561 array_free (timer, EMPTY);
1415#if EV_PERIODIC_ENABLE 1562#if EV_PERIODIC_ENABLE
1416 array_free (periodic, EMPTY); 1563 array_free (periodic, EMPTY);
1417#endif 1564#endif
1426 1573
1427 backend = 0; 1574 backend = 0;
1428} 1575}
1429 1576
1430#if EV_USE_INOTIFY 1577#if EV_USE_INOTIFY
1431void inline_size infy_fork (EV_P); 1578inline_size void infy_fork (EV_P);
1432#endif 1579#endif
1433 1580
1434void inline_size 1581inline_size void
1435loop_fork (EV_P) 1582loop_fork (EV_P)
1436{ 1583{
1437#if EV_USE_PORT 1584#if EV_USE_PORT
1438 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1585 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1439#endif 1586#endif
1445#endif 1592#endif
1446#if EV_USE_INOTIFY 1593#if EV_USE_INOTIFY
1447 infy_fork (EV_A); 1594 infy_fork (EV_A);
1448#endif 1595#endif
1449 1596
1450 if (ev_is_active (&pipeev)) 1597 if (ev_is_active (&pipe_w))
1451 { 1598 {
1452 /* this "locks" the handlers against writing to the pipe */ 1599 /* this "locks" the handlers against writing to the pipe */
1453 /* while we modify the fd vars */ 1600 /* while we modify the fd vars */
1454 gotsig = 1; 1601 gotsig = 1;
1455#if EV_ASYNC_ENABLE 1602#if EV_ASYNC_ENABLE
1456 gotasync = 1; 1603 gotasync = 1;
1457#endif 1604#endif
1458 1605
1459 ev_ref (EV_A); 1606 ev_ref (EV_A);
1460 ev_io_stop (EV_A_ &pipeev); 1607 ev_io_stop (EV_A_ &pipe_w);
1461 1608
1462#if EV_USE_EVENTFD 1609#if EV_USE_EVENTFD
1463 if (evfd >= 0) 1610 if (evfd >= 0)
1464 close (evfd); 1611 close (evfd);
1465#endif 1612#endif
1470 close (evpipe [1]); 1617 close (evpipe [1]);
1471 } 1618 }
1472 1619
1473 evpipe_init (EV_A); 1620 evpipe_init (EV_A);
1474 /* now iterate over everything, in case we missed something */ 1621 /* now iterate over everything, in case we missed something */
1475 pipecb (EV_A_ &pipeev, EV_READ); 1622 pipecb (EV_A_ &pipe_w, EV_READ);
1476 } 1623 }
1477 1624
1478 postfork = 0; 1625 postfork = 0;
1479} 1626}
1480 1627
1505void 1652void
1506ev_loop_fork (EV_P) 1653ev_loop_fork (EV_P)
1507{ 1654{
1508 postfork = 1; /* must be in line with ev_default_fork */ 1655 postfork = 1; /* must be in line with ev_default_fork */
1509} 1656}
1657#endif /* multiplicity */
1510 1658
1511#if EV_VERIFY 1659#if EV_VERIFY
1512void noinline 1660static void noinline
1513verify_watcher (EV_P_ W w) 1661verify_watcher (EV_P_ W w)
1514{ 1662{
1515 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 1663 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1516 1664
1517 if (w->pending) 1665 if (w->pending)
1518 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 1666 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1519} 1667}
1520 1668
1521static void noinline 1669static void noinline
1522verify_heap (EV_P_ ANHE *heap, int N) 1670verify_heap (EV_P_ ANHE *heap, int N)
1523{ 1671{
1524 int i; 1672 int i;
1525 1673
1526 for (i = HEAP0; i < N + HEAP0; ++i) 1674 for (i = HEAP0; i < N + HEAP0; ++i)
1527 { 1675 {
1528 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 1676 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1529 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 1677 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1530 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 1678 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1531 1679
1532 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 1680 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1533 } 1681 }
1534} 1682}
1535 1683
1536static void noinline 1684static void noinline
1537array_verify (EV_P_ W *ws, int cnt) 1685array_verify (EV_P_ W *ws, int cnt)
1538{ 1686{
1539 while (cnt--) 1687 while (cnt--)
1540 { 1688 {
1541 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 1689 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1542 verify_watcher (EV_A_ ws [cnt]); 1690 verify_watcher (EV_A_ ws [cnt]);
1543 } 1691 }
1544} 1692}
1545#endif 1693#endif
1546 1694
1695#if EV_MINIMAL < 2
1547void 1696void
1548ev_loop_verify (EV_P) 1697ev_loop_verify (EV_P)
1549{ 1698{
1550#if EV_VERIFY 1699#if EV_VERIFY
1551 int i; 1700 int i;
1553 1702
1554 assert (activecnt >= -1); 1703 assert (activecnt >= -1);
1555 1704
1556 assert (fdchangemax >= fdchangecnt); 1705 assert (fdchangemax >= fdchangecnt);
1557 for (i = 0; i < fdchangecnt; ++i) 1706 for (i = 0; i < fdchangecnt; ++i)
1558 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 1707 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1559 1708
1560 assert (anfdmax >= 0); 1709 assert (anfdmax >= 0);
1561 for (i = 0; i < anfdmax; ++i) 1710 for (i = 0; i < anfdmax; ++i)
1562 for (w = anfds [i].head; w; w = w->next) 1711 for (w = anfds [i].head; w; w = w->next)
1563 { 1712 {
1564 verify_watcher (EV_A_ (W)w); 1713 verify_watcher (EV_A_ (W)w);
1565 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 1714 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1566 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 1715 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1567 } 1716 }
1568 1717
1569 assert (timermax >= timercnt); 1718 assert (timermax >= timercnt);
1570 verify_heap (EV_A_ timers, timercnt); 1719 verify_heap (EV_A_ timers, timercnt);
1571 1720
1604 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1753 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1605 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 1754 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1606# endif 1755# endif
1607#endif 1756#endif
1608} 1757}
1609 1758#endif
1610#endif /* multiplicity */
1611 1759
1612#if EV_MULTIPLICITY 1760#if EV_MULTIPLICITY
1613struct ev_loop * 1761struct ev_loop *
1614ev_default_loop_init (unsigned int flags) 1762ev_default_loop_init (unsigned int flags)
1615#else 1763#else
1648{ 1796{
1649#if EV_MULTIPLICITY 1797#if EV_MULTIPLICITY
1650 struct ev_loop *loop = ev_default_loop_ptr; 1798 struct ev_loop *loop = ev_default_loop_ptr;
1651#endif 1799#endif
1652 1800
1801 ev_default_loop_ptr = 0;
1802
1653#ifndef _WIN32 1803#ifndef _WIN32
1654 ev_ref (EV_A); /* child watcher */ 1804 ev_ref (EV_A); /* child watcher */
1655 ev_signal_stop (EV_A_ &childev); 1805 ev_signal_stop (EV_A_ &childev);
1656#endif 1806#endif
1657 1807
1663{ 1813{
1664#if EV_MULTIPLICITY 1814#if EV_MULTIPLICITY
1665 struct ev_loop *loop = ev_default_loop_ptr; 1815 struct ev_loop *loop = ev_default_loop_ptr;
1666#endif 1816#endif
1667 1817
1668 if (backend)
1669 postfork = 1; /* must be in line with ev_loop_fork */ 1818 postfork = 1; /* must be in line with ev_loop_fork */
1670} 1819}
1671 1820
1672/*****************************************************************************/ 1821/*****************************************************************************/
1673 1822
1674void 1823void
1675ev_invoke (EV_P_ void *w, int revents) 1824ev_invoke (EV_P_ void *w, int revents)
1676{ 1825{
1677 EV_CB_INVOKE ((W)w, revents); 1826 EV_CB_INVOKE ((W)w, revents);
1678} 1827}
1679 1828
1680void inline_speed 1829void noinline
1681call_pending (EV_P) 1830ev_invoke_pending (EV_P)
1682{ 1831{
1683 int pri; 1832 int pri;
1684 1833
1685 for (pri = NUMPRI; pri--; ) 1834 for (pri = NUMPRI; pri--; )
1686 while (pendingcnt [pri]) 1835 while (pendingcnt [pri])
1687 { 1836 {
1688 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1837 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1689 1838
1690 if (expect_true (p->w))
1691 {
1692 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1839 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1840 /* ^ this is no longer true, as pending_w could be here */
1693 1841
1694 p->w->pending = 0; 1842 p->w->pending = 0;
1695 EV_CB_INVOKE (p->w, p->events); 1843 EV_CB_INVOKE (p->w, p->events);
1696 EV_FREQUENT_CHECK; 1844 EV_FREQUENT_CHECK;
1697 }
1698 } 1845 }
1699} 1846}
1700 1847
1701#if EV_IDLE_ENABLE 1848#if EV_IDLE_ENABLE
1702void inline_size 1849/* make idle watchers pending. this handles the "call-idle */
1850/* only when higher priorities are idle" logic */
1851inline_size void
1703idle_reify (EV_P) 1852idle_reify (EV_P)
1704{ 1853{
1705 if (expect_false (idleall)) 1854 if (expect_false (idleall))
1706 { 1855 {
1707 int pri; 1856 int pri;
1719 } 1868 }
1720 } 1869 }
1721} 1870}
1722#endif 1871#endif
1723 1872
1724void inline_size 1873/* make timers pending */
1874inline_size void
1725timers_reify (EV_P) 1875timers_reify (EV_P)
1726{ 1876{
1727 EV_FREQUENT_CHECK; 1877 EV_FREQUENT_CHECK;
1728 1878
1729 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 1879 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1730 { 1880 {
1731 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 1881 do
1732
1733 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1734
1735 /* first reschedule or stop timer */
1736 if (w->repeat)
1737 { 1882 {
1883 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1884
1885 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1886
1887 /* first reschedule or stop timer */
1888 if (w->repeat)
1889 {
1738 ev_at (w) += w->repeat; 1890 ev_at (w) += w->repeat;
1739 if (ev_at (w) < mn_now) 1891 if (ev_at (w) < mn_now)
1740 ev_at (w) = mn_now; 1892 ev_at (w) = mn_now;
1741 1893
1742 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1894 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1743 1895
1744 ANHE_at_cache (timers [HEAP0]); 1896 ANHE_at_cache (timers [HEAP0]);
1745 downheap (timers, timercnt, HEAP0); 1897 downheap (timers, timercnt, HEAP0);
1898 }
1899 else
1900 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1901
1902 EV_FREQUENT_CHECK;
1903 feed_reverse (EV_A_ (W)w);
1746 } 1904 }
1747 else 1905 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1748 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1749 1906
1750 EV_FREQUENT_CHECK;
1751 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1907 feed_reverse_done (EV_A_ EV_TIMEOUT);
1752 } 1908 }
1753} 1909}
1754 1910
1755#if EV_PERIODIC_ENABLE 1911#if EV_PERIODIC_ENABLE
1756void inline_size 1912/* make periodics pending */
1913inline_size void
1757periodics_reify (EV_P) 1914periodics_reify (EV_P)
1758{ 1915{
1759 EV_FREQUENT_CHECK; 1916 EV_FREQUENT_CHECK;
1760 1917
1761 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 1918 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1762 { 1919 {
1763 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 1920 int feed_count = 0;
1764 1921
1765 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1922 do
1766
1767 /* first reschedule or stop timer */
1768 if (w->reschedule_cb)
1769 { 1923 {
1924 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1925
1926 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1927
1928 /* first reschedule or stop timer */
1929 if (w->reschedule_cb)
1930 {
1770 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1931 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1771 1932
1772 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 1933 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1773 1934
1774 ANHE_at_cache (periodics [HEAP0]); 1935 ANHE_at_cache (periodics [HEAP0]);
1775 downheap (periodics, periodiccnt, HEAP0); 1936 downheap (periodics, periodiccnt, HEAP0);
1937 }
1938 else if (w->interval)
1939 {
1940 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1941 /* if next trigger time is not sufficiently in the future, put it there */
1942 /* this might happen because of floating point inexactness */
1943 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1944 {
1945 ev_at (w) += w->interval;
1946
1947 /* if interval is unreasonably low we might still have a time in the past */
1948 /* so correct this. this will make the periodic very inexact, but the user */
1949 /* has effectively asked to get triggered more often than possible */
1950 if (ev_at (w) < ev_rt_now)
1951 ev_at (w) = ev_rt_now;
1952 }
1953
1954 ANHE_at_cache (periodics [HEAP0]);
1955 downheap (periodics, periodiccnt, HEAP0);
1956 }
1957 else
1958 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1959
1960 EV_FREQUENT_CHECK;
1961 feed_reverse (EV_A_ (W)w);
1776 } 1962 }
1777 else if (w->interval) 1963 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1778 {
1779 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1780 /* if next trigger time is not sufficiently in the future, put it there */
1781 /* this might happen because of floating point inexactness */
1782 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1783 {
1784 ev_at (w) += w->interval;
1785 1964
1786 /* if interval is unreasonably low we might still have a time in the past */
1787 /* so correct this. this will make the periodic very inexact, but the user */
1788 /* has effectively asked to get triggered more often than possible */
1789 if (ev_at (w) < ev_rt_now)
1790 ev_at (w) = ev_rt_now;
1791 }
1792
1793 ANHE_at_cache (periodics [HEAP0]);
1794 downheap (periodics, periodiccnt, HEAP0);
1795 }
1796 else
1797 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1798
1799 EV_FREQUENT_CHECK;
1800 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1965 feed_reverse_done (EV_A_ EV_PERIODIC);
1801 } 1966 }
1802} 1967}
1803 1968
1969/* simply recalculate all periodics */
1970/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1804static void noinline 1971static void noinline
1805periodics_reschedule (EV_P) 1972periodics_reschedule (EV_P)
1806{ 1973{
1807 int i; 1974 int i;
1808 1975
1821 1988
1822 reheap (periodics, periodiccnt); 1989 reheap (periodics, periodiccnt);
1823} 1990}
1824#endif 1991#endif
1825 1992
1826void inline_speed 1993/* adjust all timers by a given offset */
1994static void noinline
1995timers_reschedule (EV_P_ ev_tstamp adjust)
1996{
1997 int i;
1998
1999 for (i = 0; i < timercnt; ++i)
2000 {
2001 ANHE *he = timers + i + HEAP0;
2002 ANHE_w (*he)->at += adjust;
2003 ANHE_at_cache (*he);
2004 }
2005}
2006
2007/* fetch new monotonic and realtime times from the kernel */
2008/* also detetc if there was a timejump, and act accordingly */
2009inline_speed void
1827time_update (EV_P_ ev_tstamp max_block) 2010time_update (EV_P_ ev_tstamp max_block)
1828{ 2011{
1829 int i;
1830
1831#if EV_USE_MONOTONIC 2012#if EV_USE_MONOTONIC
1832 if (expect_true (have_monotonic)) 2013 if (expect_true (have_monotonic))
1833 { 2014 {
2015 int i;
1834 ev_tstamp odiff = rtmn_diff; 2016 ev_tstamp odiff = rtmn_diff;
1835 2017
1836 mn_now = get_clock (); 2018 mn_now = get_clock ();
1837 2019
1838 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2020 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1864 ev_rt_now = ev_time (); 2046 ev_rt_now = ev_time ();
1865 mn_now = get_clock (); 2047 mn_now = get_clock ();
1866 now_floor = mn_now; 2048 now_floor = mn_now;
1867 } 2049 }
1868 2050
2051 /* no timer adjustment, as the monotonic clock doesn't jump */
2052 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1869# if EV_PERIODIC_ENABLE 2053# if EV_PERIODIC_ENABLE
1870 periodics_reschedule (EV_A); 2054 periodics_reschedule (EV_A);
1871# endif 2055# endif
1872 /* no timer adjustment, as the monotonic clock doesn't jump */
1873 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1874 } 2056 }
1875 else 2057 else
1876#endif 2058#endif
1877 { 2059 {
1878 ev_rt_now = ev_time (); 2060 ev_rt_now = ev_time ();
1879 2061
1880 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2062 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1881 { 2063 {
2064 /* adjust timers. this is easy, as the offset is the same for all of them */
2065 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1882#if EV_PERIODIC_ENABLE 2066#if EV_PERIODIC_ENABLE
1883 periodics_reschedule (EV_A); 2067 periodics_reschedule (EV_A);
1884#endif 2068#endif
1885 /* adjust timers. this is easy, as the offset is the same for all of them */
1886 for (i = 0; i < timercnt; ++i)
1887 {
1888 ANHE *he = timers + i + HEAP0;
1889 ANHE_w (*he)->at += ev_rt_now - mn_now;
1890 ANHE_at_cache (*he);
1891 }
1892 } 2069 }
1893 2070
1894 mn_now = ev_rt_now; 2071 mn_now = ev_rt_now;
1895 } 2072 }
1896} 2073}
1897 2074
1898void 2075void
1899ev_ref (EV_P)
1900{
1901 ++activecnt;
1902}
1903
1904void
1905ev_unref (EV_P)
1906{
1907 --activecnt;
1908}
1909
1910static int loop_done;
1911
1912void
1913ev_loop (EV_P_ int flags) 2076ev_loop (EV_P_ int flags)
1914{ 2077{
2078#if EV_MINIMAL < 2
2079 ++loop_depth;
2080#endif
2081
1915 loop_done = EVUNLOOP_CANCEL; 2082 loop_done = EVUNLOOP_CANCEL;
1916 2083
1917 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2084 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1918 2085
1919 do 2086 do
1920 { 2087 {
1921#if EV_VERIFY >= 2 2088#if EV_VERIFY >= 2
1922 ev_loop_verify (EV_A); 2089 ev_loop_verify (EV_A);
1935 /* we might have forked, so queue fork handlers */ 2102 /* we might have forked, so queue fork handlers */
1936 if (expect_false (postfork)) 2103 if (expect_false (postfork))
1937 if (forkcnt) 2104 if (forkcnt)
1938 { 2105 {
1939 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2106 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1940 call_pending (EV_A); 2107 EV_INVOKE_PENDING;
1941 } 2108 }
1942#endif 2109#endif
1943 2110
1944 /* queue prepare watchers (and execute them) */ 2111 /* queue prepare watchers (and execute them) */
1945 if (expect_false (preparecnt)) 2112 if (expect_false (preparecnt))
1946 { 2113 {
1947 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2114 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1948 call_pending (EV_A); 2115 EV_INVOKE_PENDING;
1949 } 2116 }
1950
1951 if (expect_false (!activecnt))
1952 break;
1953 2117
1954 /* we might have forked, so reify kernel state if necessary */ 2118 /* we might have forked, so reify kernel state if necessary */
1955 if (expect_false (postfork)) 2119 if (expect_false (postfork))
1956 loop_fork (EV_A); 2120 loop_fork (EV_A);
1957 2121
1963 ev_tstamp waittime = 0.; 2127 ev_tstamp waittime = 0.;
1964 ev_tstamp sleeptime = 0.; 2128 ev_tstamp sleeptime = 0.;
1965 2129
1966 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2130 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1967 { 2131 {
2132 /* remember old timestamp for io_blocktime calculation */
2133 ev_tstamp prev_mn_now = mn_now;
2134
1968 /* update time to cancel out callback processing overhead */ 2135 /* update time to cancel out callback processing overhead */
1969 time_update (EV_A_ 1e100); 2136 time_update (EV_A_ 1e100);
1970 2137
1971 waittime = MAX_BLOCKTIME; 2138 waittime = MAX_BLOCKTIME;
1972 2139
1982 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2149 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1983 if (waittime > to) waittime = to; 2150 if (waittime > to) waittime = to;
1984 } 2151 }
1985#endif 2152#endif
1986 2153
2154 /* don't let timeouts decrease the waittime below timeout_blocktime */
1987 if (expect_false (waittime < timeout_blocktime)) 2155 if (expect_false (waittime < timeout_blocktime))
1988 waittime = timeout_blocktime; 2156 waittime = timeout_blocktime;
1989 2157
1990 sleeptime = waittime - backend_fudge; 2158 /* extra check because io_blocktime is commonly 0 */
1991
1992 if (expect_true (sleeptime > io_blocktime)) 2159 if (expect_false (io_blocktime))
1993 sleeptime = io_blocktime;
1994
1995 if (sleeptime)
1996 { 2160 {
2161 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2162
2163 if (sleeptime > waittime - backend_fudge)
2164 sleeptime = waittime - backend_fudge;
2165
2166 if (expect_true (sleeptime > 0.))
2167 {
1997 ev_sleep (sleeptime); 2168 ev_sleep (sleeptime);
1998 waittime -= sleeptime; 2169 waittime -= sleeptime;
2170 }
1999 } 2171 }
2000 } 2172 }
2001 2173
2174#if EV_MINIMAL < 2
2002 ++loop_count; 2175 ++loop_count;
2176#endif
2003 backend_poll (EV_A_ waittime); 2177 backend_poll (EV_A_ waittime);
2004 2178
2005 /* update ev_rt_now, do magic */ 2179 /* update ev_rt_now, do magic */
2006 time_update (EV_A_ waittime + sleeptime); 2180 time_update (EV_A_ waittime + sleeptime);
2007 } 2181 }
2019 2193
2020 /* queue check watchers, to be executed first */ 2194 /* queue check watchers, to be executed first */
2021 if (expect_false (checkcnt)) 2195 if (expect_false (checkcnt))
2022 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2196 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2023 2197
2024 call_pending (EV_A); 2198 EV_INVOKE_PENDING;
2025 } 2199 }
2026 while (expect_true ( 2200 while (expect_true (
2027 activecnt 2201 activecnt
2028 && !loop_done 2202 && !loop_done
2029 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2203 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2030 )); 2204 ));
2031 2205
2032 if (loop_done == EVUNLOOP_ONE) 2206 if (loop_done == EVUNLOOP_ONE)
2033 loop_done = EVUNLOOP_CANCEL; 2207 loop_done = EVUNLOOP_CANCEL;
2208
2209#if EV_MINIMAL < 2
2210 --loop_depth;
2211#endif
2034} 2212}
2035 2213
2036void 2214void
2037ev_unloop (EV_P_ int how) 2215ev_unloop (EV_P_ int how)
2038{ 2216{
2039 loop_done = how; 2217 loop_done = how;
2040} 2218}
2041 2219
2220void
2221ev_ref (EV_P)
2222{
2223 ++activecnt;
2224}
2225
2226void
2227ev_unref (EV_P)
2228{
2229 --activecnt;
2230}
2231
2232void
2233ev_now_update (EV_P)
2234{
2235 time_update (EV_A_ 1e100);
2236}
2237
2238void
2239ev_suspend (EV_P)
2240{
2241 ev_now_update (EV_A);
2242}
2243
2244void
2245ev_resume (EV_P)
2246{
2247 ev_tstamp mn_prev = mn_now;
2248
2249 ev_now_update (EV_A);
2250 timers_reschedule (EV_A_ mn_now - mn_prev);
2251#if EV_PERIODIC_ENABLE
2252 /* TODO: really do this? */
2253 periodics_reschedule (EV_A);
2254#endif
2255}
2256
2042/*****************************************************************************/ 2257/*****************************************************************************/
2258/* singly-linked list management, used when the expected list length is short */
2043 2259
2044void inline_size 2260inline_size void
2045wlist_add (WL *head, WL elem) 2261wlist_add (WL *head, WL elem)
2046{ 2262{
2047 elem->next = *head; 2263 elem->next = *head;
2048 *head = elem; 2264 *head = elem;
2049} 2265}
2050 2266
2051void inline_size 2267inline_size void
2052wlist_del (WL *head, WL elem) 2268wlist_del (WL *head, WL elem)
2053{ 2269{
2054 while (*head) 2270 while (*head)
2055 { 2271 {
2056 if (*head == elem) 2272 if (*head == elem)
2061 2277
2062 head = &(*head)->next; 2278 head = &(*head)->next;
2063 } 2279 }
2064} 2280}
2065 2281
2066void inline_speed 2282/* internal, faster, version of ev_clear_pending */
2283inline_speed void
2067clear_pending (EV_P_ W w) 2284clear_pending (EV_P_ W w)
2068{ 2285{
2069 if (w->pending) 2286 if (w->pending)
2070 { 2287 {
2071 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2072 w->pending = 0; 2289 w->pending = 0;
2073 } 2290 }
2074} 2291}
2075 2292
2076int 2293int
2080 int pending = w_->pending; 2297 int pending = w_->pending;
2081 2298
2082 if (expect_true (pending)) 2299 if (expect_true (pending))
2083 { 2300 {
2084 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2301 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2302 p->w = (W)&pending_w;
2085 w_->pending = 0; 2303 w_->pending = 0;
2086 p->w = 0;
2087 return p->events; 2304 return p->events;
2088 } 2305 }
2089 else 2306 else
2090 return 0; 2307 return 0;
2091} 2308}
2092 2309
2093void inline_size 2310inline_size void
2094pri_adjust (EV_P_ W w) 2311pri_adjust (EV_P_ W w)
2095{ 2312{
2096 int pri = w->priority; 2313 int pri = ev_priority (w);
2097 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2314 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2098 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2315 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2099 w->priority = pri; 2316 ev_set_priority (w, pri);
2100} 2317}
2101 2318
2102void inline_speed 2319inline_speed void
2103ev_start (EV_P_ W w, int active) 2320ev_start (EV_P_ W w, int active)
2104{ 2321{
2105 pri_adjust (EV_A_ w); 2322 pri_adjust (EV_A_ w);
2106 w->active = active; 2323 w->active = active;
2107 ev_ref (EV_A); 2324 ev_ref (EV_A);
2108} 2325}
2109 2326
2110void inline_size 2327inline_size void
2111ev_stop (EV_P_ W w) 2328ev_stop (EV_P_ W w)
2112{ 2329{
2113 ev_unref (EV_A); 2330 ev_unref (EV_A);
2114 w->active = 0; 2331 w->active = 0;
2115} 2332}
2122 int fd = w->fd; 2339 int fd = w->fd;
2123 2340
2124 if (expect_false (ev_is_active (w))) 2341 if (expect_false (ev_is_active (w)))
2125 return; 2342 return;
2126 2343
2127 assert (("ev_io_start called with negative fd", fd >= 0)); 2344 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2345 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2128 2346
2129 EV_FREQUENT_CHECK; 2347 EV_FREQUENT_CHECK;
2130 2348
2131 ev_start (EV_A_ (W)w, 1); 2349 ev_start (EV_A_ (W)w, 1);
2132 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2350 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2133 wlist_add (&anfds[fd].head, (WL)w); 2351 wlist_add (&anfds[fd].head, (WL)w);
2134 2352
2135 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2353 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
2136 w->events &= ~EV_IOFDSET; 2354 w->events &= ~EV__IOFDSET;
2137 2355
2138 EV_FREQUENT_CHECK; 2356 EV_FREQUENT_CHECK;
2139} 2357}
2140 2358
2141void noinline 2359void noinline
2143{ 2361{
2144 clear_pending (EV_A_ (W)w); 2362 clear_pending (EV_A_ (W)w);
2145 if (expect_false (!ev_is_active (w))) 2363 if (expect_false (!ev_is_active (w)))
2146 return; 2364 return;
2147 2365
2148 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2366 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2149 2367
2150 EV_FREQUENT_CHECK; 2368 EV_FREQUENT_CHECK;
2151 2369
2152 wlist_del (&anfds[w->fd].head, (WL)w); 2370 wlist_del (&anfds[w->fd].head, (WL)w);
2153 ev_stop (EV_A_ (W)w); 2371 ev_stop (EV_A_ (W)w);
2163 if (expect_false (ev_is_active (w))) 2381 if (expect_false (ev_is_active (w)))
2164 return; 2382 return;
2165 2383
2166 ev_at (w) += mn_now; 2384 ev_at (w) += mn_now;
2167 2385
2168 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2386 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2169 2387
2170 EV_FREQUENT_CHECK; 2388 EV_FREQUENT_CHECK;
2171 2389
2172 ++timercnt; 2390 ++timercnt;
2173 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 2391 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2176 ANHE_at_cache (timers [ev_active (w)]); 2394 ANHE_at_cache (timers [ev_active (w)]);
2177 upheap (timers, ev_active (w)); 2395 upheap (timers, ev_active (w));
2178 2396
2179 EV_FREQUENT_CHECK; 2397 EV_FREQUENT_CHECK;
2180 2398
2181 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2399 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2182} 2400}
2183 2401
2184void noinline 2402void noinline
2185ev_timer_stop (EV_P_ ev_timer *w) 2403ev_timer_stop (EV_P_ ev_timer *w)
2186{ 2404{
2191 EV_FREQUENT_CHECK; 2409 EV_FREQUENT_CHECK;
2192 2410
2193 { 2411 {
2194 int active = ev_active (w); 2412 int active = ev_active (w);
2195 2413
2196 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2414 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2197 2415
2198 --timercnt; 2416 --timercnt;
2199 2417
2200 if (expect_true (active < timercnt + HEAP0)) 2418 if (expect_true (active < timercnt + HEAP0))
2201 { 2419 {
2245 2463
2246 if (w->reschedule_cb) 2464 if (w->reschedule_cb)
2247 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2465 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2248 else if (w->interval) 2466 else if (w->interval)
2249 { 2467 {
2250 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2468 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2251 /* this formula differs from the one in periodic_reify because we do not always round up */ 2469 /* this formula differs from the one in periodic_reify because we do not always round up */
2252 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2470 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2253 } 2471 }
2254 else 2472 else
2255 ev_at (w) = w->offset; 2473 ev_at (w) = w->offset;
2263 ANHE_at_cache (periodics [ev_active (w)]); 2481 ANHE_at_cache (periodics [ev_active (w)]);
2264 upheap (periodics, ev_active (w)); 2482 upheap (periodics, ev_active (w));
2265 2483
2266 EV_FREQUENT_CHECK; 2484 EV_FREQUENT_CHECK;
2267 2485
2268 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2486 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2269} 2487}
2270 2488
2271void noinline 2489void noinline
2272ev_periodic_stop (EV_P_ ev_periodic *w) 2490ev_periodic_stop (EV_P_ ev_periodic *w)
2273{ 2491{
2278 EV_FREQUENT_CHECK; 2496 EV_FREQUENT_CHECK;
2279 2497
2280 { 2498 {
2281 int active = ev_active (w); 2499 int active = ev_active (w);
2282 2500
2283 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2501 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2284 2502
2285 --periodiccnt; 2503 --periodiccnt;
2286 2504
2287 if (expect_true (active < periodiccnt + HEAP0)) 2505 if (expect_true (active < periodiccnt + HEAP0))
2288 { 2506 {
2311 2529
2312void noinline 2530void noinline
2313ev_signal_start (EV_P_ ev_signal *w) 2531ev_signal_start (EV_P_ ev_signal *w)
2314{ 2532{
2315#if EV_MULTIPLICITY 2533#if EV_MULTIPLICITY
2316 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2534 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2317#endif 2535#endif
2318 if (expect_false (ev_is_active (w))) 2536 if (expect_false (ev_is_active (w)))
2319 return; 2537 return;
2320 2538
2321 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2539 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2322 2540
2323 evpipe_init (EV_A); 2541 evpipe_init (EV_A);
2324 2542
2325 EV_FREQUENT_CHECK; 2543 EV_FREQUENT_CHECK;
2326 2544
2329 sigset_t full, prev; 2547 sigset_t full, prev;
2330 sigfillset (&full); 2548 sigfillset (&full);
2331 sigprocmask (SIG_SETMASK, &full, &prev); 2549 sigprocmask (SIG_SETMASK, &full, &prev);
2332#endif 2550#endif
2333 2551
2334 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2552 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2335 2553
2336#ifndef _WIN32 2554#ifndef _WIN32
2337 sigprocmask (SIG_SETMASK, &prev, 0); 2555 sigprocmask (SIG_SETMASK, &prev, 0);
2338#endif 2556#endif
2339 } 2557 }
2377 2595
2378void 2596void
2379ev_child_start (EV_P_ ev_child *w) 2597ev_child_start (EV_P_ ev_child *w)
2380{ 2598{
2381#if EV_MULTIPLICITY 2599#if EV_MULTIPLICITY
2382 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2600 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2383#endif 2601#endif
2384 if (expect_false (ev_is_active (w))) 2602 if (expect_false (ev_is_active (w)))
2385 return; 2603 return;
2386 2604
2387 EV_FREQUENT_CHECK; 2605 EV_FREQUENT_CHECK;
2412# ifdef _WIN32 2630# ifdef _WIN32
2413# undef lstat 2631# undef lstat
2414# define lstat(a,b) _stati64 (a,b) 2632# define lstat(a,b) _stati64 (a,b)
2415# endif 2633# endif
2416 2634
2417#define DEF_STAT_INTERVAL 5.0074891 2635#define DEF_STAT_INTERVAL 5.0074891
2636#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2418#define MIN_STAT_INTERVAL 0.1074891 2637#define MIN_STAT_INTERVAL 0.1074891
2419 2638
2420static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2639static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2421 2640
2422#if EV_USE_INOTIFY 2641#if EV_USE_INOTIFY
2423# define EV_INOTIFY_BUFSIZE 8192 2642# define EV_INOTIFY_BUFSIZE 8192
2427{ 2646{
2428 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2647 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2429 2648
2430 if (w->wd < 0) 2649 if (w->wd < 0)
2431 { 2650 {
2651 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2432 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2652 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2433 2653
2434 /* monitor some parent directory for speedup hints */ 2654 /* monitor some parent directory for speedup hints */
2435 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2655 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2436 /* but an efficiency issue only */ 2656 /* but an efficiency issue only */
2437 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2657 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2438 { 2658 {
2439 char path [4096]; 2659 char path [4096];
2440 strcpy (path, w->path); 2660 strcpy (path, w->path);
2444 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2664 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2445 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2665 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2446 2666
2447 char *pend = strrchr (path, '/'); 2667 char *pend = strrchr (path, '/');
2448 2668
2449 if (!pend) 2669 if (!pend || pend == path)
2450 break; /* whoops, no '/', complain to your admin */ 2670 break;
2451 2671
2452 *pend = 0; 2672 *pend = 0;
2453 w->wd = inotify_add_watch (fs_fd, path, mask); 2673 w->wd = inotify_add_watch (fs_fd, path, mask);
2454 } 2674 }
2455 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2675 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2456 } 2676 }
2457 } 2677 }
2458 else
2459 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2460 2678
2461 if (w->wd >= 0) 2679 if (w->wd >= 0)
2680 {
2462 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2681 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2682
2683 /* now local changes will be tracked by inotify, but remote changes won't */
2684 /* unless the filesystem it known to be local, we therefore still poll */
2685 /* also do poll on <2.6.25, but with normal frequency */
2686 struct statfs sfs;
2687
2688 if (fs_2625 && !statfs (w->path, &sfs))
2689 if (sfs.f_type == 0x1373 /* devfs */
2690 || sfs.f_type == 0xEF53 /* ext2/3 */
2691 || sfs.f_type == 0x3153464a /* jfs */
2692 || sfs.f_type == 0x52654973 /* reiser3 */
2693 || sfs.f_type == 0x01021994 /* tempfs */
2694 || sfs.f_type == 0x58465342 /* xfs */)
2695 return;
2696
2697 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2698 ev_timer_again (EV_A_ &w->timer);
2699 }
2463} 2700}
2464 2701
2465static void noinline 2702static void noinline
2466infy_del (EV_P_ ev_stat *w) 2703infy_del (EV_P_ ev_stat *w)
2467{ 2704{
2481 2718
2482static void noinline 2719static void noinline
2483infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2720infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2484{ 2721{
2485 if (slot < 0) 2722 if (slot < 0)
2486 /* overflow, need to check for all hahs slots */ 2723 /* overflow, need to check for all hash slots */
2487 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2724 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2488 infy_wd (EV_A_ slot, wd, ev); 2725 infy_wd (EV_A_ slot, wd, ev);
2489 else 2726 else
2490 { 2727 {
2491 WL w_; 2728 WL w_;
2497 2734
2498 if (w->wd == wd || wd == -1) 2735 if (w->wd == wd || wd == -1)
2499 { 2736 {
2500 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2737 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2501 { 2738 {
2739 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2502 w->wd = -1; 2740 w->wd = -1;
2503 infy_add (EV_A_ w); /* re-add, no matter what */ 2741 infy_add (EV_A_ w); /* re-add, no matter what */
2504 } 2742 }
2505 2743
2506 stat_timer_cb (EV_A_ &w->timer, 0); 2744 stat_timer_cb (EV_A_ &w->timer, 0);
2519 2757
2520 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2758 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2521 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2759 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2522} 2760}
2523 2761
2524void inline_size 2762inline_size void
2763check_2625 (EV_P)
2764{
2765 /* kernels < 2.6.25 are borked
2766 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2767 */
2768 struct utsname buf;
2769 int major, minor, micro;
2770
2771 if (uname (&buf))
2772 return;
2773
2774 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2775 return;
2776
2777 if (major < 2
2778 || (major == 2 && minor < 6)
2779 || (major == 2 && minor == 6 && micro < 25))
2780 return;
2781
2782 fs_2625 = 1;
2783}
2784
2785inline_size void
2525infy_init (EV_P) 2786infy_init (EV_P)
2526{ 2787{
2527 if (fs_fd != -2) 2788 if (fs_fd != -2)
2528 return; 2789 return;
2790
2791 fs_fd = -1;
2792
2793 check_2625 (EV_A);
2529 2794
2530 fs_fd = inotify_init (); 2795 fs_fd = inotify_init ();
2531 2796
2532 if (fs_fd >= 0) 2797 if (fs_fd >= 0)
2533 { 2798 {
2535 ev_set_priority (&fs_w, EV_MAXPRI); 2800 ev_set_priority (&fs_w, EV_MAXPRI);
2536 ev_io_start (EV_A_ &fs_w); 2801 ev_io_start (EV_A_ &fs_w);
2537 } 2802 }
2538} 2803}
2539 2804
2540void inline_size 2805inline_size void
2541infy_fork (EV_P) 2806infy_fork (EV_P)
2542{ 2807{
2543 int slot; 2808 int slot;
2544 2809
2545 if (fs_fd < 0) 2810 if (fs_fd < 0)
2561 w->wd = -1; 2826 w->wd = -1;
2562 2827
2563 if (fs_fd >= 0) 2828 if (fs_fd >= 0)
2564 infy_add (EV_A_ w); /* re-add, no matter what */ 2829 infy_add (EV_A_ w); /* re-add, no matter what */
2565 else 2830 else
2566 ev_timer_start (EV_A_ &w->timer); 2831 ev_timer_again (EV_A_ &w->timer);
2567 } 2832 }
2568
2569 } 2833 }
2570} 2834}
2571 2835
2836#endif
2837
2838#ifdef _WIN32
2839# define EV_LSTAT(p,b) _stati64 (p, b)
2840#else
2841# define EV_LSTAT(p,b) lstat (p, b)
2572#endif 2842#endif
2573 2843
2574void 2844void
2575ev_stat_stat (EV_P_ ev_stat *w) 2845ev_stat_stat (EV_P_ ev_stat *w)
2576{ 2846{
2603 || w->prev.st_atime != w->attr.st_atime 2873 || w->prev.st_atime != w->attr.st_atime
2604 || w->prev.st_mtime != w->attr.st_mtime 2874 || w->prev.st_mtime != w->attr.st_mtime
2605 || w->prev.st_ctime != w->attr.st_ctime 2875 || w->prev.st_ctime != w->attr.st_ctime
2606 ) { 2876 ) {
2607 #if EV_USE_INOTIFY 2877 #if EV_USE_INOTIFY
2878 if (fs_fd >= 0)
2879 {
2608 infy_del (EV_A_ w); 2880 infy_del (EV_A_ w);
2609 infy_add (EV_A_ w); 2881 infy_add (EV_A_ w);
2610 ev_stat_stat (EV_A_ w); /* avoid race... */ 2882 ev_stat_stat (EV_A_ w); /* avoid race... */
2883 }
2611 #endif 2884 #endif
2612 2885
2613 ev_feed_event (EV_A_ w, EV_STAT); 2886 ev_feed_event (EV_A_ w, EV_STAT);
2614 } 2887 }
2615} 2888}
2618ev_stat_start (EV_P_ ev_stat *w) 2891ev_stat_start (EV_P_ ev_stat *w)
2619{ 2892{
2620 if (expect_false (ev_is_active (w))) 2893 if (expect_false (ev_is_active (w)))
2621 return; 2894 return;
2622 2895
2623 /* since we use memcmp, we need to clear any padding data etc. */
2624 memset (&w->prev, 0, sizeof (ev_statdata));
2625 memset (&w->attr, 0, sizeof (ev_statdata));
2626
2627 ev_stat_stat (EV_A_ w); 2896 ev_stat_stat (EV_A_ w);
2628 2897
2898 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2629 if (w->interval < MIN_STAT_INTERVAL) 2899 w->interval = MIN_STAT_INTERVAL;
2630 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2631 2900
2632 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2901 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2633 ev_set_priority (&w->timer, ev_priority (w)); 2902 ev_set_priority (&w->timer, ev_priority (w));
2634 2903
2635#if EV_USE_INOTIFY 2904#if EV_USE_INOTIFY
2636 infy_init (EV_A); 2905 infy_init (EV_A);
2637 2906
2638 if (fs_fd >= 0) 2907 if (fs_fd >= 0)
2639 infy_add (EV_A_ w); 2908 infy_add (EV_A_ w);
2640 else 2909 else
2641#endif 2910#endif
2642 ev_timer_start (EV_A_ &w->timer); 2911 ev_timer_again (EV_A_ &w->timer);
2643 2912
2644 ev_start (EV_A_ (W)w, 1); 2913 ev_start (EV_A_ (W)w, 1);
2645 2914
2646 EV_FREQUENT_CHECK; 2915 EV_FREQUENT_CHECK;
2647} 2916}
2817 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3086 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2818 } 3087 }
2819 } 3088 }
2820} 3089}
2821 3090
3091static void
3092embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3093{
3094 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3095
3096 ev_embed_stop (EV_A_ w);
3097
3098 {
3099 struct ev_loop *loop = w->other;
3100
3101 ev_loop_fork (EV_A);
3102 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3103 }
3104
3105 ev_embed_start (EV_A_ w);
3106}
3107
2822#if 0 3108#if 0
2823static void 3109static void
2824embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3110embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2825{ 3111{
2826 ev_idle_stop (EV_A_ idle); 3112 ev_idle_stop (EV_A_ idle);
2833 if (expect_false (ev_is_active (w))) 3119 if (expect_false (ev_is_active (w)))
2834 return; 3120 return;
2835 3121
2836 { 3122 {
2837 struct ev_loop *loop = w->other; 3123 struct ev_loop *loop = w->other;
2838 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3124 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2839 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3125 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2840 } 3126 }
2841 3127
2842 EV_FREQUENT_CHECK; 3128 EV_FREQUENT_CHECK;
2843 3129
2846 3132
2847 ev_prepare_init (&w->prepare, embed_prepare_cb); 3133 ev_prepare_init (&w->prepare, embed_prepare_cb);
2848 ev_set_priority (&w->prepare, EV_MINPRI); 3134 ev_set_priority (&w->prepare, EV_MINPRI);
2849 ev_prepare_start (EV_A_ &w->prepare); 3135 ev_prepare_start (EV_A_ &w->prepare);
2850 3136
3137 ev_fork_init (&w->fork, embed_fork_cb);
3138 ev_fork_start (EV_A_ &w->fork);
3139
2851 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3140 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2852 3141
2853 ev_start (EV_A_ (W)w, 1); 3142 ev_start (EV_A_ (W)w, 1);
2854 3143
2855 EV_FREQUENT_CHECK; 3144 EV_FREQUENT_CHECK;
2862 if (expect_false (!ev_is_active (w))) 3151 if (expect_false (!ev_is_active (w)))
2863 return; 3152 return;
2864 3153
2865 EV_FREQUENT_CHECK; 3154 EV_FREQUENT_CHECK;
2866 3155
2867 ev_io_stop (EV_A_ &w->io); 3156 ev_io_stop (EV_A_ &w->io);
2868 ev_prepare_stop (EV_A_ &w->prepare); 3157 ev_prepare_stop (EV_A_ &w->prepare);
2869 3158 ev_fork_stop (EV_A_ &w->fork);
2870 ev_stop (EV_A_ (W)w);
2871 3159
2872 EV_FREQUENT_CHECK; 3160 EV_FREQUENT_CHECK;
2873} 3161}
2874#endif 3162#endif
2875 3163
2972once_cb (EV_P_ struct ev_once *once, int revents) 3260once_cb (EV_P_ struct ev_once *once, int revents)
2973{ 3261{
2974 void (*cb)(int revents, void *arg) = once->cb; 3262 void (*cb)(int revents, void *arg) = once->cb;
2975 void *arg = once->arg; 3263 void *arg = once->arg;
2976 3264
2977 ev_io_stop (EV_A_ &once->io); 3265 ev_io_stop (EV_A_ &once->io);
2978 ev_timer_stop (EV_A_ &once->to); 3266 ev_timer_stop (EV_A_ &once->to);
2979 ev_free (once); 3267 ev_free (once);
2980 3268
2981 cb (revents, arg); 3269 cb (revents, arg);
2982} 3270}
2983 3271
2984static void 3272static void
2985once_cb_io (EV_P_ ev_io *w, int revents) 3273once_cb_io (EV_P_ ev_io *w, int revents)
2986{ 3274{
2987 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3275 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3276
3277 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2988} 3278}
2989 3279
2990static void 3280static void
2991once_cb_to (EV_P_ ev_timer *w, int revents) 3281once_cb_to (EV_P_ ev_timer *w, int revents)
2992{ 3282{
2993 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3283 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3284
3285 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2994} 3286}
2995 3287
2996void 3288void
2997ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3289ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2998{ 3290{
3020 ev_timer_set (&once->to, timeout, 0.); 3312 ev_timer_set (&once->to, timeout, 0.);
3021 ev_timer_start (EV_A_ &once->to); 3313 ev_timer_start (EV_A_ &once->to);
3022 } 3314 }
3023} 3315}
3024 3316
3317/*****************************************************************************/
3318
3319#if EV_WALK_ENABLE
3320void
3321ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3322{
3323 int i, j;
3324 ev_watcher_list *wl, *wn;
3325
3326 if (types & (EV_IO | EV_EMBED))
3327 for (i = 0; i < anfdmax; ++i)
3328 for (wl = anfds [i].head; wl; )
3329 {
3330 wn = wl->next;
3331
3332#if EV_EMBED_ENABLE
3333 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3334 {
3335 if (types & EV_EMBED)
3336 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3337 }
3338 else
3339#endif
3340#if EV_USE_INOTIFY
3341 if (ev_cb ((ev_io *)wl) == infy_cb)
3342 ;
3343 else
3344#endif
3345 if ((ev_io *)wl != &pipe_w)
3346 if (types & EV_IO)
3347 cb (EV_A_ EV_IO, wl);
3348
3349 wl = wn;
3350 }
3351
3352 if (types & (EV_TIMER | EV_STAT))
3353 for (i = timercnt + HEAP0; i-- > HEAP0; )
3354#if EV_STAT_ENABLE
3355 /*TODO: timer is not always active*/
3356 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3357 {
3358 if (types & EV_STAT)
3359 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3360 }
3361 else
3362#endif
3363 if (types & EV_TIMER)
3364 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3365
3366#if EV_PERIODIC_ENABLE
3367 if (types & EV_PERIODIC)
3368 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3369 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3370#endif
3371
3372#if EV_IDLE_ENABLE
3373 if (types & EV_IDLE)
3374 for (j = NUMPRI; i--; )
3375 for (i = idlecnt [j]; i--; )
3376 cb (EV_A_ EV_IDLE, idles [j][i]);
3377#endif
3378
3379#if EV_FORK_ENABLE
3380 if (types & EV_FORK)
3381 for (i = forkcnt; i--; )
3382 if (ev_cb (forks [i]) != embed_fork_cb)
3383 cb (EV_A_ EV_FORK, forks [i]);
3384#endif
3385
3386#if EV_ASYNC_ENABLE
3387 if (types & EV_ASYNC)
3388 for (i = asynccnt; i--; )
3389 cb (EV_A_ EV_ASYNC, asyncs [i]);
3390#endif
3391
3392 if (types & EV_PREPARE)
3393 for (i = preparecnt; i--; )
3394#if EV_EMBED_ENABLE
3395 if (ev_cb (prepares [i]) != embed_prepare_cb)
3396#endif
3397 cb (EV_A_ EV_PREPARE, prepares [i]);
3398
3399 if (types & EV_CHECK)
3400 for (i = checkcnt; i--; )
3401 cb (EV_A_ EV_CHECK, checks [i]);
3402
3403 if (types & EV_SIGNAL)
3404 for (i = 0; i < signalmax; ++i)
3405 for (wl = signals [i].head; wl; )
3406 {
3407 wn = wl->next;
3408 cb (EV_A_ EV_SIGNAL, wl);
3409 wl = wn;
3410 }
3411
3412 if (types & EV_CHILD)
3413 for (i = EV_PID_HASHSIZE; i--; )
3414 for (wl = childs [i]; wl; )
3415 {
3416 wn = wl->next;
3417 cb (EV_A_ EV_CHILD, wl);
3418 wl = wn;
3419 }
3420/* EV_STAT 0x00001000 /* stat data changed */
3421/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3422}
3423#endif
3424
3025#if EV_MULTIPLICITY 3425#if EV_MULTIPLICITY
3026 #include "ev_wrap.h" 3426 #include "ev_wrap.h"
3027#endif 3427#endif
3028 3428
3029#ifdef __cplusplus 3429#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines