ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.277 by root, Sun Dec 14 21:58:08 2008 UTC vs.
Revision 1.297 by root, Fri Jul 10 00:36:21 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
57# endif 57# endif
58# ifndef EV_USE_MONOTONIC 58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1 59# define EV_USE_MONOTONIC 1
60# endif 60# endif
61# endif 61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
62# endif 64# endif
63 65
64# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
67# endif 69# endif
68# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
69# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
70# endif 72# endif
71# else 73# else
72# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
73# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
74# endif 76# endif
193# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
194# endif 196# endif
195#endif 197#endif
196 198
197#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
198# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif 201#endif
200 202
201#ifndef EV_USE_NANOSLEEP 203#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L 204# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1 205# define EV_USE_NANOSLEEP 1
280# define EV_USE_4HEAP !EV_MINIMAL 282# define EV_USE_4HEAP !EV_MINIMAL
281#endif 283#endif
282 284
283#ifndef EV_HEAP_CACHE_AT 285#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL 286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
285#endif 301#endif
286 302
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
288 304
289#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
320 336
321#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h> 338# include <winsock.h>
323#endif 339#endif
324 340
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD 341#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h> 343# include <stdint.h>
337# ifdef __cplusplus 344# ifdef __cplusplus
338extern "C" { 345extern "C" {
384# define inline_speed static noinline 391# define inline_speed static noinline
385#else 392#else
386# define inline_speed static inline 393# define inline_speed static inline
387#endif 394#endif
388 395
389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
391 403
392#define EMPTY /* required for microsofts broken pseudo-c compiler */ 404#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */ 405#define EMPTY2(a,b) /* used to suppress some warnings */
394 406
395typedef ev_watcher *W; 407typedef ev_watcher *W;
397typedef ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
398 410
399#define ev_active(w) ((W)(w))->active 411#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at 412#define ev_at(w) ((WT)(w))->at
401 413
402#if EV_USE_MONOTONIC 414#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */ 416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
419
420#if EV_USE_MONOTONIC
405static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
406#endif 422#endif
407 423
408#ifdef _WIN32 424#ifdef _WIN32
409# include "ev_win32.c" 425# include "ev_win32.c"
474#define ev_malloc(size) ev_realloc (0, (size)) 490#define ev_malloc(size) ev_realloc (0, (size))
475#define ev_free(ptr) ev_realloc ((ptr), 0) 491#define ev_free(ptr) ev_realloc ((ptr), 0)
476 492
477/*****************************************************************************/ 493/*****************************************************************************/
478 494
495/* file descriptor info structure */
479typedef struct 496typedef struct
480{ 497{
481 WL head; 498 WL head;
482 unsigned char events; 499 unsigned char events; /* the events watched for */
483 unsigned char reify; 500 unsigned char reify; /* flag set when this ANFD needs reification */
484 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 501 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
485 unsigned char unused; 502 unsigned char unused;
486#if EV_USE_EPOLL 503#if EV_USE_EPOLL
487 unsigned int egen; /* generation counter to counter epoll bugs */ 504 unsigned int egen; /* generation counter to counter epoll bugs */
488#endif 505#endif
489#if EV_SELECT_IS_WINSOCKET 506#if EV_SELECT_IS_WINSOCKET
490 SOCKET handle; 507 SOCKET handle;
491#endif 508#endif
492} ANFD; 509} ANFD;
493 510
511/* stores the pending event set for a given watcher */
494typedef struct 512typedef struct
495{ 513{
496 W w; 514 W w;
497 int events; 515 int events; /* the pending event set for the given watcher */
498} ANPENDING; 516} ANPENDING;
499 517
500#if EV_USE_INOTIFY 518#if EV_USE_INOTIFY
501/* hash table entry per inotify-id */ 519/* hash table entry per inotify-id */
502typedef struct 520typedef struct
505} ANFS; 523} ANFS;
506#endif 524#endif
507 525
508/* Heap Entry */ 526/* Heap Entry */
509#if EV_HEAP_CACHE_AT 527#if EV_HEAP_CACHE_AT
528 /* a heap element */
510 typedef struct { 529 typedef struct {
511 ev_tstamp at; 530 ev_tstamp at;
512 WT w; 531 WT w;
513 } ANHE; 532 } ANHE;
514 533
515 #define ANHE_w(he) (he).w /* access watcher, read-write */ 534 #define ANHE_w(he) (he).w /* access watcher, read-write */
516 #define ANHE_at(he) (he).at /* access cached at, read-only */ 535 #define ANHE_at(he) (he).at /* access cached at, read-only */
517 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 536 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
518#else 537#else
538 /* a heap element */
519 typedef WT ANHE; 539 typedef WT ANHE;
520 540
521 #define ANHE_w(he) (he) 541 #define ANHE_w(he) (he)
522 #define ANHE_at(he) (he)->at 542 #define ANHE_at(he) (he)->at
523 #define ANHE_at_cache(he) 543 #define ANHE_at_cache(he)
547 567
548 static int ev_default_loop_ptr; 568 static int ev_default_loop_ptr;
549 569
550#endif 570#endif
551 571
572#if EV_MINIMAL < 2
573# define EV_SUSPEND_CB if (expect_false (suspend_cb)) suspend_cb (EV_A)
574# define EV_RESUME_CB if (expect_false (resume_cb )) resume_cb (EV_A)
575# define EV_INVOKE_PENDING invoke_cb (EV_A)
576#else
577# define EV_SUSPEND_CB (void)0
578# define EV_RESUME_CB (void)0
579# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
580#endif
581
552/*****************************************************************************/ 582/*****************************************************************************/
553 583
584#ifndef EV_HAVE_EV_TIME
554ev_tstamp 585ev_tstamp
555ev_time (void) 586ev_time (void)
556{ 587{
557#if EV_USE_REALTIME 588#if EV_USE_REALTIME
589 if (expect_true (have_realtime))
590 {
558 struct timespec ts; 591 struct timespec ts;
559 clock_gettime (CLOCK_REALTIME, &ts); 592 clock_gettime (CLOCK_REALTIME, &ts);
560 return ts.tv_sec + ts.tv_nsec * 1e-9; 593 return ts.tv_sec + ts.tv_nsec * 1e-9;
561#else 594 }
595#endif
596
562 struct timeval tv; 597 struct timeval tv;
563 gettimeofday (&tv, 0); 598 gettimeofday (&tv, 0);
564 return tv.tv_sec + tv.tv_usec * 1e-6; 599 return tv.tv_sec + tv.tv_usec * 1e-6;
565#endif
566} 600}
601#endif
567 602
568ev_tstamp inline_size 603inline_size ev_tstamp
569get_clock (void) 604get_clock (void)
570{ 605{
571#if EV_USE_MONOTONIC 606#if EV_USE_MONOTONIC
572 if (expect_true (have_monotonic)) 607 if (expect_true (have_monotonic))
573 { 608 {
607 642
608 tv.tv_sec = (time_t)delay; 643 tv.tv_sec = (time_t)delay;
609 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 644 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
610 645
611 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 646 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
612 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 647 /* somehting not guaranteed by newer posix versions, but guaranteed */
613 /* by older ones */ 648 /* by older ones */
614 select (0, 0, 0, 0, &tv); 649 select (0, 0, 0, 0, &tv);
615#endif 650#endif
616 } 651 }
617} 652}
618 653
619/*****************************************************************************/ 654/*****************************************************************************/
620 655
621#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 656#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
622 657
623int inline_size 658/* find a suitable new size for the given array, */
659/* hopefully by rounding to a ncie-to-malloc size */
660inline_size int
624array_nextsize (int elem, int cur, int cnt) 661array_nextsize (int elem, int cur, int cnt)
625{ 662{
626 int ncur = cur + 1; 663 int ncur = cur + 1;
627 664
628 do 665 do
669 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 706 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
670 } 707 }
671#endif 708#endif
672 709
673#define array_free(stem, idx) \ 710#define array_free(stem, idx) \
674 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 711 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
675 712
676/*****************************************************************************/ 713/*****************************************************************************/
714
715/* dummy callback for pending events */
716static void noinline
717pendingcb (EV_P_ ev_prepare *w, int revents)
718{
719}
677 720
678void noinline 721void noinline
679ev_feed_event (EV_P_ void *w, int revents) 722ev_feed_event (EV_P_ void *w, int revents)
680{ 723{
681 W w_ = (W)w; 724 W w_ = (W)w;
690 pendings [pri][w_->pending - 1].w = w_; 733 pendings [pri][w_->pending - 1].w = w_;
691 pendings [pri][w_->pending - 1].events = revents; 734 pendings [pri][w_->pending - 1].events = revents;
692 } 735 }
693} 736}
694 737
695void inline_speed 738inline_speed void
739feed_reverse (EV_P_ W w)
740{
741 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
742 rfeeds [rfeedcnt++] = w;
743}
744
745inline_size void
746feed_reverse_done (EV_P_ int revents)
747{
748 do
749 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
750 while (rfeedcnt);
751}
752
753inline_speed void
696queue_events (EV_P_ W *events, int eventcnt, int type) 754queue_events (EV_P_ W *events, int eventcnt, int type)
697{ 755{
698 int i; 756 int i;
699 757
700 for (i = 0; i < eventcnt; ++i) 758 for (i = 0; i < eventcnt; ++i)
701 ev_feed_event (EV_A_ events [i], type); 759 ev_feed_event (EV_A_ events [i], type);
702} 760}
703 761
704/*****************************************************************************/ 762/*****************************************************************************/
705 763
706void inline_speed 764inline_speed void
707fd_event (EV_P_ int fd, int revents) 765fd_event (EV_P_ int fd, int revents)
708{ 766{
709 ANFD *anfd = anfds + fd; 767 ANFD *anfd = anfds + fd;
710 ev_io *w; 768 ev_io *w;
711 769
723{ 781{
724 if (fd >= 0 && fd < anfdmax) 782 if (fd >= 0 && fd < anfdmax)
725 fd_event (EV_A_ fd, revents); 783 fd_event (EV_A_ fd, revents);
726} 784}
727 785
728void inline_size 786/* make sure the external fd watch events are in-sync */
787/* with the kernel/libev internal state */
788inline_size void
729fd_reify (EV_P) 789fd_reify (EV_P)
730{ 790{
731 int i; 791 int i;
732 792
733 for (i = 0; i < fdchangecnt; ++i) 793 for (i = 0; i < fdchangecnt; ++i)
748 #ifdef EV_FD_TO_WIN32_HANDLE 808 #ifdef EV_FD_TO_WIN32_HANDLE
749 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 809 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
750 #else 810 #else
751 anfd->handle = _get_osfhandle (fd); 811 anfd->handle = _get_osfhandle (fd);
752 #endif 812 #endif
753 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 813 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
754 } 814 }
755#endif 815#endif
756 816
757 { 817 {
758 unsigned char o_events = anfd->events; 818 unsigned char o_events = anfd->events;
759 unsigned char o_reify = anfd->reify; 819 unsigned char o_reify = anfd->reify;
760 820
761 anfd->reify = 0; 821 anfd->reify = 0;
762 anfd->events = events; 822 anfd->events = events;
763 823
764 if (o_events != events || o_reify & EV_IOFDSET) 824 if (o_events != events || o_reify & EV__IOFDSET)
765 backend_modify (EV_A_ fd, o_events, events); 825 backend_modify (EV_A_ fd, o_events, events);
766 } 826 }
767 } 827 }
768 828
769 fdchangecnt = 0; 829 fdchangecnt = 0;
770} 830}
771 831
772void inline_size 832/* something about the given fd changed */
833inline_size void
773fd_change (EV_P_ int fd, int flags) 834fd_change (EV_P_ int fd, int flags)
774{ 835{
775 unsigned char reify = anfds [fd].reify; 836 unsigned char reify = anfds [fd].reify;
776 anfds [fd].reify |= flags; 837 anfds [fd].reify |= flags;
777 838
781 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 842 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
782 fdchanges [fdchangecnt - 1] = fd; 843 fdchanges [fdchangecnt - 1] = fd;
783 } 844 }
784} 845}
785 846
786void inline_speed 847/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
848inline_speed void
787fd_kill (EV_P_ int fd) 849fd_kill (EV_P_ int fd)
788{ 850{
789 ev_io *w; 851 ev_io *w;
790 852
791 while ((w = (ev_io *)anfds [fd].head)) 853 while ((w = (ev_io *)anfds [fd].head))
793 ev_io_stop (EV_A_ w); 855 ev_io_stop (EV_A_ w);
794 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 856 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
795 } 857 }
796} 858}
797 859
798int inline_size 860/* check whether the given fd is atcually valid, for error recovery */
861inline_size int
799fd_valid (int fd) 862fd_valid (int fd)
800{ 863{
801#ifdef _WIN32 864#ifdef _WIN32
802 return _get_osfhandle (fd) != -1; 865 return _get_osfhandle (fd) != -1;
803#else 866#else
840 for (fd = 0; fd < anfdmax; ++fd) 903 for (fd = 0; fd < anfdmax; ++fd)
841 if (anfds [fd].events) 904 if (anfds [fd].events)
842 { 905 {
843 anfds [fd].events = 0; 906 anfds [fd].events = 0;
844 anfds [fd].emask = 0; 907 anfds [fd].emask = 0;
845 fd_change (EV_A_ fd, EV_IOFDSET | 1); 908 fd_change (EV_A_ fd, EV__IOFDSET | 1);
846 } 909 }
847} 910}
848 911
849/*****************************************************************************/ 912/*****************************************************************************/
850 913
866#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 929#define HEAP0 (DHEAP - 1) /* index of first element in heap */
867#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 930#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
868#define UPHEAP_DONE(p,k) ((p) == (k)) 931#define UPHEAP_DONE(p,k) ((p) == (k))
869 932
870/* away from the root */ 933/* away from the root */
871void inline_speed 934inline_speed void
872downheap (ANHE *heap, int N, int k) 935downheap (ANHE *heap, int N, int k)
873{ 936{
874 ANHE he = heap [k]; 937 ANHE he = heap [k];
875 ANHE *E = heap + N + HEAP0; 938 ANHE *E = heap + N + HEAP0;
876 939
916#define HEAP0 1 979#define HEAP0 1
917#define HPARENT(k) ((k) >> 1) 980#define HPARENT(k) ((k) >> 1)
918#define UPHEAP_DONE(p,k) (!(p)) 981#define UPHEAP_DONE(p,k) (!(p))
919 982
920/* away from the root */ 983/* away from the root */
921void inline_speed 984inline_speed void
922downheap (ANHE *heap, int N, int k) 985downheap (ANHE *heap, int N, int k)
923{ 986{
924 ANHE he = heap [k]; 987 ANHE he = heap [k];
925 988
926 for (;;) 989 for (;;)
946 ev_active (ANHE_w (he)) = k; 1009 ev_active (ANHE_w (he)) = k;
947} 1010}
948#endif 1011#endif
949 1012
950/* towards the root */ 1013/* towards the root */
951void inline_speed 1014inline_speed void
952upheap (ANHE *heap, int k) 1015upheap (ANHE *heap, int k)
953{ 1016{
954 ANHE he = heap [k]; 1017 ANHE he = heap [k];
955 1018
956 for (;;) 1019 for (;;)
967 1030
968 heap [k] = he; 1031 heap [k] = he;
969 ev_active (ANHE_w (he)) = k; 1032 ev_active (ANHE_w (he)) = k;
970} 1033}
971 1034
972void inline_size 1035/* move an element suitably so it is in a correct place */
1036inline_size void
973adjustheap (ANHE *heap, int N, int k) 1037adjustheap (ANHE *heap, int N, int k)
974{ 1038{
975 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1039 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
976 upheap (heap, k); 1040 upheap (heap, k);
977 else 1041 else
978 downheap (heap, N, k); 1042 downheap (heap, N, k);
979} 1043}
980 1044
981/* rebuild the heap: this function is used only once and executed rarely */ 1045/* rebuild the heap: this function is used only once and executed rarely */
982void inline_size 1046inline_size void
983reheap (ANHE *heap, int N) 1047reheap (ANHE *heap, int N)
984{ 1048{
985 int i; 1049 int i;
986 1050
987 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1051 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
990 upheap (heap, i + HEAP0); 1054 upheap (heap, i + HEAP0);
991} 1055}
992 1056
993/*****************************************************************************/ 1057/*****************************************************************************/
994 1058
1059/* associate signal watchers to a signal signal */
995typedef struct 1060typedef struct
996{ 1061{
997 WL head; 1062 WL head;
998 EV_ATOMIC_T gotsig; 1063 EV_ATOMIC_T gotsig;
999} ANSIG; 1064} ANSIG;
1003 1068
1004static EV_ATOMIC_T gotsig; 1069static EV_ATOMIC_T gotsig;
1005 1070
1006/*****************************************************************************/ 1071/*****************************************************************************/
1007 1072
1008void inline_speed 1073/* used to prepare libev internal fd's */
1074/* this is not fork-safe */
1075inline_speed void
1009fd_intern (int fd) 1076fd_intern (int fd)
1010{ 1077{
1011#ifdef _WIN32 1078#ifdef _WIN32
1012 unsigned long arg = 1; 1079 unsigned long arg = 1;
1013 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1080 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1018} 1085}
1019 1086
1020static void noinline 1087static void noinline
1021evpipe_init (EV_P) 1088evpipe_init (EV_P)
1022{ 1089{
1023 if (!ev_is_active (&pipeev)) 1090 if (!ev_is_active (&pipe_w))
1024 { 1091 {
1025#if EV_USE_EVENTFD 1092#if EV_USE_EVENTFD
1026 if ((evfd = eventfd (0, 0)) >= 0) 1093 if ((evfd = eventfd (0, 0)) >= 0)
1027 { 1094 {
1028 evpipe [0] = -1; 1095 evpipe [0] = -1;
1029 fd_intern (evfd); 1096 fd_intern (evfd);
1030 ev_io_set (&pipeev, evfd, EV_READ); 1097 ev_io_set (&pipe_w, evfd, EV_READ);
1031 } 1098 }
1032 else 1099 else
1033#endif 1100#endif
1034 { 1101 {
1035 while (pipe (evpipe)) 1102 while (pipe (evpipe))
1036 ev_syserr ("(libev) error creating signal/async pipe"); 1103 ev_syserr ("(libev) error creating signal/async pipe");
1037 1104
1038 fd_intern (evpipe [0]); 1105 fd_intern (evpipe [0]);
1039 fd_intern (evpipe [1]); 1106 fd_intern (evpipe [1]);
1040 ev_io_set (&pipeev, evpipe [0], EV_READ); 1107 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1041 } 1108 }
1042 1109
1043 ev_io_start (EV_A_ &pipeev); 1110 ev_io_start (EV_A_ &pipe_w);
1044 ev_unref (EV_A); /* watcher should not keep loop alive */ 1111 ev_unref (EV_A); /* watcher should not keep loop alive */
1045 } 1112 }
1046} 1113}
1047 1114
1048void inline_size 1115inline_size void
1049evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1116evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1050{ 1117{
1051 if (!*flag) 1118 if (!*flag)
1052 { 1119 {
1053 int old_errno = errno; /* save errno because write might clobber it */ 1120 int old_errno = errno; /* save errno because write might clobber it */
1066 1133
1067 errno = old_errno; 1134 errno = old_errno;
1068 } 1135 }
1069} 1136}
1070 1137
1138/* called whenever the libev signal pipe */
1139/* got some events (signal, async) */
1071static void 1140static void
1072pipecb (EV_P_ ev_io *iow, int revents) 1141pipecb (EV_P_ ev_io *iow, int revents)
1073{ 1142{
1074#if EV_USE_EVENTFD 1143#if EV_USE_EVENTFD
1075 if (evfd >= 0) 1144 if (evfd >= 0)
1131ev_feed_signal_event (EV_P_ int signum) 1200ev_feed_signal_event (EV_P_ int signum)
1132{ 1201{
1133 WL w; 1202 WL w;
1134 1203
1135#if EV_MULTIPLICITY 1204#if EV_MULTIPLICITY
1136 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1205 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1137#endif 1206#endif
1138 1207
1139 --signum; 1208 --signum;
1140 1209
1141 if (signum < 0 || signum >= signalmax) 1210 if (signum < 0 || signum >= signalmax)
1157 1226
1158#ifndef WIFCONTINUED 1227#ifndef WIFCONTINUED
1159# define WIFCONTINUED(status) 0 1228# define WIFCONTINUED(status) 0
1160#endif 1229#endif
1161 1230
1162void inline_speed 1231/* handle a single child status event */
1232inline_speed void
1163child_reap (EV_P_ int chain, int pid, int status) 1233child_reap (EV_P_ int chain, int pid, int status)
1164{ 1234{
1165 ev_child *w; 1235 ev_child *w;
1166 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1236 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1167 1237
1180 1250
1181#ifndef WCONTINUED 1251#ifndef WCONTINUED
1182# define WCONTINUED 0 1252# define WCONTINUED 0
1183#endif 1253#endif
1184 1254
1255/* called on sigchld etc., calls waitpid */
1185static void 1256static void
1186childcb (EV_P_ ev_signal *sw, int revents) 1257childcb (EV_P_ ev_signal *sw, int revents)
1187{ 1258{
1188 int pid, status; 1259 int pid, status;
1189 1260
1270 /* kqueue is borked on everything but netbsd apparently */ 1341 /* kqueue is borked on everything but netbsd apparently */
1271 /* it usually doesn't work correctly on anything but sockets and pipes */ 1342 /* it usually doesn't work correctly on anything but sockets and pipes */
1272 flags &= ~EVBACKEND_KQUEUE; 1343 flags &= ~EVBACKEND_KQUEUE;
1273#endif 1344#endif
1274#ifdef __APPLE__ 1345#ifdef __APPLE__
1275 // flags &= ~EVBACKEND_KQUEUE & ~EVBACKEND_POLL; for documentation 1346 /* only select works correctly on that "unix-certified" platform */
1276 flags &= ~EVBACKEND_SELECT; 1347 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1348 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1277#endif 1349#endif
1278 1350
1279 return flags; 1351 return flags;
1280} 1352}
1281 1353
1295ev_backend (EV_P) 1367ev_backend (EV_P)
1296{ 1368{
1297 return backend; 1369 return backend;
1298} 1370}
1299 1371
1372#if EV_MINIMAL < 2
1300unsigned int 1373unsigned int
1301ev_loop_count (EV_P) 1374ev_loop_count (EV_P)
1302{ 1375{
1303 return loop_count; 1376 return loop_count;
1304} 1377}
1305 1378
1379unsigned int
1380ev_loop_depth (EV_P)
1381{
1382 return loop_depth;
1383}
1384
1306void 1385void
1307ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1386ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1308{ 1387{
1309 io_blocktime = interval; 1388 io_blocktime = interval;
1310} 1389}
1313ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1392ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1314{ 1393{
1315 timeout_blocktime = interval; 1394 timeout_blocktime = interval;
1316} 1395}
1317 1396
1397void
1398ev_set_userdata (EV_P_ void *data)
1399{
1400 userdata = data;
1401}
1402
1403void *
1404ev_userdata (EV_P)
1405{
1406 return userdata;
1407}
1408
1409void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1410{
1411 invoke_cb = invoke_pending_cb;
1412}
1413
1414void ev_set_blocking_cb (EV_P_ void (*suspend_cb_)(EV_P), void (*resume_cb_)(EV_P))
1415{
1416 suspend_cb = suspend_cb_;
1417 resume_cb = resume_cb_;
1418}
1419#endif
1420
1421/* initialise a loop structure, must be zero-initialised */
1318static void noinline 1422static void noinline
1319loop_init (EV_P_ unsigned int flags) 1423loop_init (EV_P_ unsigned int flags)
1320{ 1424{
1321 if (!backend) 1425 if (!backend)
1322 { 1426 {
1427#if EV_USE_REALTIME
1428 if (!have_realtime)
1429 {
1430 struct timespec ts;
1431
1432 if (!clock_gettime (CLOCK_REALTIME, &ts))
1433 have_realtime = 1;
1434 }
1435#endif
1436
1323#if EV_USE_MONOTONIC 1437#if EV_USE_MONOTONIC
1438 if (!have_monotonic)
1324 { 1439 {
1325 struct timespec ts; 1440 struct timespec ts;
1441
1326 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1442 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1327 have_monotonic = 1; 1443 have_monotonic = 1;
1328 } 1444 }
1329#endif 1445#endif
1330 1446
1331 ev_rt_now = ev_time (); 1447 ev_rt_now = ev_time ();
1332 mn_now = get_clock (); 1448 mn_now = get_clock ();
1333 now_floor = mn_now; 1449 now_floor = mn_now;
1334 rtmn_diff = ev_rt_now - mn_now; 1450 rtmn_diff = ev_rt_now - mn_now;
1451#if EV_MINIMAL < 2
1452 invoke_cb = ev_invoke_pending;
1453#endif
1335 1454
1336 io_blocktime = 0.; 1455 io_blocktime = 0.;
1337 timeout_blocktime = 0.; 1456 timeout_blocktime = 0.;
1338 backend = 0; 1457 backend = 0;
1339 backend_fd = -1; 1458 backend_fd = -1;
1370#endif 1489#endif
1371#if EV_USE_SELECT 1490#if EV_USE_SELECT
1372 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1491 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1373#endif 1492#endif
1374 1493
1494 ev_prepare_init (&pending_w, pendingcb);
1495
1375 ev_init (&pipeev, pipecb); 1496 ev_init (&pipe_w, pipecb);
1376 ev_set_priority (&pipeev, EV_MAXPRI); 1497 ev_set_priority (&pipe_w, EV_MAXPRI);
1377 } 1498 }
1378} 1499}
1379 1500
1501/* free up a loop structure */
1380static void noinline 1502static void noinline
1381loop_destroy (EV_P) 1503loop_destroy (EV_P)
1382{ 1504{
1383 int i; 1505 int i;
1384 1506
1385 if (ev_is_active (&pipeev)) 1507 if (ev_is_active (&pipe_w))
1386 { 1508 {
1387 ev_ref (EV_A); /* signal watcher */ 1509 ev_ref (EV_A); /* signal watcher */
1388 ev_io_stop (EV_A_ &pipeev); 1510 ev_io_stop (EV_A_ &pipe_w);
1389 1511
1390#if EV_USE_EVENTFD 1512#if EV_USE_EVENTFD
1391 if (evfd >= 0) 1513 if (evfd >= 0)
1392 close (evfd); 1514 close (evfd);
1393#endif 1515#endif
1432 } 1554 }
1433 1555
1434 ev_free (anfds); anfdmax = 0; 1556 ev_free (anfds); anfdmax = 0;
1435 1557
1436 /* have to use the microsoft-never-gets-it-right macro */ 1558 /* have to use the microsoft-never-gets-it-right macro */
1559 array_free (rfeed, EMPTY);
1437 array_free (fdchange, EMPTY); 1560 array_free (fdchange, EMPTY);
1438 array_free (timer, EMPTY); 1561 array_free (timer, EMPTY);
1439#if EV_PERIODIC_ENABLE 1562#if EV_PERIODIC_ENABLE
1440 array_free (periodic, EMPTY); 1563 array_free (periodic, EMPTY);
1441#endif 1564#endif
1450 1573
1451 backend = 0; 1574 backend = 0;
1452} 1575}
1453 1576
1454#if EV_USE_INOTIFY 1577#if EV_USE_INOTIFY
1455void inline_size infy_fork (EV_P); 1578inline_size void infy_fork (EV_P);
1456#endif 1579#endif
1457 1580
1458void inline_size 1581inline_size void
1459loop_fork (EV_P) 1582loop_fork (EV_P)
1460{ 1583{
1461#if EV_USE_PORT 1584#if EV_USE_PORT
1462 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1585 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1463#endif 1586#endif
1469#endif 1592#endif
1470#if EV_USE_INOTIFY 1593#if EV_USE_INOTIFY
1471 infy_fork (EV_A); 1594 infy_fork (EV_A);
1472#endif 1595#endif
1473 1596
1474 if (ev_is_active (&pipeev)) 1597 if (ev_is_active (&pipe_w))
1475 { 1598 {
1476 /* this "locks" the handlers against writing to the pipe */ 1599 /* this "locks" the handlers against writing to the pipe */
1477 /* while we modify the fd vars */ 1600 /* while we modify the fd vars */
1478 gotsig = 1; 1601 gotsig = 1;
1479#if EV_ASYNC_ENABLE 1602#if EV_ASYNC_ENABLE
1480 gotasync = 1; 1603 gotasync = 1;
1481#endif 1604#endif
1482 1605
1483 ev_ref (EV_A); 1606 ev_ref (EV_A);
1484 ev_io_stop (EV_A_ &pipeev); 1607 ev_io_stop (EV_A_ &pipe_w);
1485 1608
1486#if EV_USE_EVENTFD 1609#if EV_USE_EVENTFD
1487 if (evfd >= 0) 1610 if (evfd >= 0)
1488 close (evfd); 1611 close (evfd);
1489#endif 1612#endif
1494 close (evpipe [1]); 1617 close (evpipe [1]);
1495 } 1618 }
1496 1619
1497 evpipe_init (EV_A); 1620 evpipe_init (EV_A);
1498 /* now iterate over everything, in case we missed something */ 1621 /* now iterate over everything, in case we missed something */
1499 pipecb (EV_A_ &pipeev, EV_READ); 1622 pipecb (EV_A_ &pipe_w, EV_READ);
1500 } 1623 }
1501 1624
1502 postfork = 0; 1625 postfork = 0;
1503} 1626}
1504 1627
1529void 1652void
1530ev_loop_fork (EV_P) 1653ev_loop_fork (EV_P)
1531{ 1654{
1532 postfork = 1; /* must be in line with ev_default_fork */ 1655 postfork = 1; /* must be in line with ev_default_fork */
1533} 1656}
1657#endif /* multiplicity */
1534 1658
1535#if EV_VERIFY 1659#if EV_VERIFY
1536static void noinline 1660static void noinline
1537verify_watcher (EV_P_ W w) 1661verify_watcher (EV_P_ W w)
1538{ 1662{
1539 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 1663 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1540 1664
1541 if (w->pending) 1665 if (w->pending)
1542 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 1666 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1543} 1667}
1544 1668
1545static void noinline 1669static void noinline
1546verify_heap (EV_P_ ANHE *heap, int N) 1670verify_heap (EV_P_ ANHE *heap, int N)
1547{ 1671{
1548 int i; 1672 int i;
1549 1673
1550 for (i = HEAP0; i < N + HEAP0; ++i) 1674 for (i = HEAP0; i < N + HEAP0; ++i)
1551 { 1675 {
1552 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 1676 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1553 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 1677 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1554 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 1678 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1555 1679
1556 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 1680 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1557 } 1681 }
1558} 1682}
1559 1683
1560static void noinline 1684static void noinline
1561array_verify (EV_P_ W *ws, int cnt) 1685array_verify (EV_P_ W *ws, int cnt)
1562{ 1686{
1563 while (cnt--) 1687 while (cnt--)
1564 { 1688 {
1565 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 1689 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1566 verify_watcher (EV_A_ ws [cnt]); 1690 verify_watcher (EV_A_ ws [cnt]);
1567 } 1691 }
1568} 1692}
1569#endif 1693#endif
1570 1694
1695#if EV_MINIMAL < 2
1571void 1696void
1572ev_loop_verify (EV_P) 1697ev_loop_verify (EV_P)
1573{ 1698{
1574#if EV_VERIFY 1699#if EV_VERIFY
1575 int i; 1700 int i;
1577 1702
1578 assert (activecnt >= -1); 1703 assert (activecnt >= -1);
1579 1704
1580 assert (fdchangemax >= fdchangecnt); 1705 assert (fdchangemax >= fdchangecnt);
1581 for (i = 0; i < fdchangecnt; ++i) 1706 for (i = 0; i < fdchangecnt; ++i)
1582 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 1707 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1583 1708
1584 assert (anfdmax >= 0); 1709 assert (anfdmax >= 0);
1585 for (i = 0; i < anfdmax; ++i) 1710 for (i = 0; i < anfdmax; ++i)
1586 for (w = anfds [i].head; w; w = w->next) 1711 for (w = anfds [i].head; w; w = w->next)
1587 { 1712 {
1588 verify_watcher (EV_A_ (W)w); 1713 verify_watcher (EV_A_ (W)w);
1589 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 1714 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1590 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 1715 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1591 } 1716 }
1592 1717
1593 assert (timermax >= timercnt); 1718 assert (timermax >= timercnt);
1594 verify_heap (EV_A_ timers, timercnt); 1719 verify_heap (EV_A_ timers, timercnt);
1595 1720
1628 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1753 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1629 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 1754 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1630# endif 1755# endif
1631#endif 1756#endif
1632} 1757}
1633 1758#endif
1634#endif /* multiplicity */
1635 1759
1636#if EV_MULTIPLICITY 1760#if EV_MULTIPLICITY
1637struct ev_loop * 1761struct ev_loop *
1638ev_default_loop_init (unsigned int flags) 1762ev_default_loop_init (unsigned int flags)
1639#else 1763#else
1700ev_invoke (EV_P_ void *w, int revents) 1824ev_invoke (EV_P_ void *w, int revents)
1701{ 1825{
1702 EV_CB_INVOKE ((W)w, revents); 1826 EV_CB_INVOKE ((W)w, revents);
1703} 1827}
1704 1828
1705void inline_speed 1829void noinline
1706call_pending (EV_P) 1830ev_invoke_pending (EV_P)
1707{ 1831{
1708 int pri; 1832 int pri;
1709 1833
1710 for (pri = NUMPRI; pri--; ) 1834 for (pri = NUMPRI; pri--; )
1711 while (pendingcnt [pri]) 1835 while (pendingcnt [pri])
1712 { 1836 {
1713 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1837 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1714 1838
1715 if (expect_true (p->w))
1716 {
1717 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1839 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1840 /* ^ this is no longer true, as pending_w could be here */
1718 1841
1719 p->w->pending = 0; 1842 p->w->pending = 0;
1720 EV_CB_INVOKE (p->w, p->events); 1843 EV_CB_INVOKE (p->w, p->events);
1721 EV_FREQUENT_CHECK; 1844 EV_FREQUENT_CHECK;
1722 }
1723 } 1845 }
1724} 1846}
1725 1847
1726#if EV_IDLE_ENABLE 1848#if EV_IDLE_ENABLE
1727void inline_size 1849/* make idle watchers pending. this handles the "call-idle */
1850/* only when higher priorities are idle" logic */
1851inline_size void
1728idle_reify (EV_P) 1852idle_reify (EV_P)
1729{ 1853{
1730 if (expect_false (idleall)) 1854 if (expect_false (idleall))
1731 { 1855 {
1732 int pri; 1856 int pri;
1744 } 1868 }
1745 } 1869 }
1746} 1870}
1747#endif 1871#endif
1748 1872
1749void inline_size 1873/* make timers pending */
1874inline_size void
1750timers_reify (EV_P) 1875timers_reify (EV_P)
1751{ 1876{
1752 EV_FREQUENT_CHECK; 1877 EV_FREQUENT_CHECK;
1753 1878
1754 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 1879 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1755 { 1880 {
1756 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 1881 do
1757
1758 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1759
1760 /* first reschedule or stop timer */
1761 if (w->repeat)
1762 { 1882 {
1883 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1884
1885 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1886
1887 /* first reschedule or stop timer */
1888 if (w->repeat)
1889 {
1763 ev_at (w) += w->repeat; 1890 ev_at (w) += w->repeat;
1764 if (ev_at (w) < mn_now) 1891 if (ev_at (w) < mn_now)
1765 ev_at (w) = mn_now; 1892 ev_at (w) = mn_now;
1766 1893
1767 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1894 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1768 1895
1769 ANHE_at_cache (timers [HEAP0]); 1896 ANHE_at_cache (timers [HEAP0]);
1770 downheap (timers, timercnt, HEAP0); 1897 downheap (timers, timercnt, HEAP0);
1898 }
1899 else
1900 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1901
1902 EV_FREQUENT_CHECK;
1903 feed_reverse (EV_A_ (W)w);
1771 } 1904 }
1772 else 1905 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1773 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1774 1906
1775 EV_FREQUENT_CHECK;
1776 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1907 feed_reverse_done (EV_A_ EV_TIMEOUT);
1777 } 1908 }
1778} 1909}
1779 1910
1780#if EV_PERIODIC_ENABLE 1911#if EV_PERIODIC_ENABLE
1781void inline_size 1912/* make periodics pending */
1913inline_size void
1782periodics_reify (EV_P) 1914periodics_reify (EV_P)
1783{ 1915{
1784 EV_FREQUENT_CHECK; 1916 EV_FREQUENT_CHECK;
1785 1917
1786 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 1918 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1787 { 1919 {
1788 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 1920 int feed_count = 0;
1789 1921
1790 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1922 do
1791
1792 /* first reschedule or stop timer */
1793 if (w->reschedule_cb)
1794 { 1923 {
1924 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1925
1926 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1927
1928 /* first reschedule or stop timer */
1929 if (w->reschedule_cb)
1930 {
1795 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1931 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1796 1932
1797 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 1933 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1798 1934
1799 ANHE_at_cache (periodics [HEAP0]); 1935 ANHE_at_cache (periodics [HEAP0]);
1800 downheap (periodics, periodiccnt, HEAP0); 1936 downheap (periodics, periodiccnt, HEAP0);
1937 }
1938 else if (w->interval)
1939 {
1940 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1941 /* if next trigger time is not sufficiently in the future, put it there */
1942 /* this might happen because of floating point inexactness */
1943 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1944 {
1945 ev_at (w) += w->interval;
1946
1947 /* if interval is unreasonably low we might still have a time in the past */
1948 /* so correct this. this will make the periodic very inexact, but the user */
1949 /* has effectively asked to get triggered more often than possible */
1950 if (ev_at (w) < ev_rt_now)
1951 ev_at (w) = ev_rt_now;
1952 }
1953
1954 ANHE_at_cache (periodics [HEAP0]);
1955 downheap (periodics, periodiccnt, HEAP0);
1956 }
1957 else
1958 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1959
1960 EV_FREQUENT_CHECK;
1961 feed_reverse (EV_A_ (W)w);
1801 } 1962 }
1802 else if (w->interval) 1963 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1803 {
1804 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1805 /* if next trigger time is not sufficiently in the future, put it there */
1806 /* this might happen because of floating point inexactness */
1807 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1808 {
1809 ev_at (w) += w->interval;
1810 1964
1811 /* if interval is unreasonably low we might still have a time in the past */
1812 /* so correct this. this will make the periodic very inexact, but the user */
1813 /* has effectively asked to get triggered more often than possible */
1814 if (ev_at (w) < ev_rt_now)
1815 ev_at (w) = ev_rt_now;
1816 }
1817
1818 ANHE_at_cache (periodics [HEAP0]);
1819 downheap (periodics, periodiccnt, HEAP0);
1820 }
1821 else
1822 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1823
1824 EV_FREQUENT_CHECK;
1825 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1965 feed_reverse_done (EV_A_ EV_PERIODIC);
1826 } 1966 }
1827} 1967}
1828 1968
1969/* simply recalculate all periodics */
1970/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1829static void noinline 1971static void noinline
1830periodics_reschedule (EV_P) 1972periodics_reschedule (EV_P)
1831{ 1973{
1832 int i; 1974 int i;
1833 1975
1846 1988
1847 reheap (periodics, periodiccnt); 1989 reheap (periodics, periodiccnt);
1848} 1990}
1849#endif 1991#endif
1850 1992
1851void inline_speed 1993/* adjust all timers by a given offset */
1994static void noinline
1995timers_reschedule (EV_P_ ev_tstamp adjust)
1996{
1997 int i;
1998
1999 for (i = 0; i < timercnt; ++i)
2000 {
2001 ANHE *he = timers + i + HEAP0;
2002 ANHE_w (*he)->at += adjust;
2003 ANHE_at_cache (*he);
2004 }
2005}
2006
2007/* fetch new monotonic and realtime times from the kernel */
2008/* also detetc if there was a timejump, and act accordingly */
2009inline_speed void
1852time_update (EV_P_ ev_tstamp max_block) 2010time_update (EV_P_ ev_tstamp max_block)
1853{ 2011{
1854 int i;
1855
1856#if EV_USE_MONOTONIC 2012#if EV_USE_MONOTONIC
1857 if (expect_true (have_monotonic)) 2013 if (expect_true (have_monotonic))
1858 { 2014 {
2015 int i;
1859 ev_tstamp odiff = rtmn_diff; 2016 ev_tstamp odiff = rtmn_diff;
1860 2017
1861 mn_now = get_clock (); 2018 mn_now = get_clock ();
1862 2019
1863 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2020 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1889 ev_rt_now = ev_time (); 2046 ev_rt_now = ev_time ();
1890 mn_now = get_clock (); 2047 mn_now = get_clock ();
1891 now_floor = mn_now; 2048 now_floor = mn_now;
1892 } 2049 }
1893 2050
2051 /* no timer adjustment, as the monotonic clock doesn't jump */
2052 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1894# if EV_PERIODIC_ENABLE 2053# if EV_PERIODIC_ENABLE
1895 periodics_reschedule (EV_A); 2054 periodics_reschedule (EV_A);
1896# endif 2055# endif
1897 /* no timer adjustment, as the monotonic clock doesn't jump */
1898 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1899 } 2056 }
1900 else 2057 else
1901#endif 2058#endif
1902 { 2059 {
1903 ev_rt_now = ev_time (); 2060 ev_rt_now = ev_time ();
1904 2061
1905 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2062 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1906 { 2063 {
2064 /* adjust timers. this is easy, as the offset is the same for all of them */
2065 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1907#if EV_PERIODIC_ENABLE 2066#if EV_PERIODIC_ENABLE
1908 periodics_reschedule (EV_A); 2067 periodics_reschedule (EV_A);
1909#endif 2068#endif
1910 /* adjust timers. this is easy, as the offset is the same for all of them */
1911 for (i = 0; i < timercnt; ++i)
1912 {
1913 ANHE *he = timers + i + HEAP0;
1914 ANHE_w (*he)->at += ev_rt_now - mn_now;
1915 ANHE_at_cache (*he);
1916 }
1917 } 2069 }
1918 2070
1919 mn_now = ev_rt_now; 2071 mn_now = ev_rt_now;
1920 } 2072 }
1921} 2073}
1922 2074
1923void 2075void
1924ev_ref (EV_P)
1925{
1926 ++activecnt;
1927}
1928
1929void
1930ev_unref (EV_P)
1931{
1932 --activecnt;
1933}
1934
1935void
1936ev_now_update (EV_P)
1937{
1938 time_update (EV_A_ 1e100);
1939}
1940
1941static int loop_done;
1942
1943void
1944ev_loop (EV_P_ int flags) 2076ev_loop (EV_P_ int flags)
1945{ 2077{
2078#if EV_MINIMAL < 2
2079 ++loop_depth;
2080#endif
2081
1946 loop_done = EVUNLOOP_CANCEL; 2082 loop_done = EVUNLOOP_CANCEL;
1947 2083
1948 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2084 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1949 2085
1950 do 2086 do
1951 { 2087 {
1952#if EV_VERIFY >= 2 2088#if EV_VERIFY >= 2
1953 ev_loop_verify (EV_A); 2089 ev_loop_verify (EV_A);
1966 /* we might have forked, so queue fork handlers */ 2102 /* we might have forked, so queue fork handlers */
1967 if (expect_false (postfork)) 2103 if (expect_false (postfork))
1968 if (forkcnt) 2104 if (forkcnt)
1969 { 2105 {
1970 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2106 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1971 call_pending (EV_A); 2107 EV_INVOKE_PENDING;
1972 } 2108 }
1973#endif 2109#endif
1974 2110
1975 /* queue prepare watchers (and execute them) */ 2111 /* queue prepare watchers (and execute them) */
1976 if (expect_false (preparecnt)) 2112 if (expect_false (preparecnt))
1977 { 2113 {
1978 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2114 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1979 call_pending (EV_A); 2115 EV_INVOKE_PENDING;
1980 } 2116 }
1981
1982 if (expect_false (!activecnt))
1983 break;
1984 2117
1985 /* we might have forked, so reify kernel state if necessary */ 2118 /* we might have forked, so reify kernel state if necessary */
1986 if (expect_false (postfork)) 2119 if (expect_false (postfork))
1987 loop_fork (EV_A); 2120 loop_fork (EV_A);
1988 2121
1994 ev_tstamp waittime = 0.; 2127 ev_tstamp waittime = 0.;
1995 ev_tstamp sleeptime = 0.; 2128 ev_tstamp sleeptime = 0.;
1996 2129
1997 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2130 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1998 { 2131 {
2132 /* remember old timestamp for io_blocktime calculation */
2133 ev_tstamp prev_mn_now = mn_now;
2134
1999 /* update time to cancel out callback processing overhead */ 2135 /* update time to cancel out callback processing overhead */
2000 time_update (EV_A_ 1e100); 2136 time_update (EV_A_ 1e100);
2001 2137
2002 waittime = MAX_BLOCKTIME; 2138 waittime = MAX_BLOCKTIME;
2003 2139
2013 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2149 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2014 if (waittime > to) waittime = to; 2150 if (waittime > to) waittime = to;
2015 } 2151 }
2016#endif 2152#endif
2017 2153
2154 /* don't let timeouts decrease the waittime below timeout_blocktime */
2018 if (expect_false (waittime < timeout_blocktime)) 2155 if (expect_false (waittime < timeout_blocktime))
2019 waittime = timeout_blocktime; 2156 waittime = timeout_blocktime;
2020 2157
2021 sleeptime = waittime - backend_fudge; 2158 /* extra check because io_blocktime is commonly 0 */
2022
2023 if (expect_true (sleeptime > io_blocktime)) 2159 if (expect_false (io_blocktime))
2024 sleeptime = io_blocktime;
2025
2026 if (sleeptime)
2027 { 2160 {
2161 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2162
2163 if (sleeptime > waittime - backend_fudge)
2164 sleeptime = waittime - backend_fudge;
2165
2166 if (expect_true (sleeptime > 0.))
2167 {
2028 ev_sleep (sleeptime); 2168 ev_sleep (sleeptime);
2029 waittime -= sleeptime; 2169 waittime -= sleeptime;
2170 }
2030 } 2171 }
2031 } 2172 }
2032 2173
2174#if EV_MINIMAL < 2
2033 ++loop_count; 2175 ++loop_count;
2176#endif
2034 backend_poll (EV_A_ waittime); 2177 backend_poll (EV_A_ waittime);
2035 2178
2036 /* update ev_rt_now, do magic */ 2179 /* update ev_rt_now, do magic */
2037 time_update (EV_A_ waittime + sleeptime); 2180 time_update (EV_A_ waittime + sleeptime);
2038 } 2181 }
2050 2193
2051 /* queue check watchers, to be executed first */ 2194 /* queue check watchers, to be executed first */
2052 if (expect_false (checkcnt)) 2195 if (expect_false (checkcnt))
2053 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2196 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2054 2197
2055 call_pending (EV_A); 2198 EV_INVOKE_PENDING;
2056 } 2199 }
2057 while (expect_true ( 2200 while (expect_true (
2058 activecnt 2201 activecnt
2059 && !loop_done 2202 && !loop_done
2060 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2203 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2061 )); 2204 ));
2062 2205
2063 if (loop_done == EVUNLOOP_ONE) 2206 if (loop_done == EVUNLOOP_ONE)
2064 loop_done = EVUNLOOP_CANCEL; 2207 loop_done = EVUNLOOP_CANCEL;
2208
2209#if EV_MINIMAL < 2
2210 --loop_depth;
2211#endif
2065} 2212}
2066 2213
2067void 2214void
2068ev_unloop (EV_P_ int how) 2215ev_unloop (EV_P_ int how)
2069{ 2216{
2070 loop_done = how; 2217 loop_done = how;
2071} 2218}
2072 2219
2220void
2221ev_ref (EV_P)
2222{
2223 ++activecnt;
2224}
2225
2226void
2227ev_unref (EV_P)
2228{
2229 --activecnt;
2230}
2231
2232void
2233ev_now_update (EV_P)
2234{
2235 time_update (EV_A_ 1e100);
2236}
2237
2238void
2239ev_suspend (EV_P)
2240{
2241 ev_now_update (EV_A);
2242}
2243
2244void
2245ev_resume (EV_P)
2246{
2247 ev_tstamp mn_prev = mn_now;
2248
2249 ev_now_update (EV_A);
2250 timers_reschedule (EV_A_ mn_now - mn_prev);
2251#if EV_PERIODIC_ENABLE
2252 /* TODO: really do this? */
2253 periodics_reschedule (EV_A);
2254#endif
2255}
2256
2073/*****************************************************************************/ 2257/*****************************************************************************/
2258/* singly-linked list management, used when the expected list length is short */
2074 2259
2075void inline_size 2260inline_size void
2076wlist_add (WL *head, WL elem) 2261wlist_add (WL *head, WL elem)
2077{ 2262{
2078 elem->next = *head; 2263 elem->next = *head;
2079 *head = elem; 2264 *head = elem;
2080} 2265}
2081 2266
2082void inline_size 2267inline_size void
2083wlist_del (WL *head, WL elem) 2268wlist_del (WL *head, WL elem)
2084{ 2269{
2085 while (*head) 2270 while (*head)
2086 { 2271 {
2087 if (*head == elem) 2272 if (*head == elem)
2092 2277
2093 head = &(*head)->next; 2278 head = &(*head)->next;
2094 } 2279 }
2095} 2280}
2096 2281
2097void inline_speed 2282/* internal, faster, version of ev_clear_pending */
2283inline_speed void
2098clear_pending (EV_P_ W w) 2284clear_pending (EV_P_ W w)
2099{ 2285{
2100 if (w->pending) 2286 if (w->pending)
2101 { 2287 {
2102 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2103 w->pending = 0; 2289 w->pending = 0;
2104 } 2290 }
2105} 2291}
2106 2292
2107int 2293int
2111 int pending = w_->pending; 2297 int pending = w_->pending;
2112 2298
2113 if (expect_true (pending)) 2299 if (expect_true (pending))
2114 { 2300 {
2115 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2301 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2302 p->w = (W)&pending_w;
2116 w_->pending = 0; 2303 w_->pending = 0;
2117 p->w = 0;
2118 return p->events; 2304 return p->events;
2119 } 2305 }
2120 else 2306 else
2121 return 0; 2307 return 0;
2122} 2308}
2123 2309
2124void inline_size 2310inline_size void
2125pri_adjust (EV_P_ W w) 2311pri_adjust (EV_P_ W w)
2126{ 2312{
2127 int pri = w->priority; 2313 int pri = ev_priority (w);
2128 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2314 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2129 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2315 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2130 w->priority = pri; 2316 ev_set_priority (w, pri);
2131} 2317}
2132 2318
2133void inline_speed 2319inline_speed void
2134ev_start (EV_P_ W w, int active) 2320ev_start (EV_P_ W w, int active)
2135{ 2321{
2136 pri_adjust (EV_A_ w); 2322 pri_adjust (EV_A_ w);
2137 w->active = active; 2323 w->active = active;
2138 ev_ref (EV_A); 2324 ev_ref (EV_A);
2139} 2325}
2140 2326
2141void inline_size 2327inline_size void
2142ev_stop (EV_P_ W w) 2328ev_stop (EV_P_ W w)
2143{ 2329{
2144 ev_unref (EV_A); 2330 ev_unref (EV_A);
2145 w->active = 0; 2331 w->active = 0;
2146} 2332}
2153 int fd = w->fd; 2339 int fd = w->fd;
2154 2340
2155 if (expect_false (ev_is_active (w))) 2341 if (expect_false (ev_is_active (w)))
2156 return; 2342 return;
2157 2343
2158 assert (("ev_io_start called with negative fd", fd >= 0)); 2344 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2159 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE)))); 2345 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2160 2346
2161 EV_FREQUENT_CHECK; 2347 EV_FREQUENT_CHECK;
2162 2348
2163 ev_start (EV_A_ (W)w, 1); 2349 ev_start (EV_A_ (W)w, 1);
2164 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 2350 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2165 wlist_add (&anfds[fd].head, (WL)w); 2351 wlist_add (&anfds[fd].head, (WL)w);
2166 2352
2167 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2353 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
2168 w->events &= ~EV_IOFDSET; 2354 w->events &= ~EV__IOFDSET;
2169 2355
2170 EV_FREQUENT_CHECK; 2356 EV_FREQUENT_CHECK;
2171} 2357}
2172 2358
2173void noinline 2359void noinline
2175{ 2361{
2176 clear_pending (EV_A_ (W)w); 2362 clear_pending (EV_A_ (W)w);
2177 if (expect_false (!ev_is_active (w))) 2363 if (expect_false (!ev_is_active (w)))
2178 return; 2364 return;
2179 2365
2180 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2366 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2181 2367
2182 EV_FREQUENT_CHECK; 2368 EV_FREQUENT_CHECK;
2183 2369
2184 wlist_del (&anfds[w->fd].head, (WL)w); 2370 wlist_del (&anfds[w->fd].head, (WL)w);
2185 ev_stop (EV_A_ (W)w); 2371 ev_stop (EV_A_ (W)w);
2195 if (expect_false (ev_is_active (w))) 2381 if (expect_false (ev_is_active (w)))
2196 return; 2382 return;
2197 2383
2198 ev_at (w) += mn_now; 2384 ev_at (w) += mn_now;
2199 2385
2200 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2386 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2201 2387
2202 EV_FREQUENT_CHECK; 2388 EV_FREQUENT_CHECK;
2203 2389
2204 ++timercnt; 2390 ++timercnt;
2205 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 2391 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2208 ANHE_at_cache (timers [ev_active (w)]); 2394 ANHE_at_cache (timers [ev_active (w)]);
2209 upheap (timers, ev_active (w)); 2395 upheap (timers, ev_active (w));
2210 2396
2211 EV_FREQUENT_CHECK; 2397 EV_FREQUENT_CHECK;
2212 2398
2213 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2399 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2214} 2400}
2215 2401
2216void noinline 2402void noinline
2217ev_timer_stop (EV_P_ ev_timer *w) 2403ev_timer_stop (EV_P_ ev_timer *w)
2218{ 2404{
2223 EV_FREQUENT_CHECK; 2409 EV_FREQUENT_CHECK;
2224 2410
2225 { 2411 {
2226 int active = ev_active (w); 2412 int active = ev_active (w);
2227 2413
2228 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2414 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2229 2415
2230 --timercnt; 2416 --timercnt;
2231 2417
2232 if (expect_true (active < timercnt + HEAP0)) 2418 if (expect_true (active < timercnt + HEAP0))
2233 { 2419 {
2277 2463
2278 if (w->reschedule_cb) 2464 if (w->reschedule_cb)
2279 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2465 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2280 else if (w->interval) 2466 else if (w->interval)
2281 { 2467 {
2282 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2468 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2283 /* this formula differs from the one in periodic_reify because we do not always round up */ 2469 /* this formula differs from the one in periodic_reify because we do not always round up */
2284 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2470 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2285 } 2471 }
2286 else 2472 else
2287 ev_at (w) = w->offset; 2473 ev_at (w) = w->offset;
2295 ANHE_at_cache (periodics [ev_active (w)]); 2481 ANHE_at_cache (periodics [ev_active (w)]);
2296 upheap (periodics, ev_active (w)); 2482 upheap (periodics, ev_active (w));
2297 2483
2298 EV_FREQUENT_CHECK; 2484 EV_FREQUENT_CHECK;
2299 2485
2300 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2486 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2301} 2487}
2302 2488
2303void noinline 2489void noinline
2304ev_periodic_stop (EV_P_ ev_periodic *w) 2490ev_periodic_stop (EV_P_ ev_periodic *w)
2305{ 2491{
2310 EV_FREQUENT_CHECK; 2496 EV_FREQUENT_CHECK;
2311 2497
2312 { 2498 {
2313 int active = ev_active (w); 2499 int active = ev_active (w);
2314 2500
2315 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2501 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2316 2502
2317 --periodiccnt; 2503 --periodiccnt;
2318 2504
2319 if (expect_true (active < periodiccnt + HEAP0)) 2505 if (expect_true (active < periodiccnt + HEAP0))
2320 { 2506 {
2343 2529
2344void noinline 2530void noinline
2345ev_signal_start (EV_P_ ev_signal *w) 2531ev_signal_start (EV_P_ ev_signal *w)
2346{ 2532{
2347#if EV_MULTIPLICITY 2533#if EV_MULTIPLICITY
2348 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2534 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2349#endif 2535#endif
2350 if (expect_false (ev_is_active (w))) 2536 if (expect_false (ev_is_active (w)))
2351 return; 2537 return;
2352 2538
2353 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2539 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2354 2540
2355 evpipe_init (EV_A); 2541 evpipe_init (EV_A);
2356 2542
2357 EV_FREQUENT_CHECK; 2543 EV_FREQUENT_CHECK;
2358 2544
2409 2595
2410void 2596void
2411ev_child_start (EV_P_ ev_child *w) 2597ev_child_start (EV_P_ ev_child *w)
2412{ 2598{
2413#if EV_MULTIPLICITY 2599#if EV_MULTIPLICITY
2414 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2600 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2415#endif 2601#endif
2416 if (expect_false (ev_is_active (w))) 2602 if (expect_false (ev_is_active (w)))
2417 return; 2603 return;
2418 2604
2419 EV_FREQUENT_CHECK; 2605 EV_FREQUENT_CHECK;
2571 2757
2572 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2758 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2573 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2759 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2574} 2760}
2575 2761
2576void inline_size 2762inline_size void
2577check_2625 (EV_P) 2763check_2625 (EV_P)
2578{ 2764{
2579 /* kernels < 2.6.25 are borked 2765 /* kernels < 2.6.25 are borked
2580 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 2766 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2581 */ 2767 */
2594 return; 2780 return;
2595 2781
2596 fs_2625 = 1; 2782 fs_2625 = 1;
2597} 2783}
2598 2784
2599void inline_size 2785inline_size void
2600infy_init (EV_P) 2786infy_init (EV_P)
2601{ 2787{
2602 if (fs_fd != -2) 2788 if (fs_fd != -2)
2603 return; 2789 return;
2604 2790
2614 ev_set_priority (&fs_w, EV_MAXPRI); 2800 ev_set_priority (&fs_w, EV_MAXPRI);
2615 ev_io_start (EV_A_ &fs_w); 2801 ev_io_start (EV_A_ &fs_w);
2616 } 2802 }
2617} 2803}
2618 2804
2619void inline_size 2805inline_size void
2620infy_fork (EV_P) 2806infy_fork (EV_P)
2621{ 2807{
2622 int slot; 2808 int slot;
2623 2809
2624 if (fs_fd < 0) 2810 if (fs_fd < 0)
2933 if (expect_false (ev_is_active (w))) 3119 if (expect_false (ev_is_active (w)))
2934 return; 3120 return;
2935 3121
2936 { 3122 {
2937 struct ev_loop *loop = w->other; 3123 struct ev_loop *loop = w->other;
2938 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3124 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2939 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3125 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2940 } 3126 }
2941 3127
2942 EV_FREQUENT_CHECK; 3128 EV_FREQUENT_CHECK;
2943 3129
3126 ev_timer_set (&once->to, timeout, 0.); 3312 ev_timer_set (&once->to, timeout, 0.);
3127 ev_timer_start (EV_A_ &once->to); 3313 ev_timer_start (EV_A_ &once->to);
3128 } 3314 }
3129} 3315}
3130 3316
3317/*****************************************************************************/
3318
3319#if EV_WALK_ENABLE
3320void
3321ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3322{
3323 int i, j;
3324 ev_watcher_list *wl, *wn;
3325
3326 if (types & (EV_IO | EV_EMBED))
3327 for (i = 0; i < anfdmax; ++i)
3328 for (wl = anfds [i].head; wl; )
3329 {
3330 wn = wl->next;
3331
3332#if EV_EMBED_ENABLE
3333 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3334 {
3335 if (types & EV_EMBED)
3336 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3337 }
3338 else
3339#endif
3340#if EV_USE_INOTIFY
3341 if (ev_cb ((ev_io *)wl) == infy_cb)
3342 ;
3343 else
3344#endif
3345 if ((ev_io *)wl != &pipe_w)
3346 if (types & EV_IO)
3347 cb (EV_A_ EV_IO, wl);
3348
3349 wl = wn;
3350 }
3351
3352 if (types & (EV_TIMER | EV_STAT))
3353 for (i = timercnt + HEAP0; i-- > HEAP0; )
3354#if EV_STAT_ENABLE
3355 /*TODO: timer is not always active*/
3356 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3357 {
3358 if (types & EV_STAT)
3359 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3360 }
3361 else
3362#endif
3363 if (types & EV_TIMER)
3364 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3365
3366#if EV_PERIODIC_ENABLE
3367 if (types & EV_PERIODIC)
3368 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3369 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3370#endif
3371
3372#if EV_IDLE_ENABLE
3373 if (types & EV_IDLE)
3374 for (j = NUMPRI; i--; )
3375 for (i = idlecnt [j]; i--; )
3376 cb (EV_A_ EV_IDLE, idles [j][i]);
3377#endif
3378
3379#if EV_FORK_ENABLE
3380 if (types & EV_FORK)
3381 for (i = forkcnt; i--; )
3382 if (ev_cb (forks [i]) != embed_fork_cb)
3383 cb (EV_A_ EV_FORK, forks [i]);
3384#endif
3385
3386#if EV_ASYNC_ENABLE
3387 if (types & EV_ASYNC)
3388 for (i = asynccnt; i--; )
3389 cb (EV_A_ EV_ASYNC, asyncs [i]);
3390#endif
3391
3392 if (types & EV_PREPARE)
3393 for (i = preparecnt; i--; )
3394#if EV_EMBED_ENABLE
3395 if (ev_cb (prepares [i]) != embed_prepare_cb)
3396#endif
3397 cb (EV_A_ EV_PREPARE, prepares [i]);
3398
3399 if (types & EV_CHECK)
3400 for (i = checkcnt; i--; )
3401 cb (EV_A_ EV_CHECK, checks [i]);
3402
3403 if (types & EV_SIGNAL)
3404 for (i = 0; i < signalmax; ++i)
3405 for (wl = signals [i].head; wl; )
3406 {
3407 wn = wl->next;
3408 cb (EV_A_ EV_SIGNAL, wl);
3409 wl = wn;
3410 }
3411
3412 if (types & EV_CHILD)
3413 for (i = EV_PID_HASHSIZE; i--; )
3414 for (wl = childs [i]; wl; )
3415 {
3416 wn = wl->next;
3417 cb (EV_A_ EV_CHILD, wl);
3418 wl = wn;
3419 }
3420/* EV_STAT 0x00001000 /* stat data changed */
3421/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3422}
3423#endif
3424
3131#if EV_MULTIPLICITY 3425#if EV_MULTIPLICITY
3132 #include "ev_wrap.h" 3426 #include "ev_wrap.h"
3133#endif 3427#endif
3134 3428
3135#ifdef __cplusplus 3429#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines