ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.66 by root, Sun Nov 4 23:30:53 2007 UTC vs.
Revision 1.297 by root, Fri Jul 10 00:36:21 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
33 65
34# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
67# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
69# endif
70# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
79# endif
37# endif 80# endif
38 81
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
41# endif 88# endif
42 89
43# if HAVE_POLL && HAVE_POLL_H 90# ifndef EV_USE_SELECT
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
95# endif
45# endif 96# endif
46 97
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 100# define EV_USE_POLL 1
101# else
102# define EV_USE_POLL 0
103# endif
49# endif 104# endif
50 105
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
52# define EV_USE_KQUEUE 1 108# define EV_USE_EPOLL 1
109# else
110# define EV_USE_EPOLL 0
111# endif
53# endif 112# endif
113
114# ifndef EV_USE_KQUEUE
115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
119# endif
120# endif
121
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
127# endif
128# endif
54 129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_EVENTFD
139# if HAVE_EVENTFD
140# define EV_USE_EVENTFD 1
141# else
142# define EV_USE_EVENTFD 0
143# endif
144# endif
145
55#endif 146#endif
56 147
57#include <math.h> 148#include <math.h>
58#include <stdlib.h> 149#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 150#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 151#include <stddef.h>
63 152
64#include <stdio.h> 153#include <stdio.h>
65 154
66#include <assert.h> 155#include <assert.h>
67#include <errno.h> 156#include <errno.h>
68#include <sys/types.h> 157#include <sys/types.h>
158#include <time.h>
159
160#include <signal.h>
161
162#ifdef EV_H
163# include EV_H
164#else
165# include "ev.h"
166#endif
167
69#ifndef WIN32 168#ifndef _WIN32
169# include <sys/time.h>
70# include <sys/wait.h> 170# include <sys/wait.h>
171# include <unistd.h>
172#else
173# include <io.h>
174# define WIN32_LEAN_AND_MEAN
175# include <windows.h>
176# ifndef EV_SELECT_IS_WINSOCKET
177# define EV_SELECT_IS_WINSOCKET 1
71#endif 178# endif
72#include <sys/time.h> 179#endif
73#include <time.h>
74 180
75/**/ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
76 190
77#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
78# define EV_USE_MONOTONIC 1 193# define EV_USE_MONOTONIC 1
194# else
195# define EV_USE_MONOTONIC 0
196# endif
197#endif
198
199#ifndef EV_USE_REALTIME
200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
201#endif
202
203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
207# define EV_USE_NANOSLEEP 0
208# endif
79#endif 209#endif
80 210
81#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
83#endif 213#endif
84 214
85#ifndef EV_USE_POLL 215#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 216# ifdef _WIN32
217# define EV_USE_POLL 0
218# else
219# define EV_USE_POLL 1
220# endif
87#endif 221#endif
88 222
89#ifndef EV_USE_EPOLL 223#ifndef EV_USE_EPOLL
224# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225# define EV_USE_EPOLL 1
226# else
90# define EV_USE_EPOLL 0 227# define EV_USE_EPOLL 0
228# endif
91#endif 229#endif
92 230
93#ifndef EV_USE_KQUEUE 231#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 232# define EV_USE_KQUEUE 0
95#endif 233#endif
96 234
235#ifndef EV_USE_PORT
236# define EV_USE_PORT 0
237#endif
238
97#ifndef EV_USE_WIN32 239#ifndef EV_USE_INOTIFY
98# ifdef WIN32 240# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
99# define EV_USE_WIN32 1 241# define EV_USE_INOTIFY 1
100# else 242# else
101# define EV_USE_WIN32 0 243# define EV_USE_INOTIFY 0
102# endif 244# endif
103#endif 245#endif
104 246
105#ifndef EV_USE_REALTIME 247#ifndef EV_PID_HASHSIZE
106# define EV_USE_REALTIME 1 248# if EV_MINIMAL
249# define EV_PID_HASHSIZE 1
250# else
251# define EV_PID_HASHSIZE 16
107#endif 252# endif
253#endif
108 254
109/**/ 255#ifndef EV_INOTIFY_HASHSIZE
256# if EV_MINIMAL
257# define EV_INOTIFY_HASHSIZE 1
258# else
259# define EV_INOTIFY_HASHSIZE 16
260# endif
261#endif
262
263#ifndef EV_USE_EVENTFD
264# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265# define EV_USE_EVENTFD 1
266# else
267# define EV_USE_EVENTFD 0
268# endif
269#endif
270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
110 304
111#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
114#endif 308#endif
116#ifndef CLOCK_REALTIME 310#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 311# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 312# define EV_USE_REALTIME 0
119#endif 313#endif
120 314
315#if !EV_STAT_ENABLE
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318#endif
319
320#if !EV_USE_NANOSLEEP
321# ifndef _WIN32
322# include <sys/select.h>
323# endif
324#endif
325
326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
335#endif
336
337#if EV_SELECT_IS_WINSOCKET
338# include <winsock.h>
339#endif
340
341#if EV_USE_EVENTFD
342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343# include <stdint.h>
344# ifdef __cplusplus
345extern "C" {
346# endif
347int eventfd (unsigned int initval, int flags);
348# ifdef __cplusplus
349}
350# endif
351#endif
352
121/**/ 353/**/
122 354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
360
361/*
362 * This is used to avoid floating point rounding problems.
363 * It is added to ev_rt_now when scheduling periodics
364 * to ensure progress, time-wise, even when rounding
365 * errors are against us.
366 * This value is good at least till the year 4000.
367 * Better solutions welcome.
368 */
369#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
370
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 371#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 372#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 373/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
127 374
128#include "ev.h"
129
130#if __GNUC__ >= 3 375#if __GNUC__ >= 4
131# define expect(expr,value) __builtin_expect ((expr),(value)) 376# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 377# define noinline __attribute__ ((noinline))
133#else 378#else
134# define expect(expr,value) (expr) 379# define expect(expr,value) (expr)
135# define inline static 380# define noinline
381# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
382# define inline
383# endif
136#endif 384#endif
137 385
138#define expect_false(expr) expect ((expr) != 0, 0) 386#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1) 387#define expect_true(expr) expect ((expr) != 0, 1)
388#define inline_size static inline
140 389
390#if EV_MINIMAL
391# define inline_speed static noinline
392#else
393# define inline_speed static inline
394#endif
395
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
143 403
404#define EMPTY /* required for microsofts broken pseudo-c compiler */
405#define EMPTY2(a,b) /* used to suppress some warnings */
406
144typedef struct ev_watcher *W; 407typedef ev_watcher *W;
145typedef struct ev_watcher_list *WL; 408typedef ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
147 410
411#define ev_active(w) ((W)(w))->active
412#define ev_at(w) ((WT)(w))->at
413
414#if EV_USE_REALTIME
415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
419
420#if EV_USE_MONOTONIC
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
422#endif
423
424#ifdef _WIN32
425# include "ev_win32.c"
426#endif
149 427
150/*****************************************************************************/ 428/*****************************************************************************/
151 429
430static void (*syserr_cb)(const char *msg);
431
432void
433ev_set_syserr_cb (void (*cb)(const char *msg))
434{
435 syserr_cb = cb;
436}
437
438static void noinline
439ev_syserr (const char *msg)
440{
441 if (!msg)
442 msg = "(libev) system error";
443
444 if (syserr_cb)
445 syserr_cb (msg);
446 else
447 {
448 perror (msg);
449 abort ();
450 }
451}
452
453static void *
454ev_realloc_emul (void *ptr, long size)
455{
456 /* some systems, notably openbsd and darwin, fail to properly
457 * implement realloc (x, 0) (as required by both ansi c-98 and
458 * the single unix specification, so work around them here.
459 */
460
461 if (size)
462 return realloc (ptr, size);
463
464 free (ptr);
465 return 0;
466}
467
468static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
469
470void
471ev_set_allocator (void *(*cb)(void *ptr, long size))
472{
473 alloc = cb;
474}
475
476inline_speed void *
477ev_realloc (void *ptr, long size)
478{
479 ptr = alloc (ptr, size);
480
481 if (!ptr && size)
482 {
483 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
484 abort ();
485 }
486
487 return ptr;
488}
489
490#define ev_malloc(size) ev_realloc (0, (size))
491#define ev_free(ptr) ev_realloc ((ptr), 0)
492
493/*****************************************************************************/
494
495/* file descriptor info structure */
152typedef struct 496typedef struct
153{ 497{
154 struct ev_watcher_list *head; 498 WL head;
155 unsigned char events; 499 unsigned char events; /* the events watched for */
500 unsigned char reify; /* flag set when this ANFD needs reification */
501 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
156 unsigned char reify; 502 unsigned char unused;
503#if EV_USE_EPOLL
504 unsigned int egen; /* generation counter to counter epoll bugs */
505#endif
506#if EV_SELECT_IS_WINSOCKET
507 SOCKET handle;
508#endif
157} ANFD; 509} ANFD;
158 510
511/* stores the pending event set for a given watcher */
159typedef struct 512typedef struct
160{ 513{
161 W w; 514 W w;
162 int events; 515 int events; /* the pending event set for the given watcher */
163} ANPENDING; 516} ANPENDING;
164 517
518#if EV_USE_INOTIFY
519/* hash table entry per inotify-id */
520typedef struct
521{
522 WL head;
523} ANFS;
524#endif
525
526/* Heap Entry */
527#if EV_HEAP_CACHE_AT
528 /* a heap element */
529 typedef struct {
530 ev_tstamp at;
531 WT w;
532 } ANHE;
533
534 #define ANHE_w(he) (he).w /* access watcher, read-write */
535 #define ANHE_at(he) (he).at /* access cached at, read-only */
536 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
537#else
538 /* a heap element */
539 typedef WT ANHE;
540
541 #define ANHE_w(he) (he)
542 #define ANHE_at(he) (he)->at
543 #define ANHE_at_cache(he)
544#endif
545
165#if EV_MULTIPLICITY 546#if EV_MULTIPLICITY
166 547
167struct ev_loop 548 struct ev_loop
168{ 549 {
550 ev_tstamp ev_rt_now;
551 #define ev_rt_now ((loop)->ev_rt_now)
169# define VAR(name,decl) decl; 552 #define VAR(name,decl) decl;
170# include "ev_vars.h" 553 #include "ev_vars.h"
171};
172# undef VAR 554 #undef VAR
555 };
173# include "ev_wrap.h" 556 #include "ev_wrap.h"
557
558 static struct ev_loop default_loop_struct;
559 struct ev_loop *ev_default_loop_ptr;
174 560
175#else 561#else
176 562
563 ev_tstamp ev_rt_now;
177# define VAR(name,decl) static decl; 564 #define VAR(name,decl) static decl;
178# include "ev_vars.h" 565 #include "ev_vars.h"
179# undef VAR 566 #undef VAR
180 567
568 static int ev_default_loop_ptr;
569
570#endif
571
572#if EV_MINIMAL < 2
573# define EV_SUSPEND_CB if (expect_false (suspend_cb)) suspend_cb (EV_A)
574# define EV_RESUME_CB if (expect_false (resume_cb )) resume_cb (EV_A)
575# define EV_INVOKE_PENDING invoke_cb (EV_A)
576#else
577# define EV_SUSPEND_CB (void)0
578# define EV_RESUME_CB (void)0
579# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
181#endif 580#endif
182 581
183/*****************************************************************************/ 582/*****************************************************************************/
184 583
185inline ev_tstamp 584#ifndef EV_HAVE_EV_TIME
585ev_tstamp
186ev_time (void) 586ev_time (void)
187{ 587{
188#if EV_USE_REALTIME 588#if EV_USE_REALTIME
589 if (expect_true (have_realtime))
590 {
189 struct timespec ts; 591 struct timespec ts;
190 clock_gettime (CLOCK_REALTIME, &ts); 592 clock_gettime (CLOCK_REALTIME, &ts);
191 return ts.tv_sec + ts.tv_nsec * 1e-9; 593 return ts.tv_sec + ts.tv_nsec * 1e-9;
192#else 594 }
595#endif
596
193 struct timeval tv; 597 struct timeval tv;
194 gettimeofday (&tv, 0); 598 gettimeofday (&tv, 0);
195 return tv.tv_sec + tv.tv_usec * 1e-6; 599 return tv.tv_sec + tv.tv_usec * 1e-6;
196#endif
197} 600}
601#endif
198 602
199inline ev_tstamp 603inline_size ev_tstamp
200get_clock (void) 604get_clock (void)
201{ 605{
202#if EV_USE_MONOTONIC 606#if EV_USE_MONOTONIC
203 if (expect_true (have_monotonic)) 607 if (expect_true (have_monotonic))
204 { 608 {
209#endif 613#endif
210 614
211 return ev_time (); 615 return ev_time ();
212} 616}
213 617
618#if EV_MULTIPLICITY
214ev_tstamp 619ev_tstamp
215ev_now (EV_P) 620ev_now (EV_P)
216{ 621{
217 return rt_now; 622 return ev_rt_now;
218} 623}
624#endif
219 625
220#define array_roundsize(base,n) ((n) | 4 & ~3) 626void
627ev_sleep (ev_tstamp delay)
628{
629 if (delay > 0.)
630 {
631#if EV_USE_NANOSLEEP
632 struct timespec ts;
221 633
634 ts.tv_sec = (time_t)delay;
635 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
636
637 nanosleep (&ts, 0);
638#elif defined(_WIN32)
639 Sleep ((unsigned long)(delay * 1e3));
640#else
641 struct timeval tv;
642
643 tv.tv_sec = (time_t)delay;
644 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
645
646 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
647 /* somehting not guaranteed by newer posix versions, but guaranteed */
648 /* by older ones */
649 select (0, 0, 0, 0, &tv);
650#endif
651 }
652}
653
654/*****************************************************************************/
655
656#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
657
658/* find a suitable new size for the given array, */
659/* hopefully by rounding to a ncie-to-malloc size */
660inline_size int
661array_nextsize (int elem, int cur, int cnt)
662{
663 int ncur = cur + 1;
664
665 do
666 ncur <<= 1;
667 while (cnt > ncur);
668
669 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
670 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
671 {
672 ncur *= elem;
673 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
674 ncur = ncur - sizeof (void *) * 4;
675 ncur /= elem;
676 }
677
678 return ncur;
679}
680
681static noinline void *
682array_realloc (int elem, void *base, int *cur, int cnt)
683{
684 *cur = array_nextsize (elem, *cur, cnt);
685 return ev_realloc (base, elem * *cur);
686}
687
688#define array_init_zero(base,count) \
689 memset ((void *)(base), 0, sizeof (*(base)) * (count))
690
222#define array_needsize(base,cur,cnt,init) \ 691#define array_needsize(type,base,cur,cnt,init) \
223 if (expect_false ((cnt) > cur)) \ 692 if (expect_false ((cnt) > (cur))) \
224 { \ 693 { \
225 int newcnt = cur; \ 694 int ocur_ = (cur); \
226 do \ 695 (base) = (type *)array_realloc \
227 { \ 696 (sizeof (type), (base), &(cur), (cnt)); \
228 newcnt = array_roundsize (base, newcnt << 1); \ 697 init ((base) + (ocur_), (cur) - ocur_); \
229 } \ 698 }
230 while ((cnt) > newcnt); \ 699
700#if 0
701#define array_slim(type,stem) \
702 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
231 \ 703 { \
232 base = realloc (base, sizeof (*base) * (newcnt)); \ 704 stem ## max = array_roundsize (stem ## cnt >> 1); \
233 init (base + cur, newcnt - cur); \ 705 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
234 cur = newcnt; \ 706 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
235 } 707 }
708#endif
236 709
237#define array_free(stem, idx) \ 710#define array_free(stem, idx) \
238 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 711 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
239 712
240/*****************************************************************************/ 713/*****************************************************************************/
241 714
242static void 715/* dummy callback for pending events */
243anfds_init (ANFD *base, int count) 716static void noinline
717pendingcb (EV_P_ ev_prepare *w, int revents)
244{ 718{
245 while (count--) 719}
246 {
247 base->head = 0;
248 base->events = EV_NONE;
249 base->reify = 0;
250 720
251 ++base; 721void noinline
722ev_feed_event (EV_P_ void *w, int revents)
723{
724 W w_ = (W)w;
725 int pri = ABSPRI (w_);
726
727 if (expect_false (w_->pending))
728 pendings [pri][w_->pending - 1].events |= revents;
729 else
252 } 730 {
253} 731 w_->pending = ++pendingcnt [pri];
254 732 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
255static void 733 pendings [pri][w_->pending - 1].w = w_;
256event (EV_P_ W w, int events)
257{
258 if (w->pending)
259 {
260 pendings [ABSPRI (w)][w->pending - 1].events |= events; 734 pendings [pri][w_->pending - 1].events = revents;
261 return;
262 } 735 }
263
264 w->pending = ++pendingcnt [ABSPRI (w)];
265 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
266 pendings [ABSPRI (w)][w->pending - 1].w = w;
267 pendings [ABSPRI (w)][w->pending - 1].events = events;
268} 736}
269 737
270static void 738inline_speed void
739feed_reverse (EV_P_ W w)
740{
741 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
742 rfeeds [rfeedcnt++] = w;
743}
744
745inline_size void
746feed_reverse_done (EV_P_ int revents)
747{
748 do
749 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
750 while (rfeedcnt);
751}
752
753inline_speed void
271queue_events (EV_P_ W *events, int eventcnt, int type) 754queue_events (EV_P_ W *events, int eventcnt, int type)
272{ 755{
273 int i; 756 int i;
274 757
275 for (i = 0; i < eventcnt; ++i) 758 for (i = 0; i < eventcnt; ++i)
276 event (EV_A_ events [i], type); 759 ev_feed_event (EV_A_ events [i], type);
277} 760}
278 761
279static void 762/*****************************************************************************/
763
764inline_speed void
280fd_event (EV_P_ int fd, int events) 765fd_event (EV_P_ int fd, int revents)
281{ 766{
282 ANFD *anfd = anfds + fd; 767 ANFD *anfd = anfds + fd;
283 struct ev_io *w; 768 ev_io *w;
284 769
285 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 770 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
286 { 771 {
287 int ev = w->events & events; 772 int ev = w->events & revents;
288 773
289 if (ev) 774 if (ev)
290 event (EV_A_ (W)w, ev); 775 ev_feed_event (EV_A_ (W)w, ev);
291 } 776 }
292} 777}
293 778
294/*****************************************************************************/ 779void
780ev_feed_fd_event (EV_P_ int fd, int revents)
781{
782 if (fd >= 0 && fd < anfdmax)
783 fd_event (EV_A_ fd, revents);
784}
295 785
296static void 786/* make sure the external fd watch events are in-sync */
787/* with the kernel/libev internal state */
788inline_size void
297fd_reify (EV_P) 789fd_reify (EV_P)
298{ 790{
299 int i; 791 int i;
300 792
301 for (i = 0; i < fdchangecnt; ++i) 793 for (i = 0; i < fdchangecnt; ++i)
302 { 794 {
303 int fd = fdchanges [i]; 795 int fd = fdchanges [i];
304 ANFD *anfd = anfds + fd; 796 ANFD *anfd = anfds + fd;
305 struct ev_io *w; 797 ev_io *w;
306 798
307 int events = 0; 799 unsigned char events = 0;
308 800
309 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 801 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
310 events |= w->events; 802 events |= (unsigned char)w->events;
311 803
804#if EV_SELECT_IS_WINSOCKET
805 if (events)
806 {
807 unsigned long arg;
808 #ifdef EV_FD_TO_WIN32_HANDLE
809 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
810 #else
811 anfd->handle = _get_osfhandle (fd);
812 #endif
813 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
814 }
815#endif
816
817 {
818 unsigned char o_events = anfd->events;
819 unsigned char o_reify = anfd->reify;
820
312 anfd->reify = 0; 821 anfd->reify = 0;
313
314 method_modify (EV_A_ fd, anfd->events, events);
315 anfd->events = events; 822 anfd->events = events;
823
824 if (o_events != events || o_reify & EV__IOFDSET)
825 backend_modify (EV_A_ fd, o_events, events);
826 }
316 } 827 }
317 828
318 fdchangecnt = 0; 829 fdchangecnt = 0;
319} 830}
320 831
321static void 832/* something about the given fd changed */
833inline_size void
322fd_change (EV_P_ int fd) 834fd_change (EV_P_ int fd, int flags)
323{ 835{
324 if (anfds [fd].reify || fdchangecnt < 0) 836 unsigned char reify = anfds [fd].reify;
325 return;
326
327 anfds [fd].reify = 1; 837 anfds [fd].reify |= flags;
328 838
839 if (expect_true (!reify))
840 {
329 ++fdchangecnt; 841 ++fdchangecnt;
330 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 842 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
331 fdchanges [fdchangecnt - 1] = fd; 843 fdchanges [fdchangecnt - 1] = fd;
844 }
332} 845}
333 846
334static void 847/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
848inline_speed void
335fd_kill (EV_P_ int fd) 849fd_kill (EV_P_ int fd)
336{ 850{
337 struct ev_io *w; 851 ev_io *w;
338 852
339 while ((w = (struct ev_io *)anfds [fd].head)) 853 while ((w = (ev_io *)anfds [fd].head))
340 { 854 {
341 ev_io_stop (EV_A_ w); 855 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 856 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 } 857 }
858}
859
860/* check whether the given fd is atcually valid, for error recovery */
861inline_size int
862fd_valid (int fd)
863{
864#ifdef _WIN32
865 return _get_osfhandle (fd) != -1;
866#else
867 return fcntl (fd, F_GETFD) != -1;
868#endif
344} 869}
345 870
346/* called on EBADF to verify fds */ 871/* called on EBADF to verify fds */
347static void 872static void noinline
348fd_ebadf (EV_P) 873fd_ebadf (EV_P)
349{ 874{
350 int fd; 875 int fd;
351 876
352 for (fd = 0; fd < anfdmax; ++fd) 877 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 878 if (anfds [fd].events)
354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 879 if (!fd_valid (fd) && errno == EBADF)
355 fd_kill (EV_A_ fd); 880 fd_kill (EV_A_ fd);
356} 881}
357 882
358/* called on ENOMEM in select/poll to kill some fds and retry */ 883/* called on ENOMEM in select/poll to kill some fds and retry */
359static void 884static void noinline
360fd_enomem (EV_P) 885fd_enomem (EV_P)
361{ 886{
362 int fd; 887 int fd;
363 888
364 for (fd = anfdmax; fd--; ) 889 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events) 890 if (anfds [fd].events)
366 { 891 {
367 close (fd);
368 fd_kill (EV_A_ fd); 892 fd_kill (EV_A_ fd);
369 return; 893 return;
370 } 894 }
371} 895}
372 896
373/* susually called after fork if method needs to re-arm all fds from scratch */ 897/* usually called after fork if backend needs to re-arm all fds from scratch */
374static void 898static void noinline
375fd_rearm_all (EV_P) 899fd_rearm_all (EV_P)
376{ 900{
377 int fd; 901 int fd;
378 902
379 /* this should be highly optimised to not do anything but set a flag */
380 for (fd = 0; fd < anfdmax; ++fd) 903 for (fd = 0; fd < anfdmax; ++fd)
381 if (anfds [fd].events) 904 if (anfds [fd].events)
382 { 905 {
383 anfds [fd].events = 0; 906 anfds [fd].events = 0;
907 anfds [fd].emask = 0;
384 fd_change (EV_A_ fd); 908 fd_change (EV_A_ fd, EV__IOFDSET | 1);
385 } 909 }
386} 910}
387 911
388/*****************************************************************************/ 912/*****************************************************************************/
389 913
390static void 914/*
391upheap (WT *heap, int k) 915 * the heap functions want a real array index. array index 0 uis guaranteed to not
392{ 916 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
393 WT w = heap [k]; 917 * the branching factor of the d-tree.
918 */
394 919
395 while (k && heap [k >> 1]->at > w->at) 920/*
396 { 921 * at the moment we allow libev the luxury of two heaps,
397 heap [k] = heap [k >> 1]; 922 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
398 ((W)heap [k])->active = k + 1; 923 * which is more cache-efficient.
399 k >>= 1; 924 * the difference is about 5% with 50000+ watchers.
400 } 925 */
926#if EV_USE_4HEAP
401 927
402 heap [k] = w; 928#define DHEAP 4
403 ((W)heap [k])->active = k + 1; 929#define HEAP0 (DHEAP - 1) /* index of first element in heap */
930#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
931#define UPHEAP_DONE(p,k) ((p) == (k))
404 932
405} 933/* away from the root */
406 934inline_speed void
407static void
408downheap (WT *heap, int N, int k) 935downheap (ANHE *heap, int N, int k)
409{ 936{
410 WT w = heap [k]; 937 ANHE he = heap [k];
938 ANHE *E = heap + N + HEAP0;
411 939
412 while (k < (N >> 1)) 940 for (;;)
413 { 941 {
414 int j = k << 1; 942 ev_tstamp minat;
943 ANHE *minpos;
944 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
415 945
416 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 946 /* find minimum child */
947 if (expect_true (pos + DHEAP - 1 < E))
417 ++j; 948 {
418 949 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
419 if (w->at <= heap [j]->at) 950 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
951 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
952 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
953 }
954 else if (pos < E)
955 {
956 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
957 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
958 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
959 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
960 }
961 else
420 break; 962 break;
421 963
964 if (ANHE_at (he) <= minat)
965 break;
966
967 heap [k] = *minpos;
968 ev_active (ANHE_w (*minpos)) = k;
969
970 k = minpos - heap;
971 }
972
973 heap [k] = he;
974 ev_active (ANHE_w (he)) = k;
975}
976
977#else /* 4HEAP */
978
979#define HEAP0 1
980#define HPARENT(k) ((k) >> 1)
981#define UPHEAP_DONE(p,k) (!(p))
982
983/* away from the root */
984inline_speed void
985downheap (ANHE *heap, int N, int k)
986{
987 ANHE he = heap [k];
988
989 for (;;)
990 {
991 int c = k << 1;
992
993 if (c > N + HEAP0 - 1)
994 break;
995
996 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
997 ? 1 : 0;
998
999 if (ANHE_at (he) <= ANHE_at (heap [c]))
1000 break;
1001
422 heap [k] = heap [j]; 1002 heap [k] = heap [c];
423 ((W)heap [k])->active = k + 1; 1003 ev_active (ANHE_w (heap [k])) = k;
1004
424 k = j; 1005 k = c;
425 } 1006 }
426 1007
427 heap [k] = w; 1008 heap [k] = he;
428 ((W)heap [k])->active = k + 1; 1009 ev_active (ANHE_w (he)) = k;
1010}
1011#endif
1012
1013/* towards the root */
1014inline_speed void
1015upheap (ANHE *heap, int k)
1016{
1017 ANHE he = heap [k];
1018
1019 for (;;)
1020 {
1021 int p = HPARENT (k);
1022
1023 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1024 break;
1025
1026 heap [k] = heap [p];
1027 ev_active (ANHE_w (heap [k])) = k;
1028 k = p;
1029 }
1030
1031 heap [k] = he;
1032 ev_active (ANHE_w (he)) = k;
1033}
1034
1035/* move an element suitably so it is in a correct place */
1036inline_size void
1037adjustheap (ANHE *heap, int N, int k)
1038{
1039 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
1040 upheap (heap, k);
1041 else
1042 downheap (heap, N, k);
1043}
1044
1045/* rebuild the heap: this function is used only once and executed rarely */
1046inline_size void
1047reheap (ANHE *heap, int N)
1048{
1049 int i;
1050
1051 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1052 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1053 for (i = 0; i < N; ++i)
1054 upheap (heap, i + HEAP0);
429} 1055}
430 1056
431/*****************************************************************************/ 1057/*****************************************************************************/
432 1058
1059/* associate signal watchers to a signal signal */
433typedef struct 1060typedef struct
434{ 1061{
435 struct ev_watcher_list *head; 1062 WL head;
436 sig_atomic_t volatile gotsig; 1063 EV_ATOMIC_T gotsig;
437} ANSIG; 1064} ANSIG;
438 1065
439static ANSIG *signals; 1066static ANSIG *signals;
440static int signalmax; 1067static int signalmax;
441 1068
442static int sigpipe [2]; 1069static EV_ATOMIC_T gotsig;
443static sig_atomic_t volatile gotsig;
444static struct ev_io sigev;
445 1070
1071/*****************************************************************************/
1072
1073/* used to prepare libev internal fd's */
1074/* this is not fork-safe */
1075inline_speed void
1076fd_intern (int fd)
1077{
1078#ifdef _WIN32
1079 unsigned long arg = 1;
1080 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1081#else
1082 fcntl (fd, F_SETFD, FD_CLOEXEC);
1083 fcntl (fd, F_SETFL, O_NONBLOCK);
1084#endif
1085}
1086
1087static void noinline
1088evpipe_init (EV_P)
1089{
1090 if (!ev_is_active (&pipe_w))
1091 {
1092#if EV_USE_EVENTFD
1093 if ((evfd = eventfd (0, 0)) >= 0)
1094 {
1095 evpipe [0] = -1;
1096 fd_intern (evfd);
1097 ev_io_set (&pipe_w, evfd, EV_READ);
1098 }
1099 else
1100#endif
1101 {
1102 while (pipe (evpipe))
1103 ev_syserr ("(libev) error creating signal/async pipe");
1104
1105 fd_intern (evpipe [0]);
1106 fd_intern (evpipe [1]);
1107 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1108 }
1109
1110 ev_io_start (EV_A_ &pipe_w);
1111 ev_unref (EV_A); /* watcher should not keep loop alive */
1112 }
1113}
1114
1115inline_size void
1116evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1117{
1118 if (!*flag)
1119 {
1120 int old_errno = errno; /* save errno because write might clobber it */
1121
1122 *flag = 1;
1123
1124#if EV_USE_EVENTFD
1125 if (evfd >= 0)
1126 {
1127 uint64_t counter = 1;
1128 write (evfd, &counter, sizeof (uint64_t));
1129 }
1130 else
1131#endif
1132 write (evpipe [1], &old_errno, 1);
1133
1134 errno = old_errno;
1135 }
1136}
1137
1138/* called whenever the libev signal pipe */
1139/* got some events (signal, async) */
446static void 1140static void
447signals_init (ANSIG *base, int count) 1141pipecb (EV_P_ ev_io *iow, int revents)
448{ 1142{
449 while (count--) 1143#if EV_USE_EVENTFD
1144 if (evfd >= 0)
1145 {
1146 uint64_t counter;
1147 read (evfd, &counter, sizeof (uint64_t));
450 { 1148 }
451 base->head = 0; 1149 else
1150#endif
1151 {
1152 char dummy;
1153 read (evpipe [0], &dummy, 1);
1154 }
1155
1156 if (gotsig && ev_is_default_loop (EV_A))
1157 {
1158 int signum;
452 base->gotsig = 0; 1159 gotsig = 0;
453 1160
454 ++base; 1161 for (signum = signalmax; signum--; )
1162 if (signals [signum].gotsig)
1163 ev_feed_signal_event (EV_A_ signum + 1);
1164 }
1165
1166#if EV_ASYNC_ENABLE
1167 if (gotasync)
455 } 1168 {
1169 int i;
1170 gotasync = 0;
1171
1172 for (i = asynccnt; i--; )
1173 if (asyncs [i]->sent)
1174 {
1175 asyncs [i]->sent = 0;
1176 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1177 }
1178 }
1179#endif
456} 1180}
1181
1182/*****************************************************************************/
457 1183
458static void 1184static void
459sighandler (int signum) 1185ev_sighandler (int signum)
460{ 1186{
1187#if EV_MULTIPLICITY
1188 struct ev_loop *loop = &default_loop_struct;
1189#endif
1190
1191#if _WIN32
1192 signal (signum, ev_sighandler);
1193#endif
1194
461 signals [signum - 1].gotsig = 1; 1195 signals [signum - 1].gotsig = 1;
462 1196 evpipe_write (EV_A_ &gotsig);
463 if (!gotsig)
464 {
465 int old_errno = errno;
466 gotsig = 1;
467 write (sigpipe [1], &signum, 1);
468 errno = old_errno;
469 }
470} 1197}
471 1198
472static void 1199void noinline
473sigcb (EV_P_ struct ev_io *iow, int revents) 1200ev_feed_signal_event (EV_P_ int signum)
474{ 1201{
475 struct ev_watcher_list *w; 1202 WL w;
1203
1204#if EV_MULTIPLICITY
1205 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1206#endif
1207
476 int signum; 1208 --signum;
477 1209
478 read (sigpipe [0], &revents, 1); 1210 if (signum < 0 || signum >= signalmax)
479 gotsig = 0; 1211 return;
480 1212
481 for (signum = signalmax; signum--; )
482 if (signals [signum].gotsig)
483 {
484 signals [signum].gotsig = 0; 1213 signals [signum].gotsig = 0;
485 1214
486 for (w = signals [signum].head; w; w = w->next) 1215 for (w = signals [signum].head; w; w = w->next)
487 event (EV_A_ (W)w, EV_SIGNAL); 1216 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
488 }
489}
490
491static void
492siginit (EV_P)
493{
494#ifndef WIN32
495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
497
498 /* rather than sort out wether we really need nb, set it */
499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501#endif
502
503 ev_io_set (&sigev, sigpipe [0], EV_READ);
504 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */
506} 1217}
507 1218
508/*****************************************************************************/ 1219/*****************************************************************************/
509 1220
1221static WL childs [EV_PID_HASHSIZE];
1222
510#ifndef WIN32 1223#ifndef _WIN32
511 1224
512static struct ev_child *childs [PID_HASHSIZE];
513static struct ev_signal childev; 1225static ev_signal childev;
1226
1227#ifndef WIFCONTINUED
1228# define WIFCONTINUED(status) 0
1229#endif
1230
1231/* handle a single child status event */
1232inline_speed void
1233child_reap (EV_P_ int chain, int pid, int status)
1234{
1235 ev_child *w;
1236 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1237
1238 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1239 {
1240 if ((w->pid == pid || !w->pid)
1241 && (!traced || (w->flags & 1)))
1242 {
1243 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1244 w->rpid = pid;
1245 w->rstatus = status;
1246 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1247 }
1248 }
1249}
514 1250
515#ifndef WCONTINUED 1251#ifndef WCONTINUED
516# define WCONTINUED 0 1252# define WCONTINUED 0
517#endif 1253#endif
518 1254
1255/* called on sigchld etc., calls waitpid */
519static void 1256static void
520child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
521{
522 struct ev_child *w;
523
524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 if (w->pid == pid || !w->pid)
526 {
527 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid;
529 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD);
531 }
532}
533
534static void
535childcb (EV_P_ struct ev_signal *sw, int revents) 1257childcb (EV_P_ ev_signal *sw, int revents)
536{ 1258{
537 int pid, status; 1259 int pid, status;
538 1260
1261 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1262 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
540 { 1263 if (!WCONTINUED
1264 || errno != EINVAL
1265 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1266 return;
1267
541 /* make sure we are called again until all childs have been reaped */ 1268 /* make sure we are called again until all children have been reaped */
1269 /* we need to do it this way so that the callback gets called before we continue */
542 event (EV_A_ (W)sw, EV_SIGNAL); 1270 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
543 1271
544 child_reap (EV_A_ sw, pid, pid, status); 1272 child_reap (EV_A_ pid, pid, status);
1273 if (EV_PID_HASHSIZE > 1)
545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1274 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
546 }
547} 1275}
548 1276
549#endif 1277#endif
550 1278
551/*****************************************************************************/ 1279/*****************************************************************************/
552 1280
1281#if EV_USE_PORT
1282# include "ev_port.c"
1283#endif
553#if EV_USE_KQUEUE 1284#if EV_USE_KQUEUE
554# include "ev_kqueue.c" 1285# include "ev_kqueue.c"
555#endif 1286#endif
556#if EV_USE_EPOLL 1287#if EV_USE_EPOLL
557# include "ev_epoll.c" 1288# include "ev_epoll.c"
574{ 1305{
575 return EV_VERSION_MINOR; 1306 return EV_VERSION_MINOR;
576} 1307}
577 1308
578/* return true if we are running with elevated privileges and should ignore env variables */ 1309/* return true if we are running with elevated privileges and should ignore env variables */
579static int 1310int inline_size
580enable_secure (void) 1311enable_secure (void)
581{ 1312{
582#ifdef WIN32 1313#ifdef _WIN32
583 return 0; 1314 return 0;
584#else 1315#else
585 return getuid () != geteuid () 1316 return getuid () != geteuid ()
586 || getgid () != getegid (); 1317 || getgid () != getegid ();
587#endif 1318#endif
588} 1319}
589 1320
590int 1321unsigned int
591ev_method (EV_P) 1322ev_supported_backends (void)
592{ 1323{
593 return method; 1324 unsigned int flags = 0;
594}
595 1325
596static void 1326 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
597loop_init (EV_P_ int methods) 1327 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1328 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1329 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1330 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1331
1332 return flags;
1333}
1334
1335unsigned int
1336ev_recommended_backends (void)
598{ 1337{
599 if (!method) 1338 unsigned int flags = ev_supported_backends ();
1339
1340#ifndef __NetBSD__
1341 /* kqueue is borked on everything but netbsd apparently */
1342 /* it usually doesn't work correctly on anything but sockets and pipes */
1343 flags &= ~EVBACKEND_KQUEUE;
1344#endif
1345#ifdef __APPLE__
1346 /* only select works correctly on that "unix-certified" platform */
1347 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1348 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1349#endif
1350
1351 return flags;
1352}
1353
1354unsigned int
1355ev_embeddable_backends (void)
1356{
1357 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1358
1359 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1360 /* please fix it and tell me how to detect the fix */
1361 flags &= ~EVBACKEND_EPOLL;
1362
1363 return flags;
1364}
1365
1366unsigned int
1367ev_backend (EV_P)
1368{
1369 return backend;
1370}
1371
1372#if EV_MINIMAL < 2
1373unsigned int
1374ev_loop_count (EV_P)
1375{
1376 return loop_count;
1377}
1378
1379unsigned int
1380ev_loop_depth (EV_P)
1381{
1382 return loop_depth;
1383}
1384
1385void
1386ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1387{
1388 io_blocktime = interval;
1389}
1390
1391void
1392ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1393{
1394 timeout_blocktime = interval;
1395}
1396
1397void
1398ev_set_userdata (EV_P_ void *data)
1399{
1400 userdata = data;
1401}
1402
1403void *
1404ev_userdata (EV_P)
1405{
1406 return userdata;
1407}
1408
1409void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1410{
1411 invoke_cb = invoke_pending_cb;
1412}
1413
1414void ev_set_blocking_cb (EV_P_ void (*suspend_cb_)(EV_P), void (*resume_cb_)(EV_P))
1415{
1416 suspend_cb = suspend_cb_;
1417 resume_cb = resume_cb_;
1418}
1419#endif
1420
1421/* initialise a loop structure, must be zero-initialised */
1422static void noinline
1423loop_init (EV_P_ unsigned int flags)
1424{
1425 if (!backend)
600 { 1426 {
1427#if EV_USE_REALTIME
1428 if (!have_realtime)
1429 {
1430 struct timespec ts;
1431
1432 if (!clock_gettime (CLOCK_REALTIME, &ts))
1433 have_realtime = 1;
1434 }
1435#endif
1436
601#if EV_USE_MONOTONIC 1437#if EV_USE_MONOTONIC
1438 if (!have_monotonic)
1439 {
1440 struct timespec ts;
1441
1442 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1443 have_monotonic = 1;
1444 }
1445#endif
1446
1447 ev_rt_now = ev_time ();
1448 mn_now = get_clock ();
1449 now_floor = mn_now;
1450 rtmn_diff = ev_rt_now - mn_now;
1451#if EV_MINIMAL < 2
1452 invoke_cb = ev_invoke_pending;
1453#endif
1454
1455 io_blocktime = 0.;
1456 timeout_blocktime = 0.;
1457 backend = 0;
1458 backend_fd = -1;
1459 gotasync = 0;
1460#if EV_USE_INOTIFY
1461 fs_fd = -2;
1462#endif
1463
1464 /* pid check not overridable via env */
1465#ifndef _WIN32
1466 if (flags & EVFLAG_FORKCHECK)
1467 curpid = getpid ();
1468#endif
1469
1470 if (!(flags & EVFLAG_NOENV)
1471 && !enable_secure ()
1472 && getenv ("LIBEV_FLAGS"))
1473 flags = atoi (getenv ("LIBEV_FLAGS"));
1474
1475 if (!(flags & 0x0000ffffU))
1476 flags |= ev_recommended_backends ();
1477
1478#if EV_USE_PORT
1479 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1480#endif
1481#if EV_USE_KQUEUE
1482 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1483#endif
1484#if EV_USE_EPOLL
1485 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1486#endif
1487#if EV_USE_POLL
1488 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1489#endif
1490#if EV_USE_SELECT
1491 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1492#endif
1493
1494 ev_prepare_init (&pending_w, pendingcb);
1495
1496 ev_init (&pipe_w, pipecb);
1497 ev_set_priority (&pipe_w, EV_MAXPRI);
1498 }
1499}
1500
1501/* free up a loop structure */
1502static void noinline
1503loop_destroy (EV_P)
1504{
1505 int i;
1506
1507 if (ev_is_active (&pipe_w))
1508 {
1509 ev_ref (EV_A); /* signal watcher */
1510 ev_io_stop (EV_A_ &pipe_w);
1511
1512#if EV_USE_EVENTFD
1513 if (evfd >= 0)
1514 close (evfd);
1515#endif
1516
1517 if (evpipe [0] >= 0)
1518 {
1519 close (evpipe [0]);
1520 close (evpipe [1]);
1521 }
1522 }
1523
1524#if EV_USE_INOTIFY
1525 if (fs_fd >= 0)
1526 close (fs_fd);
1527#endif
1528
1529 if (backend_fd >= 0)
1530 close (backend_fd);
1531
1532#if EV_USE_PORT
1533 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1534#endif
1535#if EV_USE_KQUEUE
1536 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1537#endif
1538#if EV_USE_EPOLL
1539 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1540#endif
1541#if EV_USE_POLL
1542 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1543#endif
1544#if EV_USE_SELECT
1545 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1546#endif
1547
1548 for (i = NUMPRI; i--; )
1549 {
1550 array_free (pending, [i]);
1551#if EV_IDLE_ENABLE
1552 array_free (idle, [i]);
1553#endif
1554 }
1555
1556 ev_free (anfds); anfdmax = 0;
1557
1558 /* have to use the microsoft-never-gets-it-right macro */
1559 array_free (rfeed, EMPTY);
1560 array_free (fdchange, EMPTY);
1561 array_free (timer, EMPTY);
1562#if EV_PERIODIC_ENABLE
1563 array_free (periodic, EMPTY);
1564#endif
1565#if EV_FORK_ENABLE
1566 array_free (fork, EMPTY);
1567#endif
1568 array_free (prepare, EMPTY);
1569 array_free (check, EMPTY);
1570#if EV_ASYNC_ENABLE
1571 array_free (async, EMPTY);
1572#endif
1573
1574 backend = 0;
1575}
1576
1577#if EV_USE_INOTIFY
1578inline_size void infy_fork (EV_P);
1579#endif
1580
1581inline_size void
1582loop_fork (EV_P)
1583{
1584#if EV_USE_PORT
1585 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1586#endif
1587#if EV_USE_KQUEUE
1588 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1589#endif
1590#if EV_USE_EPOLL
1591 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1592#endif
1593#if EV_USE_INOTIFY
1594 infy_fork (EV_A);
1595#endif
1596
1597 if (ev_is_active (&pipe_w))
1598 {
1599 /* this "locks" the handlers against writing to the pipe */
1600 /* while we modify the fd vars */
1601 gotsig = 1;
1602#if EV_ASYNC_ENABLE
1603 gotasync = 1;
1604#endif
1605
1606 ev_ref (EV_A);
1607 ev_io_stop (EV_A_ &pipe_w);
1608
1609#if EV_USE_EVENTFD
1610 if (evfd >= 0)
1611 close (evfd);
1612#endif
1613
1614 if (evpipe [0] >= 0)
1615 {
1616 close (evpipe [0]);
1617 close (evpipe [1]);
1618 }
1619
1620 evpipe_init (EV_A);
1621 /* now iterate over everything, in case we missed something */
1622 pipecb (EV_A_ &pipe_w, EV_READ);
1623 }
1624
1625 postfork = 0;
1626}
1627
1628#if EV_MULTIPLICITY
1629
1630struct ev_loop *
1631ev_loop_new (unsigned int flags)
1632{
1633 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1634
1635 memset (loop, 0, sizeof (struct ev_loop));
1636
1637 loop_init (EV_A_ flags);
1638
1639 if (ev_backend (EV_A))
1640 return loop;
1641
1642 return 0;
1643}
1644
1645void
1646ev_loop_destroy (EV_P)
1647{
1648 loop_destroy (EV_A);
1649 ev_free (loop);
1650}
1651
1652void
1653ev_loop_fork (EV_P)
1654{
1655 postfork = 1; /* must be in line with ev_default_fork */
1656}
1657#endif /* multiplicity */
1658
1659#if EV_VERIFY
1660static void noinline
1661verify_watcher (EV_P_ W w)
1662{
1663 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1664
1665 if (w->pending)
1666 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1667}
1668
1669static void noinline
1670verify_heap (EV_P_ ANHE *heap, int N)
1671{
1672 int i;
1673
1674 for (i = HEAP0; i < N + HEAP0; ++i)
1675 {
1676 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1677 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1678 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1679
1680 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1681 }
1682}
1683
1684static void noinline
1685array_verify (EV_P_ W *ws, int cnt)
1686{
1687 while (cnt--)
1688 {
1689 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1690 verify_watcher (EV_A_ ws [cnt]);
1691 }
1692}
1693#endif
1694
1695#if EV_MINIMAL < 2
1696void
1697ev_loop_verify (EV_P)
1698{
1699#if EV_VERIFY
1700 int i;
1701 WL w;
1702
1703 assert (activecnt >= -1);
1704
1705 assert (fdchangemax >= fdchangecnt);
1706 for (i = 0; i < fdchangecnt; ++i)
1707 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1708
1709 assert (anfdmax >= 0);
1710 for (i = 0; i < anfdmax; ++i)
1711 for (w = anfds [i].head; w; w = w->next)
602 { 1712 {
603 struct timespec ts; 1713 verify_watcher (EV_A_ (W)w);
604 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1714 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
605 have_monotonic = 1; 1715 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
606 } 1716 }
607#endif
608 1717
609 rt_now = ev_time (); 1718 assert (timermax >= timercnt);
610 mn_now = get_clock (); 1719 verify_heap (EV_A_ timers, timercnt);
611 now_floor = mn_now;
612 rtmn_diff = rt_now - mn_now;
613 1720
614 if (methods == EVMETHOD_AUTO) 1721#if EV_PERIODIC_ENABLE
615 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1722 assert (periodicmax >= periodiccnt);
616 methods = atoi (getenv ("LIBEV_METHODS")); 1723 verify_heap (EV_A_ periodics, periodiccnt);
617 else
618 methods = EVMETHOD_ANY;
619
620 method = 0;
621#if EV_USE_WIN32
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
623#endif
624#if EV_USE_KQUEUE
625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
626#endif
627#if EV_USE_EPOLL
628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
629#endif
630#if EV_USE_POLL
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
632#endif
633#if EV_USE_SELECT
634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
635#endif
636 }
637}
638
639void
640loop_destroy (EV_P)
641{
642 int i;
643
644#if EV_USE_WIN32
645 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
646#endif
647#if EV_USE_KQUEUE
648 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
649#endif
650#if EV_USE_EPOLL
651 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
652#endif
653#if EV_USE_POLL
654 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
655#endif
656#if EV_USE_SELECT
657 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
658#endif 1724#endif
659 1725
660 for (i = NUMPRI; i--; ) 1726 for (i = NUMPRI; i--; )
661 array_free (pending, [i]); 1727 {
1728 assert (pendingmax [i] >= pendingcnt [i]);
1729#if EV_IDLE_ENABLE
1730 assert (idleall >= 0);
1731 assert (idlemax [i] >= idlecnt [i]);
1732 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1733#endif
1734 }
662 1735
663 array_free (fdchange, ); 1736#if EV_FORK_ENABLE
664 array_free (timer, ); 1737 assert (forkmax >= forkcnt);
665 array_free (periodic, ); 1738 array_verify (EV_A_ (W *)forks, forkcnt);
666 array_free (idle, ); 1739#endif
667 array_free (prepare, );
668 array_free (check, );
669 1740
670 method = 0; 1741#if EV_ASYNC_ENABLE
671 /*TODO*/ 1742 assert (asyncmax >= asynccnt);
672} 1743 array_verify (EV_A_ (W *)asyncs, asynccnt);
1744#endif
673 1745
674void 1746 assert (preparemax >= preparecnt);
675loop_fork (EV_P) 1747 array_verify (EV_A_ (W *)prepares, preparecnt);
676{ 1748
677 /*TODO*/ 1749 assert (checkmax >= checkcnt);
678#if EV_USE_EPOLL 1750 array_verify (EV_A_ (W *)checks, checkcnt);
679 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1751
1752# if 0
1753 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1754 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
680#endif 1755# endif
681#if EV_USE_KQUEUE
682 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
683#endif 1756#endif
684} 1757}
1758#endif
685 1759
686#if EV_MULTIPLICITY 1760#if EV_MULTIPLICITY
687struct ev_loop * 1761struct ev_loop *
688ev_loop_new (int methods) 1762ev_default_loop_init (unsigned int flags)
689{ 1763#else
690 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 1764int
691 1765ev_default_loop (unsigned int flags)
692 loop_init (EV_A_ methods);
693
694 if (ev_method (EV_A))
695 return loop;
696
697 return 0;
698}
699
700void
701ev_loop_destroy (EV_P)
702{
703 loop_destroy (EV_A);
704 free (loop);
705}
706
707void
708ev_loop_fork (EV_P)
709{
710 loop_fork (EV_A);
711}
712
713#endif 1766#endif
714 1767{
1768 if (!ev_default_loop_ptr)
1769 {
715#if EV_MULTIPLICITY 1770#if EV_MULTIPLICITY
716struct ev_loop default_loop_struct; 1771 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
717static struct ev_loop *default_loop;
718
719struct ev_loop *
720#else 1772#else
721static int default_loop;
722
723int
724#endif
725ev_default_loop (int methods)
726{
727 if (sigpipe [0] == sigpipe [1])
728 if (pipe (sigpipe))
729 return 0;
730
731 if (!default_loop)
732 {
733#if EV_MULTIPLICITY
734 struct ev_loop *loop = default_loop = &default_loop_struct;
735#else
736 default_loop = 1; 1773 ev_default_loop_ptr = 1;
737#endif 1774#endif
738 1775
739 loop_init (EV_A_ methods); 1776 loop_init (EV_A_ flags);
740 1777
741 if (ev_method (EV_A)) 1778 if (ev_backend (EV_A))
742 { 1779 {
743 ev_watcher_init (&sigev, sigcb);
744 ev_set_priority (&sigev, EV_MAXPRI);
745 siginit (EV_A);
746
747#ifndef WIN32 1780#ifndef _WIN32
748 ev_signal_init (&childev, childcb, SIGCHLD); 1781 ev_signal_init (&childev, childcb, SIGCHLD);
749 ev_set_priority (&childev, EV_MAXPRI); 1782 ev_set_priority (&childev, EV_MAXPRI);
750 ev_signal_start (EV_A_ &childev); 1783 ev_signal_start (EV_A_ &childev);
751 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1784 ev_unref (EV_A); /* child watcher should not keep loop alive */
752#endif 1785#endif
753 } 1786 }
754 else 1787 else
755 default_loop = 0; 1788 ev_default_loop_ptr = 0;
756 } 1789 }
757 1790
758 return default_loop; 1791 return ev_default_loop_ptr;
759} 1792}
760 1793
761void 1794void
762ev_default_destroy (void) 1795ev_default_destroy (void)
763{ 1796{
764#if EV_MULTIPLICITY 1797#if EV_MULTIPLICITY
765 struct ev_loop *loop = default_loop; 1798 struct ev_loop *loop = ev_default_loop_ptr;
766#endif 1799#endif
767 1800
1801 ev_default_loop_ptr = 0;
1802
1803#ifndef _WIN32
768 ev_ref (EV_A); /* child watcher */ 1804 ev_ref (EV_A); /* child watcher */
769 ev_signal_stop (EV_A_ &childev); 1805 ev_signal_stop (EV_A_ &childev);
770 1806#endif
771 ev_ref (EV_A); /* signal watcher */
772 ev_io_stop (EV_A_ &sigev);
773
774 close (sigpipe [0]); sigpipe [0] = 0;
775 close (sigpipe [1]); sigpipe [1] = 0;
776 1807
777 loop_destroy (EV_A); 1808 loop_destroy (EV_A);
778} 1809}
779 1810
780void 1811void
781ev_default_fork (void) 1812ev_default_fork (void)
782{ 1813{
783#if EV_MULTIPLICITY 1814#if EV_MULTIPLICITY
784 struct ev_loop *loop = default_loop; 1815 struct ev_loop *loop = ev_default_loop_ptr;
785#endif 1816#endif
786 1817
787 loop_fork (EV_A); 1818 postfork = 1; /* must be in line with ev_loop_fork */
788
789 ev_io_stop (EV_A_ &sigev);
790 close (sigpipe [0]);
791 close (sigpipe [1]);
792 pipe (sigpipe);
793
794 ev_ref (EV_A); /* signal watcher */
795 siginit (EV_A);
796} 1819}
797 1820
798/*****************************************************************************/ 1821/*****************************************************************************/
799 1822
800static void 1823void
801call_pending (EV_P) 1824ev_invoke (EV_P_ void *w, int revents)
1825{
1826 EV_CB_INVOKE ((W)w, revents);
1827}
1828
1829void noinline
1830ev_invoke_pending (EV_P)
802{ 1831{
803 int pri; 1832 int pri;
804 1833
805 for (pri = NUMPRI; pri--; ) 1834 for (pri = NUMPRI; pri--; )
806 while (pendingcnt [pri]) 1835 while (pendingcnt [pri])
807 { 1836 {
808 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1837 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
809 1838
810 if (p->w) 1839 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
811 { 1840 /* ^ this is no longer true, as pending_w could be here */
1841
812 p->w->pending = 0; 1842 p->w->pending = 0;
813 p->w->cb (EV_A_ p->w, p->events); 1843 EV_CB_INVOKE (p->w, p->events);
814 } 1844 EV_FREQUENT_CHECK;
815 } 1845 }
816} 1846}
817 1847
818static void 1848#if EV_IDLE_ENABLE
1849/* make idle watchers pending. this handles the "call-idle */
1850/* only when higher priorities are idle" logic */
1851inline_size void
819timers_reify (EV_P) 1852idle_reify (EV_P)
820{ 1853{
821 while (timercnt && ((WT)timers [0])->at <= mn_now) 1854 if (expect_false (idleall))
822 { 1855 {
823 struct ev_timer *w = timers [0]; 1856 int pri;
824 1857
825 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1858 for (pri = NUMPRI; pri--; )
826
827 /* first reschedule or stop timer */
828 if (w->repeat)
829 { 1859 {
830 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1860 if (pendingcnt [pri])
831 ((WT)w)->at = mn_now + w->repeat; 1861 break;
832 downheap ((WT *)timers, timercnt, 0);
833 }
834 else
835 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
836 1862
837 event (EV_A_ (W)w, EV_TIMEOUT); 1863 if (idlecnt [pri])
838 }
839}
840
841static void
842periodics_reify (EV_P)
843{
844 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
845 {
846 struct ev_periodic *w = periodics [0];
847
848 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
849
850 /* first reschedule or stop timer */
851 if (w->interval)
852 {
853 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
854 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
855 downheap ((WT *)periodics, periodiccnt, 0);
856 }
857 else
858 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
859
860 event (EV_A_ (W)w, EV_PERIODIC);
861 }
862}
863
864static void
865periodics_reschedule (EV_P)
866{
867 int i;
868
869 /* adjust periodics after time jump */
870 for (i = 0; i < periodiccnt; ++i)
871 {
872 struct ev_periodic *w = periodics [i];
873
874 if (w->interval)
875 {
876 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
877
878 if (fabs (diff) >= 1e-4)
879 { 1864 {
880 ev_periodic_stop (EV_A_ w); 1865 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
881 ev_periodic_start (EV_A_ w); 1866 break;
882
883 i = 0; /* restart loop, inefficient, but time jumps should be rare */
884 } 1867 }
885 } 1868 }
886 } 1869 }
887} 1870}
1871#endif
888 1872
889inline int 1873/* make timers pending */
890time_update_monotonic (EV_P) 1874inline_size void
1875timers_reify (EV_P)
891{ 1876{
892 mn_now = get_clock (); 1877 EV_FREQUENT_CHECK;
893 1878
894 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1879 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
895 {
896 rt_now = rtmn_diff + mn_now;
897 return 0;
898 } 1880 {
899 else 1881 do
1882 {
1883 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1884
1885 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1886
1887 /* first reschedule or stop timer */
1888 if (w->repeat)
1889 {
1890 ev_at (w) += w->repeat;
1891 if (ev_at (w) < mn_now)
1892 ev_at (w) = mn_now;
1893
1894 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1895
1896 ANHE_at_cache (timers [HEAP0]);
1897 downheap (timers, timercnt, HEAP0);
1898 }
1899 else
1900 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1901
1902 EV_FREQUENT_CHECK;
1903 feed_reverse (EV_A_ (W)w);
1904 }
1905 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1906
1907 feed_reverse_done (EV_A_ EV_TIMEOUT);
900 { 1908 }
901 now_floor = mn_now; 1909}
902 rt_now = ev_time (); 1910
903 return 1; 1911#if EV_PERIODIC_ENABLE
1912/* make periodics pending */
1913inline_size void
1914periodics_reify (EV_P)
1915{
1916 EV_FREQUENT_CHECK;
1917
1918 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
904 } 1919 {
905} 1920 int feed_count = 0;
906 1921
907static void 1922 do
908time_update (EV_P) 1923 {
1924 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1925
1926 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1927
1928 /* first reschedule or stop timer */
1929 if (w->reschedule_cb)
1930 {
1931 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1932
1933 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1934
1935 ANHE_at_cache (periodics [HEAP0]);
1936 downheap (periodics, periodiccnt, HEAP0);
1937 }
1938 else if (w->interval)
1939 {
1940 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1941 /* if next trigger time is not sufficiently in the future, put it there */
1942 /* this might happen because of floating point inexactness */
1943 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1944 {
1945 ev_at (w) += w->interval;
1946
1947 /* if interval is unreasonably low we might still have a time in the past */
1948 /* so correct this. this will make the periodic very inexact, but the user */
1949 /* has effectively asked to get triggered more often than possible */
1950 if (ev_at (w) < ev_rt_now)
1951 ev_at (w) = ev_rt_now;
1952 }
1953
1954 ANHE_at_cache (periodics [HEAP0]);
1955 downheap (periodics, periodiccnt, HEAP0);
1956 }
1957 else
1958 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1959
1960 EV_FREQUENT_CHECK;
1961 feed_reverse (EV_A_ (W)w);
1962 }
1963 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1964
1965 feed_reverse_done (EV_A_ EV_PERIODIC);
1966 }
1967}
1968
1969/* simply recalculate all periodics */
1970/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1971static void noinline
1972periodics_reschedule (EV_P)
909{ 1973{
910 int i; 1974 int i;
911 1975
1976 /* adjust periodics after time jump */
1977 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1978 {
1979 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1980
1981 if (w->reschedule_cb)
1982 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1983 else if (w->interval)
1984 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1985
1986 ANHE_at_cache (periodics [i]);
1987 }
1988
1989 reheap (periodics, periodiccnt);
1990}
1991#endif
1992
1993/* adjust all timers by a given offset */
1994static void noinline
1995timers_reschedule (EV_P_ ev_tstamp adjust)
1996{
1997 int i;
1998
1999 for (i = 0; i < timercnt; ++i)
2000 {
2001 ANHE *he = timers + i + HEAP0;
2002 ANHE_w (*he)->at += adjust;
2003 ANHE_at_cache (*he);
2004 }
2005}
2006
2007/* fetch new monotonic and realtime times from the kernel */
2008/* also detetc if there was a timejump, and act accordingly */
2009inline_speed void
2010time_update (EV_P_ ev_tstamp max_block)
2011{
912#if EV_USE_MONOTONIC 2012#if EV_USE_MONOTONIC
913 if (expect_true (have_monotonic)) 2013 if (expect_true (have_monotonic))
914 { 2014 {
915 if (time_update_monotonic (EV_A)) 2015 int i;
2016 ev_tstamp odiff = rtmn_diff;
2017
2018 mn_now = get_clock ();
2019
2020 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2021 /* interpolate in the meantime */
2022 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
916 { 2023 {
917 ev_tstamp odiff = rtmn_diff; 2024 ev_rt_now = rtmn_diff + mn_now;
2025 return;
2026 }
918 2027
2028 now_floor = mn_now;
2029 ev_rt_now = ev_time ();
2030
919 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 2031 /* loop a few times, before making important decisions.
2032 * on the choice of "4": one iteration isn't enough,
2033 * in case we get preempted during the calls to
2034 * ev_time and get_clock. a second call is almost guaranteed
2035 * to succeed in that case, though. and looping a few more times
2036 * doesn't hurt either as we only do this on time-jumps or
2037 * in the unlikely event of having been preempted here.
2038 */
2039 for (i = 4; --i; )
920 { 2040 {
921 rtmn_diff = rt_now - mn_now; 2041 rtmn_diff = ev_rt_now - mn_now;
922 2042
923 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2043 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
924 return; /* all is well */ 2044 return; /* all is well */
925 2045
926 rt_now = ev_time (); 2046 ev_rt_now = ev_time ();
927 mn_now = get_clock (); 2047 mn_now = get_clock ();
928 now_floor = mn_now; 2048 now_floor = mn_now;
929 } 2049 }
930 2050
2051 /* no timer adjustment, as the monotonic clock doesn't jump */
2052 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2053# if EV_PERIODIC_ENABLE
2054 periodics_reschedule (EV_A);
2055# endif
2056 }
2057 else
2058#endif
2059 {
2060 ev_rt_now = ev_time ();
2061
2062 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2063 {
2064 /* adjust timers. this is easy, as the offset is the same for all of them */
2065 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2066#if EV_PERIODIC_ENABLE
931 periodics_reschedule (EV_A); 2067 periodics_reschedule (EV_A);
932 /* no timer adjustment, as the monotonic clock doesn't jump */ 2068#endif
933 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
934 } 2069 }
935 }
936 else
937#endif
938 {
939 rt_now = ev_time ();
940 2070
941 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
942 {
943 periodics_reschedule (EV_A);
944
945 /* adjust timers. this is easy, as the offset is the same for all */
946 for (i = 0; i < timercnt; ++i)
947 ((WT)timers [i])->at += rt_now - mn_now;
948 }
949
950 mn_now = rt_now; 2071 mn_now = ev_rt_now;
951 } 2072 }
952} 2073}
953
954void
955ev_ref (EV_P)
956{
957 ++activecnt;
958}
959
960void
961ev_unref (EV_P)
962{
963 --activecnt;
964}
965
966static int loop_done;
967 2074
968void 2075void
969ev_loop (EV_P_ int flags) 2076ev_loop (EV_P_ int flags)
970{ 2077{
971 double block; 2078#if EV_MINIMAL < 2
972 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2079 ++loop_depth;
2080#endif
2081
2082 loop_done = EVUNLOOP_CANCEL;
2083
2084 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
973 2085
974 do 2086 do
975 { 2087 {
2088#if EV_VERIFY >= 2
2089 ev_loop_verify (EV_A);
2090#endif
2091
2092#ifndef _WIN32
2093 if (expect_false (curpid)) /* penalise the forking check even more */
2094 if (expect_false (getpid () != curpid))
2095 {
2096 curpid = getpid ();
2097 postfork = 1;
2098 }
2099#endif
2100
2101#if EV_FORK_ENABLE
2102 /* we might have forked, so queue fork handlers */
2103 if (expect_false (postfork))
2104 if (forkcnt)
2105 {
2106 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2107 EV_INVOKE_PENDING;
2108 }
2109#endif
2110
976 /* queue check watchers (and execute them) */ 2111 /* queue prepare watchers (and execute them) */
977 if (expect_false (preparecnt)) 2112 if (expect_false (preparecnt))
978 { 2113 {
979 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2114 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
980 call_pending (EV_A); 2115 EV_INVOKE_PENDING;
981 } 2116 }
2117
2118 /* we might have forked, so reify kernel state if necessary */
2119 if (expect_false (postfork))
2120 loop_fork (EV_A);
982 2121
983 /* update fd-related kernel structures */ 2122 /* update fd-related kernel structures */
984 fd_reify (EV_A); 2123 fd_reify (EV_A);
985 2124
986 /* calculate blocking time */ 2125 /* calculate blocking time */
2126 {
2127 ev_tstamp waittime = 0.;
2128 ev_tstamp sleeptime = 0.;
987 2129
988 /* we only need this for !monotonic clockor timers, but as we basically 2130 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
989 always have timers, we just calculate it always */
990#if EV_USE_MONOTONIC
991 if (expect_true (have_monotonic))
992 time_update_monotonic (EV_A);
993 else
994#endif
995 { 2131 {
996 rt_now = ev_time (); 2132 /* remember old timestamp for io_blocktime calculation */
997 mn_now = rt_now; 2133 ev_tstamp prev_mn_now = mn_now;
998 }
999 2134
1000 if (flags & EVLOOP_NONBLOCK || idlecnt) 2135 /* update time to cancel out callback processing overhead */
1001 block = 0.; 2136 time_update (EV_A_ 1e100);
1002 else 2137
1003 {
1004 block = MAX_BLOCKTIME; 2138 waittime = MAX_BLOCKTIME;
1005 2139
1006 if (timercnt) 2140 if (timercnt)
1007 { 2141 {
1008 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2142 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1009 if (block > to) block = to; 2143 if (waittime > to) waittime = to;
1010 } 2144 }
1011 2145
2146#if EV_PERIODIC_ENABLE
1012 if (periodiccnt) 2147 if (periodiccnt)
1013 { 2148 {
1014 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 2149 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1015 if (block > to) block = to; 2150 if (waittime > to) waittime = to;
1016 } 2151 }
2152#endif
1017 2153
1018 if (block < 0.) block = 0.; 2154 /* don't let timeouts decrease the waittime below timeout_blocktime */
2155 if (expect_false (waittime < timeout_blocktime))
2156 waittime = timeout_blocktime;
2157
2158 /* extra check because io_blocktime is commonly 0 */
2159 if (expect_false (io_blocktime))
2160 {
2161 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2162
2163 if (sleeptime > waittime - backend_fudge)
2164 sleeptime = waittime - backend_fudge;
2165
2166 if (expect_true (sleeptime > 0.))
2167 {
2168 ev_sleep (sleeptime);
2169 waittime -= sleeptime;
2170 }
2171 }
1019 } 2172 }
1020 2173
1021 method_poll (EV_A_ block); 2174#if EV_MINIMAL < 2
2175 ++loop_count;
2176#endif
2177 backend_poll (EV_A_ waittime);
1022 2178
1023 /* update rt_now, do magic */ 2179 /* update ev_rt_now, do magic */
1024 time_update (EV_A); 2180 time_update (EV_A_ waittime + sleeptime);
2181 }
1025 2182
1026 /* queue pending timers and reschedule them */ 2183 /* queue pending timers and reschedule them */
1027 timers_reify (EV_A); /* relative timers called last */ 2184 timers_reify (EV_A); /* relative timers called last */
2185#if EV_PERIODIC_ENABLE
1028 periodics_reify (EV_A); /* absolute timers called first */ 2186 periodics_reify (EV_A); /* absolute timers called first */
2187#endif
1029 2188
2189#if EV_IDLE_ENABLE
1030 /* queue idle watchers unless io or timers are pending */ 2190 /* queue idle watchers unless other events are pending */
1031 if (!pendingcnt) 2191 idle_reify (EV_A);
1032 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2192#endif
1033 2193
1034 /* queue check watchers, to be executed first */ 2194 /* queue check watchers, to be executed first */
1035 if (checkcnt) 2195 if (expect_false (checkcnt))
1036 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2196 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1037 2197
1038 call_pending (EV_A); 2198 EV_INVOKE_PENDING;
1039 } 2199 }
1040 while (activecnt && !loop_done); 2200 while (expect_true (
2201 activecnt
2202 && !loop_done
2203 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2204 ));
1041 2205
1042 if (loop_done != 2) 2206 if (loop_done == EVUNLOOP_ONE)
1043 loop_done = 0; 2207 loop_done = EVUNLOOP_CANCEL;
2208
2209#if EV_MINIMAL < 2
2210 --loop_depth;
2211#endif
1044} 2212}
1045 2213
1046void 2214void
1047ev_unloop (EV_P_ int how) 2215ev_unloop (EV_P_ int how)
1048{ 2216{
1049 loop_done = how; 2217 loop_done = how;
1050} 2218}
1051 2219
2220void
2221ev_ref (EV_P)
2222{
2223 ++activecnt;
2224}
2225
2226void
2227ev_unref (EV_P)
2228{
2229 --activecnt;
2230}
2231
2232void
2233ev_now_update (EV_P)
2234{
2235 time_update (EV_A_ 1e100);
2236}
2237
2238void
2239ev_suspend (EV_P)
2240{
2241 ev_now_update (EV_A);
2242}
2243
2244void
2245ev_resume (EV_P)
2246{
2247 ev_tstamp mn_prev = mn_now;
2248
2249 ev_now_update (EV_A);
2250 timers_reschedule (EV_A_ mn_now - mn_prev);
2251#if EV_PERIODIC_ENABLE
2252 /* TODO: really do this? */
2253 periodics_reschedule (EV_A);
2254#endif
2255}
2256
1052/*****************************************************************************/ 2257/*****************************************************************************/
2258/* singly-linked list management, used when the expected list length is short */
1053 2259
1054inline void 2260inline_size void
1055wlist_add (WL *head, WL elem) 2261wlist_add (WL *head, WL elem)
1056{ 2262{
1057 elem->next = *head; 2263 elem->next = *head;
1058 *head = elem; 2264 *head = elem;
1059} 2265}
1060 2266
1061inline void 2267inline_size void
1062wlist_del (WL *head, WL elem) 2268wlist_del (WL *head, WL elem)
1063{ 2269{
1064 while (*head) 2270 while (*head)
1065 { 2271 {
1066 if (*head == elem) 2272 if (*head == elem)
1071 2277
1072 head = &(*head)->next; 2278 head = &(*head)->next;
1073 } 2279 }
1074} 2280}
1075 2281
2282/* internal, faster, version of ev_clear_pending */
1076inline void 2283inline_speed void
1077ev_clear_pending (EV_P_ W w) 2284clear_pending (EV_P_ W w)
1078{ 2285{
1079 if (w->pending) 2286 if (w->pending)
1080 { 2287 {
1081 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1082 w->pending = 0; 2289 w->pending = 0;
1083 } 2290 }
1084} 2291}
1085 2292
2293int
2294ev_clear_pending (EV_P_ void *w)
2295{
2296 W w_ = (W)w;
2297 int pending = w_->pending;
2298
2299 if (expect_true (pending))
2300 {
2301 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2302 p->w = (W)&pending_w;
2303 w_->pending = 0;
2304 return p->events;
2305 }
2306 else
2307 return 0;
2308}
2309
1086inline void 2310inline_size void
2311pri_adjust (EV_P_ W w)
2312{
2313 int pri = ev_priority (w);
2314 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2315 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2316 ev_set_priority (w, pri);
2317}
2318
2319inline_speed void
1087ev_start (EV_P_ W w, int active) 2320ev_start (EV_P_ W w, int active)
1088{ 2321{
1089 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2322 pri_adjust (EV_A_ w);
1090 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1091
1092 w->active = active; 2323 w->active = active;
1093 ev_ref (EV_A); 2324 ev_ref (EV_A);
1094} 2325}
1095 2326
1096inline void 2327inline_size void
1097ev_stop (EV_P_ W w) 2328ev_stop (EV_P_ W w)
1098{ 2329{
1099 ev_unref (EV_A); 2330 ev_unref (EV_A);
1100 w->active = 0; 2331 w->active = 0;
1101} 2332}
1102 2333
1103/*****************************************************************************/ 2334/*****************************************************************************/
1104 2335
1105void 2336void noinline
1106ev_io_start (EV_P_ struct ev_io *w) 2337ev_io_start (EV_P_ ev_io *w)
1107{ 2338{
1108 int fd = w->fd; 2339 int fd = w->fd;
1109 2340
1110 if (ev_is_active (w)) 2341 if (expect_false (ev_is_active (w)))
1111 return; 2342 return;
1112 2343
1113 assert (("ev_io_start called with negative fd", fd >= 0)); 2344 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2345 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2346
2347 EV_FREQUENT_CHECK;
1114 2348
1115 ev_start (EV_A_ (W)w, 1); 2349 ev_start (EV_A_ (W)w, 1);
1116 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 2350 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1117 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2351 wlist_add (&anfds[fd].head, (WL)w);
1118 2352
1119 fd_change (EV_A_ fd); 2353 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1120} 2354 w->events &= ~EV__IOFDSET;
1121 2355
1122void 2356 EV_FREQUENT_CHECK;
2357}
2358
2359void noinline
1123ev_io_stop (EV_P_ struct ev_io *w) 2360ev_io_stop (EV_P_ ev_io *w)
1124{ 2361{
1125 ev_clear_pending (EV_A_ (W)w); 2362 clear_pending (EV_A_ (W)w);
1126 if (!ev_is_active (w)) 2363 if (expect_false (!ev_is_active (w)))
1127 return; 2364 return;
1128 2365
2366 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2367
2368 EV_FREQUENT_CHECK;
2369
1129 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2370 wlist_del (&anfds[w->fd].head, (WL)w);
1130 ev_stop (EV_A_ (W)w); 2371 ev_stop (EV_A_ (W)w);
1131 2372
1132 fd_change (EV_A_ w->fd); 2373 fd_change (EV_A_ w->fd, 1);
1133}
1134 2374
1135void 2375 EV_FREQUENT_CHECK;
2376}
2377
2378void noinline
1136ev_timer_start (EV_P_ struct ev_timer *w) 2379ev_timer_start (EV_P_ ev_timer *w)
1137{ 2380{
1138 if (ev_is_active (w)) 2381 if (expect_false (ev_is_active (w)))
1139 return; 2382 return;
1140 2383
1141 ((WT)w)->at += mn_now; 2384 ev_at (w) += mn_now;
1142 2385
1143 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2386 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1144 2387
2388 EV_FREQUENT_CHECK;
2389
2390 ++timercnt;
1145 ev_start (EV_A_ (W)w, ++timercnt); 2391 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1146 array_needsize (timers, timermax, timercnt, ); 2392 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1147 timers [timercnt - 1] = w; 2393 ANHE_w (timers [ev_active (w)]) = (WT)w;
1148 upheap ((WT *)timers, timercnt - 1); 2394 ANHE_at_cache (timers [ev_active (w)]);
2395 upheap (timers, ev_active (w));
1149 2396
2397 EV_FREQUENT_CHECK;
2398
1150 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2399 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1151} 2400}
1152 2401
1153void 2402void noinline
1154ev_timer_stop (EV_P_ struct ev_timer *w) 2403ev_timer_stop (EV_P_ ev_timer *w)
1155{ 2404{
1156 ev_clear_pending (EV_A_ (W)w); 2405 clear_pending (EV_A_ (W)w);
1157 if (!ev_is_active (w)) 2406 if (expect_false (!ev_is_active (w)))
1158 return; 2407 return;
1159 2408
2409 EV_FREQUENT_CHECK;
2410
2411 {
2412 int active = ev_active (w);
2413
1160 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2414 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1161 2415
1162 if (((W)w)->active < timercnt--) 2416 --timercnt;
2417
2418 if (expect_true (active < timercnt + HEAP0))
1163 { 2419 {
1164 timers [((W)w)->active - 1] = timers [timercnt]; 2420 timers [active] = timers [timercnt + HEAP0];
1165 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2421 adjustheap (timers, timercnt, active);
1166 } 2422 }
2423 }
1167 2424
1168 ((WT)w)->at = w->repeat; 2425 EV_FREQUENT_CHECK;
2426
2427 ev_at (w) -= mn_now;
1169 2428
1170 ev_stop (EV_A_ (W)w); 2429 ev_stop (EV_A_ (W)w);
1171} 2430}
1172 2431
1173void 2432void noinline
1174ev_timer_again (EV_P_ struct ev_timer *w) 2433ev_timer_again (EV_P_ ev_timer *w)
1175{ 2434{
2435 EV_FREQUENT_CHECK;
2436
1176 if (ev_is_active (w)) 2437 if (ev_is_active (w))
1177 { 2438 {
1178 if (w->repeat) 2439 if (w->repeat)
1179 { 2440 {
1180 ((WT)w)->at = mn_now + w->repeat; 2441 ev_at (w) = mn_now + w->repeat;
1181 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2442 ANHE_at_cache (timers [ev_active (w)]);
2443 adjustheap (timers, timercnt, ev_active (w));
1182 } 2444 }
1183 else 2445 else
1184 ev_timer_stop (EV_A_ w); 2446 ev_timer_stop (EV_A_ w);
1185 } 2447 }
1186 else if (w->repeat) 2448 else if (w->repeat)
2449 {
2450 ev_at (w) = w->repeat;
1187 ev_timer_start (EV_A_ w); 2451 ev_timer_start (EV_A_ w);
1188} 2452 }
1189 2453
1190void 2454 EV_FREQUENT_CHECK;
2455}
2456
2457#if EV_PERIODIC_ENABLE
2458void noinline
1191ev_periodic_start (EV_P_ struct ev_periodic *w) 2459ev_periodic_start (EV_P_ ev_periodic *w)
1192{ 2460{
1193 if (ev_is_active (w)) 2461 if (expect_false (ev_is_active (w)))
1194 return; 2462 return;
1195 2463
2464 if (w->reschedule_cb)
2465 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2466 else if (w->interval)
2467 {
1196 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2468 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1197
1198 /* this formula differs from the one in periodic_reify because we do not always round up */ 2469 /* this formula differs from the one in periodic_reify because we do not always round up */
1199 if (w->interval)
1200 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 2470 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2471 }
2472 else
2473 ev_at (w) = w->offset;
1201 2474
2475 EV_FREQUENT_CHECK;
2476
2477 ++periodiccnt;
1202 ev_start (EV_A_ (W)w, ++periodiccnt); 2478 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1203 array_needsize (periodics, periodicmax, periodiccnt, ); 2479 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1204 periodics [periodiccnt - 1] = w; 2480 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1205 upheap ((WT *)periodics, periodiccnt - 1); 2481 ANHE_at_cache (periodics [ev_active (w)]);
2482 upheap (periodics, ev_active (w));
1206 2483
2484 EV_FREQUENT_CHECK;
2485
1207 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2486 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1208} 2487}
1209 2488
1210void 2489void noinline
1211ev_periodic_stop (EV_P_ struct ev_periodic *w) 2490ev_periodic_stop (EV_P_ ev_periodic *w)
1212{ 2491{
1213 ev_clear_pending (EV_A_ (W)w); 2492 clear_pending (EV_A_ (W)w);
1214 if (!ev_is_active (w)) 2493 if (expect_false (!ev_is_active (w)))
1215 return; 2494 return;
1216 2495
2496 EV_FREQUENT_CHECK;
2497
2498 {
2499 int active = ev_active (w);
2500
1217 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2501 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1218 2502
1219 if (((W)w)->active < periodiccnt--) 2503 --periodiccnt;
2504
2505 if (expect_true (active < periodiccnt + HEAP0))
1220 { 2506 {
1221 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2507 periodics [active] = periodics [periodiccnt + HEAP0];
1222 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2508 adjustheap (periodics, periodiccnt, active);
1223 } 2509 }
2510 }
2511
2512 EV_FREQUENT_CHECK;
1224 2513
1225 ev_stop (EV_A_ (W)w); 2514 ev_stop (EV_A_ (W)w);
1226} 2515}
1227 2516
1228void 2517void noinline
1229ev_idle_start (EV_P_ struct ev_idle *w) 2518ev_periodic_again (EV_P_ ev_periodic *w)
1230{ 2519{
1231 if (ev_is_active (w)) 2520 /* TODO: use adjustheap and recalculation */
1232 return;
1233
1234 ev_start (EV_A_ (W)w, ++idlecnt);
1235 array_needsize (idles, idlemax, idlecnt, );
1236 idles [idlecnt - 1] = w;
1237}
1238
1239void
1240ev_idle_stop (EV_P_ struct ev_idle *w)
1241{
1242 ev_clear_pending (EV_A_ (W)w);
1243 if (ev_is_active (w))
1244 return;
1245
1246 idles [((W)w)->active - 1] = idles [--idlecnt];
1247 ev_stop (EV_A_ (W)w); 2521 ev_periodic_stop (EV_A_ w);
2522 ev_periodic_start (EV_A_ w);
1248} 2523}
1249 2524#endif
1250void
1251ev_prepare_start (EV_P_ struct ev_prepare *w)
1252{
1253 if (ev_is_active (w))
1254 return;
1255
1256 ev_start (EV_A_ (W)w, ++preparecnt);
1257 array_needsize (prepares, preparemax, preparecnt, );
1258 prepares [preparecnt - 1] = w;
1259}
1260
1261void
1262ev_prepare_stop (EV_P_ struct ev_prepare *w)
1263{
1264 ev_clear_pending (EV_A_ (W)w);
1265 if (ev_is_active (w))
1266 return;
1267
1268 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1269 ev_stop (EV_A_ (W)w);
1270}
1271
1272void
1273ev_check_start (EV_P_ struct ev_check *w)
1274{
1275 if (ev_is_active (w))
1276 return;
1277
1278 ev_start (EV_A_ (W)w, ++checkcnt);
1279 array_needsize (checks, checkmax, checkcnt, );
1280 checks [checkcnt - 1] = w;
1281}
1282
1283void
1284ev_check_stop (EV_P_ struct ev_check *w)
1285{
1286 ev_clear_pending (EV_A_ (W)w);
1287 if (ev_is_active (w))
1288 return;
1289
1290 checks [((W)w)->active - 1] = checks [--checkcnt];
1291 ev_stop (EV_A_ (W)w);
1292}
1293 2525
1294#ifndef SA_RESTART 2526#ifndef SA_RESTART
1295# define SA_RESTART 0 2527# define SA_RESTART 0
1296#endif 2528#endif
1297 2529
1298void 2530void noinline
1299ev_signal_start (EV_P_ struct ev_signal *w) 2531ev_signal_start (EV_P_ ev_signal *w)
1300{ 2532{
1301#if EV_MULTIPLICITY 2533#if EV_MULTIPLICITY
1302 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2534 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1303#endif 2535#endif
1304 if (ev_is_active (w)) 2536 if (expect_false (ev_is_active (w)))
1305 return; 2537 return;
1306 2538
1307 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2539 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2540
2541 evpipe_init (EV_A);
2542
2543 EV_FREQUENT_CHECK;
2544
2545 {
2546#ifndef _WIN32
2547 sigset_t full, prev;
2548 sigfillset (&full);
2549 sigprocmask (SIG_SETMASK, &full, &prev);
2550#endif
2551
2552 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2553
2554#ifndef _WIN32
2555 sigprocmask (SIG_SETMASK, &prev, 0);
2556#endif
2557 }
1308 2558
1309 ev_start (EV_A_ (W)w, 1); 2559 ev_start (EV_A_ (W)w, 1);
1310 array_needsize (signals, signalmax, w->signum, signals_init);
1311 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2560 wlist_add (&signals [w->signum - 1].head, (WL)w);
1312 2561
1313 if (!((WL)w)->next) 2562 if (!((WL)w)->next)
1314 { 2563 {
2564#if _WIN32
2565 signal (w->signum, ev_sighandler);
2566#else
1315 struct sigaction sa; 2567 struct sigaction sa;
1316 sa.sa_handler = sighandler; 2568 sa.sa_handler = ev_sighandler;
1317 sigfillset (&sa.sa_mask); 2569 sigfillset (&sa.sa_mask);
1318 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2570 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1319 sigaction (w->signum, &sa, 0); 2571 sigaction (w->signum, &sa, 0);
2572#endif
1320 } 2573 }
1321}
1322 2574
1323void 2575 EV_FREQUENT_CHECK;
2576}
2577
2578void noinline
1324ev_signal_stop (EV_P_ struct ev_signal *w) 2579ev_signal_stop (EV_P_ ev_signal *w)
1325{ 2580{
1326 ev_clear_pending (EV_A_ (W)w); 2581 clear_pending (EV_A_ (W)w);
1327 if (!ev_is_active (w)) 2582 if (expect_false (!ev_is_active (w)))
1328 return; 2583 return;
1329 2584
2585 EV_FREQUENT_CHECK;
2586
1330 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2587 wlist_del (&signals [w->signum - 1].head, (WL)w);
1331 ev_stop (EV_A_ (W)w); 2588 ev_stop (EV_A_ (W)w);
1332 2589
1333 if (!signals [w->signum - 1].head) 2590 if (!signals [w->signum - 1].head)
1334 signal (w->signum, SIG_DFL); 2591 signal (w->signum, SIG_DFL);
1335}
1336 2592
2593 EV_FREQUENT_CHECK;
2594}
2595
1337void 2596void
1338ev_child_start (EV_P_ struct ev_child *w) 2597ev_child_start (EV_P_ ev_child *w)
1339{ 2598{
1340#if EV_MULTIPLICITY 2599#if EV_MULTIPLICITY
1341 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2600 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1342#endif 2601#endif
1343 if (ev_is_active (w)) 2602 if (expect_false (ev_is_active (w)))
1344 return; 2603 return;
1345 2604
2605 EV_FREQUENT_CHECK;
2606
1346 ev_start (EV_A_ (W)w, 1); 2607 ev_start (EV_A_ (W)w, 1);
1347 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2608 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1348}
1349 2609
2610 EV_FREQUENT_CHECK;
2611}
2612
1350void 2613void
1351ev_child_stop (EV_P_ struct ev_child *w) 2614ev_child_stop (EV_P_ ev_child *w)
1352{ 2615{
1353 ev_clear_pending (EV_A_ (W)w); 2616 clear_pending (EV_A_ (W)w);
1354 if (ev_is_active (w)) 2617 if (expect_false (!ev_is_active (w)))
1355 return; 2618 return;
1356 2619
2620 EV_FREQUENT_CHECK;
2621
1357 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2622 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1358 ev_stop (EV_A_ (W)w); 2623 ev_stop (EV_A_ (W)w);
2624
2625 EV_FREQUENT_CHECK;
1359} 2626}
2627
2628#if EV_STAT_ENABLE
2629
2630# ifdef _WIN32
2631# undef lstat
2632# define lstat(a,b) _stati64 (a,b)
2633# endif
2634
2635#define DEF_STAT_INTERVAL 5.0074891
2636#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2637#define MIN_STAT_INTERVAL 0.1074891
2638
2639static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2640
2641#if EV_USE_INOTIFY
2642# define EV_INOTIFY_BUFSIZE 8192
2643
2644static void noinline
2645infy_add (EV_P_ ev_stat *w)
2646{
2647 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2648
2649 if (w->wd < 0)
2650 {
2651 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2652 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2653
2654 /* monitor some parent directory for speedup hints */
2655 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2656 /* but an efficiency issue only */
2657 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2658 {
2659 char path [4096];
2660 strcpy (path, w->path);
2661
2662 do
2663 {
2664 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2665 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2666
2667 char *pend = strrchr (path, '/');
2668
2669 if (!pend || pend == path)
2670 break;
2671
2672 *pend = 0;
2673 w->wd = inotify_add_watch (fs_fd, path, mask);
2674 }
2675 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2676 }
2677 }
2678
2679 if (w->wd >= 0)
2680 {
2681 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2682
2683 /* now local changes will be tracked by inotify, but remote changes won't */
2684 /* unless the filesystem it known to be local, we therefore still poll */
2685 /* also do poll on <2.6.25, but with normal frequency */
2686 struct statfs sfs;
2687
2688 if (fs_2625 && !statfs (w->path, &sfs))
2689 if (sfs.f_type == 0x1373 /* devfs */
2690 || sfs.f_type == 0xEF53 /* ext2/3 */
2691 || sfs.f_type == 0x3153464a /* jfs */
2692 || sfs.f_type == 0x52654973 /* reiser3 */
2693 || sfs.f_type == 0x01021994 /* tempfs */
2694 || sfs.f_type == 0x58465342 /* xfs */)
2695 return;
2696
2697 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2698 ev_timer_again (EV_A_ &w->timer);
2699 }
2700}
2701
2702static void noinline
2703infy_del (EV_P_ ev_stat *w)
2704{
2705 int slot;
2706 int wd = w->wd;
2707
2708 if (wd < 0)
2709 return;
2710
2711 w->wd = -2;
2712 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2713 wlist_del (&fs_hash [slot].head, (WL)w);
2714
2715 /* remove this watcher, if others are watching it, they will rearm */
2716 inotify_rm_watch (fs_fd, wd);
2717}
2718
2719static void noinline
2720infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2721{
2722 if (slot < 0)
2723 /* overflow, need to check for all hash slots */
2724 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2725 infy_wd (EV_A_ slot, wd, ev);
2726 else
2727 {
2728 WL w_;
2729
2730 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2731 {
2732 ev_stat *w = (ev_stat *)w_;
2733 w_ = w_->next; /* lets us remove this watcher and all before it */
2734
2735 if (w->wd == wd || wd == -1)
2736 {
2737 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2738 {
2739 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2740 w->wd = -1;
2741 infy_add (EV_A_ w); /* re-add, no matter what */
2742 }
2743
2744 stat_timer_cb (EV_A_ &w->timer, 0);
2745 }
2746 }
2747 }
2748}
2749
2750static void
2751infy_cb (EV_P_ ev_io *w, int revents)
2752{
2753 char buf [EV_INOTIFY_BUFSIZE];
2754 struct inotify_event *ev = (struct inotify_event *)buf;
2755 int ofs;
2756 int len = read (fs_fd, buf, sizeof (buf));
2757
2758 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2759 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2760}
2761
2762inline_size void
2763check_2625 (EV_P)
2764{
2765 /* kernels < 2.6.25 are borked
2766 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2767 */
2768 struct utsname buf;
2769 int major, minor, micro;
2770
2771 if (uname (&buf))
2772 return;
2773
2774 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2775 return;
2776
2777 if (major < 2
2778 || (major == 2 && minor < 6)
2779 || (major == 2 && minor == 6 && micro < 25))
2780 return;
2781
2782 fs_2625 = 1;
2783}
2784
2785inline_size void
2786infy_init (EV_P)
2787{
2788 if (fs_fd != -2)
2789 return;
2790
2791 fs_fd = -1;
2792
2793 check_2625 (EV_A);
2794
2795 fs_fd = inotify_init ();
2796
2797 if (fs_fd >= 0)
2798 {
2799 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2800 ev_set_priority (&fs_w, EV_MAXPRI);
2801 ev_io_start (EV_A_ &fs_w);
2802 }
2803}
2804
2805inline_size void
2806infy_fork (EV_P)
2807{
2808 int slot;
2809
2810 if (fs_fd < 0)
2811 return;
2812
2813 close (fs_fd);
2814 fs_fd = inotify_init ();
2815
2816 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2817 {
2818 WL w_ = fs_hash [slot].head;
2819 fs_hash [slot].head = 0;
2820
2821 while (w_)
2822 {
2823 ev_stat *w = (ev_stat *)w_;
2824 w_ = w_->next; /* lets us add this watcher */
2825
2826 w->wd = -1;
2827
2828 if (fs_fd >= 0)
2829 infy_add (EV_A_ w); /* re-add, no matter what */
2830 else
2831 ev_timer_again (EV_A_ &w->timer);
2832 }
2833 }
2834}
2835
2836#endif
2837
2838#ifdef _WIN32
2839# define EV_LSTAT(p,b) _stati64 (p, b)
2840#else
2841# define EV_LSTAT(p,b) lstat (p, b)
2842#endif
2843
2844void
2845ev_stat_stat (EV_P_ ev_stat *w)
2846{
2847 if (lstat (w->path, &w->attr) < 0)
2848 w->attr.st_nlink = 0;
2849 else if (!w->attr.st_nlink)
2850 w->attr.st_nlink = 1;
2851}
2852
2853static void noinline
2854stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2855{
2856 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2857
2858 /* we copy this here each the time so that */
2859 /* prev has the old value when the callback gets invoked */
2860 w->prev = w->attr;
2861 ev_stat_stat (EV_A_ w);
2862
2863 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2864 if (
2865 w->prev.st_dev != w->attr.st_dev
2866 || w->prev.st_ino != w->attr.st_ino
2867 || w->prev.st_mode != w->attr.st_mode
2868 || w->prev.st_nlink != w->attr.st_nlink
2869 || w->prev.st_uid != w->attr.st_uid
2870 || w->prev.st_gid != w->attr.st_gid
2871 || w->prev.st_rdev != w->attr.st_rdev
2872 || w->prev.st_size != w->attr.st_size
2873 || w->prev.st_atime != w->attr.st_atime
2874 || w->prev.st_mtime != w->attr.st_mtime
2875 || w->prev.st_ctime != w->attr.st_ctime
2876 ) {
2877 #if EV_USE_INOTIFY
2878 if (fs_fd >= 0)
2879 {
2880 infy_del (EV_A_ w);
2881 infy_add (EV_A_ w);
2882 ev_stat_stat (EV_A_ w); /* avoid race... */
2883 }
2884 #endif
2885
2886 ev_feed_event (EV_A_ w, EV_STAT);
2887 }
2888}
2889
2890void
2891ev_stat_start (EV_P_ ev_stat *w)
2892{
2893 if (expect_false (ev_is_active (w)))
2894 return;
2895
2896 ev_stat_stat (EV_A_ w);
2897
2898 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2899 w->interval = MIN_STAT_INTERVAL;
2900
2901 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2902 ev_set_priority (&w->timer, ev_priority (w));
2903
2904#if EV_USE_INOTIFY
2905 infy_init (EV_A);
2906
2907 if (fs_fd >= 0)
2908 infy_add (EV_A_ w);
2909 else
2910#endif
2911 ev_timer_again (EV_A_ &w->timer);
2912
2913 ev_start (EV_A_ (W)w, 1);
2914
2915 EV_FREQUENT_CHECK;
2916}
2917
2918void
2919ev_stat_stop (EV_P_ ev_stat *w)
2920{
2921 clear_pending (EV_A_ (W)w);
2922 if (expect_false (!ev_is_active (w)))
2923 return;
2924
2925 EV_FREQUENT_CHECK;
2926
2927#if EV_USE_INOTIFY
2928 infy_del (EV_A_ w);
2929#endif
2930 ev_timer_stop (EV_A_ &w->timer);
2931
2932 ev_stop (EV_A_ (W)w);
2933
2934 EV_FREQUENT_CHECK;
2935}
2936#endif
2937
2938#if EV_IDLE_ENABLE
2939void
2940ev_idle_start (EV_P_ ev_idle *w)
2941{
2942 if (expect_false (ev_is_active (w)))
2943 return;
2944
2945 pri_adjust (EV_A_ (W)w);
2946
2947 EV_FREQUENT_CHECK;
2948
2949 {
2950 int active = ++idlecnt [ABSPRI (w)];
2951
2952 ++idleall;
2953 ev_start (EV_A_ (W)w, active);
2954
2955 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2956 idles [ABSPRI (w)][active - 1] = w;
2957 }
2958
2959 EV_FREQUENT_CHECK;
2960}
2961
2962void
2963ev_idle_stop (EV_P_ ev_idle *w)
2964{
2965 clear_pending (EV_A_ (W)w);
2966 if (expect_false (!ev_is_active (w)))
2967 return;
2968
2969 EV_FREQUENT_CHECK;
2970
2971 {
2972 int active = ev_active (w);
2973
2974 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2975 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2976
2977 ev_stop (EV_A_ (W)w);
2978 --idleall;
2979 }
2980
2981 EV_FREQUENT_CHECK;
2982}
2983#endif
2984
2985void
2986ev_prepare_start (EV_P_ ev_prepare *w)
2987{
2988 if (expect_false (ev_is_active (w)))
2989 return;
2990
2991 EV_FREQUENT_CHECK;
2992
2993 ev_start (EV_A_ (W)w, ++preparecnt);
2994 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2995 prepares [preparecnt - 1] = w;
2996
2997 EV_FREQUENT_CHECK;
2998}
2999
3000void
3001ev_prepare_stop (EV_P_ ev_prepare *w)
3002{
3003 clear_pending (EV_A_ (W)w);
3004 if (expect_false (!ev_is_active (w)))
3005 return;
3006
3007 EV_FREQUENT_CHECK;
3008
3009 {
3010 int active = ev_active (w);
3011
3012 prepares [active - 1] = prepares [--preparecnt];
3013 ev_active (prepares [active - 1]) = active;
3014 }
3015
3016 ev_stop (EV_A_ (W)w);
3017
3018 EV_FREQUENT_CHECK;
3019}
3020
3021void
3022ev_check_start (EV_P_ ev_check *w)
3023{
3024 if (expect_false (ev_is_active (w)))
3025 return;
3026
3027 EV_FREQUENT_CHECK;
3028
3029 ev_start (EV_A_ (W)w, ++checkcnt);
3030 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3031 checks [checkcnt - 1] = w;
3032
3033 EV_FREQUENT_CHECK;
3034}
3035
3036void
3037ev_check_stop (EV_P_ ev_check *w)
3038{
3039 clear_pending (EV_A_ (W)w);
3040 if (expect_false (!ev_is_active (w)))
3041 return;
3042
3043 EV_FREQUENT_CHECK;
3044
3045 {
3046 int active = ev_active (w);
3047
3048 checks [active - 1] = checks [--checkcnt];
3049 ev_active (checks [active - 1]) = active;
3050 }
3051
3052 ev_stop (EV_A_ (W)w);
3053
3054 EV_FREQUENT_CHECK;
3055}
3056
3057#if EV_EMBED_ENABLE
3058void noinline
3059ev_embed_sweep (EV_P_ ev_embed *w)
3060{
3061 ev_loop (w->other, EVLOOP_NONBLOCK);
3062}
3063
3064static void
3065embed_io_cb (EV_P_ ev_io *io, int revents)
3066{
3067 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3068
3069 if (ev_cb (w))
3070 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3071 else
3072 ev_loop (w->other, EVLOOP_NONBLOCK);
3073}
3074
3075static void
3076embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3077{
3078 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3079
3080 {
3081 struct ev_loop *loop = w->other;
3082
3083 while (fdchangecnt)
3084 {
3085 fd_reify (EV_A);
3086 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3087 }
3088 }
3089}
3090
3091static void
3092embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3093{
3094 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3095
3096 ev_embed_stop (EV_A_ w);
3097
3098 {
3099 struct ev_loop *loop = w->other;
3100
3101 ev_loop_fork (EV_A);
3102 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3103 }
3104
3105 ev_embed_start (EV_A_ w);
3106}
3107
3108#if 0
3109static void
3110embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3111{
3112 ev_idle_stop (EV_A_ idle);
3113}
3114#endif
3115
3116void
3117ev_embed_start (EV_P_ ev_embed *w)
3118{
3119 if (expect_false (ev_is_active (w)))
3120 return;
3121
3122 {
3123 struct ev_loop *loop = w->other;
3124 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3125 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3126 }
3127
3128 EV_FREQUENT_CHECK;
3129
3130 ev_set_priority (&w->io, ev_priority (w));
3131 ev_io_start (EV_A_ &w->io);
3132
3133 ev_prepare_init (&w->prepare, embed_prepare_cb);
3134 ev_set_priority (&w->prepare, EV_MINPRI);
3135 ev_prepare_start (EV_A_ &w->prepare);
3136
3137 ev_fork_init (&w->fork, embed_fork_cb);
3138 ev_fork_start (EV_A_ &w->fork);
3139
3140 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3141
3142 ev_start (EV_A_ (W)w, 1);
3143
3144 EV_FREQUENT_CHECK;
3145}
3146
3147void
3148ev_embed_stop (EV_P_ ev_embed *w)
3149{
3150 clear_pending (EV_A_ (W)w);
3151 if (expect_false (!ev_is_active (w)))
3152 return;
3153
3154 EV_FREQUENT_CHECK;
3155
3156 ev_io_stop (EV_A_ &w->io);
3157 ev_prepare_stop (EV_A_ &w->prepare);
3158 ev_fork_stop (EV_A_ &w->fork);
3159
3160 EV_FREQUENT_CHECK;
3161}
3162#endif
3163
3164#if EV_FORK_ENABLE
3165void
3166ev_fork_start (EV_P_ ev_fork *w)
3167{
3168 if (expect_false (ev_is_active (w)))
3169 return;
3170
3171 EV_FREQUENT_CHECK;
3172
3173 ev_start (EV_A_ (W)w, ++forkcnt);
3174 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3175 forks [forkcnt - 1] = w;
3176
3177 EV_FREQUENT_CHECK;
3178}
3179
3180void
3181ev_fork_stop (EV_P_ ev_fork *w)
3182{
3183 clear_pending (EV_A_ (W)w);
3184 if (expect_false (!ev_is_active (w)))
3185 return;
3186
3187 EV_FREQUENT_CHECK;
3188
3189 {
3190 int active = ev_active (w);
3191
3192 forks [active - 1] = forks [--forkcnt];
3193 ev_active (forks [active - 1]) = active;
3194 }
3195
3196 ev_stop (EV_A_ (W)w);
3197
3198 EV_FREQUENT_CHECK;
3199}
3200#endif
3201
3202#if EV_ASYNC_ENABLE
3203void
3204ev_async_start (EV_P_ ev_async *w)
3205{
3206 if (expect_false (ev_is_active (w)))
3207 return;
3208
3209 evpipe_init (EV_A);
3210
3211 EV_FREQUENT_CHECK;
3212
3213 ev_start (EV_A_ (W)w, ++asynccnt);
3214 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3215 asyncs [asynccnt - 1] = w;
3216
3217 EV_FREQUENT_CHECK;
3218}
3219
3220void
3221ev_async_stop (EV_P_ ev_async *w)
3222{
3223 clear_pending (EV_A_ (W)w);
3224 if (expect_false (!ev_is_active (w)))
3225 return;
3226
3227 EV_FREQUENT_CHECK;
3228
3229 {
3230 int active = ev_active (w);
3231
3232 asyncs [active - 1] = asyncs [--asynccnt];
3233 ev_active (asyncs [active - 1]) = active;
3234 }
3235
3236 ev_stop (EV_A_ (W)w);
3237
3238 EV_FREQUENT_CHECK;
3239}
3240
3241void
3242ev_async_send (EV_P_ ev_async *w)
3243{
3244 w->sent = 1;
3245 evpipe_write (EV_A_ &gotasync);
3246}
3247#endif
1360 3248
1361/*****************************************************************************/ 3249/*****************************************************************************/
1362 3250
1363struct ev_once 3251struct ev_once
1364{ 3252{
1365 struct ev_io io; 3253 ev_io io;
1366 struct ev_timer to; 3254 ev_timer to;
1367 void (*cb)(int revents, void *arg); 3255 void (*cb)(int revents, void *arg);
1368 void *arg; 3256 void *arg;
1369}; 3257};
1370 3258
1371static void 3259static void
1372once_cb (EV_P_ struct ev_once *once, int revents) 3260once_cb (EV_P_ struct ev_once *once, int revents)
1373{ 3261{
1374 void (*cb)(int revents, void *arg) = once->cb; 3262 void (*cb)(int revents, void *arg) = once->cb;
1375 void *arg = once->arg; 3263 void *arg = once->arg;
1376 3264
1377 ev_io_stop (EV_A_ &once->io); 3265 ev_io_stop (EV_A_ &once->io);
1378 ev_timer_stop (EV_A_ &once->to); 3266 ev_timer_stop (EV_A_ &once->to);
1379 free (once); 3267 ev_free (once);
1380 3268
1381 cb (revents, arg); 3269 cb (revents, arg);
1382} 3270}
1383 3271
1384static void 3272static void
1385once_cb_io (EV_P_ struct ev_io *w, int revents) 3273once_cb_io (EV_P_ ev_io *w, int revents)
1386{ 3274{
1387 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3275 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3276
3277 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1388} 3278}
1389 3279
1390static void 3280static void
1391once_cb_to (EV_P_ struct ev_timer *w, int revents) 3281once_cb_to (EV_P_ ev_timer *w, int revents)
1392{ 3282{
1393 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3283 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3284
3285 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1394} 3286}
1395 3287
1396void 3288void
1397ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3289ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1398{ 3290{
1399 struct ev_once *once = malloc (sizeof (struct ev_once)); 3291 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1400 3292
1401 if (!once) 3293 if (expect_false (!once))
3294 {
1402 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3295 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1403 else 3296 return;
1404 { 3297 }
3298
1405 once->cb = cb; 3299 once->cb = cb;
1406 once->arg = arg; 3300 once->arg = arg;
1407 3301
1408 ev_watcher_init (&once->io, once_cb_io); 3302 ev_init (&once->io, once_cb_io);
1409 if (fd >= 0) 3303 if (fd >= 0)
3304 {
3305 ev_io_set (&once->io, fd, events);
3306 ev_io_start (EV_A_ &once->io);
3307 }
3308
3309 ev_init (&once->to, once_cb_to);
3310 if (timeout >= 0.)
3311 {
3312 ev_timer_set (&once->to, timeout, 0.);
3313 ev_timer_start (EV_A_ &once->to);
3314 }
3315}
3316
3317/*****************************************************************************/
3318
3319#if EV_WALK_ENABLE
3320void
3321ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3322{
3323 int i, j;
3324 ev_watcher_list *wl, *wn;
3325
3326 if (types & (EV_IO | EV_EMBED))
3327 for (i = 0; i < anfdmax; ++i)
3328 for (wl = anfds [i].head; wl; )
1410 { 3329 {
1411 ev_io_set (&once->io, fd, events); 3330 wn = wl->next;
1412 ev_io_start (EV_A_ &once->io); 3331
3332#if EV_EMBED_ENABLE
3333 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3334 {
3335 if (types & EV_EMBED)
3336 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3337 }
3338 else
3339#endif
3340#if EV_USE_INOTIFY
3341 if (ev_cb ((ev_io *)wl) == infy_cb)
3342 ;
3343 else
3344#endif
3345 if ((ev_io *)wl != &pipe_w)
3346 if (types & EV_IO)
3347 cb (EV_A_ EV_IO, wl);
3348
3349 wl = wn;
1413 } 3350 }
1414 3351
1415 ev_watcher_init (&once->to, once_cb_to); 3352 if (types & (EV_TIMER | EV_STAT))
1416 if (timeout >= 0.) 3353 for (i = timercnt + HEAP0; i-- > HEAP0; )
3354#if EV_STAT_ENABLE
3355 /*TODO: timer is not always active*/
3356 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1417 { 3357 {
1418 ev_timer_set (&once->to, timeout, 0.); 3358 if (types & EV_STAT)
1419 ev_timer_start (EV_A_ &once->to); 3359 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1420 } 3360 }
1421 } 3361 else
1422} 3362#endif
3363 if (types & EV_TIMER)
3364 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1423 3365
3366#if EV_PERIODIC_ENABLE
3367 if (types & EV_PERIODIC)
3368 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3369 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3370#endif
3371
3372#if EV_IDLE_ENABLE
3373 if (types & EV_IDLE)
3374 for (j = NUMPRI; i--; )
3375 for (i = idlecnt [j]; i--; )
3376 cb (EV_A_ EV_IDLE, idles [j][i]);
3377#endif
3378
3379#if EV_FORK_ENABLE
3380 if (types & EV_FORK)
3381 for (i = forkcnt; i--; )
3382 if (ev_cb (forks [i]) != embed_fork_cb)
3383 cb (EV_A_ EV_FORK, forks [i]);
3384#endif
3385
3386#if EV_ASYNC_ENABLE
3387 if (types & EV_ASYNC)
3388 for (i = asynccnt; i--; )
3389 cb (EV_A_ EV_ASYNC, asyncs [i]);
3390#endif
3391
3392 if (types & EV_PREPARE)
3393 for (i = preparecnt; i--; )
3394#if EV_EMBED_ENABLE
3395 if (ev_cb (prepares [i]) != embed_prepare_cb)
3396#endif
3397 cb (EV_A_ EV_PREPARE, prepares [i]);
3398
3399 if (types & EV_CHECK)
3400 for (i = checkcnt; i--; )
3401 cb (EV_A_ EV_CHECK, checks [i]);
3402
3403 if (types & EV_SIGNAL)
3404 for (i = 0; i < signalmax; ++i)
3405 for (wl = signals [i].head; wl; )
3406 {
3407 wn = wl->next;
3408 cb (EV_A_ EV_SIGNAL, wl);
3409 wl = wn;
3410 }
3411
3412 if (types & EV_CHILD)
3413 for (i = EV_PID_HASHSIZE; i--; )
3414 for (wl = childs [i]; wl; )
3415 {
3416 wn = wl->next;
3417 cb (EV_A_ EV_CHILD, wl);
3418 wl = wn;
3419 }
3420/* EV_STAT 0x00001000 /* stat data changed */
3421/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3422}
3423#endif
3424
3425#if EV_MULTIPLICITY
3426 #include "ev_wrap.h"
3427#endif
3428
3429#ifdef __cplusplus
3430}
3431#endif
3432

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines