ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.190 by root, Fri Dec 21 01:26:04 2007 UTC vs.
Revision 1.298 by root, Fri Jul 10 19:10:19 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
56# endif 87# endif
57# endif 88# endif
58 89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 133# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
104# endif 135# endif
105# endif 136# endif
106 137
138# ifndef EV_USE_EVENTFD
139# if HAVE_EVENTFD
140# define EV_USE_EVENTFD 1
141# else
142# define EV_USE_EVENTFD 0
143# endif
144# endif
145
107#endif 146#endif
108 147
109#include <math.h> 148#include <math.h>
110#include <stdlib.h> 149#include <stdlib.h>
111#include <fcntl.h> 150#include <fcntl.h>
129#ifndef _WIN32 168#ifndef _WIN32
130# include <sys/time.h> 169# include <sys/time.h>
131# include <sys/wait.h> 170# include <sys/wait.h>
132# include <unistd.h> 171# include <unistd.h>
133#else 172#else
173# include <io.h>
134# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 175# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
138# endif 178# endif
139#endif 179#endif
140 180
141/**/ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
142 190
143#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
144# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
145#endif 197#endif
146 198
147#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
201#endif
202
203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
207# define EV_USE_NANOSLEEP 0
208# endif
149#endif 209#endif
150 210
151#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
153#endif 213#endif
159# define EV_USE_POLL 1 219# define EV_USE_POLL 1
160# endif 220# endif
161#endif 221#endif
162 222
163#ifndef EV_USE_EPOLL 223#ifndef EV_USE_EPOLL
224# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225# define EV_USE_EPOLL 1
226# else
164# define EV_USE_EPOLL 0 227# define EV_USE_EPOLL 0
228# endif
165#endif 229#endif
166 230
167#ifndef EV_USE_KQUEUE 231#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 232# define EV_USE_KQUEUE 0
169#endif 233#endif
171#ifndef EV_USE_PORT 235#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 236# define EV_USE_PORT 0
173#endif 237#endif
174 238
175#ifndef EV_USE_INOTIFY 239#ifndef EV_USE_INOTIFY
240# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
241# define EV_USE_INOTIFY 1
242# else
176# define EV_USE_INOTIFY 0 243# define EV_USE_INOTIFY 0
244# endif
177#endif 245#endif
178 246
179#ifndef EV_PID_HASHSIZE 247#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 248# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 249# define EV_PID_HASHSIZE 1
190# else 258# else
191# define EV_INOTIFY_HASHSIZE 16 259# define EV_INOTIFY_HASHSIZE 16
192# endif 260# endif
193#endif 261#endif
194 262
195/**/ 263#ifndef EV_USE_EVENTFD
264# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265# define EV_USE_EVENTFD 1
266# else
267# define EV_USE_EVENTFD 0
268# endif
269#endif
270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 304
197#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
200#endif 308#endif
207#if !EV_STAT_ENABLE 315#if !EV_STAT_ENABLE
208# undef EV_USE_INOTIFY 316# undef EV_USE_INOTIFY
209# define EV_USE_INOTIFY 0 317# define EV_USE_INOTIFY 0
210#endif 318#endif
211 319
320#if !EV_USE_NANOSLEEP
321# ifndef _WIN32
322# include <sys/select.h>
323# endif
324#endif
325
212#if EV_USE_INOTIFY 326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
213# include <sys/inotify.h> 329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
214#endif 335#endif
215 336
216#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
217# include <winsock.h> 338# include <winsock.h>
218#endif 339#endif
219 340
341#if EV_USE_EVENTFD
342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343# include <stdint.h>
344# ifdef __cplusplus
345extern "C" {
346# endif
347int eventfd (unsigned int initval, int flags);
348# ifdef __cplusplus
349}
350# endif
351#endif
352
220/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
221 360
222/* 361/*
223 * This is used to avoid floating point rounding problems. 362 * This is used to avoid floating point rounding problems.
224 * It is added to ev_rt_now when scheduling periodics 363 * It is added to ev_rt_now when scheduling periodics
225 * to ensure progress, time-wise, even when rounding 364 * to ensure progress, time-wise, even when rounding
237# define expect(expr,value) __builtin_expect ((expr),(value)) 376# define expect(expr,value) __builtin_expect ((expr),(value))
238# define noinline __attribute__ ((noinline)) 377# define noinline __attribute__ ((noinline))
239#else 378#else
240# define expect(expr,value) (expr) 379# define expect(expr,value) (expr)
241# define noinline 380# define noinline
242# if __STDC_VERSION__ < 199901L 381# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
243# define inline 382# define inline
244# endif 383# endif
245#endif 384#endif
246 385
247#define expect_false(expr) expect ((expr) != 0, 0) 386#define expect_false(expr) expect ((expr) != 0, 0)
252# define inline_speed static noinline 391# define inline_speed static noinline
253#else 392#else
254# define inline_speed static inline 393# define inline_speed static inline
255#endif 394#endif
256 395
257#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
258#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
259 403
260#define EMPTY /* required for microsofts broken pseudo-c compiler */ 404#define EMPTY /* required for microsofts broken pseudo-c compiler */
261#define EMPTY2(a,b) /* used to suppress some warnings */ 405#define EMPTY2(a,b) /* used to suppress some warnings */
262 406
263typedef ev_watcher *W; 407typedef ev_watcher *W;
264typedef ev_watcher_list *WL; 408typedef ev_watcher_list *WL;
265typedef ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
266 410
411#define ev_active(w) ((W)(w))->active
412#define ev_at(w) ((WT)(w))->at
413
414#if EV_USE_REALTIME
415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
419
420#if EV_USE_MONOTONIC
267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
422#endif
268 423
269#ifdef _WIN32 424#ifdef _WIN32
270# include "ev_win32.c" 425# include "ev_win32.c"
271#endif 426#endif
272 427
279{ 434{
280 syserr_cb = cb; 435 syserr_cb = cb;
281} 436}
282 437
283static void noinline 438static void noinline
284syserr (const char *msg) 439ev_syserr (const char *msg)
285{ 440{
286 if (!msg) 441 if (!msg)
287 msg = "(libev) system error"; 442 msg = "(libev) system error";
288 443
289 if (syserr_cb) 444 if (syserr_cb)
293 perror (msg); 448 perror (msg);
294 abort (); 449 abort ();
295 } 450 }
296} 451}
297 452
453static void *
454ev_realloc_emul (void *ptr, long size)
455{
456 /* some systems, notably openbsd and darwin, fail to properly
457 * implement realloc (x, 0) (as required by both ansi c-98 and
458 * the single unix specification, so work around them here.
459 */
460
461 if (size)
462 return realloc (ptr, size);
463
464 free (ptr);
465 return 0;
466}
467
298static void *(*alloc)(void *ptr, long size); 468static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
299 469
300void 470void
301ev_set_allocator (void *(*cb)(void *ptr, long size)) 471ev_set_allocator (void *(*cb)(void *ptr, long size))
302{ 472{
303 alloc = cb; 473 alloc = cb;
304} 474}
305 475
306inline_speed void * 476inline_speed void *
307ev_realloc (void *ptr, long size) 477ev_realloc (void *ptr, long size)
308{ 478{
309 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 479 ptr = alloc (ptr, size);
310 480
311 if (!ptr && size) 481 if (!ptr && size)
312 { 482 {
313 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 483 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
314 abort (); 484 abort ();
320#define ev_malloc(size) ev_realloc (0, (size)) 490#define ev_malloc(size) ev_realloc (0, (size))
321#define ev_free(ptr) ev_realloc ((ptr), 0) 491#define ev_free(ptr) ev_realloc ((ptr), 0)
322 492
323/*****************************************************************************/ 493/*****************************************************************************/
324 494
495/* set in reify when reification needed */
496#define EV_ANFD_REIFY 1
497
498/* file descriptor info structure */
325typedef struct 499typedef struct
326{ 500{
327 WL head; 501 WL head;
328 unsigned char events; 502 unsigned char events; /* the events watched for */
503 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
504 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
329 unsigned char reify; 505 unsigned char unused;
506#if EV_USE_EPOLL
507 unsigned int egen; /* generation counter to counter epoll bugs */
508#endif
330#if EV_SELECT_IS_WINSOCKET 509#if EV_SELECT_IS_WINSOCKET
331 SOCKET handle; 510 SOCKET handle;
332#endif 511#endif
333} ANFD; 512} ANFD;
334 513
514/* stores the pending event set for a given watcher */
335typedef struct 515typedef struct
336{ 516{
337 W w; 517 W w;
338 int events; 518 int events; /* the pending event set for the given watcher */
339} ANPENDING; 519} ANPENDING;
340 520
341#if EV_USE_INOTIFY 521#if EV_USE_INOTIFY
522/* hash table entry per inotify-id */
342typedef struct 523typedef struct
343{ 524{
344 WL head; 525 WL head;
345} ANFS; 526} ANFS;
527#endif
528
529/* Heap Entry */
530#if EV_HEAP_CACHE_AT
531 /* a heap element */
532 typedef struct {
533 ev_tstamp at;
534 WT w;
535 } ANHE;
536
537 #define ANHE_w(he) (he).w /* access watcher, read-write */
538 #define ANHE_at(he) (he).at /* access cached at, read-only */
539 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
540#else
541 /* a heap element */
542 typedef WT ANHE;
543
544 #define ANHE_w(he) (he)
545 #define ANHE_at(he) (he)->at
546 #define ANHE_at_cache(he)
346#endif 547#endif
347 548
348#if EV_MULTIPLICITY 549#if EV_MULTIPLICITY
349 550
350 struct ev_loop 551 struct ev_loop
369 570
370 static int ev_default_loop_ptr; 571 static int ev_default_loop_ptr;
371 572
372#endif 573#endif
373 574
575#if EV_MINIMAL < 2
576# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
577# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
578# define EV_INVOKE_PENDING invoke_cb (EV_A)
579#else
580# define EV_RELEASE_CB (void)0
581# define EV_ACQUIRE_CB (void)0
582# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
583#endif
584
585#define EVUNLOOP_RECURSE 0x80
586
374/*****************************************************************************/ 587/*****************************************************************************/
375 588
589#ifndef EV_HAVE_EV_TIME
376ev_tstamp 590ev_tstamp
377ev_time (void) 591ev_time (void)
378{ 592{
379#if EV_USE_REALTIME 593#if EV_USE_REALTIME
594 if (expect_true (have_realtime))
595 {
380 struct timespec ts; 596 struct timespec ts;
381 clock_gettime (CLOCK_REALTIME, &ts); 597 clock_gettime (CLOCK_REALTIME, &ts);
382 return ts.tv_sec + ts.tv_nsec * 1e-9; 598 return ts.tv_sec + ts.tv_nsec * 1e-9;
383#else 599 }
600#endif
601
384 struct timeval tv; 602 struct timeval tv;
385 gettimeofday (&tv, 0); 603 gettimeofday (&tv, 0);
386 return tv.tv_sec + tv.tv_usec * 1e-6; 604 return tv.tv_sec + tv.tv_usec * 1e-6;
387#endif
388} 605}
606#endif
389 607
390ev_tstamp inline_size 608inline_size ev_tstamp
391get_clock (void) 609get_clock (void)
392{ 610{
393#if EV_USE_MONOTONIC 611#if EV_USE_MONOTONIC
394 if (expect_true (have_monotonic)) 612 if (expect_true (have_monotonic))
395 { 613 {
408{ 626{
409 return ev_rt_now; 627 return ev_rt_now;
410} 628}
411#endif 629#endif
412 630
413int inline_size 631void
632ev_sleep (ev_tstamp delay)
633{
634 if (delay > 0.)
635 {
636#if EV_USE_NANOSLEEP
637 struct timespec ts;
638
639 ts.tv_sec = (time_t)delay;
640 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
641
642 nanosleep (&ts, 0);
643#elif defined(_WIN32)
644 Sleep ((unsigned long)(delay * 1e3));
645#else
646 struct timeval tv;
647
648 tv.tv_sec = (time_t)delay;
649 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
650
651 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
652 /* somehting not guaranteed by newer posix versions, but guaranteed */
653 /* by older ones */
654 select (0, 0, 0, 0, &tv);
655#endif
656 }
657}
658
659/*****************************************************************************/
660
661#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
662
663/* find a suitable new size for the given array, */
664/* hopefully by rounding to a ncie-to-malloc size */
665inline_size int
414array_nextsize (int elem, int cur, int cnt) 666array_nextsize (int elem, int cur, int cnt)
415{ 667{
416 int ncur = cur + 1; 668 int ncur = cur + 1;
417 669
418 do 670 do
419 ncur <<= 1; 671 ncur <<= 1;
420 while (cnt > ncur); 672 while (cnt > ncur);
421 673
422 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 674 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
423 if (elem * ncur > 4096) 675 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
424 { 676 {
425 ncur *= elem; 677 ncur *= elem;
426 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 678 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
427 ncur = ncur - sizeof (void *) * 4; 679 ncur = ncur - sizeof (void *) * 4;
428 ncur /= elem; 680 ncur /= elem;
429 } 681 }
430 682
431 return ncur; 683 return ncur;
435array_realloc (int elem, void *base, int *cur, int cnt) 687array_realloc (int elem, void *base, int *cur, int cnt)
436{ 688{
437 *cur = array_nextsize (elem, *cur, cnt); 689 *cur = array_nextsize (elem, *cur, cnt);
438 return ev_realloc (base, elem * *cur); 690 return ev_realloc (base, elem * *cur);
439} 691}
692
693#define array_init_zero(base,count) \
694 memset ((void *)(base), 0, sizeof (*(base)) * (count))
440 695
441#define array_needsize(type,base,cur,cnt,init) \ 696#define array_needsize(type,base,cur,cnt,init) \
442 if (expect_false ((cnt) > (cur))) \ 697 if (expect_false ((cnt) > (cur))) \
443 { \ 698 { \
444 int ocur_ = (cur); \ 699 int ocur_ = (cur); \
456 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 711 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
457 } 712 }
458#endif 713#endif
459 714
460#define array_free(stem, idx) \ 715#define array_free(stem, idx) \
461 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 716 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
462 717
463/*****************************************************************************/ 718/*****************************************************************************/
719
720/* dummy callback for pending events */
721static void noinline
722pendingcb (EV_P_ ev_prepare *w, int revents)
723{
724}
464 725
465void noinline 726void noinline
466ev_feed_event (EV_P_ void *w, int revents) 727ev_feed_event (EV_P_ void *w, int revents)
467{ 728{
468 W w_ = (W)w; 729 W w_ = (W)w;
477 pendings [pri][w_->pending - 1].w = w_; 738 pendings [pri][w_->pending - 1].w = w_;
478 pendings [pri][w_->pending - 1].events = revents; 739 pendings [pri][w_->pending - 1].events = revents;
479 } 740 }
480} 741}
481 742
482void inline_speed 743inline_speed void
744feed_reverse (EV_P_ W w)
745{
746 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
747 rfeeds [rfeedcnt++] = w;
748}
749
750inline_size void
751feed_reverse_done (EV_P_ int revents)
752{
753 do
754 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
755 while (rfeedcnt);
756}
757
758inline_speed void
483queue_events (EV_P_ W *events, int eventcnt, int type) 759queue_events (EV_P_ W *events, int eventcnt, int type)
484{ 760{
485 int i; 761 int i;
486 762
487 for (i = 0; i < eventcnt; ++i) 763 for (i = 0; i < eventcnt; ++i)
488 ev_feed_event (EV_A_ events [i], type); 764 ev_feed_event (EV_A_ events [i], type);
489} 765}
490 766
491/*****************************************************************************/ 767/*****************************************************************************/
492 768
493void inline_size 769inline_speed void
494anfds_init (ANFD *base, int count)
495{
496 while (count--)
497 {
498 base->head = 0;
499 base->events = EV_NONE;
500 base->reify = 0;
501
502 ++base;
503 }
504}
505
506void inline_speed
507fd_event (EV_P_ int fd, int revents) 770fd_event_nc (EV_P_ int fd, int revents)
508{ 771{
509 ANFD *anfd = anfds + fd; 772 ANFD *anfd = anfds + fd;
510 ev_io *w; 773 ev_io *w;
511 774
512 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 775 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
516 if (ev) 779 if (ev)
517 ev_feed_event (EV_A_ (W)w, ev); 780 ev_feed_event (EV_A_ (W)w, ev);
518 } 781 }
519} 782}
520 783
784/* do not submit kernel events for fds that have reify set */
785/* because that means they changed while we were polling for new events */
786inline_speed void
787fd_event (EV_P_ int fd, int revents)
788{
789 ANFD *anfd = anfds + fd;
790
791 if (expect_true (!anfd->reify))
792 fd_event_nc (EV_A_ fd, revents);
793}
794
521void 795void
522ev_feed_fd_event (EV_P_ int fd, int revents) 796ev_feed_fd_event (EV_P_ int fd, int revents)
523{ 797{
524 if (fd >= 0 && fd < anfdmax) 798 if (fd >= 0 && fd < anfdmax)
525 fd_event (EV_A_ fd, revents); 799 fd_event_nc (EV_A_ fd, revents);
526} 800}
527 801
528void inline_size 802/* make sure the external fd watch events are in-sync */
803/* with the kernel/libev internal state */
804inline_size void
529fd_reify (EV_P) 805fd_reify (EV_P)
530{ 806{
531 int i; 807 int i;
532 808
533 for (i = 0; i < fdchangecnt; ++i) 809 for (i = 0; i < fdchangecnt; ++i)
542 events |= (unsigned char)w->events; 818 events |= (unsigned char)w->events;
543 819
544#if EV_SELECT_IS_WINSOCKET 820#if EV_SELECT_IS_WINSOCKET
545 if (events) 821 if (events)
546 { 822 {
547 unsigned long argp; 823 unsigned long arg;
824 #ifdef EV_FD_TO_WIN32_HANDLE
825 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
826 #else
548 anfd->handle = _get_osfhandle (fd); 827 anfd->handle = _get_osfhandle (fd);
828 #endif
549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 829 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
550 } 830 }
551#endif 831#endif
552 832
553 { 833 {
554 unsigned char o_events = anfd->events; 834 unsigned char o_events = anfd->events;
555 unsigned char o_reify = anfd->reify; 835 unsigned char o_reify = anfd->reify;
556 836
557 anfd->reify = 0; 837 anfd->reify = 0;
558 anfd->events = events; 838 anfd->events = events;
559 839
560 if (o_events != events || o_reify & EV_IOFDSET) 840 if (o_events != events || o_reify & EV__IOFDSET)
561 backend_modify (EV_A_ fd, o_events, events); 841 backend_modify (EV_A_ fd, o_events, events);
562 } 842 }
563 } 843 }
564 844
565 fdchangecnt = 0; 845 fdchangecnt = 0;
566} 846}
567 847
568void inline_size 848/* something about the given fd changed */
849inline_size void
569fd_change (EV_P_ int fd, int flags) 850fd_change (EV_P_ int fd, int flags)
570{ 851{
571 unsigned char reify = anfds [fd].reify; 852 unsigned char reify = anfds [fd].reify;
572 anfds [fd].reify |= flags; 853 anfds [fd].reify |= flags;
573 854
577 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 858 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
578 fdchanges [fdchangecnt - 1] = fd; 859 fdchanges [fdchangecnt - 1] = fd;
579 } 860 }
580} 861}
581 862
582void inline_speed 863/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
864inline_speed void
583fd_kill (EV_P_ int fd) 865fd_kill (EV_P_ int fd)
584{ 866{
585 ev_io *w; 867 ev_io *w;
586 868
587 while ((w = (ev_io *)anfds [fd].head)) 869 while ((w = (ev_io *)anfds [fd].head))
589 ev_io_stop (EV_A_ w); 871 ev_io_stop (EV_A_ w);
590 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 872 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
591 } 873 }
592} 874}
593 875
594int inline_size 876/* check whether the given fd is atcually valid, for error recovery */
877inline_size int
595fd_valid (int fd) 878fd_valid (int fd)
596{ 879{
597#ifdef _WIN32 880#ifdef _WIN32
598 return _get_osfhandle (fd) != -1; 881 return _get_osfhandle (fd) != -1;
599#else 882#else
607{ 890{
608 int fd; 891 int fd;
609 892
610 for (fd = 0; fd < anfdmax; ++fd) 893 for (fd = 0; fd < anfdmax; ++fd)
611 if (anfds [fd].events) 894 if (anfds [fd].events)
612 if (!fd_valid (fd) == -1 && errno == EBADF) 895 if (!fd_valid (fd) && errno == EBADF)
613 fd_kill (EV_A_ fd); 896 fd_kill (EV_A_ fd);
614} 897}
615 898
616/* called on ENOMEM in select/poll to kill some fds and retry */ 899/* called on ENOMEM in select/poll to kill some fds and retry */
617static void noinline 900static void noinline
635 918
636 for (fd = 0; fd < anfdmax; ++fd) 919 for (fd = 0; fd < anfdmax; ++fd)
637 if (anfds [fd].events) 920 if (anfds [fd].events)
638 { 921 {
639 anfds [fd].events = 0; 922 anfds [fd].events = 0;
923 anfds [fd].emask = 0;
640 fd_change (EV_A_ fd, EV_IOFDSET | 1); 924 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
641 } 925 }
642} 926}
643 927
644/*****************************************************************************/ 928/*****************************************************************************/
645 929
646void inline_speed 930/*
647upheap (WT *heap, int k) 931 * the heap functions want a real array index. array index 0 uis guaranteed to not
648{ 932 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
649 WT w = heap [k]; 933 * the branching factor of the d-tree.
934 */
650 935
651 while (k) 936/*
652 { 937 * at the moment we allow libev the luxury of two heaps,
653 int p = (k - 1) >> 1; 938 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
939 * which is more cache-efficient.
940 * the difference is about 5% with 50000+ watchers.
941 */
942#if EV_USE_4HEAP
654 943
655 if (heap [p]->at <= w->at) 944#define DHEAP 4
945#define HEAP0 (DHEAP - 1) /* index of first element in heap */
946#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
947#define UPHEAP_DONE(p,k) ((p) == (k))
948
949/* away from the root */
950inline_speed void
951downheap (ANHE *heap, int N, int k)
952{
953 ANHE he = heap [k];
954 ANHE *E = heap + N + HEAP0;
955
956 for (;;)
957 {
958 ev_tstamp minat;
959 ANHE *minpos;
960 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
961
962 /* find minimum child */
963 if (expect_true (pos + DHEAP - 1 < E))
964 {
965 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
966 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
967 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
968 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
969 }
970 else if (pos < E)
971 {
972 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
973 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
974 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
975 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
976 }
977 else
656 break; 978 break;
657 979
980 if (ANHE_at (he) <= minat)
981 break;
982
983 heap [k] = *minpos;
984 ev_active (ANHE_w (*minpos)) = k;
985
986 k = minpos - heap;
987 }
988
989 heap [k] = he;
990 ev_active (ANHE_w (he)) = k;
991}
992
993#else /* 4HEAP */
994
995#define HEAP0 1
996#define HPARENT(k) ((k) >> 1)
997#define UPHEAP_DONE(p,k) (!(p))
998
999/* away from the root */
1000inline_speed void
1001downheap (ANHE *heap, int N, int k)
1002{
1003 ANHE he = heap [k];
1004
1005 for (;;)
1006 {
1007 int c = k << 1;
1008
1009 if (c > N + HEAP0 - 1)
1010 break;
1011
1012 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1013 ? 1 : 0;
1014
1015 if (ANHE_at (he) <= ANHE_at (heap [c]))
1016 break;
1017
1018 heap [k] = heap [c];
1019 ev_active (ANHE_w (heap [k])) = k;
1020
1021 k = c;
1022 }
1023
1024 heap [k] = he;
1025 ev_active (ANHE_w (he)) = k;
1026}
1027#endif
1028
1029/* towards the root */
1030inline_speed void
1031upheap (ANHE *heap, int k)
1032{
1033 ANHE he = heap [k];
1034
1035 for (;;)
1036 {
1037 int p = HPARENT (k);
1038
1039 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1040 break;
1041
658 heap [k] = heap [p]; 1042 heap [k] = heap [p];
659 ((W)heap [k])->active = k + 1; 1043 ev_active (ANHE_w (heap [k])) = k;
660 k = p; 1044 k = p;
661 } 1045 }
662 1046
663 heap [k] = w; 1047 heap [k] = he;
664 ((W)heap [k])->active = k + 1; 1048 ev_active (ANHE_w (he)) = k;
665} 1049}
666 1050
667void inline_speed 1051/* move an element suitably so it is in a correct place */
668downheap (WT *heap, int N, int k) 1052inline_size void
669{
670 WT w = heap [k];
671
672 for (;;)
673 {
674 int c = (k << 1) + 1;
675
676 if (c >= N)
677 break;
678
679 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
680 ? 1 : 0;
681
682 if (w->at <= heap [c]->at)
683 break;
684
685 heap [k] = heap [c];
686 ((W)heap [k])->active = k + 1;
687
688 k = c;
689 }
690
691 heap [k] = w;
692 ((W)heap [k])->active = k + 1;
693}
694
695void inline_size
696adjustheap (WT *heap, int N, int k) 1053adjustheap (ANHE *heap, int N, int k)
697{ 1054{
1055 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
698 upheap (heap, k); 1056 upheap (heap, k);
1057 else
699 downheap (heap, N, k); 1058 downheap (heap, N, k);
1059}
1060
1061/* rebuild the heap: this function is used only once and executed rarely */
1062inline_size void
1063reheap (ANHE *heap, int N)
1064{
1065 int i;
1066
1067 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1068 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1069 for (i = 0; i < N; ++i)
1070 upheap (heap, i + HEAP0);
700} 1071}
701 1072
702/*****************************************************************************/ 1073/*****************************************************************************/
703 1074
1075/* associate signal watchers to a signal signal */
704typedef struct 1076typedef struct
705{ 1077{
706 WL head; 1078 WL head;
707 sig_atomic_t volatile gotsig; 1079 EV_ATOMIC_T gotsig;
708} ANSIG; 1080} ANSIG;
709 1081
710static ANSIG *signals; 1082static ANSIG *signals;
711static int signalmax; 1083static int signalmax;
712 1084
713static int sigpipe [2]; 1085static EV_ATOMIC_T gotsig;
714static sig_atomic_t volatile gotsig;
715static ev_io sigev;
716 1086
717void inline_size 1087/*****************************************************************************/
718signals_init (ANSIG *base, int count)
719{
720 while (count--)
721 {
722 base->head = 0;
723 base->gotsig = 0;
724 1088
725 ++base; 1089/* used to prepare libev internal fd's */
726 } 1090/* this is not fork-safe */
727} 1091inline_speed void
728
729static void
730sighandler (int signum)
731{
732#if _WIN32
733 signal (signum, sighandler);
734#endif
735
736 signals [signum - 1].gotsig = 1;
737
738 if (!gotsig)
739 {
740 int old_errno = errno;
741 gotsig = 1;
742 write (sigpipe [1], &signum, 1);
743 errno = old_errno;
744 }
745}
746
747void noinline
748ev_feed_signal_event (EV_P_ int signum)
749{
750 WL w;
751
752#if EV_MULTIPLICITY
753 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
754#endif
755
756 --signum;
757
758 if (signum < 0 || signum >= signalmax)
759 return;
760
761 signals [signum].gotsig = 0;
762
763 for (w = signals [signum].head; w; w = w->next)
764 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
765}
766
767static void
768sigcb (EV_P_ ev_io *iow, int revents)
769{
770 int signum;
771
772 read (sigpipe [0], &revents, 1);
773 gotsig = 0;
774
775 for (signum = signalmax; signum--; )
776 if (signals [signum].gotsig)
777 ev_feed_signal_event (EV_A_ signum + 1);
778}
779
780void inline_speed
781fd_intern (int fd) 1092fd_intern (int fd)
782{ 1093{
783#ifdef _WIN32 1094#ifdef _WIN32
784 int arg = 1; 1095 unsigned long arg = 1;
785 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1096 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
786#else 1097#else
787 fcntl (fd, F_SETFD, FD_CLOEXEC); 1098 fcntl (fd, F_SETFD, FD_CLOEXEC);
788 fcntl (fd, F_SETFL, O_NONBLOCK); 1099 fcntl (fd, F_SETFL, O_NONBLOCK);
789#endif 1100#endif
790} 1101}
791 1102
792static void noinline 1103static void noinline
793siginit (EV_P) 1104evpipe_init (EV_P)
794{ 1105{
1106 if (!ev_is_active (&pipe_w))
1107 {
1108#if EV_USE_EVENTFD
1109 if ((evfd = eventfd (0, 0)) >= 0)
1110 {
1111 evpipe [0] = -1;
1112 fd_intern (evfd);
1113 ev_io_set (&pipe_w, evfd, EV_READ);
1114 }
1115 else
1116#endif
1117 {
1118 while (pipe (evpipe))
1119 ev_syserr ("(libev) error creating signal/async pipe");
1120
795 fd_intern (sigpipe [0]); 1121 fd_intern (evpipe [0]);
796 fd_intern (sigpipe [1]); 1122 fd_intern (evpipe [1]);
1123 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1124 }
797 1125
798 ev_io_set (&sigev, sigpipe [0], EV_READ);
799 ev_io_start (EV_A_ &sigev); 1126 ev_io_start (EV_A_ &pipe_w);
800 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1127 ev_unref (EV_A); /* watcher should not keep loop alive */
1128 }
1129}
1130
1131inline_size void
1132evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1133{
1134 if (!*flag)
1135 {
1136 int old_errno = errno; /* save errno because write might clobber it */
1137
1138 *flag = 1;
1139
1140#if EV_USE_EVENTFD
1141 if (evfd >= 0)
1142 {
1143 uint64_t counter = 1;
1144 write (evfd, &counter, sizeof (uint64_t));
1145 }
1146 else
1147#endif
1148 write (evpipe [1], &old_errno, 1);
1149
1150 errno = old_errno;
1151 }
1152}
1153
1154/* called whenever the libev signal pipe */
1155/* got some events (signal, async) */
1156static void
1157pipecb (EV_P_ ev_io *iow, int revents)
1158{
1159#if EV_USE_EVENTFD
1160 if (evfd >= 0)
1161 {
1162 uint64_t counter;
1163 read (evfd, &counter, sizeof (uint64_t));
1164 }
1165 else
1166#endif
1167 {
1168 char dummy;
1169 read (evpipe [0], &dummy, 1);
1170 }
1171
1172 if (gotsig && ev_is_default_loop (EV_A))
1173 {
1174 int signum;
1175 gotsig = 0;
1176
1177 for (signum = signalmax; signum--; )
1178 if (signals [signum].gotsig)
1179 ev_feed_signal_event (EV_A_ signum + 1);
1180 }
1181
1182#if EV_ASYNC_ENABLE
1183 if (gotasync)
1184 {
1185 int i;
1186 gotasync = 0;
1187
1188 for (i = asynccnt; i--; )
1189 if (asyncs [i]->sent)
1190 {
1191 asyncs [i]->sent = 0;
1192 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1193 }
1194 }
1195#endif
801} 1196}
802 1197
803/*****************************************************************************/ 1198/*****************************************************************************/
804 1199
1200static void
1201ev_sighandler (int signum)
1202{
1203#if EV_MULTIPLICITY
1204 struct ev_loop *loop = &default_loop_struct;
1205#endif
1206
1207#if _WIN32
1208 signal (signum, ev_sighandler);
1209#endif
1210
1211 signals [signum - 1].gotsig = 1;
1212 evpipe_write (EV_A_ &gotsig);
1213}
1214
1215void noinline
1216ev_feed_signal_event (EV_P_ int signum)
1217{
1218 WL w;
1219
1220#if EV_MULTIPLICITY
1221 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1222#endif
1223
1224 --signum;
1225
1226 if (signum < 0 || signum >= signalmax)
1227 return;
1228
1229 signals [signum].gotsig = 0;
1230
1231 for (w = signals [signum].head; w; w = w->next)
1232 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1233}
1234
1235/*****************************************************************************/
1236
805static WL childs [EV_PID_HASHSIZE]; 1237static WL childs [EV_PID_HASHSIZE];
806 1238
807#ifndef _WIN32 1239#ifndef _WIN32
808 1240
809static ev_signal childev; 1241static ev_signal childev;
810 1242
811void inline_speed 1243#ifndef WIFCONTINUED
1244# define WIFCONTINUED(status) 0
1245#endif
1246
1247/* handle a single child status event */
1248inline_speed void
812child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1249child_reap (EV_P_ int chain, int pid, int status)
813{ 1250{
814 ev_child *w; 1251 ev_child *w;
1252 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
815 1253
816 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1254 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1255 {
817 if (w->pid == pid || !w->pid) 1256 if ((w->pid == pid || !w->pid)
1257 && (!traced || (w->flags & 1)))
818 { 1258 {
819 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1259 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
820 w->rpid = pid; 1260 w->rpid = pid;
821 w->rstatus = status; 1261 w->rstatus = status;
822 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1262 ev_feed_event (EV_A_ (W)w, EV_CHILD);
823 } 1263 }
1264 }
824} 1265}
825 1266
826#ifndef WCONTINUED 1267#ifndef WCONTINUED
827# define WCONTINUED 0 1268# define WCONTINUED 0
828#endif 1269#endif
829 1270
1271/* called on sigchld etc., calls waitpid */
830static void 1272static void
831childcb (EV_P_ ev_signal *sw, int revents) 1273childcb (EV_P_ ev_signal *sw, int revents)
832{ 1274{
833 int pid, status; 1275 int pid, status;
834 1276
837 if (!WCONTINUED 1279 if (!WCONTINUED
838 || errno != EINVAL 1280 || errno != EINVAL
839 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1281 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
840 return; 1282 return;
841 1283
842 /* make sure we are called again until all childs have been reaped */ 1284 /* make sure we are called again until all children have been reaped */
843 /* we need to do it this way so that the callback gets called before we continue */ 1285 /* we need to do it this way so that the callback gets called before we continue */
844 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1286 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
845 1287
846 child_reap (EV_A_ sw, pid, pid, status); 1288 child_reap (EV_A_ pid, pid, status);
847 if (EV_PID_HASHSIZE > 1) 1289 if (EV_PID_HASHSIZE > 1)
848 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1290 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
849} 1291}
850 1292
851#endif 1293#endif
852 1294
853/*****************************************************************************/ 1295/*****************************************************************************/
915 /* kqueue is borked on everything but netbsd apparently */ 1357 /* kqueue is borked on everything but netbsd apparently */
916 /* it usually doesn't work correctly on anything but sockets and pipes */ 1358 /* it usually doesn't work correctly on anything but sockets and pipes */
917 flags &= ~EVBACKEND_KQUEUE; 1359 flags &= ~EVBACKEND_KQUEUE;
918#endif 1360#endif
919#ifdef __APPLE__ 1361#ifdef __APPLE__
920 // flags &= ~EVBACKEND_KQUEUE; for documentation 1362 /* only select works correctly on that "unix-certified" platform */
921 flags &= ~EVBACKEND_POLL; 1363 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1364 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
922#endif 1365#endif
923 1366
924 return flags; 1367 return flags;
925} 1368}
926 1369
927unsigned int 1370unsigned int
928ev_embeddable_backends (void) 1371ev_embeddable_backends (void)
929{ 1372{
930 return EVBACKEND_EPOLL 1373 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
931 | EVBACKEND_KQUEUE 1374
932 | EVBACKEND_PORT; 1375 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1376 /* please fix it and tell me how to detect the fix */
1377 flags &= ~EVBACKEND_EPOLL;
1378
1379 return flags;
933} 1380}
934 1381
935unsigned int 1382unsigned int
936ev_backend (EV_P) 1383ev_backend (EV_P)
937{ 1384{
938 return backend; 1385 return backend;
939} 1386}
940 1387
1388#if EV_MINIMAL < 2
941unsigned int 1389unsigned int
942ev_loop_count (EV_P) 1390ev_loop_count (EV_P)
943{ 1391{
944 return loop_count; 1392 return loop_count;
945} 1393}
946 1394
1395unsigned int
1396ev_loop_depth (EV_P)
1397{
1398 return loop_depth;
1399}
1400
1401void
1402ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1403{
1404 io_blocktime = interval;
1405}
1406
1407void
1408ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1409{
1410 timeout_blocktime = interval;
1411}
1412
1413void
1414ev_set_userdata (EV_P_ void *data)
1415{
1416 userdata = data;
1417}
1418
1419void *
1420ev_userdata (EV_P)
1421{
1422 return userdata;
1423}
1424
1425void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1426{
1427 invoke_cb = invoke_pending_cb;
1428}
1429
1430void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1431{
1432 release_cb = release;
1433 acquire_cb = acquire;
1434}
1435#endif
1436
1437/* initialise a loop structure, must be zero-initialised */
947static void noinline 1438static void noinline
948loop_init (EV_P_ unsigned int flags) 1439loop_init (EV_P_ unsigned int flags)
949{ 1440{
950 if (!backend) 1441 if (!backend)
951 { 1442 {
1443#if EV_USE_REALTIME
1444 if (!have_realtime)
1445 {
1446 struct timespec ts;
1447
1448 if (!clock_gettime (CLOCK_REALTIME, &ts))
1449 have_realtime = 1;
1450 }
1451#endif
1452
952#if EV_USE_MONOTONIC 1453#if EV_USE_MONOTONIC
1454 if (!have_monotonic)
953 { 1455 {
954 struct timespec ts; 1456 struct timespec ts;
1457
955 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1458 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
956 have_monotonic = 1; 1459 have_monotonic = 1;
957 } 1460 }
958#endif 1461#endif
959 1462
960 ev_rt_now = ev_time (); 1463 ev_rt_now = ev_time ();
961 mn_now = get_clock (); 1464 mn_now = get_clock ();
962 now_floor = mn_now; 1465 now_floor = mn_now;
963 rtmn_diff = ev_rt_now - mn_now; 1466 rtmn_diff = ev_rt_now - mn_now;
1467#if EV_MINIMAL < 2
1468 invoke_cb = ev_invoke_pending;
1469#endif
1470
1471 io_blocktime = 0.;
1472 timeout_blocktime = 0.;
1473 backend = 0;
1474 backend_fd = -1;
1475 gotasync = 0;
1476#if EV_USE_INOTIFY
1477 fs_fd = -2;
1478#endif
964 1479
965 /* pid check not overridable via env */ 1480 /* pid check not overridable via env */
966#ifndef _WIN32 1481#ifndef _WIN32
967 if (flags & EVFLAG_FORKCHECK) 1482 if (flags & EVFLAG_FORKCHECK)
968 curpid = getpid (); 1483 curpid = getpid ();
971 if (!(flags & EVFLAG_NOENV) 1486 if (!(flags & EVFLAG_NOENV)
972 && !enable_secure () 1487 && !enable_secure ()
973 && getenv ("LIBEV_FLAGS")) 1488 && getenv ("LIBEV_FLAGS"))
974 flags = atoi (getenv ("LIBEV_FLAGS")); 1489 flags = atoi (getenv ("LIBEV_FLAGS"));
975 1490
976 if (!(flags & 0x0000ffffUL)) 1491 if (!(flags & 0x0000ffffU))
977 flags |= ev_recommended_backends (); 1492 flags |= ev_recommended_backends ();
978
979 backend = 0;
980 backend_fd = -1;
981#if EV_USE_INOTIFY
982 fs_fd = -2;
983#endif
984 1493
985#if EV_USE_PORT 1494#if EV_USE_PORT
986 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1495 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
987#endif 1496#endif
988#if EV_USE_KQUEUE 1497#if EV_USE_KQUEUE
996#endif 1505#endif
997#if EV_USE_SELECT 1506#if EV_USE_SELECT
998 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1507 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
999#endif 1508#endif
1000 1509
1510 ev_prepare_init (&pending_w, pendingcb);
1511
1001 ev_init (&sigev, sigcb); 1512 ev_init (&pipe_w, pipecb);
1002 ev_set_priority (&sigev, EV_MAXPRI); 1513 ev_set_priority (&pipe_w, EV_MAXPRI);
1003 } 1514 }
1004} 1515}
1005 1516
1517/* free up a loop structure */
1006static void noinline 1518static void noinline
1007loop_destroy (EV_P) 1519loop_destroy (EV_P)
1008{ 1520{
1009 int i; 1521 int i;
1522
1523 if (ev_is_active (&pipe_w))
1524 {
1525 ev_ref (EV_A); /* signal watcher */
1526 ev_io_stop (EV_A_ &pipe_w);
1527
1528#if EV_USE_EVENTFD
1529 if (evfd >= 0)
1530 close (evfd);
1531#endif
1532
1533 if (evpipe [0] >= 0)
1534 {
1535 close (evpipe [0]);
1536 close (evpipe [1]);
1537 }
1538 }
1010 1539
1011#if EV_USE_INOTIFY 1540#if EV_USE_INOTIFY
1012 if (fs_fd >= 0) 1541 if (fs_fd >= 0)
1013 close (fs_fd); 1542 close (fs_fd);
1014#endif 1543#endif
1041 } 1570 }
1042 1571
1043 ev_free (anfds); anfdmax = 0; 1572 ev_free (anfds); anfdmax = 0;
1044 1573
1045 /* have to use the microsoft-never-gets-it-right macro */ 1574 /* have to use the microsoft-never-gets-it-right macro */
1575 array_free (rfeed, EMPTY);
1046 array_free (fdchange, EMPTY); 1576 array_free (fdchange, EMPTY);
1047 array_free (timer, EMPTY); 1577 array_free (timer, EMPTY);
1048#if EV_PERIODIC_ENABLE 1578#if EV_PERIODIC_ENABLE
1049 array_free (periodic, EMPTY); 1579 array_free (periodic, EMPTY);
1050#endif 1580#endif
1051#if EV_FORK_ENABLE 1581#if EV_FORK_ENABLE
1052 array_free (fork, EMPTY); 1582 array_free (fork, EMPTY);
1053#endif 1583#endif
1054 array_free (prepare, EMPTY); 1584 array_free (prepare, EMPTY);
1055 array_free (check, EMPTY); 1585 array_free (check, EMPTY);
1586#if EV_ASYNC_ENABLE
1587 array_free (async, EMPTY);
1588#endif
1056 1589
1057 backend = 0; 1590 backend = 0;
1058} 1591}
1059 1592
1593#if EV_USE_INOTIFY
1060void inline_size infy_fork (EV_P); 1594inline_size void infy_fork (EV_P);
1595#endif
1061 1596
1062void inline_size 1597inline_size void
1063loop_fork (EV_P) 1598loop_fork (EV_P)
1064{ 1599{
1065#if EV_USE_PORT 1600#if EV_USE_PORT
1066 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1601 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1067#endif 1602#endif
1073#endif 1608#endif
1074#if EV_USE_INOTIFY 1609#if EV_USE_INOTIFY
1075 infy_fork (EV_A); 1610 infy_fork (EV_A);
1076#endif 1611#endif
1077 1612
1078 if (ev_is_active (&sigev)) 1613 if (ev_is_active (&pipe_w))
1079 { 1614 {
1080 /* default loop */ 1615 /* this "locks" the handlers against writing to the pipe */
1616 /* while we modify the fd vars */
1617 gotsig = 1;
1618#if EV_ASYNC_ENABLE
1619 gotasync = 1;
1620#endif
1081 1621
1082 ev_ref (EV_A); 1622 ev_ref (EV_A);
1083 ev_io_stop (EV_A_ &sigev); 1623 ev_io_stop (EV_A_ &pipe_w);
1624
1625#if EV_USE_EVENTFD
1626 if (evfd >= 0)
1627 close (evfd);
1628#endif
1629
1630 if (evpipe [0] >= 0)
1631 {
1084 close (sigpipe [0]); 1632 close (evpipe [0]);
1085 close (sigpipe [1]); 1633 close (evpipe [1]);
1634 }
1086 1635
1087 while (pipe (sigpipe))
1088 syserr ("(libev) error creating pipe");
1089
1090 siginit (EV_A); 1636 evpipe_init (EV_A);
1637 /* now iterate over everything, in case we missed something */
1638 pipecb (EV_A_ &pipe_w, EV_READ);
1091 } 1639 }
1092 1640
1093 postfork = 0; 1641 postfork = 0;
1094} 1642}
1095 1643
1096#if EV_MULTIPLICITY 1644#if EV_MULTIPLICITY
1645
1097struct ev_loop * 1646struct ev_loop *
1098ev_loop_new (unsigned int flags) 1647ev_loop_new (unsigned int flags)
1099{ 1648{
1100 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1649 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1101 1650
1117} 1666}
1118 1667
1119void 1668void
1120ev_loop_fork (EV_P) 1669ev_loop_fork (EV_P)
1121{ 1670{
1122 postfork = 1; 1671 postfork = 1; /* must be in line with ev_default_fork */
1123} 1672}
1673#endif /* multiplicity */
1124 1674
1675#if EV_VERIFY
1676static void noinline
1677verify_watcher (EV_P_ W w)
1678{
1679 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1680
1681 if (w->pending)
1682 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1683}
1684
1685static void noinline
1686verify_heap (EV_P_ ANHE *heap, int N)
1687{
1688 int i;
1689
1690 for (i = HEAP0; i < N + HEAP0; ++i)
1691 {
1692 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1693 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1694 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1695
1696 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1697 }
1698}
1699
1700static void noinline
1701array_verify (EV_P_ W *ws, int cnt)
1702{
1703 while (cnt--)
1704 {
1705 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1706 verify_watcher (EV_A_ ws [cnt]);
1707 }
1708}
1709#endif
1710
1711#if EV_MINIMAL < 2
1712void
1713ev_loop_verify (EV_P)
1714{
1715#if EV_VERIFY
1716 int i;
1717 WL w;
1718
1719 assert (activecnt >= -1);
1720
1721 assert (fdchangemax >= fdchangecnt);
1722 for (i = 0; i < fdchangecnt; ++i)
1723 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1724
1725 assert (anfdmax >= 0);
1726 for (i = 0; i < anfdmax; ++i)
1727 for (w = anfds [i].head; w; w = w->next)
1728 {
1729 verify_watcher (EV_A_ (W)w);
1730 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1731 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1732 }
1733
1734 assert (timermax >= timercnt);
1735 verify_heap (EV_A_ timers, timercnt);
1736
1737#if EV_PERIODIC_ENABLE
1738 assert (periodicmax >= periodiccnt);
1739 verify_heap (EV_A_ periodics, periodiccnt);
1740#endif
1741
1742 for (i = NUMPRI; i--; )
1743 {
1744 assert (pendingmax [i] >= pendingcnt [i]);
1745#if EV_IDLE_ENABLE
1746 assert (idleall >= 0);
1747 assert (idlemax [i] >= idlecnt [i]);
1748 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1749#endif
1750 }
1751
1752#if EV_FORK_ENABLE
1753 assert (forkmax >= forkcnt);
1754 array_verify (EV_A_ (W *)forks, forkcnt);
1755#endif
1756
1757#if EV_ASYNC_ENABLE
1758 assert (asyncmax >= asynccnt);
1759 array_verify (EV_A_ (W *)asyncs, asynccnt);
1760#endif
1761
1762 assert (preparemax >= preparecnt);
1763 array_verify (EV_A_ (W *)prepares, preparecnt);
1764
1765 assert (checkmax >= checkcnt);
1766 array_verify (EV_A_ (W *)checks, checkcnt);
1767
1768# if 0
1769 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1770 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1771# endif
1772#endif
1773}
1125#endif 1774#endif
1126 1775
1127#if EV_MULTIPLICITY 1776#if EV_MULTIPLICITY
1128struct ev_loop * 1777struct ev_loop *
1129ev_default_loop_init (unsigned int flags) 1778ev_default_loop_init (unsigned int flags)
1130#else 1779#else
1131int 1780int
1132ev_default_loop (unsigned int flags) 1781ev_default_loop (unsigned int flags)
1133#endif 1782#endif
1134{ 1783{
1135 if (sigpipe [0] == sigpipe [1])
1136 if (pipe (sigpipe))
1137 return 0;
1138
1139 if (!ev_default_loop_ptr) 1784 if (!ev_default_loop_ptr)
1140 { 1785 {
1141#if EV_MULTIPLICITY 1786#if EV_MULTIPLICITY
1142 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1787 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1143#else 1788#else
1146 1791
1147 loop_init (EV_A_ flags); 1792 loop_init (EV_A_ flags);
1148 1793
1149 if (ev_backend (EV_A)) 1794 if (ev_backend (EV_A))
1150 { 1795 {
1151 siginit (EV_A);
1152
1153#ifndef _WIN32 1796#ifndef _WIN32
1154 ev_signal_init (&childev, childcb, SIGCHLD); 1797 ev_signal_init (&childev, childcb, SIGCHLD);
1155 ev_set_priority (&childev, EV_MAXPRI); 1798 ev_set_priority (&childev, EV_MAXPRI);
1156 ev_signal_start (EV_A_ &childev); 1799 ev_signal_start (EV_A_ &childev);
1157 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1800 ev_unref (EV_A); /* child watcher should not keep loop alive */
1169{ 1812{
1170#if EV_MULTIPLICITY 1813#if EV_MULTIPLICITY
1171 struct ev_loop *loop = ev_default_loop_ptr; 1814 struct ev_loop *loop = ev_default_loop_ptr;
1172#endif 1815#endif
1173 1816
1817 ev_default_loop_ptr = 0;
1818
1174#ifndef _WIN32 1819#ifndef _WIN32
1175 ev_ref (EV_A); /* child watcher */ 1820 ev_ref (EV_A); /* child watcher */
1176 ev_signal_stop (EV_A_ &childev); 1821 ev_signal_stop (EV_A_ &childev);
1177#endif 1822#endif
1178 1823
1179 ev_ref (EV_A); /* signal watcher */
1180 ev_io_stop (EV_A_ &sigev);
1181
1182 close (sigpipe [0]); sigpipe [0] = 0;
1183 close (sigpipe [1]); sigpipe [1] = 0;
1184
1185 loop_destroy (EV_A); 1824 loop_destroy (EV_A);
1186} 1825}
1187 1826
1188void 1827void
1189ev_default_fork (void) 1828ev_default_fork (void)
1190{ 1829{
1191#if EV_MULTIPLICITY 1830#if EV_MULTIPLICITY
1192 struct ev_loop *loop = ev_default_loop_ptr; 1831 struct ev_loop *loop = ev_default_loop_ptr;
1193#endif 1832#endif
1194 1833
1195 if (backend) 1834 postfork = 1; /* must be in line with ev_loop_fork */
1196 postfork = 1;
1197} 1835}
1198 1836
1199/*****************************************************************************/ 1837/*****************************************************************************/
1200 1838
1201void 1839void
1202ev_invoke (EV_P_ void *w, int revents) 1840ev_invoke (EV_P_ void *w, int revents)
1203{ 1841{
1204 EV_CB_INVOKE ((W)w, revents); 1842 EV_CB_INVOKE ((W)w, revents);
1205} 1843}
1206 1844
1207void inline_speed 1845void noinline
1208call_pending (EV_P) 1846ev_invoke_pending (EV_P)
1209{ 1847{
1210 int pri; 1848 int pri;
1211 1849
1212 for (pri = NUMPRI; pri--; ) 1850 for (pri = NUMPRI; pri--; )
1213 while (pendingcnt [pri]) 1851 while (pendingcnt [pri])
1214 { 1852 {
1215 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1853 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1216 1854
1217 if (expect_true (p->w))
1218 {
1219 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1855 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1856 /* ^ this is no longer true, as pending_w could be here */
1220 1857
1221 p->w->pending = 0; 1858 p->w->pending = 0;
1222 EV_CB_INVOKE (p->w, p->events); 1859 EV_CB_INVOKE (p->w, p->events);
1223 } 1860 EV_FREQUENT_CHECK;
1224 } 1861 }
1225} 1862}
1226 1863
1227void inline_size
1228timers_reify (EV_P)
1229{
1230 while (timercnt && ((WT)timers [0])->at <= mn_now)
1231 {
1232 ev_timer *w = (ev_timer *)timers [0];
1233
1234 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1235
1236 /* first reschedule or stop timer */
1237 if (w->repeat)
1238 {
1239 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1240
1241 ((WT)w)->at += w->repeat;
1242 if (((WT)w)->at < mn_now)
1243 ((WT)w)->at = mn_now;
1244
1245 downheap (timers, timercnt, 0);
1246 }
1247 else
1248 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1249
1250 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1251 }
1252}
1253
1254#if EV_PERIODIC_ENABLE
1255void inline_size
1256periodics_reify (EV_P)
1257{
1258 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1259 {
1260 ev_periodic *w = (ev_periodic *)periodics [0];
1261
1262 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1263
1264 /* first reschedule or stop timer */
1265 if (w->reschedule_cb)
1266 {
1267 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1268 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1269 downheap (periodics, periodiccnt, 0);
1270 }
1271 else if (w->interval)
1272 {
1273 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1274 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1275 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1276 downheap (periodics, periodiccnt, 0);
1277 }
1278 else
1279 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1280
1281 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1282 }
1283}
1284
1285static void noinline
1286periodics_reschedule (EV_P)
1287{
1288 int i;
1289
1290 /* adjust periodics after time jump */
1291 for (i = 0; i < periodiccnt; ++i)
1292 {
1293 ev_periodic *w = (ev_periodic *)periodics [i];
1294
1295 if (w->reschedule_cb)
1296 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1297 else if (w->interval)
1298 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1299 }
1300
1301 /* now rebuild the heap */
1302 for (i = periodiccnt >> 1; i--; )
1303 downheap (periodics, periodiccnt, i);
1304}
1305#endif
1306
1307#if EV_IDLE_ENABLE 1864#if EV_IDLE_ENABLE
1308void inline_size 1865/* make idle watchers pending. this handles the "call-idle */
1866/* only when higher priorities are idle" logic */
1867inline_size void
1309idle_reify (EV_P) 1868idle_reify (EV_P)
1310{ 1869{
1311 if (expect_false (idleall)) 1870 if (expect_false (idleall))
1312 { 1871 {
1313 int pri; 1872 int pri;
1325 } 1884 }
1326 } 1885 }
1327} 1886}
1328#endif 1887#endif
1329 1888
1330void inline_speed 1889/* make timers pending */
1890inline_size void
1891timers_reify (EV_P)
1892{
1893 EV_FREQUENT_CHECK;
1894
1895 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1896 {
1897 do
1898 {
1899 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1900
1901 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1902
1903 /* first reschedule or stop timer */
1904 if (w->repeat)
1905 {
1906 ev_at (w) += w->repeat;
1907 if (ev_at (w) < mn_now)
1908 ev_at (w) = mn_now;
1909
1910 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1911
1912 ANHE_at_cache (timers [HEAP0]);
1913 downheap (timers, timercnt, HEAP0);
1914 }
1915 else
1916 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1917
1918 EV_FREQUENT_CHECK;
1919 feed_reverse (EV_A_ (W)w);
1920 }
1921 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1922
1923 feed_reverse_done (EV_A_ EV_TIMEOUT);
1924 }
1925}
1926
1927#if EV_PERIODIC_ENABLE
1928/* make periodics pending */
1929inline_size void
1930periodics_reify (EV_P)
1931{
1932 EV_FREQUENT_CHECK;
1933
1934 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1935 {
1936 int feed_count = 0;
1937
1938 do
1939 {
1940 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1941
1942 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1943
1944 /* first reschedule or stop timer */
1945 if (w->reschedule_cb)
1946 {
1947 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1948
1949 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1950
1951 ANHE_at_cache (periodics [HEAP0]);
1952 downheap (periodics, periodiccnt, HEAP0);
1953 }
1954 else if (w->interval)
1955 {
1956 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1957 /* if next trigger time is not sufficiently in the future, put it there */
1958 /* this might happen because of floating point inexactness */
1959 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1960 {
1961 ev_at (w) += w->interval;
1962
1963 /* if interval is unreasonably low we might still have a time in the past */
1964 /* so correct this. this will make the periodic very inexact, but the user */
1965 /* has effectively asked to get triggered more often than possible */
1966 if (ev_at (w) < ev_rt_now)
1967 ev_at (w) = ev_rt_now;
1968 }
1969
1970 ANHE_at_cache (periodics [HEAP0]);
1971 downheap (periodics, periodiccnt, HEAP0);
1972 }
1973 else
1974 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1975
1976 EV_FREQUENT_CHECK;
1977 feed_reverse (EV_A_ (W)w);
1978 }
1979 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1980
1981 feed_reverse_done (EV_A_ EV_PERIODIC);
1982 }
1983}
1984
1985/* simply recalculate all periodics */
1986/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1987static void noinline
1988periodics_reschedule (EV_P)
1989{
1990 int i;
1991
1992 /* adjust periodics after time jump */
1993 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1994 {
1995 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1996
1997 if (w->reschedule_cb)
1998 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1999 else if (w->interval)
2000 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2001
2002 ANHE_at_cache (periodics [i]);
2003 }
2004
2005 reheap (periodics, periodiccnt);
2006}
2007#endif
2008
2009/* adjust all timers by a given offset */
2010static void noinline
2011timers_reschedule (EV_P_ ev_tstamp adjust)
2012{
2013 int i;
2014
2015 for (i = 0; i < timercnt; ++i)
2016 {
2017 ANHE *he = timers + i + HEAP0;
2018 ANHE_w (*he)->at += adjust;
2019 ANHE_at_cache (*he);
2020 }
2021}
2022
2023/* fetch new monotonic and realtime times from the kernel */
2024/* also detetc if there was a timejump, and act accordingly */
2025inline_speed void
1331time_update (EV_P_ ev_tstamp max_block) 2026time_update (EV_P_ ev_tstamp max_block)
1332{ 2027{
1333 int i;
1334
1335#if EV_USE_MONOTONIC 2028#if EV_USE_MONOTONIC
1336 if (expect_true (have_monotonic)) 2029 if (expect_true (have_monotonic))
1337 { 2030 {
2031 int i;
1338 ev_tstamp odiff = rtmn_diff; 2032 ev_tstamp odiff = rtmn_diff;
1339 2033
1340 mn_now = get_clock (); 2034 mn_now = get_clock ();
1341 2035
1342 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2036 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1360 */ 2054 */
1361 for (i = 4; --i; ) 2055 for (i = 4; --i; )
1362 { 2056 {
1363 rtmn_diff = ev_rt_now - mn_now; 2057 rtmn_diff = ev_rt_now - mn_now;
1364 2058
1365 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2059 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1366 return; /* all is well */ 2060 return; /* all is well */
1367 2061
1368 ev_rt_now = ev_time (); 2062 ev_rt_now = ev_time ();
1369 mn_now = get_clock (); 2063 mn_now = get_clock ();
1370 now_floor = mn_now; 2064 now_floor = mn_now;
1371 } 2065 }
1372 2066
2067 /* no timer adjustment, as the monotonic clock doesn't jump */
2068 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1373# if EV_PERIODIC_ENABLE 2069# if EV_PERIODIC_ENABLE
1374 periodics_reschedule (EV_A); 2070 periodics_reschedule (EV_A);
1375# endif 2071# endif
1376 /* no timer adjustment, as the monotonic clock doesn't jump */
1377 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1378 } 2072 }
1379 else 2073 else
1380#endif 2074#endif
1381 { 2075 {
1382 ev_rt_now = ev_time (); 2076 ev_rt_now = ev_time ();
1383 2077
1384 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2078 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1385 { 2079 {
2080 /* adjust timers. this is easy, as the offset is the same for all of them */
2081 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1386#if EV_PERIODIC_ENABLE 2082#if EV_PERIODIC_ENABLE
1387 periodics_reschedule (EV_A); 2083 periodics_reschedule (EV_A);
1388#endif 2084#endif
1389 /* adjust timers. this is easy, as the offset is the same for all of them */
1390 for (i = 0; i < timercnt; ++i)
1391 ((WT)timers [i])->at += ev_rt_now - mn_now;
1392 } 2085 }
1393 2086
1394 mn_now = ev_rt_now; 2087 mn_now = ev_rt_now;
1395 } 2088 }
1396} 2089}
1397 2090
1398void 2091void
1399ev_ref (EV_P)
1400{
1401 ++activecnt;
1402}
1403
1404void
1405ev_unref (EV_P)
1406{
1407 --activecnt;
1408}
1409
1410static int loop_done;
1411
1412void
1413ev_loop (EV_P_ int flags) 2092ev_loop (EV_P_ int flags)
1414{ 2093{
1415 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2094#if EV_MINIMAL < 2
1416 ? EVUNLOOP_ONE 2095 ++loop_depth;
1417 : EVUNLOOP_CANCEL; 2096#endif
1418 2097
2098 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2099
2100 loop_done = EVUNLOOP_CANCEL;
2101
1419 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2102 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1420 2103
1421 do 2104 do
1422 { 2105 {
2106#if EV_VERIFY >= 2
2107 ev_loop_verify (EV_A);
2108#endif
2109
1423#ifndef _WIN32 2110#ifndef _WIN32
1424 if (expect_false (curpid)) /* penalise the forking check even more */ 2111 if (expect_false (curpid)) /* penalise the forking check even more */
1425 if (expect_false (getpid () != curpid)) 2112 if (expect_false (getpid () != curpid))
1426 { 2113 {
1427 curpid = getpid (); 2114 curpid = getpid ();
1433 /* we might have forked, so queue fork handlers */ 2120 /* we might have forked, so queue fork handlers */
1434 if (expect_false (postfork)) 2121 if (expect_false (postfork))
1435 if (forkcnt) 2122 if (forkcnt)
1436 { 2123 {
1437 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2124 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1438 call_pending (EV_A); 2125 EV_INVOKE_PENDING;
1439 } 2126 }
1440#endif 2127#endif
1441 2128
1442 /* queue prepare watchers (and execute them) */ 2129 /* queue prepare watchers (and execute them) */
1443 if (expect_false (preparecnt)) 2130 if (expect_false (preparecnt))
1444 { 2131 {
1445 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2132 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1446 call_pending (EV_A); 2133 EV_INVOKE_PENDING;
1447 } 2134 }
1448 2135
1449 if (expect_false (!activecnt)) 2136 if (expect_false (loop_done))
1450 break; 2137 break;
1451 2138
1452 /* we might have forked, so reify kernel state if necessary */ 2139 /* we might have forked, so reify kernel state if necessary */
1453 if (expect_false (postfork)) 2140 if (expect_false (postfork))
1454 loop_fork (EV_A); 2141 loop_fork (EV_A);
1456 /* update fd-related kernel structures */ 2143 /* update fd-related kernel structures */
1457 fd_reify (EV_A); 2144 fd_reify (EV_A);
1458 2145
1459 /* calculate blocking time */ 2146 /* calculate blocking time */
1460 { 2147 {
1461 ev_tstamp block; 2148 ev_tstamp waittime = 0.;
2149 ev_tstamp sleeptime = 0.;
1462 2150
1463 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2151 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1464 block = 0.; /* do not block at all */
1465 else
1466 { 2152 {
2153 /* remember old timestamp for io_blocktime calculation */
2154 ev_tstamp prev_mn_now = mn_now;
2155
1467 /* update time to cancel out callback processing overhead */ 2156 /* update time to cancel out callback processing overhead */
1468 time_update (EV_A_ 1e100); 2157 time_update (EV_A_ 1e100);
1469 2158
1470 block = MAX_BLOCKTIME; 2159 waittime = MAX_BLOCKTIME;
1471 2160
1472 if (timercnt) 2161 if (timercnt)
1473 { 2162 {
1474 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2163 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1475 if (block > to) block = to; 2164 if (waittime > to) waittime = to;
1476 } 2165 }
1477 2166
1478#if EV_PERIODIC_ENABLE 2167#if EV_PERIODIC_ENABLE
1479 if (periodiccnt) 2168 if (periodiccnt)
1480 { 2169 {
1481 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2170 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1482 if (block > to) block = to; 2171 if (waittime > to) waittime = to;
1483 } 2172 }
1484#endif 2173#endif
1485 2174
2175 /* don't let timeouts decrease the waittime below timeout_blocktime */
2176 if (expect_false (waittime < timeout_blocktime))
2177 waittime = timeout_blocktime;
2178
2179 /* extra check because io_blocktime is commonly 0 */
1486 if (expect_false (block < 0.)) block = 0.; 2180 if (expect_false (io_blocktime))
2181 {
2182 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2183
2184 if (sleeptime > waittime - backend_fudge)
2185 sleeptime = waittime - backend_fudge;
2186
2187 if (expect_true (sleeptime > 0.))
2188 {
2189 ev_sleep (sleeptime);
2190 waittime -= sleeptime;
2191 }
2192 }
1487 } 2193 }
1488 2194
2195#if EV_MINIMAL < 2
1489 ++loop_count; 2196 ++loop_count;
2197#endif
2198 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1490 backend_poll (EV_A_ block); 2199 backend_poll (EV_A_ waittime);
2200 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1491 2201
1492 /* update ev_rt_now, do magic */ 2202 /* update ev_rt_now, do magic */
1493 time_update (EV_A_ block); 2203 time_update (EV_A_ waittime + sleeptime);
1494 } 2204 }
1495 2205
1496 /* queue pending timers and reschedule them */ 2206 /* queue pending timers and reschedule them */
1497 timers_reify (EV_A); /* relative timers called last */ 2207 timers_reify (EV_A); /* relative timers called last */
1498#if EV_PERIODIC_ENABLE 2208#if EV_PERIODIC_ENABLE
1506 2216
1507 /* queue check watchers, to be executed first */ 2217 /* queue check watchers, to be executed first */
1508 if (expect_false (checkcnt)) 2218 if (expect_false (checkcnt))
1509 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2219 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1510 2220
1511 call_pending (EV_A); 2221 EV_INVOKE_PENDING;
1512
1513 } 2222 }
1514 while (expect_true (activecnt && !loop_done)); 2223 while (expect_true (
2224 activecnt
2225 && !loop_done
2226 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2227 ));
1515 2228
1516 if (loop_done == EVUNLOOP_ONE) 2229 if (loop_done == EVUNLOOP_ONE)
1517 loop_done = EVUNLOOP_CANCEL; 2230 loop_done = EVUNLOOP_CANCEL;
2231
2232#if EV_MINIMAL < 2
2233 --loop_depth;
2234#endif
1518} 2235}
1519 2236
1520void 2237void
1521ev_unloop (EV_P_ int how) 2238ev_unloop (EV_P_ int how)
1522{ 2239{
1523 loop_done = how; 2240 loop_done = how;
1524} 2241}
1525 2242
2243void
2244ev_ref (EV_P)
2245{
2246 ++activecnt;
2247}
2248
2249void
2250ev_unref (EV_P)
2251{
2252 --activecnt;
2253}
2254
2255void
2256ev_now_update (EV_P)
2257{
2258 time_update (EV_A_ 1e100);
2259}
2260
2261void
2262ev_suspend (EV_P)
2263{
2264 ev_now_update (EV_A);
2265}
2266
2267void
2268ev_resume (EV_P)
2269{
2270 ev_tstamp mn_prev = mn_now;
2271
2272 ev_now_update (EV_A);
2273 timers_reschedule (EV_A_ mn_now - mn_prev);
2274#if EV_PERIODIC_ENABLE
2275 /* TODO: really do this? */
2276 periodics_reschedule (EV_A);
2277#endif
2278}
2279
1526/*****************************************************************************/ 2280/*****************************************************************************/
2281/* singly-linked list management, used when the expected list length is short */
1527 2282
1528void inline_size 2283inline_size void
1529wlist_add (WL *head, WL elem) 2284wlist_add (WL *head, WL elem)
1530{ 2285{
1531 elem->next = *head; 2286 elem->next = *head;
1532 *head = elem; 2287 *head = elem;
1533} 2288}
1534 2289
1535void inline_size 2290inline_size void
1536wlist_del (WL *head, WL elem) 2291wlist_del (WL *head, WL elem)
1537{ 2292{
1538 while (*head) 2293 while (*head)
1539 { 2294 {
1540 if (*head == elem) 2295 if (*head == elem)
1545 2300
1546 head = &(*head)->next; 2301 head = &(*head)->next;
1547 } 2302 }
1548} 2303}
1549 2304
1550void inline_speed 2305/* internal, faster, version of ev_clear_pending */
2306inline_speed void
1551clear_pending (EV_P_ W w) 2307clear_pending (EV_P_ W w)
1552{ 2308{
1553 if (w->pending) 2309 if (w->pending)
1554 { 2310 {
1555 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2311 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1556 w->pending = 0; 2312 w->pending = 0;
1557 } 2313 }
1558} 2314}
1559 2315
1560int 2316int
1564 int pending = w_->pending; 2320 int pending = w_->pending;
1565 2321
1566 if (expect_true (pending)) 2322 if (expect_true (pending))
1567 { 2323 {
1568 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2324 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2325 p->w = (W)&pending_w;
1569 w_->pending = 0; 2326 w_->pending = 0;
1570 p->w = 0;
1571 return p->events; 2327 return p->events;
1572 } 2328 }
1573 else 2329 else
1574 return 0; 2330 return 0;
1575} 2331}
1576 2332
1577void inline_size 2333inline_size void
1578pri_adjust (EV_P_ W w) 2334pri_adjust (EV_P_ W w)
1579{ 2335{
1580 int pri = w->priority; 2336 int pri = ev_priority (w);
1581 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2337 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1582 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2338 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1583 w->priority = pri; 2339 ev_set_priority (w, pri);
1584} 2340}
1585 2341
1586void inline_speed 2342inline_speed void
1587ev_start (EV_P_ W w, int active) 2343ev_start (EV_P_ W w, int active)
1588{ 2344{
1589 pri_adjust (EV_A_ w); 2345 pri_adjust (EV_A_ w);
1590 w->active = active; 2346 w->active = active;
1591 ev_ref (EV_A); 2347 ev_ref (EV_A);
1592} 2348}
1593 2349
1594void inline_size 2350inline_size void
1595ev_stop (EV_P_ W w) 2351ev_stop (EV_P_ W w)
1596{ 2352{
1597 ev_unref (EV_A); 2353 ev_unref (EV_A);
1598 w->active = 0; 2354 w->active = 0;
1599} 2355}
1606 int fd = w->fd; 2362 int fd = w->fd;
1607 2363
1608 if (expect_false (ev_is_active (w))) 2364 if (expect_false (ev_is_active (w)))
1609 return; 2365 return;
1610 2366
1611 assert (("ev_io_start called with negative fd", fd >= 0)); 2367 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2368 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2369
2370 EV_FREQUENT_CHECK;
1612 2371
1613 ev_start (EV_A_ (W)w, 1); 2372 ev_start (EV_A_ (W)w, 1);
1614 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2373 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1615 wlist_add (&anfds[fd].head, (WL)w); 2374 wlist_add (&anfds[fd].head, (WL)w);
1616 2375
1617 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2376 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1618 w->events &= ~EV_IOFDSET; 2377 w->events &= ~EV__IOFDSET;
2378
2379 EV_FREQUENT_CHECK;
1619} 2380}
1620 2381
1621void noinline 2382void noinline
1622ev_io_stop (EV_P_ ev_io *w) 2383ev_io_stop (EV_P_ ev_io *w)
1623{ 2384{
1624 clear_pending (EV_A_ (W)w); 2385 clear_pending (EV_A_ (W)w);
1625 if (expect_false (!ev_is_active (w))) 2386 if (expect_false (!ev_is_active (w)))
1626 return; 2387 return;
1627 2388
1628 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2389 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2390
2391 EV_FREQUENT_CHECK;
1629 2392
1630 wlist_del (&anfds[w->fd].head, (WL)w); 2393 wlist_del (&anfds[w->fd].head, (WL)w);
1631 ev_stop (EV_A_ (W)w); 2394 ev_stop (EV_A_ (W)w);
1632 2395
1633 fd_change (EV_A_ w->fd, 1); 2396 fd_change (EV_A_ w->fd, 1);
2397
2398 EV_FREQUENT_CHECK;
1634} 2399}
1635 2400
1636void noinline 2401void noinline
1637ev_timer_start (EV_P_ ev_timer *w) 2402ev_timer_start (EV_P_ ev_timer *w)
1638{ 2403{
1639 if (expect_false (ev_is_active (w))) 2404 if (expect_false (ev_is_active (w)))
1640 return; 2405 return;
1641 2406
1642 ((WT)w)->at += mn_now; 2407 ev_at (w) += mn_now;
1643 2408
1644 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2409 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1645 2410
2411 EV_FREQUENT_CHECK;
2412
2413 ++timercnt;
1646 ev_start (EV_A_ (W)w, ++timercnt); 2414 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1647 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2415 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1648 timers [timercnt - 1] = (WT)w; 2416 ANHE_w (timers [ev_active (w)]) = (WT)w;
1649 upheap (timers, timercnt - 1); 2417 ANHE_at_cache (timers [ev_active (w)]);
2418 upheap (timers, ev_active (w));
1650 2419
2420 EV_FREQUENT_CHECK;
2421
1651 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2422 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1652} 2423}
1653 2424
1654void noinline 2425void noinline
1655ev_timer_stop (EV_P_ ev_timer *w) 2426ev_timer_stop (EV_P_ ev_timer *w)
1656{ 2427{
1657 clear_pending (EV_A_ (W)w); 2428 clear_pending (EV_A_ (W)w);
1658 if (expect_false (!ev_is_active (w))) 2429 if (expect_false (!ev_is_active (w)))
1659 return; 2430 return;
1660 2431
1661 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2432 EV_FREQUENT_CHECK;
1662 2433
1663 { 2434 {
1664 int active = ((W)w)->active; 2435 int active = ev_active (w);
1665 2436
2437 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2438
2439 --timercnt;
2440
1666 if (expect_true (--active < --timercnt)) 2441 if (expect_true (active < timercnt + HEAP0))
1667 { 2442 {
1668 timers [active] = timers [timercnt]; 2443 timers [active] = timers [timercnt + HEAP0];
1669 adjustheap (timers, timercnt, active); 2444 adjustheap (timers, timercnt, active);
1670 } 2445 }
1671 } 2446 }
1672 2447
1673 ((WT)w)->at -= mn_now; 2448 EV_FREQUENT_CHECK;
2449
2450 ev_at (w) -= mn_now;
1674 2451
1675 ev_stop (EV_A_ (W)w); 2452 ev_stop (EV_A_ (W)w);
1676} 2453}
1677 2454
1678void noinline 2455void noinline
1679ev_timer_again (EV_P_ ev_timer *w) 2456ev_timer_again (EV_P_ ev_timer *w)
1680{ 2457{
2458 EV_FREQUENT_CHECK;
2459
1681 if (ev_is_active (w)) 2460 if (ev_is_active (w))
1682 { 2461 {
1683 if (w->repeat) 2462 if (w->repeat)
1684 { 2463 {
1685 ((WT)w)->at = mn_now + w->repeat; 2464 ev_at (w) = mn_now + w->repeat;
2465 ANHE_at_cache (timers [ev_active (w)]);
1686 adjustheap (timers, timercnt, ((W)w)->active - 1); 2466 adjustheap (timers, timercnt, ev_active (w));
1687 } 2467 }
1688 else 2468 else
1689 ev_timer_stop (EV_A_ w); 2469 ev_timer_stop (EV_A_ w);
1690 } 2470 }
1691 else if (w->repeat) 2471 else if (w->repeat)
1692 { 2472 {
1693 w->at = w->repeat; 2473 ev_at (w) = w->repeat;
1694 ev_timer_start (EV_A_ w); 2474 ev_timer_start (EV_A_ w);
1695 } 2475 }
2476
2477 EV_FREQUENT_CHECK;
1696} 2478}
1697 2479
1698#if EV_PERIODIC_ENABLE 2480#if EV_PERIODIC_ENABLE
1699void noinline 2481void noinline
1700ev_periodic_start (EV_P_ ev_periodic *w) 2482ev_periodic_start (EV_P_ ev_periodic *w)
1701{ 2483{
1702 if (expect_false (ev_is_active (w))) 2484 if (expect_false (ev_is_active (w)))
1703 return; 2485 return;
1704 2486
1705 if (w->reschedule_cb) 2487 if (w->reschedule_cb)
1706 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2488 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1707 else if (w->interval) 2489 else if (w->interval)
1708 { 2490 {
1709 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2491 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1710 /* this formula differs from the one in periodic_reify because we do not always round up */ 2492 /* this formula differs from the one in periodic_reify because we do not always round up */
1711 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2493 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1712 } 2494 }
1713 else 2495 else
1714 ((WT)w)->at = w->offset; 2496 ev_at (w) = w->offset;
1715 2497
2498 EV_FREQUENT_CHECK;
2499
2500 ++periodiccnt;
1716 ev_start (EV_A_ (W)w, ++periodiccnt); 2501 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1717 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2502 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1718 periodics [periodiccnt - 1] = (WT)w; 2503 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1719 upheap (periodics, periodiccnt - 1); 2504 ANHE_at_cache (periodics [ev_active (w)]);
2505 upheap (periodics, ev_active (w));
1720 2506
2507 EV_FREQUENT_CHECK;
2508
1721 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2509 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1722} 2510}
1723 2511
1724void noinline 2512void noinline
1725ev_periodic_stop (EV_P_ ev_periodic *w) 2513ev_periodic_stop (EV_P_ ev_periodic *w)
1726{ 2514{
1727 clear_pending (EV_A_ (W)w); 2515 clear_pending (EV_A_ (W)w);
1728 if (expect_false (!ev_is_active (w))) 2516 if (expect_false (!ev_is_active (w)))
1729 return; 2517 return;
1730 2518
1731 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2519 EV_FREQUENT_CHECK;
1732 2520
1733 { 2521 {
1734 int active = ((W)w)->active; 2522 int active = ev_active (w);
1735 2523
2524 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2525
2526 --periodiccnt;
2527
1736 if (expect_true (--active < --periodiccnt)) 2528 if (expect_true (active < periodiccnt + HEAP0))
1737 { 2529 {
1738 periodics [active] = periodics [periodiccnt]; 2530 periodics [active] = periodics [periodiccnt + HEAP0];
1739 adjustheap (periodics, periodiccnt, active); 2531 adjustheap (periodics, periodiccnt, active);
1740 } 2532 }
1741 } 2533 }
1742 2534
2535 EV_FREQUENT_CHECK;
2536
1743 ev_stop (EV_A_ (W)w); 2537 ev_stop (EV_A_ (W)w);
1744} 2538}
1745 2539
1746void noinline 2540void noinline
1747ev_periodic_again (EV_P_ ev_periodic *w) 2541ev_periodic_again (EV_P_ ev_periodic *w)
1758 2552
1759void noinline 2553void noinline
1760ev_signal_start (EV_P_ ev_signal *w) 2554ev_signal_start (EV_P_ ev_signal *w)
1761{ 2555{
1762#if EV_MULTIPLICITY 2556#if EV_MULTIPLICITY
1763 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2557 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1764#endif 2558#endif
1765 if (expect_false (ev_is_active (w))) 2559 if (expect_false (ev_is_active (w)))
1766 return; 2560 return;
1767 2561
1768 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2562 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2563
2564 evpipe_init (EV_A);
2565
2566 EV_FREQUENT_CHECK;
1769 2567
1770 { 2568 {
1771#ifndef _WIN32 2569#ifndef _WIN32
1772 sigset_t full, prev; 2570 sigset_t full, prev;
1773 sigfillset (&full); 2571 sigfillset (&full);
1774 sigprocmask (SIG_SETMASK, &full, &prev); 2572 sigprocmask (SIG_SETMASK, &full, &prev);
1775#endif 2573#endif
1776 2574
1777 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2575 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
1778 2576
1779#ifndef _WIN32 2577#ifndef _WIN32
1780 sigprocmask (SIG_SETMASK, &prev, 0); 2578 sigprocmask (SIG_SETMASK, &prev, 0);
1781#endif 2579#endif
1782 } 2580 }
1785 wlist_add (&signals [w->signum - 1].head, (WL)w); 2583 wlist_add (&signals [w->signum - 1].head, (WL)w);
1786 2584
1787 if (!((WL)w)->next) 2585 if (!((WL)w)->next)
1788 { 2586 {
1789#if _WIN32 2587#if _WIN32
1790 signal (w->signum, sighandler); 2588 signal (w->signum, ev_sighandler);
1791#else 2589#else
1792 struct sigaction sa; 2590 struct sigaction sa;
1793 sa.sa_handler = sighandler; 2591 sa.sa_handler = ev_sighandler;
1794 sigfillset (&sa.sa_mask); 2592 sigfillset (&sa.sa_mask);
1795 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2593 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1796 sigaction (w->signum, &sa, 0); 2594 sigaction (w->signum, &sa, 0);
1797#endif 2595#endif
1798 } 2596 }
2597
2598 EV_FREQUENT_CHECK;
1799} 2599}
1800 2600
1801void noinline 2601void noinline
1802ev_signal_stop (EV_P_ ev_signal *w) 2602ev_signal_stop (EV_P_ ev_signal *w)
1803{ 2603{
1804 clear_pending (EV_A_ (W)w); 2604 clear_pending (EV_A_ (W)w);
1805 if (expect_false (!ev_is_active (w))) 2605 if (expect_false (!ev_is_active (w)))
1806 return; 2606 return;
1807 2607
2608 EV_FREQUENT_CHECK;
2609
1808 wlist_del (&signals [w->signum - 1].head, (WL)w); 2610 wlist_del (&signals [w->signum - 1].head, (WL)w);
1809 ev_stop (EV_A_ (W)w); 2611 ev_stop (EV_A_ (W)w);
1810 2612
1811 if (!signals [w->signum - 1].head) 2613 if (!signals [w->signum - 1].head)
1812 signal (w->signum, SIG_DFL); 2614 signal (w->signum, SIG_DFL);
2615
2616 EV_FREQUENT_CHECK;
1813} 2617}
1814 2618
1815void 2619void
1816ev_child_start (EV_P_ ev_child *w) 2620ev_child_start (EV_P_ ev_child *w)
1817{ 2621{
1818#if EV_MULTIPLICITY 2622#if EV_MULTIPLICITY
1819 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2623 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1820#endif 2624#endif
1821 if (expect_false (ev_is_active (w))) 2625 if (expect_false (ev_is_active (w)))
1822 return; 2626 return;
1823 2627
2628 EV_FREQUENT_CHECK;
2629
1824 ev_start (EV_A_ (W)w, 1); 2630 ev_start (EV_A_ (W)w, 1);
1825 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2631 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2632
2633 EV_FREQUENT_CHECK;
1826} 2634}
1827 2635
1828void 2636void
1829ev_child_stop (EV_P_ ev_child *w) 2637ev_child_stop (EV_P_ ev_child *w)
1830{ 2638{
1831 clear_pending (EV_A_ (W)w); 2639 clear_pending (EV_A_ (W)w);
1832 if (expect_false (!ev_is_active (w))) 2640 if (expect_false (!ev_is_active (w)))
1833 return; 2641 return;
1834 2642
2643 EV_FREQUENT_CHECK;
2644
1835 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2645 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1836 ev_stop (EV_A_ (W)w); 2646 ev_stop (EV_A_ (W)w);
2647
2648 EV_FREQUENT_CHECK;
1837} 2649}
1838 2650
1839#if EV_STAT_ENABLE 2651#if EV_STAT_ENABLE
1840 2652
1841# ifdef _WIN32 2653# ifdef _WIN32
1842# undef lstat 2654# undef lstat
1843# define lstat(a,b) _stati64 (a,b) 2655# define lstat(a,b) _stati64 (a,b)
1844# endif 2656# endif
1845 2657
1846#define DEF_STAT_INTERVAL 5.0074891 2658#define DEF_STAT_INTERVAL 5.0074891
2659#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1847#define MIN_STAT_INTERVAL 0.1074891 2660#define MIN_STAT_INTERVAL 0.1074891
1848 2661
1849static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2662static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1850 2663
1851#if EV_USE_INOTIFY 2664#if EV_USE_INOTIFY
1852# define EV_INOTIFY_BUFSIZE 8192 2665# define EV_INOTIFY_BUFSIZE 8192
1856{ 2669{
1857 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2670 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1858 2671
1859 if (w->wd < 0) 2672 if (w->wd < 0)
1860 { 2673 {
2674 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1861 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2675 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1862 2676
1863 /* monitor some parent directory for speedup hints */ 2677 /* monitor some parent directory for speedup hints */
2678 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2679 /* but an efficiency issue only */
1864 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2680 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1865 { 2681 {
1866 char path [4096]; 2682 char path [4096];
1867 strcpy (path, w->path); 2683 strcpy (path, w->path);
1868 2684
1871 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2687 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1872 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2688 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1873 2689
1874 char *pend = strrchr (path, '/'); 2690 char *pend = strrchr (path, '/');
1875 2691
1876 if (!pend) 2692 if (!pend || pend == path)
1877 break; /* whoops, no '/', complain to your admin */ 2693 break;
1878 2694
1879 *pend = 0; 2695 *pend = 0;
1880 w->wd = inotify_add_watch (fs_fd, path, mask); 2696 w->wd = inotify_add_watch (fs_fd, path, mask);
1881 } 2697 }
1882 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2698 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1883 } 2699 }
1884 } 2700 }
1885 else
1886 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1887 2701
1888 if (w->wd >= 0) 2702 if (w->wd >= 0)
2703 {
1889 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2704 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2705
2706 /* now local changes will be tracked by inotify, but remote changes won't */
2707 /* unless the filesystem it known to be local, we therefore still poll */
2708 /* also do poll on <2.6.25, but with normal frequency */
2709 struct statfs sfs;
2710
2711 if (fs_2625 && !statfs (w->path, &sfs))
2712 if (sfs.f_type == 0x1373 /* devfs */
2713 || sfs.f_type == 0xEF53 /* ext2/3 */
2714 || sfs.f_type == 0x3153464a /* jfs */
2715 || sfs.f_type == 0x52654973 /* reiser3 */
2716 || sfs.f_type == 0x01021994 /* tempfs */
2717 || sfs.f_type == 0x58465342 /* xfs */)
2718 return;
2719
2720 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2721 ev_timer_again (EV_A_ &w->timer);
2722 }
1890} 2723}
1891 2724
1892static void noinline 2725static void noinline
1893infy_del (EV_P_ ev_stat *w) 2726infy_del (EV_P_ ev_stat *w)
1894{ 2727{
1908 2741
1909static void noinline 2742static void noinline
1910infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2743infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1911{ 2744{
1912 if (slot < 0) 2745 if (slot < 0)
1913 /* overflow, need to check for all hahs slots */ 2746 /* overflow, need to check for all hash slots */
1914 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2747 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1915 infy_wd (EV_A_ slot, wd, ev); 2748 infy_wd (EV_A_ slot, wd, ev);
1916 else 2749 else
1917 { 2750 {
1918 WL w_; 2751 WL w_;
1924 2757
1925 if (w->wd == wd || wd == -1) 2758 if (w->wd == wd || wd == -1)
1926 { 2759 {
1927 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2760 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1928 { 2761 {
2762 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1929 w->wd = -1; 2763 w->wd = -1;
1930 infy_add (EV_A_ w); /* re-add, no matter what */ 2764 infy_add (EV_A_ w); /* re-add, no matter what */
1931 } 2765 }
1932 2766
1933 stat_timer_cb (EV_A_ &w->timer, 0); 2767 stat_timer_cb (EV_A_ &w->timer, 0);
1946 2780
1947 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2781 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1948 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2782 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1949} 2783}
1950 2784
1951void inline_size 2785inline_size void
2786check_2625 (EV_P)
2787{
2788 /* kernels < 2.6.25 are borked
2789 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2790 */
2791 struct utsname buf;
2792 int major, minor, micro;
2793
2794 if (uname (&buf))
2795 return;
2796
2797 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2798 return;
2799
2800 if (major < 2
2801 || (major == 2 && minor < 6)
2802 || (major == 2 && minor == 6 && micro < 25))
2803 return;
2804
2805 fs_2625 = 1;
2806}
2807
2808inline_size void
1952infy_init (EV_P) 2809infy_init (EV_P)
1953{ 2810{
1954 if (fs_fd != -2) 2811 if (fs_fd != -2)
1955 return; 2812 return;
2813
2814 fs_fd = -1;
2815
2816 check_2625 (EV_A);
1956 2817
1957 fs_fd = inotify_init (); 2818 fs_fd = inotify_init ();
1958 2819
1959 if (fs_fd >= 0) 2820 if (fs_fd >= 0)
1960 { 2821 {
1962 ev_set_priority (&fs_w, EV_MAXPRI); 2823 ev_set_priority (&fs_w, EV_MAXPRI);
1963 ev_io_start (EV_A_ &fs_w); 2824 ev_io_start (EV_A_ &fs_w);
1964 } 2825 }
1965} 2826}
1966 2827
1967void inline_size 2828inline_size void
1968infy_fork (EV_P) 2829infy_fork (EV_P)
1969{ 2830{
1970 int slot; 2831 int slot;
1971 2832
1972 if (fs_fd < 0) 2833 if (fs_fd < 0)
1988 w->wd = -1; 2849 w->wd = -1;
1989 2850
1990 if (fs_fd >= 0) 2851 if (fs_fd >= 0)
1991 infy_add (EV_A_ w); /* re-add, no matter what */ 2852 infy_add (EV_A_ w); /* re-add, no matter what */
1992 else 2853 else
1993 ev_timer_start (EV_A_ &w->timer); 2854 ev_timer_again (EV_A_ &w->timer);
1994 } 2855 }
1995
1996 } 2856 }
1997} 2857}
1998 2858
2859#endif
2860
2861#ifdef _WIN32
2862# define EV_LSTAT(p,b) _stati64 (p, b)
2863#else
2864# define EV_LSTAT(p,b) lstat (p, b)
1999#endif 2865#endif
2000 2866
2001void 2867void
2002ev_stat_stat (EV_P_ ev_stat *w) 2868ev_stat_stat (EV_P_ ev_stat *w)
2003{ 2869{
2030 || w->prev.st_atime != w->attr.st_atime 2896 || w->prev.st_atime != w->attr.st_atime
2031 || w->prev.st_mtime != w->attr.st_mtime 2897 || w->prev.st_mtime != w->attr.st_mtime
2032 || w->prev.st_ctime != w->attr.st_ctime 2898 || w->prev.st_ctime != w->attr.st_ctime
2033 ) { 2899 ) {
2034 #if EV_USE_INOTIFY 2900 #if EV_USE_INOTIFY
2901 if (fs_fd >= 0)
2902 {
2035 infy_del (EV_A_ w); 2903 infy_del (EV_A_ w);
2036 infy_add (EV_A_ w); 2904 infy_add (EV_A_ w);
2037 ev_stat_stat (EV_A_ w); /* avoid race... */ 2905 ev_stat_stat (EV_A_ w); /* avoid race... */
2906 }
2038 #endif 2907 #endif
2039 2908
2040 ev_feed_event (EV_A_ w, EV_STAT); 2909 ev_feed_event (EV_A_ w, EV_STAT);
2041 } 2910 }
2042} 2911}
2045ev_stat_start (EV_P_ ev_stat *w) 2914ev_stat_start (EV_P_ ev_stat *w)
2046{ 2915{
2047 if (expect_false (ev_is_active (w))) 2916 if (expect_false (ev_is_active (w)))
2048 return; 2917 return;
2049 2918
2050 /* since we use memcmp, we need to clear any padding data etc. */
2051 memset (&w->prev, 0, sizeof (ev_statdata));
2052 memset (&w->attr, 0, sizeof (ev_statdata));
2053
2054 ev_stat_stat (EV_A_ w); 2919 ev_stat_stat (EV_A_ w);
2055 2920
2921 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2056 if (w->interval < MIN_STAT_INTERVAL) 2922 w->interval = MIN_STAT_INTERVAL;
2057 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2058 2923
2059 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2924 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2060 ev_set_priority (&w->timer, ev_priority (w)); 2925 ev_set_priority (&w->timer, ev_priority (w));
2061 2926
2062#if EV_USE_INOTIFY 2927#if EV_USE_INOTIFY
2063 infy_init (EV_A); 2928 infy_init (EV_A);
2064 2929
2065 if (fs_fd >= 0) 2930 if (fs_fd >= 0)
2066 infy_add (EV_A_ w); 2931 infy_add (EV_A_ w);
2067 else 2932 else
2068#endif 2933#endif
2069 ev_timer_start (EV_A_ &w->timer); 2934 ev_timer_again (EV_A_ &w->timer);
2070 2935
2071 ev_start (EV_A_ (W)w, 1); 2936 ev_start (EV_A_ (W)w, 1);
2937
2938 EV_FREQUENT_CHECK;
2072} 2939}
2073 2940
2074void 2941void
2075ev_stat_stop (EV_P_ ev_stat *w) 2942ev_stat_stop (EV_P_ ev_stat *w)
2076{ 2943{
2077 clear_pending (EV_A_ (W)w); 2944 clear_pending (EV_A_ (W)w);
2078 if (expect_false (!ev_is_active (w))) 2945 if (expect_false (!ev_is_active (w)))
2079 return; 2946 return;
2080 2947
2948 EV_FREQUENT_CHECK;
2949
2081#if EV_USE_INOTIFY 2950#if EV_USE_INOTIFY
2082 infy_del (EV_A_ w); 2951 infy_del (EV_A_ w);
2083#endif 2952#endif
2084 ev_timer_stop (EV_A_ &w->timer); 2953 ev_timer_stop (EV_A_ &w->timer);
2085 2954
2086 ev_stop (EV_A_ (W)w); 2955 ev_stop (EV_A_ (W)w);
2956
2957 EV_FREQUENT_CHECK;
2087} 2958}
2088#endif 2959#endif
2089 2960
2090#if EV_IDLE_ENABLE 2961#if EV_IDLE_ENABLE
2091void 2962void
2093{ 2964{
2094 if (expect_false (ev_is_active (w))) 2965 if (expect_false (ev_is_active (w)))
2095 return; 2966 return;
2096 2967
2097 pri_adjust (EV_A_ (W)w); 2968 pri_adjust (EV_A_ (W)w);
2969
2970 EV_FREQUENT_CHECK;
2098 2971
2099 { 2972 {
2100 int active = ++idlecnt [ABSPRI (w)]; 2973 int active = ++idlecnt [ABSPRI (w)];
2101 2974
2102 ++idleall; 2975 ++idleall;
2103 ev_start (EV_A_ (W)w, active); 2976 ev_start (EV_A_ (W)w, active);
2104 2977
2105 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2978 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2106 idles [ABSPRI (w)][active - 1] = w; 2979 idles [ABSPRI (w)][active - 1] = w;
2107 } 2980 }
2981
2982 EV_FREQUENT_CHECK;
2108} 2983}
2109 2984
2110void 2985void
2111ev_idle_stop (EV_P_ ev_idle *w) 2986ev_idle_stop (EV_P_ ev_idle *w)
2112{ 2987{
2113 clear_pending (EV_A_ (W)w); 2988 clear_pending (EV_A_ (W)w);
2114 if (expect_false (!ev_is_active (w))) 2989 if (expect_false (!ev_is_active (w)))
2115 return; 2990 return;
2116 2991
2992 EV_FREQUENT_CHECK;
2993
2117 { 2994 {
2118 int active = ((W)w)->active; 2995 int active = ev_active (w);
2119 2996
2120 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2997 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2121 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2998 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2122 2999
2123 ev_stop (EV_A_ (W)w); 3000 ev_stop (EV_A_ (W)w);
2124 --idleall; 3001 --idleall;
2125 } 3002 }
3003
3004 EV_FREQUENT_CHECK;
2126} 3005}
2127#endif 3006#endif
2128 3007
2129void 3008void
2130ev_prepare_start (EV_P_ ev_prepare *w) 3009ev_prepare_start (EV_P_ ev_prepare *w)
2131{ 3010{
2132 if (expect_false (ev_is_active (w))) 3011 if (expect_false (ev_is_active (w)))
2133 return; 3012 return;
3013
3014 EV_FREQUENT_CHECK;
2134 3015
2135 ev_start (EV_A_ (W)w, ++preparecnt); 3016 ev_start (EV_A_ (W)w, ++preparecnt);
2136 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3017 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2137 prepares [preparecnt - 1] = w; 3018 prepares [preparecnt - 1] = w;
3019
3020 EV_FREQUENT_CHECK;
2138} 3021}
2139 3022
2140void 3023void
2141ev_prepare_stop (EV_P_ ev_prepare *w) 3024ev_prepare_stop (EV_P_ ev_prepare *w)
2142{ 3025{
2143 clear_pending (EV_A_ (W)w); 3026 clear_pending (EV_A_ (W)w);
2144 if (expect_false (!ev_is_active (w))) 3027 if (expect_false (!ev_is_active (w)))
2145 return; 3028 return;
2146 3029
3030 EV_FREQUENT_CHECK;
3031
2147 { 3032 {
2148 int active = ((W)w)->active; 3033 int active = ev_active (w);
3034
2149 prepares [active - 1] = prepares [--preparecnt]; 3035 prepares [active - 1] = prepares [--preparecnt];
2150 ((W)prepares [active - 1])->active = active; 3036 ev_active (prepares [active - 1]) = active;
2151 } 3037 }
2152 3038
2153 ev_stop (EV_A_ (W)w); 3039 ev_stop (EV_A_ (W)w);
3040
3041 EV_FREQUENT_CHECK;
2154} 3042}
2155 3043
2156void 3044void
2157ev_check_start (EV_P_ ev_check *w) 3045ev_check_start (EV_P_ ev_check *w)
2158{ 3046{
2159 if (expect_false (ev_is_active (w))) 3047 if (expect_false (ev_is_active (w)))
2160 return; 3048 return;
3049
3050 EV_FREQUENT_CHECK;
2161 3051
2162 ev_start (EV_A_ (W)w, ++checkcnt); 3052 ev_start (EV_A_ (W)w, ++checkcnt);
2163 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3053 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2164 checks [checkcnt - 1] = w; 3054 checks [checkcnt - 1] = w;
3055
3056 EV_FREQUENT_CHECK;
2165} 3057}
2166 3058
2167void 3059void
2168ev_check_stop (EV_P_ ev_check *w) 3060ev_check_stop (EV_P_ ev_check *w)
2169{ 3061{
2170 clear_pending (EV_A_ (W)w); 3062 clear_pending (EV_A_ (W)w);
2171 if (expect_false (!ev_is_active (w))) 3063 if (expect_false (!ev_is_active (w)))
2172 return; 3064 return;
2173 3065
3066 EV_FREQUENT_CHECK;
3067
2174 { 3068 {
2175 int active = ((W)w)->active; 3069 int active = ev_active (w);
3070
2176 checks [active - 1] = checks [--checkcnt]; 3071 checks [active - 1] = checks [--checkcnt];
2177 ((W)checks [active - 1])->active = active; 3072 ev_active (checks [active - 1]) = active;
2178 } 3073 }
2179 3074
2180 ev_stop (EV_A_ (W)w); 3075 ev_stop (EV_A_ (W)w);
3076
3077 EV_FREQUENT_CHECK;
2181} 3078}
2182 3079
2183#if EV_EMBED_ENABLE 3080#if EV_EMBED_ENABLE
2184void noinline 3081void noinline
2185ev_embed_sweep (EV_P_ ev_embed *w) 3082ev_embed_sweep (EV_P_ ev_embed *w)
2193 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3090 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2194 3091
2195 if (ev_cb (w)) 3092 if (ev_cb (w))
2196 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3093 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2197 else 3094 else
2198 ev_embed_sweep (loop, w); 3095 ev_loop (w->other, EVLOOP_NONBLOCK);
2199} 3096}
2200 3097
2201static void 3098static void
2202embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3099embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2203{ 3100{
2204 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3101 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2205 3102
2206 fd_reify (w->other); 3103 {
3104 struct ev_loop *loop = w->other;
3105
3106 while (fdchangecnt)
3107 {
3108 fd_reify (EV_A);
3109 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3110 }
3111 }
2207} 3112}
3113
3114static void
3115embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3116{
3117 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3118
3119 ev_embed_stop (EV_A_ w);
3120
3121 {
3122 struct ev_loop *loop = w->other;
3123
3124 ev_loop_fork (EV_A);
3125 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3126 }
3127
3128 ev_embed_start (EV_A_ w);
3129}
3130
3131#if 0
3132static void
3133embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3134{
3135 ev_idle_stop (EV_A_ idle);
3136}
3137#endif
2208 3138
2209void 3139void
2210ev_embed_start (EV_P_ ev_embed *w) 3140ev_embed_start (EV_P_ ev_embed *w)
2211{ 3141{
2212 if (expect_false (ev_is_active (w))) 3142 if (expect_false (ev_is_active (w)))
2213 return; 3143 return;
2214 3144
2215 { 3145 {
2216 struct ev_loop *loop = w->other; 3146 struct ev_loop *loop = w->other;
2217 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3147 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2218 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_WRITE); 3148 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2219 } 3149 }
3150
3151 EV_FREQUENT_CHECK;
2220 3152
2221 ev_set_priority (&w->io, ev_priority (w)); 3153 ev_set_priority (&w->io, ev_priority (w));
2222 ev_io_start (EV_A_ &w->io); 3154 ev_io_start (EV_A_ &w->io);
2223 3155
2224 ev_prepare_init (&w->prepare, embed_prepare_cb); 3156 ev_prepare_init (&w->prepare, embed_prepare_cb);
2225 ev_set_priority (&w->prepare, EV_MINPRI); 3157 ev_set_priority (&w->prepare, EV_MINPRI);
2226 ev_prepare_start (EV_A_ &w->prepare); 3158 ev_prepare_start (EV_A_ &w->prepare);
2227 3159
3160 ev_fork_init (&w->fork, embed_fork_cb);
3161 ev_fork_start (EV_A_ &w->fork);
3162
3163 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3164
2228 ev_start (EV_A_ (W)w, 1); 3165 ev_start (EV_A_ (W)w, 1);
3166
3167 EV_FREQUENT_CHECK;
2229} 3168}
2230 3169
2231void 3170void
2232ev_embed_stop (EV_P_ ev_embed *w) 3171ev_embed_stop (EV_P_ ev_embed *w)
2233{ 3172{
2234 clear_pending (EV_A_ (W)w); 3173 clear_pending (EV_A_ (W)w);
2235 if (expect_false (!ev_is_active (w))) 3174 if (expect_false (!ev_is_active (w)))
2236 return; 3175 return;
2237 3176
3177 EV_FREQUENT_CHECK;
3178
2238 ev_io_stop (EV_A_ &w->io); 3179 ev_io_stop (EV_A_ &w->io);
2239 ev_prepare_stop (EV_A_ &w->prepare); 3180 ev_prepare_stop (EV_A_ &w->prepare);
3181 ev_fork_stop (EV_A_ &w->fork);
2240 3182
2241 ev_stop (EV_A_ (W)w); 3183 EV_FREQUENT_CHECK;
2242} 3184}
2243#endif 3185#endif
2244 3186
2245#if EV_FORK_ENABLE 3187#if EV_FORK_ENABLE
2246void 3188void
2247ev_fork_start (EV_P_ ev_fork *w) 3189ev_fork_start (EV_P_ ev_fork *w)
2248{ 3190{
2249 if (expect_false (ev_is_active (w))) 3191 if (expect_false (ev_is_active (w)))
2250 return; 3192 return;
3193
3194 EV_FREQUENT_CHECK;
2251 3195
2252 ev_start (EV_A_ (W)w, ++forkcnt); 3196 ev_start (EV_A_ (W)w, ++forkcnt);
2253 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3197 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2254 forks [forkcnt - 1] = w; 3198 forks [forkcnt - 1] = w;
3199
3200 EV_FREQUENT_CHECK;
2255} 3201}
2256 3202
2257void 3203void
2258ev_fork_stop (EV_P_ ev_fork *w) 3204ev_fork_stop (EV_P_ ev_fork *w)
2259{ 3205{
2260 clear_pending (EV_A_ (W)w); 3206 clear_pending (EV_A_ (W)w);
2261 if (expect_false (!ev_is_active (w))) 3207 if (expect_false (!ev_is_active (w)))
2262 return; 3208 return;
2263 3209
3210 EV_FREQUENT_CHECK;
3211
2264 { 3212 {
2265 int active = ((W)w)->active; 3213 int active = ev_active (w);
3214
2266 forks [active - 1] = forks [--forkcnt]; 3215 forks [active - 1] = forks [--forkcnt];
2267 ((W)forks [active - 1])->active = active; 3216 ev_active (forks [active - 1]) = active;
2268 } 3217 }
2269 3218
2270 ev_stop (EV_A_ (W)w); 3219 ev_stop (EV_A_ (W)w);
3220
3221 EV_FREQUENT_CHECK;
3222}
3223#endif
3224
3225#if EV_ASYNC_ENABLE
3226void
3227ev_async_start (EV_P_ ev_async *w)
3228{
3229 if (expect_false (ev_is_active (w)))
3230 return;
3231
3232 evpipe_init (EV_A);
3233
3234 EV_FREQUENT_CHECK;
3235
3236 ev_start (EV_A_ (W)w, ++asynccnt);
3237 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3238 asyncs [asynccnt - 1] = w;
3239
3240 EV_FREQUENT_CHECK;
3241}
3242
3243void
3244ev_async_stop (EV_P_ ev_async *w)
3245{
3246 clear_pending (EV_A_ (W)w);
3247 if (expect_false (!ev_is_active (w)))
3248 return;
3249
3250 EV_FREQUENT_CHECK;
3251
3252 {
3253 int active = ev_active (w);
3254
3255 asyncs [active - 1] = asyncs [--asynccnt];
3256 ev_active (asyncs [active - 1]) = active;
3257 }
3258
3259 ev_stop (EV_A_ (W)w);
3260
3261 EV_FREQUENT_CHECK;
3262}
3263
3264void
3265ev_async_send (EV_P_ ev_async *w)
3266{
3267 w->sent = 1;
3268 evpipe_write (EV_A_ &gotasync);
2271} 3269}
2272#endif 3270#endif
2273 3271
2274/*****************************************************************************/ 3272/*****************************************************************************/
2275 3273
2285once_cb (EV_P_ struct ev_once *once, int revents) 3283once_cb (EV_P_ struct ev_once *once, int revents)
2286{ 3284{
2287 void (*cb)(int revents, void *arg) = once->cb; 3285 void (*cb)(int revents, void *arg) = once->cb;
2288 void *arg = once->arg; 3286 void *arg = once->arg;
2289 3287
2290 ev_io_stop (EV_A_ &once->io); 3288 ev_io_stop (EV_A_ &once->io);
2291 ev_timer_stop (EV_A_ &once->to); 3289 ev_timer_stop (EV_A_ &once->to);
2292 ev_free (once); 3290 ev_free (once);
2293 3291
2294 cb (revents, arg); 3292 cb (revents, arg);
2295} 3293}
2296 3294
2297static void 3295static void
2298once_cb_io (EV_P_ ev_io *w, int revents) 3296once_cb_io (EV_P_ ev_io *w, int revents)
2299{ 3297{
2300 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3298 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3299
3300 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2301} 3301}
2302 3302
2303static void 3303static void
2304once_cb_to (EV_P_ ev_timer *w, int revents) 3304once_cb_to (EV_P_ ev_timer *w, int revents)
2305{ 3305{
2306 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3306 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3307
3308 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2307} 3309}
2308 3310
2309void 3311void
2310ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3312ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2311{ 3313{
2333 ev_timer_set (&once->to, timeout, 0.); 3335 ev_timer_set (&once->to, timeout, 0.);
2334 ev_timer_start (EV_A_ &once->to); 3336 ev_timer_start (EV_A_ &once->to);
2335 } 3337 }
2336} 3338}
2337 3339
3340/*****************************************************************************/
3341
3342#if EV_WALK_ENABLE
3343void
3344ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3345{
3346 int i, j;
3347 ev_watcher_list *wl, *wn;
3348
3349 if (types & (EV_IO | EV_EMBED))
3350 for (i = 0; i < anfdmax; ++i)
3351 for (wl = anfds [i].head; wl; )
3352 {
3353 wn = wl->next;
3354
3355#if EV_EMBED_ENABLE
3356 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3357 {
3358 if (types & EV_EMBED)
3359 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3360 }
3361 else
3362#endif
3363#if EV_USE_INOTIFY
3364 if (ev_cb ((ev_io *)wl) == infy_cb)
3365 ;
3366 else
3367#endif
3368 if ((ev_io *)wl != &pipe_w)
3369 if (types & EV_IO)
3370 cb (EV_A_ EV_IO, wl);
3371
3372 wl = wn;
3373 }
3374
3375 if (types & (EV_TIMER | EV_STAT))
3376 for (i = timercnt + HEAP0; i-- > HEAP0; )
3377#if EV_STAT_ENABLE
3378 /*TODO: timer is not always active*/
3379 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3380 {
3381 if (types & EV_STAT)
3382 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3383 }
3384 else
3385#endif
3386 if (types & EV_TIMER)
3387 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3388
3389#if EV_PERIODIC_ENABLE
3390 if (types & EV_PERIODIC)
3391 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3392 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3393#endif
3394
3395#if EV_IDLE_ENABLE
3396 if (types & EV_IDLE)
3397 for (j = NUMPRI; i--; )
3398 for (i = idlecnt [j]; i--; )
3399 cb (EV_A_ EV_IDLE, idles [j][i]);
3400#endif
3401
3402#if EV_FORK_ENABLE
3403 if (types & EV_FORK)
3404 for (i = forkcnt; i--; )
3405 if (ev_cb (forks [i]) != embed_fork_cb)
3406 cb (EV_A_ EV_FORK, forks [i]);
3407#endif
3408
3409#if EV_ASYNC_ENABLE
3410 if (types & EV_ASYNC)
3411 for (i = asynccnt; i--; )
3412 cb (EV_A_ EV_ASYNC, asyncs [i]);
3413#endif
3414
3415 if (types & EV_PREPARE)
3416 for (i = preparecnt; i--; )
3417#if EV_EMBED_ENABLE
3418 if (ev_cb (prepares [i]) != embed_prepare_cb)
3419#endif
3420 cb (EV_A_ EV_PREPARE, prepares [i]);
3421
3422 if (types & EV_CHECK)
3423 for (i = checkcnt; i--; )
3424 cb (EV_A_ EV_CHECK, checks [i]);
3425
3426 if (types & EV_SIGNAL)
3427 for (i = 0; i < signalmax; ++i)
3428 for (wl = signals [i].head; wl; )
3429 {
3430 wn = wl->next;
3431 cb (EV_A_ EV_SIGNAL, wl);
3432 wl = wn;
3433 }
3434
3435 if (types & EV_CHILD)
3436 for (i = EV_PID_HASHSIZE; i--; )
3437 for (wl = childs [i]; wl; )
3438 {
3439 wn = wl->next;
3440 cb (EV_A_ EV_CHILD, wl);
3441 wl = wn;
3442 }
3443/* EV_STAT 0x00001000 /* stat data changed */
3444/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3445}
3446#endif
3447
2338#if EV_MULTIPLICITY 3448#if EV_MULTIPLICITY
2339 #include "ev_wrap.h" 3449 #include "ev_wrap.h"
2340#endif 3450#endif
2341 3451
2342#ifdef __cplusplus 3452#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines