ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.276 by root, Sun Dec 14 13:03:54 2008 UTC vs.
Revision 1.298 by root, Fri Jul 10 19:10:19 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
57# endif 57# endif
58# ifndef EV_USE_MONOTONIC 58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1 59# define EV_USE_MONOTONIC 1
60# endif 60# endif
61# endif 61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
62# endif 64# endif
63 65
64# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
67# endif 69# endif
68# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
69# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
70# endif 72# endif
71# else 73# else
72# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
73# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
74# endif 76# endif
193# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
194# endif 196# endif
195#endif 197#endif
196 198
197#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
198# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif 201#endif
200 202
201#ifndef EV_USE_NANOSLEEP 203#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L 204# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1 205# define EV_USE_NANOSLEEP 1
280# define EV_USE_4HEAP !EV_MINIMAL 282# define EV_USE_4HEAP !EV_MINIMAL
281#endif 283#endif
282 284
283#ifndef EV_HEAP_CACHE_AT 285#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL 286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
285#endif 301#endif
286 302
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
288 304
289#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
320 336
321#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h> 338# include <winsock.h>
323#endif 339#endif
324 340
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD 341#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h> 343# include <stdint.h>
337# ifdef __cplusplus 344# ifdef __cplusplus
338extern "C" { 345extern "C" {
384# define inline_speed static noinline 391# define inline_speed static noinline
385#else 392#else
386# define inline_speed static inline 393# define inline_speed static inline
387#endif 394#endif
388 395
389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
391 403
392#define EMPTY /* required for microsofts broken pseudo-c compiler */ 404#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */ 405#define EMPTY2(a,b) /* used to suppress some warnings */
394 406
395typedef ev_watcher *W; 407typedef ev_watcher *W;
397typedef ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
398 410
399#define ev_active(w) ((W)(w))->active 411#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at 412#define ev_at(w) ((WT)(w))->at
401 413
402#if EV_USE_MONOTONIC 414#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */ 416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
419
420#if EV_USE_MONOTONIC
405static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
406#endif 422#endif
407 423
408#ifdef _WIN32 424#ifdef _WIN32
409# include "ev_win32.c" 425# include "ev_win32.c"
474#define ev_malloc(size) ev_realloc (0, (size)) 490#define ev_malloc(size) ev_realloc (0, (size))
475#define ev_free(ptr) ev_realloc ((ptr), 0) 491#define ev_free(ptr) ev_realloc ((ptr), 0)
476 492
477/*****************************************************************************/ 493/*****************************************************************************/
478 494
495/* set in reify when reification needed */
496#define EV_ANFD_REIFY 1
497
498/* file descriptor info structure */
479typedef struct 499typedef struct
480{ 500{
481 WL head; 501 WL head;
482 unsigned char events; 502 unsigned char events; /* the events watched for */
483 unsigned char reify; 503 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
484 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 504 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
485 unsigned char unused; 505 unsigned char unused;
486#if EV_USE_EPOLL 506#if EV_USE_EPOLL
487 unsigned int egen; /* generation counter to counter epoll bugs */ 507 unsigned int egen; /* generation counter to counter epoll bugs */
488#endif 508#endif
489#if EV_SELECT_IS_WINSOCKET 509#if EV_SELECT_IS_WINSOCKET
490 SOCKET handle; 510 SOCKET handle;
491#endif 511#endif
492} ANFD; 512} ANFD;
493 513
514/* stores the pending event set for a given watcher */
494typedef struct 515typedef struct
495{ 516{
496 W w; 517 W w;
497 int events; 518 int events; /* the pending event set for the given watcher */
498} ANPENDING; 519} ANPENDING;
499 520
500#if EV_USE_INOTIFY 521#if EV_USE_INOTIFY
501/* hash table entry per inotify-id */ 522/* hash table entry per inotify-id */
502typedef struct 523typedef struct
505} ANFS; 526} ANFS;
506#endif 527#endif
507 528
508/* Heap Entry */ 529/* Heap Entry */
509#if EV_HEAP_CACHE_AT 530#if EV_HEAP_CACHE_AT
531 /* a heap element */
510 typedef struct { 532 typedef struct {
511 ev_tstamp at; 533 ev_tstamp at;
512 WT w; 534 WT w;
513 } ANHE; 535 } ANHE;
514 536
515 #define ANHE_w(he) (he).w /* access watcher, read-write */ 537 #define ANHE_w(he) (he).w /* access watcher, read-write */
516 #define ANHE_at(he) (he).at /* access cached at, read-only */ 538 #define ANHE_at(he) (he).at /* access cached at, read-only */
517 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 539 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
518#else 540#else
541 /* a heap element */
519 typedef WT ANHE; 542 typedef WT ANHE;
520 543
521 #define ANHE_w(he) (he) 544 #define ANHE_w(he) (he)
522 #define ANHE_at(he) (he)->at 545 #define ANHE_at(he) (he)->at
523 #define ANHE_at_cache(he) 546 #define ANHE_at_cache(he)
547 570
548 static int ev_default_loop_ptr; 571 static int ev_default_loop_ptr;
549 572
550#endif 573#endif
551 574
575#if EV_MINIMAL < 2
576# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
577# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
578# define EV_INVOKE_PENDING invoke_cb (EV_A)
579#else
580# define EV_RELEASE_CB (void)0
581# define EV_ACQUIRE_CB (void)0
582# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
583#endif
584
585#define EVUNLOOP_RECURSE 0x80
586
552/*****************************************************************************/ 587/*****************************************************************************/
553 588
589#ifndef EV_HAVE_EV_TIME
554ev_tstamp 590ev_tstamp
555ev_time (void) 591ev_time (void)
556{ 592{
557#if EV_USE_REALTIME 593#if EV_USE_REALTIME
594 if (expect_true (have_realtime))
595 {
558 struct timespec ts; 596 struct timespec ts;
559 clock_gettime (CLOCK_REALTIME, &ts); 597 clock_gettime (CLOCK_REALTIME, &ts);
560 return ts.tv_sec + ts.tv_nsec * 1e-9; 598 return ts.tv_sec + ts.tv_nsec * 1e-9;
561#else 599 }
600#endif
601
562 struct timeval tv; 602 struct timeval tv;
563 gettimeofday (&tv, 0); 603 gettimeofday (&tv, 0);
564 return tv.tv_sec + tv.tv_usec * 1e-6; 604 return tv.tv_sec + tv.tv_usec * 1e-6;
565#endif
566} 605}
606#endif
567 607
568ev_tstamp inline_size 608inline_size ev_tstamp
569get_clock (void) 609get_clock (void)
570{ 610{
571#if EV_USE_MONOTONIC 611#if EV_USE_MONOTONIC
572 if (expect_true (have_monotonic)) 612 if (expect_true (have_monotonic))
573 { 613 {
607 647
608 tv.tv_sec = (time_t)delay; 648 tv.tv_sec = (time_t)delay;
609 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 649 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
610 650
611 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 651 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
612 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 652 /* somehting not guaranteed by newer posix versions, but guaranteed */
613 /* by older ones */ 653 /* by older ones */
614 select (0, 0, 0, 0, &tv); 654 select (0, 0, 0, 0, &tv);
615#endif 655#endif
616 } 656 }
617} 657}
618 658
619/*****************************************************************************/ 659/*****************************************************************************/
620 660
621#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 661#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
622 662
623int inline_size 663/* find a suitable new size for the given array, */
664/* hopefully by rounding to a ncie-to-malloc size */
665inline_size int
624array_nextsize (int elem, int cur, int cnt) 666array_nextsize (int elem, int cur, int cnt)
625{ 667{
626 int ncur = cur + 1; 668 int ncur = cur + 1;
627 669
628 do 670 do
669 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 711 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
670 } 712 }
671#endif 713#endif
672 714
673#define array_free(stem, idx) \ 715#define array_free(stem, idx) \
674 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 716 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
675 717
676/*****************************************************************************/ 718/*****************************************************************************/
719
720/* dummy callback for pending events */
721static void noinline
722pendingcb (EV_P_ ev_prepare *w, int revents)
723{
724}
677 725
678void noinline 726void noinline
679ev_feed_event (EV_P_ void *w, int revents) 727ev_feed_event (EV_P_ void *w, int revents)
680{ 728{
681 W w_ = (W)w; 729 W w_ = (W)w;
690 pendings [pri][w_->pending - 1].w = w_; 738 pendings [pri][w_->pending - 1].w = w_;
691 pendings [pri][w_->pending - 1].events = revents; 739 pendings [pri][w_->pending - 1].events = revents;
692 } 740 }
693} 741}
694 742
695void inline_speed 743inline_speed void
744feed_reverse (EV_P_ W w)
745{
746 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
747 rfeeds [rfeedcnt++] = w;
748}
749
750inline_size void
751feed_reverse_done (EV_P_ int revents)
752{
753 do
754 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
755 while (rfeedcnt);
756}
757
758inline_speed void
696queue_events (EV_P_ W *events, int eventcnt, int type) 759queue_events (EV_P_ W *events, int eventcnt, int type)
697{ 760{
698 int i; 761 int i;
699 762
700 for (i = 0; i < eventcnt; ++i) 763 for (i = 0; i < eventcnt; ++i)
701 ev_feed_event (EV_A_ events [i], type); 764 ev_feed_event (EV_A_ events [i], type);
702} 765}
703 766
704/*****************************************************************************/ 767/*****************************************************************************/
705 768
706void inline_speed 769inline_speed void
707fd_event (EV_P_ int fd, int revents) 770fd_event_nc (EV_P_ int fd, int revents)
708{ 771{
709 ANFD *anfd = anfds + fd; 772 ANFD *anfd = anfds + fd;
710 ev_io *w; 773 ev_io *w;
711 774
712 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 775 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
716 if (ev) 779 if (ev)
717 ev_feed_event (EV_A_ (W)w, ev); 780 ev_feed_event (EV_A_ (W)w, ev);
718 } 781 }
719} 782}
720 783
784/* do not submit kernel events for fds that have reify set */
785/* because that means they changed while we were polling for new events */
786inline_speed void
787fd_event (EV_P_ int fd, int revents)
788{
789 ANFD *anfd = anfds + fd;
790
791 if (expect_true (!anfd->reify))
792 fd_event_nc (EV_A_ fd, revents);
793}
794
721void 795void
722ev_feed_fd_event (EV_P_ int fd, int revents) 796ev_feed_fd_event (EV_P_ int fd, int revents)
723{ 797{
724 if (fd >= 0 && fd < anfdmax) 798 if (fd >= 0 && fd < anfdmax)
725 fd_event (EV_A_ fd, revents); 799 fd_event_nc (EV_A_ fd, revents);
726} 800}
727 801
728void inline_size 802/* make sure the external fd watch events are in-sync */
803/* with the kernel/libev internal state */
804inline_size void
729fd_reify (EV_P) 805fd_reify (EV_P)
730{ 806{
731 int i; 807 int i;
732 808
733 for (i = 0; i < fdchangecnt; ++i) 809 for (i = 0; i < fdchangecnt; ++i)
748 #ifdef EV_FD_TO_WIN32_HANDLE 824 #ifdef EV_FD_TO_WIN32_HANDLE
749 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 825 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
750 #else 826 #else
751 anfd->handle = _get_osfhandle (fd); 827 anfd->handle = _get_osfhandle (fd);
752 #endif 828 #endif
753 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 829 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
754 } 830 }
755#endif 831#endif
756 832
757 { 833 {
758 unsigned char o_events = anfd->events; 834 unsigned char o_events = anfd->events;
759 unsigned char o_reify = anfd->reify; 835 unsigned char o_reify = anfd->reify;
760 836
761 anfd->reify = 0; 837 anfd->reify = 0;
762 anfd->events = events; 838 anfd->events = events;
763 839
764 if (o_events != events || o_reify & EV_IOFDSET) 840 if (o_events != events || o_reify & EV__IOFDSET)
765 backend_modify (EV_A_ fd, o_events, events); 841 backend_modify (EV_A_ fd, o_events, events);
766 } 842 }
767 } 843 }
768 844
769 fdchangecnt = 0; 845 fdchangecnt = 0;
770} 846}
771 847
772void inline_size 848/* something about the given fd changed */
849inline_size void
773fd_change (EV_P_ int fd, int flags) 850fd_change (EV_P_ int fd, int flags)
774{ 851{
775 unsigned char reify = anfds [fd].reify; 852 unsigned char reify = anfds [fd].reify;
776 anfds [fd].reify |= flags; 853 anfds [fd].reify |= flags;
777 854
781 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 858 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
782 fdchanges [fdchangecnt - 1] = fd; 859 fdchanges [fdchangecnt - 1] = fd;
783 } 860 }
784} 861}
785 862
786void inline_speed 863/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
864inline_speed void
787fd_kill (EV_P_ int fd) 865fd_kill (EV_P_ int fd)
788{ 866{
789 ev_io *w; 867 ev_io *w;
790 868
791 while ((w = (ev_io *)anfds [fd].head)) 869 while ((w = (ev_io *)anfds [fd].head))
793 ev_io_stop (EV_A_ w); 871 ev_io_stop (EV_A_ w);
794 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 872 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
795 } 873 }
796} 874}
797 875
798int inline_size 876/* check whether the given fd is atcually valid, for error recovery */
877inline_size int
799fd_valid (int fd) 878fd_valid (int fd)
800{ 879{
801#ifdef _WIN32 880#ifdef _WIN32
802 return _get_osfhandle (fd) != -1; 881 return _get_osfhandle (fd) != -1;
803#else 882#else
840 for (fd = 0; fd < anfdmax; ++fd) 919 for (fd = 0; fd < anfdmax; ++fd)
841 if (anfds [fd].events) 920 if (anfds [fd].events)
842 { 921 {
843 anfds [fd].events = 0; 922 anfds [fd].events = 0;
844 anfds [fd].emask = 0; 923 anfds [fd].emask = 0;
845 fd_change (EV_A_ fd, EV_IOFDSET | 1); 924 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
846 } 925 }
847} 926}
848 927
849/*****************************************************************************/ 928/*****************************************************************************/
850 929
866#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 945#define HEAP0 (DHEAP - 1) /* index of first element in heap */
867#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 946#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
868#define UPHEAP_DONE(p,k) ((p) == (k)) 947#define UPHEAP_DONE(p,k) ((p) == (k))
869 948
870/* away from the root */ 949/* away from the root */
871void inline_speed 950inline_speed void
872downheap (ANHE *heap, int N, int k) 951downheap (ANHE *heap, int N, int k)
873{ 952{
874 ANHE he = heap [k]; 953 ANHE he = heap [k];
875 ANHE *E = heap + N + HEAP0; 954 ANHE *E = heap + N + HEAP0;
876 955
916#define HEAP0 1 995#define HEAP0 1
917#define HPARENT(k) ((k) >> 1) 996#define HPARENT(k) ((k) >> 1)
918#define UPHEAP_DONE(p,k) (!(p)) 997#define UPHEAP_DONE(p,k) (!(p))
919 998
920/* away from the root */ 999/* away from the root */
921void inline_speed 1000inline_speed void
922downheap (ANHE *heap, int N, int k) 1001downheap (ANHE *heap, int N, int k)
923{ 1002{
924 ANHE he = heap [k]; 1003 ANHE he = heap [k];
925 1004
926 for (;;) 1005 for (;;)
946 ev_active (ANHE_w (he)) = k; 1025 ev_active (ANHE_w (he)) = k;
947} 1026}
948#endif 1027#endif
949 1028
950/* towards the root */ 1029/* towards the root */
951void inline_speed 1030inline_speed void
952upheap (ANHE *heap, int k) 1031upheap (ANHE *heap, int k)
953{ 1032{
954 ANHE he = heap [k]; 1033 ANHE he = heap [k];
955 1034
956 for (;;) 1035 for (;;)
967 1046
968 heap [k] = he; 1047 heap [k] = he;
969 ev_active (ANHE_w (he)) = k; 1048 ev_active (ANHE_w (he)) = k;
970} 1049}
971 1050
972void inline_size 1051/* move an element suitably so it is in a correct place */
1052inline_size void
973adjustheap (ANHE *heap, int N, int k) 1053adjustheap (ANHE *heap, int N, int k)
974{ 1054{
975 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1055 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
976 upheap (heap, k); 1056 upheap (heap, k);
977 else 1057 else
978 downheap (heap, N, k); 1058 downheap (heap, N, k);
979} 1059}
980 1060
981/* rebuild the heap: this function is used only once and executed rarely */ 1061/* rebuild the heap: this function is used only once and executed rarely */
982void inline_size 1062inline_size void
983reheap (ANHE *heap, int N) 1063reheap (ANHE *heap, int N)
984{ 1064{
985 int i; 1065 int i;
986 1066
987 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1067 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
990 upheap (heap, i + HEAP0); 1070 upheap (heap, i + HEAP0);
991} 1071}
992 1072
993/*****************************************************************************/ 1073/*****************************************************************************/
994 1074
1075/* associate signal watchers to a signal signal */
995typedef struct 1076typedef struct
996{ 1077{
997 WL head; 1078 WL head;
998 EV_ATOMIC_T gotsig; 1079 EV_ATOMIC_T gotsig;
999} ANSIG; 1080} ANSIG;
1003 1084
1004static EV_ATOMIC_T gotsig; 1085static EV_ATOMIC_T gotsig;
1005 1086
1006/*****************************************************************************/ 1087/*****************************************************************************/
1007 1088
1008void inline_speed 1089/* used to prepare libev internal fd's */
1090/* this is not fork-safe */
1091inline_speed void
1009fd_intern (int fd) 1092fd_intern (int fd)
1010{ 1093{
1011#ifdef _WIN32 1094#ifdef _WIN32
1012 unsigned long arg = 1; 1095 unsigned long arg = 1;
1013 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1096 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1018} 1101}
1019 1102
1020static void noinline 1103static void noinline
1021evpipe_init (EV_P) 1104evpipe_init (EV_P)
1022{ 1105{
1023 if (!ev_is_active (&pipeev)) 1106 if (!ev_is_active (&pipe_w))
1024 { 1107 {
1025#if EV_USE_EVENTFD 1108#if EV_USE_EVENTFD
1026 if ((evfd = eventfd (0, 0)) >= 0) 1109 if ((evfd = eventfd (0, 0)) >= 0)
1027 { 1110 {
1028 evpipe [0] = -1; 1111 evpipe [0] = -1;
1029 fd_intern (evfd); 1112 fd_intern (evfd);
1030 ev_io_set (&pipeev, evfd, EV_READ); 1113 ev_io_set (&pipe_w, evfd, EV_READ);
1031 } 1114 }
1032 else 1115 else
1033#endif 1116#endif
1034 { 1117 {
1035 while (pipe (evpipe)) 1118 while (pipe (evpipe))
1036 ev_syserr ("(libev) error creating signal/async pipe"); 1119 ev_syserr ("(libev) error creating signal/async pipe");
1037 1120
1038 fd_intern (evpipe [0]); 1121 fd_intern (evpipe [0]);
1039 fd_intern (evpipe [1]); 1122 fd_intern (evpipe [1]);
1040 ev_io_set (&pipeev, evpipe [0], EV_READ); 1123 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1041 } 1124 }
1042 1125
1043 ev_io_start (EV_A_ &pipeev); 1126 ev_io_start (EV_A_ &pipe_w);
1044 ev_unref (EV_A); /* watcher should not keep loop alive */ 1127 ev_unref (EV_A); /* watcher should not keep loop alive */
1045 } 1128 }
1046} 1129}
1047 1130
1048void inline_size 1131inline_size void
1049evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1132evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1050{ 1133{
1051 if (!*flag) 1134 if (!*flag)
1052 { 1135 {
1053 int old_errno = errno; /* save errno because write might clobber it */ 1136 int old_errno = errno; /* save errno because write might clobber it */
1066 1149
1067 errno = old_errno; 1150 errno = old_errno;
1068 } 1151 }
1069} 1152}
1070 1153
1154/* called whenever the libev signal pipe */
1155/* got some events (signal, async) */
1071static void 1156static void
1072pipecb (EV_P_ ev_io *iow, int revents) 1157pipecb (EV_P_ ev_io *iow, int revents)
1073{ 1158{
1074#if EV_USE_EVENTFD 1159#if EV_USE_EVENTFD
1075 if (evfd >= 0) 1160 if (evfd >= 0)
1131ev_feed_signal_event (EV_P_ int signum) 1216ev_feed_signal_event (EV_P_ int signum)
1132{ 1217{
1133 WL w; 1218 WL w;
1134 1219
1135#if EV_MULTIPLICITY 1220#if EV_MULTIPLICITY
1136 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1221 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1137#endif 1222#endif
1138 1223
1139 --signum; 1224 --signum;
1140 1225
1141 if (signum < 0 || signum >= signalmax) 1226 if (signum < 0 || signum >= signalmax)
1157 1242
1158#ifndef WIFCONTINUED 1243#ifndef WIFCONTINUED
1159# define WIFCONTINUED(status) 0 1244# define WIFCONTINUED(status) 0
1160#endif 1245#endif
1161 1246
1162void inline_speed 1247/* handle a single child status event */
1248inline_speed void
1163child_reap (EV_P_ int chain, int pid, int status) 1249child_reap (EV_P_ int chain, int pid, int status)
1164{ 1250{
1165 ev_child *w; 1251 ev_child *w;
1166 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1252 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1167 1253
1180 1266
1181#ifndef WCONTINUED 1267#ifndef WCONTINUED
1182# define WCONTINUED 0 1268# define WCONTINUED 0
1183#endif 1269#endif
1184 1270
1271/* called on sigchld etc., calls waitpid */
1185static void 1272static void
1186childcb (EV_P_ ev_signal *sw, int revents) 1273childcb (EV_P_ ev_signal *sw, int revents)
1187{ 1274{
1188 int pid, status; 1275 int pid, status;
1189 1276
1270 /* kqueue is borked on everything but netbsd apparently */ 1357 /* kqueue is borked on everything but netbsd apparently */
1271 /* it usually doesn't work correctly on anything but sockets and pipes */ 1358 /* it usually doesn't work correctly on anything but sockets and pipes */
1272 flags &= ~EVBACKEND_KQUEUE; 1359 flags &= ~EVBACKEND_KQUEUE;
1273#endif 1360#endif
1274#ifdef __APPLE__ 1361#ifdef __APPLE__
1275 // flags &= ~EVBACKEND_KQUEUE & ~EVBACKEND_POLL; for documentation 1362 /* only select works correctly on that "unix-certified" platform */
1276 flags &= ~EVBACKEND_SELECT; 1363 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1364 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1277#endif 1365#endif
1278 1366
1279 return flags; 1367 return flags;
1280} 1368}
1281 1369
1295ev_backend (EV_P) 1383ev_backend (EV_P)
1296{ 1384{
1297 return backend; 1385 return backend;
1298} 1386}
1299 1387
1388#if EV_MINIMAL < 2
1300unsigned int 1389unsigned int
1301ev_loop_count (EV_P) 1390ev_loop_count (EV_P)
1302{ 1391{
1303 return loop_count; 1392 return loop_count;
1304} 1393}
1305 1394
1395unsigned int
1396ev_loop_depth (EV_P)
1397{
1398 return loop_depth;
1399}
1400
1306void 1401void
1307ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1402ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1308{ 1403{
1309 io_blocktime = interval; 1404 io_blocktime = interval;
1310} 1405}
1313ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1408ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1314{ 1409{
1315 timeout_blocktime = interval; 1410 timeout_blocktime = interval;
1316} 1411}
1317 1412
1413void
1414ev_set_userdata (EV_P_ void *data)
1415{
1416 userdata = data;
1417}
1418
1419void *
1420ev_userdata (EV_P)
1421{
1422 return userdata;
1423}
1424
1425void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1426{
1427 invoke_cb = invoke_pending_cb;
1428}
1429
1430void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1431{
1432 release_cb = release;
1433 acquire_cb = acquire;
1434}
1435#endif
1436
1437/* initialise a loop structure, must be zero-initialised */
1318static void noinline 1438static void noinline
1319loop_init (EV_P_ unsigned int flags) 1439loop_init (EV_P_ unsigned int flags)
1320{ 1440{
1321 if (!backend) 1441 if (!backend)
1322 { 1442 {
1443#if EV_USE_REALTIME
1444 if (!have_realtime)
1445 {
1446 struct timespec ts;
1447
1448 if (!clock_gettime (CLOCK_REALTIME, &ts))
1449 have_realtime = 1;
1450 }
1451#endif
1452
1323#if EV_USE_MONOTONIC 1453#if EV_USE_MONOTONIC
1454 if (!have_monotonic)
1324 { 1455 {
1325 struct timespec ts; 1456 struct timespec ts;
1457
1326 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1458 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1327 have_monotonic = 1; 1459 have_monotonic = 1;
1328 } 1460 }
1329#endif 1461#endif
1330 1462
1331 ev_rt_now = ev_time (); 1463 ev_rt_now = ev_time ();
1332 mn_now = get_clock (); 1464 mn_now = get_clock ();
1333 now_floor = mn_now; 1465 now_floor = mn_now;
1334 rtmn_diff = ev_rt_now - mn_now; 1466 rtmn_diff = ev_rt_now - mn_now;
1467#if EV_MINIMAL < 2
1468 invoke_cb = ev_invoke_pending;
1469#endif
1335 1470
1336 io_blocktime = 0.; 1471 io_blocktime = 0.;
1337 timeout_blocktime = 0.; 1472 timeout_blocktime = 0.;
1338 backend = 0; 1473 backend = 0;
1339 backend_fd = -1; 1474 backend_fd = -1;
1370#endif 1505#endif
1371#if EV_USE_SELECT 1506#if EV_USE_SELECT
1372 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1507 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1373#endif 1508#endif
1374 1509
1510 ev_prepare_init (&pending_w, pendingcb);
1511
1375 ev_init (&pipeev, pipecb); 1512 ev_init (&pipe_w, pipecb);
1376 ev_set_priority (&pipeev, EV_MAXPRI); 1513 ev_set_priority (&pipe_w, EV_MAXPRI);
1377 } 1514 }
1378} 1515}
1379 1516
1517/* free up a loop structure */
1380static void noinline 1518static void noinline
1381loop_destroy (EV_P) 1519loop_destroy (EV_P)
1382{ 1520{
1383 int i; 1521 int i;
1384 1522
1385 if (ev_is_active (&pipeev)) 1523 if (ev_is_active (&pipe_w))
1386 { 1524 {
1387 ev_ref (EV_A); /* signal watcher */ 1525 ev_ref (EV_A); /* signal watcher */
1388 ev_io_stop (EV_A_ &pipeev); 1526 ev_io_stop (EV_A_ &pipe_w);
1389 1527
1390#if EV_USE_EVENTFD 1528#if EV_USE_EVENTFD
1391 if (evfd >= 0) 1529 if (evfd >= 0)
1392 close (evfd); 1530 close (evfd);
1393#endif 1531#endif
1432 } 1570 }
1433 1571
1434 ev_free (anfds); anfdmax = 0; 1572 ev_free (anfds); anfdmax = 0;
1435 1573
1436 /* have to use the microsoft-never-gets-it-right macro */ 1574 /* have to use the microsoft-never-gets-it-right macro */
1575 array_free (rfeed, EMPTY);
1437 array_free (fdchange, EMPTY); 1576 array_free (fdchange, EMPTY);
1438 array_free (timer, EMPTY); 1577 array_free (timer, EMPTY);
1439#if EV_PERIODIC_ENABLE 1578#if EV_PERIODIC_ENABLE
1440 array_free (periodic, EMPTY); 1579 array_free (periodic, EMPTY);
1441#endif 1580#endif
1450 1589
1451 backend = 0; 1590 backend = 0;
1452} 1591}
1453 1592
1454#if EV_USE_INOTIFY 1593#if EV_USE_INOTIFY
1455void inline_size infy_fork (EV_P); 1594inline_size void infy_fork (EV_P);
1456#endif 1595#endif
1457 1596
1458void inline_size 1597inline_size void
1459loop_fork (EV_P) 1598loop_fork (EV_P)
1460{ 1599{
1461#if EV_USE_PORT 1600#if EV_USE_PORT
1462 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1601 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1463#endif 1602#endif
1469#endif 1608#endif
1470#if EV_USE_INOTIFY 1609#if EV_USE_INOTIFY
1471 infy_fork (EV_A); 1610 infy_fork (EV_A);
1472#endif 1611#endif
1473 1612
1474 if (ev_is_active (&pipeev)) 1613 if (ev_is_active (&pipe_w))
1475 { 1614 {
1476 /* this "locks" the handlers against writing to the pipe */ 1615 /* this "locks" the handlers against writing to the pipe */
1477 /* while we modify the fd vars */ 1616 /* while we modify the fd vars */
1478 gotsig = 1; 1617 gotsig = 1;
1479#if EV_ASYNC_ENABLE 1618#if EV_ASYNC_ENABLE
1480 gotasync = 1; 1619 gotasync = 1;
1481#endif 1620#endif
1482 1621
1483 ev_ref (EV_A); 1622 ev_ref (EV_A);
1484 ev_io_stop (EV_A_ &pipeev); 1623 ev_io_stop (EV_A_ &pipe_w);
1485 1624
1486#if EV_USE_EVENTFD 1625#if EV_USE_EVENTFD
1487 if (evfd >= 0) 1626 if (evfd >= 0)
1488 close (evfd); 1627 close (evfd);
1489#endif 1628#endif
1494 close (evpipe [1]); 1633 close (evpipe [1]);
1495 } 1634 }
1496 1635
1497 evpipe_init (EV_A); 1636 evpipe_init (EV_A);
1498 /* now iterate over everything, in case we missed something */ 1637 /* now iterate over everything, in case we missed something */
1499 pipecb (EV_A_ &pipeev, EV_READ); 1638 pipecb (EV_A_ &pipe_w, EV_READ);
1500 } 1639 }
1501 1640
1502 postfork = 0; 1641 postfork = 0;
1503} 1642}
1504 1643
1529void 1668void
1530ev_loop_fork (EV_P) 1669ev_loop_fork (EV_P)
1531{ 1670{
1532 postfork = 1; /* must be in line with ev_default_fork */ 1671 postfork = 1; /* must be in line with ev_default_fork */
1533} 1672}
1673#endif /* multiplicity */
1534 1674
1535#if EV_VERIFY 1675#if EV_VERIFY
1536static void noinline 1676static void noinline
1537verify_watcher (EV_P_ W w) 1677verify_watcher (EV_P_ W w)
1538{ 1678{
1539 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 1679 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1540 1680
1541 if (w->pending) 1681 if (w->pending)
1542 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 1682 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1543} 1683}
1544 1684
1545static void noinline 1685static void noinline
1546verify_heap (EV_P_ ANHE *heap, int N) 1686verify_heap (EV_P_ ANHE *heap, int N)
1547{ 1687{
1548 int i; 1688 int i;
1549 1689
1550 for (i = HEAP0; i < N + HEAP0; ++i) 1690 for (i = HEAP0; i < N + HEAP0; ++i)
1551 { 1691 {
1552 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 1692 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1553 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 1693 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1554 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 1694 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1555 1695
1556 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 1696 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1557 } 1697 }
1558} 1698}
1559 1699
1560static void noinline 1700static void noinline
1561array_verify (EV_P_ W *ws, int cnt) 1701array_verify (EV_P_ W *ws, int cnt)
1562{ 1702{
1563 while (cnt--) 1703 while (cnt--)
1564 { 1704 {
1565 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 1705 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1566 verify_watcher (EV_A_ ws [cnt]); 1706 verify_watcher (EV_A_ ws [cnt]);
1567 } 1707 }
1568} 1708}
1569#endif 1709#endif
1570 1710
1711#if EV_MINIMAL < 2
1571void 1712void
1572ev_loop_verify (EV_P) 1713ev_loop_verify (EV_P)
1573{ 1714{
1574#if EV_VERIFY 1715#if EV_VERIFY
1575 int i; 1716 int i;
1577 1718
1578 assert (activecnt >= -1); 1719 assert (activecnt >= -1);
1579 1720
1580 assert (fdchangemax >= fdchangecnt); 1721 assert (fdchangemax >= fdchangecnt);
1581 for (i = 0; i < fdchangecnt; ++i) 1722 for (i = 0; i < fdchangecnt; ++i)
1582 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 1723 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1583 1724
1584 assert (anfdmax >= 0); 1725 assert (anfdmax >= 0);
1585 for (i = 0; i < anfdmax; ++i) 1726 for (i = 0; i < anfdmax; ++i)
1586 for (w = anfds [i].head; w; w = w->next) 1727 for (w = anfds [i].head; w; w = w->next)
1587 { 1728 {
1588 verify_watcher (EV_A_ (W)w); 1729 verify_watcher (EV_A_ (W)w);
1589 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 1730 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1590 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 1731 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1591 } 1732 }
1592 1733
1593 assert (timermax >= timercnt); 1734 assert (timermax >= timercnt);
1594 verify_heap (EV_A_ timers, timercnt); 1735 verify_heap (EV_A_ timers, timercnt);
1595 1736
1628 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1769 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1629 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 1770 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1630# endif 1771# endif
1631#endif 1772#endif
1632} 1773}
1633 1774#endif
1634#endif /* multiplicity */
1635 1775
1636#if EV_MULTIPLICITY 1776#if EV_MULTIPLICITY
1637struct ev_loop * 1777struct ev_loop *
1638ev_default_loop_init (unsigned int flags) 1778ev_default_loop_init (unsigned int flags)
1639#else 1779#else
1700ev_invoke (EV_P_ void *w, int revents) 1840ev_invoke (EV_P_ void *w, int revents)
1701{ 1841{
1702 EV_CB_INVOKE ((W)w, revents); 1842 EV_CB_INVOKE ((W)w, revents);
1703} 1843}
1704 1844
1705void inline_speed 1845void noinline
1706call_pending (EV_P) 1846ev_invoke_pending (EV_P)
1707{ 1847{
1708 int pri; 1848 int pri;
1709 1849
1710 for (pri = NUMPRI; pri--; ) 1850 for (pri = NUMPRI; pri--; )
1711 while (pendingcnt [pri]) 1851 while (pendingcnt [pri])
1712 { 1852 {
1713 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1853 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1714 1854
1715 if (expect_true (p->w))
1716 {
1717 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1855 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1856 /* ^ this is no longer true, as pending_w could be here */
1718 1857
1719 p->w->pending = 0; 1858 p->w->pending = 0;
1720 EV_CB_INVOKE (p->w, p->events); 1859 EV_CB_INVOKE (p->w, p->events);
1721 EV_FREQUENT_CHECK; 1860 EV_FREQUENT_CHECK;
1722 }
1723 } 1861 }
1724} 1862}
1725 1863
1726#if EV_IDLE_ENABLE 1864#if EV_IDLE_ENABLE
1727void inline_size 1865/* make idle watchers pending. this handles the "call-idle */
1866/* only when higher priorities are idle" logic */
1867inline_size void
1728idle_reify (EV_P) 1868idle_reify (EV_P)
1729{ 1869{
1730 if (expect_false (idleall)) 1870 if (expect_false (idleall))
1731 { 1871 {
1732 int pri; 1872 int pri;
1744 } 1884 }
1745 } 1885 }
1746} 1886}
1747#endif 1887#endif
1748 1888
1749void inline_size 1889/* make timers pending */
1890inline_size void
1750timers_reify (EV_P) 1891timers_reify (EV_P)
1751{ 1892{
1752 EV_FREQUENT_CHECK; 1893 EV_FREQUENT_CHECK;
1753 1894
1754 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 1895 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1755 { 1896 {
1756 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 1897 do
1757
1758 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1759
1760 /* first reschedule or stop timer */
1761 if (w->repeat)
1762 { 1898 {
1899 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1900
1901 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1902
1903 /* first reschedule or stop timer */
1904 if (w->repeat)
1905 {
1763 ev_at (w) += w->repeat; 1906 ev_at (w) += w->repeat;
1764 if (ev_at (w) < mn_now) 1907 if (ev_at (w) < mn_now)
1765 ev_at (w) = mn_now; 1908 ev_at (w) = mn_now;
1766 1909
1767 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1910 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1768 1911
1769 ANHE_at_cache (timers [HEAP0]); 1912 ANHE_at_cache (timers [HEAP0]);
1770 downheap (timers, timercnt, HEAP0); 1913 downheap (timers, timercnt, HEAP0);
1914 }
1915 else
1916 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1917
1918 EV_FREQUENT_CHECK;
1919 feed_reverse (EV_A_ (W)w);
1771 } 1920 }
1772 else 1921 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1773 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1774 1922
1775 EV_FREQUENT_CHECK;
1776 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1923 feed_reverse_done (EV_A_ EV_TIMEOUT);
1777 } 1924 }
1778} 1925}
1779 1926
1780#if EV_PERIODIC_ENABLE 1927#if EV_PERIODIC_ENABLE
1781void inline_size 1928/* make periodics pending */
1929inline_size void
1782periodics_reify (EV_P) 1930periodics_reify (EV_P)
1783{ 1931{
1784 EV_FREQUENT_CHECK; 1932 EV_FREQUENT_CHECK;
1785 1933
1786 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 1934 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1787 { 1935 {
1788 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 1936 int feed_count = 0;
1789 1937
1790 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1938 do
1791
1792 /* first reschedule or stop timer */
1793 if (w->reschedule_cb)
1794 { 1939 {
1940 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1941
1942 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1943
1944 /* first reschedule or stop timer */
1945 if (w->reschedule_cb)
1946 {
1795 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1947 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1796 1948
1797 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 1949 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1798 1950
1799 ANHE_at_cache (periodics [HEAP0]); 1951 ANHE_at_cache (periodics [HEAP0]);
1800 downheap (periodics, periodiccnt, HEAP0); 1952 downheap (periodics, periodiccnt, HEAP0);
1953 }
1954 else if (w->interval)
1955 {
1956 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1957 /* if next trigger time is not sufficiently in the future, put it there */
1958 /* this might happen because of floating point inexactness */
1959 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1960 {
1961 ev_at (w) += w->interval;
1962
1963 /* if interval is unreasonably low we might still have a time in the past */
1964 /* so correct this. this will make the periodic very inexact, but the user */
1965 /* has effectively asked to get triggered more often than possible */
1966 if (ev_at (w) < ev_rt_now)
1967 ev_at (w) = ev_rt_now;
1968 }
1969
1970 ANHE_at_cache (periodics [HEAP0]);
1971 downheap (periodics, periodiccnt, HEAP0);
1972 }
1973 else
1974 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1975
1976 EV_FREQUENT_CHECK;
1977 feed_reverse (EV_A_ (W)w);
1801 } 1978 }
1802 else if (w->interval) 1979 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1803 {
1804 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1805 /* if next trigger time is not sufficiently in the future, put it there */
1806 /* this might happen because of floating point inexactness */
1807 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1808 {
1809 ev_at (w) += w->interval;
1810 1980
1811 /* if interval is unreasonably low we might still have a time in the past */
1812 /* so correct this. this will make the periodic very inexact, but the user */
1813 /* has effectively asked to get triggered more often than possible */
1814 if (ev_at (w) < ev_rt_now)
1815 ev_at (w) = ev_rt_now;
1816 }
1817
1818 ANHE_at_cache (periodics [HEAP0]);
1819 downheap (periodics, periodiccnt, HEAP0);
1820 }
1821 else
1822 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1823
1824 EV_FREQUENT_CHECK;
1825 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1981 feed_reverse_done (EV_A_ EV_PERIODIC);
1826 } 1982 }
1827} 1983}
1828 1984
1985/* simply recalculate all periodics */
1986/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1829static void noinline 1987static void noinline
1830periodics_reschedule (EV_P) 1988periodics_reschedule (EV_P)
1831{ 1989{
1832 int i; 1990 int i;
1833 1991
1846 2004
1847 reheap (periodics, periodiccnt); 2005 reheap (periodics, periodiccnt);
1848} 2006}
1849#endif 2007#endif
1850 2008
1851void inline_speed 2009/* adjust all timers by a given offset */
2010static void noinline
2011timers_reschedule (EV_P_ ev_tstamp adjust)
2012{
2013 int i;
2014
2015 for (i = 0; i < timercnt; ++i)
2016 {
2017 ANHE *he = timers + i + HEAP0;
2018 ANHE_w (*he)->at += adjust;
2019 ANHE_at_cache (*he);
2020 }
2021}
2022
2023/* fetch new monotonic and realtime times from the kernel */
2024/* also detetc if there was a timejump, and act accordingly */
2025inline_speed void
1852time_update (EV_P_ ev_tstamp max_block) 2026time_update (EV_P_ ev_tstamp max_block)
1853{ 2027{
1854 int i;
1855
1856#if EV_USE_MONOTONIC 2028#if EV_USE_MONOTONIC
1857 if (expect_true (have_monotonic)) 2029 if (expect_true (have_monotonic))
1858 { 2030 {
2031 int i;
1859 ev_tstamp odiff = rtmn_diff; 2032 ev_tstamp odiff = rtmn_diff;
1860 2033
1861 mn_now = get_clock (); 2034 mn_now = get_clock ();
1862 2035
1863 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2036 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1889 ev_rt_now = ev_time (); 2062 ev_rt_now = ev_time ();
1890 mn_now = get_clock (); 2063 mn_now = get_clock ();
1891 now_floor = mn_now; 2064 now_floor = mn_now;
1892 } 2065 }
1893 2066
2067 /* no timer adjustment, as the monotonic clock doesn't jump */
2068 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1894# if EV_PERIODIC_ENABLE 2069# if EV_PERIODIC_ENABLE
1895 periodics_reschedule (EV_A); 2070 periodics_reschedule (EV_A);
1896# endif 2071# endif
1897 /* no timer adjustment, as the monotonic clock doesn't jump */
1898 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1899 } 2072 }
1900 else 2073 else
1901#endif 2074#endif
1902 { 2075 {
1903 ev_rt_now = ev_time (); 2076 ev_rt_now = ev_time ();
1904 2077
1905 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2078 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1906 { 2079 {
2080 /* adjust timers. this is easy, as the offset is the same for all of them */
2081 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1907#if EV_PERIODIC_ENABLE 2082#if EV_PERIODIC_ENABLE
1908 periodics_reschedule (EV_A); 2083 periodics_reschedule (EV_A);
1909#endif 2084#endif
1910 /* adjust timers. this is easy, as the offset is the same for all of them */
1911 for (i = 0; i < timercnt; ++i)
1912 {
1913 ANHE *he = timers + i + HEAP0;
1914 ANHE_w (*he)->at += ev_rt_now - mn_now;
1915 ANHE_at_cache (*he);
1916 }
1917 } 2085 }
1918 2086
1919 mn_now = ev_rt_now; 2087 mn_now = ev_rt_now;
1920 } 2088 }
1921} 2089}
1922 2090
1923void 2091void
1924ev_ref (EV_P)
1925{
1926 ++activecnt;
1927}
1928
1929void
1930ev_unref (EV_P)
1931{
1932 --activecnt;
1933}
1934
1935void
1936ev_now_update (EV_P)
1937{
1938 time_update (EV_A_ 1e100);
1939}
1940
1941static int loop_done;
1942
1943void
1944ev_loop (EV_P_ int flags) 2092ev_loop (EV_P_ int flags)
1945{ 2093{
2094#if EV_MINIMAL < 2
2095 ++loop_depth;
2096#endif
2097
2098 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2099
1946 loop_done = EVUNLOOP_CANCEL; 2100 loop_done = EVUNLOOP_CANCEL;
1947 2101
1948 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2102 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1949 2103
1950 do 2104 do
1951 { 2105 {
1952#if EV_VERIFY >= 2 2106#if EV_VERIFY >= 2
1953 ev_loop_verify (EV_A); 2107 ev_loop_verify (EV_A);
1966 /* we might have forked, so queue fork handlers */ 2120 /* we might have forked, so queue fork handlers */
1967 if (expect_false (postfork)) 2121 if (expect_false (postfork))
1968 if (forkcnt) 2122 if (forkcnt)
1969 { 2123 {
1970 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2124 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1971 call_pending (EV_A); 2125 EV_INVOKE_PENDING;
1972 } 2126 }
1973#endif 2127#endif
1974 2128
1975 /* queue prepare watchers (and execute them) */ 2129 /* queue prepare watchers (and execute them) */
1976 if (expect_false (preparecnt)) 2130 if (expect_false (preparecnt))
1977 { 2131 {
1978 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2132 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1979 call_pending (EV_A); 2133 EV_INVOKE_PENDING;
1980 } 2134 }
1981 2135
1982 if (expect_false (!activecnt)) 2136 if (expect_false (loop_done))
1983 break; 2137 break;
1984 2138
1985 /* we might have forked, so reify kernel state if necessary */ 2139 /* we might have forked, so reify kernel state if necessary */
1986 if (expect_false (postfork)) 2140 if (expect_false (postfork))
1987 loop_fork (EV_A); 2141 loop_fork (EV_A);
1994 ev_tstamp waittime = 0.; 2148 ev_tstamp waittime = 0.;
1995 ev_tstamp sleeptime = 0.; 2149 ev_tstamp sleeptime = 0.;
1996 2150
1997 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2151 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1998 { 2152 {
2153 /* remember old timestamp for io_blocktime calculation */
2154 ev_tstamp prev_mn_now = mn_now;
2155
1999 /* update time to cancel out callback processing overhead */ 2156 /* update time to cancel out callback processing overhead */
2000 time_update (EV_A_ 1e100); 2157 time_update (EV_A_ 1e100);
2001 2158
2002 waittime = MAX_BLOCKTIME; 2159 waittime = MAX_BLOCKTIME;
2003 2160
2013 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2170 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2014 if (waittime > to) waittime = to; 2171 if (waittime > to) waittime = to;
2015 } 2172 }
2016#endif 2173#endif
2017 2174
2175 /* don't let timeouts decrease the waittime below timeout_blocktime */
2018 if (expect_false (waittime < timeout_blocktime)) 2176 if (expect_false (waittime < timeout_blocktime))
2019 waittime = timeout_blocktime; 2177 waittime = timeout_blocktime;
2020 2178
2021 sleeptime = waittime - backend_fudge; 2179 /* extra check because io_blocktime is commonly 0 */
2022
2023 if (expect_true (sleeptime > io_blocktime)) 2180 if (expect_false (io_blocktime))
2024 sleeptime = io_blocktime;
2025
2026 if (sleeptime)
2027 { 2181 {
2182 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2183
2184 if (sleeptime > waittime - backend_fudge)
2185 sleeptime = waittime - backend_fudge;
2186
2187 if (expect_true (sleeptime > 0.))
2188 {
2028 ev_sleep (sleeptime); 2189 ev_sleep (sleeptime);
2029 waittime -= sleeptime; 2190 waittime -= sleeptime;
2191 }
2030 } 2192 }
2031 } 2193 }
2032 2194
2195#if EV_MINIMAL < 2
2033 ++loop_count; 2196 ++loop_count;
2197#endif
2198 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2034 backend_poll (EV_A_ waittime); 2199 backend_poll (EV_A_ waittime);
2200 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2035 2201
2036 /* update ev_rt_now, do magic */ 2202 /* update ev_rt_now, do magic */
2037 time_update (EV_A_ waittime + sleeptime); 2203 time_update (EV_A_ waittime + sleeptime);
2038 } 2204 }
2039 2205
2050 2216
2051 /* queue check watchers, to be executed first */ 2217 /* queue check watchers, to be executed first */
2052 if (expect_false (checkcnt)) 2218 if (expect_false (checkcnt))
2053 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2219 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2054 2220
2055 call_pending (EV_A); 2221 EV_INVOKE_PENDING;
2056 } 2222 }
2057 while (expect_true ( 2223 while (expect_true (
2058 activecnt 2224 activecnt
2059 && !loop_done 2225 && !loop_done
2060 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2226 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2061 )); 2227 ));
2062 2228
2063 if (loop_done == EVUNLOOP_ONE) 2229 if (loop_done == EVUNLOOP_ONE)
2064 loop_done = EVUNLOOP_CANCEL; 2230 loop_done = EVUNLOOP_CANCEL;
2231
2232#if EV_MINIMAL < 2
2233 --loop_depth;
2234#endif
2065} 2235}
2066 2236
2067void 2237void
2068ev_unloop (EV_P_ int how) 2238ev_unloop (EV_P_ int how)
2069{ 2239{
2070 loop_done = how; 2240 loop_done = how;
2071} 2241}
2072 2242
2243void
2244ev_ref (EV_P)
2245{
2246 ++activecnt;
2247}
2248
2249void
2250ev_unref (EV_P)
2251{
2252 --activecnt;
2253}
2254
2255void
2256ev_now_update (EV_P)
2257{
2258 time_update (EV_A_ 1e100);
2259}
2260
2261void
2262ev_suspend (EV_P)
2263{
2264 ev_now_update (EV_A);
2265}
2266
2267void
2268ev_resume (EV_P)
2269{
2270 ev_tstamp mn_prev = mn_now;
2271
2272 ev_now_update (EV_A);
2273 timers_reschedule (EV_A_ mn_now - mn_prev);
2274#if EV_PERIODIC_ENABLE
2275 /* TODO: really do this? */
2276 periodics_reschedule (EV_A);
2277#endif
2278}
2279
2073/*****************************************************************************/ 2280/*****************************************************************************/
2281/* singly-linked list management, used when the expected list length is short */
2074 2282
2075void inline_size 2283inline_size void
2076wlist_add (WL *head, WL elem) 2284wlist_add (WL *head, WL elem)
2077{ 2285{
2078 elem->next = *head; 2286 elem->next = *head;
2079 *head = elem; 2287 *head = elem;
2080} 2288}
2081 2289
2082void inline_size 2290inline_size void
2083wlist_del (WL *head, WL elem) 2291wlist_del (WL *head, WL elem)
2084{ 2292{
2085 while (*head) 2293 while (*head)
2086 { 2294 {
2087 if (*head == elem) 2295 if (*head == elem)
2092 2300
2093 head = &(*head)->next; 2301 head = &(*head)->next;
2094 } 2302 }
2095} 2303}
2096 2304
2097void inline_speed 2305/* internal, faster, version of ev_clear_pending */
2306inline_speed void
2098clear_pending (EV_P_ W w) 2307clear_pending (EV_P_ W w)
2099{ 2308{
2100 if (w->pending) 2309 if (w->pending)
2101 { 2310 {
2102 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2311 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2103 w->pending = 0; 2312 w->pending = 0;
2104 } 2313 }
2105} 2314}
2106 2315
2107int 2316int
2111 int pending = w_->pending; 2320 int pending = w_->pending;
2112 2321
2113 if (expect_true (pending)) 2322 if (expect_true (pending))
2114 { 2323 {
2115 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2324 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2325 p->w = (W)&pending_w;
2116 w_->pending = 0; 2326 w_->pending = 0;
2117 p->w = 0;
2118 return p->events; 2327 return p->events;
2119 } 2328 }
2120 else 2329 else
2121 return 0; 2330 return 0;
2122} 2331}
2123 2332
2124void inline_size 2333inline_size void
2125pri_adjust (EV_P_ W w) 2334pri_adjust (EV_P_ W w)
2126{ 2335{
2127 int pri = w->priority; 2336 int pri = ev_priority (w);
2128 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2337 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2129 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2338 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2130 w->priority = pri; 2339 ev_set_priority (w, pri);
2131} 2340}
2132 2341
2133void inline_speed 2342inline_speed void
2134ev_start (EV_P_ W w, int active) 2343ev_start (EV_P_ W w, int active)
2135{ 2344{
2136 pri_adjust (EV_A_ w); 2345 pri_adjust (EV_A_ w);
2137 w->active = active; 2346 w->active = active;
2138 ev_ref (EV_A); 2347 ev_ref (EV_A);
2139} 2348}
2140 2349
2141void inline_size 2350inline_size void
2142ev_stop (EV_P_ W w) 2351ev_stop (EV_P_ W w)
2143{ 2352{
2144 ev_unref (EV_A); 2353 ev_unref (EV_A);
2145 w->active = 0; 2354 w->active = 0;
2146} 2355}
2153 int fd = w->fd; 2362 int fd = w->fd;
2154 2363
2155 if (expect_false (ev_is_active (w))) 2364 if (expect_false (ev_is_active (w)))
2156 return; 2365 return;
2157 2366
2158 assert (("ev_io_start called with negative fd", fd >= 0)); 2367 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2159 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE)))); 2368 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2160 2369
2161 EV_FREQUENT_CHECK; 2370 EV_FREQUENT_CHECK;
2162 2371
2163 ev_start (EV_A_ (W)w, 1); 2372 ev_start (EV_A_ (W)w, 1);
2164 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 2373 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2165 wlist_add (&anfds[fd].head, (WL)w); 2374 wlist_add (&anfds[fd].head, (WL)w);
2166 2375
2167 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2376 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2168 w->events &= ~EV_IOFDSET; 2377 w->events &= ~EV__IOFDSET;
2169 2378
2170 EV_FREQUENT_CHECK; 2379 EV_FREQUENT_CHECK;
2171} 2380}
2172 2381
2173void noinline 2382void noinline
2175{ 2384{
2176 clear_pending (EV_A_ (W)w); 2385 clear_pending (EV_A_ (W)w);
2177 if (expect_false (!ev_is_active (w))) 2386 if (expect_false (!ev_is_active (w)))
2178 return; 2387 return;
2179 2388
2180 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2389 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2181 2390
2182 EV_FREQUENT_CHECK; 2391 EV_FREQUENT_CHECK;
2183 2392
2184 wlist_del (&anfds[w->fd].head, (WL)w); 2393 wlist_del (&anfds[w->fd].head, (WL)w);
2185 ev_stop (EV_A_ (W)w); 2394 ev_stop (EV_A_ (W)w);
2195 if (expect_false (ev_is_active (w))) 2404 if (expect_false (ev_is_active (w)))
2196 return; 2405 return;
2197 2406
2198 ev_at (w) += mn_now; 2407 ev_at (w) += mn_now;
2199 2408
2200 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2409 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2201 2410
2202 EV_FREQUENT_CHECK; 2411 EV_FREQUENT_CHECK;
2203 2412
2204 ++timercnt; 2413 ++timercnt;
2205 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 2414 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2208 ANHE_at_cache (timers [ev_active (w)]); 2417 ANHE_at_cache (timers [ev_active (w)]);
2209 upheap (timers, ev_active (w)); 2418 upheap (timers, ev_active (w));
2210 2419
2211 EV_FREQUENT_CHECK; 2420 EV_FREQUENT_CHECK;
2212 2421
2213 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2422 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2214} 2423}
2215 2424
2216void noinline 2425void noinline
2217ev_timer_stop (EV_P_ ev_timer *w) 2426ev_timer_stop (EV_P_ ev_timer *w)
2218{ 2427{
2223 EV_FREQUENT_CHECK; 2432 EV_FREQUENT_CHECK;
2224 2433
2225 { 2434 {
2226 int active = ev_active (w); 2435 int active = ev_active (w);
2227 2436
2228 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2437 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2229 2438
2230 --timercnt; 2439 --timercnt;
2231 2440
2232 if (expect_true (active < timercnt + HEAP0)) 2441 if (expect_true (active < timercnt + HEAP0))
2233 { 2442 {
2277 2486
2278 if (w->reschedule_cb) 2487 if (w->reschedule_cb)
2279 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2488 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2280 else if (w->interval) 2489 else if (w->interval)
2281 { 2490 {
2282 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2491 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2283 /* this formula differs from the one in periodic_reify because we do not always round up */ 2492 /* this formula differs from the one in periodic_reify because we do not always round up */
2284 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2493 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2285 } 2494 }
2286 else 2495 else
2287 ev_at (w) = w->offset; 2496 ev_at (w) = w->offset;
2295 ANHE_at_cache (periodics [ev_active (w)]); 2504 ANHE_at_cache (periodics [ev_active (w)]);
2296 upheap (periodics, ev_active (w)); 2505 upheap (periodics, ev_active (w));
2297 2506
2298 EV_FREQUENT_CHECK; 2507 EV_FREQUENT_CHECK;
2299 2508
2300 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2509 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2301} 2510}
2302 2511
2303void noinline 2512void noinline
2304ev_periodic_stop (EV_P_ ev_periodic *w) 2513ev_periodic_stop (EV_P_ ev_periodic *w)
2305{ 2514{
2310 EV_FREQUENT_CHECK; 2519 EV_FREQUENT_CHECK;
2311 2520
2312 { 2521 {
2313 int active = ev_active (w); 2522 int active = ev_active (w);
2314 2523
2315 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2524 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2316 2525
2317 --periodiccnt; 2526 --periodiccnt;
2318 2527
2319 if (expect_true (active < periodiccnt + HEAP0)) 2528 if (expect_true (active < periodiccnt + HEAP0))
2320 { 2529 {
2343 2552
2344void noinline 2553void noinline
2345ev_signal_start (EV_P_ ev_signal *w) 2554ev_signal_start (EV_P_ ev_signal *w)
2346{ 2555{
2347#if EV_MULTIPLICITY 2556#if EV_MULTIPLICITY
2348 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2557 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2349#endif 2558#endif
2350 if (expect_false (ev_is_active (w))) 2559 if (expect_false (ev_is_active (w)))
2351 return; 2560 return;
2352 2561
2353 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2562 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2354 2563
2355 evpipe_init (EV_A); 2564 evpipe_init (EV_A);
2356 2565
2357 EV_FREQUENT_CHECK; 2566 EV_FREQUENT_CHECK;
2358 2567
2409 2618
2410void 2619void
2411ev_child_start (EV_P_ ev_child *w) 2620ev_child_start (EV_P_ ev_child *w)
2412{ 2621{
2413#if EV_MULTIPLICITY 2622#if EV_MULTIPLICITY
2414 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2623 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2415#endif 2624#endif
2416 if (expect_false (ev_is_active (w))) 2625 if (expect_false (ev_is_active (w)))
2417 return; 2626 return;
2418 2627
2419 EV_FREQUENT_CHECK; 2628 EV_FREQUENT_CHECK;
2571 2780
2572 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2781 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2573 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2782 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2574} 2783}
2575 2784
2576void inline_size 2785inline_size void
2577check_2625 (EV_P) 2786check_2625 (EV_P)
2578{ 2787{
2579 /* kernels < 2.6.25 are borked 2788 /* kernels < 2.6.25 are borked
2580 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 2789 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2581 */ 2790 */
2594 return; 2803 return;
2595 2804
2596 fs_2625 = 1; 2805 fs_2625 = 1;
2597} 2806}
2598 2807
2599void inline_size 2808inline_size void
2600infy_init (EV_P) 2809infy_init (EV_P)
2601{ 2810{
2602 if (fs_fd != -2) 2811 if (fs_fd != -2)
2603 return; 2812 return;
2604 2813
2614 ev_set_priority (&fs_w, EV_MAXPRI); 2823 ev_set_priority (&fs_w, EV_MAXPRI);
2615 ev_io_start (EV_A_ &fs_w); 2824 ev_io_start (EV_A_ &fs_w);
2616 } 2825 }
2617} 2826}
2618 2827
2619void inline_size 2828inline_size void
2620infy_fork (EV_P) 2829infy_fork (EV_P)
2621{ 2830{
2622 int slot; 2831 int slot;
2623 2832
2624 if (fs_fd < 0) 2833 if (fs_fd < 0)
2905static void 3114static void
2906embed_fork_cb (EV_P_ ev_fork *fork_w, int revents) 3115embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2907{ 3116{
2908 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 3117 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2909 3118
3119 ev_embed_stop (EV_A_ w);
3120
2910 { 3121 {
2911 struct ev_loop *loop = w->other; 3122 struct ev_loop *loop = w->other;
2912 3123
2913 ev_loop_fork (EV_A); 3124 ev_loop_fork (EV_A);
3125 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2914 } 3126 }
3127
3128 ev_embed_start (EV_A_ w);
2915} 3129}
2916 3130
2917#if 0 3131#if 0
2918static void 3132static void
2919embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3133embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2928 if (expect_false (ev_is_active (w))) 3142 if (expect_false (ev_is_active (w)))
2929 return; 3143 return;
2930 3144
2931 { 3145 {
2932 struct ev_loop *loop = w->other; 3146 struct ev_loop *loop = w->other;
2933 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3147 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2934 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3148 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2935 } 3149 }
2936 3150
2937 EV_FREQUENT_CHECK; 3151 EV_FREQUENT_CHECK;
2938 3152
3121 ev_timer_set (&once->to, timeout, 0.); 3335 ev_timer_set (&once->to, timeout, 0.);
3122 ev_timer_start (EV_A_ &once->to); 3336 ev_timer_start (EV_A_ &once->to);
3123 } 3337 }
3124} 3338}
3125 3339
3340/*****************************************************************************/
3341
3342#if EV_WALK_ENABLE
3343void
3344ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3345{
3346 int i, j;
3347 ev_watcher_list *wl, *wn;
3348
3349 if (types & (EV_IO | EV_EMBED))
3350 for (i = 0; i < anfdmax; ++i)
3351 for (wl = anfds [i].head; wl; )
3352 {
3353 wn = wl->next;
3354
3355#if EV_EMBED_ENABLE
3356 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3357 {
3358 if (types & EV_EMBED)
3359 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3360 }
3361 else
3362#endif
3363#if EV_USE_INOTIFY
3364 if (ev_cb ((ev_io *)wl) == infy_cb)
3365 ;
3366 else
3367#endif
3368 if ((ev_io *)wl != &pipe_w)
3369 if (types & EV_IO)
3370 cb (EV_A_ EV_IO, wl);
3371
3372 wl = wn;
3373 }
3374
3375 if (types & (EV_TIMER | EV_STAT))
3376 for (i = timercnt + HEAP0; i-- > HEAP0; )
3377#if EV_STAT_ENABLE
3378 /*TODO: timer is not always active*/
3379 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3380 {
3381 if (types & EV_STAT)
3382 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3383 }
3384 else
3385#endif
3386 if (types & EV_TIMER)
3387 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3388
3389#if EV_PERIODIC_ENABLE
3390 if (types & EV_PERIODIC)
3391 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3392 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3393#endif
3394
3395#if EV_IDLE_ENABLE
3396 if (types & EV_IDLE)
3397 for (j = NUMPRI; i--; )
3398 for (i = idlecnt [j]; i--; )
3399 cb (EV_A_ EV_IDLE, idles [j][i]);
3400#endif
3401
3402#if EV_FORK_ENABLE
3403 if (types & EV_FORK)
3404 for (i = forkcnt; i--; )
3405 if (ev_cb (forks [i]) != embed_fork_cb)
3406 cb (EV_A_ EV_FORK, forks [i]);
3407#endif
3408
3409#if EV_ASYNC_ENABLE
3410 if (types & EV_ASYNC)
3411 for (i = asynccnt; i--; )
3412 cb (EV_A_ EV_ASYNC, asyncs [i]);
3413#endif
3414
3415 if (types & EV_PREPARE)
3416 for (i = preparecnt; i--; )
3417#if EV_EMBED_ENABLE
3418 if (ev_cb (prepares [i]) != embed_prepare_cb)
3419#endif
3420 cb (EV_A_ EV_PREPARE, prepares [i]);
3421
3422 if (types & EV_CHECK)
3423 for (i = checkcnt; i--; )
3424 cb (EV_A_ EV_CHECK, checks [i]);
3425
3426 if (types & EV_SIGNAL)
3427 for (i = 0; i < signalmax; ++i)
3428 for (wl = signals [i].head; wl; )
3429 {
3430 wn = wl->next;
3431 cb (EV_A_ EV_SIGNAL, wl);
3432 wl = wn;
3433 }
3434
3435 if (types & EV_CHILD)
3436 for (i = EV_PID_HASHSIZE; i--; )
3437 for (wl = childs [i]; wl; )
3438 {
3439 wn = wl->next;
3440 cb (EV_A_ EV_CHILD, wl);
3441 wl = wn;
3442 }
3443/* EV_STAT 0x00001000 /* stat data changed */
3444/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3445}
3446#endif
3447
3126#if EV_MULTIPLICITY 3448#if EV_MULTIPLICITY
3127 #include "ev_wrap.h" 3449 #include "ev_wrap.h"
3128#endif 3450#endif
3129 3451
3130#ifdef __cplusplus 3452#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines