ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.32 by root, Thu Nov 1 09:21:51 2007 UTC vs.
Revision 1.298 by root, Fri Jul 10 19:10:19 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
6 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
7 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
8 * 27 *
9 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
10 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
11 * 30 * in which case the provisions of the GPL are applicable instead of
12 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
13 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
14 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
15 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
16 * 35 * and other provisions required by the GPL. If you do not delete the
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE
29#if EV_USE_CONFIG_H 46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
30# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
66# if HAVE_CLOCK_GETTIME
67# ifndef EV_USE_MONOTONIC
68# define EV_USE_MONOTONIC 1
69# endif
70# ifndef EV_USE_REALTIME
71# define EV_USE_REALTIME 0
72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
90# ifndef EV_USE_SELECT
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
95# endif
96# endif
97
98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
100# define EV_USE_POLL 1
101# else
102# define EV_USE_POLL 0
103# endif
104# endif
105
106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
108# define EV_USE_EPOLL 1
109# else
110# define EV_USE_EPOLL 0
111# endif
112# endif
113
114# ifndef EV_USE_KQUEUE
115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
119# endif
120# endif
121
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
127# endif
128# endif
129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_EVENTFD
139# if HAVE_EVENTFD
140# define EV_USE_EVENTFD 1
141# else
142# define EV_USE_EVENTFD 0
143# endif
144# endif
145
31#endif 146#endif
32 147
33#include <math.h> 148#include <math.h>
34#include <stdlib.h> 149#include <stdlib.h>
35#include <unistd.h>
36#include <fcntl.h> 150#include <fcntl.h>
37#include <signal.h>
38#include <stddef.h> 151#include <stddef.h>
39 152
40#include <stdio.h> 153#include <stdio.h>
41 154
42#include <assert.h> 155#include <assert.h>
43#include <errno.h> 156#include <errno.h>
44#include <sys/types.h> 157#include <sys/types.h>
45#include <sys/wait.h>
46#include <sys/time.h>
47#include <time.h> 158#include <time.h>
48 159
160#include <signal.h>
161
162#ifdef EV_H
163# include EV_H
164#else
165# include "ev.h"
166#endif
167
168#ifndef _WIN32
169# include <sys/time.h>
170# include <sys/wait.h>
171# include <unistd.h>
172#else
173# include <io.h>
174# define WIN32_LEAN_AND_MEAN
175# include <windows.h>
176# ifndef EV_SELECT_IS_WINSOCKET
177# define EV_SELECT_IS_WINSOCKET 1
178# endif
179#endif
180
181/* this block tries to deduce configuration from header-defined symbols and defaults */
182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
190
49#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
50# ifdef CLOCK_MONOTONIC 192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
51# define EV_USE_MONOTONIC 1 193# define EV_USE_MONOTONIC 1
194# else
195# define EV_USE_MONOTONIC 0
196# endif
197#endif
198
199#ifndef EV_USE_REALTIME
200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
201#endif
202
203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
207# define EV_USE_NANOSLEEP 0
52# endif 208# endif
53#endif 209#endif
54 210
55#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
56# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
57#endif 213#endif
58 214
215#ifndef EV_USE_POLL
216# ifdef _WIN32
217# define EV_USE_POLL 0
218# else
219# define EV_USE_POLL 1
220# endif
221#endif
222
59#ifndef EV_USE_EPOLL 223#ifndef EV_USE_EPOLL
224# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225# define EV_USE_EPOLL 1
226# else
60# define EV_USE_EPOLL 0 227# define EV_USE_EPOLL 0
228# endif
229#endif
230
231#ifndef EV_USE_KQUEUE
232# define EV_USE_KQUEUE 0
233#endif
234
235#ifndef EV_USE_PORT
236# define EV_USE_PORT 0
237#endif
238
239#ifndef EV_USE_INOTIFY
240# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
241# define EV_USE_INOTIFY 1
242# else
243# define EV_USE_INOTIFY 0
244# endif
245#endif
246
247#ifndef EV_PID_HASHSIZE
248# if EV_MINIMAL
249# define EV_PID_HASHSIZE 1
250# else
251# define EV_PID_HASHSIZE 16
252# endif
253#endif
254
255#ifndef EV_INOTIFY_HASHSIZE
256# if EV_MINIMAL
257# define EV_INOTIFY_HASHSIZE 1
258# else
259# define EV_INOTIFY_HASHSIZE 16
260# endif
261#endif
262
263#ifndef EV_USE_EVENTFD
264# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265# define EV_USE_EVENTFD 1
266# else
267# define EV_USE_EVENTFD 0
268# endif
269#endif
270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
304
305#ifndef CLOCK_MONOTONIC
306# undef EV_USE_MONOTONIC
307# define EV_USE_MONOTONIC 0
61#endif 308#endif
62 309
63#ifndef CLOCK_REALTIME 310#ifndef CLOCK_REALTIME
311# undef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 312# define EV_USE_REALTIME 0
65#endif 313#endif
66#ifndef EV_USE_REALTIME 314
67# define EV_USE_REALTIME 1 /* posix requirement, but might be slower */ 315#if !EV_STAT_ENABLE
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318#endif
319
320#if !EV_USE_NANOSLEEP
321# ifndef _WIN32
322# include <sys/select.h>
68#endif 323# endif
324#endif
325
326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
335#endif
336
337#if EV_SELECT_IS_WINSOCKET
338# include <winsock.h>
339#endif
340
341#if EV_USE_EVENTFD
342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343# include <stdint.h>
344# ifdef __cplusplus
345extern "C" {
346# endif
347int eventfd (unsigned int initval, int flags);
348# ifdef __cplusplus
349}
350# endif
351#endif
352
353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
360
361/*
362 * This is used to avoid floating point rounding problems.
363 * It is added to ev_rt_now when scheduling periodics
364 * to ensure progress, time-wise, even when rounding
365 * errors are against us.
366 * This value is good at least till the year 4000.
367 * Better solutions welcome.
368 */
369#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
69 370
70#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 371#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
71#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detetc time jumps) */ 372#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
72#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
73#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 373/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
74 374
75#include "ev.h" 375#if __GNUC__ >= 4
376# define expect(expr,value) __builtin_expect ((expr),(value))
377# define noinline __attribute__ ((noinline))
378#else
379# define expect(expr,value) (expr)
380# define noinline
381# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
382# define inline
383# endif
384#endif
76 385
386#define expect_false(expr) expect ((expr) != 0, 0)
387#define expect_true(expr) expect ((expr) != 0, 1)
388#define inline_size static inline
389
390#if EV_MINIMAL
391# define inline_speed static noinline
392#else
393# define inline_speed static inline
394#endif
395
396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
403
404#define EMPTY /* required for microsofts broken pseudo-c compiler */
405#define EMPTY2(a,b) /* used to suppress some warnings */
406
77typedef struct ev_watcher *W; 407typedef ev_watcher *W;
78typedef struct ev_watcher_list *WL; 408typedef ev_watcher_list *WL;
79typedef struct ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
80 410
81static ev_tstamp now, diff; /* monotonic clock */ 411#define ev_active(w) ((W)(w))->active
82ev_tstamp ev_now; 412#define ev_at(w) ((WT)(w))->at
83int ev_method;
84 413
85static int have_monotonic; /* runtime */ 414#if EV_USE_REALTIME
415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
86 419
87static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 420#if EV_USE_MONOTONIC
88static void (*method_modify)(int fd, int oev, int nev); 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
89static void (*method_poll)(ev_tstamp timeout); 422#endif
423
424#ifdef _WIN32
425# include "ev_win32.c"
426#endif
90 427
91/*****************************************************************************/ 428/*****************************************************************************/
92 429
430static void (*syserr_cb)(const char *msg);
431
432void
433ev_set_syserr_cb (void (*cb)(const char *msg))
434{
435 syserr_cb = cb;
436}
437
438static void noinline
439ev_syserr (const char *msg)
440{
441 if (!msg)
442 msg = "(libev) system error";
443
444 if (syserr_cb)
445 syserr_cb (msg);
446 else
447 {
448 perror (msg);
449 abort ();
450 }
451}
452
453static void *
454ev_realloc_emul (void *ptr, long size)
455{
456 /* some systems, notably openbsd and darwin, fail to properly
457 * implement realloc (x, 0) (as required by both ansi c-98 and
458 * the single unix specification, so work around them here.
459 */
460
461 if (size)
462 return realloc (ptr, size);
463
464 free (ptr);
465 return 0;
466}
467
468static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
469
470void
471ev_set_allocator (void *(*cb)(void *ptr, long size))
472{
473 alloc = cb;
474}
475
476inline_speed void *
477ev_realloc (void *ptr, long size)
478{
479 ptr = alloc (ptr, size);
480
481 if (!ptr && size)
482 {
483 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
484 abort ();
485 }
486
487 return ptr;
488}
489
490#define ev_malloc(size) ev_realloc (0, (size))
491#define ev_free(ptr) ev_realloc ((ptr), 0)
492
493/*****************************************************************************/
494
495/* set in reify when reification needed */
496#define EV_ANFD_REIFY 1
497
498/* file descriptor info structure */
499typedef struct
500{
501 WL head;
502 unsigned char events; /* the events watched for */
503 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
504 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
505 unsigned char unused;
506#if EV_USE_EPOLL
507 unsigned int egen; /* generation counter to counter epoll bugs */
508#endif
509#if EV_SELECT_IS_WINSOCKET
510 SOCKET handle;
511#endif
512} ANFD;
513
514/* stores the pending event set for a given watcher */
515typedef struct
516{
517 W w;
518 int events; /* the pending event set for the given watcher */
519} ANPENDING;
520
521#if EV_USE_INOTIFY
522/* hash table entry per inotify-id */
523typedef struct
524{
525 WL head;
526} ANFS;
527#endif
528
529/* Heap Entry */
530#if EV_HEAP_CACHE_AT
531 /* a heap element */
532 typedef struct {
533 ev_tstamp at;
534 WT w;
535 } ANHE;
536
537 #define ANHE_w(he) (he).w /* access watcher, read-write */
538 #define ANHE_at(he) (he).at /* access cached at, read-only */
539 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
540#else
541 /* a heap element */
542 typedef WT ANHE;
543
544 #define ANHE_w(he) (he)
545 #define ANHE_at(he) (he)->at
546 #define ANHE_at_cache(he)
547#endif
548
549#if EV_MULTIPLICITY
550
551 struct ev_loop
552 {
553 ev_tstamp ev_rt_now;
554 #define ev_rt_now ((loop)->ev_rt_now)
555 #define VAR(name,decl) decl;
556 #include "ev_vars.h"
557 #undef VAR
558 };
559 #include "ev_wrap.h"
560
561 static struct ev_loop default_loop_struct;
562 struct ev_loop *ev_default_loop_ptr;
563
564#else
565
566 ev_tstamp ev_rt_now;
567 #define VAR(name,decl) static decl;
568 #include "ev_vars.h"
569 #undef VAR
570
571 static int ev_default_loop_ptr;
572
573#endif
574
575#if EV_MINIMAL < 2
576# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
577# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
578# define EV_INVOKE_PENDING invoke_cb (EV_A)
579#else
580# define EV_RELEASE_CB (void)0
581# define EV_ACQUIRE_CB (void)0
582# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
583#endif
584
585#define EVUNLOOP_RECURSE 0x80
586
587/*****************************************************************************/
588
589#ifndef EV_HAVE_EV_TIME
93ev_tstamp 590ev_tstamp
94ev_time (void) 591ev_time (void)
95{ 592{
96#if EV_USE_REALTIME 593#if EV_USE_REALTIME
594 if (expect_true (have_realtime))
595 {
97 struct timespec ts; 596 struct timespec ts;
98 clock_gettime (CLOCK_REALTIME, &ts); 597 clock_gettime (CLOCK_REALTIME, &ts);
99 return ts.tv_sec + ts.tv_nsec * 1e-9; 598 return ts.tv_sec + ts.tv_nsec * 1e-9;
100#else 599 }
600#endif
601
101 struct timeval tv; 602 struct timeval tv;
102 gettimeofday (&tv, 0); 603 gettimeofday (&tv, 0);
103 return tv.tv_sec + tv.tv_usec * 1e-6; 604 return tv.tv_sec + tv.tv_usec * 1e-6;
104#endif
105} 605}
606#endif
106 607
107static ev_tstamp 608inline_size ev_tstamp
108get_clock (void) 609get_clock (void)
109{ 610{
110#if EV_USE_MONOTONIC 611#if EV_USE_MONOTONIC
111 if (have_monotonic) 612 if (expect_true (have_monotonic))
112 { 613 {
113 struct timespec ts; 614 struct timespec ts;
114 clock_gettime (CLOCK_MONOTONIC, &ts); 615 clock_gettime (CLOCK_MONOTONIC, &ts);
115 return ts.tv_sec + ts.tv_nsec * 1e-9; 616 return ts.tv_sec + ts.tv_nsec * 1e-9;
116 } 617 }
117#endif 618#endif
118 619
119 return ev_time (); 620 return ev_time ();
120} 621}
121 622
122#define array_roundsize(base,n) ((n) | 4 & ~3) 623#if EV_MULTIPLICITY
624ev_tstamp
625ev_now (EV_P)
626{
627 return ev_rt_now;
628}
629#endif
123 630
124#define array_needsize(base,cur,cnt,init) \ 631void
125 if ((cnt) > cur) \ 632ev_sleep (ev_tstamp delay)
126 { \ 633{
127 int newcnt = cur; \ 634 if (delay > 0.)
128 do \
129 { \
130 newcnt = array_roundsize (base, newcnt << 1); \
131 } \
132 while ((cnt) > newcnt); \
133 \
134 base = realloc (base, sizeof (*base) * (newcnt)); \
135 init (base + cur, newcnt - cur); \
136 cur = newcnt; \
137 } 635 {
636#if EV_USE_NANOSLEEP
637 struct timespec ts;
638
639 ts.tv_sec = (time_t)delay;
640 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
641
642 nanosleep (&ts, 0);
643#elif defined(_WIN32)
644 Sleep ((unsigned long)(delay * 1e3));
645#else
646 struct timeval tv;
647
648 tv.tv_sec = (time_t)delay;
649 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
650
651 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
652 /* somehting not guaranteed by newer posix versions, but guaranteed */
653 /* by older ones */
654 select (0, 0, 0, 0, &tv);
655#endif
656 }
657}
138 658
139/*****************************************************************************/ 659/*****************************************************************************/
140 660
141typedef struct 661#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
142{
143 struct ev_io *head;
144 int events;
145} ANFD;
146 662
147static ANFD *anfds; 663/* find a suitable new size for the given array, */
148static int anfdmax; 664/* hopefully by rounding to a ncie-to-malloc size */
149 665inline_size int
150static void 666array_nextsize (int elem, int cur, int cnt)
151anfds_init (ANFD *base, int count)
152{ 667{
153 while (count--) 668 int ncur = cur + 1;
154 { 669
155 base->head = 0; 670 do
156 base->events = EV_NONE; 671 ncur <<= 1;
157 ++base; 672 while (cnt > ncur);
673
674 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
675 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
158 } 676 {
159} 677 ncur *= elem;
160 678 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
161typedef struct 679 ncur = ncur - sizeof (void *) * 4;
162{ 680 ncur /= elem;
163 W w;
164 int events;
165} ANPENDING;
166
167static ANPENDING *pendings;
168static int pendingmax, pendingcnt;
169
170static void
171event (W w, int events)
172{
173 if (w->pending)
174 { 681 }
682
683 return ncur;
684}
685
686static noinline void *
687array_realloc (int elem, void *base, int *cur, int cnt)
688{
689 *cur = array_nextsize (elem, *cur, cnt);
690 return ev_realloc (base, elem * *cur);
691}
692
693#define array_init_zero(base,count) \
694 memset ((void *)(base), 0, sizeof (*(base)) * (count))
695
696#define array_needsize(type,base,cur,cnt,init) \
697 if (expect_false ((cnt) > (cur))) \
698 { \
699 int ocur_ = (cur); \
700 (base) = (type *)array_realloc \
701 (sizeof (type), (base), &(cur), (cnt)); \
702 init ((base) + (ocur_), (cur) - ocur_); \
703 }
704
705#if 0
706#define array_slim(type,stem) \
707 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
708 { \
709 stem ## max = array_roundsize (stem ## cnt >> 1); \
710 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
711 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
712 }
713#endif
714
715#define array_free(stem, idx) \
716 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
717
718/*****************************************************************************/
719
720/* dummy callback for pending events */
721static void noinline
722pendingcb (EV_P_ ev_prepare *w, int revents)
723{
724}
725
726void noinline
727ev_feed_event (EV_P_ void *w, int revents)
728{
729 W w_ = (W)w;
730 int pri = ABSPRI (w_);
731
732 if (expect_false (w_->pending))
733 pendings [pri][w_->pending - 1].events |= revents;
734 else
735 {
736 w_->pending = ++pendingcnt [pri];
737 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
738 pendings [pri][w_->pending - 1].w = w_;
175 pendings [w->pending - 1].events |= events; 739 pendings [pri][w_->pending - 1].events = revents;
176 return;
177 } 740 }
178
179 w->pending = ++pendingcnt;
180 array_needsize (pendings, pendingmax, pendingcnt, );
181 pendings [pendingcnt - 1].w = w;
182 pendings [pendingcnt - 1].events = events;
183} 741}
184 742
185static void 743inline_speed void
744feed_reverse (EV_P_ W w)
745{
746 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
747 rfeeds [rfeedcnt++] = w;
748}
749
750inline_size void
751feed_reverse_done (EV_P_ int revents)
752{
753 do
754 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
755 while (rfeedcnt);
756}
757
758inline_speed void
186queue_events (W *events, int eventcnt, int type) 759queue_events (EV_P_ W *events, int eventcnt, int type)
187{ 760{
188 int i; 761 int i;
189 762
190 for (i = 0; i < eventcnt; ++i) 763 for (i = 0; i < eventcnt; ++i)
191 event (events [i], type); 764 ev_feed_event (EV_A_ events [i], type);
192} 765}
193 766
194static void 767/*****************************************************************************/
768
769inline_speed void
195fd_event (int fd, int events) 770fd_event_nc (EV_P_ int fd, int revents)
196{ 771{
197 ANFD *anfd = anfds + fd; 772 ANFD *anfd = anfds + fd;
198 struct ev_io *w; 773 ev_io *w;
199 774
200 for (w = anfd->head; w; w = w->next) 775 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
201 { 776 {
202 int ev = w->events & events; 777 int ev = w->events & revents;
203 778
204 if (ev) 779 if (ev)
205 event ((W)w, ev); 780 ev_feed_event (EV_A_ (W)w, ev);
206 } 781 }
207} 782}
208 783
209/*****************************************************************************/ 784/* do not submit kernel events for fds that have reify set */
785/* because that means they changed while we were polling for new events */
786inline_speed void
787fd_event (EV_P_ int fd, int revents)
788{
789 ANFD *anfd = anfds + fd;
210 790
211static int *fdchanges; 791 if (expect_true (!anfd->reify))
212static int fdchangemax, fdchangecnt; 792 fd_event_nc (EV_A_ fd, revents);
793}
213 794
214static void 795void
215fd_reify (void) 796ev_feed_fd_event (EV_P_ int fd, int revents)
797{
798 if (fd >= 0 && fd < anfdmax)
799 fd_event_nc (EV_A_ fd, revents);
800}
801
802/* make sure the external fd watch events are in-sync */
803/* with the kernel/libev internal state */
804inline_size void
805fd_reify (EV_P)
216{ 806{
217 int i; 807 int i;
218 808
219 for (i = 0; i < fdchangecnt; ++i) 809 for (i = 0; i < fdchangecnt; ++i)
220 { 810 {
221 int fd = fdchanges [i]; 811 int fd = fdchanges [i];
222 ANFD *anfd = anfds + fd; 812 ANFD *anfd = anfds + fd;
223 struct ev_io *w; 813 ev_io *w;
224 814
225 int events = 0; 815 unsigned char events = 0;
226 816
227 for (w = anfd->head; w; w = w->next) 817 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
228 events |= w->events; 818 events |= (unsigned char)w->events;
229 819
230 anfd->events &= ~EV_REIFY; 820#if EV_SELECT_IS_WINSOCKET
231 821 if (events)
232 if (anfd->events != events)
233 { 822 {
234 method_modify (fd, anfd->events, events); 823 unsigned long arg;
235 anfd->events = events; 824 #ifdef EV_FD_TO_WIN32_HANDLE
825 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
826 #else
827 anfd->handle = _get_osfhandle (fd);
828 #endif
829 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
236 } 830 }
831#endif
832
833 {
834 unsigned char o_events = anfd->events;
835 unsigned char o_reify = anfd->reify;
836
837 anfd->reify = 0;
838 anfd->events = events;
839
840 if (o_events != events || o_reify & EV__IOFDSET)
841 backend_modify (EV_A_ fd, o_events, events);
842 }
237 } 843 }
238 844
239 fdchangecnt = 0; 845 fdchangecnt = 0;
240} 846}
241 847
242static void 848/* something about the given fd changed */
243fd_change (int fd) 849inline_size void
850fd_change (EV_P_ int fd, int flags)
244{ 851{
245 if (anfds [fd].events & EV_REIFY || fdchangecnt < 0) 852 unsigned char reify = anfds [fd].reify;
246 return; 853 anfds [fd].reify |= flags;
247 854
248 anfds [fd].events |= EV_REIFY; 855 if (expect_true (!reify))
249 856 {
250 ++fdchangecnt; 857 ++fdchangecnt;
251 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 858 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
252 fdchanges [fdchangecnt - 1] = fd; 859 fdchanges [fdchangecnt - 1] = fd;
860 }
861}
862
863/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
864inline_speed void
865fd_kill (EV_P_ int fd)
866{
867 ev_io *w;
868
869 while ((w = (ev_io *)anfds [fd].head))
870 {
871 ev_io_stop (EV_A_ w);
872 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
873 }
874}
875
876/* check whether the given fd is atcually valid, for error recovery */
877inline_size int
878fd_valid (int fd)
879{
880#ifdef _WIN32
881 return _get_osfhandle (fd) != -1;
882#else
883 return fcntl (fd, F_GETFD) != -1;
884#endif
253} 885}
254 886
255/* called on EBADF to verify fds */ 887/* called on EBADF to verify fds */
256static void 888static void noinline
257fd_recheck (void) 889fd_ebadf (EV_P)
258{ 890{
259 int fd; 891 int fd;
260 892
261 for (fd = 0; fd < anfdmax; ++fd) 893 for (fd = 0; fd < anfdmax; ++fd)
262 if (anfds [fd].events) 894 if (anfds [fd].events)
263 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 895 if (!fd_valid (fd) && errno == EBADF)
264 while (anfds [fd].head) 896 fd_kill (EV_A_ fd);
897}
898
899/* called on ENOMEM in select/poll to kill some fds and retry */
900static void noinline
901fd_enomem (EV_P)
902{
903 int fd;
904
905 for (fd = anfdmax; fd--; )
906 if (anfds [fd].events)
265 { 907 {
266 ev_io_stop (anfds [fd].head); 908 fd_kill (EV_A_ fd);
267 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT); 909 return;
268 } 910 }
911}
912
913/* usually called after fork if backend needs to re-arm all fds from scratch */
914static void noinline
915fd_rearm_all (EV_P)
916{
917 int fd;
918
919 for (fd = 0; fd < anfdmax; ++fd)
920 if (anfds [fd].events)
921 {
922 anfds [fd].events = 0;
923 anfds [fd].emask = 0;
924 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
925 }
269} 926}
270 927
271/*****************************************************************************/ 928/*****************************************************************************/
272 929
273static struct ev_timer **timers; 930/*
274static int timermax, timercnt; 931 * the heap functions want a real array index. array index 0 uis guaranteed to not
932 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
933 * the branching factor of the d-tree.
934 */
275 935
276static struct ev_periodic **periodics; 936/*
277static int periodicmax, periodiccnt; 937 * at the moment we allow libev the luxury of two heaps,
938 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
939 * which is more cache-efficient.
940 * the difference is about 5% with 50000+ watchers.
941 */
942#if EV_USE_4HEAP
278 943
279static void 944#define DHEAP 4
280upheap (WT *timers, int k) 945#define HEAP0 (DHEAP - 1) /* index of first element in heap */
281{ 946#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
282 WT w = timers [k]; 947#define UPHEAP_DONE(p,k) ((p) == (k))
283 948
284 while (k && timers [k >> 1]->at > w->at) 949/* away from the root */
285 { 950inline_speed void
286 timers [k] = timers [k >> 1];
287 timers [k]->active = k + 1;
288 k >>= 1;
289 }
290
291 timers [k] = w;
292 timers [k]->active = k + 1;
293
294}
295
296static void
297downheap (WT *timers, int N, int k) 951downheap (ANHE *heap, int N, int k)
298{ 952{
299 WT w = timers [k]; 953 ANHE he = heap [k];
954 ANHE *E = heap + N + HEAP0;
300 955
301 while (k < (N >> 1)) 956 for (;;)
302 { 957 {
303 int j = k << 1; 958 ev_tstamp minat;
959 ANHE *minpos;
960 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
304 961
305 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 962 /* find minimum child */
963 if (expect_true (pos + DHEAP - 1 < E))
306 ++j; 964 {
307 965 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
308 if (w->at <= timers [j]->at) 966 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
967 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
968 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
969 }
970 else if (pos < E)
971 {
972 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
973 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
974 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
975 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
976 }
977 else
309 break; 978 break;
310 979
311 timers [k] = timers [j]; 980 if (ANHE_at (he) <= minat)
312 timers [k]->active = k + 1; 981 break;
982
983 heap [k] = *minpos;
984 ev_active (ANHE_w (*minpos)) = k;
985
986 k = minpos - heap;
987 }
988
989 heap [k] = he;
990 ev_active (ANHE_w (he)) = k;
991}
992
993#else /* 4HEAP */
994
995#define HEAP0 1
996#define HPARENT(k) ((k) >> 1)
997#define UPHEAP_DONE(p,k) (!(p))
998
999/* away from the root */
1000inline_speed void
1001downheap (ANHE *heap, int N, int k)
1002{
1003 ANHE he = heap [k];
1004
1005 for (;;)
1006 {
1007 int c = k << 1;
1008
1009 if (c > N + HEAP0 - 1)
1010 break;
1011
1012 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1013 ? 1 : 0;
1014
1015 if (ANHE_at (he) <= ANHE_at (heap [c]))
1016 break;
1017
1018 heap [k] = heap [c];
1019 ev_active (ANHE_w (heap [k])) = k;
1020
313 k = j; 1021 k = c;
1022 }
1023
1024 heap [k] = he;
1025 ev_active (ANHE_w (he)) = k;
1026}
1027#endif
1028
1029/* towards the root */
1030inline_speed void
1031upheap (ANHE *heap, int k)
1032{
1033 ANHE he = heap [k];
1034
1035 for (;;)
314 } 1036 {
1037 int p = HPARENT (k);
315 1038
316 timers [k] = w; 1039 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
317 timers [k]->active = k + 1; 1040 break;
1041
1042 heap [k] = heap [p];
1043 ev_active (ANHE_w (heap [k])) = k;
1044 k = p;
1045 }
1046
1047 heap [k] = he;
1048 ev_active (ANHE_w (he)) = k;
1049}
1050
1051/* move an element suitably so it is in a correct place */
1052inline_size void
1053adjustheap (ANHE *heap, int N, int k)
1054{
1055 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
1056 upheap (heap, k);
1057 else
1058 downheap (heap, N, k);
1059}
1060
1061/* rebuild the heap: this function is used only once and executed rarely */
1062inline_size void
1063reheap (ANHE *heap, int N)
1064{
1065 int i;
1066
1067 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1068 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1069 for (i = 0; i < N; ++i)
1070 upheap (heap, i + HEAP0);
318} 1071}
319 1072
320/*****************************************************************************/ 1073/*****************************************************************************/
321 1074
1075/* associate signal watchers to a signal signal */
322typedef struct 1076typedef struct
323{ 1077{
324 struct ev_signal *head; 1078 WL head;
325 sig_atomic_t gotsig; 1079 EV_ATOMIC_T gotsig;
326} ANSIG; 1080} ANSIG;
327 1081
328static ANSIG *signals; 1082static ANSIG *signals;
329static int signalmax; 1083static int signalmax;
330 1084
331static int sigpipe [2]; 1085static EV_ATOMIC_T gotsig;
332static sig_atomic_t gotsig;
333static struct ev_io sigev;
334 1086
1087/*****************************************************************************/
1088
1089/* used to prepare libev internal fd's */
1090/* this is not fork-safe */
1091inline_speed void
1092fd_intern (int fd)
1093{
1094#ifdef _WIN32
1095 unsigned long arg = 1;
1096 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1097#else
1098 fcntl (fd, F_SETFD, FD_CLOEXEC);
1099 fcntl (fd, F_SETFL, O_NONBLOCK);
1100#endif
1101}
1102
1103static void noinline
1104evpipe_init (EV_P)
1105{
1106 if (!ev_is_active (&pipe_w))
1107 {
1108#if EV_USE_EVENTFD
1109 if ((evfd = eventfd (0, 0)) >= 0)
1110 {
1111 evpipe [0] = -1;
1112 fd_intern (evfd);
1113 ev_io_set (&pipe_w, evfd, EV_READ);
1114 }
1115 else
1116#endif
1117 {
1118 while (pipe (evpipe))
1119 ev_syserr ("(libev) error creating signal/async pipe");
1120
1121 fd_intern (evpipe [0]);
1122 fd_intern (evpipe [1]);
1123 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1124 }
1125
1126 ev_io_start (EV_A_ &pipe_w);
1127 ev_unref (EV_A); /* watcher should not keep loop alive */
1128 }
1129}
1130
1131inline_size void
1132evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1133{
1134 if (!*flag)
1135 {
1136 int old_errno = errno; /* save errno because write might clobber it */
1137
1138 *flag = 1;
1139
1140#if EV_USE_EVENTFD
1141 if (evfd >= 0)
1142 {
1143 uint64_t counter = 1;
1144 write (evfd, &counter, sizeof (uint64_t));
1145 }
1146 else
1147#endif
1148 write (evpipe [1], &old_errno, 1);
1149
1150 errno = old_errno;
1151 }
1152}
1153
1154/* called whenever the libev signal pipe */
1155/* got some events (signal, async) */
335static void 1156static void
336signals_init (ANSIG *base, int count) 1157pipecb (EV_P_ ev_io *iow, int revents)
337{ 1158{
338 while (count--) 1159#if EV_USE_EVENTFD
1160 if (evfd >= 0)
1161 {
1162 uint64_t counter;
1163 read (evfd, &counter, sizeof (uint64_t));
339 { 1164 }
340 base->head = 0; 1165 else
1166#endif
1167 {
1168 char dummy;
1169 read (evpipe [0], &dummy, 1);
1170 }
1171
1172 if (gotsig && ev_is_default_loop (EV_A))
1173 {
1174 int signum;
341 base->gotsig = 0; 1175 gotsig = 0;
342 ++base; 1176
1177 for (signum = signalmax; signum--; )
1178 if (signals [signum].gotsig)
1179 ev_feed_signal_event (EV_A_ signum + 1);
1180 }
1181
1182#if EV_ASYNC_ENABLE
1183 if (gotasync)
343 } 1184 {
1185 int i;
1186 gotasync = 0;
1187
1188 for (i = asynccnt; i--; )
1189 if (asyncs [i]->sent)
1190 {
1191 asyncs [i]->sent = 0;
1192 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1193 }
1194 }
1195#endif
344} 1196}
1197
1198/*****************************************************************************/
345 1199
346static void 1200static void
347sighandler (int signum) 1201ev_sighandler (int signum)
348{ 1202{
1203#if EV_MULTIPLICITY
1204 struct ev_loop *loop = &default_loop_struct;
1205#endif
1206
1207#if _WIN32
1208 signal (signum, ev_sighandler);
1209#endif
1210
349 signals [signum - 1].gotsig = 1; 1211 signals [signum - 1].gotsig = 1;
350 1212 evpipe_write (EV_A_ &gotsig);
351 if (!gotsig)
352 {
353 gotsig = 1;
354 write (sigpipe [1], &gotsig, 1);
355 }
356} 1213}
357 1214
358static void 1215void noinline
359sigcb (struct ev_io *iow, int revents) 1216ev_feed_signal_event (EV_P_ int signum)
360{ 1217{
361 struct ev_signal *w; 1218 WL w;
362 int sig;
363 1219
364 gotsig = 0; 1220#if EV_MULTIPLICITY
365 read (sigpipe [0], &revents, 1); 1221 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1222#endif
366 1223
367 for (sig = signalmax; sig--; ) 1224 --signum;
368 if (signals [sig].gotsig) 1225
369 { 1226 if (signum < 0 || signum >= signalmax)
1227 return;
1228
370 signals [sig].gotsig = 0; 1229 signals [signum].gotsig = 0;
371 1230
372 for (w = signals [sig].head; w; w = w->next) 1231 for (w = signals [signum].head; w; w = w->next)
373 event ((W)w, EV_SIGNAL); 1232 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
374 }
375}
376
377static void
378siginit (void)
379{
380 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
381 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
382
383 /* rather than sort out wether we really need nb, set it */
384 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
385 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
386
387 ev_io_set (&sigev, sigpipe [0], EV_READ);
388 ev_io_start (&sigev);
389} 1233}
390 1234
391/*****************************************************************************/ 1235/*****************************************************************************/
392 1236
393static struct ev_idle **idles; 1237static WL childs [EV_PID_HASHSIZE];
394static int idlemax, idlecnt;
395 1238
396static struct ev_prepare **prepares; 1239#ifndef _WIN32
397static int preparemax, preparecnt;
398 1240
399static struct ev_check **checks;
400static int checkmax, checkcnt;
401
402/*****************************************************************************/
403
404static struct ev_child *childs [PID_HASHSIZE];
405static struct ev_signal childev; 1241static ev_signal childev;
1242
1243#ifndef WIFCONTINUED
1244# define WIFCONTINUED(status) 0
1245#endif
1246
1247/* handle a single child status event */
1248inline_speed void
1249child_reap (EV_P_ int chain, int pid, int status)
1250{
1251 ev_child *w;
1252 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1253
1254 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1255 {
1256 if ((w->pid == pid || !w->pid)
1257 && (!traced || (w->flags & 1)))
1258 {
1259 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1260 w->rpid = pid;
1261 w->rstatus = status;
1262 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1263 }
1264 }
1265}
406 1266
407#ifndef WCONTINUED 1267#ifndef WCONTINUED
408# define WCONTINUED 0 1268# define WCONTINUED 0
409#endif 1269#endif
410 1270
1271/* called on sigchld etc., calls waitpid */
411static void 1272static void
412childcb (struct ev_signal *sw, int revents) 1273childcb (EV_P_ ev_signal *sw, int revents)
413{ 1274{
414 struct ev_child *w;
415 int pid, status; 1275 int pid, status;
416 1276
1277 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
417 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 1278 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
418 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 1279 if (!WCONTINUED
419 if (w->pid == pid || w->pid == -1) 1280 || errno != EINVAL
420 { 1281 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
421 w->status = status; 1282 return;
422 event ((W)w, EV_CHILD); 1283
423 } 1284 /* make sure we are called again until all children have been reaped */
1285 /* we need to do it this way so that the callback gets called before we continue */
1286 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1287
1288 child_reap (EV_A_ pid, pid, status);
1289 if (EV_PID_HASHSIZE > 1)
1290 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
424} 1291}
1292
1293#endif
425 1294
426/*****************************************************************************/ 1295/*****************************************************************************/
427 1296
1297#if EV_USE_PORT
1298# include "ev_port.c"
1299#endif
1300#if EV_USE_KQUEUE
1301# include "ev_kqueue.c"
1302#endif
428#if EV_USE_EPOLL 1303#if EV_USE_EPOLL
429# include "ev_epoll.c" 1304# include "ev_epoll.c"
430#endif 1305#endif
1306#if EV_USE_POLL
1307# include "ev_poll.c"
1308#endif
431#if EV_USE_SELECT 1309#if EV_USE_SELECT
432# include "ev_select.c" 1310# include "ev_select.c"
433#endif 1311#endif
434 1312
435int 1313int
442ev_version_minor (void) 1320ev_version_minor (void)
443{ 1321{
444 return EV_VERSION_MINOR; 1322 return EV_VERSION_MINOR;
445} 1323}
446 1324
447int ev_init (int flags) 1325/* return true if we are running with elevated privileges and should ignore env variables */
1326int inline_size
1327enable_secure (void)
448{ 1328{
449 if (!ev_method) 1329#ifdef _WIN32
1330 return 0;
1331#else
1332 return getuid () != geteuid ()
1333 || getgid () != getegid ();
1334#endif
1335}
1336
1337unsigned int
1338ev_supported_backends (void)
1339{
1340 unsigned int flags = 0;
1341
1342 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1343 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1344 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1345 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1346 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1347
1348 return flags;
1349}
1350
1351unsigned int
1352ev_recommended_backends (void)
1353{
1354 unsigned int flags = ev_supported_backends ();
1355
1356#ifndef __NetBSD__
1357 /* kqueue is borked on everything but netbsd apparently */
1358 /* it usually doesn't work correctly on anything but sockets and pipes */
1359 flags &= ~EVBACKEND_KQUEUE;
1360#endif
1361#ifdef __APPLE__
1362 /* only select works correctly on that "unix-certified" platform */
1363 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1364 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1365#endif
1366
1367 return flags;
1368}
1369
1370unsigned int
1371ev_embeddable_backends (void)
1372{
1373 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1374
1375 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1376 /* please fix it and tell me how to detect the fix */
1377 flags &= ~EVBACKEND_EPOLL;
1378
1379 return flags;
1380}
1381
1382unsigned int
1383ev_backend (EV_P)
1384{
1385 return backend;
1386}
1387
1388#if EV_MINIMAL < 2
1389unsigned int
1390ev_loop_count (EV_P)
1391{
1392 return loop_count;
1393}
1394
1395unsigned int
1396ev_loop_depth (EV_P)
1397{
1398 return loop_depth;
1399}
1400
1401void
1402ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1403{
1404 io_blocktime = interval;
1405}
1406
1407void
1408ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1409{
1410 timeout_blocktime = interval;
1411}
1412
1413void
1414ev_set_userdata (EV_P_ void *data)
1415{
1416 userdata = data;
1417}
1418
1419void *
1420ev_userdata (EV_P)
1421{
1422 return userdata;
1423}
1424
1425void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1426{
1427 invoke_cb = invoke_pending_cb;
1428}
1429
1430void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1431{
1432 release_cb = release;
1433 acquire_cb = acquire;
1434}
1435#endif
1436
1437/* initialise a loop structure, must be zero-initialised */
1438static void noinline
1439loop_init (EV_P_ unsigned int flags)
1440{
1441 if (!backend)
450 { 1442 {
1443#if EV_USE_REALTIME
1444 if (!have_realtime)
1445 {
1446 struct timespec ts;
1447
1448 if (!clock_gettime (CLOCK_REALTIME, &ts))
1449 have_realtime = 1;
1450 }
1451#endif
1452
451#if EV_USE_MONOTONIC 1453#if EV_USE_MONOTONIC
1454 if (!have_monotonic)
1455 {
1456 struct timespec ts;
1457
1458 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1459 have_monotonic = 1;
1460 }
1461#endif
1462
1463 ev_rt_now = ev_time ();
1464 mn_now = get_clock ();
1465 now_floor = mn_now;
1466 rtmn_diff = ev_rt_now - mn_now;
1467#if EV_MINIMAL < 2
1468 invoke_cb = ev_invoke_pending;
1469#endif
1470
1471 io_blocktime = 0.;
1472 timeout_blocktime = 0.;
1473 backend = 0;
1474 backend_fd = -1;
1475 gotasync = 0;
1476#if EV_USE_INOTIFY
1477 fs_fd = -2;
1478#endif
1479
1480 /* pid check not overridable via env */
1481#ifndef _WIN32
1482 if (flags & EVFLAG_FORKCHECK)
1483 curpid = getpid ();
1484#endif
1485
1486 if (!(flags & EVFLAG_NOENV)
1487 && !enable_secure ()
1488 && getenv ("LIBEV_FLAGS"))
1489 flags = atoi (getenv ("LIBEV_FLAGS"));
1490
1491 if (!(flags & 0x0000ffffU))
1492 flags |= ev_recommended_backends ();
1493
1494#if EV_USE_PORT
1495 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1496#endif
1497#if EV_USE_KQUEUE
1498 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1499#endif
1500#if EV_USE_EPOLL
1501 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1502#endif
1503#if EV_USE_POLL
1504 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1505#endif
1506#if EV_USE_SELECT
1507 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1508#endif
1509
1510 ev_prepare_init (&pending_w, pendingcb);
1511
1512 ev_init (&pipe_w, pipecb);
1513 ev_set_priority (&pipe_w, EV_MAXPRI);
1514 }
1515}
1516
1517/* free up a loop structure */
1518static void noinline
1519loop_destroy (EV_P)
1520{
1521 int i;
1522
1523 if (ev_is_active (&pipe_w))
1524 {
1525 ev_ref (EV_A); /* signal watcher */
1526 ev_io_stop (EV_A_ &pipe_w);
1527
1528#if EV_USE_EVENTFD
1529 if (evfd >= 0)
1530 close (evfd);
1531#endif
1532
1533 if (evpipe [0] >= 0)
1534 {
1535 close (evpipe [0]);
1536 close (evpipe [1]);
1537 }
1538 }
1539
1540#if EV_USE_INOTIFY
1541 if (fs_fd >= 0)
1542 close (fs_fd);
1543#endif
1544
1545 if (backend_fd >= 0)
1546 close (backend_fd);
1547
1548#if EV_USE_PORT
1549 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1550#endif
1551#if EV_USE_KQUEUE
1552 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1553#endif
1554#if EV_USE_EPOLL
1555 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1556#endif
1557#if EV_USE_POLL
1558 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1559#endif
1560#if EV_USE_SELECT
1561 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1562#endif
1563
1564 for (i = NUMPRI; i--; )
1565 {
1566 array_free (pending, [i]);
1567#if EV_IDLE_ENABLE
1568 array_free (idle, [i]);
1569#endif
1570 }
1571
1572 ev_free (anfds); anfdmax = 0;
1573
1574 /* have to use the microsoft-never-gets-it-right macro */
1575 array_free (rfeed, EMPTY);
1576 array_free (fdchange, EMPTY);
1577 array_free (timer, EMPTY);
1578#if EV_PERIODIC_ENABLE
1579 array_free (periodic, EMPTY);
1580#endif
1581#if EV_FORK_ENABLE
1582 array_free (fork, EMPTY);
1583#endif
1584 array_free (prepare, EMPTY);
1585 array_free (check, EMPTY);
1586#if EV_ASYNC_ENABLE
1587 array_free (async, EMPTY);
1588#endif
1589
1590 backend = 0;
1591}
1592
1593#if EV_USE_INOTIFY
1594inline_size void infy_fork (EV_P);
1595#endif
1596
1597inline_size void
1598loop_fork (EV_P)
1599{
1600#if EV_USE_PORT
1601 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1602#endif
1603#if EV_USE_KQUEUE
1604 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1605#endif
1606#if EV_USE_EPOLL
1607 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1608#endif
1609#if EV_USE_INOTIFY
1610 infy_fork (EV_A);
1611#endif
1612
1613 if (ev_is_active (&pipe_w))
1614 {
1615 /* this "locks" the handlers against writing to the pipe */
1616 /* while we modify the fd vars */
1617 gotsig = 1;
1618#if EV_ASYNC_ENABLE
1619 gotasync = 1;
1620#endif
1621
1622 ev_ref (EV_A);
1623 ev_io_stop (EV_A_ &pipe_w);
1624
1625#if EV_USE_EVENTFD
1626 if (evfd >= 0)
1627 close (evfd);
1628#endif
1629
1630 if (evpipe [0] >= 0)
1631 {
1632 close (evpipe [0]);
1633 close (evpipe [1]);
1634 }
1635
1636 evpipe_init (EV_A);
1637 /* now iterate over everything, in case we missed something */
1638 pipecb (EV_A_ &pipe_w, EV_READ);
1639 }
1640
1641 postfork = 0;
1642}
1643
1644#if EV_MULTIPLICITY
1645
1646struct ev_loop *
1647ev_loop_new (unsigned int flags)
1648{
1649 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1650
1651 memset (loop, 0, sizeof (struct ev_loop));
1652
1653 loop_init (EV_A_ flags);
1654
1655 if (ev_backend (EV_A))
1656 return loop;
1657
1658 return 0;
1659}
1660
1661void
1662ev_loop_destroy (EV_P)
1663{
1664 loop_destroy (EV_A);
1665 ev_free (loop);
1666}
1667
1668void
1669ev_loop_fork (EV_P)
1670{
1671 postfork = 1; /* must be in line with ev_default_fork */
1672}
1673#endif /* multiplicity */
1674
1675#if EV_VERIFY
1676static void noinline
1677verify_watcher (EV_P_ W w)
1678{
1679 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1680
1681 if (w->pending)
1682 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1683}
1684
1685static void noinline
1686verify_heap (EV_P_ ANHE *heap, int N)
1687{
1688 int i;
1689
1690 for (i = HEAP0; i < N + HEAP0; ++i)
1691 {
1692 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1693 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1694 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1695
1696 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1697 }
1698}
1699
1700static void noinline
1701array_verify (EV_P_ W *ws, int cnt)
1702{
1703 while (cnt--)
1704 {
1705 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1706 verify_watcher (EV_A_ ws [cnt]);
1707 }
1708}
1709#endif
1710
1711#if EV_MINIMAL < 2
1712void
1713ev_loop_verify (EV_P)
1714{
1715#if EV_VERIFY
1716 int i;
1717 WL w;
1718
1719 assert (activecnt >= -1);
1720
1721 assert (fdchangemax >= fdchangecnt);
1722 for (i = 0; i < fdchangecnt; ++i)
1723 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1724
1725 assert (anfdmax >= 0);
1726 for (i = 0; i < anfdmax; ++i)
1727 for (w = anfds [i].head; w; w = w->next)
452 { 1728 {
453 struct timespec ts; 1729 verify_watcher (EV_A_ (W)w);
454 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1730 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
455 have_monotonic = 1; 1731 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
456 } 1732 }
1733
1734 assert (timermax >= timercnt);
1735 verify_heap (EV_A_ timers, timercnt);
1736
1737#if EV_PERIODIC_ENABLE
1738 assert (periodicmax >= periodiccnt);
1739 verify_heap (EV_A_ periodics, periodiccnt);
1740#endif
1741
1742 for (i = NUMPRI; i--; )
1743 {
1744 assert (pendingmax [i] >= pendingcnt [i]);
1745#if EV_IDLE_ENABLE
1746 assert (idleall >= 0);
1747 assert (idlemax [i] >= idlecnt [i]);
1748 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1749#endif
1750 }
1751
1752#if EV_FORK_ENABLE
1753 assert (forkmax >= forkcnt);
1754 array_verify (EV_A_ (W *)forks, forkcnt);
1755#endif
1756
1757#if EV_ASYNC_ENABLE
1758 assert (asyncmax >= asynccnt);
1759 array_verify (EV_A_ (W *)asyncs, asynccnt);
1760#endif
1761
1762 assert (preparemax >= preparecnt);
1763 array_verify (EV_A_ (W *)prepares, preparecnt);
1764
1765 assert (checkmax >= checkcnt);
1766 array_verify (EV_A_ (W *)checks, checkcnt);
1767
1768# if 0
1769 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1770 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
457#endif 1771# endif
458
459 ev_now = ev_time ();
460 now = get_clock ();
461 diff = ev_now - now;
462
463 if (pipe (sigpipe))
464 return 0;
465
466 ev_method = EVMETHOD_NONE;
467#if EV_USE_EPOLL
468 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
469#endif 1772#endif
470#if EV_USE_SELECT 1773}
471 if (ev_method == EVMETHOD_NONE) select_init (flags);
472#endif 1774#endif
473 1775
474 if (ev_method) 1776#if EV_MULTIPLICITY
1777struct ev_loop *
1778ev_default_loop_init (unsigned int flags)
1779#else
1780int
1781ev_default_loop (unsigned int flags)
1782#endif
1783{
1784 if (!ev_default_loop_ptr)
1785 {
1786#if EV_MULTIPLICITY
1787 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1788#else
1789 ev_default_loop_ptr = 1;
1790#endif
1791
1792 loop_init (EV_A_ flags);
1793
1794 if (ev_backend (EV_A))
475 { 1795 {
476 ev_watcher_init (&sigev, sigcb); 1796#ifndef _WIN32
477 siginit ();
478
479 ev_signal_init (&childev, childcb, SIGCHLD); 1797 ev_signal_init (&childev, childcb, SIGCHLD);
1798 ev_set_priority (&childev, EV_MAXPRI);
480 ev_signal_start (&childev); 1799 ev_signal_start (EV_A_ &childev);
481 } 1800 ev_unref (EV_A); /* child watcher should not keep loop alive */
482 }
483
484 return ev_method;
485}
486
487/*****************************************************************************/
488
489void
490ev_prefork (void)
491{
492 /* nop */
493}
494
495void
496ev_postfork_parent (void)
497{
498 /* nop */
499}
500
501void
502ev_postfork_child (void)
503{
504#if EV_USE_EPOLL
505 if (ev_method == EVMETHOD_EPOLL)
506 epoll_postfork_child ();
507#endif 1801#endif
508
509 ev_io_stop (&sigev);
510 close (sigpipe [0]);
511 close (sigpipe [1]);
512 pipe (sigpipe);
513 siginit ();
514}
515
516/*****************************************************************************/
517
518static void
519call_pending (void)
520{
521 while (pendingcnt)
522 {
523 ANPENDING *p = pendings + --pendingcnt;
524
525 if (p->w)
526 {
527 p->w->pending = 0;
528 p->w->cb (p->w, p->events);
529 }
530 }
531}
532
533static void
534timers_reify (void)
535{
536 while (timercnt && timers [0]->at <= now)
537 {
538 struct ev_timer *w = timers [0];
539
540 /* first reschedule or stop timer */
541 if (w->repeat)
542 {
543 w->at = now + w->repeat;
544 assert (("timer timeout in the past, negative repeat?", w->at > now));
545 downheap ((WT *)timers, timercnt, 0);
546 } 1802 }
547 else 1803 else
548 ev_timer_stop (w); /* nonrepeating: stop timer */ 1804 ev_default_loop_ptr = 0;
549
550 event ((W)w, EV_TIMEOUT);
551 } 1805 }
552}
553 1806
554static void 1807 return ev_default_loop_ptr;
555periodics_reify (void) 1808}
1809
1810void
1811ev_default_destroy (void)
556{ 1812{
557 while (periodiccnt && periodics [0]->at <= ev_now) 1813#if EV_MULTIPLICITY
1814 struct ev_loop *loop = ev_default_loop_ptr;
1815#endif
1816
1817 ev_default_loop_ptr = 0;
1818
1819#ifndef _WIN32
1820 ev_ref (EV_A); /* child watcher */
1821 ev_signal_stop (EV_A_ &childev);
1822#endif
1823
1824 loop_destroy (EV_A);
1825}
1826
1827void
1828ev_default_fork (void)
1829{
1830#if EV_MULTIPLICITY
1831 struct ev_loop *loop = ev_default_loop_ptr;
1832#endif
1833
1834 postfork = 1; /* must be in line with ev_loop_fork */
1835}
1836
1837/*****************************************************************************/
1838
1839void
1840ev_invoke (EV_P_ void *w, int revents)
1841{
1842 EV_CB_INVOKE ((W)w, revents);
1843}
1844
1845void noinline
1846ev_invoke_pending (EV_P)
1847{
1848 int pri;
1849
1850 for (pri = NUMPRI; pri--; )
1851 while (pendingcnt [pri])
558 { 1852 {
559 struct ev_periodic *w = periodics [0]; 1853 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
560 1854
561 /* first reschedule or stop timer */ 1855 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
562 if (w->interval) 1856 /* ^ this is no longer true, as pending_w could be here */
1857
1858 p->w->pending = 0;
1859 EV_CB_INVOKE (p->w, p->events);
1860 EV_FREQUENT_CHECK;
1861 }
1862}
1863
1864#if EV_IDLE_ENABLE
1865/* make idle watchers pending. this handles the "call-idle */
1866/* only when higher priorities are idle" logic */
1867inline_size void
1868idle_reify (EV_P)
1869{
1870 if (expect_false (idleall))
1871 {
1872 int pri;
1873
1874 for (pri = NUMPRI; pri--; )
563 { 1875 {
564 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 1876 if (pendingcnt [pri])
565 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 1877 break;
566 downheap ((WT *)periodics, periodiccnt, 0);
567 }
568 else
569 ev_periodic_stop (w); /* nonrepeating: stop timer */
570 1878
571 event ((W)w, EV_TIMEOUT); 1879 if (idlecnt [pri])
572 }
573}
574
575static void
576periodics_reschedule (ev_tstamp diff)
577{
578 int i;
579
580 /* adjust periodics after time jump */
581 for (i = 0; i < periodiccnt; ++i)
582 {
583 struct ev_periodic *w = periodics [i];
584
585 if (w->interval)
586 {
587 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval;
588
589 if (fabs (diff) >= 1e-4)
590 { 1880 {
591 ev_periodic_stop (w); 1881 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
592 ev_periodic_start (w); 1882 break;
593
594 i = 0; /* restart loop, inefficient, but time jumps should be rare */
595 } 1883 }
596 } 1884 }
597 } 1885 }
598} 1886}
1887#endif
599 1888
600static void 1889/* make timers pending */
601time_update (void) 1890inline_size void
1891timers_reify (EV_P)
1892{
1893 EV_FREQUENT_CHECK;
1894
1895 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1896 {
1897 do
1898 {
1899 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1900
1901 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1902
1903 /* first reschedule or stop timer */
1904 if (w->repeat)
1905 {
1906 ev_at (w) += w->repeat;
1907 if (ev_at (w) < mn_now)
1908 ev_at (w) = mn_now;
1909
1910 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1911
1912 ANHE_at_cache (timers [HEAP0]);
1913 downheap (timers, timercnt, HEAP0);
1914 }
1915 else
1916 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1917
1918 EV_FREQUENT_CHECK;
1919 feed_reverse (EV_A_ (W)w);
1920 }
1921 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1922
1923 feed_reverse_done (EV_A_ EV_TIMEOUT);
1924 }
1925}
1926
1927#if EV_PERIODIC_ENABLE
1928/* make periodics pending */
1929inline_size void
1930periodics_reify (EV_P)
1931{
1932 EV_FREQUENT_CHECK;
1933
1934 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1935 {
1936 int feed_count = 0;
1937
1938 do
1939 {
1940 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1941
1942 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1943
1944 /* first reschedule or stop timer */
1945 if (w->reschedule_cb)
1946 {
1947 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1948
1949 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1950
1951 ANHE_at_cache (periodics [HEAP0]);
1952 downheap (periodics, periodiccnt, HEAP0);
1953 }
1954 else if (w->interval)
1955 {
1956 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1957 /* if next trigger time is not sufficiently in the future, put it there */
1958 /* this might happen because of floating point inexactness */
1959 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1960 {
1961 ev_at (w) += w->interval;
1962
1963 /* if interval is unreasonably low we might still have a time in the past */
1964 /* so correct this. this will make the periodic very inexact, but the user */
1965 /* has effectively asked to get triggered more often than possible */
1966 if (ev_at (w) < ev_rt_now)
1967 ev_at (w) = ev_rt_now;
1968 }
1969
1970 ANHE_at_cache (periodics [HEAP0]);
1971 downheap (periodics, periodiccnt, HEAP0);
1972 }
1973 else
1974 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1975
1976 EV_FREQUENT_CHECK;
1977 feed_reverse (EV_A_ (W)w);
1978 }
1979 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1980
1981 feed_reverse_done (EV_A_ EV_PERIODIC);
1982 }
1983}
1984
1985/* simply recalculate all periodics */
1986/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1987static void noinline
1988periodics_reschedule (EV_P)
602{ 1989{
603 int i; 1990 int i;
604 1991
605 ev_now = ev_time (); 1992 /* adjust periodics after time jump */
1993 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1994 {
1995 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
606 1996
607 if (have_monotonic) 1997 if (w->reschedule_cb)
1998 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1999 else if (w->interval)
2000 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2001
2002 ANHE_at_cache (periodics [i]);
608 { 2003 }
2004
2005 reheap (periodics, periodiccnt);
2006}
2007#endif
2008
2009/* adjust all timers by a given offset */
2010static void noinline
2011timers_reschedule (EV_P_ ev_tstamp adjust)
2012{
2013 int i;
2014
2015 for (i = 0; i < timercnt; ++i)
2016 {
2017 ANHE *he = timers + i + HEAP0;
2018 ANHE_w (*he)->at += adjust;
2019 ANHE_at_cache (*he);
2020 }
2021}
2022
2023/* fetch new monotonic and realtime times from the kernel */
2024/* also detetc if there was a timejump, and act accordingly */
2025inline_speed void
2026time_update (EV_P_ ev_tstamp max_block)
2027{
2028#if EV_USE_MONOTONIC
2029 if (expect_true (have_monotonic))
2030 {
2031 int i;
609 ev_tstamp odiff = diff; 2032 ev_tstamp odiff = rtmn_diff;
610 2033
611 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 2034 mn_now = get_clock ();
2035
2036 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2037 /* interpolate in the meantime */
2038 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
612 { 2039 {
613 now = get_clock (); 2040 ev_rt_now = rtmn_diff + mn_now;
2041 return;
2042 }
2043
2044 now_floor = mn_now;
2045 ev_rt_now = ev_time ();
2046
2047 /* loop a few times, before making important decisions.
2048 * on the choice of "4": one iteration isn't enough,
2049 * in case we get preempted during the calls to
2050 * ev_time and get_clock. a second call is almost guaranteed
2051 * to succeed in that case, though. and looping a few more times
2052 * doesn't hurt either as we only do this on time-jumps or
2053 * in the unlikely event of having been preempted here.
2054 */
2055 for (i = 4; --i; )
2056 {
614 diff = ev_now - now; 2057 rtmn_diff = ev_rt_now - mn_now;
615 2058
616 if (fabs (odiff - diff) < MIN_TIMEJUMP) 2059 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
617 return; /* all is well */ 2060 return; /* all is well */
618 2061
619 ev_now = ev_time (); 2062 ev_rt_now = ev_time ();
2063 mn_now = get_clock ();
2064 now_floor = mn_now;
620 } 2065 }
621 2066
622 periodics_reschedule (diff - odiff);
623 /* no timer adjustment, as the monotonic clock doesn't jump */ 2067 /* no timer adjustment, as the monotonic clock doesn't jump */
2068 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2069# if EV_PERIODIC_ENABLE
2070 periodics_reschedule (EV_A);
2071# endif
624 } 2072 }
625 else 2073 else
2074#endif
626 { 2075 {
627 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 2076 ev_rt_now = ev_time ();
2077
2078 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
628 { 2079 {
629 periodics_reschedule (ev_now - now);
630
631 /* adjust timers. this is easy, as the offset is the same for all */ 2080 /* adjust timers. this is easy, as the offset is the same for all of them */
632 for (i = 0; i < timercnt; ++i) 2081 timers_reschedule (EV_A_ ev_rt_now - mn_now);
633 timers [i]->at += diff; 2082#if EV_PERIODIC_ENABLE
2083 periodics_reschedule (EV_A);
2084#endif
634 } 2085 }
635 2086
636 now = ev_now; 2087 mn_now = ev_rt_now;
637 } 2088 }
638} 2089}
639 2090
640int ev_loop_done; 2091void
641
642void ev_loop (int flags) 2092ev_loop (EV_P_ int flags)
643{ 2093{
644 double block; 2094#if EV_MINIMAL < 2
645 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2095 ++loop_depth;
2096#endif
2097
2098 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2099
2100 loop_done = EVUNLOOP_CANCEL;
2101
2102 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
646 2103
647 do 2104 do
648 { 2105 {
2106#if EV_VERIFY >= 2
2107 ev_loop_verify (EV_A);
2108#endif
2109
2110#ifndef _WIN32
2111 if (expect_false (curpid)) /* penalise the forking check even more */
2112 if (expect_false (getpid () != curpid))
2113 {
2114 curpid = getpid ();
2115 postfork = 1;
2116 }
2117#endif
2118
2119#if EV_FORK_ENABLE
2120 /* we might have forked, so queue fork handlers */
2121 if (expect_false (postfork))
2122 if (forkcnt)
2123 {
2124 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2125 EV_INVOKE_PENDING;
2126 }
2127#endif
2128
649 /* queue check watchers (and execute them) */ 2129 /* queue prepare watchers (and execute them) */
650 if (preparecnt) 2130 if (expect_false (preparecnt))
651 { 2131 {
652 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 2132 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
653 call_pending (); 2133 EV_INVOKE_PENDING;
654 } 2134 }
655 2135
2136 if (expect_false (loop_done))
2137 break;
2138
2139 /* we might have forked, so reify kernel state if necessary */
2140 if (expect_false (postfork))
2141 loop_fork (EV_A);
2142
656 /* update fd-related kernel structures */ 2143 /* update fd-related kernel structures */
657 fd_reify (); 2144 fd_reify (EV_A);
658 2145
659 /* calculate blocking time */ 2146 /* calculate blocking time */
2147 {
2148 ev_tstamp waittime = 0.;
2149 ev_tstamp sleeptime = 0.;
660 2150
661 /* we only need this for !monotonic clockor timers, but as we basically 2151 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
662 always have timers, we just calculate it always */
663 ev_now = ev_time ();
664
665 if (flags & EVLOOP_NONBLOCK || idlecnt)
666 block = 0.;
667 else
668 { 2152 {
2153 /* remember old timestamp for io_blocktime calculation */
2154 ev_tstamp prev_mn_now = mn_now;
2155
2156 /* update time to cancel out callback processing overhead */
2157 time_update (EV_A_ 1e100);
2158
669 block = MAX_BLOCKTIME; 2159 waittime = MAX_BLOCKTIME;
670 2160
671 if (timercnt) 2161 if (timercnt)
672 { 2162 {
673 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 2163 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
674 if (block > to) block = to; 2164 if (waittime > to) waittime = to;
675 } 2165 }
676 2166
2167#if EV_PERIODIC_ENABLE
677 if (periodiccnt) 2168 if (periodiccnt)
678 { 2169 {
679 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 2170 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
680 if (block > to) block = to; 2171 if (waittime > to) waittime = to;
681 } 2172 }
2173#endif
682 2174
683 if (block < 0.) block = 0.; 2175 /* don't let timeouts decrease the waittime below timeout_blocktime */
2176 if (expect_false (waittime < timeout_blocktime))
2177 waittime = timeout_blocktime;
2178
2179 /* extra check because io_blocktime is commonly 0 */
2180 if (expect_false (io_blocktime))
2181 {
2182 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2183
2184 if (sleeptime > waittime - backend_fudge)
2185 sleeptime = waittime - backend_fudge;
2186
2187 if (expect_true (sleeptime > 0.))
2188 {
2189 ev_sleep (sleeptime);
2190 waittime -= sleeptime;
2191 }
2192 }
684 } 2193 }
685 2194
686 method_poll (block); 2195#if EV_MINIMAL < 2
2196 ++loop_count;
2197#endif
2198 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2199 backend_poll (EV_A_ waittime);
2200 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
687 2201
688 /* update ev_now, do magic */ 2202 /* update ev_rt_now, do magic */
689 time_update (); 2203 time_update (EV_A_ waittime + sleeptime);
2204 }
690 2205
691 /* queue pending timers and reschedule them */ 2206 /* queue pending timers and reschedule them */
692 timers_reify (); /* relative timers called last */ 2207 timers_reify (EV_A); /* relative timers called last */
2208#if EV_PERIODIC_ENABLE
693 periodics_reify (); /* absolute timers called first */ 2209 periodics_reify (EV_A); /* absolute timers called first */
2210#endif
694 2211
2212#if EV_IDLE_ENABLE
695 /* queue idle watchers unless io or timers are pending */ 2213 /* queue idle watchers unless other events are pending */
696 if (!pendingcnt) 2214 idle_reify (EV_A);
697 queue_events ((W *)idles, idlecnt, EV_IDLE); 2215#endif
698 2216
699 /* queue check watchers, to be executed first */ 2217 /* queue check watchers, to be executed first */
700 if (checkcnt) 2218 if (expect_false (checkcnt))
701 queue_events ((W *)checks, checkcnt, EV_CHECK); 2219 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
702 2220
703 call_pending (); 2221 EV_INVOKE_PENDING;
704 } 2222 }
705 while (!ev_loop_done); 2223 while (expect_true (
2224 activecnt
2225 && !loop_done
2226 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2227 ));
706 2228
707 if (ev_loop_done != 2) 2229 if (loop_done == EVUNLOOP_ONE)
2230 loop_done = EVUNLOOP_CANCEL;
2231
2232#if EV_MINIMAL < 2
2233 --loop_depth;
2234#endif
2235}
2236
2237void
2238ev_unloop (EV_P_ int how)
2239{
708 ev_loop_done = 0; 2240 loop_done = how;
2241}
2242
2243void
2244ev_ref (EV_P)
2245{
2246 ++activecnt;
2247}
2248
2249void
2250ev_unref (EV_P)
2251{
2252 --activecnt;
2253}
2254
2255void
2256ev_now_update (EV_P)
2257{
2258 time_update (EV_A_ 1e100);
2259}
2260
2261void
2262ev_suspend (EV_P)
2263{
2264 ev_now_update (EV_A);
2265}
2266
2267void
2268ev_resume (EV_P)
2269{
2270 ev_tstamp mn_prev = mn_now;
2271
2272 ev_now_update (EV_A);
2273 timers_reschedule (EV_A_ mn_now - mn_prev);
2274#if EV_PERIODIC_ENABLE
2275 /* TODO: really do this? */
2276 periodics_reschedule (EV_A);
2277#endif
709} 2278}
710 2279
711/*****************************************************************************/ 2280/*****************************************************************************/
2281/* singly-linked list management, used when the expected list length is short */
712 2282
713static void 2283inline_size void
714wlist_add (WL *head, WL elem) 2284wlist_add (WL *head, WL elem)
715{ 2285{
716 elem->next = *head; 2286 elem->next = *head;
717 *head = elem; 2287 *head = elem;
718} 2288}
719 2289
720static void 2290inline_size void
721wlist_del (WL *head, WL elem) 2291wlist_del (WL *head, WL elem)
722{ 2292{
723 while (*head) 2293 while (*head)
724 { 2294 {
725 if (*head == elem) 2295 if (*head == elem)
730 2300
731 head = &(*head)->next; 2301 head = &(*head)->next;
732 } 2302 }
733} 2303}
734 2304
735static void 2305/* internal, faster, version of ev_clear_pending */
736ev_clear (W w) 2306inline_speed void
2307clear_pending (EV_P_ W w)
737{ 2308{
738 if (w->pending) 2309 if (w->pending)
739 { 2310 {
740 pendings [w->pending - 1].w = 0; 2311 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
741 w->pending = 0; 2312 w->pending = 0;
742 } 2313 }
743} 2314}
744 2315
745static void 2316int
2317ev_clear_pending (EV_P_ void *w)
2318{
2319 W w_ = (W)w;
2320 int pending = w_->pending;
2321
2322 if (expect_true (pending))
2323 {
2324 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2325 p->w = (W)&pending_w;
2326 w_->pending = 0;
2327 return p->events;
2328 }
2329 else
2330 return 0;
2331}
2332
2333inline_size void
2334pri_adjust (EV_P_ W w)
2335{
2336 int pri = ev_priority (w);
2337 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2338 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2339 ev_set_priority (w, pri);
2340}
2341
2342inline_speed void
746ev_start (W w, int active) 2343ev_start (EV_P_ W w, int active)
747{ 2344{
2345 pri_adjust (EV_A_ w);
748 w->active = active; 2346 w->active = active;
2347 ev_ref (EV_A);
749} 2348}
750 2349
751static void 2350inline_size void
752ev_stop (W w) 2351ev_stop (EV_P_ W w)
753{ 2352{
2353 ev_unref (EV_A);
754 w->active = 0; 2354 w->active = 0;
755} 2355}
756 2356
757/*****************************************************************************/ 2357/*****************************************************************************/
758 2358
759void 2359void noinline
760ev_io_start (struct ev_io *w) 2360ev_io_start (EV_P_ ev_io *w)
761{ 2361{
2362 int fd = w->fd;
2363
762 if (ev_is_active (w)) 2364 if (expect_false (ev_is_active (w)))
763 return; 2365 return;
764 2366
765 int fd = w->fd; 2367 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2368 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
766 2369
2370 EV_FREQUENT_CHECK;
2371
767 ev_start ((W)w, 1); 2372 ev_start (EV_A_ (W)w, 1);
768 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 2373 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
769 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2374 wlist_add (&anfds[fd].head, (WL)w);
770 2375
771 fd_change (fd); 2376 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
772} 2377 w->events &= ~EV__IOFDSET;
773 2378
774void 2379 EV_FREQUENT_CHECK;
2380}
2381
2382void noinline
775ev_io_stop (struct ev_io *w) 2383ev_io_stop (EV_P_ ev_io *w)
776{ 2384{
777 ev_clear ((W)w); 2385 clear_pending (EV_A_ (W)w);
778 if (!ev_is_active (w)) 2386 if (expect_false (!ev_is_active (w)))
779 return; 2387 return;
780 2388
2389 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2390
2391 EV_FREQUENT_CHECK;
2392
781 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2393 wlist_del (&anfds[w->fd].head, (WL)w);
782 ev_stop ((W)w); 2394 ev_stop (EV_A_ (W)w);
783 2395
784 fd_change (w->fd); 2396 fd_change (EV_A_ w->fd, 1);
785}
786 2397
787void 2398 EV_FREQUENT_CHECK;
2399}
2400
2401void noinline
788ev_timer_start (struct ev_timer *w) 2402ev_timer_start (EV_P_ ev_timer *w)
789{ 2403{
790 if (ev_is_active (w)) 2404 if (expect_false (ev_is_active (w)))
791 return; 2405 return;
792 2406
793 w->at += now; 2407 ev_at (w) += mn_now;
794 2408
795 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 2409 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
796 2410
797 ev_start ((W)w, ++timercnt); 2411 EV_FREQUENT_CHECK;
798 array_needsize (timers, timermax, timercnt, );
799 timers [timercnt - 1] = w;
800 upheap ((WT *)timers, timercnt - 1);
801}
802 2412
803void 2413 ++timercnt;
2414 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2415 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2416 ANHE_w (timers [ev_active (w)]) = (WT)w;
2417 ANHE_at_cache (timers [ev_active (w)]);
2418 upheap (timers, ev_active (w));
2419
2420 EV_FREQUENT_CHECK;
2421
2422 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2423}
2424
2425void noinline
804ev_timer_stop (struct ev_timer *w) 2426ev_timer_stop (EV_P_ ev_timer *w)
805{ 2427{
806 ev_clear ((W)w); 2428 clear_pending (EV_A_ (W)w);
807 if (!ev_is_active (w)) 2429 if (expect_false (!ev_is_active (w)))
808 return; 2430 return;
809 2431
810 if (w->active < timercnt--) 2432 EV_FREQUENT_CHECK;
2433
2434 {
2435 int active = ev_active (w);
2436
2437 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2438
2439 --timercnt;
2440
2441 if (expect_true (active < timercnt + HEAP0))
811 { 2442 {
812 timers [w->active - 1] = timers [timercnt]; 2443 timers [active] = timers [timercnt + HEAP0];
813 downheap ((WT *)timers, timercnt, w->active - 1); 2444 adjustheap (timers, timercnt, active);
814 } 2445 }
2446 }
815 2447
816 w->at = w->repeat; 2448 EV_FREQUENT_CHECK;
817 2449
2450 ev_at (w) -= mn_now;
2451
818 ev_stop ((W)w); 2452 ev_stop (EV_A_ (W)w);
819} 2453}
820 2454
821void 2455void noinline
822ev_timer_again (struct ev_timer *w) 2456ev_timer_again (EV_P_ ev_timer *w)
823{ 2457{
2458 EV_FREQUENT_CHECK;
2459
824 if (ev_is_active (w)) 2460 if (ev_is_active (w))
825 { 2461 {
826 if (w->repeat) 2462 if (w->repeat)
827 { 2463 {
828 w->at = now + w->repeat; 2464 ev_at (w) = mn_now + w->repeat;
2465 ANHE_at_cache (timers [ev_active (w)]);
829 downheap ((WT *)timers, timercnt, w->active - 1); 2466 adjustheap (timers, timercnt, ev_active (w));
830 } 2467 }
831 else 2468 else
832 ev_timer_stop (w); 2469 ev_timer_stop (EV_A_ w);
833 } 2470 }
834 else if (w->repeat) 2471 else if (w->repeat)
2472 {
2473 ev_at (w) = w->repeat;
835 ev_timer_start (w); 2474 ev_timer_start (EV_A_ w);
836} 2475 }
837 2476
838void 2477 EV_FREQUENT_CHECK;
2478}
2479
2480#if EV_PERIODIC_ENABLE
2481void noinline
839ev_periodic_start (struct ev_periodic *w) 2482ev_periodic_start (EV_P_ ev_periodic *w)
840{ 2483{
841 if (ev_is_active (w)) 2484 if (expect_false (ev_is_active (w)))
842 return; 2485 return;
843 2486
844 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 2487 if (w->reschedule_cb)
845 2488 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2489 else if (w->interval)
2490 {
2491 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
846 /* this formula differs from the one in periodic_reify because we do not always round up */ 2492 /* this formula differs from the one in periodic_reify because we do not always round up */
847 if (w->interval)
848 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 2493 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2494 }
2495 else
2496 ev_at (w) = w->offset;
849 2497
2498 EV_FREQUENT_CHECK;
2499
2500 ++periodiccnt;
850 ev_start ((W)w, ++periodiccnt); 2501 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
851 array_needsize (periodics, periodicmax, periodiccnt, ); 2502 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
852 periodics [periodiccnt - 1] = w; 2503 ANHE_w (periodics [ev_active (w)]) = (WT)w;
853 upheap ((WT *)periodics, periodiccnt - 1); 2504 ANHE_at_cache (periodics [ev_active (w)]);
854} 2505 upheap (periodics, ev_active (w));
855 2506
856void 2507 EV_FREQUENT_CHECK;
2508
2509 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2510}
2511
2512void noinline
857ev_periodic_stop (struct ev_periodic *w) 2513ev_periodic_stop (EV_P_ ev_periodic *w)
858{ 2514{
859 ev_clear ((W)w); 2515 clear_pending (EV_A_ (W)w);
860 if (!ev_is_active (w)) 2516 if (expect_false (!ev_is_active (w)))
861 return; 2517 return;
862 2518
863 if (w->active < periodiccnt--) 2519 EV_FREQUENT_CHECK;
2520
2521 {
2522 int active = ev_active (w);
2523
2524 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2525
2526 --periodiccnt;
2527
2528 if (expect_true (active < periodiccnt + HEAP0))
864 { 2529 {
865 periodics [w->active - 1] = periodics [periodiccnt]; 2530 periodics [active] = periodics [periodiccnt + HEAP0];
866 downheap ((WT *)periodics, periodiccnt, w->active - 1); 2531 adjustheap (periodics, periodiccnt, active);
867 } 2532 }
2533 }
868 2534
2535 EV_FREQUENT_CHECK;
2536
869 ev_stop ((W)w); 2537 ev_stop (EV_A_ (W)w);
870} 2538}
871 2539
872void 2540void noinline
2541ev_periodic_again (EV_P_ ev_periodic *w)
2542{
2543 /* TODO: use adjustheap and recalculation */
2544 ev_periodic_stop (EV_A_ w);
2545 ev_periodic_start (EV_A_ w);
2546}
2547#endif
2548
2549#ifndef SA_RESTART
2550# define SA_RESTART 0
2551#endif
2552
2553void noinline
873ev_signal_start (struct ev_signal *w) 2554ev_signal_start (EV_P_ ev_signal *w)
874{ 2555{
2556#if EV_MULTIPLICITY
2557 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2558#endif
875 if (ev_is_active (w)) 2559 if (expect_false (ev_is_active (w)))
876 return; 2560 return;
877 2561
2562 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2563
2564 evpipe_init (EV_A);
2565
2566 EV_FREQUENT_CHECK;
2567
2568 {
2569#ifndef _WIN32
2570 sigset_t full, prev;
2571 sigfillset (&full);
2572 sigprocmask (SIG_SETMASK, &full, &prev);
2573#endif
2574
2575 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2576
2577#ifndef _WIN32
2578 sigprocmask (SIG_SETMASK, &prev, 0);
2579#endif
2580 }
2581
878 ev_start ((W)w, 1); 2582 ev_start (EV_A_ (W)w, 1);
879 array_needsize (signals, signalmax, w->signum, signals_init);
880 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2583 wlist_add (&signals [w->signum - 1].head, (WL)w);
881 2584
882 if (!w->next) 2585 if (!((WL)w)->next)
883 { 2586 {
2587#if _WIN32
2588 signal (w->signum, ev_sighandler);
2589#else
884 struct sigaction sa; 2590 struct sigaction sa;
885 sa.sa_handler = sighandler; 2591 sa.sa_handler = ev_sighandler;
886 sigfillset (&sa.sa_mask); 2592 sigfillset (&sa.sa_mask);
887 sa.sa_flags = 0; 2593 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
888 sigaction (w->signum, &sa, 0); 2594 sigaction (w->signum, &sa, 0);
2595#endif
889 } 2596 }
890}
891 2597
892void 2598 EV_FREQUENT_CHECK;
2599}
2600
2601void noinline
893ev_signal_stop (struct ev_signal *w) 2602ev_signal_stop (EV_P_ ev_signal *w)
894{ 2603{
895 ev_clear ((W)w); 2604 clear_pending (EV_A_ (W)w);
896 if (!ev_is_active (w)) 2605 if (expect_false (!ev_is_active (w)))
897 return; 2606 return;
898 2607
2608 EV_FREQUENT_CHECK;
2609
899 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2610 wlist_del (&signals [w->signum - 1].head, (WL)w);
900 ev_stop ((W)w); 2611 ev_stop (EV_A_ (W)w);
901 2612
902 if (!signals [w->signum - 1].head) 2613 if (!signals [w->signum - 1].head)
903 signal (w->signum, SIG_DFL); 2614 signal (w->signum, SIG_DFL);
904}
905 2615
2616 EV_FREQUENT_CHECK;
2617}
2618
906void 2619void
907ev_idle_start (struct ev_idle *w) 2620ev_child_start (EV_P_ ev_child *w)
908{ 2621{
2622#if EV_MULTIPLICITY
2623 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2624#endif
909 if (ev_is_active (w)) 2625 if (expect_false (ev_is_active (w)))
910 return; 2626 return;
911 2627
912 ev_start ((W)w, ++idlecnt); 2628 EV_FREQUENT_CHECK;
913 array_needsize (idles, idlemax, idlecnt, );
914 idles [idlecnt - 1] = w;
915}
916 2629
2630 ev_start (EV_A_ (W)w, 1);
2631 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2632
2633 EV_FREQUENT_CHECK;
2634}
2635
917void 2636void
918ev_idle_stop (struct ev_idle *w) 2637ev_child_stop (EV_P_ ev_child *w)
919{ 2638{
920 ev_clear ((W)w); 2639 clear_pending (EV_A_ (W)w);
921 if (ev_is_active (w)) 2640 if (expect_false (!ev_is_active (w)))
922 return; 2641 return;
923 2642
924 idles [w->active - 1] = idles [--idlecnt]; 2643 EV_FREQUENT_CHECK;
2644
2645 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
925 ev_stop ((W)w); 2646 ev_stop (EV_A_ (W)w);
926}
927 2647
928void 2648 EV_FREQUENT_CHECK;
929ev_prepare_start (struct ev_prepare *w) 2649}
2650
2651#if EV_STAT_ENABLE
2652
2653# ifdef _WIN32
2654# undef lstat
2655# define lstat(a,b) _stati64 (a,b)
2656# endif
2657
2658#define DEF_STAT_INTERVAL 5.0074891
2659#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2660#define MIN_STAT_INTERVAL 0.1074891
2661
2662static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2663
2664#if EV_USE_INOTIFY
2665# define EV_INOTIFY_BUFSIZE 8192
2666
2667static void noinline
2668infy_add (EV_P_ ev_stat *w)
930{ 2669{
931 if (ev_is_active (w)) 2670 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2671
2672 if (w->wd < 0)
2673 {
2674 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2675 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2676
2677 /* monitor some parent directory for speedup hints */
2678 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2679 /* but an efficiency issue only */
2680 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2681 {
2682 char path [4096];
2683 strcpy (path, w->path);
2684
2685 do
2686 {
2687 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2688 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2689
2690 char *pend = strrchr (path, '/');
2691
2692 if (!pend || pend == path)
2693 break;
2694
2695 *pend = 0;
2696 w->wd = inotify_add_watch (fs_fd, path, mask);
2697 }
2698 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2699 }
2700 }
2701
2702 if (w->wd >= 0)
2703 {
2704 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2705
2706 /* now local changes will be tracked by inotify, but remote changes won't */
2707 /* unless the filesystem it known to be local, we therefore still poll */
2708 /* also do poll on <2.6.25, but with normal frequency */
2709 struct statfs sfs;
2710
2711 if (fs_2625 && !statfs (w->path, &sfs))
2712 if (sfs.f_type == 0x1373 /* devfs */
2713 || sfs.f_type == 0xEF53 /* ext2/3 */
2714 || sfs.f_type == 0x3153464a /* jfs */
2715 || sfs.f_type == 0x52654973 /* reiser3 */
2716 || sfs.f_type == 0x01021994 /* tempfs */
2717 || sfs.f_type == 0x58465342 /* xfs */)
2718 return;
2719
2720 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2721 ev_timer_again (EV_A_ &w->timer);
2722 }
2723}
2724
2725static void noinline
2726infy_del (EV_P_ ev_stat *w)
2727{
2728 int slot;
2729 int wd = w->wd;
2730
2731 if (wd < 0)
932 return; 2732 return;
933 2733
2734 w->wd = -2;
2735 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2736 wlist_del (&fs_hash [slot].head, (WL)w);
2737
2738 /* remove this watcher, if others are watching it, they will rearm */
2739 inotify_rm_watch (fs_fd, wd);
2740}
2741
2742static void noinline
2743infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2744{
2745 if (slot < 0)
2746 /* overflow, need to check for all hash slots */
2747 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2748 infy_wd (EV_A_ slot, wd, ev);
2749 else
2750 {
2751 WL w_;
2752
2753 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2754 {
2755 ev_stat *w = (ev_stat *)w_;
2756 w_ = w_->next; /* lets us remove this watcher and all before it */
2757
2758 if (w->wd == wd || wd == -1)
2759 {
2760 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2761 {
2762 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2763 w->wd = -1;
2764 infy_add (EV_A_ w); /* re-add, no matter what */
2765 }
2766
2767 stat_timer_cb (EV_A_ &w->timer, 0);
2768 }
2769 }
2770 }
2771}
2772
2773static void
2774infy_cb (EV_P_ ev_io *w, int revents)
2775{
2776 char buf [EV_INOTIFY_BUFSIZE];
2777 struct inotify_event *ev = (struct inotify_event *)buf;
2778 int ofs;
2779 int len = read (fs_fd, buf, sizeof (buf));
2780
2781 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2782 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2783}
2784
2785inline_size void
2786check_2625 (EV_P)
2787{
2788 /* kernels < 2.6.25 are borked
2789 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2790 */
2791 struct utsname buf;
2792 int major, minor, micro;
2793
2794 if (uname (&buf))
2795 return;
2796
2797 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2798 return;
2799
2800 if (major < 2
2801 || (major == 2 && minor < 6)
2802 || (major == 2 && minor == 6 && micro < 25))
2803 return;
2804
2805 fs_2625 = 1;
2806}
2807
2808inline_size void
2809infy_init (EV_P)
2810{
2811 if (fs_fd != -2)
2812 return;
2813
2814 fs_fd = -1;
2815
2816 check_2625 (EV_A);
2817
2818 fs_fd = inotify_init ();
2819
2820 if (fs_fd >= 0)
2821 {
2822 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2823 ev_set_priority (&fs_w, EV_MAXPRI);
2824 ev_io_start (EV_A_ &fs_w);
2825 }
2826}
2827
2828inline_size void
2829infy_fork (EV_P)
2830{
2831 int slot;
2832
2833 if (fs_fd < 0)
2834 return;
2835
2836 close (fs_fd);
2837 fs_fd = inotify_init ();
2838
2839 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2840 {
2841 WL w_ = fs_hash [slot].head;
2842 fs_hash [slot].head = 0;
2843
2844 while (w_)
2845 {
2846 ev_stat *w = (ev_stat *)w_;
2847 w_ = w_->next; /* lets us add this watcher */
2848
2849 w->wd = -1;
2850
2851 if (fs_fd >= 0)
2852 infy_add (EV_A_ w); /* re-add, no matter what */
2853 else
2854 ev_timer_again (EV_A_ &w->timer);
2855 }
2856 }
2857}
2858
2859#endif
2860
2861#ifdef _WIN32
2862# define EV_LSTAT(p,b) _stati64 (p, b)
2863#else
2864# define EV_LSTAT(p,b) lstat (p, b)
2865#endif
2866
2867void
2868ev_stat_stat (EV_P_ ev_stat *w)
2869{
2870 if (lstat (w->path, &w->attr) < 0)
2871 w->attr.st_nlink = 0;
2872 else if (!w->attr.st_nlink)
2873 w->attr.st_nlink = 1;
2874}
2875
2876static void noinline
2877stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2878{
2879 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2880
2881 /* we copy this here each the time so that */
2882 /* prev has the old value when the callback gets invoked */
2883 w->prev = w->attr;
2884 ev_stat_stat (EV_A_ w);
2885
2886 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2887 if (
2888 w->prev.st_dev != w->attr.st_dev
2889 || w->prev.st_ino != w->attr.st_ino
2890 || w->prev.st_mode != w->attr.st_mode
2891 || w->prev.st_nlink != w->attr.st_nlink
2892 || w->prev.st_uid != w->attr.st_uid
2893 || w->prev.st_gid != w->attr.st_gid
2894 || w->prev.st_rdev != w->attr.st_rdev
2895 || w->prev.st_size != w->attr.st_size
2896 || w->prev.st_atime != w->attr.st_atime
2897 || w->prev.st_mtime != w->attr.st_mtime
2898 || w->prev.st_ctime != w->attr.st_ctime
2899 ) {
2900 #if EV_USE_INOTIFY
2901 if (fs_fd >= 0)
2902 {
2903 infy_del (EV_A_ w);
2904 infy_add (EV_A_ w);
2905 ev_stat_stat (EV_A_ w); /* avoid race... */
2906 }
2907 #endif
2908
2909 ev_feed_event (EV_A_ w, EV_STAT);
2910 }
2911}
2912
2913void
2914ev_stat_start (EV_P_ ev_stat *w)
2915{
2916 if (expect_false (ev_is_active (w)))
2917 return;
2918
2919 ev_stat_stat (EV_A_ w);
2920
2921 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2922 w->interval = MIN_STAT_INTERVAL;
2923
2924 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2925 ev_set_priority (&w->timer, ev_priority (w));
2926
2927#if EV_USE_INOTIFY
2928 infy_init (EV_A);
2929
2930 if (fs_fd >= 0)
2931 infy_add (EV_A_ w);
2932 else
2933#endif
2934 ev_timer_again (EV_A_ &w->timer);
2935
2936 ev_start (EV_A_ (W)w, 1);
2937
2938 EV_FREQUENT_CHECK;
2939}
2940
2941void
2942ev_stat_stop (EV_P_ ev_stat *w)
2943{
2944 clear_pending (EV_A_ (W)w);
2945 if (expect_false (!ev_is_active (w)))
2946 return;
2947
2948 EV_FREQUENT_CHECK;
2949
2950#if EV_USE_INOTIFY
2951 infy_del (EV_A_ w);
2952#endif
2953 ev_timer_stop (EV_A_ &w->timer);
2954
2955 ev_stop (EV_A_ (W)w);
2956
2957 EV_FREQUENT_CHECK;
2958}
2959#endif
2960
2961#if EV_IDLE_ENABLE
2962void
2963ev_idle_start (EV_P_ ev_idle *w)
2964{
2965 if (expect_false (ev_is_active (w)))
2966 return;
2967
2968 pri_adjust (EV_A_ (W)w);
2969
2970 EV_FREQUENT_CHECK;
2971
2972 {
2973 int active = ++idlecnt [ABSPRI (w)];
2974
2975 ++idleall;
2976 ev_start (EV_A_ (W)w, active);
2977
2978 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2979 idles [ABSPRI (w)][active - 1] = w;
2980 }
2981
2982 EV_FREQUENT_CHECK;
2983}
2984
2985void
2986ev_idle_stop (EV_P_ ev_idle *w)
2987{
2988 clear_pending (EV_A_ (W)w);
2989 if (expect_false (!ev_is_active (w)))
2990 return;
2991
2992 EV_FREQUENT_CHECK;
2993
2994 {
2995 int active = ev_active (w);
2996
2997 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2998 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2999
3000 ev_stop (EV_A_ (W)w);
3001 --idleall;
3002 }
3003
3004 EV_FREQUENT_CHECK;
3005}
3006#endif
3007
3008void
3009ev_prepare_start (EV_P_ ev_prepare *w)
3010{
3011 if (expect_false (ev_is_active (w)))
3012 return;
3013
3014 EV_FREQUENT_CHECK;
3015
934 ev_start ((W)w, ++preparecnt); 3016 ev_start (EV_A_ (W)w, ++preparecnt);
935 array_needsize (prepares, preparemax, preparecnt, ); 3017 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
936 prepares [preparecnt - 1] = w; 3018 prepares [preparecnt - 1] = w;
937}
938 3019
3020 EV_FREQUENT_CHECK;
3021}
3022
939void 3023void
940ev_prepare_stop (struct ev_prepare *w) 3024ev_prepare_stop (EV_P_ ev_prepare *w)
941{ 3025{
942 ev_clear ((W)w); 3026 clear_pending (EV_A_ (W)w);
943 if (ev_is_active (w)) 3027 if (expect_false (!ev_is_active (w)))
944 return; 3028 return;
945 3029
3030 EV_FREQUENT_CHECK;
3031
3032 {
3033 int active = ev_active (w);
3034
946 prepares [w->active - 1] = prepares [--preparecnt]; 3035 prepares [active - 1] = prepares [--preparecnt];
3036 ev_active (prepares [active - 1]) = active;
3037 }
3038
947 ev_stop ((W)w); 3039 ev_stop (EV_A_ (W)w);
948}
949 3040
3041 EV_FREQUENT_CHECK;
3042}
3043
950void 3044void
951ev_check_start (struct ev_check *w) 3045ev_check_start (EV_P_ ev_check *w)
952{ 3046{
953 if (ev_is_active (w)) 3047 if (expect_false (ev_is_active (w)))
954 return; 3048 return;
955 3049
3050 EV_FREQUENT_CHECK;
3051
956 ev_start ((W)w, ++checkcnt); 3052 ev_start (EV_A_ (W)w, ++checkcnt);
957 array_needsize (checks, checkmax, checkcnt, ); 3053 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
958 checks [checkcnt - 1] = w; 3054 checks [checkcnt - 1] = w;
959}
960 3055
3056 EV_FREQUENT_CHECK;
3057}
3058
961void 3059void
962ev_check_stop (struct ev_check *w) 3060ev_check_stop (EV_P_ ev_check *w)
963{ 3061{
964 ev_clear ((W)w); 3062 clear_pending (EV_A_ (W)w);
965 if (ev_is_active (w)) 3063 if (expect_false (!ev_is_active (w)))
966 return; 3064 return;
967 3065
3066 EV_FREQUENT_CHECK;
3067
3068 {
3069 int active = ev_active (w);
3070
968 checks [w->active - 1] = checks [--checkcnt]; 3071 checks [active - 1] = checks [--checkcnt];
3072 ev_active (checks [active - 1]) = active;
3073 }
3074
969 ev_stop ((W)w); 3075 ev_stop (EV_A_ (W)w);
970}
971 3076
972void 3077 EV_FREQUENT_CHECK;
973ev_child_start (struct ev_child *w) 3078}
3079
3080#if EV_EMBED_ENABLE
3081void noinline
3082ev_embed_sweep (EV_P_ ev_embed *w)
974{ 3083{
3084 ev_loop (w->other, EVLOOP_NONBLOCK);
3085}
3086
3087static void
3088embed_io_cb (EV_P_ ev_io *io, int revents)
3089{
3090 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3091
975 if (ev_is_active (w)) 3092 if (ev_cb (w))
3093 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3094 else
3095 ev_loop (w->other, EVLOOP_NONBLOCK);
3096}
3097
3098static void
3099embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3100{
3101 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3102
3103 {
3104 struct ev_loop *loop = w->other;
3105
3106 while (fdchangecnt)
3107 {
3108 fd_reify (EV_A);
3109 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3110 }
3111 }
3112}
3113
3114static void
3115embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3116{
3117 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3118
3119 ev_embed_stop (EV_A_ w);
3120
3121 {
3122 struct ev_loop *loop = w->other;
3123
3124 ev_loop_fork (EV_A);
3125 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3126 }
3127
3128 ev_embed_start (EV_A_ w);
3129}
3130
3131#if 0
3132static void
3133embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3134{
3135 ev_idle_stop (EV_A_ idle);
3136}
3137#endif
3138
3139void
3140ev_embed_start (EV_P_ ev_embed *w)
3141{
3142 if (expect_false (ev_is_active (w)))
976 return; 3143 return;
977 3144
3145 {
3146 struct ev_loop *loop = w->other;
3147 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3148 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3149 }
3150
3151 EV_FREQUENT_CHECK;
3152
3153 ev_set_priority (&w->io, ev_priority (w));
3154 ev_io_start (EV_A_ &w->io);
3155
3156 ev_prepare_init (&w->prepare, embed_prepare_cb);
3157 ev_set_priority (&w->prepare, EV_MINPRI);
3158 ev_prepare_start (EV_A_ &w->prepare);
3159
3160 ev_fork_init (&w->fork, embed_fork_cb);
3161 ev_fork_start (EV_A_ &w->fork);
3162
3163 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3164
978 ev_start ((W)w, 1); 3165 ev_start (EV_A_ (W)w, 1);
979 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
980}
981 3166
3167 EV_FREQUENT_CHECK;
3168}
3169
982void 3170void
983ev_child_stop (struct ev_child *w) 3171ev_embed_stop (EV_P_ ev_embed *w)
984{ 3172{
985 ev_clear ((W)w); 3173 clear_pending (EV_A_ (W)w);
986 if (ev_is_active (w)) 3174 if (expect_false (!ev_is_active (w)))
987 return; 3175 return;
988 3176
989 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3177 EV_FREQUENT_CHECK;
3178
3179 ev_io_stop (EV_A_ &w->io);
3180 ev_prepare_stop (EV_A_ &w->prepare);
3181 ev_fork_stop (EV_A_ &w->fork);
3182
3183 EV_FREQUENT_CHECK;
3184}
3185#endif
3186
3187#if EV_FORK_ENABLE
3188void
3189ev_fork_start (EV_P_ ev_fork *w)
3190{
3191 if (expect_false (ev_is_active (w)))
3192 return;
3193
3194 EV_FREQUENT_CHECK;
3195
3196 ev_start (EV_A_ (W)w, ++forkcnt);
3197 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3198 forks [forkcnt - 1] = w;
3199
3200 EV_FREQUENT_CHECK;
3201}
3202
3203void
3204ev_fork_stop (EV_P_ ev_fork *w)
3205{
3206 clear_pending (EV_A_ (W)w);
3207 if (expect_false (!ev_is_active (w)))
3208 return;
3209
3210 EV_FREQUENT_CHECK;
3211
3212 {
3213 int active = ev_active (w);
3214
3215 forks [active - 1] = forks [--forkcnt];
3216 ev_active (forks [active - 1]) = active;
3217 }
3218
990 ev_stop ((W)w); 3219 ev_stop (EV_A_ (W)w);
3220
3221 EV_FREQUENT_CHECK;
991} 3222}
3223#endif
3224
3225#if EV_ASYNC_ENABLE
3226void
3227ev_async_start (EV_P_ ev_async *w)
3228{
3229 if (expect_false (ev_is_active (w)))
3230 return;
3231
3232 evpipe_init (EV_A);
3233
3234 EV_FREQUENT_CHECK;
3235
3236 ev_start (EV_A_ (W)w, ++asynccnt);
3237 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3238 asyncs [asynccnt - 1] = w;
3239
3240 EV_FREQUENT_CHECK;
3241}
3242
3243void
3244ev_async_stop (EV_P_ ev_async *w)
3245{
3246 clear_pending (EV_A_ (W)w);
3247 if (expect_false (!ev_is_active (w)))
3248 return;
3249
3250 EV_FREQUENT_CHECK;
3251
3252 {
3253 int active = ev_active (w);
3254
3255 asyncs [active - 1] = asyncs [--asynccnt];
3256 ev_active (asyncs [active - 1]) = active;
3257 }
3258
3259 ev_stop (EV_A_ (W)w);
3260
3261 EV_FREQUENT_CHECK;
3262}
3263
3264void
3265ev_async_send (EV_P_ ev_async *w)
3266{
3267 w->sent = 1;
3268 evpipe_write (EV_A_ &gotasync);
3269}
3270#endif
992 3271
993/*****************************************************************************/ 3272/*****************************************************************************/
994 3273
995struct ev_once 3274struct ev_once
996{ 3275{
997 struct ev_io io; 3276 ev_io io;
998 struct ev_timer to; 3277 ev_timer to;
999 void (*cb)(int revents, void *arg); 3278 void (*cb)(int revents, void *arg);
1000 void *arg; 3279 void *arg;
1001}; 3280};
1002 3281
1003static void 3282static void
1004once_cb (struct ev_once *once, int revents) 3283once_cb (EV_P_ struct ev_once *once, int revents)
1005{ 3284{
1006 void (*cb)(int revents, void *arg) = once->cb; 3285 void (*cb)(int revents, void *arg) = once->cb;
1007 void *arg = once->arg; 3286 void *arg = once->arg;
1008 3287
1009 ev_io_stop (&once->io); 3288 ev_io_stop (EV_A_ &once->io);
1010 ev_timer_stop (&once->to); 3289 ev_timer_stop (EV_A_ &once->to);
1011 free (once); 3290 ev_free (once);
1012 3291
1013 cb (revents, arg); 3292 cb (revents, arg);
1014} 3293}
1015 3294
1016static void 3295static void
1017once_cb_io (struct ev_io *w, int revents) 3296once_cb_io (EV_P_ ev_io *w, int revents)
1018{ 3297{
1019 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3298 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3299
3300 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1020} 3301}
1021 3302
1022static void 3303static void
1023once_cb_to (struct ev_timer *w, int revents) 3304once_cb_to (EV_P_ ev_timer *w, int revents)
1024{ 3305{
1025 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3306 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
1026}
1027 3307
3308 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3309}
3310
1028void 3311void
1029ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3312ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1030{ 3313{
1031 struct ev_once *once = malloc (sizeof (struct ev_once)); 3314 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1032 3315
1033 if (!once) 3316 if (expect_false (!once))
3317 {
1034 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3318 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1035 else 3319 return;
1036 { 3320 }
3321
1037 once->cb = cb; 3322 once->cb = cb;
1038 once->arg = arg; 3323 once->arg = arg;
1039 3324
1040 ev_watcher_init (&once->io, once_cb_io); 3325 ev_init (&once->io, once_cb_io);
1041 if (fd >= 0) 3326 if (fd >= 0)
3327 {
3328 ev_io_set (&once->io, fd, events);
3329 ev_io_start (EV_A_ &once->io);
3330 }
3331
3332 ev_init (&once->to, once_cb_to);
3333 if (timeout >= 0.)
3334 {
3335 ev_timer_set (&once->to, timeout, 0.);
3336 ev_timer_start (EV_A_ &once->to);
3337 }
3338}
3339
3340/*****************************************************************************/
3341
3342#if EV_WALK_ENABLE
3343void
3344ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3345{
3346 int i, j;
3347 ev_watcher_list *wl, *wn;
3348
3349 if (types & (EV_IO | EV_EMBED))
3350 for (i = 0; i < anfdmax; ++i)
3351 for (wl = anfds [i].head; wl; )
1042 { 3352 {
1043 ev_io_set (&once->io, fd, events); 3353 wn = wl->next;
1044 ev_io_start (&once->io); 3354
3355#if EV_EMBED_ENABLE
3356 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3357 {
3358 if (types & EV_EMBED)
3359 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3360 }
3361 else
3362#endif
3363#if EV_USE_INOTIFY
3364 if (ev_cb ((ev_io *)wl) == infy_cb)
3365 ;
3366 else
3367#endif
3368 if ((ev_io *)wl != &pipe_w)
3369 if (types & EV_IO)
3370 cb (EV_A_ EV_IO, wl);
3371
3372 wl = wn;
1045 } 3373 }
1046 3374
1047 ev_watcher_init (&once->to, once_cb_to); 3375 if (types & (EV_TIMER | EV_STAT))
1048 if (timeout >= 0.) 3376 for (i = timercnt + HEAP0; i-- > HEAP0; )
3377#if EV_STAT_ENABLE
3378 /*TODO: timer is not always active*/
3379 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1049 { 3380 {
1050 ev_timer_set (&once->to, timeout, 0.); 3381 if (types & EV_STAT)
1051 ev_timer_start (&once->to); 3382 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1052 } 3383 }
1053 } 3384 else
1054} 3385#endif
3386 if (types & EV_TIMER)
3387 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1055 3388
1056/*****************************************************************************/ 3389#if EV_PERIODIC_ENABLE
3390 if (types & EV_PERIODIC)
3391 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3392 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3393#endif
1057 3394
1058#if 0 3395#if EV_IDLE_ENABLE
3396 if (types & EV_IDLE)
3397 for (j = NUMPRI; i--; )
3398 for (i = idlecnt [j]; i--; )
3399 cb (EV_A_ EV_IDLE, idles [j][i]);
3400#endif
1059 3401
1060struct ev_io wio; 3402#if EV_FORK_ENABLE
3403 if (types & EV_FORK)
3404 for (i = forkcnt; i--; )
3405 if (ev_cb (forks [i]) != embed_fork_cb)
3406 cb (EV_A_ EV_FORK, forks [i]);
3407#endif
1061 3408
1062static void 3409#if EV_ASYNC_ENABLE
1063sin_cb (struct ev_io *w, int revents) 3410 if (types & EV_ASYNC)
1064{ 3411 for (i = asynccnt; i--; )
1065 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents); 3412 cb (EV_A_ EV_ASYNC, asyncs [i]);
1066} 3413#endif
1067 3414
1068static void 3415 if (types & EV_PREPARE)
1069ocb (struct ev_timer *w, int revents) 3416 for (i = preparecnt; i--; )
1070{ 3417#if EV_EMBED_ENABLE
1071 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data); 3418 if (ev_cb (prepares [i]) != embed_prepare_cb)
1072 ev_timer_stop (w); 3419#endif
1073 ev_timer_start (w); 3420 cb (EV_A_ EV_PREPARE, prepares [i]);
1074}
1075 3421
1076static void 3422 if (types & EV_CHECK)
1077scb (struct ev_signal *w, int revents) 3423 for (i = checkcnt; i--; )
1078{ 3424 cb (EV_A_ EV_CHECK, checks [i]);
1079 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1080 ev_io_stop (&wio);
1081 ev_io_start (&wio);
1082}
1083 3425
1084static void 3426 if (types & EV_SIGNAL)
1085gcb (struct ev_signal *w, int revents)
1086{
1087 fprintf (stderr, "generic %x\n", revents);
1088
1089}
1090
1091int main (void)
1092{
1093 ev_init (0);
1094
1095 ev_io_init (&wio, sin_cb, 0, EV_READ);
1096 ev_io_start (&wio);
1097
1098 struct ev_timer t[10000];
1099
1100#if 0
1101 int i;
1102 for (i = 0; i < 10000; ++i) 3427 for (i = 0; i < signalmax; ++i)
1103 { 3428 for (wl = signals [i].head; wl; )
1104 struct ev_timer *w = t + i; 3429 {
1105 ev_watcher_init (w, ocb, i); 3430 wn = wl->next;
1106 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533); 3431 cb (EV_A_ EV_SIGNAL, wl);
1107 ev_timer_start (w); 3432 wl = wn;
1108 if (drand48 () < 0.5) 3433 }
1109 ev_timer_stop (w);
1110 }
1111#endif
1112 3434
1113 struct ev_timer t1; 3435 if (types & EV_CHILD)
1114 ev_timer_init (&t1, ocb, 5, 10); 3436 for (i = EV_PID_HASHSIZE; i--; )
1115 ev_timer_start (&t1); 3437 for (wl = childs [i]; wl; )
1116 3438 {
1117 struct ev_signal sig; 3439 wn = wl->next;
1118 ev_signal_init (&sig, scb, SIGQUIT); 3440 cb (EV_A_ EV_CHILD, wl);
1119 ev_signal_start (&sig); 3441 wl = wn;
1120 3442 }
1121 struct ev_check cw; 3443/* EV_STAT 0x00001000 /* stat data changed */
1122 ev_check_init (&cw, gcb); 3444/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
1123 ev_check_start (&cw);
1124
1125 struct ev_idle iw;
1126 ev_idle_init (&iw, gcb);
1127 ev_idle_start (&iw);
1128
1129 ev_loop (0);
1130
1131 return 0;
1132} 3445}
1133
1134#endif 3446#endif
1135 3447
3448#if EV_MULTIPLICITY
3449 #include "ev_wrap.h"
3450#endif
1136 3451
3452#ifdef __cplusplus
3453}
3454#endif
1137 3455
1138

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines