ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.63 by root, Sun Nov 4 22:03:17 2007 UTC vs.
Revision 1.298 by root, Fri Jul 10 19:10:19 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
33 65
34# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
67# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
69# endif
70# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
79# endif
37# endif 80# endif
38 81
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
41# endif 88# endif
42 89
43# if HAVE_POLL && HAVE_POLL_H 90# ifndef EV_USE_SELECT
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
95# endif
45# endif 96# endif
46 97
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 100# define EV_USE_POLL 1
101# else
102# define EV_USE_POLL 0
103# endif
49# endif 104# endif
50 105
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
52# define EV_USE_KQUEUE 1 108# define EV_USE_EPOLL 1
109# else
110# define EV_USE_EPOLL 0
111# endif
53# endif 112# endif
113
114# ifndef EV_USE_KQUEUE
115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
119# endif
120# endif
121
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
127# endif
128# endif
54 129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_EVENTFD
139# if HAVE_EVENTFD
140# define EV_USE_EVENTFD 1
141# else
142# define EV_USE_EVENTFD 0
143# endif
144# endif
145
55#endif 146#endif
56 147
57#include <math.h> 148#include <math.h>
58#include <stdlib.h> 149#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 150#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 151#include <stddef.h>
63 152
64#include <stdio.h> 153#include <stdio.h>
65 154
66#include <assert.h> 155#include <assert.h>
67#include <errno.h> 156#include <errno.h>
68#include <sys/types.h> 157#include <sys/types.h>
158#include <time.h>
159
160#include <signal.h>
161
162#ifdef EV_H
163# include EV_H
164#else
165# include "ev.h"
166#endif
167
69#ifndef WIN32 168#ifndef _WIN32
169# include <sys/time.h>
70# include <sys/wait.h> 170# include <sys/wait.h>
171# include <unistd.h>
172#else
173# include <io.h>
174# define WIN32_LEAN_AND_MEAN
175# include <windows.h>
176# ifndef EV_SELECT_IS_WINSOCKET
177# define EV_SELECT_IS_WINSOCKET 1
71#endif 178# endif
72#include <sys/time.h> 179#endif
73#include <time.h>
74 180
75/**/ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
76 190
77#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
78# define EV_USE_MONOTONIC 1 193# define EV_USE_MONOTONIC 1
194# else
195# define EV_USE_MONOTONIC 0
196# endif
197#endif
198
199#ifndef EV_USE_REALTIME
200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
201#endif
202
203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
207# define EV_USE_NANOSLEEP 0
208# endif
79#endif 209#endif
80 210
81#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
83#endif 213#endif
84 214
85#ifndef EV_USE_POLL 215#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 216# ifdef _WIN32
217# define EV_USE_POLL 0
218# else
219# define EV_USE_POLL 1
220# endif
87#endif 221#endif
88 222
89#ifndef EV_USE_EPOLL 223#ifndef EV_USE_EPOLL
224# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225# define EV_USE_EPOLL 1
226# else
90# define EV_USE_EPOLL 0 227# define EV_USE_EPOLL 0
228# endif
91#endif 229#endif
92 230
93#ifndef EV_USE_KQUEUE 231#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 232# define EV_USE_KQUEUE 0
95#endif 233#endif
96 234
235#ifndef EV_USE_PORT
236# define EV_USE_PORT 0
237#endif
238
97#ifndef EV_USE_WIN32 239#ifndef EV_USE_INOTIFY
98# ifdef WIN32 240# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
99# define EV_USE_WIN32 1 241# define EV_USE_INOTIFY 1
100# else 242# else
101# define EV_USE_WIN32 0 243# define EV_USE_INOTIFY 0
102# endif 244# endif
103#endif 245#endif
104 246
105#ifndef EV_USE_REALTIME 247#ifndef EV_PID_HASHSIZE
106# define EV_USE_REALTIME 1 248# if EV_MINIMAL
249# define EV_PID_HASHSIZE 1
250# else
251# define EV_PID_HASHSIZE 16
107#endif 252# endif
253#endif
108 254
109/**/ 255#ifndef EV_INOTIFY_HASHSIZE
256# if EV_MINIMAL
257# define EV_INOTIFY_HASHSIZE 1
258# else
259# define EV_INOTIFY_HASHSIZE 16
260# endif
261#endif
262
263#ifndef EV_USE_EVENTFD
264# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265# define EV_USE_EVENTFD 1
266# else
267# define EV_USE_EVENTFD 0
268# endif
269#endif
270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
110 304
111#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
114#endif 308#endif
116#ifndef CLOCK_REALTIME 310#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 311# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 312# define EV_USE_REALTIME 0
119#endif 313#endif
120 314
315#if !EV_STAT_ENABLE
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318#endif
319
320#if !EV_USE_NANOSLEEP
321# ifndef _WIN32
322# include <sys/select.h>
323# endif
324#endif
325
326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
335#endif
336
337#if EV_SELECT_IS_WINSOCKET
338# include <winsock.h>
339#endif
340
341#if EV_USE_EVENTFD
342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343# include <stdint.h>
344# ifdef __cplusplus
345extern "C" {
346# endif
347int eventfd (unsigned int initval, int flags);
348# ifdef __cplusplus
349}
350# endif
351#endif
352
121/**/ 353/**/
122 354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
360
361/*
362 * This is used to avoid floating point rounding problems.
363 * It is added to ev_rt_now when scheduling periodics
364 * to ensure progress, time-wise, even when rounding
365 * errors are against us.
366 * This value is good at least till the year 4000.
367 * Better solutions welcome.
368 */
369#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
370
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 371#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 372#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 373/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
127 374
128#include "ev.h"
129
130#if __GNUC__ >= 3 375#if __GNUC__ >= 4
131# define expect(expr,value) __builtin_expect ((expr),(value)) 376# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 377# define noinline __attribute__ ((noinline))
133#else 378#else
134# define expect(expr,value) (expr) 379# define expect(expr,value) (expr)
135# define inline static 380# define noinline
381# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
382# define inline
383# endif
136#endif 384#endif
137 385
138#define expect_false(expr) expect ((expr) != 0, 0) 386#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1) 387#define expect_true(expr) expect ((expr) != 0, 1)
388#define inline_size static inline
140 389
390#if EV_MINIMAL
391# define inline_speed static noinline
392#else
393# define inline_speed static inline
394#endif
395
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
143 403
404#define EMPTY /* required for microsofts broken pseudo-c compiler */
405#define EMPTY2(a,b) /* used to suppress some warnings */
406
144typedef struct ev_watcher *W; 407typedef ev_watcher *W;
145typedef struct ev_watcher_list *WL; 408typedef ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
147 410
411#define ev_active(w) ((W)(w))->active
412#define ev_at(w) ((WT)(w))->at
413
414#if EV_USE_REALTIME
415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
419
420#if EV_USE_MONOTONIC
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
422#endif
423
424#ifdef _WIN32
425# include "ev_win32.c"
426#endif
149 427
150/*****************************************************************************/ 428/*****************************************************************************/
151 429
430static void (*syserr_cb)(const char *msg);
431
432void
433ev_set_syserr_cb (void (*cb)(const char *msg))
434{
435 syserr_cb = cb;
436}
437
438static void noinline
439ev_syserr (const char *msg)
440{
441 if (!msg)
442 msg = "(libev) system error";
443
444 if (syserr_cb)
445 syserr_cb (msg);
446 else
447 {
448 perror (msg);
449 abort ();
450 }
451}
452
453static void *
454ev_realloc_emul (void *ptr, long size)
455{
456 /* some systems, notably openbsd and darwin, fail to properly
457 * implement realloc (x, 0) (as required by both ansi c-98 and
458 * the single unix specification, so work around them here.
459 */
460
461 if (size)
462 return realloc (ptr, size);
463
464 free (ptr);
465 return 0;
466}
467
468static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
469
470void
471ev_set_allocator (void *(*cb)(void *ptr, long size))
472{
473 alloc = cb;
474}
475
476inline_speed void *
477ev_realloc (void *ptr, long size)
478{
479 ptr = alloc (ptr, size);
480
481 if (!ptr && size)
482 {
483 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
484 abort ();
485 }
486
487 return ptr;
488}
489
490#define ev_malloc(size) ev_realloc (0, (size))
491#define ev_free(ptr) ev_realloc ((ptr), 0)
492
493/*****************************************************************************/
494
495/* set in reify when reification needed */
496#define EV_ANFD_REIFY 1
497
498/* file descriptor info structure */
152typedef struct 499typedef struct
153{ 500{
154 struct ev_watcher_list *head; 501 WL head;
155 unsigned char events; 502 unsigned char events; /* the events watched for */
503 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
504 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
156 unsigned char reify; 505 unsigned char unused;
506#if EV_USE_EPOLL
507 unsigned int egen; /* generation counter to counter epoll bugs */
508#endif
509#if EV_SELECT_IS_WINSOCKET
510 SOCKET handle;
511#endif
157} ANFD; 512} ANFD;
158 513
514/* stores the pending event set for a given watcher */
159typedef struct 515typedef struct
160{ 516{
161 W w; 517 W w;
162 int events; 518 int events; /* the pending event set for the given watcher */
163} ANPENDING; 519} ANPENDING;
164 520
521#if EV_USE_INOTIFY
522/* hash table entry per inotify-id */
523typedef struct
524{
525 WL head;
526} ANFS;
527#endif
528
529/* Heap Entry */
530#if EV_HEAP_CACHE_AT
531 /* a heap element */
532 typedef struct {
533 ev_tstamp at;
534 WT w;
535 } ANHE;
536
537 #define ANHE_w(he) (he).w /* access watcher, read-write */
538 #define ANHE_at(he) (he).at /* access cached at, read-only */
539 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
540#else
541 /* a heap element */
542 typedef WT ANHE;
543
544 #define ANHE_w(he) (he)
545 #define ANHE_at(he) (he)->at
546 #define ANHE_at_cache(he)
547#endif
548
165#if EV_MULTIPLICITY 549#if EV_MULTIPLICITY
166 550
167struct ev_loop 551 struct ev_loop
168{ 552 {
553 ev_tstamp ev_rt_now;
554 #define ev_rt_now ((loop)->ev_rt_now)
169# define VAR(name,decl) decl; 555 #define VAR(name,decl) decl;
170# include "ev_vars.h" 556 #include "ev_vars.h"
171};
172# undef VAR 557 #undef VAR
558 };
173# include "ev_wrap.h" 559 #include "ev_wrap.h"
560
561 static struct ev_loop default_loop_struct;
562 struct ev_loop *ev_default_loop_ptr;
174 563
175#else 564#else
176 565
566 ev_tstamp ev_rt_now;
177# define VAR(name,decl) static decl; 567 #define VAR(name,decl) static decl;
178# include "ev_vars.h" 568 #include "ev_vars.h"
179# undef VAR 569 #undef VAR
180 570
571 static int ev_default_loop_ptr;
572
181#endif 573#endif
574
575#if EV_MINIMAL < 2
576# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
577# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
578# define EV_INVOKE_PENDING invoke_cb (EV_A)
579#else
580# define EV_RELEASE_CB (void)0
581# define EV_ACQUIRE_CB (void)0
582# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
583#endif
584
585#define EVUNLOOP_RECURSE 0x80
182 586
183/*****************************************************************************/ 587/*****************************************************************************/
184 588
185inline ev_tstamp 589#ifndef EV_HAVE_EV_TIME
590ev_tstamp
186ev_time (void) 591ev_time (void)
187{ 592{
188#if EV_USE_REALTIME 593#if EV_USE_REALTIME
594 if (expect_true (have_realtime))
595 {
189 struct timespec ts; 596 struct timespec ts;
190 clock_gettime (CLOCK_REALTIME, &ts); 597 clock_gettime (CLOCK_REALTIME, &ts);
191 return ts.tv_sec + ts.tv_nsec * 1e-9; 598 return ts.tv_sec + ts.tv_nsec * 1e-9;
192#else 599 }
600#endif
601
193 struct timeval tv; 602 struct timeval tv;
194 gettimeofday (&tv, 0); 603 gettimeofday (&tv, 0);
195 return tv.tv_sec + tv.tv_usec * 1e-6; 604 return tv.tv_sec + tv.tv_usec * 1e-6;
196#endif
197} 605}
606#endif
198 607
199inline ev_tstamp 608inline_size ev_tstamp
200get_clock (void) 609get_clock (void)
201{ 610{
202#if EV_USE_MONOTONIC 611#if EV_USE_MONOTONIC
203 if (expect_true (have_monotonic)) 612 if (expect_true (have_monotonic))
204 { 613 {
209#endif 618#endif
210 619
211 return ev_time (); 620 return ev_time ();
212} 621}
213 622
623#if EV_MULTIPLICITY
214ev_tstamp 624ev_tstamp
215ev_now (EV_P) 625ev_now (EV_P)
216{ 626{
217 return rt_now; 627 return ev_rt_now;
218} 628}
629#endif
219 630
220#define array_roundsize(base,n) ((n) | 4 & ~3) 631void
221 632ev_sleep (ev_tstamp delay)
222#define array_needsize(base,cur,cnt,init) \ 633{
223 if (expect_false ((cnt) > cur)) \ 634 if (delay > 0.)
224 { \
225 int newcnt = cur; \
226 do \
227 { \
228 newcnt = array_roundsize (base, newcnt << 1); \
229 } \
230 while ((cnt) > newcnt); \
231 \
232 base = realloc (base, sizeof (*base) * (newcnt)); \
233 init (base + cur, newcnt - cur); \
234 cur = newcnt; \
235 } 635 {
636#if EV_USE_NANOSLEEP
637 struct timespec ts;
638
639 ts.tv_sec = (time_t)delay;
640 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
641
642 nanosleep (&ts, 0);
643#elif defined(_WIN32)
644 Sleep ((unsigned long)(delay * 1e3));
645#else
646 struct timeval tv;
647
648 tv.tv_sec = (time_t)delay;
649 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
650
651 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
652 /* somehting not guaranteed by newer posix versions, but guaranteed */
653 /* by older ones */
654 select (0, 0, 0, 0, &tv);
655#endif
656 }
657}
236 658
237/*****************************************************************************/ 659/*****************************************************************************/
238 660
239static void 661#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
240anfds_init (ANFD *base, int count)
241{
242 while (count--)
243 {
244 base->head = 0;
245 base->events = EV_NONE;
246 base->reify = 0;
247 662
248 ++base; 663/* find a suitable new size for the given array, */
664/* hopefully by rounding to a ncie-to-malloc size */
665inline_size int
666array_nextsize (int elem, int cur, int cnt)
667{
668 int ncur = cur + 1;
669
670 do
671 ncur <<= 1;
672 while (cnt > ncur);
673
674 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
675 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
249 } 676 {
250} 677 ncur *= elem;
251 678 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
252static void 679 ncur = ncur - sizeof (void *) * 4;
253event (EV_P_ W w, int events) 680 ncur /= elem;
254{
255 if (w->pending)
256 { 681 }
682
683 return ncur;
684}
685
686static noinline void *
687array_realloc (int elem, void *base, int *cur, int cnt)
688{
689 *cur = array_nextsize (elem, *cur, cnt);
690 return ev_realloc (base, elem * *cur);
691}
692
693#define array_init_zero(base,count) \
694 memset ((void *)(base), 0, sizeof (*(base)) * (count))
695
696#define array_needsize(type,base,cur,cnt,init) \
697 if (expect_false ((cnt) > (cur))) \
698 { \
699 int ocur_ = (cur); \
700 (base) = (type *)array_realloc \
701 (sizeof (type), (base), &(cur), (cnt)); \
702 init ((base) + (ocur_), (cur) - ocur_); \
703 }
704
705#if 0
706#define array_slim(type,stem) \
707 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
708 { \
709 stem ## max = array_roundsize (stem ## cnt >> 1); \
710 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
711 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
712 }
713#endif
714
715#define array_free(stem, idx) \
716 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
717
718/*****************************************************************************/
719
720/* dummy callback for pending events */
721static void noinline
722pendingcb (EV_P_ ev_prepare *w, int revents)
723{
724}
725
726void noinline
727ev_feed_event (EV_P_ void *w, int revents)
728{
729 W w_ = (W)w;
730 int pri = ABSPRI (w_);
731
732 if (expect_false (w_->pending))
733 pendings [pri][w_->pending - 1].events |= revents;
734 else
735 {
736 w_->pending = ++pendingcnt [pri];
737 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
738 pendings [pri][w_->pending - 1].w = w_;
257 pendings [ABSPRI (w)][w->pending - 1].events |= events; 739 pendings [pri][w_->pending - 1].events = revents;
258 return;
259 } 740 }
260
261 w->pending = ++pendingcnt [ABSPRI (w)];
262 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
263 pendings [ABSPRI (w)][w->pending - 1].w = w;
264 pendings [ABSPRI (w)][w->pending - 1].events = events;
265} 741}
266 742
267static void 743inline_speed void
744feed_reverse (EV_P_ W w)
745{
746 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
747 rfeeds [rfeedcnt++] = w;
748}
749
750inline_size void
751feed_reverse_done (EV_P_ int revents)
752{
753 do
754 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
755 while (rfeedcnt);
756}
757
758inline_speed void
268queue_events (EV_P_ W *events, int eventcnt, int type) 759queue_events (EV_P_ W *events, int eventcnt, int type)
269{ 760{
270 int i; 761 int i;
271 762
272 for (i = 0; i < eventcnt; ++i) 763 for (i = 0; i < eventcnt; ++i)
273 event (EV_A_ events [i], type); 764 ev_feed_event (EV_A_ events [i], type);
274} 765}
275 766
276static void 767/*****************************************************************************/
768
769inline_speed void
277fd_event (EV_P_ int fd, int events) 770fd_event_nc (EV_P_ int fd, int revents)
278{ 771{
279 ANFD *anfd = anfds + fd; 772 ANFD *anfd = anfds + fd;
280 struct ev_io *w; 773 ev_io *w;
281 774
282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 775 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
283 { 776 {
284 int ev = w->events & events; 777 int ev = w->events & revents;
285 778
286 if (ev) 779 if (ev)
287 event (EV_A_ (W)w, ev); 780 ev_feed_event (EV_A_ (W)w, ev);
288 } 781 }
289} 782}
290 783
291/*****************************************************************************/ 784/* do not submit kernel events for fds that have reify set */
785/* because that means they changed while we were polling for new events */
786inline_speed void
787fd_event (EV_P_ int fd, int revents)
788{
789 ANFD *anfd = anfds + fd;
292 790
293static void 791 if (expect_true (!anfd->reify))
792 fd_event_nc (EV_A_ fd, revents);
793}
794
795void
796ev_feed_fd_event (EV_P_ int fd, int revents)
797{
798 if (fd >= 0 && fd < anfdmax)
799 fd_event_nc (EV_A_ fd, revents);
800}
801
802/* make sure the external fd watch events are in-sync */
803/* with the kernel/libev internal state */
804inline_size void
294fd_reify (EV_P) 805fd_reify (EV_P)
295{ 806{
296 int i; 807 int i;
297 808
298 for (i = 0; i < fdchangecnt; ++i) 809 for (i = 0; i < fdchangecnt; ++i)
299 { 810 {
300 int fd = fdchanges [i]; 811 int fd = fdchanges [i];
301 ANFD *anfd = anfds + fd; 812 ANFD *anfd = anfds + fd;
302 struct ev_io *w; 813 ev_io *w;
303 814
304 int events = 0; 815 unsigned char events = 0;
305 816
306 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 817 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
307 events |= w->events; 818 events |= (unsigned char)w->events;
308 819
309 anfd->reify = 0; 820#if EV_SELECT_IS_WINSOCKET
310 821 if (events)
311 if (anfd->events != events)
312 { 822 {
313 method_modify (EV_A_ fd, anfd->events, events); 823 unsigned long arg;
314 anfd->events = events; 824 #ifdef EV_FD_TO_WIN32_HANDLE
825 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
826 #else
827 anfd->handle = _get_osfhandle (fd);
828 #endif
829 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
315 } 830 }
831#endif
832
833 {
834 unsigned char o_events = anfd->events;
835 unsigned char o_reify = anfd->reify;
836
837 anfd->reify = 0;
838 anfd->events = events;
839
840 if (o_events != events || o_reify & EV__IOFDSET)
841 backend_modify (EV_A_ fd, o_events, events);
842 }
316 } 843 }
317 844
318 fdchangecnt = 0; 845 fdchangecnt = 0;
319} 846}
320 847
321static void 848/* something about the given fd changed */
849inline_size void
322fd_change (EV_P_ int fd) 850fd_change (EV_P_ int fd, int flags)
323{ 851{
324 if (anfds [fd].reify || fdchangecnt < 0) 852 unsigned char reify = anfds [fd].reify;
325 return;
326
327 anfds [fd].reify = 1; 853 anfds [fd].reify |= flags;
328 854
855 if (expect_true (!reify))
856 {
329 ++fdchangecnt; 857 ++fdchangecnt;
330 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 858 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
331 fdchanges [fdchangecnt - 1] = fd; 859 fdchanges [fdchangecnt - 1] = fd;
860 }
332} 861}
333 862
334static void 863/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
864inline_speed void
335fd_kill (EV_P_ int fd) 865fd_kill (EV_P_ int fd)
336{ 866{
337 struct ev_io *w; 867 ev_io *w;
338 868
339 while ((w = (struct ev_io *)anfds [fd].head)) 869 while ((w = (ev_io *)anfds [fd].head))
340 { 870 {
341 ev_io_stop (EV_A_ w); 871 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 872 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 } 873 }
874}
875
876/* check whether the given fd is atcually valid, for error recovery */
877inline_size int
878fd_valid (int fd)
879{
880#ifdef _WIN32
881 return _get_osfhandle (fd) != -1;
882#else
883 return fcntl (fd, F_GETFD) != -1;
884#endif
344} 885}
345 886
346/* called on EBADF to verify fds */ 887/* called on EBADF to verify fds */
347static void 888static void noinline
348fd_ebadf (EV_P) 889fd_ebadf (EV_P)
349{ 890{
350 int fd; 891 int fd;
351 892
352 for (fd = 0; fd < anfdmax; ++fd) 893 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 894 if (anfds [fd].events)
354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 895 if (!fd_valid (fd) && errno == EBADF)
355 fd_kill (EV_A_ fd); 896 fd_kill (EV_A_ fd);
356} 897}
357 898
358/* called on ENOMEM in select/poll to kill some fds and retry */ 899/* called on ENOMEM in select/poll to kill some fds and retry */
359static void 900static void noinline
360fd_enomem (EV_P) 901fd_enomem (EV_P)
361{ 902{
362 int fd; 903 int fd;
363 904
364 for (fd = anfdmax; fd--; ) 905 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events) 906 if (anfds [fd].events)
366 { 907 {
367 close (fd);
368 fd_kill (EV_A_ fd); 908 fd_kill (EV_A_ fd);
369 return; 909 return;
370 } 910 }
371} 911}
372 912
373/* susually called after fork if method needs to re-arm all fds from scratch */ 913/* usually called after fork if backend needs to re-arm all fds from scratch */
374static void 914static void noinline
375fd_rearm_all (EV_P) 915fd_rearm_all (EV_P)
376{ 916{
377 int fd; 917 int fd;
378 918
379 /* this should be highly optimised to not do anything but set a flag */
380 for (fd = 0; fd < anfdmax; ++fd) 919 for (fd = 0; fd < anfdmax; ++fd)
381 if (anfds [fd].events) 920 if (anfds [fd].events)
382 { 921 {
383 anfds [fd].events = 0; 922 anfds [fd].events = 0;
384 fd_change (EV_A_ fd); 923 anfds [fd].emask = 0;
924 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
385 } 925 }
386} 926}
387 927
388/*****************************************************************************/ 928/*****************************************************************************/
389 929
390static void 930/*
391upheap (WT *heap, int k) 931 * the heap functions want a real array index. array index 0 uis guaranteed to not
392{ 932 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
393 WT w = heap [k]; 933 * the branching factor of the d-tree.
934 */
394 935
395 while (k && heap [k >> 1]->at > w->at) 936/*
396 { 937 * at the moment we allow libev the luxury of two heaps,
397 heap [k] = heap [k >> 1]; 938 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
398 ((W)heap [k])->active = k + 1; 939 * which is more cache-efficient.
399 k >>= 1; 940 * the difference is about 5% with 50000+ watchers.
400 } 941 */
942#if EV_USE_4HEAP
401 943
402 heap [k] = w; 944#define DHEAP 4
403 ((W)heap [k])->active = k + 1; 945#define HEAP0 (DHEAP - 1) /* index of first element in heap */
946#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
947#define UPHEAP_DONE(p,k) ((p) == (k))
404 948
405} 949/* away from the root */
406 950inline_speed void
407static void
408downheap (WT *heap, int N, int k) 951downheap (ANHE *heap, int N, int k)
409{ 952{
410 WT w = heap [k]; 953 ANHE he = heap [k];
954 ANHE *E = heap + N + HEAP0;
411 955
412 while (k < (N >> 1)) 956 for (;;)
413 { 957 {
414 int j = k << 1; 958 ev_tstamp minat;
959 ANHE *minpos;
960 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
415 961
416 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 962 /* find minimum child */
963 if (expect_true (pos + DHEAP - 1 < E))
417 ++j; 964 {
418 965 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
419 if (w->at <= heap [j]->at) 966 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
967 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
968 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
969 }
970 else if (pos < E)
971 {
972 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
973 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
974 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
975 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
976 }
977 else
420 break; 978 break;
421 979
980 if (ANHE_at (he) <= minat)
981 break;
982
983 heap [k] = *minpos;
984 ev_active (ANHE_w (*minpos)) = k;
985
986 k = minpos - heap;
987 }
988
989 heap [k] = he;
990 ev_active (ANHE_w (he)) = k;
991}
992
993#else /* 4HEAP */
994
995#define HEAP0 1
996#define HPARENT(k) ((k) >> 1)
997#define UPHEAP_DONE(p,k) (!(p))
998
999/* away from the root */
1000inline_speed void
1001downheap (ANHE *heap, int N, int k)
1002{
1003 ANHE he = heap [k];
1004
1005 for (;;)
1006 {
1007 int c = k << 1;
1008
1009 if (c > N + HEAP0 - 1)
1010 break;
1011
1012 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1013 ? 1 : 0;
1014
1015 if (ANHE_at (he) <= ANHE_at (heap [c]))
1016 break;
1017
422 heap [k] = heap [j]; 1018 heap [k] = heap [c];
423 ((W)heap [k])->active = k + 1; 1019 ev_active (ANHE_w (heap [k])) = k;
1020
424 k = j; 1021 k = c;
425 } 1022 }
426 1023
427 heap [k] = w; 1024 heap [k] = he;
428 ((W)heap [k])->active = k + 1; 1025 ev_active (ANHE_w (he)) = k;
1026}
1027#endif
1028
1029/* towards the root */
1030inline_speed void
1031upheap (ANHE *heap, int k)
1032{
1033 ANHE he = heap [k];
1034
1035 for (;;)
1036 {
1037 int p = HPARENT (k);
1038
1039 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1040 break;
1041
1042 heap [k] = heap [p];
1043 ev_active (ANHE_w (heap [k])) = k;
1044 k = p;
1045 }
1046
1047 heap [k] = he;
1048 ev_active (ANHE_w (he)) = k;
1049}
1050
1051/* move an element suitably so it is in a correct place */
1052inline_size void
1053adjustheap (ANHE *heap, int N, int k)
1054{
1055 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
1056 upheap (heap, k);
1057 else
1058 downheap (heap, N, k);
1059}
1060
1061/* rebuild the heap: this function is used only once and executed rarely */
1062inline_size void
1063reheap (ANHE *heap, int N)
1064{
1065 int i;
1066
1067 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1068 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1069 for (i = 0; i < N; ++i)
1070 upheap (heap, i + HEAP0);
429} 1071}
430 1072
431/*****************************************************************************/ 1073/*****************************************************************************/
432 1074
1075/* associate signal watchers to a signal signal */
433typedef struct 1076typedef struct
434{ 1077{
435 struct ev_watcher_list *head; 1078 WL head;
436 sig_atomic_t volatile gotsig; 1079 EV_ATOMIC_T gotsig;
437} ANSIG; 1080} ANSIG;
438 1081
439static ANSIG *signals; 1082static ANSIG *signals;
440static int signalmax; 1083static int signalmax;
441 1084
442static int sigpipe [2]; 1085static EV_ATOMIC_T gotsig;
443static sig_atomic_t volatile gotsig;
444static struct ev_io sigev;
445 1086
1087/*****************************************************************************/
1088
1089/* used to prepare libev internal fd's */
1090/* this is not fork-safe */
1091inline_speed void
1092fd_intern (int fd)
1093{
1094#ifdef _WIN32
1095 unsigned long arg = 1;
1096 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1097#else
1098 fcntl (fd, F_SETFD, FD_CLOEXEC);
1099 fcntl (fd, F_SETFL, O_NONBLOCK);
1100#endif
1101}
1102
1103static void noinline
1104evpipe_init (EV_P)
1105{
1106 if (!ev_is_active (&pipe_w))
1107 {
1108#if EV_USE_EVENTFD
1109 if ((evfd = eventfd (0, 0)) >= 0)
1110 {
1111 evpipe [0] = -1;
1112 fd_intern (evfd);
1113 ev_io_set (&pipe_w, evfd, EV_READ);
1114 }
1115 else
1116#endif
1117 {
1118 while (pipe (evpipe))
1119 ev_syserr ("(libev) error creating signal/async pipe");
1120
1121 fd_intern (evpipe [0]);
1122 fd_intern (evpipe [1]);
1123 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1124 }
1125
1126 ev_io_start (EV_A_ &pipe_w);
1127 ev_unref (EV_A); /* watcher should not keep loop alive */
1128 }
1129}
1130
1131inline_size void
1132evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1133{
1134 if (!*flag)
1135 {
1136 int old_errno = errno; /* save errno because write might clobber it */
1137
1138 *flag = 1;
1139
1140#if EV_USE_EVENTFD
1141 if (evfd >= 0)
1142 {
1143 uint64_t counter = 1;
1144 write (evfd, &counter, sizeof (uint64_t));
1145 }
1146 else
1147#endif
1148 write (evpipe [1], &old_errno, 1);
1149
1150 errno = old_errno;
1151 }
1152}
1153
1154/* called whenever the libev signal pipe */
1155/* got some events (signal, async) */
446static void 1156static void
447signals_init (ANSIG *base, int count) 1157pipecb (EV_P_ ev_io *iow, int revents)
448{ 1158{
449 while (count--) 1159#if EV_USE_EVENTFD
1160 if (evfd >= 0)
1161 {
1162 uint64_t counter;
1163 read (evfd, &counter, sizeof (uint64_t));
450 { 1164 }
451 base->head = 0; 1165 else
1166#endif
1167 {
1168 char dummy;
1169 read (evpipe [0], &dummy, 1);
1170 }
1171
1172 if (gotsig && ev_is_default_loop (EV_A))
1173 {
1174 int signum;
452 base->gotsig = 0; 1175 gotsig = 0;
453 1176
454 ++base; 1177 for (signum = signalmax; signum--; )
1178 if (signals [signum].gotsig)
1179 ev_feed_signal_event (EV_A_ signum + 1);
1180 }
1181
1182#if EV_ASYNC_ENABLE
1183 if (gotasync)
455 } 1184 {
1185 int i;
1186 gotasync = 0;
1187
1188 for (i = asynccnt; i--; )
1189 if (asyncs [i]->sent)
1190 {
1191 asyncs [i]->sent = 0;
1192 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1193 }
1194 }
1195#endif
456} 1196}
1197
1198/*****************************************************************************/
457 1199
458static void 1200static void
459sighandler (int signum) 1201ev_sighandler (int signum)
460{ 1202{
1203#if EV_MULTIPLICITY
1204 struct ev_loop *loop = &default_loop_struct;
1205#endif
1206
1207#if _WIN32
1208 signal (signum, ev_sighandler);
1209#endif
1210
461 signals [signum - 1].gotsig = 1; 1211 signals [signum - 1].gotsig = 1;
462 1212 evpipe_write (EV_A_ &gotsig);
463 if (!gotsig)
464 {
465 int old_errno = errno;
466 gotsig = 1;
467 write (sigpipe [1], &signum, 1);
468 errno = old_errno;
469 }
470} 1213}
471 1214
472static void 1215void noinline
473sigcb (EV_P_ struct ev_io *iow, int revents) 1216ev_feed_signal_event (EV_P_ int signum)
474{ 1217{
475 struct ev_watcher_list *w; 1218 WL w;
1219
1220#if EV_MULTIPLICITY
1221 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1222#endif
1223
476 int signum; 1224 --signum;
477 1225
478 read (sigpipe [0], &revents, 1); 1226 if (signum < 0 || signum >= signalmax)
479 gotsig = 0; 1227 return;
480 1228
481 for (signum = signalmax; signum--; )
482 if (signals [signum].gotsig)
483 {
484 signals [signum].gotsig = 0; 1229 signals [signum].gotsig = 0;
485 1230
486 for (w = signals [signum].head; w; w = w->next) 1231 for (w = signals [signum].head; w; w = w->next)
487 event (EV_A_ (W)w, EV_SIGNAL); 1232 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
488 }
489}
490
491static void
492siginit (EV_P)
493{
494#ifndef WIN32
495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
497
498 /* rather than sort out wether we really need nb, set it */
499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501#endif
502
503 ev_io_set (&sigev, sigpipe [0], EV_READ);
504 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */
506} 1233}
507 1234
508/*****************************************************************************/ 1235/*****************************************************************************/
509 1236
1237static WL childs [EV_PID_HASHSIZE];
1238
510#ifndef WIN32 1239#ifndef _WIN32
511 1240
512static struct ev_child *childs [PID_HASHSIZE];
513static struct ev_signal childev; 1241static ev_signal childev;
1242
1243#ifndef WIFCONTINUED
1244# define WIFCONTINUED(status) 0
1245#endif
1246
1247/* handle a single child status event */
1248inline_speed void
1249child_reap (EV_P_ int chain, int pid, int status)
1250{
1251 ev_child *w;
1252 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1253
1254 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1255 {
1256 if ((w->pid == pid || !w->pid)
1257 && (!traced || (w->flags & 1)))
1258 {
1259 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1260 w->rpid = pid;
1261 w->rstatus = status;
1262 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1263 }
1264 }
1265}
514 1266
515#ifndef WCONTINUED 1267#ifndef WCONTINUED
516# define WCONTINUED 0 1268# define WCONTINUED 0
517#endif 1269#endif
518 1270
1271/* called on sigchld etc., calls waitpid */
519static void 1272static void
520child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
521{
522 struct ev_child *w;
523
524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 if (w->pid == pid || !w->pid)
526 {
527 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid;
529 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD);
531 }
532}
533
534static void
535childcb (EV_P_ struct ev_signal *sw, int revents) 1273childcb (EV_P_ ev_signal *sw, int revents)
536{ 1274{
537 int pid, status; 1275 int pid, status;
538 1276
1277 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1278 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
540 { 1279 if (!WCONTINUED
1280 || errno != EINVAL
1281 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1282 return;
1283
541 /* make sure we are called again until all childs have been reaped */ 1284 /* make sure we are called again until all children have been reaped */
1285 /* we need to do it this way so that the callback gets called before we continue */
542 event (EV_A_ (W)sw, EV_SIGNAL); 1286 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
543 1287
544 child_reap (EV_A_ sw, pid, pid, status); 1288 child_reap (EV_A_ pid, pid, status);
1289 if (EV_PID_HASHSIZE > 1)
545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1290 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
546 }
547} 1291}
548 1292
549#endif 1293#endif
550 1294
551/*****************************************************************************/ 1295/*****************************************************************************/
552 1296
1297#if EV_USE_PORT
1298# include "ev_port.c"
1299#endif
553#if EV_USE_KQUEUE 1300#if EV_USE_KQUEUE
554# include "ev_kqueue.c" 1301# include "ev_kqueue.c"
555#endif 1302#endif
556#if EV_USE_EPOLL 1303#if EV_USE_EPOLL
557# include "ev_epoll.c" 1304# include "ev_epoll.c"
574{ 1321{
575 return EV_VERSION_MINOR; 1322 return EV_VERSION_MINOR;
576} 1323}
577 1324
578/* return true if we are running with elevated privileges and should ignore env variables */ 1325/* return true if we are running with elevated privileges and should ignore env variables */
579static int 1326int inline_size
580enable_secure (void) 1327enable_secure (void)
581{ 1328{
582#ifdef WIN32 1329#ifdef _WIN32
583 return 0; 1330 return 0;
584#else 1331#else
585 return getuid () != geteuid () 1332 return getuid () != geteuid ()
586 || getgid () != getegid (); 1333 || getgid () != getegid ();
587#endif 1334#endif
588} 1335}
589 1336
590int 1337unsigned int
591ev_method (EV_P) 1338ev_supported_backends (void)
592{ 1339{
593 return method; 1340 unsigned int flags = 0;
594}
595 1341
596static void 1342 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
597loop_init (EV_P_ int methods) 1343 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1344 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1345 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1346 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1347
1348 return flags;
1349}
1350
1351unsigned int
1352ev_recommended_backends (void)
598{ 1353{
599 if (!method) 1354 unsigned int flags = ev_supported_backends ();
1355
1356#ifndef __NetBSD__
1357 /* kqueue is borked on everything but netbsd apparently */
1358 /* it usually doesn't work correctly on anything but sockets and pipes */
1359 flags &= ~EVBACKEND_KQUEUE;
1360#endif
1361#ifdef __APPLE__
1362 /* only select works correctly on that "unix-certified" platform */
1363 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1364 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1365#endif
1366
1367 return flags;
1368}
1369
1370unsigned int
1371ev_embeddable_backends (void)
1372{
1373 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1374
1375 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1376 /* please fix it and tell me how to detect the fix */
1377 flags &= ~EVBACKEND_EPOLL;
1378
1379 return flags;
1380}
1381
1382unsigned int
1383ev_backend (EV_P)
1384{
1385 return backend;
1386}
1387
1388#if EV_MINIMAL < 2
1389unsigned int
1390ev_loop_count (EV_P)
1391{
1392 return loop_count;
1393}
1394
1395unsigned int
1396ev_loop_depth (EV_P)
1397{
1398 return loop_depth;
1399}
1400
1401void
1402ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1403{
1404 io_blocktime = interval;
1405}
1406
1407void
1408ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1409{
1410 timeout_blocktime = interval;
1411}
1412
1413void
1414ev_set_userdata (EV_P_ void *data)
1415{
1416 userdata = data;
1417}
1418
1419void *
1420ev_userdata (EV_P)
1421{
1422 return userdata;
1423}
1424
1425void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1426{
1427 invoke_cb = invoke_pending_cb;
1428}
1429
1430void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1431{
1432 release_cb = release;
1433 acquire_cb = acquire;
1434}
1435#endif
1436
1437/* initialise a loop structure, must be zero-initialised */
1438static void noinline
1439loop_init (EV_P_ unsigned int flags)
1440{
1441 if (!backend)
600 { 1442 {
1443#if EV_USE_REALTIME
1444 if (!have_realtime)
1445 {
1446 struct timespec ts;
1447
1448 if (!clock_gettime (CLOCK_REALTIME, &ts))
1449 have_realtime = 1;
1450 }
1451#endif
1452
601#if EV_USE_MONOTONIC 1453#if EV_USE_MONOTONIC
1454 if (!have_monotonic)
1455 {
1456 struct timespec ts;
1457
1458 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1459 have_monotonic = 1;
1460 }
1461#endif
1462
1463 ev_rt_now = ev_time ();
1464 mn_now = get_clock ();
1465 now_floor = mn_now;
1466 rtmn_diff = ev_rt_now - mn_now;
1467#if EV_MINIMAL < 2
1468 invoke_cb = ev_invoke_pending;
1469#endif
1470
1471 io_blocktime = 0.;
1472 timeout_blocktime = 0.;
1473 backend = 0;
1474 backend_fd = -1;
1475 gotasync = 0;
1476#if EV_USE_INOTIFY
1477 fs_fd = -2;
1478#endif
1479
1480 /* pid check not overridable via env */
1481#ifndef _WIN32
1482 if (flags & EVFLAG_FORKCHECK)
1483 curpid = getpid ();
1484#endif
1485
1486 if (!(flags & EVFLAG_NOENV)
1487 && !enable_secure ()
1488 && getenv ("LIBEV_FLAGS"))
1489 flags = atoi (getenv ("LIBEV_FLAGS"));
1490
1491 if (!(flags & 0x0000ffffU))
1492 flags |= ev_recommended_backends ();
1493
1494#if EV_USE_PORT
1495 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1496#endif
1497#if EV_USE_KQUEUE
1498 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1499#endif
1500#if EV_USE_EPOLL
1501 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1502#endif
1503#if EV_USE_POLL
1504 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1505#endif
1506#if EV_USE_SELECT
1507 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1508#endif
1509
1510 ev_prepare_init (&pending_w, pendingcb);
1511
1512 ev_init (&pipe_w, pipecb);
1513 ev_set_priority (&pipe_w, EV_MAXPRI);
1514 }
1515}
1516
1517/* free up a loop structure */
1518static void noinline
1519loop_destroy (EV_P)
1520{
1521 int i;
1522
1523 if (ev_is_active (&pipe_w))
1524 {
1525 ev_ref (EV_A); /* signal watcher */
1526 ev_io_stop (EV_A_ &pipe_w);
1527
1528#if EV_USE_EVENTFD
1529 if (evfd >= 0)
1530 close (evfd);
1531#endif
1532
1533 if (evpipe [0] >= 0)
1534 {
1535 close (evpipe [0]);
1536 close (evpipe [1]);
1537 }
1538 }
1539
1540#if EV_USE_INOTIFY
1541 if (fs_fd >= 0)
1542 close (fs_fd);
1543#endif
1544
1545 if (backend_fd >= 0)
1546 close (backend_fd);
1547
1548#if EV_USE_PORT
1549 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1550#endif
1551#if EV_USE_KQUEUE
1552 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1553#endif
1554#if EV_USE_EPOLL
1555 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1556#endif
1557#if EV_USE_POLL
1558 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1559#endif
1560#if EV_USE_SELECT
1561 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1562#endif
1563
1564 for (i = NUMPRI; i--; )
1565 {
1566 array_free (pending, [i]);
1567#if EV_IDLE_ENABLE
1568 array_free (idle, [i]);
1569#endif
1570 }
1571
1572 ev_free (anfds); anfdmax = 0;
1573
1574 /* have to use the microsoft-never-gets-it-right macro */
1575 array_free (rfeed, EMPTY);
1576 array_free (fdchange, EMPTY);
1577 array_free (timer, EMPTY);
1578#if EV_PERIODIC_ENABLE
1579 array_free (periodic, EMPTY);
1580#endif
1581#if EV_FORK_ENABLE
1582 array_free (fork, EMPTY);
1583#endif
1584 array_free (prepare, EMPTY);
1585 array_free (check, EMPTY);
1586#if EV_ASYNC_ENABLE
1587 array_free (async, EMPTY);
1588#endif
1589
1590 backend = 0;
1591}
1592
1593#if EV_USE_INOTIFY
1594inline_size void infy_fork (EV_P);
1595#endif
1596
1597inline_size void
1598loop_fork (EV_P)
1599{
1600#if EV_USE_PORT
1601 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1602#endif
1603#if EV_USE_KQUEUE
1604 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1605#endif
1606#if EV_USE_EPOLL
1607 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1608#endif
1609#if EV_USE_INOTIFY
1610 infy_fork (EV_A);
1611#endif
1612
1613 if (ev_is_active (&pipe_w))
1614 {
1615 /* this "locks" the handlers against writing to the pipe */
1616 /* while we modify the fd vars */
1617 gotsig = 1;
1618#if EV_ASYNC_ENABLE
1619 gotasync = 1;
1620#endif
1621
1622 ev_ref (EV_A);
1623 ev_io_stop (EV_A_ &pipe_w);
1624
1625#if EV_USE_EVENTFD
1626 if (evfd >= 0)
1627 close (evfd);
1628#endif
1629
1630 if (evpipe [0] >= 0)
1631 {
1632 close (evpipe [0]);
1633 close (evpipe [1]);
1634 }
1635
1636 evpipe_init (EV_A);
1637 /* now iterate over everything, in case we missed something */
1638 pipecb (EV_A_ &pipe_w, EV_READ);
1639 }
1640
1641 postfork = 0;
1642}
1643
1644#if EV_MULTIPLICITY
1645
1646struct ev_loop *
1647ev_loop_new (unsigned int flags)
1648{
1649 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1650
1651 memset (loop, 0, sizeof (struct ev_loop));
1652
1653 loop_init (EV_A_ flags);
1654
1655 if (ev_backend (EV_A))
1656 return loop;
1657
1658 return 0;
1659}
1660
1661void
1662ev_loop_destroy (EV_P)
1663{
1664 loop_destroy (EV_A);
1665 ev_free (loop);
1666}
1667
1668void
1669ev_loop_fork (EV_P)
1670{
1671 postfork = 1; /* must be in line with ev_default_fork */
1672}
1673#endif /* multiplicity */
1674
1675#if EV_VERIFY
1676static void noinline
1677verify_watcher (EV_P_ W w)
1678{
1679 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1680
1681 if (w->pending)
1682 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1683}
1684
1685static void noinline
1686verify_heap (EV_P_ ANHE *heap, int N)
1687{
1688 int i;
1689
1690 for (i = HEAP0; i < N + HEAP0; ++i)
1691 {
1692 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1693 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1694 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1695
1696 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1697 }
1698}
1699
1700static void noinline
1701array_verify (EV_P_ W *ws, int cnt)
1702{
1703 while (cnt--)
1704 {
1705 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1706 verify_watcher (EV_A_ ws [cnt]);
1707 }
1708}
1709#endif
1710
1711#if EV_MINIMAL < 2
1712void
1713ev_loop_verify (EV_P)
1714{
1715#if EV_VERIFY
1716 int i;
1717 WL w;
1718
1719 assert (activecnt >= -1);
1720
1721 assert (fdchangemax >= fdchangecnt);
1722 for (i = 0; i < fdchangecnt; ++i)
1723 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1724
1725 assert (anfdmax >= 0);
1726 for (i = 0; i < anfdmax; ++i)
1727 for (w = anfds [i].head; w; w = w->next)
602 { 1728 {
603 struct timespec ts; 1729 verify_watcher (EV_A_ (W)w);
604 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1730 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
605 have_monotonic = 1; 1731 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
606 } 1732 }
1733
1734 assert (timermax >= timercnt);
1735 verify_heap (EV_A_ timers, timercnt);
1736
1737#if EV_PERIODIC_ENABLE
1738 assert (periodicmax >= periodiccnt);
1739 verify_heap (EV_A_ periodics, periodiccnt);
1740#endif
1741
1742 for (i = NUMPRI; i--; )
1743 {
1744 assert (pendingmax [i] >= pendingcnt [i]);
1745#if EV_IDLE_ENABLE
1746 assert (idleall >= 0);
1747 assert (idlemax [i] >= idlecnt [i]);
1748 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1749#endif
1750 }
1751
1752#if EV_FORK_ENABLE
1753 assert (forkmax >= forkcnt);
1754 array_verify (EV_A_ (W *)forks, forkcnt);
1755#endif
1756
1757#if EV_ASYNC_ENABLE
1758 assert (asyncmax >= asynccnt);
1759 array_verify (EV_A_ (W *)asyncs, asynccnt);
1760#endif
1761
1762 assert (preparemax >= preparecnt);
1763 array_verify (EV_A_ (W *)prepares, preparecnt);
1764
1765 assert (checkmax >= checkcnt);
1766 array_verify (EV_A_ (W *)checks, checkcnt);
1767
1768# if 0
1769 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1770 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
607#endif 1771# endif
608
609 rt_now = ev_time ();
610 mn_now = get_clock ();
611 now_floor = mn_now;
612 rtmn_diff = rt_now - mn_now;
613
614 if (methods == EVMETHOD_AUTO)
615 if (!enable_secure () && getenv ("LIBEV_METHODS"))
616 methods = atoi (getenv ("LIBEV_METHODS"));
617 else
618 methods = EVMETHOD_ANY;
619
620 method = 0;
621#if EV_USE_WIN32
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
623#endif 1772#endif
624#if EV_USE_KQUEUE
625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
626#endif
627#if EV_USE_EPOLL
628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
629#endif
630#if EV_USE_POLL
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
632#endif
633#if EV_USE_SELECT
634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
635#endif
636 }
637} 1773}
638
639void
640loop_destroy (EV_P)
641{
642#if EV_USE_WIN32
643 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
644#endif 1774#endif
645#if EV_USE_KQUEUE
646 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
647#endif
648#if EV_USE_EPOLL
649 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
650#endif
651#if EV_USE_POLL
652 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
653#endif
654#if EV_USE_SELECT
655 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
656#endif
657
658 method = 0;
659 /*TODO*/
660}
661
662void
663loop_fork (EV_P)
664{
665 /*TODO*/
666#if EV_USE_EPOLL
667 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
668#endif
669#if EV_USE_KQUEUE
670 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
671#endif
672}
673 1775
674#if EV_MULTIPLICITY 1776#if EV_MULTIPLICITY
675struct ev_loop * 1777struct ev_loop *
676ev_loop_new (int methods) 1778ev_default_loop_init (unsigned int flags)
677{ 1779#else
678 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 1780int
679 1781ev_default_loop (unsigned int flags)
680 loop_init (EV_A_ methods);
681
682 if (ev_method (EV_A))
683 return loop;
684
685 return 0;
686}
687
688void
689ev_loop_destroy (EV_P)
690{
691 loop_destroy (EV_A);
692 free (loop);
693}
694
695void
696ev_loop_fork (EV_P)
697{
698 loop_fork (EV_A);
699}
700
701#endif 1782#endif
702 1783{
1784 if (!ev_default_loop_ptr)
1785 {
703#if EV_MULTIPLICITY 1786#if EV_MULTIPLICITY
704struct ev_loop default_loop_struct; 1787 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
705static struct ev_loop *default_loop;
706
707struct ev_loop *
708#else 1788#else
709static int default_loop;
710
711int
712#endif
713ev_default_loop (int methods)
714{
715 if (sigpipe [0] == sigpipe [1])
716 if (pipe (sigpipe))
717 return 0;
718
719 if (!default_loop)
720 {
721#if EV_MULTIPLICITY
722 struct ev_loop *loop = default_loop = &default_loop_struct;
723#else
724 default_loop = 1; 1789 ev_default_loop_ptr = 1;
725#endif 1790#endif
726 1791
727 loop_init (EV_A_ methods); 1792 loop_init (EV_A_ flags);
728 1793
729 if (ev_method (EV_A)) 1794 if (ev_backend (EV_A))
730 { 1795 {
731 ev_watcher_init (&sigev, sigcb);
732 ev_set_priority (&sigev, EV_MAXPRI);
733 siginit (EV_A);
734
735#ifndef WIN32 1796#ifndef _WIN32
736 ev_signal_init (&childev, childcb, SIGCHLD); 1797 ev_signal_init (&childev, childcb, SIGCHLD);
737 ev_set_priority (&childev, EV_MAXPRI); 1798 ev_set_priority (&childev, EV_MAXPRI);
738 ev_signal_start (EV_A_ &childev); 1799 ev_signal_start (EV_A_ &childev);
739 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1800 ev_unref (EV_A); /* child watcher should not keep loop alive */
740#endif 1801#endif
741 } 1802 }
742 else 1803 else
743 default_loop = 0; 1804 ev_default_loop_ptr = 0;
744 } 1805 }
745 1806
746 return default_loop; 1807 return ev_default_loop_ptr;
747} 1808}
748 1809
749void 1810void
750ev_default_destroy (void) 1811ev_default_destroy (void)
751{ 1812{
752#if EV_MULTIPLICITY 1813#if EV_MULTIPLICITY
753 struct ev_loop *loop = default_loop; 1814 struct ev_loop *loop = ev_default_loop_ptr;
754#endif 1815#endif
755 1816
1817 ev_default_loop_ptr = 0;
1818
1819#ifndef _WIN32
756 ev_ref (EV_A); /* child watcher */ 1820 ev_ref (EV_A); /* child watcher */
757 ev_signal_stop (EV_A_ &childev); 1821 ev_signal_stop (EV_A_ &childev);
758 1822#endif
759 ev_ref (EV_A); /* signal watcher */
760 ev_io_stop (EV_A_ &sigev);
761
762 close (sigpipe [0]); sigpipe [0] = 0;
763 close (sigpipe [1]); sigpipe [1] = 0;
764 1823
765 loop_destroy (EV_A); 1824 loop_destroy (EV_A);
766} 1825}
767 1826
768void 1827void
769ev_default_fork (void) 1828ev_default_fork (void)
770{ 1829{
771#if EV_MULTIPLICITY 1830#if EV_MULTIPLICITY
772 struct ev_loop *loop = default_loop; 1831 struct ev_loop *loop = ev_default_loop_ptr;
773#endif 1832#endif
774 1833
775 loop_fork (EV_A); 1834 postfork = 1; /* must be in line with ev_loop_fork */
776
777 ev_io_stop (EV_A_ &sigev);
778 close (sigpipe [0]);
779 close (sigpipe [1]);
780 pipe (sigpipe);
781
782 ev_ref (EV_A); /* signal watcher */
783 siginit (EV_A);
784} 1835}
785 1836
786/*****************************************************************************/ 1837/*****************************************************************************/
787 1838
788static void 1839void
789call_pending (EV_P) 1840ev_invoke (EV_P_ void *w, int revents)
1841{
1842 EV_CB_INVOKE ((W)w, revents);
1843}
1844
1845void noinline
1846ev_invoke_pending (EV_P)
790{ 1847{
791 int pri; 1848 int pri;
792 1849
793 for (pri = NUMPRI; pri--; ) 1850 for (pri = NUMPRI; pri--; )
794 while (pendingcnt [pri]) 1851 while (pendingcnt [pri])
795 { 1852 {
796 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1853 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
797 1854
798 if (p->w) 1855 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
799 { 1856 /* ^ this is no longer true, as pending_w could be here */
1857
800 p->w->pending = 0; 1858 p->w->pending = 0;
801 1859 EV_CB_INVOKE (p->w, p->events);
802 (*(void (**)(EV_P_ W, int))&p->w->cb) (EV_A_ p->w, p->events); 1860 EV_FREQUENT_CHECK;
803 }
804 } 1861 }
805} 1862}
806 1863
807static void 1864#if EV_IDLE_ENABLE
1865/* make idle watchers pending. this handles the "call-idle */
1866/* only when higher priorities are idle" logic */
1867inline_size void
808timers_reify (EV_P) 1868idle_reify (EV_P)
809{ 1869{
810 while (timercnt && ((WT)timers [0])->at <= mn_now) 1870 if (expect_false (idleall))
811 { 1871 {
812 struct ev_timer *w = timers [0]; 1872 int pri;
813 1873
814 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1874 for (pri = NUMPRI; pri--; )
815
816 /* first reschedule or stop timer */
817 if (w->repeat)
818 { 1875 {
819 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1876 if (pendingcnt [pri])
820 ((WT)w)->at = mn_now + w->repeat; 1877 break;
821 downheap ((WT *)timers, timercnt, 0);
822 }
823 else
824 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
825 1878
826 event (EV_A_ (W)w, EV_TIMEOUT); 1879 if (idlecnt [pri])
827 }
828}
829
830static void
831periodics_reify (EV_P)
832{
833 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
834 {
835 struct ev_periodic *w = periodics [0];
836
837 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
838
839 /* first reschedule or stop timer */
840 if (w->interval)
841 {
842 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
843 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
844 downheap ((WT *)periodics, periodiccnt, 0);
845 }
846 else
847 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
848
849 event (EV_A_ (W)w, EV_PERIODIC);
850 }
851}
852
853static void
854periodics_reschedule (EV_P)
855{
856 int i;
857
858 /* adjust periodics after time jump */
859 for (i = 0; i < periodiccnt; ++i)
860 {
861 struct ev_periodic *w = periodics [i];
862
863 if (w->interval)
864 {
865 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
866
867 if (fabs (diff) >= 1e-4)
868 { 1880 {
869 ev_periodic_stop (EV_A_ w); 1881 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
870 ev_periodic_start (EV_A_ w); 1882 break;
871
872 i = 0; /* restart loop, inefficient, but time jumps should be rare */
873 } 1883 }
874 } 1884 }
875 } 1885 }
876} 1886}
1887#endif
877 1888
878inline int 1889/* make timers pending */
879time_update_monotonic (EV_P) 1890inline_size void
1891timers_reify (EV_P)
880{ 1892{
881 mn_now = get_clock (); 1893 EV_FREQUENT_CHECK;
882 1894
883 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1895 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
884 {
885 rt_now = rtmn_diff + mn_now;
886 return 0;
887 } 1896 {
888 else 1897 do
1898 {
1899 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1900
1901 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1902
1903 /* first reschedule or stop timer */
1904 if (w->repeat)
1905 {
1906 ev_at (w) += w->repeat;
1907 if (ev_at (w) < mn_now)
1908 ev_at (w) = mn_now;
1909
1910 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1911
1912 ANHE_at_cache (timers [HEAP0]);
1913 downheap (timers, timercnt, HEAP0);
1914 }
1915 else
1916 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1917
1918 EV_FREQUENT_CHECK;
1919 feed_reverse (EV_A_ (W)w);
1920 }
1921 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1922
1923 feed_reverse_done (EV_A_ EV_TIMEOUT);
889 { 1924 }
890 now_floor = mn_now; 1925}
891 rt_now = ev_time (); 1926
892 return 1; 1927#if EV_PERIODIC_ENABLE
1928/* make periodics pending */
1929inline_size void
1930periodics_reify (EV_P)
1931{
1932 EV_FREQUENT_CHECK;
1933
1934 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
893 } 1935 {
894} 1936 int feed_count = 0;
895 1937
896static void 1938 do
897time_update (EV_P) 1939 {
1940 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1941
1942 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1943
1944 /* first reschedule or stop timer */
1945 if (w->reschedule_cb)
1946 {
1947 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1948
1949 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1950
1951 ANHE_at_cache (periodics [HEAP0]);
1952 downheap (periodics, periodiccnt, HEAP0);
1953 }
1954 else if (w->interval)
1955 {
1956 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1957 /* if next trigger time is not sufficiently in the future, put it there */
1958 /* this might happen because of floating point inexactness */
1959 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1960 {
1961 ev_at (w) += w->interval;
1962
1963 /* if interval is unreasonably low we might still have a time in the past */
1964 /* so correct this. this will make the periodic very inexact, but the user */
1965 /* has effectively asked to get triggered more often than possible */
1966 if (ev_at (w) < ev_rt_now)
1967 ev_at (w) = ev_rt_now;
1968 }
1969
1970 ANHE_at_cache (periodics [HEAP0]);
1971 downheap (periodics, periodiccnt, HEAP0);
1972 }
1973 else
1974 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1975
1976 EV_FREQUENT_CHECK;
1977 feed_reverse (EV_A_ (W)w);
1978 }
1979 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1980
1981 feed_reverse_done (EV_A_ EV_PERIODIC);
1982 }
1983}
1984
1985/* simply recalculate all periodics */
1986/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1987static void noinline
1988periodics_reschedule (EV_P)
898{ 1989{
899 int i; 1990 int i;
900 1991
1992 /* adjust periodics after time jump */
1993 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1994 {
1995 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1996
1997 if (w->reschedule_cb)
1998 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1999 else if (w->interval)
2000 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2001
2002 ANHE_at_cache (periodics [i]);
2003 }
2004
2005 reheap (periodics, periodiccnt);
2006}
2007#endif
2008
2009/* adjust all timers by a given offset */
2010static void noinline
2011timers_reschedule (EV_P_ ev_tstamp adjust)
2012{
2013 int i;
2014
2015 for (i = 0; i < timercnt; ++i)
2016 {
2017 ANHE *he = timers + i + HEAP0;
2018 ANHE_w (*he)->at += adjust;
2019 ANHE_at_cache (*he);
2020 }
2021}
2022
2023/* fetch new monotonic and realtime times from the kernel */
2024/* also detetc if there was a timejump, and act accordingly */
2025inline_speed void
2026time_update (EV_P_ ev_tstamp max_block)
2027{
901#if EV_USE_MONOTONIC 2028#if EV_USE_MONOTONIC
902 if (expect_true (have_monotonic)) 2029 if (expect_true (have_monotonic))
903 { 2030 {
904 if (time_update_monotonic (EV_A)) 2031 int i;
2032 ev_tstamp odiff = rtmn_diff;
2033
2034 mn_now = get_clock ();
2035
2036 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2037 /* interpolate in the meantime */
2038 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
905 { 2039 {
906 ev_tstamp odiff = rtmn_diff; 2040 ev_rt_now = rtmn_diff + mn_now;
2041 return;
2042 }
907 2043
2044 now_floor = mn_now;
2045 ev_rt_now = ev_time ();
2046
908 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 2047 /* loop a few times, before making important decisions.
2048 * on the choice of "4": one iteration isn't enough,
2049 * in case we get preempted during the calls to
2050 * ev_time and get_clock. a second call is almost guaranteed
2051 * to succeed in that case, though. and looping a few more times
2052 * doesn't hurt either as we only do this on time-jumps or
2053 * in the unlikely event of having been preempted here.
2054 */
2055 for (i = 4; --i; )
909 { 2056 {
910 rtmn_diff = rt_now - mn_now; 2057 rtmn_diff = ev_rt_now - mn_now;
911 2058
912 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2059 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
913 return; /* all is well */ 2060 return; /* all is well */
914 2061
915 rt_now = ev_time (); 2062 ev_rt_now = ev_time ();
916 mn_now = get_clock (); 2063 mn_now = get_clock ();
917 now_floor = mn_now; 2064 now_floor = mn_now;
918 } 2065 }
919 2066
2067 /* no timer adjustment, as the monotonic clock doesn't jump */
2068 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2069# if EV_PERIODIC_ENABLE
2070 periodics_reschedule (EV_A);
2071# endif
2072 }
2073 else
2074#endif
2075 {
2076 ev_rt_now = ev_time ();
2077
2078 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2079 {
2080 /* adjust timers. this is easy, as the offset is the same for all of them */
2081 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2082#if EV_PERIODIC_ENABLE
920 periodics_reschedule (EV_A); 2083 periodics_reschedule (EV_A);
921 /* no timer adjustment, as the monotonic clock doesn't jump */ 2084#endif
922 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
923 } 2085 }
924 }
925 else
926#endif
927 {
928 rt_now = ev_time ();
929 2086
930 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
931 {
932 periodics_reschedule (EV_A);
933
934 /* adjust timers. this is easy, as the offset is the same for all */
935 for (i = 0; i < timercnt; ++i)
936 ((WT)timers [i])->at += rt_now - mn_now;
937 }
938
939 mn_now = rt_now; 2087 mn_now = ev_rt_now;
940 } 2088 }
941} 2089}
942
943void
944ev_ref (EV_P)
945{
946 ++activecnt;
947}
948
949void
950ev_unref (EV_P)
951{
952 --activecnt;
953}
954
955static int loop_done;
956 2090
957void 2091void
958ev_loop (EV_P_ int flags) 2092ev_loop (EV_P_ int flags)
959{ 2093{
960 double block; 2094#if EV_MINIMAL < 2
961 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2095 ++loop_depth;
2096#endif
2097
2098 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2099
2100 loop_done = EVUNLOOP_CANCEL;
2101
2102 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
962 2103
963 do 2104 do
964 { 2105 {
2106#if EV_VERIFY >= 2
2107 ev_loop_verify (EV_A);
2108#endif
2109
2110#ifndef _WIN32
2111 if (expect_false (curpid)) /* penalise the forking check even more */
2112 if (expect_false (getpid () != curpid))
2113 {
2114 curpid = getpid ();
2115 postfork = 1;
2116 }
2117#endif
2118
2119#if EV_FORK_ENABLE
2120 /* we might have forked, so queue fork handlers */
2121 if (expect_false (postfork))
2122 if (forkcnt)
2123 {
2124 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2125 EV_INVOKE_PENDING;
2126 }
2127#endif
2128
965 /* queue check watchers (and execute them) */ 2129 /* queue prepare watchers (and execute them) */
966 if (expect_false (preparecnt)) 2130 if (expect_false (preparecnt))
967 { 2131 {
968 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2132 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
969 call_pending (EV_A); 2133 EV_INVOKE_PENDING;
970 } 2134 }
2135
2136 if (expect_false (loop_done))
2137 break;
2138
2139 /* we might have forked, so reify kernel state if necessary */
2140 if (expect_false (postfork))
2141 loop_fork (EV_A);
971 2142
972 /* update fd-related kernel structures */ 2143 /* update fd-related kernel structures */
973 fd_reify (EV_A); 2144 fd_reify (EV_A);
974 2145
975 /* calculate blocking time */ 2146 /* calculate blocking time */
2147 {
2148 ev_tstamp waittime = 0.;
2149 ev_tstamp sleeptime = 0.;
976 2150
977 /* we only need this for !monotonic clockor timers, but as we basically 2151 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
978 always have timers, we just calculate it always */
979#if EV_USE_MONOTONIC
980 if (expect_true (have_monotonic))
981 time_update_monotonic (EV_A);
982 else
983#endif
984 { 2152 {
985 rt_now = ev_time (); 2153 /* remember old timestamp for io_blocktime calculation */
986 mn_now = rt_now; 2154 ev_tstamp prev_mn_now = mn_now;
987 }
988 2155
989 if (flags & EVLOOP_NONBLOCK || idlecnt) 2156 /* update time to cancel out callback processing overhead */
990 block = 0.; 2157 time_update (EV_A_ 1e100);
991 else 2158
992 {
993 block = MAX_BLOCKTIME; 2159 waittime = MAX_BLOCKTIME;
994 2160
995 if (timercnt) 2161 if (timercnt)
996 { 2162 {
997 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2163 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
998 if (block > to) block = to; 2164 if (waittime > to) waittime = to;
999 } 2165 }
1000 2166
2167#if EV_PERIODIC_ENABLE
1001 if (periodiccnt) 2168 if (periodiccnt)
1002 { 2169 {
1003 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 2170 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1004 if (block > to) block = to; 2171 if (waittime > to) waittime = to;
1005 } 2172 }
2173#endif
1006 2174
1007 if (block < 0.) block = 0.; 2175 /* don't let timeouts decrease the waittime below timeout_blocktime */
2176 if (expect_false (waittime < timeout_blocktime))
2177 waittime = timeout_blocktime;
2178
2179 /* extra check because io_blocktime is commonly 0 */
2180 if (expect_false (io_blocktime))
2181 {
2182 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2183
2184 if (sleeptime > waittime - backend_fudge)
2185 sleeptime = waittime - backend_fudge;
2186
2187 if (expect_true (sleeptime > 0.))
2188 {
2189 ev_sleep (sleeptime);
2190 waittime -= sleeptime;
2191 }
2192 }
1008 } 2193 }
1009 2194
1010 method_poll (EV_A_ block); 2195#if EV_MINIMAL < 2
2196 ++loop_count;
2197#endif
2198 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2199 backend_poll (EV_A_ waittime);
2200 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1011 2201
1012 /* update rt_now, do magic */ 2202 /* update ev_rt_now, do magic */
1013 time_update (EV_A); 2203 time_update (EV_A_ waittime + sleeptime);
2204 }
1014 2205
1015 /* queue pending timers and reschedule them */ 2206 /* queue pending timers and reschedule them */
1016 timers_reify (EV_A); /* relative timers called last */ 2207 timers_reify (EV_A); /* relative timers called last */
2208#if EV_PERIODIC_ENABLE
1017 periodics_reify (EV_A); /* absolute timers called first */ 2209 periodics_reify (EV_A); /* absolute timers called first */
2210#endif
1018 2211
2212#if EV_IDLE_ENABLE
1019 /* queue idle watchers unless io or timers are pending */ 2213 /* queue idle watchers unless other events are pending */
1020 if (!pendingcnt) 2214 idle_reify (EV_A);
1021 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2215#endif
1022 2216
1023 /* queue check watchers, to be executed first */ 2217 /* queue check watchers, to be executed first */
1024 if (checkcnt) 2218 if (expect_false (checkcnt))
1025 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2219 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1026 2220
1027 call_pending (EV_A); 2221 EV_INVOKE_PENDING;
1028 } 2222 }
1029 while (activecnt && !loop_done); 2223 while (expect_true (
2224 activecnt
2225 && !loop_done
2226 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2227 ));
1030 2228
1031 if (loop_done != 2) 2229 if (loop_done == EVUNLOOP_ONE)
1032 loop_done = 0; 2230 loop_done = EVUNLOOP_CANCEL;
2231
2232#if EV_MINIMAL < 2
2233 --loop_depth;
2234#endif
1033} 2235}
1034 2236
1035void 2237void
1036ev_unloop (EV_P_ int how) 2238ev_unloop (EV_P_ int how)
1037{ 2239{
1038 loop_done = how; 2240 loop_done = how;
1039} 2241}
1040 2242
2243void
2244ev_ref (EV_P)
2245{
2246 ++activecnt;
2247}
2248
2249void
2250ev_unref (EV_P)
2251{
2252 --activecnt;
2253}
2254
2255void
2256ev_now_update (EV_P)
2257{
2258 time_update (EV_A_ 1e100);
2259}
2260
2261void
2262ev_suspend (EV_P)
2263{
2264 ev_now_update (EV_A);
2265}
2266
2267void
2268ev_resume (EV_P)
2269{
2270 ev_tstamp mn_prev = mn_now;
2271
2272 ev_now_update (EV_A);
2273 timers_reschedule (EV_A_ mn_now - mn_prev);
2274#if EV_PERIODIC_ENABLE
2275 /* TODO: really do this? */
2276 periodics_reschedule (EV_A);
2277#endif
2278}
2279
1041/*****************************************************************************/ 2280/*****************************************************************************/
2281/* singly-linked list management, used when the expected list length is short */
1042 2282
1043inline void 2283inline_size void
1044wlist_add (WL *head, WL elem) 2284wlist_add (WL *head, WL elem)
1045{ 2285{
1046 elem->next = *head; 2286 elem->next = *head;
1047 *head = elem; 2287 *head = elem;
1048} 2288}
1049 2289
1050inline void 2290inline_size void
1051wlist_del (WL *head, WL elem) 2291wlist_del (WL *head, WL elem)
1052{ 2292{
1053 while (*head) 2293 while (*head)
1054 { 2294 {
1055 if (*head == elem) 2295 if (*head == elem)
1060 2300
1061 head = &(*head)->next; 2301 head = &(*head)->next;
1062 } 2302 }
1063} 2303}
1064 2304
2305/* internal, faster, version of ev_clear_pending */
1065inline void 2306inline_speed void
1066ev_clear_pending (EV_P_ W w) 2307clear_pending (EV_P_ W w)
1067{ 2308{
1068 if (w->pending) 2309 if (w->pending)
1069 { 2310 {
1070 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2311 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1071 w->pending = 0; 2312 w->pending = 0;
1072 } 2313 }
1073} 2314}
1074 2315
2316int
2317ev_clear_pending (EV_P_ void *w)
2318{
2319 W w_ = (W)w;
2320 int pending = w_->pending;
2321
2322 if (expect_true (pending))
2323 {
2324 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2325 p->w = (W)&pending_w;
2326 w_->pending = 0;
2327 return p->events;
2328 }
2329 else
2330 return 0;
2331}
2332
1075inline void 2333inline_size void
2334pri_adjust (EV_P_ W w)
2335{
2336 int pri = ev_priority (w);
2337 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2338 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2339 ev_set_priority (w, pri);
2340}
2341
2342inline_speed void
1076ev_start (EV_P_ W w, int active) 2343ev_start (EV_P_ W w, int active)
1077{ 2344{
1078 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2345 pri_adjust (EV_A_ w);
1079 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1080
1081 w->active = active; 2346 w->active = active;
1082 ev_ref (EV_A); 2347 ev_ref (EV_A);
1083} 2348}
1084 2349
1085inline void 2350inline_size void
1086ev_stop (EV_P_ W w) 2351ev_stop (EV_P_ W w)
1087{ 2352{
1088 ev_unref (EV_A); 2353 ev_unref (EV_A);
1089 w->active = 0; 2354 w->active = 0;
1090} 2355}
1091 2356
1092/*****************************************************************************/ 2357/*****************************************************************************/
1093 2358
1094void 2359void noinline
1095ev_io_start (EV_P_ struct ev_io *w) 2360ev_io_start (EV_P_ ev_io *w)
1096{ 2361{
1097 int fd = w->fd; 2362 int fd = w->fd;
1098 2363
1099 if (ev_is_active (w)) 2364 if (expect_false (ev_is_active (w)))
1100 return; 2365 return;
1101 2366
1102 assert (("ev_io_start called with negative fd", fd >= 0)); 2367 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2368 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2369
2370 EV_FREQUENT_CHECK;
1103 2371
1104 ev_start (EV_A_ (W)w, 1); 2372 ev_start (EV_A_ (W)w, 1);
1105 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 2373 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1106 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2374 wlist_add (&anfds[fd].head, (WL)w);
1107 2375
1108 fd_change (EV_A_ fd); 2376 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1109} 2377 w->events &= ~EV__IOFDSET;
1110 2378
1111void 2379 EV_FREQUENT_CHECK;
2380}
2381
2382void noinline
1112ev_io_stop (EV_P_ struct ev_io *w) 2383ev_io_stop (EV_P_ ev_io *w)
1113{ 2384{
1114 ev_clear_pending (EV_A_ (W)w); 2385 clear_pending (EV_A_ (W)w);
1115 if (!ev_is_active (w)) 2386 if (expect_false (!ev_is_active (w)))
1116 return; 2387 return;
1117 2388
2389 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2390
2391 EV_FREQUENT_CHECK;
2392
1118 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2393 wlist_del (&anfds[w->fd].head, (WL)w);
1119 ev_stop (EV_A_ (W)w); 2394 ev_stop (EV_A_ (W)w);
1120 2395
1121 fd_change (EV_A_ w->fd); 2396 fd_change (EV_A_ w->fd, 1);
1122}
1123 2397
1124void 2398 EV_FREQUENT_CHECK;
2399}
2400
2401void noinline
1125ev_timer_start (EV_P_ struct ev_timer *w) 2402ev_timer_start (EV_P_ ev_timer *w)
1126{ 2403{
1127 if (ev_is_active (w)) 2404 if (expect_false (ev_is_active (w)))
1128 return; 2405 return;
1129 2406
1130 ((WT)w)->at += mn_now; 2407 ev_at (w) += mn_now;
1131 2408
1132 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2409 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1133 2410
2411 EV_FREQUENT_CHECK;
2412
2413 ++timercnt;
1134 ev_start (EV_A_ (W)w, ++timercnt); 2414 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1135 array_needsize (timers, timermax, timercnt, ); 2415 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1136 timers [timercnt - 1] = w; 2416 ANHE_w (timers [ev_active (w)]) = (WT)w;
1137 upheap ((WT *)timers, timercnt - 1); 2417 ANHE_at_cache (timers [ev_active (w)]);
2418 upheap (timers, ev_active (w));
1138 2419
2420 EV_FREQUENT_CHECK;
2421
1139 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2422 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1140} 2423}
1141 2424
1142void 2425void noinline
1143ev_timer_stop (EV_P_ struct ev_timer *w) 2426ev_timer_stop (EV_P_ ev_timer *w)
1144{ 2427{
1145 ev_clear_pending (EV_A_ (W)w); 2428 clear_pending (EV_A_ (W)w);
1146 if (!ev_is_active (w)) 2429 if (expect_false (!ev_is_active (w)))
1147 return; 2430 return;
1148 2431
2432 EV_FREQUENT_CHECK;
2433
2434 {
2435 int active = ev_active (w);
2436
1149 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2437 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1150 2438
1151 if (((W)w)->active < timercnt--) 2439 --timercnt;
2440
2441 if (expect_true (active < timercnt + HEAP0))
1152 { 2442 {
1153 timers [((W)w)->active - 1] = timers [timercnt]; 2443 timers [active] = timers [timercnt + HEAP0];
1154 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2444 adjustheap (timers, timercnt, active);
1155 } 2445 }
2446 }
1156 2447
1157 ((WT)w)->at = w->repeat; 2448 EV_FREQUENT_CHECK;
2449
2450 ev_at (w) -= mn_now;
1158 2451
1159 ev_stop (EV_A_ (W)w); 2452 ev_stop (EV_A_ (W)w);
1160} 2453}
1161 2454
1162void 2455void noinline
1163ev_timer_again (EV_P_ struct ev_timer *w) 2456ev_timer_again (EV_P_ ev_timer *w)
1164{ 2457{
2458 EV_FREQUENT_CHECK;
2459
1165 if (ev_is_active (w)) 2460 if (ev_is_active (w))
1166 { 2461 {
1167 if (w->repeat) 2462 if (w->repeat)
1168 { 2463 {
1169 ((WT)w)->at = mn_now + w->repeat; 2464 ev_at (w) = mn_now + w->repeat;
1170 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2465 ANHE_at_cache (timers [ev_active (w)]);
2466 adjustheap (timers, timercnt, ev_active (w));
1171 } 2467 }
1172 else 2468 else
1173 ev_timer_stop (EV_A_ w); 2469 ev_timer_stop (EV_A_ w);
1174 } 2470 }
1175 else if (w->repeat) 2471 else if (w->repeat)
2472 {
2473 ev_at (w) = w->repeat;
1176 ev_timer_start (EV_A_ w); 2474 ev_timer_start (EV_A_ w);
1177} 2475 }
1178 2476
1179void 2477 EV_FREQUENT_CHECK;
2478}
2479
2480#if EV_PERIODIC_ENABLE
2481void noinline
1180ev_periodic_start (EV_P_ struct ev_periodic *w) 2482ev_periodic_start (EV_P_ ev_periodic *w)
1181{ 2483{
1182 if (ev_is_active (w)) 2484 if (expect_false (ev_is_active (w)))
1183 return; 2485 return;
1184 2486
2487 if (w->reschedule_cb)
2488 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2489 else if (w->interval)
2490 {
1185 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2491 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1186
1187 /* this formula differs from the one in periodic_reify because we do not always round up */ 2492 /* this formula differs from the one in periodic_reify because we do not always round up */
1188 if (w->interval)
1189 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 2493 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2494 }
2495 else
2496 ev_at (w) = w->offset;
1190 2497
2498 EV_FREQUENT_CHECK;
2499
2500 ++periodiccnt;
1191 ev_start (EV_A_ (W)w, ++periodiccnt); 2501 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1192 array_needsize (periodics, periodicmax, periodiccnt, ); 2502 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1193 periodics [periodiccnt - 1] = w; 2503 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1194 upheap ((WT *)periodics, periodiccnt - 1); 2504 ANHE_at_cache (periodics [ev_active (w)]);
2505 upheap (periodics, ev_active (w));
1195 2506
2507 EV_FREQUENT_CHECK;
2508
1196 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2509 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1197} 2510}
1198 2511
1199void 2512void noinline
1200ev_periodic_stop (EV_P_ struct ev_periodic *w) 2513ev_periodic_stop (EV_P_ ev_periodic *w)
1201{ 2514{
1202 ev_clear_pending (EV_A_ (W)w); 2515 clear_pending (EV_A_ (W)w);
1203 if (!ev_is_active (w)) 2516 if (expect_false (!ev_is_active (w)))
1204 return; 2517 return;
1205 2518
2519 EV_FREQUENT_CHECK;
2520
2521 {
2522 int active = ev_active (w);
2523
1206 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2524 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1207 2525
1208 if (((W)w)->active < periodiccnt--) 2526 --periodiccnt;
2527
2528 if (expect_true (active < periodiccnt + HEAP0))
1209 { 2529 {
1210 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2530 periodics [active] = periodics [periodiccnt + HEAP0];
1211 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2531 adjustheap (periodics, periodiccnt, active);
1212 } 2532 }
2533 }
2534
2535 EV_FREQUENT_CHECK;
1213 2536
1214 ev_stop (EV_A_ (W)w); 2537 ev_stop (EV_A_ (W)w);
1215} 2538}
1216 2539
1217void 2540void noinline
1218ev_idle_start (EV_P_ struct ev_idle *w) 2541ev_periodic_again (EV_P_ ev_periodic *w)
1219{ 2542{
1220 if (ev_is_active (w)) 2543 /* TODO: use adjustheap and recalculation */
1221 return;
1222
1223 ev_start (EV_A_ (W)w, ++idlecnt);
1224 array_needsize (idles, idlemax, idlecnt, );
1225 idles [idlecnt - 1] = w;
1226}
1227
1228void
1229ev_idle_stop (EV_P_ struct ev_idle *w)
1230{
1231 ev_clear_pending (EV_A_ (W)w);
1232 if (ev_is_active (w))
1233 return;
1234
1235 idles [((W)w)->active - 1] = idles [--idlecnt];
1236 ev_stop (EV_A_ (W)w); 2544 ev_periodic_stop (EV_A_ w);
2545 ev_periodic_start (EV_A_ w);
1237} 2546}
1238 2547#endif
1239void
1240ev_prepare_start (EV_P_ struct ev_prepare *w)
1241{
1242 if (ev_is_active (w))
1243 return;
1244
1245 ev_start (EV_A_ (W)w, ++preparecnt);
1246 array_needsize (prepares, preparemax, preparecnt, );
1247 prepares [preparecnt - 1] = w;
1248}
1249
1250void
1251ev_prepare_stop (EV_P_ struct ev_prepare *w)
1252{
1253 ev_clear_pending (EV_A_ (W)w);
1254 if (ev_is_active (w))
1255 return;
1256
1257 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1258 ev_stop (EV_A_ (W)w);
1259}
1260
1261void
1262ev_check_start (EV_P_ struct ev_check *w)
1263{
1264 if (ev_is_active (w))
1265 return;
1266
1267 ev_start (EV_A_ (W)w, ++checkcnt);
1268 array_needsize (checks, checkmax, checkcnt, );
1269 checks [checkcnt - 1] = w;
1270}
1271
1272void
1273ev_check_stop (EV_P_ struct ev_check *w)
1274{
1275 ev_clear_pending (EV_A_ (W)w);
1276 if (ev_is_active (w))
1277 return;
1278
1279 checks [((W)w)->active - 1] = checks [--checkcnt];
1280 ev_stop (EV_A_ (W)w);
1281}
1282 2548
1283#ifndef SA_RESTART 2549#ifndef SA_RESTART
1284# define SA_RESTART 0 2550# define SA_RESTART 0
1285#endif 2551#endif
1286 2552
1287void 2553void noinline
1288ev_signal_start (EV_P_ struct ev_signal *w) 2554ev_signal_start (EV_P_ ev_signal *w)
1289{ 2555{
1290#if EV_MULTIPLICITY 2556#if EV_MULTIPLICITY
1291 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2557 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1292#endif 2558#endif
1293 if (ev_is_active (w)) 2559 if (expect_false (ev_is_active (w)))
1294 return; 2560 return;
1295 2561
1296 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2562 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2563
2564 evpipe_init (EV_A);
2565
2566 EV_FREQUENT_CHECK;
2567
2568 {
2569#ifndef _WIN32
2570 sigset_t full, prev;
2571 sigfillset (&full);
2572 sigprocmask (SIG_SETMASK, &full, &prev);
2573#endif
2574
2575 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2576
2577#ifndef _WIN32
2578 sigprocmask (SIG_SETMASK, &prev, 0);
2579#endif
2580 }
1297 2581
1298 ev_start (EV_A_ (W)w, 1); 2582 ev_start (EV_A_ (W)w, 1);
1299 array_needsize (signals, signalmax, w->signum, signals_init);
1300 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2583 wlist_add (&signals [w->signum - 1].head, (WL)w);
1301 2584
1302 if (!((WL)w)->next) 2585 if (!((WL)w)->next)
1303 { 2586 {
2587#if _WIN32
2588 signal (w->signum, ev_sighandler);
2589#else
1304 struct sigaction sa; 2590 struct sigaction sa;
1305 sa.sa_handler = sighandler; 2591 sa.sa_handler = ev_sighandler;
1306 sigfillset (&sa.sa_mask); 2592 sigfillset (&sa.sa_mask);
1307 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2593 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1308 sigaction (w->signum, &sa, 0); 2594 sigaction (w->signum, &sa, 0);
2595#endif
1309 } 2596 }
1310}
1311 2597
1312void 2598 EV_FREQUENT_CHECK;
2599}
2600
2601void noinline
1313ev_signal_stop (EV_P_ struct ev_signal *w) 2602ev_signal_stop (EV_P_ ev_signal *w)
1314{ 2603{
1315 ev_clear_pending (EV_A_ (W)w); 2604 clear_pending (EV_A_ (W)w);
1316 if (!ev_is_active (w)) 2605 if (expect_false (!ev_is_active (w)))
1317 return; 2606 return;
1318 2607
2608 EV_FREQUENT_CHECK;
2609
1319 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2610 wlist_del (&signals [w->signum - 1].head, (WL)w);
1320 ev_stop (EV_A_ (W)w); 2611 ev_stop (EV_A_ (W)w);
1321 2612
1322 if (!signals [w->signum - 1].head) 2613 if (!signals [w->signum - 1].head)
1323 signal (w->signum, SIG_DFL); 2614 signal (w->signum, SIG_DFL);
1324}
1325 2615
2616 EV_FREQUENT_CHECK;
2617}
2618
1326void 2619void
1327ev_child_start (EV_P_ struct ev_child *w) 2620ev_child_start (EV_P_ ev_child *w)
1328{ 2621{
1329#if EV_MULTIPLICITY 2622#if EV_MULTIPLICITY
1330 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2623 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1331#endif 2624#endif
1332 if (ev_is_active (w)) 2625 if (expect_false (ev_is_active (w)))
1333 return; 2626 return;
1334 2627
2628 EV_FREQUENT_CHECK;
2629
1335 ev_start (EV_A_ (W)w, 1); 2630 ev_start (EV_A_ (W)w, 1);
1336 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2631 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1337}
1338 2632
2633 EV_FREQUENT_CHECK;
2634}
2635
1339void 2636void
1340ev_child_stop (EV_P_ struct ev_child *w) 2637ev_child_stop (EV_P_ ev_child *w)
1341{ 2638{
1342 ev_clear_pending (EV_A_ (W)w); 2639 clear_pending (EV_A_ (W)w);
1343 if (ev_is_active (w)) 2640 if (expect_false (!ev_is_active (w)))
1344 return; 2641 return;
1345 2642
2643 EV_FREQUENT_CHECK;
2644
1346 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2645 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1347 ev_stop (EV_A_ (W)w); 2646 ev_stop (EV_A_ (W)w);
2647
2648 EV_FREQUENT_CHECK;
1348} 2649}
2650
2651#if EV_STAT_ENABLE
2652
2653# ifdef _WIN32
2654# undef lstat
2655# define lstat(a,b) _stati64 (a,b)
2656# endif
2657
2658#define DEF_STAT_INTERVAL 5.0074891
2659#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2660#define MIN_STAT_INTERVAL 0.1074891
2661
2662static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2663
2664#if EV_USE_INOTIFY
2665# define EV_INOTIFY_BUFSIZE 8192
2666
2667static void noinline
2668infy_add (EV_P_ ev_stat *w)
2669{
2670 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2671
2672 if (w->wd < 0)
2673 {
2674 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2675 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2676
2677 /* monitor some parent directory for speedup hints */
2678 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2679 /* but an efficiency issue only */
2680 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2681 {
2682 char path [4096];
2683 strcpy (path, w->path);
2684
2685 do
2686 {
2687 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2688 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2689
2690 char *pend = strrchr (path, '/');
2691
2692 if (!pend || pend == path)
2693 break;
2694
2695 *pend = 0;
2696 w->wd = inotify_add_watch (fs_fd, path, mask);
2697 }
2698 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2699 }
2700 }
2701
2702 if (w->wd >= 0)
2703 {
2704 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2705
2706 /* now local changes will be tracked by inotify, but remote changes won't */
2707 /* unless the filesystem it known to be local, we therefore still poll */
2708 /* also do poll on <2.6.25, but with normal frequency */
2709 struct statfs sfs;
2710
2711 if (fs_2625 && !statfs (w->path, &sfs))
2712 if (sfs.f_type == 0x1373 /* devfs */
2713 || sfs.f_type == 0xEF53 /* ext2/3 */
2714 || sfs.f_type == 0x3153464a /* jfs */
2715 || sfs.f_type == 0x52654973 /* reiser3 */
2716 || sfs.f_type == 0x01021994 /* tempfs */
2717 || sfs.f_type == 0x58465342 /* xfs */)
2718 return;
2719
2720 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2721 ev_timer_again (EV_A_ &w->timer);
2722 }
2723}
2724
2725static void noinline
2726infy_del (EV_P_ ev_stat *w)
2727{
2728 int slot;
2729 int wd = w->wd;
2730
2731 if (wd < 0)
2732 return;
2733
2734 w->wd = -2;
2735 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2736 wlist_del (&fs_hash [slot].head, (WL)w);
2737
2738 /* remove this watcher, if others are watching it, they will rearm */
2739 inotify_rm_watch (fs_fd, wd);
2740}
2741
2742static void noinline
2743infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2744{
2745 if (slot < 0)
2746 /* overflow, need to check for all hash slots */
2747 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2748 infy_wd (EV_A_ slot, wd, ev);
2749 else
2750 {
2751 WL w_;
2752
2753 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2754 {
2755 ev_stat *w = (ev_stat *)w_;
2756 w_ = w_->next; /* lets us remove this watcher and all before it */
2757
2758 if (w->wd == wd || wd == -1)
2759 {
2760 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2761 {
2762 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2763 w->wd = -1;
2764 infy_add (EV_A_ w); /* re-add, no matter what */
2765 }
2766
2767 stat_timer_cb (EV_A_ &w->timer, 0);
2768 }
2769 }
2770 }
2771}
2772
2773static void
2774infy_cb (EV_P_ ev_io *w, int revents)
2775{
2776 char buf [EV_INOTIFY_BUFSIZE];
2777 struct inotify_event *ev = (struct inotify_event *)buf;
2778 int ofs;
2779 int len = read (fs_fd, buf, sizeof (buf));
2780
2781 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2782 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2783}
2784
2785inline_size void
2786check_2625 (EV_P)
2787{
2788 /* kernels < 2.6.25 are borked
2789 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2790 */
2791 struct utsname buf;
2792 int major, minor, micro;
2793
2794 if (uname (&buf))
2795 return;
2796
2797 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2798 return;
2799
2800 if (major < 2
2801 || (major == 2 && minor < 6)
2802 || (major == 2 && minor == 6 && micro < 25))
2803 return;
2804
2805 fs_2625 = 1;
2806}
2807
2808inline_size void
2809infy_init (EV_P)
2810{
2811 if (fs_fd != -2)
2812 return;
2813
2814 fs_fd = -1;
2815
2816 check_2625 (EV_A);
2817
2818 fs_fd = inotify_init ();
2819
2820 if (fs_fd >= 0)
2821 {
2822 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2823 ev_set_priority (&fs_w, EV_MAXPRI);
2824 ev_io_start (EV_A_ &fs_w);
2825 }
2826}
2827
2828inline_size void
2829infy_fork (EV_P)
2830{
2831 int slot;
2832
2833 if (fs_fd < 0)
2834 return;
2835
2836 close (fs_fd);
2837 fs_fd = inotify_init ();
2838
2839 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2840 {
2841 WL w_ = fs_hash [slot].head;
2842 fs_hash [slot].head = 0;
2843
2844 while (w_)
2845 {
2846 ev_stat *w = (ev_stat *)w_;
2847 w_ = w_->next; /* lets us add this watcher */
2848
2849 w->wd = -1;
2850
2851 if (fs_fd >= 0)
2852 infy_add (EV_A_ w); /* re-add, no matter what */
2853 else
2854 ev_timer_again (EV_A_ &w->timer);
2855 }
2856 }
2857}
2858
2859#endif
2860
2861#ifdef _WIN32
2862# define EV_LSTAT(p,b) _stati64 (p, b)
2863#else
2864# define EV_LSTAT(p,b) lstat (p, b)
2865#endif
2866
2867void
2868ev_stat_stat (EV_P_ ev_stat *w)
2869{
2870 if (lstat (w->path, &w->attr) < 0)
2871 w->attr.st_nlink = 0;
2872 else if (!w->attr.st_nlink)
2873 w->attr.st_nlink = 1;
2874}
2875
2876static void noinline
2877stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2878{
2879 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2880
2881 /* we copy this here each the time so that */
2882 /* prev has the old value when the callback gets invoked */
2883 w->prev = w->attr;
2884 ev_stat_stat (EV_A_ w);
2885
2886 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2887 if (
2888 w->prev.st_dev != w->attr.st_dev
2889 || w->prev.st_ino != w->attr.st_ino
2890 || w->prev.st_mode != w->attr.st_mode
2891 || w->prev.st_nlink != w->attr.st_nlink
2892 || w->prev.st_uid != w->attr.st_uid
2893 || w->prev.st_gid != w->attr.st_gid
2894 || w->prev.st_rdev != w->attr.st_rdev
2895 || w->prev.st_size != w->attr.st_size
2896 || w->prev.st_atime != w->attr.st_atime
2897 || w->prev.st_mtime != w->attr.st_mtime
2898 || w->prev.st_ctime != w->attr.st_ctime
2899 ) {
2900 #if EV_USE_INOTIFY
2901 if (fs_fd >= 0)
2902 {
2903 infy_del (EV_A_ w);
2904 infy_add (EV_A_ w);
2905 ev_stat_stat (EV_A_ w); /* avoid race... */
2906 }
2907 #endif
2908
2909 ev_feed_event (EV_A_ w, EV_STAT);
2910 }
2911}
2912
2913void
2914ev_stat_start (EV_P_ ev_stat *w)
2915{
2916 if (expect_false (ev_is_active (w)))
2917 return;
2918
2919 ev_stat_stat (EV_A_ w);
2920
2921 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2922 w->interval = MIN_STAT_INTERVAL;
2923
2924 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2925 ev_set_priority (&w->timer, ev_priority (w));
2926
2927#if EV_USE_INOTIFY
2928 infy_init (EV_A);
2929
2930 if (fs_fd >= 0)
2931 infy_add (EV_A_ w);
2932 else
2933#endif
2934 ev_timer_again (EV_A_ &w->timer);
2935
2936 ev_start (EV_A_ (W)w, 1);
2937
2938 EV_FREQUENT_CHECK;
2939}
2940
2941void
2942ev_stat_stop (EV_P_ ev_stat *w)
2943{
2944 clear_pending (EV_A_ (W)w);
2945 if (expect_false (!ev_is_active (w)))
2946 return;
2947
2948 EV_FREQUENT_CHECK;
2949
2950#if EV_USE_INOTIFY
2951 infy_del (EV_A_ w);
2952#endif
2953 ev_timer_stop (EV_A_ &w->timer);
2954
2955 ev_stop (EV_A_ (W)w);
2956
2957 EV_FREQUENT_CHECK;
2958}
2959#endif
2960
2961#if EV_IDLE_ENABLE
2962void
2963ev_idle_start (EV_P_ ev_idle *w)
2964{
2965 if (expect_false (ev_is_active (w)))
2966 return;
2967
2968 pri_adjust (EV_A_ (W)w);
2969
2970 EV_FREQUENT_CHECK;
2971
2972 {
2973 int active = ++idlecnt [ABSPRI (w)];
2974
2975 ++idleall;
2976 ev_start (EV_A_ (W)w, active);
2977
2978 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2979 idles [ABSPRI (w)][active - 1] = w;
2980 }
2981
2982 EV_FREQUENT_CHECK;
2983}
2984
2985void
2986ev_idle_stop (EV_P_ ev_idle *w)
2987{
2988 clear_pending (EV_A_ (W)w);
2989 if (expect_false (!ev_is_active (w)))
2990 return;
2991
2992 EV_FREQUENT_CHECK;
2993
2994 {
2995 int active = ev_active (w);
2996
2997 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2998 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2999
3000 ev_stop (EV_A_ (W)w);
3001 --idleall;
3002 }
3003
3004 EV_FREQUENT_CHECK;
3005}
3006#endif
3007
3008void
3009ev_prepare_start (EV_P_ ev_prepare *w)
3010{
3011 if (expect_false (ev_is_active (w)))
3012 return;
3013
3014 EV_FREQUENT_CHECK;
3015
3016 ev_start (EV_A_ (W)w, ++preparecnt);
3017 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3018 prepares [preparecnt - 1] = w;
3019
3020 EV_FREQUENT_CHECK;
3021}
3022
3023void
3024ev_prepare_stop (EV_P_ ev_prepare *w)
3025{
3026 clear_pending (EV_A_ (W)w);
3027 if (expect_false (!ev_is_active (w)))
3028 return;
3029
3030 EV_FREQUENT_CHECK;
3031
3032 {
3033 int active = ev_active (w);
3034
3035 prepares [active - 1] = prepares [--preparecnt];
3036 ev_active (prepares [active - 1]) = active;
3037 }
3038
3039 ev_stop (EV_A_ (W)w);
3040
3041 EV_FREQUENT_CHECK;
3042}
3043
3044void
3045ev_check_start (EV_P_ ev_check *w)
3046{
3047 if (expect_false (ev_is_active (w)))
3048 return;
3049
3050 EV_FREQUENT_CHECK;
3051
3052 ev_start (EV_A_ (W)w, ++checkcnt);
3053 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3054 checks [checkcnt - 1] = w;
3055
3056 EV_FREQUENT_CHECK;
3057}
3058
3059void
3060ev_check_stop (EV_P_ ev_check *w)
3061{
3062 clear_pending (EV_A_ (W)w);
3063 if (expect_false (!ev_is_active (w)))
3064 return;
3065
3066 EV_FREQUENT_CHECK;
3067
3068 {
3069 int active = ev_active (w);
3070
3071 checks [active - 1] = checks [--checkcnt];
3072 ev_active (checks [active - 1]) = active;
3073 }
3074
3075 ev_stop (EV_A_ (W)w);
3076
3077 EV_FREQUENT_CHECK;
3078}
3079
3080#if EV_EMBED_ENABLE
3081void noinline
3082ev_embed_sweep (EV_P_ ev_embed *w)
3083{
3084 ev_loop (w->other, EVLOOP_NONBLOCK);
3085}
3086
3087static void
3088embed_io_cb (EV_P_ ev_io *io, int revents)
3089{
3090 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3091
3092 if (ev_cb (w))
3093 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3094 else
3095 ev_loop (w->other, EVLOOP_NONBLOCK);
3096}
3097
3098static void
3099embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3100{
3101 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3102
3103 {
3104 struct ev_loop *loop = w->other;
3105
3106 while (fdchangecnt)
3107 {
3108 fd_reify (EV_A);
3109 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3110 }
3111 }
3112}
3113
3114static void
3115embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3116{
3117 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3118
3119 ev_embed_stop (EV_A_ w);
3120
3121 {
3122 struct ev_loop *loop = w->other;
3123
3124 ev_loop_fork (EV_A);
3125 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3126 }
3127
3128 ev_embed_start (EV_A_ w);
3129}
3130
3131#if 0
3132static void
3133embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3134{
3135 ev_idle_stop (EV_A_ idle);
3136}
3137#endif
3138
3139void
3140ev_embed_start (EV_P_ ev_embed *w)
3141{
3142 if (expect_false (ev_is_active (w)))
3143 return;
3144
3145 {
3146 struct ev_loop *loop = w->other;
3147 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3148 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3149 }
3150
3151 EV_FREQUENT_CHECK;
3152
3153 ev_set_priority (&w->io, ev_priority (w));
3154 ev_io_start (EV_A_ &w->io);
3155
3156 ev_prepare_init (&w->prepare, embed_prepare_cb);
3157 ev_set_priority (&w->prepare, EV_MINPRI);
3158 ev_prepare_start (EV_A_ &w->prepare);
3159
3160 ev_fork_init (&w->fork, embed_fork_cb);
3161 ev_fork_start (EV_A_ &w->fork);
3162
3163 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3164
3165 ev_start (EV_A_ (W)w, 1);
3166
3167 EV_FREQUENT_CHECK;
3168}
3169
3170void
3171ev_embed_stop (EV_P_ ev_embed *w)
3172{
3173 clear_pending (EV_A_ (W)w);
3174 if (expect_false (!ev_is_active (w)))
3175 return;
3176
3177 EV_FREQUENT_CHECK;
3178
3179 ev_io_stop (EV_A_ &w->io);
3180 ev_prepare_stop (EV_A_ &w->prepare);
3181 ev_fork_stop (EV_A_ &w->fork);
3182
3183 EV_FREQUENT_CHECK;
3184}
3185#endif
3186
3187#if EV_FORK_ENABLE
3188void
3189ev_fork_start (EV_P_ ev_fork *w)
3190{
3191 if (expect_false (ev_is_active (w)))
3192 return;
3193
3194 EV_FREQUENT_CHECK;
3195
3196 ev_start (EV_A_ (W)w, ++forkcnt);
3197 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3198 forks [forkcnt - 1] = w;
3199
3200 EV_FREQUENT_CHECK;
3201}
3202
3203void
3204ev_fork_stop (EV_P_ ev_fork *w)
3205{
3206 clear_pending (EV_A_ (W)w);
3207 if (expect_false (!ev_is_active (w)))
3208 return;
3209
3210 EV_FREQUENT_CHECK;
3211
3212 {
3213 int active = ev_active (w);
3214
3215 forks [active - 1] = forks [--forkcnt];
3216 ev_active (forks [active - 1]) = active;
3217 }
3218
3219 ev_stop (EV_A_ (W)w);
3220
3221 EV_FREQUENT_CHECK;
3222}
3223#endif
3224
3225#if EV_ASYNC_ENABLE
3226void
3227ev_async_start (EV_P_ ev_async *w)
3228{
3229 if (expect_false (ev_is_active (w)))
3230 return;
3231
3232 evpipe_init (EV_A);
3233
3234 EV_FREQUENT_CHECK;
3235
3236 ev_start (EV_A_ (W)w, ++asynccnt);
3237 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3238 asyncs [asynccnt - 1] = w;
3239
3240 EV_FREQUENT_CHECK;
3241}
3242
3243void
3244ev_async_stop (EV_P_ ev_async *w)
3245{
3246 clear_pending (EV_A_ (W)w);
3247 if (expect_false (!ev_is_active (w)))
3248 return;
3249
3250 EV_FREQUENT_CHECK;
3251
3252 {
3253 int active = ev_active (w);
3254
3255 asyncs [active - 1] = asyncs [--asynccnt];
3256 ev_active (asyncs [active - 1]) = active;
3257 }
3258
3259 ev_stop (EV_A_ (W)w);
3260
3261 EV_FREQUENT_CHECK;
3262}
3263
3264void
3265ev_async_send (EV_P_ ev_async *w)
3266{
3267 w->sent = 1;
3268 evpipe_write (EV_A_ &gotasync);
3269}
3270#endif
1349 3271
1350/*****************************************************************************/ 3272/*****************************************************************************/
1351 3273
1352struct ev_once 3274struct ev_once
1353{ 3275{
1354 struct ev_io io; 3276 ev_io io;
1355 struct ev_timer to; 3277 ev_timer to;
1356 void (*cb)(int revents, void *arg); 3278 void (*cb)(int revents, void *arg);
1357 void *arg; 3279 void *arg;
1358}; 3280};
1359 3281
1360static void 3282static void
1361once_cb (EV_P_ struct ev_once *once, int revents) 3283once_cb (EV_P_ struct ev_once *once, int revents)
1362{ 3284{
1363 void (*cb)(int revents, void *arg) = once->cb; 3285 void (*cb)(int revents, void *arg) = once->cb;
1364 void *arg = once->arg; 3286 void *arg = once->arg;
1365 3287
1366 ev_io_stop (EV_A_ &once->io); 3288 ev_io_stop (EV_A_ &once->io);
1367 ev_timer_stop (EV_A_ &once->to); 3289 ev_timer_stop (EV_A_ &once->to);
1368 free (once); 3290 ev_free (once);
1369 3291
1370 cb (revents, arg); 3292 cb (revents, arg);
1371} 3293}
1372 3294
1373static void 3295static void
1374once_cb_io (EV_P_ struct ev_io *w, int revents) 3296once_cb_io (EV_P_ ev_io *w, int revents)
1375{ 3297{
1376 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3298 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3299
3300 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1377} 3301}
1378 3302
1379static void 3303static void
1380once_cb_to (EV_P_ struct ev_timer *w, int revents) 3304once_cb_to (EV_P_ ev_timer *w, int revents)
1381{ 3305{
1382 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3306 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3307
3308 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1383} 3309}
1384 3310
1385void 3311void
1386ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3312ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1387{ 3313{
1388 struct ev_once *once = malloc (sizeof (struct ev_once)); 3314 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1389 3315
1390 if (!once) 3316 if (expect_false (!once))
3317 {
1391 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3318 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1392 else 3319 return;
1393 { 3320 }
3321
1394 once->cb = cb; 3322 once->cb = cb;
1395 once->arg = arg; 3323 once->arg = arg;
1396 3324
1397 ev_watcher_init (&once->io, once_cb_io); 3325 ev_init (&once->io, once_cb_io);
1398 if (fd >= 0) 3326 if (fd >= 0)
3327 {
3328 ev_io_set (&once->io, fd, events);
3329 ev_io_start (EV_A_ &once->io);
3330 }
3331
3332 ev_init (&once->to, once_cb_to);
3333 if (timeout >= 0.)
3334 {
3335 ev_timer_set (&once->to, timeout, 0.);
3336 ev_timer_start (EV_A_ &once->to);
3337 }
3338}
3339
3340/*****************************************************************************/
3341
3342#if EV_WALK_ENABLE
3343void
3344ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3345{
3346 int i, j;
3347 ev_watcher_list *wl, *wn;
3348
3349 if (types & (EV_IO | EV_EMBED))
3350 for (i = 0; i < anfdmax; ++i)
3351 for (wl = anfds [i].head; wl; )
1399 { 3352 {
1400 ev_io_set (&once->io, fd, events); 3353 wn = wl->next;
1401 ev_io_start (EV_A_ &once->io); 3354
3355#if EV_EMBED_ENABLE
3356 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3357 {
3358 if (types & EV_EMBED)
3359 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3360 }
3361 else
3362#endif
3363#if EV_USE_INOTIFY
3364 if (ev_cb ((ev_io *)wl) == infy_cb)
3365 ;
3366 else
3367#endif
3368 if ((ev_io *)wl != &pipe_w)
3369 if (types & EV_IO)
3370 cb (EV_A_ EV_IO, wl);
3371
3372 wl = wn;
1402 } 3373 }
1403 3374
1404 ev_watcher_init (&once->to, once_cb_to); 3375 if (types & (EV_TIMER | EV_STAT))
1405 if (timeout >= 0.) 3376 for (i = timercnt + HEAP0; i-- > HEAP0; )
3377#if EV_STAT_ENABLE
3378 /*TODO: timer is not always active*/
3379 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1406 { 3380 {
1407 ev_timer_set (&once->to, timeout, 0.); 3381 if (types & EV_STAT)
1408 ev_timer_start (EV_A_ &once->to); 3382 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1409 } 3383 }
1410 } 3384 else
1411} 3385#endif
3386 if (types & EV_TIMER)
3387 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1412 3388
3389#if EV_PERIODIC_ENABLE
3390 if (types & EV_PERIODIC)
3391 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3392 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3393#endif
3394
3395#if EV_IDLE_ENABLE
3396 if (types & EV_IDLE)
3397 for (j = NUMPRI; i--; )
3398 for (i = idlecnt [j]; i--; )
3399 cb (EV_A_ EV_IDLE, idles [j][i]);
3400#endif
3401
3402#if EV_FORK_ENABLE
3403 if (types & EV_FORK)
3404 for (i = forkcnt; i--; )
3405 if (ev_cb (forks [i]) != embed_fork_cb)
3406 cb (EV_A_ EV_FORK, forks [i]);
3407#endif
3408
3409#if EV_ASYNC_ENABLE
3410 if (types & EV_ASYNC)
3411 for (i = asynccnt; i--; )
3412 cb (EV_A_ EV_ASYNC, asyncs [i]);
3413#endif
3414
3415 if (types & EV_PREPARE)
3416 for (i = preparecnt; i--; )
3417#if EV_EMBED_ENABLE
3418 if (ev_cb (prepares [i]) != embed_prepare_cb)
3419#endif
3420 cb (EV_A_ EV_PREPARE, prepares [i]);
3421
3422 if (types & EV_CHECK)
3423 for (i = checkcnt; i--; )
3424 cb (EV_A_ EV_CHECK, checks [i]);
3425
3426 if (types & EV_SIGNAL)
3427 for (i = 0; i < signalmax; ++i)
3428 for (wl = signals [i].head; wl; )
3429 {
3430 wn = wl->next;
3431 cb (EV_A_ EV_SIGNAL, wl);
3432 wl = wn;
3433 }
3434
3435 if (types & EV_CHILD)
3436 for (i = EV_PID_HASHSIZE; i--; )
3437 for (wl = childs [i]; wl; )
3438 {
3439 wn = wl->next;
3440 cb (EV_A_ EV_CHILD, wl);
3441 wl = wn;
3442 }
3443/* EV_STAT 0x00001000 /* stat data changed */
3444/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3445}
3446#endif
3447
3448#if EV_MULTIPLICITY
3449 #include "ev_wrap.h"
3450#endif
3451
3452#ifdef __cplusplus
3453}
3454#endif
3455

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines