ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.230 by root, Fri May 2 08:13:16 2008 UTC vs.
Revision 1.299 by root, Tue Jul 14 00:09:59 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
126# define EV_USE_EVENTFD 1 140# define EV_USE_EVENTFD 1
127# else 141# else
128# define EV_USE_EVENTFD 0 142# define EV_USE_EVENTFD 0
129# endif 143# endif
130# endif 144# endif
131 145
132#endif 146#endif
133 147
134#include <math.h> 148#include <math.h>
135#include <stdlib.h> 149#include <stdlib.h>
136#include <fcntl.h> 150#include <fcntl.h>
154#ifndef _WIN32 168#ifndef _WIN32
155# include <sys/time.h> 169# include <sys/time.h>
156# include <sys/wait.h> 170# include <sys/wait.h>
157# include <unistd.h> 171# include <unistd.h>
158#else 172#else
173# include <io.h>
159# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 175# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
163# endif 178# endif
164#endif 179#endif
165 180
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
167 182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
190
168#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
169# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
170#endif 197#endif
171 198
172#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 201#endif
175 202
176#ifndef EV_USE_NANOSLEEP 203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
177# define EV_USE_NANOSLEEP 0 207# define EV_USE_NANOSLEEP 0
208# endif
178#endif 209#endif
179 210
180#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
182#endif 213#endif
235# else 266# else
236# define EV_USE_EVENTFD 0 267# define EV_USE_EVENTFD 0
237# endif 268# endif
238#endif 269#endif
239 270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 304
242#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
259# include <sys/select.h> 322# include <sys/select.h>
260# endif 323# endif
261#endif 324#endif
262 325
263#if EV_USE_INOTIFY 326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
264# include <sys/inotify.h> 329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
265#endif 335#endif
266 336
267#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 338# include <winsock.h>
269#endif 339#endif
279} 349}
280# endif 350# endif
281#endif 351#endif
282 352
283/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
284 360
285/* 361/*
286 * This is used to avoid floating point rounding problems. 362 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 363 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 364 * to ensure progress, time-wise, even when rounding
315# define inline_speed static noinline 391# define inline_speed static noinline
316#else 392#else
317# define inline_speed static inline 393# define inline_speed static inline
318#endif 394#endif
319 395
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
322 403
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 404#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 405#define EMPTY2(a,b) /* used to suppress some warnings */
325 406
326typedef ev_watcher *W; 407typedef ev_watcher *W;
328typedef ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
329 410
330#define ev_active(w) ((W)(w))->active 411#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 412#define ev_at(w) ((WT)(w))->at
332 413
333#if EV_USE_MONOTONIC 414#if EV_USE_REALTIME
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */ 416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
419
420#if EV_USE_MONOTONIC
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif 422#endif
338 423
339#ifdef _WIN32 424#ifdef _WIN32
340# include "ev_win32.c" 425# include "ev_win32.c"
349{ 434{
350 syserr_cb = cb; 435 syserr_cb = cb;
351} 436}
352 437
353static void noinline 438static void noinline
354syserr (const char *msg) 439ev_syserr (const char *msg)
355{ 440{
356 if (!msg) 441 if (!msg)
357 msg = "(libev) system error"; 442 msg = "(libev) system error";
358 443
359 if (syserr_cb) 444 if (syserr_cb)
405#define ev_malloc(size) ev_realloc (0, (size)) 490#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 491#define ev_free(ptr) ev_realloc ((ptr), 0)
407 492
408/*****************************************************************************/ 493/*****************************************************************************/
409 494
495/* set in reify when reification needed */
496#define EV_ANFD_REIFY 1
497
498/* file descriptor info structure */
410typedef struct 499typedef struct
411{ 500{
412 WL head; 501 WL head;
413 unsigned char events; 502 unsigned char events; /* the events watched for */
503 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
504 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
414 unsigned char reify; 505 unsigned char unused;
506#if EV_USE_EPOLL
507 unsigned int egen; /* generation counter to counter epoll bugs */
508#endif
415#if EV_SELECT_IS_WINSOCKET 509#if EV_SELECT_IS_WINSOCKET
416 SOCKET handle; 510 SOCKET handle;
417#endif 511#endif
418} ANFD; 512} ANFD;
419 513
514/* stores the pending event set for a given watcher */
420typedef struct 515typedef struct
421{ 516{
422 W w; 517 W w;
423 int events; 518 int events; /* the pending event set for the given watcher */
424} ANPENDING; 519} ANPENDING;
425 520
426#if EV_USE_INOTIFY 521#if EV_USE_INOTIFY
522/* hash table entry per inotify-id */
427typedef struct 523typedef struct
428{ 524{
429 WL head; 525 WL head;
430} ANFS; 526} ANFS;
527#endif
528
529/* Heap Entry */
530#if EV_HEAP_CACHE_AT
531 /* a heap element */
532 typedef struct {
533 ev_tstamp at;
534 WT w;
535 } ANHE;
536
537 #define ANHE_w(he) (he).w /* access watcher, read-write */
538 #define ANHE_at(he) (he).at /* access cached at, read-only */
539 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
540#else
541 /* a heap element */
542 typedef WT ANHE;
543
544 #define ANHE_w(he) (he)
545 #define ANHE_at(he) (he)->at
546 #define ANHE_at_cache(he)
431#endif 547#endif
432 548
433#if EV_MULTIPLICITY 549#if EV_MULTIPLICITY
434 550
435 struct ev_loop 551 struct ev_loop
454 570
455 static int ev_default_loop_ptr; 571 static int ev_default_loop_ptr;
456 572
457#endif 573#endif
458 574
575#if EV_MINIMAL < 2
576# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
577# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
578# define EV_INVOKE_PENDING invoke_cb (EV_A)
579#else
580# define EV_RELEASE_CB (void)0
581# define EV_ACQUIRE_CB (void)0
582# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
583#endif
584
585#define EVUNLOOP_RECURSE 0x80
586
459/*****************************************************************************/ 587/*****************************************************************************/
460 588
589#ifndef EV_HAVE_EV_TIME
461ev_tstamp 590ev_tstamp
462ev_time (void) 591ev_time (void)
463{ 592{
464#if EV_USE_REALTIME 593#if EV_USE_REALTIME
594 if (expect_true (have_realtime))
595 {
465 struct timespec ts; 596 struct timespec ts;
466 clock_gettime (CLOCK_REALTIME, &ts); 597 clock_gettime (CLOCK_REALTIME, &ts);
467 return ts.tv_sec + ts.tv_nsec * 1e-9; 598 return ts.tv_sec + ts.tv_nsec * 1e-9;
468#else 599 }
600#endif
601
469 struct timeval tv; 602 struct timeval tv;
470 gettimeofday (&tv, 0); 603 gettimeofday (&tv, 0);
471 return tv.tv_sec + tv.tv_usec * 1e-6; 604 return tv.tv_sec + tv.tv_usec * 1e-6;
472#endif
473} 605}
606#endif
474 607
475ev_tstamp inline_size 608inline_size ev_tstamp
476get_clock (void) 609get_clock (void)
477{ 610{
478#if EV_USE_MONOTONIC 611#if EV_USE_MONOTONIC
479 if (expect_true (have_monotonic)) 612 if (expect_true (have_monotonic))
480 { 613 {
513 struct timeval tv; 646 struct timeval tv;
514 647
515 tv.tv_sec = (time_t)delay; 648 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 649 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517 650
651 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
652 /* somehting not guaranteed by newer posix versions, but guaranteed */
653 /* by older ones */
518 select (0, 0, 0, 0, &tv); 654 select (0, 0, 0, 0, &tv);
519#endif 655#endif
520 } 656 }
521} 657}
522 658
523/*****************************************************************************/ 659/*****************************************************************************/
524 660
525int inline_size 661#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
662
663/* find a suitable new size for the given array, */
664/* hopefully by rounding to a ncie-to-malloc size */
665inline_size int
526array_nextsize (int elem, int cur, int cnt) 666array_nextsize (int elem, int cur, int cnt)
527{ 667{
528 int ncur = cur + 1; 668 int ncur = cur + 1;
529 669
530 do 670 do
531 ncur <<= 1; 671 ncur <<= 1;
532 while (cnt > ncur); 672 while (cnt > ncur);
533 673
534 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 674 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
535 if (elem * ncur > 4096) 675 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
536 { 676 {
537 ncur *= elem; 677 ncur *= elem;
538 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 678 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
539 ncur = ncur - sizeof (void *) * 4; 679 ncur = ncur - sizeof (void *) * 4;
540 ncur /= elem; 680 ncur /= elem;
541 } 681 }
542 682
543 return ncur; 683 return ncur;
547array_realloc (int elem, void *base, int *cur, int cnt) 687array_realloc (int elem, void *base, int *cur, int cnt)
548{ 688{
549 *cur = array_nextsize (elem, *cur, cnt); 689 *cur = array_nextsize (elem, *cur, cnt);
550 return ev_realloc (base, elem * *cur); 690 return ev_realloc (base, elem * *cur);
551} 691}
692
693#define array_init_zero(base,count) \
694 memset ((void *)(base), 0, sizeof (*(base)) * (count))
552 695
553#define array_needsize(type,base,cur,cnt,init) \ 696#define array_needsize(type,base,cur,cnt,init) \
554 if (expect_false ((cnt) > (cur))) \ 697 if (expect_false ((cnt) > (cur))) \
555 { \ 698 { \
556 int ocur_ = (cur); \ 699 int ocur_ = (cur); \
568 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 711 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
569 } 712 }
570#endif 713#endif
571 714
572#define array_free(stem, idx) \ 715#define array_free(stem, idx) \
573 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 716 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
574 717
575/*****************************************************************************/ 718/*****************************************************************************/
719
720/* dummy callback for pending events */
721static void noinline
722pendingcb (EV_P_ ev_prepare *w, int revents)
723{
724}
576 725
577void noinline 726void noinline
578ev_feed_event (EV_P_ void *w, int revents) 727ev_feed_event (EV_P_ void *w, int revents)
579{ 728{
580 W w_ = (W)w; 729 W w_ = (W)w;
589 pendings [pri][w_->pending - 1].w = w_; 738 pendings [pri][w_->pending - 1].w = w_;
590 pendings [pri][w_->pending - 1].events = revents; 739 pendings [pri][w_->pending - 1].events = revents;
591 } 740 }
592} 741}
593 742
594void inline_speed 743inline_speed void
744feed_reverse (EV_P_ W w)
745{
746 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
747 rfeeds [rfeedcnt++] = w;
748}
749
750inline_size void
751feed_reverse_done (EV_P_ int revents)
752{
753 do
754 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
755 while (rfeedcnt);
756}
757
758inline_speed void
595queue_events (EV_P_ W *events, int eventcnt, int type) 759queue_events (EV_P_ W *events, int eventcnt, int type)
596{ 760{
597 int i; 761 int i;
598 762
599 for (i = 0; i < eventcnt; ++i) 763 for (i = 0; i < eventcnt; ++i)
600 ev_feed_event (EV_A_ events [i], type); 764 ev_feed_event (EV_A_ events [i], type);
601} 765}
602 766
603/*****************************************************************************/ 767/*****************************************************************************/
604 768
605void inline_size 769inline_speed void
606anfds_init (ANFD *base, int count)
607{
608 while (count--)
609 {
610 base->head = 0;
611 base->events = EV_NONE;
612 base->reify = 0;
613
614 ++base;
615 }
616}
617
618void inline_speed
619fd_event (EV_P_ int fd, int revents) 770fd_event_nc (EV_P_ int fd, int revents)
620{ 771{
621 ANFD *anfd = anfds + fd; 772 ANFD *anfd = anfds + fd;
622 ev_io *w; 773 ev_io *w;
623 774
624 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 775 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
628 if (ev) 779 if (ev)
629 ev_feed_event (EV_A_ (W)w, ev); 780 ev_feed_event (EV_A_ (W)w, ev);
630 } 781 }
631} 782}
632 783
784/* do not submit kernel events for fds that have reify set */
785/* because that means they changed while we were polling for new events */
786inline_speed void
787fd_event (EV_P_ int fd, int revents)
788{
789 ANFD *anfd = anfds + fd;
790
791 if (expect_true (!anfd->reify))
792 fd_event_nc (EV_A_ fd, revents);
793}
794
633void 795void
634ev_feed_fd_event (EV_P_ int fd, int revents) 796ev_feed_fd_event (EV_P_ int fd, int revents)
635{ 797{
636 if (fd >= 0 && fd < anfdmax) 798 if (fd >= 0 && fd < anfdmax)
637 fd_event (EV_A_ fd, revents); 799 fd_event_nc (EV_A_ fd, revents);
638} 800}
639 801
640void inline_size 802/* make sure the external fd watch events are in-sync */
803/* with the kernel/libev internal state */
804inline_size void
641fd_reify (EV_P) 805fd_reify (EV_P)
642{ 806{
643 int i; 807 int i;
644 808
645 for (i = 0; i < fdchangecnt; ++i) 809 for (i = 0; i < fdchangecnt; ++i)
654 events |= (unsigned char)w->events; 818 events |= (unsigned char)w->events;
655 819
656#if EV_SELECT_IS_WINSOCKET 820#if EV_SELECT_IS_WINSOCKET
657 if (events) 821 if (events)
658 { 822 {
659 unsigned long argp; 823 unsigned long arg;
660 #ifdef EV_FD_TO_WIN32_HANDLE 824 #ifdef EV_FD_TO_WIN32_HANDLE
661 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 825 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
662 #else 826 #else
663 anfd->handle = _get_osfhandle (fd); 827 anfd->handle = _get_osfhandle (fd);
664 #endif 828 #endif
665 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 829 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
666 } 830 }
667#endif 831#endif
668 832
669 { 833 {
670 unsigned char o_events = anfd->events; 834 unsigned char o_events = anfd->events;
671 unsigned char o_reify = anfd->reify; 835 unsigned char o_reify = anfd->reify;
672 836
673 anfd->reify = 0; 837 anfd->reify = 0;
674 anfd->events = events; 838 anfd->events = events;
675 839
676 if (o_events != events || o_reify & EV_IOFDSET) 840 if (o_events != events || o_reify & EV__IOFDSET)
677 backend_modify (EV_A_ fd, o_events, events); 841 backend_modify (EV_A_ fd, o_events, events);
678 } 842 }
679 } 843 }
680 844
681 fdchangecnt = 0; 845 fdchangecnt = 0;
682} 846}
683 847
684void inline_size 848/* something about the given fd changed */
849inline_size void
685fd_change (EV_P_ int fd, int flags) 850fd_change (EV_P_ int fd, int flags)
686{ 851{
687 unsigned char reify = anfds [fd].reify; 852 unsigned char reify = anfds [fd].reify;
688 anfds [fd].reify |= flags; 853 anfds [fd].reify |= flags;
689 854
693 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 858 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
694 fdchanges [fdchangecnt - 1] = fd; 859 fdchanges [fdchangecnt - 1] = fd;
695 } 860 }
696} 861}
697 862
698void inline_speed 863/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
864inline_speed void
699fd_kill (EV_P_ int fd) 865fd_kill (EV_P_ int fd)
700{ 866{
701 ev_io *w; 867 ev_io *w;
702 868
703 while ((w = (ev_io *)anfds [fd].head)) 869 while ((w = (ev_io *)anfds [fd].head))
705 ev_io_stop (EV_A_ w); 871 ev_io_stop (EV_A_ w);
706 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 872 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
707 } 873 }
708} 874}
709 875
710int inline_size 876/* check whether the given fd is atcually valid, for error recovery */
877inline_size int
711fd_valid (int fd) 878fd_valid (int fd)
712{ 879{
713#ifdef _WIN32 880#ifdef _WIN32
714 return _get_osfhandle (fd) != -1; 881 return _get_osfhandle (fd) != -1;
715#else 882#else
723{ 890{
724 int fd; 891 int fd;
725 892
726 for (fd = 0; fd < anfdmax; ++fd) 893 for (fd = 0; fd < anfdmax; ++fd)
727 if (anfds [fd].events) 894 if (anfds [fd].events)
728 if (!fd_valid (fd) == -1 && errno == EBADF) 895 if (!fd_valid (fd) && errno == EBADF)
729 fd_kill (EV_A_ fd); 896 fd_kill (EV_A_ fd);
730} 897}
731 898
732/* called on ENOMEM in select/poll to kill some fds and retry */ 899/* called on ENOMEM in select/poll to kill some fds and retry */
733static void noinline 900static void noinline
751 918
752 for (fd = 0; fd < anfdmax; ++fd) 919 for (fd = 0; fd < anfdmax; ++fd)
753 if (anfds [fd].events) 920 if (anfds [fd].events)
754 { 921 {
755 anfds [fd].events = 0; 922 anfds [fd].events = 0;
923 anfds [fd].emask = 0;
756 fd_change (EV_A_ fd, EV_IOFDSET | 1); 924 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
757 } 925 }
758} 926}
759 927
760/*****************************************************************************/ 928/*****************************************************************************/
761 929
930/*
931 * the heap functions want a real array index. array index 0 uis guaranteed to not
932 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
933 * the branching factor of the d-tree.
934 */
935
936/*
937 * at the moment we allow libev the luxury of two heaps,
938 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
939 * which is more cache-efficient.
940 * the difference is about 5% with 50000+ watchers.
941 */
942#if EV_USE_4HEAP
943
944#define DHEAP 4
945#define HEAP0 (DHEAP - 1) /* index of first element in heap */
946#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
947#define UPHEAP_DONE(p,k) ((p) == (k))
948
949/* away from the root */
950inline_speed void
951downheap (ANHE *heap, int N, int k)
952{
953 ANHE he = heap [k];
954 ANHE *E = heap + N + HEAP0;
955
956 for (;;)
957 {
958 ev_tstamp minat;
959 ANHE *minpos;
960 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
961
962 /* find minimum child */
963 if (expect_true (pos + DHEAP - 1 < E))
964 {
965 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
966 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
967 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
968 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
969 }
970 else if (pos < E)
971 {
972 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
973 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
974 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
975 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
976 }
977 else
978 break;
979
980 if (ANHE_at (he) <= minat)
981 break;
982
983 heap [k] = *minpos;
984 ev_active (ANHE_w (*minpos)) = k;
985
986 k = minpos - heap;
987 }
988
989 heap [k] = he;
990 ev_active (ANHE_w (he)) = k;
991}
992
993#else /* 4HEAP */
994
995#define HEAP0 1
996#define HPARENT(k) ((k) >> 1)
997#define UPHEAP_DONE(p,k) (!(p))
998
999/* away from the root */
1000inline_speed void
1001downheap (ANHE *heap, int N, int k)
1002{
1003 ANHE he = heap [k];
1004
1005 for (;;)
1006 {
1007 int c = k << 1;
1008
1009 if (c > N + HEAP0 - 1)
1010 break;
1011
1012 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1013 ? 1 : 0;
1014
1015 if (ANHE_at (he) <= ANHE_at (heap [c]))
1016 break;
1017
1018 heap [k] = heap [c];
1019 ev_active (ANHE_w (heap [k])) = k;
1020
1021 k = c;
1022 }
1023
1024 heap [k] = he;
1025 ev_active (ANHE_w (he)) = k;
1026}
1027#endif
1028
762/* towards the root */ 1029/* towards the root */
763void inline_speed 1030inline_speed void
764upheap (WT *heap, int k) 1031upheap (ANHE *heap, int k)
765{ 1032{
766 WT w = heap [k]; 1033 ANHE he = heap [k];
767 1034
768 for (;;) 1035 for (;;)
769 { 1036 {
770 int p = k >> 1; 1037 int p = HPARENT (k);
771 1038
772 /* maybe we could use a dummy element at heap [0]? */ 1039 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
773 if (!p || heap [p]->at <= w->at)
774 break; 1040 break;
775 1041
776 heap [k] = heap [p]; 1042 heap [k] = heap [p];
777 ev_active (heap [k]) = k; 1043 ev_active (ANHE_w (heap [k])) = k;
778 k = p; 1044 k = p;
779 } 1045 }
780 1046
781 heap [k] = w; 1047 heap [k] = he;
782 ev_active (heap [k]) = k; 1048 ev_active (ANHE_w (he)) = k;
783} 1049}
784 1050
785/* away from the root */ 1051/* move an element suitably so it is in a correct place */
786void inline_speed 1052inline_size void
787downheap (WT *heap, int N, int k)
788{
789 WT w = heap [k];
790
791 for (;;)
792 {
793 int c = k << 1;
794
795 if (c > N)
796 break;
797
798 c += c < N && heap [c]->at > heap [c + 1]->at
799 ? 1 : 0;
800
801 if (w->at <= heap [c]->at)
802 break;
803
804 heap [k] = heap [c];
805 ev_active (heap [k]) = k;
806
807 k = c;
808 }
809
810 heap [k] = w;
811 ev_active (heap [k]) = k;
812}
813
814void inline_size
815adjustheap (WT *heap, int N, int k) 1053adjustheap (ANHE *heap, int N, int k)
816{ 1054{
1055 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
817 upheap (heap, k); 1056 upheap (heap, k);
1057 else
818 downheap (heap, N, k); 1058 downheap (heap, N, k);
1059}
1060
1061/* rebuild the heap: this function is used only once and executed rarely */
1062inline_size void
1063reheap (ANHE *heap, int N)
1064{
1065 int i;
1066
1067 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1068 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1069 for (i = 0; i < N; ++i)
1070 upheap (heap, i + HEAP0);
819} 1071}
820 1072
821/*****************************************************************************/ 1073/*****************************************************************************/
822 1074
1075/* associate signal watchers to a signal signal */
823typedef struct 1076typedef struct
824{ 1077{
825 WL head; 1078 WL head;
826 EV_ATOMIC_T gotsig; 1079 EV_ATOMIC_T gotsig;
827} ANSIG; 1080} ANSIG;
829static ANSIG *signals; 1082static ANSIG *signals;
830static int signalmax; 1083static int signalmax;
831 1084
832static EV_ATOMIC_T gotsig; 1085static EV_ATOMIC_T gotsig;
833 1086
834void inline_size
835signals_init (ANSIG *base, int count)
836{
837 while (count--)
838 {
839 base->head = 0;
840 base->gotsig = 0;
841
842 ++base;
843 }
844}
845
846/*****************************************************************************/ 1087/*****************************************************************************/
847 1088
848void inline_speed 1089/* used to prepare libev internal fd's */
1090/* this is not fork-safe */
1091inline_speed void
849fd_intern (int fd) 1092fd_intern (int fd)
850{ 1093{
851#ifdef _WIN32 1094#ifdef _WIN32
852 int arg = 1; 1095 unsigned long arg = 1;
853 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1096 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
854#else 1097#else
855 fcntl (fd, F_SETFD, FD_CLOEXEC); 1098 fcntl (fd, F_SETFD, FD_CLOEXEC);
856 fcntl (fd, F_SETFL, O_NONBLOCK); 1099 fcntl (fd, F_SETFL, O_NONBLOCK);
857#endif 1100#endif
858} 1101}
859 1102
860static void noinline 1103static void noinline
861evpipe_init (EV_P) 1104evpipe_init (EV_P)
862{ 1105{
863 if (!ev_is_active (&pipeev)) 1106 if (!ev_is_active (&pipe_w))
864 { 1107 {
865#if EV_USE_EVENTFD 1108#if EV_USE_EVENTFD
866 if ((evfd = eventfd (0, 0)) >= 0) 1109 if ((evfd = eventfd (0, 0)) >= 0)
867 { 1110 {
868 evpipe [0] = -1; 1111 evpipe [0] = -1;
869 fd_intern (evfd); 1112 fd_intern (evfd);
870 ev_io_set (&pipeev, evfd, EV_READ); 1113 ev_io_set (&pipe_w, evfd, EV_READ);
871 } 1114 }
872 else 1115 else
873#endif 1116#endif
874 { 1117 {
875 while (pipe (evpipe)) 1118 while (pipe (evpipe))
876 syserr ("(libev) error creating signal/async pipe"); 1119 ev_syserr ("(libev) error creating signal/async pipe");
877 1120
878 fd_intern (evpipe [0]); 1121 fd_intern (evpipe [0]);
879 fd_intern (evpipe [1]); 1122 fd_intern (evpipe [1]);
880 ev_io_set (&pipeev, evpipe [0], EV_READ); 1123 ev_io_set (&pipe_w, evpipe [0], EV_READ);
881 } 1124 }
882 1125
883 ev_io_start (EV_A_ &pipeev); 1126 ev_io_start (EV_A_ &pipe_w);
884 ev_unref (EV_A); /* watcher should not keep loop alive */ 1127 ev_unref (EV_A); /* watcher should not keep loop alive */
885 } 1128 }
886} 1129}
887 1130
888void inline_size 1131inline_size void
889evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1132evpipe_write (EV_P_ EV_ATOMIC_T *flag)
890{ 1133{
891 if (!*flag) 1134 if (!*flag)
892 { 1135 {
893 int old_errno = errno; /* save errno because write might clobber it */ 1136 int old_errno = errno; /* save errno because write might clobber it */
906 1149
907 errno = old_errno; 1150 errno = old_errno;
908 } 1151 }
909} 1152}
910 1153
1154/* called whenever the libev signal pipe */
1155/* got some events (signal, async) */
911static void 1156static void
912pipecb (EV_P_ ev_io *iow, int revents) 1157pipecb (EV_P_ ev_io *iow, int revents)
913{ 1158{
914#if EV_USE_EVENTFD 1159#if EV_USE_EVENTFD
915 if (evfd >= 0) 1160 if (evfd >= 0)
916 { 1161 {
917 uint64_t counter = 1; 1162 uint64_t counter;
918 read (evfd, &counter, sizeof (uint64_t)); 1163 read (evfd, &counter, sizeof (uint64_t));
919 } 1164 }
920 else 1165 else
921#endif 1166#endif
922 { 1167 {
971ev_feed_signal_event (EV_P_ int signum) 1216ev_feed_signal_event (EV_P_ int signum)
972{ 1217{
973 WL w; 1218 WL w;
974 1219
975#if EV_MULTIPLICITY 1220#if EV_MULTIPLICITY
976 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1221 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
977#endif 1222#endif
978 1223
979 --signum; 1224 --signum;
980 1225
981 if (signum < 0 || signum >= signalmax) 1226 if (signum < 0 || signum >= signalmax)
997 1242
998#ifndef WIFCONTINUED 1243#ifndef WIFCONTINUED
999# define WIFCONTINUED(status) 0 1244# define WIFCONTINUED(status) 0
1000#endif 1245#endif
1001 1246
1002void inline_speed 1247/* handle a single child status event */
1248inline_speed void
1003child_reap (EV_P_ int chain, int pid, int status) 1249child_reap (EV_P_ int chain, int pid, int status)
1004{ 1250{
1005 ev_child *w; 1251 ev_child *w;
1006 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1252 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1007 1253
1020 1266
1021#ifndef WCONTINUED 1267#ifndef WCONTINUED
1022# define WCONTINUED 0 1268# define WCONTINUED 0
1023#endif 1269#endif
1024 1270
1271/* called on sigchld etc., calls waitpid */
1025static void 1272static void
1026childcb (EV_P_ ev_signal *sw, int revents) 1273childcb (EV_P_ ev_signal *sw, int revents)
1027{ 1274{
1028 int pid, status; 1275 int pid, status;
1029 1276
1110 /* kqueue is borked on everything but netbsd apparently */ 1357 /* kqueue is borked on everything but netbsd apparently */
1111 /* it usually doesn't work correctly on anything but sockets and pipes */ 1358 /* it usually doesn't work correctly on anything but sockets and pipes */
1112 flags &= ~EVBACKEND_KQUEUE; 1359 flags &= ~EVBACKEND_KQUEUE;
1113#endif 1360#endif
1114#ifdef __APPLE__ 1361#ifdef __APPLE__
1115 // flags &= ~EVBACKEND_KQUEUE; for documentation 1362 /* only select works correctly on that "unix-certified" platform */
1116 flags &= ~EVBACKEND_POLL; 1363 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1364 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1117#endif 1365#endif
1118 1366
1119 return flags; 1367 return flags;
1120} 1368}
1121 1369
1135ev_backend (EV_P) 1383ev_backend (EV_P)
1136{ 1384{
1137 return backend; 1385 return backend;
1138} 1386}
1139 1387
1388#if EV_MINIMAL < 2
1140unsigned int 1389unsigned int
1141ev_loop_count (EV_P) 1390ev_loop_count (EV_P)
1142{ 1391{
1143 return loop_count; 1392 return loop_count;
1144} 1393}
1145 1394
1395unsigned int
1396ev_loop_depth (EV_P)
1397{
1398 return loop_depth;
1399}
1400
1146void 1401void
1147ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1402ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1148{ 1403{
1149 io_blocktime = interval; 1404 io_blocktime = interval;
1150} 1405}
1153ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1408ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1154{ 1409{
1155 timeout_blocktime = interval; 1410 timeout_blocktime = interval;
1156} 1411}
1157 1412
1413void
1414ev_set_userdata (EV_P_ void *data)
1415{
1416 userdata = data;
1417}
1418
1419void *
1420ev_userdata (EV_P)
1421{
1422 return userdata;
1423}
1424
1425void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1426{
1427 invoke_cb = invoke_pending_cb;
1428}
1429
1430void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1431{
1432 release_cb = release;
1433 acquire_cb = acquire;
1434}
1435#endif
1436
1437/* initialise a loop structure, must be zero-initialised */
1158static void noinline 1438static void noinline
1159loop_init (EV_P_ unsigned int flags) 1439loop_init (EV_P_ unsigned int flags)
1160{ 1440{
1161 if (!backend) 1441 if (!backend)
1162 { 1442 {
1443#if EV_USE_REALTIME
1444 if (!have_realtime)
1445 {
1446 struct timespec ts;
1447
1448 if (!clock_gettime (CLOCK_REALTIME, &ts))
1449 have_realtime = 1;
1450 }
1451#endif
1452
1163#if EV_USE_MONOTONIC 1453#if EV_USE_MONOTONIC
1454 if (!have_monotonic)
1164 { 1455 {
1165 struct timespec ts; 1456 struct timespec ts;
1457
1166 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1458 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1167 have_monotonic = 1; 1459 have_monotonic = 1;
1168 } 1460 }
1169#endif 1461#endif
1170 1462
1171 ev_rt_now = ev_time (); 1463 ev_rt_now = ev_time ();
1172 mn_now = get_clock (); 1464 mn_now = get_clock ();
1173 now_floor = mn_now; 1465 now_floor = mn_now;
1174 rtmn_diff = ev_rt_now - mn_now; 1466 rtmn_diff = ev_rt_now - mn_now;
1467#if EV_MINIMAL < 2
1468 invoke_cb = ev_invoke_pending;
1469#endif
1175 1470
1176 io_blocktime = 0.; 1471 io_blocktime = 0.;
1177 timeout_blocktime = 0.; 1472 timeout_blocktime = 0.;
1178 backend = 0; 1473 backend = 0;
1179 backend_fd = -1; 1474 backend_fd = -1;
1210#endif 1505#endif
1211#if EV_USE_SELECT 1506#if EV_USE_SELECT
1212 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1507 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1213#endif 1508#endif
1214 1509
1510 ev_prepare_init (&pending_w, pendingcb);
1511
1215 ev_init (&pipeev, pipecb); 1512 ev_init (&pipe_w, pipecb);
1216 ev_set_priority (&pipeev, EV_MAXPRI); 1513 ev_set_priority (&pipe_w, EV_MAXPRI);
1217 } 1514 }
1218} 1515}
1219 1516
1517/* free up a loop structure */
1220static void noinline 1518static void noinline
1221loop_destroy (EV_P) 1519loop_destroy (EV_P)
1222{ 1520{
1223 int i; 1521 int i;
1224 1522
1225 if (ev_is_active (&pipeev)) 1523 if (ev_is_active (&pipe_w))
1226 { 1524 {
1227 ev_ref (EV_A); /* signal watcher */ 1525 ev_ref (EV_A); /* signal watcher */
1228 ev_io_stop (EV_A_ &pipeev); 1526 ev_io_stop (EV_A_ &pipe_w);
1229 1527
1230#if EV_USE_EVENTFD 1528#if EV_USE_EVENTFD
1231 if (evfd >= 0) 1529 if (evfd >= 0)
1232 close (evfd); 1530 close (evfd);
1233#endif 1531#endif
1272 } 1570 }
1273 1571
1274 ev_free (anfds); anfdmax = 0; 1572 ev_free (anfds); anfdmax = 0;
1275 1573
1276 /* have to use the microsoft-never-gets-it-right macro */ 1574 /* have to use the microsoft-never-gets-it-right macro */
1575 array_free (rfeed, EMPTY);
1277 array_free (fdchange, EMPTY); 1576 array_free (fdchange, EMPTY);
1278 array_free (timer, EMPTY); 1577 array_free (timer, EMPTY);
1279#if EV_PERIODIC_ENABLE 1578#if EV_PERIODIC_ENABLE
1280 array_free (periodic, EMPTY); 1579 array_free (periodic, EMPTY);
1281#endif 1580#endif
1290 1589
1291 backend = 0; 1590 backend = 0;
1292} 1591}
1293 1592
1294#if EV_USE_INOTIFY 1593#if EV_USE_INOTIFY
1295void inline_size infy_fork (EV_P); 1594inline_size void infy_fork (EV_P);
1296#endif 1595#endif
1297 1596
1298void inline_size 1597inline_size void
1299loop_fork (EV_P) 1598loop_fork (EV_P)
1300{ 1599{
1301#if EV_USE_PORT 1600#if EV_USE_PORT
1302 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1601 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1303#endif 1602#endif
1309#endif 1608#endif
1310#if EV_USE_INOTIFY 1609#if EV_USE_INOTIFY
1311 infy_fork (EV_A); 1610 infy_fork (EV_A);
1312#endif 1611#endif
1313 1612
1314 if (ev_is_active (&pipeev)) 1613 if (ev_is_active (&pipe_w))
1315 { 1614 {
1316 /* this "locks" the handlers against writing to the pipe */ 1615 /* this "locks" the handlers against writing to the pipe */
1317 /* while we modify the fd vars */ 1616 /* while we modify the fd vars */
1318 gotsig = 1; 1617 gotsig = 1;
1319#if EV_ASYNC_ENABLE 1618#if EV_ASYNC_ENABLE
1320 gotasync = 1; 1619 gotasync = 1;
1321#endif 1620#endif
1322 1621
1323 ev_ref (EV_A); 1622 ev_ref (EV_A);
1324 ev_io_stop (EV_A_ &pipeev); 1623 ev_io_stop (EV_A_ &pipe_w);
1325 1624
1326#if EV_USE_EVENTFD 1625#if EV_USE_EVENTFD
1327 if (evfd >= 0) 1626 if (evfd >= 0)
1328 close (evfd); 1627 close (evfd);
1329#endif 1628#endif
1334 close (evpipe [1]); 1633 close (evpipe [1]);
1335 } 1634 }
1336 1635
1337 evpipe_init (EV_A); 1636 evpipe_init (EV_A);
1338 /* now iterate over everything, in case we missed something */ 1637 /* now iterate over everything, in case we missed something */
1339 pipecb (EV_A_ &pipeev, EV_READ); 1638 pipecb (EV_A_ &pipe_w, EV_READ);
1340 } 1639 }
1341 1640
1342 postfork = 0; 1641 postfork = 0;
1343} 1642}
1344 1643
1345#if EV_MULTIPLICITY 1644#if EV_MULTIPLICITY
1645
1346struct ev_loop * 1646struct ev_loop *
1347ev_loop_new (unsigned int flags) 1647ev_loop_new (unsigned int flags)
1348{ 1648{
1349 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1649 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1350 1650
1368void 1668void
1369ev_loop_fork (EV_P) 1669ev_loop_fork (EV_P)
1370{ 1670{
1371 postfork = 1; /* must be in line with ev_default_fork */ 1671 postfork = 1; /* must be in line with ev_default_fork */
1372} 1672}
1673#endif /* multiplicity */
1373 1674
1675#if EV_VERIFY
1676static void noinline
1677verify_watcher (EV_P_ W w)
1678{
1679 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1680
1681 if (w->pending)
1682 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1683}
1684
1685static void noinline
1686verify_heap (EV_P_ ANHE *heap, int N)
1687{
1688 int i;
1689
1690 for (i = HEAP0; i < N + HEAP0; ++i)
1691 {
1692 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1693 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1694 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1695
1696 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1697 }
1698}
1699
1700static void noinline
1701array_verify (EV_P_ W *ws, int cnt)
1702{
1703 while (cnt--)
1704 {
1705 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1706 verify_watcher (EV_A_ ws [cnt]);
1707 }
1708}
1709#endif
1710
1711#if EV_MINIMAL < 2
1712void
1713ev_loop_verify (EV_P)
1714{
1715#if EV_VERIFY
1716 int i;
1717 WL w;
1718
1719 assert (activecnt >= -1);
1720
1721 assert (fdchangemax >= fdchangecnt);
1722 for (i = 0; i < fdchangecnt; ++i)
1723 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1724
1725 assert (anfdmax >= 0);
1726 for (i = 0; i < anfdmax; ++i)
1727 for (w = anfds [i].head; w; w = w->next)
1728 {
1729 verify_watcher (EV_A_ (W)w);
1730 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1731 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1732 }
1733
1734 assert (timermax >= timercnt);
1735 verify_heap (EV_A_ timers, timercnt);
1736
1737#if EV_PERIODIC_ENABLE
1738 assert (periodicmax >= periodiccnt);
1739 verify_heap (EV_A_ periodics, periodiccnt);
1740#endif
1741
1742 for (i = NUMPRI; i--; )
1743 {
1744 assert (pendingmax [i] >= pendingcnt [i]);
1745#if EV_IDLE_ENABLE
1746 assert (idleall >= 0);
1747 assert (idlemax [i] >= idlecnt [i]);
1748 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1749#endif
1750 }
1751
1752#if EV_FORK_ENABLE
1753 assert (forkmax >= forkcnt);
1754 array_verify (EV_A_ (W *)forks, forkcnt);
1755#endif
1756
1757#if EV_ASYNC_ENABLE
1758 assert (asyncmax >= asynccnt);
1759 array_verify (EV_A_ (W *)asyncs, asynccnt);
1760#endif
1761
1762 assert (preparemax >= preparecnt);
1763 array_verify (EV_A_ (W *)prepares, preparecnt);
1764
1765 assert (checkmax >= checkcnt);
1766 array_verify (EV_A_ (W *)checks, checkcnt);
1767
1768# if 0
1769 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1770 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1771# endif
1772#endif
1773}
1374#endif 1774#endif
1375 1775
1376#if EV_MULTIPLICITY 1776#if EV_MULTIPLICITY
1377struct ev_loop * 1777struct ev_loop *
1378ev_default_loop_init (unsigned int flags) 1778ev_default_loop_init (unsigned int flags)
1412{ 1812{
1413#if EV_MULTIPLICITY 1813#if EV_MULTIPLICITY
1414 struct ev_loop *loop = ev_default_loop_ptr; 1814 struct ev_loop *loop = ev_default_loop_ptr;
1415#endif 1815#endif
1416 1816
1817 ev_default_loop_ptr = 0;
1818
1417#ifndef _WIN32 1819#ifndef _WIN32
1418 ev_ref (EV_A); /* child watcher */ 1820 ev_ref (EV_A); /* child watcher */
1419 ev_signal_stop (EV_A_ &childev); 1821 ev_signal_stop (EV_A_ &childev);
1420#endif 1822#endif
1421 1823
1427{ 1829{
1428#if EV_MULTIPLICITY 1830#if EV_MULTIPLICITY
1429 struct ev_loop *loop = ev_default_loop_ptr; 1831 struct ev_loop *loop = ev_default_loop_ptr;
1430#endif 1832#endif
1431 1833
1432 if (backend)
1433 postfork = 1; /* must be in line with ev_loop_fork */ 1834 postfork = 1; /* must be in line with ev_loop_fork */
1434} 1835}
1435 1836
1436/*****************************************************************************/ 1837/*****************************************************************************/
1437 1838
1438void 1839void
1439ev_invoke (EV_P_ void *w, int revents) 1840ev_invoke (EV_P_ void *w, int revents)
1440{ 1841{
1441 EV_CB_INVOKE ((W)w, revents); 1842 EV_CB_INVOKE ((W)w, revents);
1442} 1843}
1443 1844
1444void inline_speed 1845void noinline
1445call_pending (EV_P) 1846ev_invoke_pending (EV_P)
1446{ 1847{
1447 int pri; 1848 int pri;
1448 1849
1449 for (pri = NUMPRI; pri--; ) 1850 for (pri = NUMPRI; pri--; )
1450 while (pendingcnt [pri]) 1851 while (pendingcnt [pri])
1451 { 1852 {
1452 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1853 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1453 1854
1454 if (expect_true (p->w))
1455 {
1456 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1855 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1856 /* ^ this is no longer true, as pending_w could be here */
1457 1857
1458 p->w->pending = 0; 1858 p->w->pending = 0;
1459 EV_CB_INVOKE (p->w, p->events); 1859 EV_CB_INVOKE (p->w, p->events);
1460 } 1860 EV_FREQUENT_CHECK;
1461 } 1861 }
1462} 1862}
1463 1863
1464void inline_size
1465timers_reify (EV_P)
1466{
1467 while (timercnt && ev_at (timers [1]) <= mn_now)
1468 {
1469 ev_timer *w = (ev_timer *)timers [1];
1470
1471 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1472
1473 /* first reschedule or stop timer */
1474 if (w->repeat)
1475 {
1476 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1477
1478 ev_at (w) += w->repeat;
1479 if (ev_at (w) < mn_now)
1480 ev_at (w) = mn_now;
1481
1482 downheap (timers, timercnt, 1);
1483 }
1484 else
1485 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1486
1487 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1488 }
1489}
1490
1491#if EV_PERIODIC_ENABLE
1492void inline_size
1493periodics_reify (EV_P)
1494{
1495 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1496 {
1497 ev_periodic *w = (ev_periodic *)periodics [1];
1498
1499 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1500
1501 /* first reschedule or stop timer */
1502 if (w->reschedule_cb)
1503 {
1504 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1505 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1506 downheap (periodics, periodiccnt, 1);
1507 }
1508 else if (w->interval)
1509 {
1510 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1511 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1512 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1513 downheap (periodics, periodiccnt, 1);
1514 }
1515 else
1516 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1517
1518 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1519 }
1520}
1521
1522static void noinline
1523periodics_reschedule (EV_P)
1524{
1525 int i;
1526
1527 /* adjust periodics after time jump */
1528 for (i = 0; i < periodiccnt; ++i)
1529 {
1530 ev_periodic *w = (ev_periodic *)periodics [i];
1531
1532 if (w->reschedule_cb)
1533 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1534 else if (w->interval)
1535 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1536 }
1537
1538 /* now rebuild the heap */
1539 for (i = periodiccnt >> 1; i--; )
1540 downheap (periodics, periodiccnt, i);
1541}
1542#endif
1543
1544#if EV_IDLE_ENABLE 1864#if EV_IDLE_ENABLE
1545void inline_size 1865/* make idle watchers pending. this handles the "call-idle */
1866/* only when higher priorities are idle" logic */
1867inline_size void
1546idle_reify (EV_P) 1868idle_reify (EV_P)
1547{ 1869{
1548 if (expect_false (idleall)) 1870 if (expect_false (idleall))
1549 { 1871 {
1550 int pri; 1872 int pri;
1562 } 1884 }
1563 } 1885 }
1564} 1886}
1565#endif 1887#endif
1566 1888
1567void inline_speed 1889/* make timers pending */
1890inline_size void
1891timers_reify (EV_P)
1892{
1893 EV_FREQUENT_CHECK;
1894
1895 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1896 {
1897 do
1898 {
1899 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1900
1901 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1902
1903 /* first reschedule or stop timer */
1904 if (w->repeat)
1905 {
1906 ev_at (w) += w->repeat;
1907 if (ev_at (w) < mn_now)
1908 ev_at (w) = mn_now;
1909
1910 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1911
1912 ANHE_at_cache (timers [HEAP0]);
1913 downheap (timers, timercnt, HEAP0);
1914 }
1915 else
1916 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1917
1918 EV_FREQUENT_CHECK;
1919 feed_reverse (EV_A_ (W)w);
1920 }
1921 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1922
1923 feed_reverse_done (EV_A_ EV_TIMEOUT);
1924 }
1925}
1926
1927#if EV_PERIODIC_ENABLE
1928/* make periodics pending */
1929inline_size void
1930periodics_reify (EV_P)
1931{
1932 EV_FREQUENT_CHECK;
1933
1934 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1935 {
1936 int feed_count = 0;
1937
1938 do
1939 {
1940 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1941
1942 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1943
1944 /* first reschedule or stop timer */
1945 if (w->reschedule_cb)
1946 {
1947 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1948
1949 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1950
1951 ANHE_at_cache (periodics [HEAP0]);
1952 downheap (periodics, periodiccnt, HEAP0);
1953 }
1954 else if (w->interval)
1955 {
1956 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1957 /* if next trigger time is not sufficiently in the future, put it there */
1958 /* this might happen because of floating point inexactness */
1959 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1960 {
1961 ev_at (w) += w->interval;
1962
1963 /* if interval is unreasonably low we might still have a time in the past */
1964 /* so correct this. this will make the periodic very inexact, but the user */
1965 /* has effectively asked to get triggered more often than possible */
1966 if (ev_at (w) < ev_rt_now)
1967 ev_at (w) = ev_rt_now;
1968 }
1969
1970 ANHE_at_cache (periodics [HEAP0]);
1971 downheap (periodics, periodiccnt, HEAP0);
1972 }
1973 else
1974 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1975
1976 EV_FREQUENT_CHECK;
1977 feed_reverse (EV_A_ (W)w);
1978 }
1979 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1980
1981 feed_reverse_done (EV_A_ EV_PERIODIC);
1982 }
1983}
1984
1985/* simply recalculate all periodics */
1986/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1987static void noinline
1988periodics_reschedule (EV_P)
1989{
1990 int i;
1991
1992 /* adjust periodics after time jump */
1993 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1994 {
1995 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1996
1997 if (w->reschedule_cb)
1998 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1999 else if (w->interval)
2000 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2001
2002 ANHE_at_cache (periodics [i]);
2003 }
2004
2005 reheap (periodics, periodiccnt);
2006}
2007#endif
2008
2009/* adjust all timers by a given offset */
2010static void noinline
2011timers_reschedule (EV_P_ ev_tstamp adjust)
2012{
2013 int i;
2014
2015 for (i = 0; i < timercnt; ++i)
2016 {
2017 ANHE *he = timers + i + HEAP0;
2018 ANHE_w (*he)->at += adjust;
2019 ANHE_at_cache (*he);
2020 }
2021}
2022
2023/* fetch new monotonic and realtime times from the kernel */
2024/* also detetc if there was a timejump, and act accordingly */
2025inline_speed void
1568time_update (EV_P_ ev_tstamp max_block) 2026time_update (EV_P_ ev_tstamp max_block)
1569{ 2027{
1570 int i;
1571
1572#if EV_USE_MONOTONIC 2028#if EV_USE_MONOTONIC
1573 if (expect_true (have_monotonic)) 2029 if (expect_true (have_monotonic))
1574 { 2030 {
2031 int i;
1575 ev_tstamp odiff = rtmn_diff; 2032 ev_tstamp odiff = rtmn_diff;
1576 2033
1577 mn_now = get_clock (); 2034 mn_now = get_clock ();
1578 2035
1579 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2036 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1597 */ 2054 */
1598 for (i = 4; --i; ) 2055 for (i = 4; --i; )
1599 { 2056 {
1600 rtmn_diff = ev_rt_now - mn_now; 2057 rtmn_diff = ev_rt_now - mn_now;
1601 2058
1602 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2059 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1603 return; /* all is well */ 2060 return; /* all is well */
1604 2061
1605 ev_rt_now = ev_time (); 2062 ev_rt_now = ev_time ();
1606 mn_now = get_clock (); 2063 mn_now = get_clock ();
1607 now_floor = mn_now; 2064 now_floor = mn_now;
1608 } 2065 }
1609 2066
2067 /* no timer adjustment, as the monotonic clock doesn't jump */
2068 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1610# if EV_PERIODIC_ENABLE 2069# if EV_PERIODIC_ENABLE
1611 periodics_reschedule (EV_A); 2070 periodics_reschedule (EV_A);
1612# endif 2071# endif
1613 /* no timer adjustment, as the monotonic clock doesn't jump */
1614 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1615 } 2072 }
1616 else 2073 else
1617#endif 2074#endif
1618 { 2075 {
1619 ev_rt_now = ev_time (); 2076 ev_rt_now = ev_time ();
1620 2077
1621 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2078 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1622 { 2079 {
2080 /* adjust timers. this is easy, as the offset is the same for all of them */
2081 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1623#if EV_PERIODIC_ENABLE 2082#if EV_PERIODIC_ENABLE
1624 periodics_reschedule (EV_A); 2083 periodics_reschedule (EV_A);
1625#endif 2084#endif
1626 /* adjust timers. this is easy, as the offset is the same for all of them */
1627 for (i = 1; i <= timercnt; ++i)
1628 ev_at (timers [i]) += ev_rt_now - mn_now;
1629 } 2085 }
1630 2086
1631 mn_now = ev_rt_now; 2087 mn_now = ev_rt_now;
1632 } 2088 }
1633} 2089}
1634 2090
1635void 2091void
1636ev_ref (EV_P)
1637{
1638 ++activecnt;
1639}
1640
1641void
1642ev_unref (EV_P)
1643{
1644 --activecnt;
1645}
1646
1647static int loop_done;
1648
1649void
1650ev_loop (EV_P_ int flags) 2092ev_loop (EV_P_ int flags)
1651{ 2093{
2094#if EV_MINIMAL < 2
2095 ++loop_depth;
2096#endif
2097
2098 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2099
1652 loop_done = EVUNLOOP_CANCEL; 2100 loop_done = EVUNLOOP_CANCEL;
1653 2101
1654 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2102 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1655 2103
1656 do 2104 do
1657 { 2105 {
2106#if EV_VERIFY >= 2
2107 ev_loop_verify (EV_A);
2108#endif
2109
1658#ifndef _WIN32 2110#ifndef _WIN32
1659 if (expect_false (curpid)) /* penalise the forking check even more */ 2111 if (expect_false (curpid)) /* penalise the forking check even more */
1660 if (expect_false (getpid () != curpid)) 2112 if (expect_false (getpid () != curpid))
1661 { 2113 {
1662 curpid = getpid (); 2114 curpid = getpid ();
1668 /* we might have forked, so queue fork handlers */ 2120 /* we might have forked, so queue fork handlers */
1669 if (expect_false (postfork)) 2121 if (expect_false (postfork))
1670 if (forkcnt) 2122 if (forkcnt)
1671 { 2123 {
1672 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2124 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1673 call_pending (EV_A); 2125 EV_INVOKE_PENDING;
1674 } 2126 }
1675#endif 2127#endif
1676 2128
1677 /* queue prepare watchers (and execute them) */ 2129 /* queue prepare watchers (and execute them) */
1678 if (expect_false (preparecnt)) 2130 if (expect_false (preparecnt))
1679 { 2131 {
1680 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2132 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1681 call_pending (EV_A); 2133 EV_INVOKE_PENDING;
1682 } 2134 }
1683 2135
1684 if (expect_false (!activecnt)) 2136 if (expect_false (loop_done))
1685 break; 2137 break;
1686 2138
1687 /* we might have forked, so reify kernel state if necessary */ 2139 /* we might have forked, so reify kernel state if necessary */
1688 if (expect_false (postfork)) 2140 if (expect_false (postfork))
1689 loop_fork (EV_A); 2141 loop_fork (EV_A);
1696 ev_tstamp waittime = 0.; 2148 ev_tstamp waittime = 0.;
1697 ev_tstamp sleeptime = 0.; 2149 ev_tstamp sleeptime = 0.;
1698 2150
1699 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2151 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1700 { 2152 {
2153 /* remember old timestamp for io_blocktime calculation */
2154 ev_tstamp prev_mn_now = mn_now;
2155
1701 /* update time to cancel out callback processing overhead */ 2156 /* update time to cancel out callback processing overhead */
1702 time_update (EV_A_ 1e100); 2157 time_update (EV_A_ 1e100);
1703 2158
1704 waittime = MAX_BLOCKTIME; 2159 waittime = MAX_BLOCKTIME;
1705 2160
1706 if (timercnt) 2161 if (timercnt)
1707 { 2162 {
1708 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge; 2163 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1709 if (waittime > to) waittime = to; 2164 if (waittime > to) waittime = to;
1710 } 2165 }
1711 2166
1712#if EV_PERIODIC_ENABLE 2167#if EV_PERIODIC_ENABLE
1713 if (periodiccnt) 2168 if (periodiccnt)
1714 { 2169 {
1715 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge; 2170 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1716 if (waittime > to) waittime = to; 2171 if (waittime > to) waittime = to;
1717 } 2172 }
1718#endif 2173#endif
1719 2174
2175 /* don't let timeouts decrease the waittime below timeout_blocktime */
1720 if (expect_false (waittime < timeout_blocktime)) 2176 if (expect_false (waittime < timeout_blocktime))
1721 waittime = timeout_blocktime; 2177 waittime = timeout_blocktime;
1722 2178
1723 sleeptime = waittime - backend_fudge; 2179 /* extra check because io_blocktime is commonly 0 */
1724
1725 if (expect_true (sleeptime > io_blocktime)) 2180 if (expect_false (io_blocktime))
1726 sleeptime = io_blocktime;
1727
1728 if (sleeptime)
1729 { 2181 {
2182 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2183
2184 if (sleeptime > waittime - backend_fudge)
2185 sleeptime = waittime - backend_fudge;
2186
2187 if (expect_true (sleeptime > 0.))
2188 {
1730 ev_sleep (sleeptime); 2189 ev_sleep (sleeptime);
1731 waittime -= sleeptime; 2190 waittime -= sleeptime;
2191 }
1732 } 2192 }
1733 } 2193 }
1734 2194
2195#if EV_MINIMAL < 2
1735 ++loop_count; 2196 ++loop_count;
2197#endif
2198 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1736 backend_poll (EV_A_ waittime); 2199 backend_poll (EV_A_ waittime);
2200 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1737 2201
1738 /* update ev_rt_now, do magic */ 2202 /* update ev_rt_now, do magic */
1739 time_update (EV_A_ waittime + sleeptime); 2203 time_update (EV_A_ waittime + sleeptime);
1740 } 2204 }
1741 2205
1752 2216
1753 /* queue check watchers, to be executed first */ 2217 /* queue check watchers, to be executed first */
1754 if (expect_false (checkcnt)) 2218 if (expect_false (checkcnt))
1755 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2219 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1756 2220
1757 call_pending (EV_A); 2221 EV_INVOKE_PENDING;
1758 } 2222 }
1759 while (expect_true ( 2223 while (expect_true (
1760 activecnt 2224 activecnt
1761 && !loop_done 2225 && !loop_done
1762 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2226 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1763 )); 2227 ));
1764 2228
1765 if (loop_done == EVUNLOOP_ONE) 2229 if (loop_done == EVUNLOOP_ONE)
1766 loop_done = EVUNLOOP_CANCEL; 2230 loop_done = EVUNLOOP_CANCEL;
2231
2232#if EV_MINIMAL < 2
2233 --loop_depth;
2234#endif
1767} 2235}
1768 2236
1769void 2237void
1770ev_unloop (EV_P_ int how) 2238ev_unloop (EV_P_ int how)
1771{ 2239{
1772 loop_done = how; 2240 loop_done = how;
1773} 2241}
1774 2242
2243void
2244ev_ref (EV_P)
2245{
2246 ++activecnt;
2247}
2248
2249void
2250ev_unref (EV_P)
2251{
2252 --activecnt;
2253}
2254
2255void
2256ev_now_update (EV_P)
2257{
2258 time_update (EV_A_ 1e100);
2259}
2260
2261void
2262ev_suspend (EV_P)
2263{
2264 ev_now_update (EV_A);
2265}
2266
2267void
2268ev_resume (EV_P)
2269{
2270 ev_tstamp mn_prev = mn_now;
2271
2272 ev_now_update (EV_A);
2273 timers_reschedule (EV_A_ mn_now - mn_prev);
2274#if EV_PERIODIC_ENABLE
2275 /* TODO: really do this? */
2276 periodics_reschedule (EV_A);
2277#endif
2278}
2279
1775/*****************************************************************************/ 2280/*****************************************************************************/
2281/* singly-linked list management, used when the expected list length is short */
1776 2282
1777void inline_size 2283inline_size void
1778wlist_add (WL *head, WL elem) 2284wlist_add (WL *head, WL elem)
1779{ 2285{
1780 elem->next = *head; 2286 elem->next = *head;
1781 *head = elem; 2287 *head = elem;
1782} 2288}
1783 2289
1784void inline_size 2290inline_size void
1785wlist_del (WL *head, WL elem) 2291wlist_del (WL *head, WL elem)
1786{ 2292{
1787 while (*head) 2293 while (*head)
1788 { 2294 {
1789 if (*head == elem) 2295 if (*head == elem)
1794 2300
1795 head = &(*head)->next; 2301 head = &(*head)->next;
1796 } 2302 }
1797} 2303}
1798 2304
1799void inline_speed 2305/* internal, faster, version of ev_clear_pending */
2306inline_speed void
1800clear_pending (EV_P_ W w) 2307clear_pending (EV_P_ W w)
1801{ 2308{
1802 if (w->pending) 2309 if (w->pending)
1803 { 2310 {
1804 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2311 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1805 w->pending = 0; 2312 w->pending = 0;
1806 } 2313 }
1807} 2314}
1808 2315
1809int 2316int
1813 int pending = w_->pending; 2320 int pending = w_->pending;
1814 2321
1815 if (expect_true (pending)) 2322 if (expect_true (pending))
1816 { 2323 {
1817 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2324 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2325 p->w = (W)&pending_w;
1818 w_->pending = 0; 2326 w_->pending = 0;
1819 p->w = 0;
1820 return p->events; 2327 return p->events;
1821 } 2328 }
1822 else 2329 else
1823 return 0; 2330 return 0;
1824} 2331}
1825 2332
1826void inline_size 2333inline_size void
1827pri_adjust (EV_P_ W w) 2334pri_adjust (EV_P_ W w)
1828{ 2335{
1829 int pri = w->priority; 2336 int pri = ev_priority (w);
1830 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2337 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1831 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2338 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1832 w->priority = pri; 2339 ev_set_priority (w, pri);
1833} 2340}
1834 2341
1835void inline_speed 2342inline_speed void
1836ev_start (EV_P_ W w, int active) 2343ev_start (EV_P_ W w, int active)
1837{ 2344{
1838 pri_adjust (EV_A_ w); 2345 pri_adjust (EV_A_ w);
1839 w->active = active; 2346 w->active = active;
1840 ev_ref (EV_A); 2347 ev_ref (EV_A);
1841} 2348}
1842 2349
1843void inline_size 2350inline_size void
1844ev_stop (EV_P_ W w) 2351ev_stop (EV_P_ W w)
1845{ 2352{
1846 ev_unref (EV_A); 2353 ev_unref (EV_A);
1847 w->active = 0; 2354 w->active = 0;
1848} 2355}
1855 int fd = w->fd; 2362 int fd = w->fd;
1856 2363
1857 if (expect_false (ev_is_active (w))) 2364 if (expect_false (ev_is_active (w)))
1858 return; 2365 return;
1859 2366
1860 assert (("ev_io_start called with negative fd", fd >= 0)); 2367 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2368 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2369
2370 EV_FREQUENT_CHECK;
1861 2371
1862 ev_start (EV_A_ (W)w, 1); 2372 ev_start (EV_A_ (W)w, 1);
1863 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2373 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1864 wlist_add (&anfds[fd].head, (WL)w); 2374 wlist_add (&anfds[fd].head, (WL)w);
1865 2375
1866 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2376 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1867 w->events &= ~EV_IOFDSET; 2377 w->events &= ~EV__IOFDSET;
2378
2379 EV_FREQUENT_CHECK;
1868} 2380}
1869 2381
1870void noinline 2382void noinline
1871ev_io_stop (EV_P_ ev_io *w) 2383ev_io_stop (EV_P_ ev_io *w)
1872{ 2384{
1873 clear_pending (EV_A_ (W)w); 2385 clear_pending (EV_A_ (W)w);
1874 if (expect_false (!ev_is_active (w))) 2386 if (expect_false (!ev_is_active (w)))
1875 return; 2387 return;
1876 2388
1877 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2389 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2390
2391 EV_FREQUENT_CHECK;
1878 2392
1879 wlist_del (&anfds[w->fd].head, (WL)w); 2393 wlist_del (&anfds[w->fd].head, (WL)w);
1880 ev_stop (EV_A_ (W)w); 2394 ev_stop (EV_A_ (W)w);
1881 2395
1882 fd_change (EV_A_ w->fd, 1); 2396 fd_change (EV_A_ w->fd, 1);
2397
2398 EV_FREQUENT_CHECK;
1883} 2399}
1884 2400
1885void noinline 2401void noinline
1886ev_timer_start (EV_P_ ev_timer *w) 2402ev_timer_start (EV_P_ ev_timer *w)
1887{ 2403{
1888 if (expect_false (ev_is_active (w))) 2404 if (expect_false (ev_is_active (w)))
1889 return; 2405 return;
1890 2406
1891 ev_at (w) += mn_now; 2407 ev_at (w) += mn_now;
1892 2408
1893 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2409 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1894 2410
2411 EV_FREQUENT_CHECK;
2412
2413 ++timercnt;
1895 ev_start (EV_A_ (W)w, ++timercnt); 2414 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1896 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2); 2415 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1897 timers [timercnt] = (WT)w; 2416 ANHE_w (timers [ev_active (w)]) = (WT)w;
2417 ANHE_at_cache (timers [ev_active (w)]);
1898 upheap (timers, timercnt); 2418 upheap (timers, ev_active (w));
1899 2419
2420 EV_FREQUENT_CHECK;
2421
1900 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2422 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1901} 2423}
1902 2424
1903void noinline 2425void noinline
1904ev_timer_stop (EV_P_ ev_timer *w) 2426ev_timer_stop (EV_P_ ev_timer *w)
1905{ 2427{
1906 clear_pending (EV_A_ (W)w); 2428 clear_pending (EV_A_ (W)w);
1907 if (expect_false (!ev_is_active (w))) 2429 if (expect_false (!ev_is_active (w)))
1908 return; 2430 return;
1909 2431
2432 EV_FREQUENT_CHECK;
2433
1910 { 2434 {
1911 int active = ev_active (w); 2435 int active = ev_active (w);
1912 2436
1913 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2437 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1914 2438
2439 --timercnt;
2440
1915 if (expect_true (active < timercnt)) 2441 if (expect_true (active < timercnt + HEAP0))
1916 { 2442 {
1917 timers [active] = timers [timercnt]; 2443 timers [active] = timers [timercnt + HEAP0];
1918 adjustheap (timers, timercnt, active); 2444 adjustheap (timers, timercnt, active);
1919 } 2445 }
1920
1921 --timercnt;
1922 } 2446 }
2447
2448 EV_FREQUENT_CHECK;
1923 2449
1924 ev_at (w) -= mn_now; 2450 ev_at (w) -= mn_now;
1925 2451
1926 ev_stop (EV_A_ (W)w); 2452 ev_stop (EV_A_ (W)w);
1927} 2453}
1928 2454
1929void noinline 2455void noinline
1930ev_timer_again (EV_P_ ev_timer *w) 2456ev_timer_again (EV_P_ ev_timer *w)
1931{ 2457{
2458 EV_FREQUENT_CHECK;
2459
1932 if (ev_is_active (w)) 2460 if (ev_is_active (w))
1933 { 2461 {
1934 if (w->repeat) 2462 if (w->repeat)
1935 { 2463 {
1936 ev_at (w) = mn_now + w->repeat; 2464 ev_at (w) = mn_now + w->repeat;
2465 ANHE_at_cache (timers [ev_active (w)]);
1937 adjustheap (timers, timercnt, ev_active (w)); 2466 adjustheap (timers, timercnt, ev_active (w));
1938 } 2467 }
1939 else 2468 else
1940 ev_timer_stop (EV_A_ w); 2469 ev_timer_stop (EV_A_ w);
1941 } 2470 }
1942 else if (w->repeat) 2471 else if (w->repeat)
1943 { 2472 {
1944 ev_at (w) = w->repeat; 2473 ev_at (w) = w->repeat;
1945 ev_timer_start (EV_A_ w); 2474 ev_timer_start (EV_A_ w);
1946 } 2475 }
2476
2477 EV_FREQUENT_CHECK;
1947} 2478}
1948 2479
1949#if EV_PERIODIC_ENABLE 2480#if EV_PERIODIC_ENABLE
1950void noinline 2481void noinline
1951ev_periodic_start (EV_P_ ev_periodic *w) 2482ev_periodic_start (EV_P_ ev_periodic *w)
1955 2486
1956 if (w->reschedule_cb) 2487 if (w->reschedule_cb)
1957 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2488 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1958 else if (w->interval) 2489 else if (w->interval)
1959 { 2490 {
1960 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2491 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1961 /* this formula differs from the one in periodic_reify because we do not always round up */ 2492 /* this formula differs from the one in periodic_reify because we do not always round up */
1962 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2493 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1963 } 2494 }
1964 else 2495 else
1965 ev_at (w) = w->offset; 2496 ev_at (w) = w->offset;
1966 2497
2498 EV_FREQUENT_CHECK;
2499
2500 ++periodiccnt;
1967 ev_start (EV_A_ (W)w, ++periodiccnt); 2501 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1968 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2); 2502 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1969 periodics [periodiccnt] = (WT)w; 2503 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1970 upheap (periodics, periodiccnt); 2504 ANHE_at_cache (periodics [ev_active (w)]);
2505 upheap (periodics, ev_active (w));
1971 2506
2507 EV_FREQUENT_CHECK;
2508
1972 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2509 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1973} 2510}
1974 2511
1975void noinline 2512void noinline
1976ev_periodic_stop (EV_P_ ev_periodic *w) 2513ev_periodic_stop (EV_P_ ev_periodic *w)
1977{ 2514{
1978 clear_pending (EV_A_ (W)w); 2515 clear_pending (EV_A_ (W)w);
1979 if (expect_false (!ev_is_active (w))) 2516 if (expect_false (!ev_is_active (w)))
1980 return; 2517 return;
1981 2518
2519 EV_FREQUENT_CHECK;
2520
1982 { 2521 {
1983 int active = ev_active (w); 2522 int active = ev_active (w);
1984 2523
1985 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2524 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1986 2525
2526 --periodiccnt;
2527
1987 if (expect_true (active < periodiccnt)) 2528 if (expect_true (active < periodiccnt + HEAP0))
1988 { 2529 {
1989 periodics [active] = periodics [periodiccnt]; 2530 periodics [active] = periodics [periodiccnt + HEAP0];
1990 adjustheap (periodics, periodiccnt, active); 2531 adjustheap (periodics, periodiccnt, active);
1991 } 2532 }
1992
1993 --periodiccnt;
1994 } 2533 }
2534
2535 EV_FREQUENT_CHECK;
1995 2536
1996 ev_stop (EV_A_ (W)w); 2537 ev_stop (EV_A_ (W)w);
1997} 2538}
1998 2539
1999void noinline 2540void noinline
2011 2552
2012void noinline 2553void noinline
2013ev_signal_start (EV_P_ ev_signal *w) 2554ev_signal_start (EV_P_ ev_signal *w)
2014{ 2555{
2015#if EV_MULTIPLICITY 2556#if EV_MULTIPLICITY
2016 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2557 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2017#endif 2558#endif
2018 if (expect_false (ev_is_active (w))) 2559 if (expect_false (ev_is_active (w)))
2019 return; 2560 return;
2020 2561
2021 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2562 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2022 2563
2023 evpipe_init (EV_A); 2564 evpipe_init (EV_A);
2565
2566 EV_FREQUENT_CHECK;
2024 2567
2025 { 2568 {
2026#ifndef _WIN32 2569#ifndef _WIN32
2027 sigset_t full, prev; 2570 sigset_t full, prev;
2028 sigfillset (&full); 2571 sigfillset (&full);
2029 sigprocmask (SIG_SETMASK, &full, &prev); 2572 sigprocmask (SIG_SETMASK, &full, &prev);
2030#endif 2573#endif
2031 2574
2032 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2575 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2033 2576
2034#ifndef _WIN32 2577#ifndef _WIN32
2035 sigprocmask (SIG_SETMASK, &prev, 0); 2578 sigprocmask (SIG_SETMASK, &prev, 0);
2036#endif 2579#endif
2037 } 2580 }
2042 if (!((WL)w)->next) 2585 if (!((WL)w)->next)
2043 { 2586 {
2044#if _WIN32 2587#if _WIN32
2045 signal (w->signum, ev_sighandler); 2588 signal (w->signum, ev_sighandler);
2046#else 2589#else
2047 struct sigaction sa; 2590 struct sigaction sa = { };
2048 sa.sa_handler = ev_sighandler; 2591 sa.sa_handler = ev_sighandler;
2049 sigfillset (&sa.sa_mask); 2592 sigfillset (&sa.sa_mask);
2050 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2593 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2051 sigaction (w->signum, &sa, 0); 2594 sigaction (w->signum, &sa, 0);
2052#endif 2595#endif
2053 } 2596 }
2597
2598 EV_FREQUENT_CHECK;
2054} 2599}
2055 2600
2056void noinline 2601void noinline
2057ev_signal_stop (EV_P_ ev_signal *w) 2602ev_signal_stop (EV_P_ ev_signal *w)
2058{ 2603{
2059 clear_pending (EV_A_ (W)w); 2604 clear_pending (EV_A_ (W)w);
2060 if (expect_false (!ev_is_active (w))) 2605 if (expect_false (!ev_is_active (w)))
2061 return; 2606 return;
2062 2607
2608 EV_FREQUENT_CHECK;
2609
2063 wlist_del (&signals [w->signum - 1].head, (WL)w); 2610 wlist_del (&signals [w->signum - 1].head, (WL)w);
2064 ev_stop (EV_A_ (W)w); 2611 ev_stop (EV_A_ (W)w);
2065 2612
2066 if (!signals [w->signum - 1].head) 2613 if (!signals [w->signum - 1].head)
2067 signal (w->signum, SIG_DFL); 2614 signal (w->signum, SIG_DFL);
2615
2616 EV_FREQUENT_CHECK;
2068} 2617}
2069 2618
2070void 2619void
2071ev_child_start (EV_P_ ev_child *w) 2620ev_child_start (EV_P_ ev_child *w)
2072{ 2621{
2073#if EV_MULTIPLICITY 2622#if EV_MULTIPLICITY
2074 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2623 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2075#endif 2624#endif
2076 if (expect_false (ev_is_active (w))) 2625 if (expect_false (ev_is_active (w)))
2077 return; 2626 return;
2078 2627
2628 EV_FREQUENT_CHECK;
2629
2079 ev_start (EV_A_ (W)w, 1); 2630 ev_start (EV_A_ (W)w, 1);
2080 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2631 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2632
2633 EV_FREQUENT_CHECK;
2081} 2634}
2082 2635
2083void 2636void
2084ev_child_stop (EV_P_ ev_child *w) 2637ev_child_stop (EV_P_ ev_child *w)
2085{ 2638{
2086 clear_pending (EV_A_ (W)w); 2639 clear_pending (EV_A_ (W)w);
2087 if (expect_false (!ev_is_active (w))) 2640 if (expect_false (!ev_is_active (w)))
2088 return; 2641 return;
2089 2642
2643 EV_FREQUENT_CHECK;
2644
2090 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2645 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2091 ev_stop (EV_A_ (W)w); 2646 ev_stop (EV_A_ (W)w);
2647
2648 EV_FREQUENT_CHECK;
2092} 2649}
2093 2650
2094#if EV_STAT_ENABLE 2651#if EV_STAT_ENABLE
2095 2652
2096# ifdef _WIN32 2653# ifdef _WIN32
2097# undef lstat 2654# undef lstat
2098# define lstat(a,b) _stati64 (a,b) 2655# define lstat(a,b) _stati64 (a,b)
2099# endif 2656# endif
2100 2657
2101#define DEF_STAT_INTERVAL 5.0074891 2658#define DEF_STAT_INTERVAL 5.0074891
2659#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2102#define MIN_STAT_INTERVAL 0.1074891 2660#define MIN_STAT_INTERVAL 0.1074891
2103 2661
2104static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2662static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2105 2663
2106#if EV_USE_INOTIFY 2664#if EV_USE_INOTIFY
2107# define EV_INOTIFY_BUFSIZE 8192 2665# define EV_INOTIFY_BUFSIZE 8192
2111{ 2669{
2112 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2670 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2113 2671
2114 if (w->wd < 0) 2672 if (w->wd < 0)
2115 { 2673 {
2674 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2116 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2675 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2117 2676
2118 /* monitor some parent directory for speedup hints */ 2677 /* monitor some parent directory for speedup hints */
2678 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2679 /* but an efficiency issue only */
2119 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2680 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2120 { 2681 {
2121 char path [4096]; 2682 char path [4096];
2122 strcpy (path, w->path); 2683 strcpy (path, w->path);
2123 2684
2126 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2687 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2127 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2688 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2128 2689
2129 char *pend = strrchr (path, '/'); 2690 char *pend = strrchr (path, '/');
2130 2691
2131 if (!pend) 2692 if (!pend || pend == path)
2132 break; /* whoops, no '/', complain to your admin */ 2693 break;
2133 2694
2134 *pend = 0; 2695 *pend = 0;
2135 w->wd = inotify_add_watch (fs_fd, path, mask); 2696 w->wd = inotify_add_watch (fs_fd, path, mask);
2136 } 2697 }
2137 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2698 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2138 } 2699 }
2139 } 2700 }
2140 else
2141 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2142 2701
2143 if (w->wd >= 0) 2702 if (w->wd >= 0)
2703 {
2144 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2704 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2705
2706 /* now local changes will be tracked by inotify, but remote changes won't */
2707 /* unless the filesystem it known to be local, we therefore still poll */
2708 /* also do poll on <2.6.25, but with normal frequency */
2709 struct statfs sfs;
2710
2711 if (fs_2625 && !statfs (w->path, &sfs))
2712 if (sfs.f_type == 0x1373 /* devfs */
2713 || sfs.f_type == 0xEF53 /* ext2/3 */
2714 || sfs.f_type == 0x3153464a /* jfs */
2715 || sfs.f_type == 0x52654973 /* reiser3 */
2716 || sfs.f_type == 0x01021994 /* tempfs */
2717 || sfs.f_type == 0x58465342 /* xfs */)
2718 return;
2719
2720 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2721 ev_timer_again (EV_A_ &w->timer);
2722 }
2145} 2723}
2146 2724
2147static void noinline 2725static void noinline
2148infy_del (EV_P_ ev_stat *w) 2726infy_del (EV_P_ ev_stat *w)
2149{ 2727{
2163 2741
2164static void noinline 2742static void noinline
2165infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2743infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2166{ 2744{
2167 if (slot < 0) 2745 if (slot < 0)
2168 /* overflow, need to check for all hahs slots */ 2746 /* overflow, need to check for all hash slots */
2169 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2747 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2170 infy_wd (EV_A_ slot, wd, ev); 2748 infy_wd (EV_A_ slot, wd, ev);
2171 else 2749 else
2172 { 2750 {
2173 WL w_; 2751 WL w_;
2179 2757
2180 if (w->wd == wd || wd == -1) 2758 if (w->wd == wd || wd == -1)
2181 { 2759 {
2182 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2760 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2183 { 2761 {
2762 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2184 w->wd = -1; 2763 w->wd = -1;
2185 infy_add (EV_A_ w); /* re-add, no matter what */ 2764 infy_add (EV_A_ w); /* re-add, no matter what */
2186 } 2765 }
2187 2766
2188 stat_timer_cb (EV_A_ &w->timer, 0); 2767 stat_timer_cb (EV_A_ &w->timer, 0);
2201 2780
2202 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2781 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2203 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2782 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2204} 2783}
2205 2784
2206void inline_size 2785inline_size void
2786check_2625 (EV_P)
2787{
2788 /* kernels < 2.6.25 are borked
2789 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2790 */
2791 struct utsname buf;
2792 int major, minor, micro;
2793
2794 if (uname (&buf))
2795 return;
2796
2797 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2798 return;
2799
2800 if (major < 2
2801 || (major == 2 && minor < 6)
2802 || (major == 2 && minor == 6 && micro < 25))
2803 return;
2804
2805 fs_2625 = 1;
2806}
2807
2808inline_size void
2207infy_init (EV_P) 2809infy_init (EV_P)
2208{ 2810{
2209 if (fs_fd != -2) 2811 if (fs_fd != -2)
2210 return; 2812 return;
2813
2814 fs_fd = -1;
2815
2816 check_2625 (EV_A);
2211 2817
2212 fs_fd = inotify_init (); 2818 fs_fd = inotify_init ();
2213 2819
2214 if (fs_fd >= 0) 2820 if (fs_fd >= 0)
2215 { 2821 {
2217 ev_set_priority (&fs_w, EV_MAXPRI); 2823 ev_set_priority (&fs_w, EV_MAXPRI);
2218 ev_io_start (EV_A_ &fs_w); 2824 ev_io_start (EV_A_ &fs_w);
2219 } 2825 }
2220} 2826}
2221 2827
2222void inline_size 2828inline_size void
2223infy_fork (EV_P) 2829infy_fork (EV_P)
2224{ 2830{
2225 int slot; 2831 int slot;
2226 2832
2227 if (fs_fd < 0) 2833 if (fs_fd < 0)
2243 w->wd = -1; 2849 w->wd = -1;
2244 2850
2245 if (fs_fd >= 0) 2851 if (fs_fd >= 0)
2246 infy_add (EV_A_ w); /* re-add, no matter what */ 2852 infy_add (EV_A_ w); /* re-add, no matter what */
2247 else 2853 else
2248 ev_timer_start (EV_A_ &w->timer); 2854 ev_timer_again (EV_A_ &w->timer);
2249 } 2855 }
2250
2251 } 2856 }
2252} 2857}
2253 2858
2859#endif
2860
2861#ifdef _WIN32
2862# define EV_LSTAT(p,b) _stati64 (p, b)
2863#else
2864# define EV_LSTAT(p,b) lstat (p, b)
2254#endif 2865#endif
2255 2866
2256void 2867void
2257ev_stat_stat (EV_P_ ev_stat *w) 2868ev_stat_stat (EV_P_ ev_stat *w)
2258{ 2869{
2285 || w->prev.st_atime != w->attr.st_atime 2896 || w->prev.st_atime != w->attr.st_atime
2286 || w->prev.st_mtime != w->attr.st_mtime 2897 || w->prev.st_mtime != w->attr.st_mtime
2287 || w->prev.st_ctime != w->attr.st_ctime 2898 || w->prev.st_ctime != w->attr.st_ctime
2288 ) { 2899 ) {
2289 #if EV_USE_INOTIFY 2900 #if EV_USE_INOTIFY
2901 if (fs_fd >= 0)
2902 {
2290 infy_del (EV_A_ w); 2903 infy_del (EV_A_ w);
2291 infy_add (EV_A_ w); 2904 infy_add (EV_A_ w);
2292 ev_stat_stat (EV_A_ w); /* avoid race... */ 2905 ev_stat_stat (EV_A_ w); /* avoid race... */
2906 }
2293 #endif 2907 #endif
2294 2908
2295 ev_feed_event (EV_A_ w, EV_STAT); 2909 ev_feed_event (EV_A_ w, EV_STAT);
2296 } 2910 }
2297} 2911}
2300ev_stat_start (EV_P_ ev_stat *w) 2914ev_stat_start (EV_P_ ev_stat *w)
2301{ 2915{
2302 if (expect_false (ev_is_active (w))) 2916 if (expect_false (ev_is_active (w)))
2303 return; 2917 return;
2304 2918
2305 /* since we use memcmp, we need to clear any padding data etc. */
2306 memset (&w->prev, 0, sizeof (ev_statdata));
2307 memset (&w->attr, 0, sizeof (ev_statdata));
2308
2309 ev_stat_stat (EV_A_ w); 2919 ev_stat_stat (EV_A_ w);
2310 2920
2921 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2311 if (w->interval < MIN_STAT_INTERVAL) 2922 w->interval = MIN_STAT_INTERVAL;
2312 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2313 2923
2314 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2924 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2315 ev_set_priority (&w->timer, ev_priority (w)); 2925 ev_set_priority (&w->timer, ev_priority (w));
2316 2926
2317#if EV_USE_INOTIFY 2927#if EV_USE_INOTIFY
2318 infy_init (EV_A); 2928 infy_init (EV_A);
2319 2929
2320 if (fs_fd >= 0) 2930 if (fs_fd >= 0)
2321 infy_add (EV_A_ w); 2931 infy_add (EV_A_ w);
2322 else 2932 else
2323#endif 2933#endif
2324 ev_timer_start (EV_A_ &w->timer); 2934 ev_timer_again (EV_A_ &w->timer);
2325 2935
2326 ev_start (EV_A_ (W)w, 1); 2936 ev_start (EV_A_ (W)w, 1);
2937
2938 EV_FREQUENT_CHECK;
2327} 2939}
2328 2940
2329void 2941void
2330ev_stat_stop (EV_P_ ev_stat *w) 2942ev_stat_stop (EV_P_ ev_stat *w)
2331{ 2943{
2332 clear_pending (EV_A_ (W)w); 2944 clear_pending (EV_A_ (W)w);
2333 if (expect_false (!ev_is_active (w))) 2945 if (expect_false (!ev_is_active (w)))
2334 return; 2946 return;
2335 2947
2948 EV_FREQUENT_CHECK;
2949
2336#if EV_USE_INOTIFY 2950#if EV_USE_INOTIFY
2337 infy_del (EV_A_ w); 2951 infy_del (EV_A_ w);
2338#endif 2952#endif
2339 ev_timer_stop (EV_A_ &w->timer); 2953 ev_timer_stop (EV_A_ &w->timer);
2340 2954
2341 ev_stop (EV_A_ (W)w); 2955 ev_stop (EV_A_ (W)w);
2956
2957 EV_FREQUENT_CHECK;
2342} 2958}
2343#endif 2959#endif
2344 2960
2345#if EV_IDLE_ENABLE 2961#if EV_IDLE_ENABLE
2346void 2962void
2348{ 2964{
2349 if (expect_false (ev_is_active (w))) 2965 if (expect_false (ev_is_active (w)))
2350 return; 2966 return;
2351 2967
2352 pri_adjust (EV_A_ (W)w); 2968 pri_adjust (EV_A_ (W)w);
2969
2970 EV_FREQUENT_CHECK;
2353 2971
2354 { 2972 {
2355 int active = ++idlecnt [ABSPRI (w)]; 2973 int active = ++idlecnt [ABSPRI (w)];
2356 2974
2357 ++idleall; 2975 ++idleall;
2358 ev_start (EV_A_ (W)w, active); 2976 ev_start (EV_A_ (W)w, active);
2359 2977
2360 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2978 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2361 idles [ABSPRI (w)][active - 1] = w; 2979 idles [ABSPRI (w)][active - 1] = w;
2362 } 2980 }
2981
2982 EV_FREQUENT_CHECK;
2363} 2983}
2364 2984
2365void 2985void
2366ev_idle_stop (EV_P_ ev_idle *w) 2986ev_idle_stop (EV_P_ ev_idle *w)
2367{ 2987{
2368 clear_pending (EV_A_ (W)w); 2988 clear_pending (EV_A_ (W)w);
2369 if (expect_false (!ev_is_active (w))) 2989 if (expect_false (!ev_is_active (w)))
2370 return; 2990 return;
2371 2991
2992 EV_FREQUENT_CHECK;
2993
2372 { 2994 {
2373 int active = ev_active (w); 2995 int active = ev_active (w);
2374 2996
2375 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2997 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2376 ev_active (idles [ABSPRI (w)][active - 1]) = active; 2998 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2377 2999
2378 ev_stop (EV_A_ (W)w); 3000 ev_stop (EV_A_ (W)w);
2379 --idleall; 3001 --idleall;
2380 } 3002 }
3003
3004 EV_FREQUENT_CHECK;
2381} 3005}
2382#endif 3006#endif
2383 3007
2384void 3008void
2385ev_prepare_start (EV_P_ ev_prepare *w) 3009ev_prepare_start (EV_P_ ev_prepare *w)
2386{ 3010{
2387 if (expect_false (ev_is_active (w))) 3011 if (expect_false (ev_is_active (w)))
2388 return; 3012 return;
3013
3014 EV_FREQUENT_CHECK;
2389 3015
2390 ev_start (EV_A_ (W)w, ++preparecnt); 3016 ev_start (EV_A_ (W)w, ++preparecnt);
2391 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3017 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2392 prepares [preparecnt - 1] = w; 3018 prepares [preparecnt - 1] = w;
3019
3020 EV_FREQUENT_CHECK;
2393} 3021}
2394 3022
2395void 3023void
2396ev_prepare_stop (EV_P_ ev_prepare *w) 3024ev_prepare_stop (EV_P_ ev_prepare *w)
2397{ 3025{
2398 clear_pending (EV_A_ (W)w); 3026 clear_pending (EV_A_ (W)w);
2399 if (expect_false (!ev_is_active (w))) 3027 if (expect_false (!ev_is_active (w)))
2400 return; 3028 return;
2401 3029
3030 EV_FREQUENT_CHECK;
3031
2402 { 3032 {
2403 int active = ev_active (w); 3033 int active = ev_active (w);
2404 3034
2405 prepares [active - 1] = prepares [--preparecnt]; 3035 prepares [active - 1] = prepares [--preparecnt];
2406 ev_active (prepares [active - 1]) = active; 3036 ev_active (prepares [active - 1]) = active;
2407 } 3037 }
2408 3038
2409 ev_stop (EV_A_ (W)w); 3039 ev_stop (EV_A_ (W)w);
3040
3041 EV_FREQUENT_CHECK;
2410} 3042}
2411 3043
2412void 3044void
2413ev_check_start (EV_P_ ev_check *w) 3045ev_check_start (EV_P_ ev_check *w)
2414{ 3046{
2415 if (expect_false (ev_is_active (w))) 3047 if (expect_false (ev_is_active (w)))
2416 return; 3048 return;
3049
3050 EV_FREQUENT_CHECK;
2417 3051
2418 ev_start (EV_A_ (W)w, ++checkcnt); 3052 ev_start (EV_A_ (W)w, ++checkcnt);
2419 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3053 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2420 checks [checkcnt - 1] = w; 3054 checks [checkcnt - 1] = w;
3055
3056 EV_FREQUENT_CHECK;
2421} 3057}
2422 3058
2423void 3059void
2424ev_check_stop (EV_P_ ev_check *w) 3060ev_check_stop (EV_P_ ev_check *w)
2425{ 3061{
2426 clear_pending (EV_A_ (W)w); 3062 clear_pending (EV_A_ (W)w);
2427 if (expect_false (!ev_is_active (w))) 3063 if (expect_false (!ev_is_active (w)))
2428 return; 3064 return;
2429 3065
3066 EV_FREQUENT_CHECK;
3067
2430 { 3068 {
2431 int active = ev_active (w); 3069 int active = ev_active (w);
2432 3070
2433 checks [active - 1] = checks [--checkcnt]; 3071 checks [active - 1] = checks [--checkcnt];
2434 ev_active (checks [active - 1]) = active; 3072 ev_active (checks [active - 1]) = active;
2435 } 3073 }
2436 3074
2437 ev_stop (EV_A_ (W)w); 3075 ev_stop (EV_A_ (W)w);
3076
3077 EV_FREQUENT_CHECK;
2438} 3078}
2439 3079
2440#if EV_EMBED_ENABLE 3080#if EV_EMBED_ENABLE
2441void noinline 3081void noinline
2442ev_embed_sweep (EV_P_ ev_embed *w) 3082ev_embed_sweep (EV_P_ ev_embed *w)
2469 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3109 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2470 } 3110 }
2471 } 3111 }
2472} 3112}
2473 3113
3114static void
3115embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3116{
3117 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3118
3119 ev_embed_stop (EV_A_ w);
3120
3121 {
3122 struct ev_loop *loop = w->other;
3123
3124 ev_loop_fork (EV_A);
3125 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3126 }
3127
3128 ev_embed_start (EV_A_ w);
3129}
3130
2474#if 0 3131#if 0
2475static void 3132static void
2476embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3133embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2477{ 3134{
2478 ev_idle_stop (EV_A_ idle); 3135 ev_idle_stop (EV_A_ idle);
2485 if (expect_false (ev_is_active (w))) 3142 if (expect_false (ev_is_active (w)))
2486 return; 3143 return;
2487 3144
2488 { 3145 {
2489 struct ev_loop *loop = w->other; 3146 struct ev_loop *loop = w->other;
2490 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3147 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2491 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3148 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2492 } 3149 }
3150
3151 EV_FREQUENT_CHECK;
2493 3152
2494 ev_set_priority (&w->io, ev_priority (w)); 3153 ev_set_priority (&w->io, ev_priority (w));
2495 ev_io_start (EV_A_ &w->io); 3154 ev_io_start (EV_A_ &w->io);
2496 3155
2497 ev_prepare_init (&w->prepare, embed_prepare_cb); 3156 ev_prepare_init (&w->prepare, embed_prepare_cb);
2498 ev_set_priority (&w->prepare, EV_MINPRI); 3157 ev_set_priority (&w->prepare, EV_MINPRI);
2499 ev_prepare_start (EV_A_ &w->prepare); 3158 ev_prepare_start (EV_A_ &w->prepare);
2500 3159
3160 ev_fork_init (&w->fork, embed_fork_cb);
3161 ev_fork_start (EV_A_ &w->fork);
3162
2501 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3163 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2502 3164
2503 ev_start (EV_A_ (W)w, 1); 3165 ev_start (EV_A_ (W)w, 1);
3166
3167 EV_FREQUENT_CHECK;
2504} 3168}
2505 3169
2506void 3170void
2507ev_embed_stop (EV_P_ ev_embed *w) 3171ev_embed_stop (EV_P_ ev_embed *w)
2508{ 3172{
2509 clear_pending (EV_A_ (W)w); 3173 clear_pending (EV_A_ (W)w);
2510 if (expect_false (!ev_is_active (w))) 3174 if (expect_false (!ev_is_active (w)))
2511 return; 3175 return;
2512 3176
3177 EV_FREQUENT_CHECK;
3178
2513 ev_io_stop (EV_A_ &w->io); 3179 ev_io_stop (EV_A_ &w->io);
2514 ev_prepare_stop (EV_A_ &w->prepare); 3180 ev_prepare_stop (EV_A_ &w->prepare);
3181 ev_fork_stop (EV_A_ &w->fork);
2515 3182
2516 ev_stop (EV_A_ (W)w); 3183 EV_FREQUENT_CHECK;
2517} 3184}
2518#endif 3185#endif
2519 3186
2520#if EV_FORK_ENABLE 3187#if EV_FORK_ENABLE
2521void 3188void
2522ev_fork_start (EV_P_ ev_fork *w) 3189ev_fork_start (EV_P_ ev_fork *w)
2523{ 3190{
2524 if (expect_false (ev_is_active (w))) 3191 if (expect_false (ev_is_active (w)))
2525 return; 3192 return;
3193
3194 EV_FREQUENT_CHECK;
2526 3195
2527 ev_start (EV_A_ (W)w, ++forkcnt); 3196 ev_start (EV_A_ (W)w, ++forkcnt);
2528 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3197 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2529 forks [forkcnt - 1] = w; 3198 forks [forkcnt - 1] = w;
3199
3200 EV_FREQUENT_CHECK;
2530} 3201}
2531 3202
2532void 3203void
2533ev_fork_stop (EV_P_ ev_fork *w) 3204ev_fork_stop (EV_P_ ev_fork *w)
2534{ 3205{
2535 clear_pending (EV_A_ (W)w); 3206 clear_pending (EV_A_ (W)w);
2536 if (expect_false (!ev_is_active (w))) 3207 if (expect_false (!ev_is_active (w)))
2537 return; 3208 return;
2538 3209
3210 EV_FREQUENT_CHECK;
3211
2539 { 3212 {
2540 int active = ev_active (w); 3213 int active = ev_active (w);
2541 3214
2542 forks [active - 1] = forks [--forkcnt]; 3215 forks [active - 1] = forks [--forkcnt];
2543 ev_active (forks [active - 1]) = active; 3216 ev_active (forks [active - 1]) = active;
2544 } 3217 }
2545 3218
2546 ev_stop (EV_A_ (W)w); 3219 ev_stop (EV_A_ (W)w);
3220
3221 EV_FREQUENT_CHECK;
2547} 3222}
2548#endif 3223#endif
2549 3224
2550#if EV_ASYNC_ENABLE 3225#if EV_ASYNC_ENABLE
2551void 3226void
2553{ 3228{
2554 if (expect_false (ev_is_active (w))) 3229 if (expect_false (ev_is_active (w)))
2555 return; 3230 return;
2556 3231
2557 evpipe_init (EV_A); 3232 evpipe_init (EV_A);
3233
3234 EV_FREQUENT_CHECK;
2558 3235
2559 ev_start (EV_A_ (W)w, ++asynccnt); 3236 ev_start (EV_A_ (W)w, ++asynccnt);
2560 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3237 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2561 asyncs [asynccnt - 1] = w; 3238 asyncs [asynccnt - 1] = w;
3239
3240 EV_FREQUENT_CHECK;
2562} 3241}
2563 3242
2564void 3243void
2565ev_async_stop (EV_P_ ev_async *w) 3244ev_async_stop (EV_P_ ev_async *w)
2566{ 3245{
2567 clear_pending (EV_A_ (W)w); 3246 clear_pending (EV_A_ (W)w);
2568 if (expect_false (!ev_is_active (w))) 3247 if (expect_false (!ev_is_active (w)))
2569 return; 3248 return;
2570 3249
3250 EV_FREQUENT_CHECK;
3251
2571 { 3252 {
2572 int active = ev_active (w); 3253 int active = ev_active (w);
2573 3254
2574 asyncs [active - 1] = asyncs [--asynccnt]; 3255 asyncs [active - 1] = asyncs [--asynccnt];
2575 ev_active (asyncs [active - 1]) = active; 3256 ev_active (asyncs [active - 1]) = active;
2576 } 3257 }
2577 3258
2578 ev_stop (EV_A_ (W)w); 3259 ev_stop (EV_A_ (W)w);
3260
3261 EV_FREQUENT_CHECK;
2579} 3262}
2580 3263
2581void 3264void
2582ev_async_send (EV_P_ ev_async *w) 3265ev_async_send (EV_P_ ev_async *w)
2583{ 3266{
2600once_cb (EV_P_ struct ev_once *once, int revents) 3283once_cb (EV_P_ struct ev_once *once, int revents)
2601{ 3284{
2602 void (*cb)(int revents, void *arg) = once->cb; 3285 void (*cb)(int revents, void *arg) = once->cb;
2603 void *arg = once->arg; 3286 void *arg = once->arg;
2604 3287
2605 ev_io_stop (EV_A_ &once->io); 3288 ev_io_stop (EV_A_ &once->io);
2606 ev_timer_stop (EV_A_ &once->to); 3289 ev_timer_stop (EV_A_ &once->to);
2607 ev_free (once); 3290 ev_free (once);
2608 3291
2609 cb (revents, arg); 3292 cb (revents, arg);
2610} 3293}
2611 3294
2612static void 3295static void
2613once_cb_io (EV_P_ ev_io *w, int revents) 3296once_cb_io (EV_P_ ev_io *w, int revents)
2614{ 3297{
2615 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3298 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3299
3300 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2616} 3301}
2617 3302
2618static void 3303static void
2619once_cb_to (EV_P_ ev_timer *w, int revents) 3304once_cb_to (EV_P_ ev_timer *w, int revents)
2620{ 3305{
2621 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3306 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3307
3308 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2622} 3309}
2623 3310
2624void 3311void
2625ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3312ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2626{ 3313{
2648 ev_timer_set (&once->to, timeout, 0.); 3335 ev_timer_set (&once->to, timeout, 0.);
2649 ev_timer_start (EV_A_ &once->to); 3336 ev_timer_start (EV_A_ &once->to);
2650 } 3337 }
2651} 3338}
2652 3339
3340/*****************************************************************************/
3341
3342#if EV_WALK_ENABLE
3343void
3344ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3345{
3346 int i, j;
3347 ev_watcher_list *wl, *wn;
3348
3349 if (types & (EV_IO | EV_EMBED))
3350 for (i = 0; i < anfdmax; ++i)
3351 for (wl = anfds [i].head; wl; )
3352 {
3353 wn = wl->next;
3354
3355#if EV_EMBED_ENABLE
3356 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3357 {
3358 if (types & EV_EMBED)
3359 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3360 }
3361 else
3362#endif
3363#if EV_USE_INOTIFY
3364 if (ev_cb ((ev_io *)wl) == infy_cb)
3365 ;
3366 else
3367#endif
3368 if ((ev_io *)wl != &pipe_w)
3369 if (types & EV_IO)
3370 cb (EV_A_ EV_IO, wl);
3371
3372 wl = wn;
3373 }
3374
3375 if (types & (EV_TIMER | EV_STAT))
3376 for (i = timercnt + HEAP0; i-- > HEAP0; )
3377#if EV_STAT_ENABLE
3378 /*TODO: timer is not always active*/
3379 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3380 {
3381 if (types & EV_STAT)
3382 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3383 }
3384 else
3385#endif
3386 if (types & EV_TIMER)
3387 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3388
3389#if EV_PERIODIC_ENABLE
3390 if (types & EV_PERIODIC)
3391 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3392 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3393#endif
3394
3395#if EV_IDLE_ENABLE
3396 if (types & EV_IDLE)
3397 for (j = NUMPRI; i--; )
3398 for (i = idlecnt [j]; i--; )
3399 cb (EV_A_ EV_IDLE, idles [j][i]);
3400#endif
3401
3402#if EV_FORK_ENABLE
3403 if (types & EV_FORK)
3404 for (i = forkcnt; i--; )
3405 if (ev_cb (forks [i]) != embed_fork_cb)
3406 cb (EV_A_ EV_FORK, forks [i]);
3407#endif
3408
3409#if EV_ASYNC_ENABLE
3410 if (types & EV_ASYNC)
3411 for (i = asynccnt; i--; )
3412 cb (EV_A_ EV_ASYNC, asyncs [i]);
3413#endif
3414
3415 if (types & EV_PREPARE)
3416 for (i = preparecnt; i--; )
3417#if EV_EMBED_ENABLE
3418 if (ev_cb (prepares [i]) != embed_prepare_cb)
3419#endif
3420 cb (EV_A_ EV_PREPARE, prepares [i]);
3421
3422 if (types & EV_CHECK)
3423 for (i = checkcnt; i--; )
3424 cb (EV_A_ EV_CHECK, checks [i]);
3425
3426 if (types & EV_SIGNAL)
3427 for (i = 0; i < signalmax; ++i)
3428 for (wl = signals [i].head; wl; )
3429 {
3430 wn = wl->next;
3431 cb (EV_A_ EV_SIGNAL, wl);
3432 wl = wn;
3433 }
3434
3435 if (types & EV_CHILD)
3436 for (i = EV_PID_HASHSIZE; i--; )
3437 for (wl = childs [i]; wl; )
3438 {
3439 wn = wl->next;
3440 cb (EV_A_ EV_CHILD, wl);
3441 wl = wn;
3442 }
3443/* EV_STAT 0x00001000 /* stat data changed */
3444/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3445}
3446#endif
3447
2653#if EV_MULTIPLICITY 3448#if EV_MULTIPLICITY
2654 #include "ev_wrap.h" 3449 #include "ev_wrap.h"
2655#endif 3450#endif
2656 3451
2657#ifdef __cplusplus 3452#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines